WO2018065655A1 - Rigid pedestal of a wind tower - Google Patents

Rigid pedestal of a wind tower Download PDF

Info

Publication number
WO2018065655A1
WO2018065655A1 PCT/ES2017/070655 ES2017070655W WO2018065655A1 WO 2018065655 A1 WO2018065655 A1 WO 2018065655A1 ES 2017070655 W ES2017070655 W ES 2017070655W WO 2018065655 A1 WO2018065655 A1 WO 2018065655A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind tower
horizontal
dynamic
shaft
pedestal
Prior art date
Application number
PCT/ES2017/070655
Other languages
Spanish (es)
French (fr)
Inventor
Juan Francisco DE LA TORRE CALVO
Original Assignee
Deltacore Estudios Y Proyectos, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deltacore Estudios Y Proyectos, S.L. filed Critical Deltacore Estudios Y Proyectos, S.L.
Publication of WO2018065655A1 publication Critical patent/WO2018065655A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/22Sockets or holders for poles or posts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts

Definitions

  • the present invention relates to a rigid wind tower pedestal that allows raising the starting height, and thereby the coronation height, of the wind tower that is installed on it without the need to make modifications to the design of said wind tower.
  • the foundation of the invention is to be able to take advantage of the existing technology of the wind turbine towers by applying it at heights higher than those towers themselves cannot reach, but without altering the design of the tower or the operating regime of the wind turbine .
  • the proposed pedestal is universal and is capable of supplying what is necessary for the existing technology to remain valid at levels higher than those that until now have been the maximum of exploitation.
  • Steel towers are manufactured for heights between 80 and 100 m, as they are the most competitive in that range of heights. These towers can be hollow cylindrical or conical, like lattice bars. However, for higher heights the use of steel is impossible since the thickness dimensions of the steel needed to support more height raise the cost greatly. On the other hand, if you resort to Increases in the base diameter, the necessary dimensions make transportation from the factory to the wind farm unfeasible, due to the width dimensions of the tracks and the overpass roads. Therefore, it is not possible with this model to resort to higher operating heights economically.
  • the advantage of steel wind towers is that it is a versatile, industrialized and efficient technology. Furthermore, this technology has been used for years and there is a wide and valuable technical development contrasted by thousands of installed towers.
  • Hybrid towers are an intermediate option that remains a viable alternative for great heights. These solutions are not versatile as they remain designs. specific for each wind turbine. They also require combining the construction of steel elements with concrete, making assembly difficult, and also requires a special technology that does not fully nourish either steel or concrete. The steel part of these wind turbines is completely new, it does not use designs already made.
  • patent ES-2524840 B1 refers to a foundation for towers, which is necessarily buried or partially buried, and which includes a completely buried flat slab.
  • the soil in which the foundation is buried acts as a ballast to optimize the amount of material used in the foundation of large towers and high loads. It is intended to reduce the foundation costs of this type of towers.
  • Another group of inventions are those in which the shaft of the tower has lateral reinforcements up to a certain height.
  • These are wind towers that have to be fully developed, including reinforcements, and are presented as an alternative to the wind towers currently developed.
  • the reinforcement elements that are added to these shafts only allow to improve the resistant behavior of the shaft but do not allow to adapt the system's own frequency.
  • patent EP-2444663 A2 is known, which refers to a wind turbine configured to be installed on land and which is composed of a wind turbine gondola mounted on a tower.
  • the patent includes the gondola and a complete tower reinforced with leg-like elements.
  • JP2002122066 A describes a complete tower that connects to the foundation at its bottom and to the gondola at its top.
  • Said complete tower is composed of cylindrical hollow concrete rings with T-shaped reinforcement elements that connect between the tower and the foundation.
  • a third group of current inventions refers to elements that are arranged in the lower part of a tower, such as those described in patent ES2369304 B2, in which a reinforcement base for wind tower shafts is presented.
  • the shaft of the tower to be reinforced is directly attached to the foundation and the reinforcing elements are attached directly to the tower's shaft. This fact means that a modification of the original shaft of the tower must be made, thus canceling the calculation and design previously performed.
  • patent ES2438626 B1 refers to a support structure for wind turbines and mold for obtaining such structures.
  • the structure is made without horizontal divisions between panels all of them equal in height to the total height of said support structure.
  • the resulting structure has a truncated conical or truncated pyramid geometry. It requires a transition piece of mixed steel-concrete composition.
  • US patent application US2016 / 0215761 refers to a wind turbine tower, formed by two sections, a lower one consisting of concrete sections superimposed on each other and held by transition pieces from one piece to its immediately adjacent top and above which a section of superimposed steel pieces is installed, it being necessary to fasten the sections of the lower concrete section to the base, holding such braces in the transition pieces that join the pieces that make up the lower section of the wind tower.
  • These braces have the mission of maintaining the integrity of the tower by exclusively reducing the bending moments in the concrete shaft, they are not designed to adjust the behavior dynamic tower but to optimize the structural design of the central concrete shaft.
  • the patent does not raise at any point the possibility that the central shaft is not a resistant element.
  • the braces are described as metallic elements and expressly cites that the solution eliminates the posts of the structure. This point cannot be met with wind towers if the central shaft is structural because the decompression hypotheses required by the design codes are not ensured.
  • the invention does not contemplate using the existing metal towers but instead opts for a complete tower design, even of the metal sections that rest on the concrete. It should be noted that although the inventor wanted to have a metal tower already designed on the concrete part, the system would not ensure the dynamic design conditions and therefore would require recalculation of the dynamic loads and the validity of the metal sections. Finally, it should be said that none of the current solutions is universal nor does it maintain the natural frequency of the system, so it is the purpose of the invention to seek a solution that maintains the natural frequency of the system.
  • the present invention presents a rigid wind tower pedestal that allows to increase the working height of the current metal wind towers without modifying its design, since this rigid structure of the pedestal reduces the bending moments in the concrete shaft, so the wind tower that is located superior to the shaft, without modifying its traditional design, since the shaft acts as a stable surface on which it sits.
  • Stiffness is a qualitative measure of the resistance to elastic deformations produced by a material, which contemplates the ability of a structural element to withstand stresses without acquiring large deformations.
  • the stiffness coefficients are physical quantities that quantify the stiffness of a resistant element under various load configurations. Normally the rigidities are calculated as the ratio between an applied force and the displacement obtained by the application of that force. When we talk about a rigid pedestal we must understand that it is barely deforms before the application of forces in it. These deformations are evidently much less equal to the chosen tower and materials used than a cable-stayed solution such as those usually used.
  • the pedestal is installed between a foundation (or an increase in it) and the wind tower.
  • the wind tower does not join the foundation directly as in the state of the art but joins the pedestal.
  • the proposed pedestal is completely above the ground since at no time it acts as a foundation and therefore is not buried or partially buried.
  • An essential advantage of the present invention is that the pedestal allows to raise the height of coronation of the wind tower while maintaining the dynamic behavior of said invariable wind tower against the dynamic loads introduced by the turbine. That is, the height of the pedestal serves entirely as an increase in the total height of the tower.
  • the pedestal is a rigid wind tower pedestal that is universal and allows the use of currently known structural systems.
  • the pedestal can be adapted to any wind tower regardless of its geometry and dimensions. It also allows the correct adaptation to the operating regime of any wind turbine currently known.
  • the pedestal is easy to produce since it is manufactured from horizontal structural elements and dynamic modulators obtainable with molds that are simple and easy to assemble. Also, the pedestal has great geometric and mechanical versatility to allow any increase in height in any type of wind tower with which it will be installed. Another advantage associated with the proposed pedestal is that the maintenance cost is very low.
  • the pedestal is configured to be installed on a foundation and receive an already designed wind tower, as previously described, without the need to modify its design.
  • Post-tensioning cables which include dynamic modulators, can be anchored at one end directly to the shaft or the wind tower and at the other end can be anchored to the bottom base surface of the shaft or to the foundation.
  • dynamic modulators the thickness measurements, the angle of inclination of the reinforcement cables inside, the height and length also depend on the tower to be installed on the pedestal.
  • the system of dynamic modulators in conjunction with the strength and tracing of the testing of the reinforcement cables makes it possible to adapt the frequency of the whole to any wind tower that you want to install on the pedestal, without altering its operating regime. This makes the pedestal totally versatile and can be used in conjunction with any wind tower already designed in the state of the art.
  • the pedestal also comprises an outer platform that can be permanent or removable and which is preferably a perimeter steel platform. It is designed to allow operators access to the connection area between the steel tower and the pedestal to perform the relevant actions to carry out this connection and its maintenance.
  • the shaft (or one of the lower cylinders thereof if it is formed by the union of cylinders) has a pedestal access door.
  • the chump allows the passage of people, materials, equipment and lifting means between the pedestal and the steel tower.
  • the prestressed or post-tensioned dynamic modulators extend from the upper base surface of the pedestal shaft and not from an intermediate area of said shaft.
  • the shaft comprises at least one horizontal structural deflection element. This element is configured to allow the deviation of the path of the reinforcement cables that extend in the vertical direction through the shaft and that follow an inclined path in the dynamic modulators.
  • the horizontal structural element of deviation there may be a curved deviation of the cable routing or a straight anchor of a reinforcement cable that runs through the dynamic modulator until it is anchored on the surface of the bottom base of the shaft or in the foundation to which it is joins the pedestal, and a straight anchor of the vertical tesado from the upper base surface of the shaft with high strength bars.
  • the prestressed or post-tensioned dynamic modulators are attached to a horizontal structural element of the shaft that does not correspond to the upper base surface, there are always post-tensioned reinforcing cables that extend vertically from the base surface upper (at the junction with the tower) to the horizontal structural element to which the dynamic modulators are attached.
  • the horizontal structural elements that make up the shaft, as well as the element Structural horizontal deviation, can be solid, hollow elements or with internal radial reinforcements to stiffen the section.
  • this connection is made by means of lower anchors, which can be, for example, delta wedges.
  • Said wedges are arranged on the lower base surface and dynamic modulators are supported therein.
  • the reinforcement cables inside are attached to the lower base surface through the inside of the wedges.
  • the horizontal structural elements are bonded to each other with dry divisions. In embodiments where it is necessary to reinforce said divisions, the possibility of reinforcing them with mortar is contemplated.
  • These horizontal structural elements which can be cylindrical or polygonal, are as tall as the crane load allows, minimizing the number of horizontal divisions, limiting their slenderness to forty times their thickness.
  • the key to ensuring dry horizontal divisions are the post-tensioned reinforcement cables that keep them compressed at all times during the life of the pedestal.
  • the pedestal anchors to the tower are also overlapped with the post-tensioning of the pedestal reinforcement cables. Vertical tensions in service remain compression along the entire height of the pedestal. This aspect is necessary to guarantee the good behavior of the system (foundation, pedestal, tower and complete turbine) during the whole useful life before dynamic actions.
  • the rest of the characteristics related to the dynamic behavior of the wind tower are regulated by the dimensioning of the dynamic modulators and the sections of the horizontal structural elements.
  • the upper base surface of the shaft is thick enough to support the weight of the wind turbine tower. It also has a sufficient radial offset between the anchor zone of the tower and the corresponding reinforcement cable heads (testing cables).
  • the design of the upper base of the shaft is carried out to allow the coupling of wind towers in which the inside diameter of the connection is greater than 2 m and the external diameter of the connection is less than 6 m.
  • the dynamic radial modulators are made up of planes, bevels or beams, and are hoisted to their position with the maximum size that the cranes allow by weight, also minimizing the number of horizontal divisions.
  • Post-tensioning is determined, both in plot and in force, based on the wind tower to be installed. To do this, a compression is necessary in the horizontal divisions of the pedestal so that it is ensured that they are never opened by decompression in service.
  • the fundamental characteristic of the invention is that the combination of the dimensions of each element together with the strength and stiffness of the post-tensioning, which allows the joint dynamic behavior of the tower with the pedestal, with the foundation and with the turbine to present the same dynamic regime as the complete wind turbine of lower existing height (foundation, more tower, more turbine). This is an indispensable characteristic to be able to use the wind towers already known without having to modify their design.
  • the steel wind towers already developed can reach higher operating heights without the need for alterations in the manufacturing and operation regime of the wind turbine.
  • a very high versatility is achieved because with a unique design of current steel wind tower, the entire range of higher heights can be covered and all the technology currently developed and applied to this type of wind towers can continue to be used without alterations.
  • the design, geometry, materials and active tension state of the pedestal also allows it to be equipped with the mechanical characteristics necessary in each case so that the dynamic behavior regime of the wind turbine installed on it is not altered. That is, the pedestal allows to adapt the frequency of the system to continue using the wind towers developed for lower heights.
  • the improvements proposed by the present invention can be grouped into: a) Faced with the steel towers of the prior art: the proposed pedestal allows the use of known steel towers without modifications for bushing heights above of 100m. b) In front of the concrete towers: it uses the technological development of the wind towers of lower heights and eliminates the need to perform an additional calculation of loads on the resulting structure. c) On the base reinforcement structures: it allows the use, without modifications, of the wind towers used for lower heights and eliminates the need to perform an additional calculation of loads on the complete structure (tower plus reinforcements).
  • the measurements of the pedestal are obtained for different technical and functional specifications of each metallic wind tower and according to the geotechnical characteristics of each terrain.
  • the aspects of the dynamic behavior of the system (considering the system as the total set of the foundation, the pedestal, the tower and the complete turbine) that are controlled with the described pedestal are the proper frequency of the fundamental mode of vibration of the whole set, the frequencies of other suitable ways to avoid spurious vibrations of the pedestal itself, and the rotational and translational rigidities at the base of the metal tower attached to the pedestal.
  • the total height of the pedestal is chosen in each case to achieve the desired total height of the wind energy collection system, without modifying the design of the metal tower to which it is to be attached.
  • Figures 1 a-a- Show perspective, elevation and top floor views of a wind tower pedestal with related and post-tensioned dynamic modulators.
  • Figures 2 a-a- They show perspective, elevation and top floor views of a wind tower pedestal with disconnected and post-dynamic dynamic modulators with the reinforcement cables embedded in the shaft.
  • Figures 3 a-a- They show perspective, elevation and top floor views of a wind tower pedestal with disconnected and post-dynamic dynamic modulators with the reinforcement cables arranged inside the shaft, not embedded in it.
  • Figure 4 a Shows a view of an embodiment of a horizontal cylindrical structural element.
  • Figure 4 b.- Shows a view of another embodiment of a horizontal cylindrical structural element.
  • Figure 5 a Shows a view of an embodiment of a hexagonal horizontal structural element.
  • Figure 5 b.- Shows a view of another embodiment of a hexagonal horizontal structural element.
  • Figures 7 a-b.- Shows perspective views and section of a horizontal structural element of diversion.
  • FIGS 8 a-b.- Shows perspective views and section of another horizontal deviation structural element.
  • Figure 9 a Shows a view of the union of the wind tower to the upper base surface of the shaft in an exemplary embodiment in which the connection is made inside the wind tower.
  • Figure 9 b.- Shows a view of the connection of the wind tower to the upper base surface of the shaft in an exemplary embodiment in which the connection is made outside the wind tower.
  • the rigid wind tower pedestal of the present invention is configured to be installed between a foundation and a metal wind tower already designed without modifying its design.
  • the pedestal (1) is disposed on the ground and is not buried or partially buried in it but arranged on a foundation or an extension of it.
  • the rigid wind tower pedestal of the invention allows to increase the working height of the current metallic wind towers without modifying its design, since this rigid structure of the pedestal reduces the bending moments in the concrete shaft, so that the tower wind is located superior to the shaft, as just said, without changing its traditional design, since the shaft acts as a stable surface, as if it were the foundation on which it sits.
  • Figures 1 a-c, 2 a-c and 3 a-c show some examples of realization of the proposed wind tower pedestal (1).
  • the pedestal (1) is configured to be used with wind towers with a diameter between 2m and 6m.
  • the pedestal (1) comprises at least one shaft (2) comprising a plurality of horizontal structural elements (3) joined together and comprises an upper base surface (4) to which the wind tower is attached and a lower base surface (5) that is attached to the foundation.
  • the pedestal (1) comprises pre-tensioned or post-tensioned dynamic modulators (6) extending from the upper base surface (4) or a horizontal structural element (3) of the shaft (2) to the bottom base surface (5) of the shaft or to the foundation to which the pedestal is attached in its final position.
  • the pedestal (1) comprises a horizontal structural deflection element (14) which is the element from which the dynamic modulators (6) start.
  • Said dynamic modulators (6) are configured to adjust the characteristics of the foundation set, the pedestal and the wind tower to the requirements of the already designed wind tower to be installed on the pedestal, without changing the design conditions of the Turbine and metal tower. That is, thanks to the dynamic modulators
  • FIG. 1 a-c An example of embodiment in which the dynamic modulators (6) are connected are shown in Figures 1 a-c. As can be seen in these figures, the dynamic modulators (6) are of the corbel type and are connected to the shaft (2) along its entire height.
  • a pedestal (1) is presented with dynamic modulators (6) disjointed in which the reinforcing cables (7) are as can be seen in FIG. 2c, embedded in the horizontal structural elements (3) of the shaft (2).
  • the pedestal (1) is reinforced and post-tensioned concrete and therefore inside the shaft (2) and inside the dynamic modulators (6) are reinforcement cables (7) that are testing cables with which the transmission of loads from the wind tower to the ground is controlled. Thanks to this transfer of efforts it is possible to increase the height of the wind turbines without having to resize their resistance to loads or the rest of their measurements.
  • the upper base surface (4) which is on which the wind tower is installed, has a determined thickness, sufficient to allow the fixing of a reinforcing cable (7) that crosses at least said upper base surface (4) and a dynamic modulator (6).
  • the radius and thickness of the shaft (2) are constant and depend on the measurements of the wind tower to be installed on the pedestal (1).
  • the horizontal structural elements (3) that form the shaft (2) are arranged stacked together, forming horizontal and non-vertical divisions (9).
  • said divisions (9) are preferably performed dry by means of bone or "dog's mouth” joints. The coupling of the horizontal structural elements (3) with each other is ensured by the post-tensioning of the reinforcement cables (7) of the pedestal.
  • the horizontal structural elements (3) can have a cylindrical configuration or have polygonal sections so that the outer face of the horizontal structural element (3) is shaped. This embodiment in which the horizontal structural elements (3) have flat faces makes it easier to adjust the dynamic modulators (6).
  • Figure 6 shows a horizontal division (9) that is the area of union between horizontal structural elements (3) of the shaft.
  • the division (9) is designed to serve as a barrier to the entry of water from the outside of the pedestal (1), to function as a shear key between the horizontal structural elements (3), and to, in an emergency, be able to execute wet joint It is a joint with trough breast and internal inclined pour cannulas for injection of the filling mortar.
  • the upper face (10) of each horizontal structural element (3) comprises at least one recess (12) and the lower face (11) comprises a shoulder (13).
  • the at least one shoulder (13) of the lower face (11) is housed in the at least one recess (12) of the upper face (10).
  • This type of divisions (9) for dry joints are also applicable to the horizontal division between the horizontal structural deviation element (14) and the horizontal structural element (3) of the shaft to which it is attached in the embodiments in the that the shaft comprises said horizontal deflection structural element.
  • the shaft (2) comprises at least one horizontal deflection structural element (14)
  • it is arranged in contact with at least one of the horizontal structural elements (3) of the shaft (2).
  • the dynamic modulators (6) do not extend to the upper base surface (4), they extend to said horizontal structural diverting element (14) in which the change of trajectory of the reinforcement cable (of trajectory) is made vertical from the upper base surface (4) to the horizontal deflection structural element (14) with an inclined path along the dynamic modulator (6).
  • the change of trajectory of the reinforcement cables (7) can be carried out directly inside the horizontal bypass structural element (14) (or the upper base surface (4) if The dynamic modulator (6) extends directly from it) or the same effect can be obtained using two reinforcing cables (7).
  • one of the reinforcing cables (7) extends vertically between the upper base surface (4), to which it is anchored, and the horizontal structural deflection element (14), to which it is anchored, and Another part cable extends the horizontal structural deflection element (14), to which it is anchored, with the corresponding inclination through the dynamic modulator (6).
  • the preferred option will be the reinforcement cable continuous (represented in figure 7a) because the bankruptcy angle is light.
  • the solution of several reinforcement cables (7) connected to the horizontal bypass structural element (14) (shown in Figure 7a) will preferably be carried out.
  • Figures 9a and 9b represent two alternatives to the connection between metallic wind tower (8) and pedestal (1).
  • the reinforcement cables (7) of the pedestal (1) go inside the section of the wind tower (8)
  • the reinforcement cables (7 ) go outside the wind tower (8).
  • the choice of one embodiment or another depends on the diameter of the metallic wind tower.
  • the reinforcement cables (7) are arranged inside the wind tower (8), but in the case of very narrow towers, said cables are arranged outside.
  • Figure 10 shows a lower anchor (15) that can be arranged at the lower end of the dynamic modulators (6) and configured to join to join the lower base surface (5) or the foundation. It is a delta-shaped reinforced concrete element that is configured to connect the dynamic modulators (6) to the foundation and to pass the reinforcement cable (7) that runs through the dynamic modulator (6) to the foundation. Said lower anchor (15) also comprises registration for the testing mechanism.
  • the invention also encompasses a rigid pedestal that does not physically incorporate the shaft (2), since the dynamic modulators (6) of post-tensioned reinforced concrete are joined together by making the function of the shaft (2) and these modulators are attached to the upper base (4) where the wind tower is fixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to a pedestal (1) of a wind tower, which is installed between a foundation and a previously designed wind tower to increase the height of said tower without varying the design thereof. Said pedestal comprises an optional shaft (2) comprising a plurality of horizontal structural elements (3) made of pre-tensioned reinforced concrete and connected to each other forming horizontal divisions, and dynamic modulators (6) made of pre-tensioned or post-tensioned concrete and connected by one end to the upper base surface (4) or to a horizontal structural element (3) of the shaft, and by the other end to the lower base surface (5) or to the foundation.

Description

PEDESTAL RÍGIDO DE TORRE EÓLICA D E S C R I P C I Ó N  RIGID PEDESTAL OF WIND TOWER D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a un pedestal rígido de torre eólica que permite elevar la altura de arranque, y con ello la de coronación, de la torre eólica que se instala sobre él sin necesidad de realizar modificaciones en el diseño de dicha torre eólica. The present invention relates to a rigid wind tower pedestal that allows raising the starting height, and thereby the coronation height, of the wind tower that is installed on it without the need to make modifications to the design of said wind tower.
El fundamento de la invención es poder aprovechar la tecnología existente de la torres para aerogeneradores aplicándolo a alturas superiores a las que las dichas torres por sí mismas no pueden llegar, pero sin necesidad de alterar el diseño de la torre ni el régimen de funcionamiento del aerogenerador. The foundation of the invention is to be able to take advantage of the existing technology of the wind turbine towers by applying it at heights higher than those towers themselves cannot reach, but without altering the design of the tower or the operating regime of the wind turbine .
Esto supone una ampliación del campo de explotación de la tecnología existente y permite aumentar su aprovechamiento sin necesidad de diseñar nuevos modelos de torres eólicas. Es decir, el pedestal propuesto es universal y es capaz de suplir lo necesario para que la tecnología existente siga siendo válida a cotas superiores a las que hasta ahora han sido las máximas de explotación. This supposes an extension of the field of exploitation of the existing technology and allows to increase its use without the need to design new models of wind towers. That is to say, the proposed pedestal is universal and is capable of supplying what is necessary for the existing technology to remain valid at levels higher than those that until now have been the maximum of exploitation.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Actualmente existen en el mercado torres para aerogeneradores de acero, y de hormigón armado, y una versión mixta híbrida de acero y hormigón. Cada uno de los tipos tiene sus ventajas e inconvenientes. En todos los casos, las posibilidades de fabricación, de transporte y de montaje imponen límites claros a las alturas de explotación. Currently there are on the market towers for wind turbines of steel, and reinforced concrete, and a mixed hybrid version of steel and concrete. Each type has its advantages and disadvantages. In all cases, manufacturing, transportation and assembly possibilities impose clear limits on operating heights.
Las torres de acero se fabrican para alturas entre 80 y 100 m, pues son las más competitivas en dicho rango de alturas. Estas torres pueden ser cilindricas o troncocónicas huecas, como de celosía de barras. Sin embargo, para alturas mayores es imposible el empleo de acero ya que las dimensiones en espesor del acero necesario para soportar más altura elevan el coste enormemente. Por otra parte, si se recurre a aumentos del diámetro de base, las dimensiones necesarias hacen inviable el transporte desde la fábrica hasta el parque eólico, por las dimensiones de ancho de las vías y de los gálibos de pasos superiores de carretera. Por tanto, no es posible con dicho modelo recurrir a alturas mayores de explotación de manera económica. La ventaja de las torres eólicas de acero es que se trata de una tecnología versátil, industrializada y eficiente Además esta tecnología se ha venido utilizando desde hace años y existe un amplio y valioso desarrollo técnico contrastado por miles de torres instaladas. Steel towers are manufactured for heights between 80 and 100 m, as they are the most competitive in that range of heights. These towers can be hollow cylindrical or conical, like lattice bars. However, for higher heights the use of steel is impossible since the thickness dimensions of the steel needed to support more height raise the cost greatly. On the other hand, if you resort to Increases in the base diameter, the necessary dimensions make transportation from the factory to the wind farm unfeasible, due to the width dimensions of the tracks and the overpass roads. Therefore, it is not possible with this model to resort to higher operating heights economically. The advantage of steel wind towers is that it is a versatile, industrialized and efficient technology. Furthermore, this technology has been used for years and there is a wide and valuable technical development contrasted by thousands of installed towers.
Como se ha descrito previamente, el problema técnico de esta solución es que no puede aplicarse a grandes alturas de por sí, debido al límite tecnológico insalvable del acero referido a las dimensiones de las piezas de dicho material. Por otra parte existen las torres de hormigón, que en nada se benefician de la tecnología ligada al acero, y requieren de una tecnología totalmente ad hoc, aun cuando puedan llegar a alturas mayores que las de acero. Presentan además el inconveniente de que sus diseños han de ser específicos para cada aerogenerador, cancelando cualquier posibilidad de universalidad de la solución. El principal inconveniente de estas torres recae en su ejecución, en especial en la realización de divisiones entre secciones. Además, son de ejecución y montaje costosos, tanto que, a pesar de poder alcanzar mayores alturas, no han sustituido a las de acero. Y así pues, la necesidad de montaje en muchas piezas, de peso elevado, la cantidad enorme de divisiones a rematar in situ y la cantidad enorme de medios auxiliares necesarios para el montaje -sobre todo en forma de grúas- las hacen de construcción compleja, laboriosa, lenta y costosa. As described previously, the technical problem of this solution is that it cannot be applied at great heights in itself, due to the insurmountable technological limit of steel referred to the dimensions of the pieces of said material. On the other hand there are concrete towers, which in no way benefit from technology linked to steel, and require a totally ad hoc technology, even if they can reach heights greater than steel. They also have the disadvantage that their designs must be specific for each wind turbine, canceling any possibility of universality of the solution. The main drawback of these towers lies in their execution, especially in the realization of divisions between sections. In addition, they are expensive to run and assemble, so much so that, despite being able to reach higher heights, they have not replaced steel ones. And so, the need to assemble in many pieces, of high weight, the enormous amount of divisions to be finished off in situ and the enormous amount of auxiliary means necessary for assembly - especially in the form of cranes - make them complex construction, laborious, slow and expensive.
Tampoco están exentas de mantenimiento, si bien no tanto por la agresión ambiental como por el repaso y control del correcto comportamiento de las divisiones entre piezas. Todo ello justifica que se empleen básicamente en el rango de alturas inaccesibles para las soluciones de acero, es decir, a partir de unos 100 m de altura. Nor are they exempt from maintenance, although not so much for the environmental aggression as for the review and control of the correct behavior of the divisions between pieces. All this justifies that they are used basically in the range of heights inaccessible for steel solutions, that is, from about 100 m high.
Las torres híbridas son una opción intermedia que sigue sin ser una alternativa viable para grandes alturas. Estas soluciones no son versátiles pues siguen siendo diseños específicos para cada aerogenerador. Exigen además conjuntar la construcción de elementos de acero con hormigón, dificultando el montaje, y también requiere de una tecnología especial que no se nutre plenamente ni de la de acero ni de la de hormigón. La parte de acero de estos aerogeneradores es completamente nueva, no emplea diseños ya realizados. Hybrid towers are an intermediate option that remains a viable alternative for great heights. These solutions are not versatile as they remain designs. specific for each wind turbine. They also require combining the construction of steel elements with concrete, making assembly difficult, and also requires a special technology that does not fully nourish either steel or concrete. The steel part of these wind turbines is completely new, it does not use designs already made.
Se trata de una tecnología poco desarrollada que no tiene visos de ser la mejor solución para torres de gran altura ni con aerogeneradores cualesquiera. A los problemas planteados de ejecución de la parte de hormigón se añade que el desarrollo actual del acero no es aplicable directamente a este tipo de solución. Requieren de un cálculo de cargas completamente nuevo porque el comportamiento dinámico de la torre híbrida es diferente al de las torres de acero actualmente desarrolladas. It is a poorly developed technology that has no signs of being the best solution for high-rise towers or with any wind turbines. To the problems of execution of the concrete part is added that the current development of steel is not directly applicable to this type of solution. They require a completely new load calculation because the dynamic behavior of the hybrid tower is different from that of the currently developed steel towers.
Además requiere, por un lado del diseño, cálculo y certificación de la parte de hormigón, y por el otro del diseño, cálculo y certificación de los tramos de acero. Es decir, requieren del cálculo de dos nuevas torres, una primera parte de hormigón y la restante de acero completamente nueva que no aprovecha los desarrollos anteriores. It also requires, on the one hand the design, calculation and certification of the concrete part, and on the other hand the design, calculation and certification of the steel sections. That is, they require the calculation of two new towers, a first part of concrete and the remaining part of completely new steel that does not take advantage of previous developments.
En el estado de la técnica actual se pueden distinguir varios grupos de invenciones: In the current state of the art several groups of inventions can be distinguished:
Así por ejemplo, la patente ES-2524840 B1 se refiere a una cimentación para torres, que está necesariamente enterrada o parcialmente enterrada, y que incluye una losa plana completamente enterrada. La tierra en la que está enterrada la cimentación actúa como lastre para optimizar la cantidad de material empleado en la cimentación de torres de grandes dimensiones y elevadas cargas. Está destinada a reducir los costes de cimentación de este tipo de torres. Thus, for example, patent ES-2524840 B1 refers to a foundation for towers, which is necessarily buried or partially buried, and which includes a completely buried flat slab. The soil in which the foundation is buried acts as a ballast to optimize the amount of material used in the foundation of large towers and high loads. It is intended to reduce the foundation costs of this type of towers.
Otro grupo de invenciones son aquellas en las que el fuste de la torre presenta refuerzos laterales hasta cierta altura. Se trata de torres eólicas que tienen que ser desarrolladas por completo, incluyendo los refuerzos, y que se presentan como alternativa a las torres eólicas actualmente desarrolladas. Los elementos de refuerzo que se añaden a estos fustes solo permiten mejorar el comportamiento resistente del fuste pero no permiten adaptar la frecuencia propia del sistema. Entre este tipo de soluciones se conoce por ejemplo la patente EP-2444663 A2 que se refiere a una turbina eólica configurada para ser instalada en tierra y que está compuesta por una góndola de aerogenerador montada sobre una torre. La patente incluye la góndola y una torre completa reforzada con unos elementos a modo de patas. Another group of inventions are those in which the shaft of the tower has lateral reinforcements up to a certain height. These are wind towers that have to be fully developed, including reinforcements, and are presented as an alternative to the wind towers currently developed. The reinforcement elements that are added to these shafts only allow to improve the resistant behavior of the shaft but do not allow to adapt the system's own frequency. Among these types of solutions, for example, patent EP-2444663 A2 is known, which refers to a wind turbine configured to be installed on land and which is composed of a wind turbine gondola mounted on a tower. The patent includes the gondola and a complete tower reinforced with leg-like elements.
En el documento JP2002122066 A se describe una torre completa que se conecta a la cimentación en su parte inferior y a la góndola en su parte superior. Dicha torre completa está compuesta por anillos de hormigón de sección hueca cilindrica con unos elementos de refuerzo en forma de T que se conectan entre la torre y la cimentación. JP2002122066 A describes a complete tower that connects to the foundation at its bottom and to the gondola at its top. Said complete tower is composed of cylindrical hollow concrete rings with T-shaped reinforcement elements that connect between the tower and the foundation.
Un tercer grupo de invenciones actuales es el referido a elementos que se disponen en la parte inferior de una torre como por ejemplo los descritos en la patente ES2369304 B2 en la que se presenta un basamento de refuerzo para fustes de torres eólicas. En esta invención el fuste de la torre a reforzar se encuentra directamente unido a la cimentación y los elementos de refuerzo se unen directamente al fuste de la torre. Este hecho supone que haya que realizar una modificación del fuste original de la torre, anulando por lo tanto el cálculo y diseño anteriormente realizado. A third group of current inventions refers to elements that are arranged in the lower part of a tower, such as those described in patent ES2369304 B2, in which a reinforcement base for wind tower shafts is presented. In this invention the shaft of the tower to be reinforced is directly attached to the foundation and the reinforcing elements are attached directly to the tower's shaft. This fact means that a modification of the original shaft of the tower must be made, thus canceling the calculation and design previously performed.
Por otra parte, la patente ES2438626 B1 se refiere a una estructura de soporte para aerogeneradores y molde para obtener tales estructuras. La estructura se realiza sin divisiones horizontales entre paneles todos ellos de altura igual a la altura total de dicha estructura soporte. La estructura resultante presenta una geometría troncocónica o troncopiramidal. Requiere de una pieza de transición de composición mixta acero- hormigón. On the other hand, patent ES2438626 B1 refers to a support structure for wind turbines and mold for obtaining such structures. The structure is made without horizontal divisions between panels all of them equal in height to the total height of said support structure. The resulting structure has a truncated conical or truncated pyramid geometry. It requires a transition piece of mixed steel-concrete composition.
La solicitud de patente norteamericana US2016/0215761 se refiere a una torre para turbina eólica, formada mediante dos tramos, uno inferior consistente en tramos de hormigón superpuestos entre si y sujetos mediante piezas de transición de una pieza a su inmediatamente contigua superior y encima del cual se instala un tramo de piezas de acero superpuestas, siendo necesario atirantar a la base las secciones del tramo inferior de hormigón sujetándose tales tirantes en las piezas de transición que unen las piezas que conforman el tramo inferior de la torre eólica. Estos tirantes tienen como misión mantener la integridad de la torre reduciendo exclusivamente los momentos flectores en el fuste de hormigón, no se diseñan para ajustar el comportamiento dinámico de la torre sino para optimizar el diseño estructural del fuste central de hormigón. La patente no plantea en ningún punto la posibilidad de que el fuste central no sea un elemento resistente. Los tirantes están descritos como elementos metálicos y cita expresamente que la solución elimina los postesados de la estructura. Este punto no se puede cumplir con las torres eólicas si el fuste central es estructural porque no se aseguran las hipótesis de descompresión que requieren los códigos de diseño. US patent application US2016 / 0215761 refers to a wind turbine tower, formed by two sections, a lower one consisting of concrete sections superimposed on each other and held by transition pieces from one piece to its immediately adjacent top and above which a section of superimposed steel pieces is installed, it being necessary to fasten the sections of the lower concrete section to the base, holding such braces in the transition pieces that join the pieces that make up the lower section of the wind tower. These braces have the mission of maintaining the integrity of the tower by exclusively reducing the bending moments in the concrete shaft, they are not designed to adjust the behavior dynamic tower but to optimize the structural design of the central concrete shaft. The patent does not raise at any point the possibility that the central shaft is not a resistant element. The braces are described as metallic elements and expressly cites that the solution eliminates the posts of the structure. This point cannot be met with wind towers if the central shaft is structural because the decompression hypotheses required by the design codes are not ensured.
Por último, la invención no contempla emplear las torres metálicas existente sino que opta por un diseño completo de torre, incluso de los tramos metálicos que se apoyan sobre el hormigón. Ha de hacerse notar que aunque el inventor quisiera disponer una torre metálica ya diseñada sobre la parte de hormigón, el sistema no aseguraría las condiciones dinámicas de diseño y por lo tanto obligaría a recalcular las cargas dinámicas y la validez de los tramos metálicos. Finalmente debe decirse que ninguna de las soluciones actuales es universal ni mantiene la frecuencia natural del sistema, por eso es propósito de la invención buscar una solución que mantenga la frecuencia natural del sistema. Finally, the invention does not contemplate using the existing metal towers but instead opts for a complete tower design, even of the metal sections that rest on the concrete. It should be noted that although the inventor wanted to have a metal tower already designed on the concrete part, the system would not ensure the dynamic design conditions and therefore would require recalculation of the dynamic loads and the validity of the metal sections. Finally, it should be said that none of the current solutions is universal nor does it maintain the natural frequency of the system, so it is the purpose of the invention to seek a solution that maintains the natural frequency of the system.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención presenta un pedestal rígido de torre eólica que permite aumentar la altura de trabajo de las actuales torres eólicas metálicas sin necesidad de modificar su diseño, ya que esta estructura rígida del pedestal reduce los momentos flectores en el fuste de hormigón, por lo que la torre eólica que se sitúa superiormente al fuste, sin modificar su diseño tradicional, ya que el fuste actúa como una superficie estable sobre la que se asienta . The present invention presents a rigid wind tower pedestal that allows to increase the working height of the current metal wind towers without modifying its design, since this rigid structure of the pedestal reduces the bending moments in the concrete shaft, so the wind tower that is located superior to the shaft, without modifying its traditional design, since the shaft acts as a stable surface on which it sits.
La rigidez es una medida cualitativa de la resistencia a las deformaciones elásticas producidas por un material, que contempla la capacidad de un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones. Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga. Normalmente las rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento obtenido por la aplicación de esa fuerza. Cuando hablamos de pedestal rígido debemos entender que el mismo apenas se deforma ante la aplicación de fuerzas en el mismo. Estas deformaciones evidentemente son mucho menores a igualdad de torre elegida y materiales empleados que una solución atirantada como las que habitualmente se emplean. El pedestal se instala entre una cimentación (o un recrecido de ésta) y la torre eólica.Stiffness is a qualitative measure of the resistance to elastic deformations produced by a material, which contemplates the ability of a structural element to withstand stresses without acquiring large deformations. The stiffness coefficients are physical quantities that quantify the stiffness of a resistant element under various load configurations. Normally the rigidities are calculated as the ratio between an applied force and the displacement obtained by the application of that force. When we talk about a rigid pedestal we must understand that it is barely deforms before the application of forces in it. These deformations are evidently much less equal to the chosen tower and materials used than a cable-stayed solution such as those usually used. The pedestal is installed between a foundation (or an increase in it) and the wind tower.
Es decir, la torre eólica no se une a la cimentación directamente como en el estado de la técnica sino que se une al pedestal. Además el pedestal propuesto queda íntegramente por encima del terreno ya que en ningún momento actúa como cimentación y por tanto no está enterrado ni tampoco parcialmente enterrado. That is, the wind tower does not join the foundation directly as in the state of the art but joins the pedestal. In addition, the proposed pedestal is completely above the ground since at no time it acts as a foundation and therefore is not buried or partially buried.
Una ventaja esencial de la presente invención es que el pedestal permite elevar la altura de coronación de la torre eólica manteniendo el comportamiento dinámico de dicha torre eólica invariable frente a las cargas dinámicas introducidas por la turbina. Es decir, la altura del pedestal sirve íntegramente como incremento de la altura total de la torre. An essential advantage of the present invention is that the pedestal allows to raise the height of coronation of the wind tower while maintaining the dynamic behavior of said invariable wind tower against the dynamic loads introduced by the turbine. That is, the height of the pedestal serves entirely as an increase in the total height of the tower.
Así pues, se trata de un pedestal rígido de torre eólica que es universal y que permite el empleo de los sistemas estructurales actualmente conocidos. El pedestal puede adaptarse a cualquier torre eólica independientemente de su geometría y dimensiones. Además permite la correcta adaptación al régimen de explotación de cualquier turbina eólica actualmente conocida. Thus, it is a rigid wind tower pedestal that is universal and allows the use of currently known structural systems. The pedestal can be adapted to any wind tower regardless of its geometry and dimensions. It also allows the correct adaptation to the operating regime of any wind turbine currently known.
Otras ventajas de la presente invención son: Other advantages of the present invention are:
- permite una perfecta adecuación a los sistemas de cimentación convencionales, - allows a perfect adaptation to conventional foundation systems,
- permite aumentar de la altura de explotación sin alterar la tecnología de las torres existentes, y - allows to increase the operating height without altering the technology of existing towers, and
- es de fácil producción ya que se fabrica a partir de elementos estructurales horizontales y moduladores dinámicos obtenibles con moldes que son sencillos y fáciles de ensamblar. Asimismo, el pedestal presenta gran versatilidad geométrica y mecánica para permitir cualquier incremento de altura en cualquier tipo de torre eólica con la que se vaya a instalar. Otra ventaja asociada al pedestal propuesto es que el coste de mantenimiento es muy bajo. El pedestal está configurado para instalarse sobre una cimentación y recibir una torre eólica ya diseñada, como se ha descrito previamente, sin necesidad de modificar su diseño. Es de hormigón armado y postesado y comprende opcionalmente al menos un fuste que comprende una pluralidad de elementos estructurales horizontales unidos entre sí, aunque se puede evitar dicho fuste y una pluralidad de moduladores dinámicos pretensados o postesados que pueden soportar la torre eólica ya diseñada y ajustan las características dinámicas del sistema, en concreto la frecuencia del sistema, de manera que no varían las cargas. - It is easy to produce since it is manufactured from horizontal structural elements and dynamic modulators obtainable with molds that are simple and easy to assemble. Also, the pedestal has great geometric and mechanical versatility to allow any increase in height in any type of wind tower with which it will be installed. Another advantage associated with the proposed pedestal is that the maintenance cost is very low. The pedestal is configured to be installed on a foundation and receive an already designed wind tower, as previously described, without the need to modify its design. It is made of reinforced and post-tensioned concrete and optionally comprises at least one shaft that comprises a plurality of horizontal structural elements joined together, although said shaft and a plurality of prestressed or post-tensioned dynamic modulators that can support the already designed wind tower can be avoided and adjusted the dynamic characteristics of the system, specifically the frequency of the system, so that loads do not vary.
Estos moduladores dinámicos en caso de evitarse el fuste estructural, recogerían el 100% de la carga de la torre eólica y mantiene la frecuencia del sistema, aunque se podría emplear un pedestal con fuste central de hormigón estructural asociado a los moduladores dinámicos. Una vez montados los moduladores, el sistema seria postesado. These dynamic modulators, if the structural shaft is avoided, would collect 100% of the wind tower load and maintain the system frequency, although a pedestal with a central structural concrete shaft associated with the dynamic modulators could be used. Once the modulators were mounted, the system would be post-tensioned.
Los cables de postesado, que incluyen los moduladores dinámicos, pueden estar anclados por uno de sus extremos directamente al fuste o bien la torre eólica y por su otro extremo pueden estar anclados a la superficie base inferior del fuste o a la cimentación. Para los moduladores dinámicos las medidas de espesor, el ángulo de inclinación de los cables de refuerzo en su interior, la altura y la longitud dependen también de la torre que se va a instalar en el pedestal. Post-tensioning cables, which include dynamic modulators, can be anchored at one end directly to the shaft or the wind tower and at the other end can be anchored to the bottom base surface of the shaft or to the foundation. For dynamic modulators the thickness measurements, the angle of inclination of the reinforcement cables inside, the height and length also depend on the tower to be installed on the pedestal.
El sistema de moduladores dinámicos en conjunción con la fuerza y el trazado del tesado de los cables de refuerzo permite adecuar la frecuencia propia del conjunto a cualquier torre eólica que se quiera instalar en el pedestal, sin alterar su régimen de explotación. Esto hace que el pedestal sea totalmente versátil y pueda ser empleado en conjunción con cualquier torre eólica ya diseñada del estado de la técnica. The system of dynamic modulators in conjunction with the strength and tracing of the testing of the reinforcement cables makes it possible to adapt the frequency of the whole to any wind tower that you want to install on the pedestal, without altering its operating regime. This makes the pedestal totally versatile and can be used in conjunction with any wind tower already designed in the state of the art.
En un ejemplo de realización, el pedestal comprende también una plataforma exterior que puede ser permanente o desmontable y que preferentemente es una plataforma perimetral de acero. Está diseñada para permitir el acceso de los operarios a la zona de la conexión entre la torre de acero y el pedestal para realizar las acciones pertinentes para llevar a cabo esta conexión y su mantenimiento. Asimismo, en un ejemplo de realización, el fuste (o uno de los cilindros inferiores de éste si está conformado por la unión de cilindros) dispone de una puerta de acceso al pedestal. Por otra parte, el zoquete permite el paso de personas, materiales, equipos y medios de elevación entre el pedestal y la torre de acero. In an exemplary embodiment, the pedestal also comprises an outer platform that can be permanent or removable and which is preferably a perimeter steel platform. It is designed to allow operators access to the connection area between the steel tower and the pedestal to perform the relevant actions to carry out this connection and its maintenance. Also, in an exemplary embodiment, the shaft (or one of the lower cylinders thereof if it is formed by the union of cylinders) has a pedestal access door. On the other hand, the chump allows the passage of people, materials, equipment and lifting means between the pedestal and the steel tower.
Preferentemente los moduladores dinámicos pretensados o postesados se extienden desde la superficie base superior del fuste del pedestal y no desde una zona intermedia de dicho fuste. Sin embargo, en un ejemplo de realización, el fuste comprende al menos un elemento estructural horizontal de desvío. Este elemento está configurado para permitir el desvío de la trayectoria de los cables de refuerzo que se extienden en dirección vertical a través del fuste y que siguen una trayectoria inclinada en los moduladores dinámicos. Preferably the prestressed or post-tensioned dynamic modulators extend from the upper base surface of the pedestal shaft and not from an intermediate area of said shaft. However, in an exemplary embodiment, the shaft comprises at least one horizontal structural deflection element. This element is configured to allow the deviation of the path of the reinforcement cables that extend in the vertical direction through the shaft and that follow an inclined path in the dynamic modulators.
En el elemento estructural horizontal de desvío puede haber un desvío curvo del trazado del cable o bien un anclaje recto de un cable de refuerzo que recorre el modulador dinámico hasta anclarse en la superficie de la base inferior del fuste o en la cimentación a la que se une el pedestal, y un anclaje recto del tesado vertical desde el la superficie base superior del fuste con barras de alta resistencia. En el ejemplo de realización en el que los moduladores dinámicos pretensados o postesados se unen a un elemento estructural horizontal del fuste que no se corresponde con la superficie base superior, siempre hay unos cables de refuerzo postesados que se extienden en dirección vertical desde la superficie base superior (en la unión con la torre) hasta el elemento estructural horizontal al que están unidos los moduladores dinámicos. Esta condición es necesaria para la correcta transferencia de los esfuerzos dinámicos de la torre eólica metálica a través del pedestal. Es decir, es básico que el fuste esté comprimido entre la conexión de la torre y el inicio de los cables de refuerzo en la cimentación. Es por esto que en el pedestal descrito el postesado comienza por encima o al nivel de la conexión de la torre, tal y como se ha explicado previamente. De esta manera se cumple la condición de no-descompresión bajo hipótesis dictadas por código de cálculo. In the horizontal structural element of deviation there may be a curved deviation of the cable routing or a straight anchor of a reinforcement cable that runs through the dynamic modulator until it is anchored on the surface of the bottom base of the shaft or in the foundation to which it is joins the pedestal, and a straight anchor of the vertical tesado from the upper base surface of the shaft with high strength bars. In the exemplary embodiment in which the prestressed or post-tensioned dynamic modulators are attached to a horizontal structural element of the shaft that does not correspond to the upper base surface, there are always post-tensioned reinforcing cables that extend vertically from the base surface upper (at the junction with the tower) to the horizontal structural element to which the dynamic modulators are attached. This condition is necessary for the correct transfer of the dynamic forces of the metallic wind tower through the pedestal. That is, it is essential that the shaft is compressed between the tower connection and the start of the reinforcement cables in the foundation. This is why in the described pedestal the post-tensioning starts above or at the level of the tower connection, as previously explained. In this way the non-decompression condition is met under hypotheses dictated by calculation code.
Los elementos estructurales horizontales que conforman el fuste, así como el elemento estructural horizontal de desvío, pueden ser elementos macizos, huecos o con refuerzos radiales interiores para rigidizar la sección. The horizontal structural elements that make up the shaft, as well as the element Structural horizontal deviation, can be solid, hollow elements or with internal radial reinforcements to stiffen the section.
En el ejemplo de realización en el que los moduladores dinámicos están unidos a la superficie base inferior del fuste, esta unión se realiza mediante unos anclajes inferiores, que pueden ser por ejemplo unas cuñas delta. Dichas cuñas están dispuestas en la superficie base inferior y en ella se apoyan los moduladores dinámicos. Los cables de refuerzo de su interior quedan unidos a la superficie base inferior a través del interior de las cuñas. In the exemplary embodiment in which the dynamic modulators are attached to the bottom base surface of the shaft, this connection is made by means of lower anchors, which can be, for example, delta wedges. Said wedges are arranged on the lower base surface and dynamic modulators are supported therein. The reinforcement cables inside are attached to the lower base surface through the inside of the wedges.
Los elementos estructurales horizontales están unidos entre sí a hueso con divisiones en seco. En ejemplos de realización en los que es necesario reforzar dichas divisiones, se contempla la posibilidad de reforzarlas con mortero. Estos elementos estructurales horizontales, que pueden ser cilindricos o poligonales, son de tanta altura como la carga de las grúas permite, minimizando el número de divisiones horizontales, limitando su esbeltez a cuarenta veces su espesor. La clave para poder asegurar las divisiones horizontales en seco son los cables de refuerzo postesados que las mantienen comprimidas en todo momento de la vida útil del pedestal. Los anclajes del pedestal a la torre también quedan solapados con el postesado de los cables de refuerzo del pedestal. Las tensiones verticales en servicio se mantienen de compresión a lo largo de toda la altura del pedestal. Este aspecto es necesario para garantizar el buen comportamiento del sistema (cimentación, pedestal, torre y turbina completa) durante toda la vida útil ante acciones dinámicas. El resto de características relacionadas con el comportamiento dinámico de la torre eólica se regulan mediante el dimensionado de los moduladores dinámicos y de las secciones de los elementos estructurales horizontales. The horizontal structural elements are bonded to each other with dry divisions. In embodiments where it is necessary to reinforce said divisions, the possibility of reinforcing them with mortar is contemplated. These horizontal structural elements, which can be cylindrical or polygonal, are as tall as the crane load allows, minimizing the number of horizontal divisions, limiting their slenderness to forty times their thickness. The key to ensuring dry horizontal divisions are the post-tensioned reinforcement cables that keep them compressed at all times during the life of the pedestal. The pedestal anchors to the tower are also overlapped with the post-tensioning of the pedestal reinforcement cables. Vertical tensions in service remain compression along the entire height of the pedestal. This aspect is necessary to guarantee the good behavior of the system (foundation, pedestal, tower and complete turbine) during the whole useful life before dynamic actions. The rest of the characteristics related to the dynamic behavior of the wind tower are regulated by the dimensioning of the dynamic modulators and the sections of the horizontal structural elements.
La superficie de base superior del fuste tiene un espesor suficiente para poder soportar el peso de la torre del aerogenerador. Además tiene un desfase radial suficiente entre la zona de anclaje de la torre y las cabezas de los cables de refuerzo (cables de tesado) correspondientes. Preferentemente el diseño de la base superior del fuste se realiza para permitir el acoplamiento de torres eólicas en las que el diámetro interior de la conexión sea superior a 2 m y el diámetro exterior de la conexión sea inferior a 6 m. Los moduladores dinámicos radiales se constituyen en planos, cartabones o vigas, y se izan a su posición con el tamaño máximo que las grúas permitan por peso, minimizando también el número de divisiones horizontales. The upper base surface of the shaft is thick enough to support the weight of the wind turbine tower. It also has a sufficient radial offset between the anchor zone of the tower and the corresponding reinforcement cable heads (testing cables). Preferably, the design of the upper base of the shaft is carried out to allow the coupling of wind towers in which the inside diameter of the connection is greater than 2 m and the external diameter of the connection is less than 6 m. The dynamic radial modulators are made up of planes, bevels or beams, and are hoisted to their position with the maximum size that the cranes allow by weight, also minimizing the number of horizontal divisions.
El postesado se determina, tanto en trazado como en fuerza, en función de la torre eólica que se va a instalar. Para realizarlo es necesaria una compresión en las divisiones horizontales del pedestal de modo que se asegure que en servicio nunca se produce la apertura de las mismas por descompresión. Post-tensioning is determined, both in plot and in force, based on the wind tower to be installed. To do this, a compression is necessary in the horizontal divisions of the pedestal so that it is ensured that they are never opened by decompression in service.
Además de esto, se dispone internamente todo el sistema de pasarelas, escaleras y demás elementos necesarios para el tránsito y operaciones de montaje y mantenimiento de los operarios. In addition to this, the entire system of walkways, stairs and other elements necessary for the transit and assembly and maintenance operations of the operators is available internally.
La característica fundamental de la invención reside en que la combinación de las dimensiones de cada elemento junto con la fuerza y la rigidez del postesado, que permite que el comportamiento dinámico conjunto de la torre con el pedestal, con la cimentación y con la turbina presente el mismo régimen dinámico que el aerogenerador completo de menor altura existente (cimentación, más torre, más turbina). Esto es una característica indispensable para poder utilizar las torres eólicas ya conocidas sin tener que modificar su diseño. The fundamental characteristic of the invention is that the combination of the dimensions of each element together with the strength and stiffness of the post-tensioning, which allows the joint dynamic behavior of the tower with the pedestal, with the foundation and with the turbine to present the same dynamic regime as the complete wind turbine of lower existing height (foundation, more tower, more turbine). This is an indispensable characteristic to be able to use the wind towers already known without having to modify their design.
Así se consigue que las torres eólicas de acero ya desarrolladas puedan alcanzar mayores alturas de explotación sin necesidad de alteraciones en la fabricación y en el régimen de funcionamiento del aerogenerador. De esta forma se consigue una altísima versatilidad porque con un único diseño de torre eólica de acero actual se pueden cubrir toda la gama de alturas superiores y toda la tecnología desarrollada actualmente y aplicada a este tipo de torres eólicas se puede seguir empleando sin alteraciones. Thus, it is achieved that the steel wind towers already developed can reach higher operating heights without the need for alterations in the manufacturing and operation regime of the wind turbine. In this way a very high versatility is achieved because with a unique design of current steel wind tower, the entire range of higher heights can be covered and all the technology currently developed and applied to this type of wind towers can continue to be used without alterations.
El diseño, geometría, materiales y estado tensional activo del pedestal permite además dotarlo de las características mecánicas necesarias en cada caso para que no se altere el régimen de comportamiento dinámico del aerogenerador que se instala sobre él. Es decir, el pedestal permite adaptar la frecuencia del sistema para seguir empleando las torres eólicas desarrolladas para alturas menores. En resumen, las mejoras planteadas por la presente invención se pueden agrupar en: a) Frente a las torres de acero del estado de la técnica: el pedestal propuesto permite el empleo de las torres de acero ya conocidas sin modificaciones para alturas de buje por encima de los 100m. b) Frente a las torres de hormigón: emplea el desarrollo tecnológico de las torres eólicas de alturas inferiores y elimina la necesidad de realizar un cálculo adicional de cargas sobre la estructura resultante. c) Sobre las estructuras de refuerzo en base: permite el empleo, sin modificaciones, de las torres eólicas empleadas para menores alturas y elimina la necesidad de realizar un cálculo adicional de cargas sobre la estructura completa (torre más refuerzos). The design, geometry, materials and active tension state of the pedestal also allows it to be equipped with the mechanical characteristics necessary in each case so that the dynamic behavior regime of the wind turbine installed on it is not altered. That is, the pedestal allows to adapt the frequency of the system to continue using the wind towers developed for lower heights. In summary, the improvements proposed by the present invention can be grouped into: a) Faced with the steel towers of the prior art: the proposed pedestal allows the use of known steel towers without modifications for bushing heights above of 100m. b) In front of the concrete towers: it uses the technological development of the wind towers of lower heights and eliminates the need to perform an additional calculation of loads on the resulting structure. c) On the base reinforcement structures: it allows the use, without modifications, of the wind towers used for lower heights and eliminates the need to perform an additional calculation of loads on the complete structure (tower plus reinforcements).
Las medidas del pedestal se obtienen para distintas especificaciones técnicas y funcionales de cada torre eólica metálica y según las características geotécnicas de cada terreno. Los aspectos del comportamiento dinámico del sistema (considerando el sistema como el conjunto total de la cimentación, el pedestal, la torre y la turbina completa) que se controlan con el pedestal descrito son la frecuencia propia del modo fundamental de vibración de todo el conjunto, las frecuencias de otros modos adecuados para evitar vibraciones espurias del propio pedestal, y las rigideces rotacional y traslacional en la base de la torre metálica unida al pedestal. La altura total del pedestal se elige en cada caso para lograr la altura total deseada del sistema de captación de energía eólica, sin modificar en absoluto el diseño de la torre metálica a la que se va a unir. The measurements of the pedestal are obtained for different technical and functional specifications of each metallic wind tower and according to the geotechnical characteristics of each terrain. The aspects of the dynamic behavior of the system (considering the system as the total set of the foundation, the pedestal, the tower and the complete turbine) that are controlled with the described pedestal are the proper frequency of the fundamental mode of vibration of the whole set, the frequencies of other suitable ways to avoid spurious vibrations of the pedestal itself, and the rotational and translational rigidities at the base of the metal tower attached to the pedestal. The total height of the pedestal is chosen in each case to achieve the desired total height of the wind energy collection system, without modifying the design of the metal tower to which it is to be attached.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where illustrative and not limiting, The following has been represented:
Figuras 1 a-a- Muestran unas vistas en perspectiva, alzado y planta superior de un pedestal de torre eólica con moduladores dinámicos conexos y postesados. Figures 1 a-a- Show perspective, elevation and top floor views of a wind tower pedestal with related and post-tensioned dynamic modulators.
Figuras 2 a-a- Muestran unas vistas en perspectiva, alzado y planta superior de un pedestal de torre eólica con moduladores dinámicos inconexos y postesados con los cables de refuerzo embebidos en el fuste. Figures 2 a-a- They show perspective, elevation and top floor views of a wind tower pedestal with disconnected and post-dynamic dynamic modulators with the reinforcement cables embedded in the shaft.
Figuras 3 a-a- Muestran unas vistas en perspectiva, alzado y planta superior de un pedestal de torre eólica con moduladores dinámicos inconexos y postesados con los cables de refuerzo dispuestos en el interior del fuste, no embebidos en él. Figures 3 a-a- They show perspective, elevation and top floor views of a wind tower pedestal with disconnected and post-dynamic dynamic modulators with the reinforcement cables arranged inside the shaft, not embedded in it.
Figura 4 a.- Muestra una vista de un ejemplo de realización de un elemento estructural horizontal cilindrico. Figure 4 a.- Shows a view of an embodiment of a horizontal cylindrical structural element.
Figura 4 b.- Muestra una vista de otro ejemplo de realización de un elemento estructural horizontal cilindrico. Figure 4 b.- Shows a view of another embodiment of a horizontal cylindrical structural element.
Figura 5 a.- Muestra una vista de un ejemplo de realización de un elemento estructural horizontal hexagonal. Figure 5 a.- Shows a view of an embodiment of a hexagonal horizontal structural element.
Figura 5 b.- Muestra una vista de otro ejemplo de realización de un elemento estructural horizontal hexagonal. Figure 5 b.- Shows a view of another embodiment of a hexagonal horizontal structural element.
Figura 6.- Muestra una división horizontal Figure 6.- Shows a horizontal division
Figuras 7 a-b.- Muestra unas vistas en perspectiva y sección de un elemento estructural horizontal de desvío. Figures 7 a-b.- Shows perspective views and section of a horizontal structural element of diversion.
Figuras 8 a-b.- Muestra unas vistas en perspectiva y sección de otro elemento estructural horizontal de desvío. Figures 8 a-b.- Shows perspective views and section of another horizontal deviation structural element.
Figura 9 a.- Muestra una vista de la unión de la torre eólica a la superficie base superior del fuste en un ejemplo de realización en el que la unión se realiza por el interior de la torre eólica. Figure 9 a.- Shows a view of the union of the wind tower to the upper base surface of the shaft in an exemplary embodiment in which the connection is made inside the wind tower.
Figura 9 b.- Muestra una vista de la unión de la torre eólica a la superficie base superior del fuste en un ejemplo de realización en el que la unión se realiza por el exterior de la torre eólica. Figure 9 b.- Shows a view of the connection of the wind tower to the upper base surface of the shaft in an exemplary embodiment in which the connection is made outside the wind tower.
Figura 10.- Muestra una vista del anclaje inferior REALIZACIÓN PREFERENTE DE LA INVENCIÓN Figure 10.- Shows a view of the lower anchor PREFERRED EMBODIMENT OF THE INVENTION
A continuación se describen, con ayuda de las figuras 1 a 10, unos ejemplos de realización de la presente invención. Examples of embodiments of the present invention are described below with the aid of Figures 1 to 10.
El pedestal rígido de torre eólica de la presente invención está configurado para instalarse entre una cimentación y una torre eólica metálica ya diseñada sin necesidad de modificar su diseño. El pedestal (1) queda dispuesto sobre el terreno y no está enterrado ni parcialmente enterrado en él sino dispuesto sobre una cimentación o un recrecido de ésta. El pedestal rígido de torre eólica de la invención permite aumentar la altura de trabajo de las actuales torres eólicas metálicas sin necesidad de modificar su diseño, ya que esta estructura rígida del pedestal reduce los momentos flectores en el fuste de hormigón, por lo que la torre eólica se sitúa superiormente al fuste, como acaba de decirse, sin modificar su diseño tradicional, ya que el fuste actúa como una superficie estable, como si fuera la cimentación sobre la que se asienta . En las figuras 1 a-c, 2 a-c y 3 a-c se observan unos ejemplos de realización del pedestal (1) de torre eólica propuesto. En un ejemplo de realización preferente, el pedestal (1) está configurado para ser empleado con torres eólicas con un diámetro de entre 2m y 6m. The rigid wind tower pedestal of the present invention is configured to be installed between a foundation and a metal wind tower already designed without modifying its design. The pedestal (1) is disposed on the ground and is not buried or partially buried in it but arranged on a foundation or an extension of it. The rigid wind tower pedestal of the invention allows to increase the working height of the current metallic wind towers without modifying its design, since this rigid structure of the pedestal reduces the bending moments in the concrete shaft, so that the tower wind is located superior to the shaft, as just said, without changing its traditional design, since the shaft acts as a stable surface, as if it were the foundation on which it sits. Figures 1 a-c, 2 a-c and 3 a-c show some examples of realization of the proposed wind tower pedestal (1). In a preferred embodiment, the pedestal (1) is configured to be used with wind towers with a diameter between 2m and 6m.
Se trata de un pedestal (1) que se puede considerar universal porque, como se ha descrito previamente, es aplicable a distintas especificaciones de torres metálicas sin modificar el diseño de éstas y para distintos tipos de terreno. It is a pedestal (1) that can be considered universal because, as previously described, it is applicable to different specifications of metal towers without modifying their design and for different types of terrain.
El pedestal (1) comprende al menos un fuste (2) que comprende una pluralidad de elementos estructurales horizontales (3) unidos entre sí y comprende una superficie base superior (4) a la que queda unida la torre eólica y una superficie base inferior (5) que queda unida a la cimentación. Asimismo el pedestal (1) comprende unos moduladores dinámicos (6) pretensados o postesados que se extienden desde la superficie base superior (4) o un elemento estructural horizontal (3) del fuste (2) hasta la superficie base inferior (5) del fuste o hasta la cimentación a la que queda unida el pedestal en su posición final. En un ejemplo de realización, el pedestal (1) comprende un elemento estructural horizontal de desvío (14) que es el elemento desde el que parten los moduladores dinámicos (6). The pedestal (1) comprises at least one shaft (2) comprising a plurality of horizontal structural elements (3) joined together and comprises an upper base surface (4) to which the wind tower is attached and a lower base surface (5) that is attached to the foundation. Likewise, the pedestal (1) comprises pre-tensioned or post-tensioned dynamic modulators (6) extending from the upper base surface (4) or a horizontal structural element (3) of the shaft (2) to the bottom base surface (5) of the shaft or to the foundation to which the pedestal is attached in its final position. In an exemplary embodiment, the pedestal (1) comprises a horizontal structural deflection element (14) which is the element from which the dynamic modulators (6) start.
Dichos moduladores dinámicos (6) están configurados para ajusfar las características del conjunto de la cimentación, el pedestal y la torre eólica a los requerimientos de la torre eólica ya diseñada que se va a instalar en el pedestal, sin variar los condicionantes de diseño de la turbina y torre metálica. Es decir, gracias a los moduladores dinámicosSaid dynamic modulators (6) are configured to adjust the characteristics of the foundation set, the pedestal and the wind tower to the requirements of the already designed wind tower to be installed on the pedestal, without changing the design conditions of the Turbine and metal tower. That is, thanks to the dynamic modulators
(6) se regulan los aspectos descritos previamente del comportamiento dinámico y local de la torre eólica metálica. (6) The previously described aspects of the dynamic and local behavior of the metallic wind tower are regulated.
En las figuras 1 a-c se ha mostrado un ejemplo de realización en el que los moduladores dinámicos (6) son conexos. Como se puede observar en dichas figuras, los moduladores dinámicos (6) son de tipo ménsula y están conectados al fuste (2) a lo largo de toda la altura de este. An example of embodiment in which the dynamic modulators (6) are connected are shown in Figures 1 a-c. As can be seen in these figures, the dynamic modulators (6) are of the corbel type and are connected to the shaft (2) along its entire height.
En otro ejemplo de realización, mostrado en las figuras 2 a-c, se presenta un pedestal (1) con moduladores dinámicos (6) inconexo en el que los cables de refuerzo (7) están como se puede observar en la figura 2c, embebidos en los elementos estructurales horizontales (3) del fuste (2). In another exemplary embodiment, shown in FIGS. 2 ac, a pedestal (1) is presented with dynamic modulators (6) disjointed in which the reinforcing cables (7) are as can be seen in FIG. 2c, embedded in the horizontal structural elements (3) of the shaft (2).
Por otra parte, en las figuras 3 a-c se ha mostrado la realización preferente en la que los moduladores dinámicos (6) son inconexos y los cables de refuerzo (7) quedan dispuestos en el interior del fuste (2). En este caso los cables de refuerzo (7) no están embebidos en el propio fuste (2) como si ocurría en el ejemplo anterior. On the other hand, in Figures 3 a-c the preferred embodiment is shown in which the dynamic modulators (6) are disconnected and the reinforcement cables (7) are arranged inside the shaft (2). In this case the reinforcement cables (7) are not embedded in the shaft itself (2) as in the previous example.
El pedestal (1) es de hormigón armado y postesado y por tanto en el interior del fuste (2) y en el interior de los moduladores dinámicos (6) se encuentran cables de refuerzo (7) que son cables de tesado con los que se controla la transmisión de cargas desde la torre eólica hacia el terreno. Gracias a esta transferencia de esfuerzos se consigue aumentar la altura de los aerogeneradores sin tener que redimensionar su resistencia a las cargas ni el resto de sus medidas. The pedestal (1) is reinforced and post-tensioned concrete and therefore inside the shaft (2) and inside the dynamic modulators (6) are reinforcement cables (7) that are testing cables with which the transmission of loads from the wind tower to the ground is controlled. Thanks to this transfer of efforts it is possible to increase the height of the wind turbines without having to resize their resistance to loads or the rest of their measurements.
En un ejemplo de realización la superficie base superior (4), que es sobre la que se instala la torre eólica, tiene un espesor determinado, suficiente para permitir la fijación de un cable de refuerzo (7) que atraviesa al menos dicha superficie base superior (4) y un modulador dinámico (6). In an exemplary embodiment, the upper base surface (4), which is on which the wind tower is installed, has a determined thickness, sufficient to allow the fixing of a reinforcing cable (7) that crosses at least said upper base surface (4) and a dynamic modulator (6).
Preferentemente el radio y espesor del fuste (2) son constantes y dependen de las medidas de la torre eólica que se va a instalar sobre el pedestal (1). Los elementos estructurales horizontales (3) que forman el fuste (2) están dispuestos apilados entre sí, formando divisiones (9) horizontales y no verticales. Además, dichas divisiones (9) se realizan preferentemente en seco mediante uniones de tipo hueso o "boca de perro". El acoplamiento de los elementos estructurales horizontales (3) entre sí se asegura gracias al postesado de los cables de refuerzo (7) del pedestal. Preferably the radius and thickness of the shaft (2) are constant and depend on the measurements of the wind tower to be installed on the pedestal (1). The horizontal structural elements (3) that form the shaft (2) are arranged stacked together, forming horizontal and non-vertical divisions (9). In addition, said divisions (9) are preferably performed dry by means of bone or "dog's mouth" joints. The coupling of the horizontal structural elements (3) with each other is ensured by the post-tensioning of the reinforcement cables (7) of the pedestal.
Los elementos estructurales horizontales (3) pueden tener configuración cilindrica o tener secciones poligonales de modo que la cara exterior del elemento estructural horizontal (3) es afacetada. Esta realización en al que los elementos estructurales horizontales (3) tienen caras planas permite ajusfar de manera más sencilla los moduladores dinámicos (6). The horizontal structural elements (3) can have a cylindrical configuration or have polygonal sections so that the outer face of the horizontal structural element (3) is shaped. This embodiment in which the horizontal structural elements (3) have flat faces makes it easier to adjust the dynamic modulators (6).
En la figura 6 se ha representado una división horizontal (9) que es la zona de unión entre elementos estructurales horizontales (3) del fuste. La división (9) está diseñada para servir como barrera a la entrada del agua desde el exterior del pedestal (1), para funcionar como llave de cortante entre los elementos estructurales horizontales (3), y para, en caso de emergencia, poder ejecutar junta húmeda. Se trata de una junta con seno de artesa y cánulas de vertido inclinadas interiores para inyección del mortero de relleno. En este caso la cara superior (10) de cada elemento estructural horizontal (3) comprende al menos un rehundido (12) y la cara inferior (11) comprende un resalte (13). En un ejemplo de realización se trata de rehundidos (12) y resaltes (13) que se extienden a lo largo de toda la sección y en todos los casos los rehundidos (12) y los resaltes (13) son complementarios. De esta forma, cuando un elemento estructural horizontal (3) se coloca sobre un elemento estructural horizontal (3) igual, el al menos un resalte (13) de la cara inferior (11) queda alojado en el al menos un rehundido (12) de la cara superior (10). Este tipo de divisiones (9) para junta en seco también son aplicables a la división horizontal entre el elemento estructural horizontal de desvío (14) y el o los elementos estructurales horizontales (3) del fuste a los que está unido en las realizaciones en las que el fuste comprende dicho elemento estructural horizontal de desvío. En el ejemplo de realización en el que el fuste (2) comprende al menos un elemento estructural horizontal de desvío (14), este está dispuesto en contacto con al menos uno de los elementos estructurales horizontales (3) del fuste (2). En caso de que los moduladores dinámicos (6) no se extiendan hasta la superficie base superior (4), se extienden hasta dicho elemento estructural horizontal de desvío (14) en el que se realiza el cambio de trayectoria del cable de refuerzo (de trayectoria vertical desde la superficie base superior (4) hasta el elemento estructural horizontal de desvío (14) con una trayectoria inclinada a lo largo del modulador dinámico (6). Figure 6 shows a horizontal division (9) that is the area of union between horizontal structural elements (3) of the shaft. The division (9) is designed to serve as a barrier to the entry of water from the outside of the pedestal (1), to function as a shear key between the horizontal structural elements (3), and to, in an emergency, be able to execute wet joint It is a joint with trough breast and internal inclined pour cannulas for injection of the filling mortar. In this case the upper face (10) of each horizontal structural element (3) comprises at least one recess (12) and the lower face (11) comprises a shoulder (13). In an exemplary embodiment, these are recesses (12) and projections (13) that extend along the entire section and in all cases the recesses (12) and the projections (13) are complementary. Thus, when a horizontal structural element (3) is placed on an equal horizontal structural element (3), the at least one shoulder (13) of the lower face (11) is housed in the at least one recess (12) of the upper face (10). This type of divisions (9) for dry joints are also applicable to the horizontal division between the horizontal structural deviation element (14) and the horizontal structural element (3) of the shaft to which it is attached in the embodiments in the that the shaft comprises said horizontal deflection structural element. In the exemplary embodiment in which the shaft (2) comprises at least one horizontal deflection structural element (14), it is arranged in contact with at least one of the horizontal structural elements (3) of the shaft (2). In the event that the dynamic modulators (6) do not extend to the upper base surface (4), they extend to said horizontal structural diverting element (14) in which the change of trajectory of the reinforcement cable (of trajectory) is made vertical from the upper base surface (4) to the horizontal deflection structural element (14) with an inclined path along the dynamic modulator (6).
Como se aprecia en las figuras 7 a-b y 8 a-b, el cambio de trayectoria de los cables de refuerzo (7) se puede realizar directamente en el interior del elemento estructural horizontal de desvío (14) (o la superficie base superior (4) si el modulador dinámico (6) se extiende directamente desde ella) o bien puede obtenerse el mismo efecto usando dos cables de refuerzo (7). En este segundo ejemplo, uno de los cables de refuerzo (7) se extiende verticalmente entre la superficie base superior (4), a la que se ancla, y el elemento estructural horizontal de desvío (14), a la que se ancla, y otro cable parte se extiende el elemento estructural horizontal de desvío (14), a la que se ancla, con la inclinación correspondiente a través del modulador dinámico (6). As can be seen in figures 7 ab and 8 ab, the change of trajectory of the reinforcement cables (7) can be carried out directly inside the horizontal bypass structural element (14) (or the upper base surface (4) if The dynamic modulator (6) extends directly from it) or the same effect can be obtained using two reinforcing cables (7). In this second example, one of the reinforcing cables (7) extends vertically between the upper base surface (4), to which it is anchored, and the horizontal structural deflection element (14), to which it is anchored, and Another part cable extends the horizontal structural deflection element (14), to which it is anchored, with the corresponding inclination through the dynamic modulator (6).
Para pedestales de gran altura la opción preferente será la de cable de refuerzo continuo (representada en la figura 7a) porque el ángulo de quiebro es liviano. Para pedestales de pequeña altura se realizará preferiblemente la solución de varios cables de refuerzo (7) unidos al elemento estructural horizontal de desvío (14) (representada en la figura 7a). For high-rise pedestals, the preferred option will be the reinforcement cable continuous (represented in figure 7a) because the bankruptcy angle is light. For small pedestals, the solution of several reinforcement cables (7) connected to the horizontal bypass structural element (14) (shown in Figure 7a) will preferably be carried out.
Las figuras 9a y 9b representan dos alternativas a la conexión entre torre eólica metálica (8) y pedestal (1). En la realización de la figura 9 a, los cables de refuerzo (7) del pedestal (1) van por dentro de la sección de la torre eólica (8), y en la realización de la figura 9b, los cables de refuerzo (7) van por el exterior de la torre eólica (8). La elección de un modo u otro de realización depende del diámetro de la torre eólica metálica. En general los cables de refuerzo (7) van dispuestos por dentro de la torre eólica (8), pero en el caso de torres muy estrechas, dichos cables se disponen por fuera. Figures 9a and 9b represent two alternatives to the connection between metallic wind tower (8) and pedestal (1). In the embodiment of figure 9 a, the reinforcement cables (7) of the pedestal (1) go inside the section of the wind tower (8), and in the embodiment of figure 9b, the reinforcement cables (7 ) go outside the wind tower (8). The choice of one embodiment or another depends on the diameter of the metallic wind tower. In general, the reinforcement cables (7) are arranged inside the wind tower (8), but in the case of very narrow towers, said cables are arranged outside.
En la figura 10 se ha representado un anclaje inferior (15) que puede estar dispuesto en el extremo inferior de los moduladores dinámicos (6) y configurado para unirse para unirse a la superficie base inferior (5) o a la cimentación. Se trata de un elemento de hormigón armado con forma de delta y que está configurado para acometida de los moduladores dinámicos (6) a la cimentación y para paso del cable de refuerzo (7) que recorre el modulador dinámico (6) hasta la cimentación. Dicho anclaje inferior (15) comprende también registro para el mecanismo de tesado. Figure 10 shows a lower anchor (15) that can be arranged at the lower end of the dynamic modulators (6) and configured to join to join the lower base surface (5) or the foundation. It is a delta-shaped reinforced concrete element that is configured to connect the dynamic modulators (6) to the foundation and to pass the reinforcement cable (7) that runs through the dynamic modulator (6) to the foundation. Said lower anchor (15) also comprises registration for the testing mechanism.
Aunque no se aporta ninguna figura representativa de una realización preferente de la invención, la invención abarca igualmente a un pedestal rígido que no incorpora físicamente el fuste (2), ya que los moduladores dinámicos (6) de hormigón armado postesado se unen entre si haciendo la función del fuste (2) y estos moduladores se unen a la base superior (4) donde se fija la torre eólica. Although no representative figure of a preferred embodiment of the invention is provided, the invention also encompasses a rigid pedestal that does not physically incorporate the shaft (2), since the dynamic modulators (6) of post-tensioned reinforced concrete are joined together by making the function of the shaft (2) and these modulators are attached to the upper base (4) where the wind tower is fixed.

Claims

R E I V I N D I C A C I O N E S
1. - Pedestal rígido de torre eólica configurado para instalarse entre una cimentación y una torre eólica ya diseñada sin necesidad de modificar su diseño, y está caracterizado por que comprende al menos: 1. - Rigid wind tower pedestal configured to be installed between a foundation and a wind tower already designed without modifying its design, and is characterized by comprising at least:
-un fuste (2) estructural opcional que comprende una pluralidad de elementos estructurales horizontales (3) de hormigón armado pretensado, unidos entre sí formando divisiones horizontales y que comprende una superficie base superior (4) a la que queda unida la torre eólica y una superficie base inferior (5) que queda unida a la cimentación;  - an optional structural shaft (2) comprising a plurality of horizontal structural elements (3) of prestressed reinforced concrete, joined together forming horizontal divisions and comprising an upper base surface (4) to which the wind tower is attached and a lower base surface (5) that is attached to the foundation;
-unos moduladores dinámicos (6), de hormigón armado pretensado o postesado, que están unidos por un extremo a la superficie base superior (4) o a un elemento estructural horizontal (3) del fuste y por el otro extremo están unidos a la superficie base inferior (5) o a la cimentación, y dichos moduladores dinámicos (6) ajustan las características dinámicas, como es la frecuencia del sistema de manera que no varían las cargas.  -a dynamic modulators (6), of prestressed or post-tensioned reinforced concrete, which are connected at one end to the upper base surface (4) or to a horizontal structural element (3) of the shaft and at the other end are connected to the base surface bottom (5) or to the foundation, and said dynamic modulators (6) adjust the dynamic characteristics, such as the frequency of the system so that loads do not vary.
2. - Pedestal rígido de torre eólica según la reivindicación 1 caracterizado porque los moduladores dinámicos (6) unidos entre sí a la base superior (4) donde queda unida la torre eólica, hacen de fuste (2) del pedestal (1) 2. - Rigid wind tower pedestal according to claim 1 characterized in that the dynamic modulators (6) joined together to the upper base (4) where the wind tower is attached, act as a shaft (2) of the pedestal (1)
3. - Pedestal rígido de torre eólica según la reivindicación 1 caracterizado por que comprende al menos un elemento estructural horizontal de desvío (14) dispuesto en el fuste (2) unido al menos a uno de los elementos estructurales horizontales (3) de éste y está configurado para unirse a un extremo de los moduladores dinámicos (6). 3. - Rigid wind tower pedestal according to claim 1 characterized in that it comprises at least one horizontal bypass structural element (14) disposed in the shaft (2) attached to at least one of the horizontal structural elements (3) thereof and It is configured to join one end of the dynamic modulators (6).
4. - Pedestal rígido de torre eólica según la reivindicación 3 caracterizado por que en el elemento estructural horizontal de desvío (14) se anclan un cable de refuerzo (7) que se extiende desde la superficie base superior (4) en dirección vertical y un cable de refuerzo (7) que se extiende a lo largo del modulador dinámico. 4. - Rigid wind tower pedestal according to claim 3 characterized in that in the horizontal diverting structural element (14) a reinforcement cable (7) is anchored extending from the upper base surface (4) in the vertical direction and a reinforcing cable (7) that extends along the dynamic modulator.
5. - Pedestal rígido de torre eólica según la reivindicación 3 caracterizado por que el elemento estructural horizontal de desvío (14) está atravesado por un cable de refuerzo (7) que cambia de trayectoria en el interior de la estructura horizontal de desvío pasando de una trayectoria vertical a una trayectoria inclinada. 5. - Rigid wind tower pedestal according to claim 3 characterized in that the horizontal diverting structural element (14) is crossed by a reinforcement cable (7) that changes trajectory inside the horizontal diverting structure passing from a vertical path to an inclined path.
6. - Pedestal rígido de torre eólica según la reivindicación 1 caracterizado porque los elementos estructurales horizontales tienen una configuración que puede ser cilindrica o poligonal. 6. - Rigid wind tower pedestal according to claim 1 characterized in that the horizontal structural elements have a configuration that can be cylindrical or polygonal.
7. - Pedestal rígido de torre eólica según la reivindicación 1 caracterizado porque las divisiones horizontales son uniones en seco y los elementos estructurales horizontales se mantienen unidos entre sí por acción de los cables de refuerzo. 7. - Rigid wind tower pedestal according to claim 1 characterized in that the horizontal divisions are dry joints and the horizontal structural elements are held together by the reinforcement cables.
8. - Pedestal rígido de torre eólica según la reivindicación 1 caracterizado por que los elementos estructurales horizontales (3) tienen una cara superior (10) y una cara inferior (11) y comprenden al menos un rehundido (12) en la cara superior (10) y un resalte (13) en la cara inferior (11). 8. - Rigid wind tower pedestal according to claim 1 characterized in that the horizontal structural elements (3) have an upper face (10) and a lower face (11) and comprise at least one recess (12) in the upper face ( 10) and a protrusion (13) on the underside (11).
9. - Pedestal rígido de torre eólica según la reivindicación 8 caracterizado porque el al menos un rehundido (12) y el al menos un resalte (13) son complementarios de manera que al unir dos elementos estructurales horizontales iguales el al menos un resalte (13) de la cara inferior (11) de uno de los elementos estructurales horizontales (3) queda alojado en el al menos un rehundido (12) de la cara superior (10) del otro elemento estructural horizontal (3). 9. - Rigid wind tower pedestal according to claim 8 characterized in that the at least one recess (12) and the at least one shoulder (13) are complementary so that when joining two equal horizontal structural elements the at least one shoulder (13 ) of the lower face (11) of one of the horizontal structural elements (3) is housed in the at least one recess (12) of the upper face (10) of the other horizontal structural element (3).
10. - Pedestal rígido de torre eólica según la reivindicación 8 caracterizado porque los rehundidos (12) y resaltes (13) se extienden a lo largo de toda la sección de la cara superior (10) y de la cara inferior (11) respectivamente. 10. - Rigid wind tower pedestal according to claim 8 characterized in that the recesses (12) and projections (13) extend along the entire section of the upper face (10) and the lower face (11) respectively.
11. - Pedestal rígido de torre eólica según las reivindicaciones 1 y 2 caracterizado por que comprende adicionalmente un anclaje inferior (15) unido a un extremo de los moduladores dinámicos (6) y configurado para unirse a la superficie base inferior (5) o a la cimentación, y en el interior del que se aloja el extremo del cable de refuerzo (7) que se extiende a lo largo del modulador dinámico (6). 11. - Rigid wind tower pedestal according to claims 1 and 2 characterized in that it additionally comprises a lower anchor (15) attached to one end of the dynamic modulators (6) and configured to join the lower base surface (5) or the foundation, and inside the end of the reinforcement cable (7) that extends along the dynamic modulator (6).
PCT/ES2017/070655 2016-10-06 2017-10-06 Rigid pedestal of a wind tower WO2018065655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201631296 2016-10-06
ES201631296A ES2662926B1 (en) 2016-10-06 2016-10-06 EOLIC TOWER PEDESTAL

Publications (1)

Publication Number Publication Date
WO2018065655A1 true WO2018065655A1 (en) 2018-04-12

Family

ID=61828394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070655 WO2018065655A1 (en) 2016-10-06 2017-10-06 Rigid pedestal of a wind tower

Country Status (2)

Country Link
ES (1) ES2662926B1 (en)
WO (1) WO2018065655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521433A1 (en) * 2018-07-13 2020-01-15 Holcim Technology Ltd Foundation for a wind power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090307998A1 (en) * 2008-06-13 2009-12-17 Tindall Corporation Base support for wind-driven power generators
ES2524840A1 (en) * 2014-06-06 2014-12-12 Esteyco Energía Foundation system for towers and installation procedure of the foundation system for towers (Machine-translation by Google Translate, not legally binding)
US20160201350A1 (en) * 2015-01-09 2016-07-14 Tindall Corporation Tower and method for assembling tower
US20160215761A1 (en) * 2013-09-06 2016-07-28 youWINenergy GmbH Tower assembly for a wind turbine installation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3589000A (en) * 1999-02-05 2000-08-25 Northern Technologies, Inc. Support structure for elevating and supporting monopoles and associated equipment
BR112015002426A2 (en) * 2012-08-03 2017-07-04 D Lockwood James prestressed concrete segmented wind turbine tower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090307998A1 (en) * 2008-06-13 2009-12-17 Tindall Corporation Base support for wind-driven power generators
US20160215761A1 (en) * 2013-09-06 2016-07-28 youWINenergy GmbH Tower assembly for a wind turbine installation
ES2524840A1 (en) * 2014-06-06 2014-12-12 Esteyco Energía Foundation system for towers and installation procedure of the foundation system for towers (Machine-translation by Google Translate, not legally binding)
US20160201350A1 (en) * 2015-01-09 2016-07-14 Tindall Corporation Tower and method for assembling tower

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Atlas CTB Information Video", TINDAL CORPORATION., 21 January 2014 (2014-01-21), XP054978692, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=vhEjg0uffCM</a>> [retrieved on 20180110] *
PAUL DVORAK, FIRST NORTH AMERICAN CONCRETE WIND-TOWER BASE REACHES 40M., 1 July 2012 (2012-07-01), Retrieved from the Internet <URL:https://www.windpowerengineering.com/construction/first-north-american-concrete-wind-tower-base-reaches-40m> [retrieved on 20180125] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521433A1 (en) * 2018-07-13 2020-01-15 Holcim Technology Ltd Foundation for a wind power plant
AT521433B1 (en) * 2018-07-13 2021-12-15 Holcim Technology Ltd Foundation for a wind power plant
US11578698B2 (en) 2018-07-13 2023-02-14 Holcim Technology Ltd Foundation for a windmill

Also Published As

Publication number Publication date
ES2662926B1 (en) 2019-01-16
ES2662926A1 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
ES2784000T3 (en) Foundation for a windmill
US10513833B2 (en) Foundation with pedestal and ribs for towers
JP6452137B2 (en) Tower foundation system and method for installing tower foundation system
ES2796475T3 (en) Foundation for a windmill
US20220056884A1 (en) Prestressed-bolted dry-assembled segmental precast hybrid tower with grouting-free
ES2764468B2 (en) FOUNDATION FOR WIND TOWERS
EP2427603B1 (en) Fatigue resistant foundation
ES2949996T3 (en) Foundation for a wind turbine
JP2017523330A5 (en)
WO2013156632A1 (en) Connection between a wind turbine tower and its foundation
WO2010134029A2 (en) Support structure for a wind turbine and procedure to erect the support structure
WO2014053688A2 (en) Supporting structure for wind turbines and a mould for obtaining such structures
ES2347742A1 (en) Foundation for a wind turbine
CN101446065A (en) Combined cable support tower
CA3162517A1 (en) Foundation for a wind turbine
WO2018065655A1 (en) Rigid pedestal of a wind tower
ES2835346B2 (en) Concrete foundation for wind tower and method for its installation
CN211006741U (en) Reinforced structure of P &amp; H type rock stock fan foundation
CN209468679U (en) A kind of main pier of long span stayed-cable bridge
CN209742073U (en) Assembly type self-resetting frame system connected by FRP (fiber reinforced plastic) pipes
CN110029685A (en) A kind of pile drawing anchor barricade fabricated construction
CN206800226U (en) A kind of T-shaped rigid frame bridge oblique pull ruggedized construction
CN111980058A (en) Concrete retaining wall structure with energy dissipation and shock absorption functions
WO2010047618A1 (en) Foundation
EP3401445B1 (en) Anchoring section for a foundation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17857887

Country of ref document: EP

Kind code of ref document: A1