WO2018065224A1 - Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes - Google Patents

Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes Download PDF

Info

Publication number
WO2018065224A1
WO2018065224A1 PCT/EP2017/073870 EP2017073870W WO2018065224A1 WO 2018065224 A1 WO2018065224 A1 WO 2018065224A1 EP 2017073870 W EP2017073870 W EP 2017073870W WO 2018065224 A1 WO2018065224 A1 WO 2018065224A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
composite material
manufacturing
fibrous reinforcement
conductor
Prior art date
Application number
PCT/EP2017/073870
Other languages
English (en)
Inventor
Antinéa EINIG
Original Assignee
Abmi Sud-Est
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abmi Sud-Est filed Critical Abmi Sud-Est
Publication of WO2018065224A1 publication Critical patent/WO2018065224A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Definitions

  • the invention relates to the field of composite materials with integrated conductor for the transmission of electric current.
  • the invention more particularly relates to composite materials incorporating two electrically connected conductors, for example a connector connected to a conductive wire integrated in a composite material.
  • the use of composites is particularly sought in the field of transport for the purpose of reducing fuel consumption.
  • the integration of the conductors in the composite improves the modularity of composite systems.
  • the increase in security and multimedia benefits has significantly increased the number of drivers on board aircraft or motor vehicles.
  • the aircraft Airbus A380 ® the company integrates ® 530 km from son electrical conductors. To limit the bulk of these conductors, it is known to integrate at least a portion of these conductors directly into the constituent composite materials of the aircraft
  • a connection between two conductors can be performed, conventionally, outside the composite material. In addition, to further limit the size, it is advantageous to make certain connections between two conductors directly in the composite material. This electrical connection can make it possible to position a connector on an edge of the composite material so as to resume electrical contact with one or more conductors integrated in the composite material.
  • US Patent Application No. US 2002/0168184 discloses a first method for making this electrical connection between two conductors. In a first step, the composite material is shaped so as to integrate a first conductor. Drilling is then performed on an edge of the solidified composite material to reach the first conductor present in the core of the composite material. This drilling makes it possible to form a blind hole extending from the edge of the composite material to the first conductor. A second conductor is positioned in this blind hole and welded to the first conductor.
  • US Patent Application No. US 2011/0120748 discloses a second method in which an electrical connection is made between a conductor, integrated in the composite material, and a connector opening on an edge of the composite material. The conductive wire and the connector are welded together before forming the composite material.
  • this patent application proposes to use a vacuum crosslinking method for shaping the composite material. This process is particularly complex to implement, thus increasing the time and cost of production of parts.
  • US Pat. No. 5,344,696 discloses another method in which the connection between the conductors is performed prior to forming the composite material. To do this, the two conductors are welded together and arranged between two layers of fibrous reinforcement. The shaping of the composite material is then made by rolling. However, this method presents a risk of deterioration of the electrical connection between the two conductors during the rolling step.
  • the technical problem of the invention is therefore to find how to integrate two electrically connected conductive elements in a composite material without greatly degrading the mechanical strength of the composite material and without being constrained by the shaping process of the composite material.
  • the present invention aims to respond to this technical problem by means of a pin immiscible with the composite material.
  • the pin is positioned in the fibers of the fibrous reinforcement in contact with a conductive element and extracted, at least in part, after the shaping of the composite material so as to create a blind hole opening on the conductive element.
  • a second conductive element is then inserted through the blind hole and connected with the first conductive element.
  • the invention relates to a method of manufacturing a composite material incorporating two electrically connected conductive elements, said method comprising the following steps:
  • the invention thus makes it possible to manufacture a composite material integrating an electrical connection between two conductors independently of the process of shaping the composite material.
  • the invention makes it possible to limit the degradation of the mechanical strength of the composite material because the machining of the composite material is no longer required.
  • the pin is a modular element depending on the application and it allows to provide access to one or more conductors embedded in the composite material.
  • said first end has a protruding shape
  • the step of positioning said pin being carried out by inserting said protruding shape between two fibers of said fibrous reinforcement and by spreading said fibers as said pin is inserted into said fibrous reinforcement .
  • This embodiment makes it possible to increase the number of fibers of the fibrous reinforcement around the blind hole by displacing the fibers at the periphery of the blind hole. Thus, the mechanical strength of the composite material is increased around the blind hole.
  • said first end has two protruding shapes arranged facing one another and configured to extend on either side of said first conductive element when said pin is positioned in contact with said first conductive element. This embodiment makes it possible to grip the first conductor by the pin so as to ensure sufficient spacing around the first conductor to make the electrical connection between the two conductors.
  • said pin has a frustoconical structure between said two ends. This embodiment makes it easier to insert the pin into the fiber preform.
  • said portion of said pin corresponds to a conical insert disposed in said frustoconical structure.
  • said pin has a structured face intended to come into contact with said composite material so as to maintain said pin in said composite material after the step of extracting at least a portion of said pin.
  • This embodiment aims to ensure the maintenance of a portion of the pin in the composite material.
  • said structured face has roughnesses and / or grooves.
  • said method also comprises a step of overmolding said edge so as to contain said pin and said second conductive element in said composite material. This embodiment also aims to ensure the maintenance of a portion of the pin in the composite material.
  • said pin has a parallelepipedal structure, the step of positioning said pin comprising a step of cutting at least one fiber of said fibrous reinforcement so as to provide a location for said parallelepipedal structure of said pin.
  • the pin takes the form of a cap positioned above the first conductor and extracted after shaping.
  • said pin is made by depositing a polymer in the form of filaments.
  • FIGS. 1 to 9 represent:
  • Figure 1 a flowchart illustrating a method of producing a composite material according to a first embodiment of the invention
  • Figure 2 is a schematic sectional representation of the shaping step of the composite material of Figure 1;
  • Figure 3 a schematic sectional representation of the positioning step of a second conductor of Figure 1;
  • Figure 4 a schematic representation in section of the step of making a connection between two conductors of Figure 1;
  • Figure 5 a schematic sectional representation of the step of filling the blind hole of Figure 1;
  • Figure 6 a schematic representation in section of a pin according to a second embodiment of the invention.
  • Figure 7 a schematic sectional representation of a pin according to a third embodiment of the invention.
  • Figure 8 a schematic sectional representation of the pin of Figure 7 when it cooperates with a conductive wire
  • FIG. 9 a schematic sectional representation of a pin according to a fourth embodiment of the invention.
  • FIG. 1 illustrates an embodiment of the invention in which the method comprises a first step 50 of integrating a first conductor 23 into a fibrous reinforcement 22 intended to form a composite material.
  • Composite material a material composed of an organic matrix 21 and fibrous reinforcements 22.
  • the matrix 21 is, for example, made of thermoplastic or thermosetting polymer. It may also contain additional elements (powders or fillers) playing a role of heat removal.
  • the fibrous reinforcements 22 may be in the form of laminates, folds or fibers. In general, they are either two-dimensional or three-dimensional, in the form of weaving, braiding, stitching, non-woven, or knitting. In the case of three-dimensional fibrous reinforcement 22, the first conductor 23 is integrated either along the binding yarn connecting the different superposed layers, or in the interleaving of the thickness between these layers.
  • the three-dimensional fibrous reinforcements 22 comprise intercrock or NCF structures (Non Crimped Fabric), stitched laminate, sandwich structure, or honeycomb.
  • the fibers fibrous reinforcements 22 are either short, long, or continuous, or natural or synthetic, for example carbon fibers, glass, aramid, basalt ...
  • the integration of the first conductor 23 in the composite material 20, allows a reduction of the volume of the structure because the sheath and / or the film surrounding the lead 23 may be removed.
  • the disappearance of the sheath occurs in the case of the use of insulating fibrous reinforcements 22, see semiconductors, having a resistivity greater than lQ.m.
  • the introduction of the first conductor 23 in the composite material 20 can locally generate a problem of stress concentrations by displacing the fibrous reinforcement 22 punctually.
  • the composite material 20 can be more fragile during external stresses, and be less mechanically resistant to external impacts. This mechanical fragility can be mitigated, in particular, by the different solutions described below which can be combined.
  • a first solution is to subject the driver 23 physical treatment by the formation of roughness or the application of chemical functions.
  • the conductor 23 undergoes a surface treatment in order to ensure a better interface with the matrix 21 of the composite material 20, and consequently a greater mechanical strength.
  • the physical and / or chemical treatments are one or the combination of the following techniques: plasma, corona, laser, chemical, sol-gel, surface polymerization, electrochemistry, size, PVD, CVD, heat treatment, (valid in the most cases for fiberglass and aramid), galvanizing, electroplating, tinning, painting, electrophoresis, ceramics.
  • a second solution consists in reducing the volume occupied by the conductor 23, either by reducing the size of the conductor 23, or by using several strands of wires juxtaposed and in electrical contact to form the conducting wire 23.
  • a third solution consists in varying the section of a single conductor wire 23 to ensure better anchoring during stresses of the composite material 20.
  • a final solution is to place several son 23 conductors, between or in the folds, on several lines. Alternatively, the integration of the conductor 23 can be achieved by all known methods without changing the invention.
  • the method comprises a step 51 of positioning a non-miscible pin 25 with the composite material 20.
  • non-miscible pin is meant a pin 25 whose material is incapable of forming a single phase with the composite material 20 during the shaping of the composite material 20.
  • This pin 25 is disposed in contact with the first conductor 23 and extends to an edge 29 of the composite material 20.
  • FIG. 2 illustrates an example of a parallelepiped-shaped pin 36 disposed in contact with a conducting wire 23.
  • a lower end 26 of the peg 25 surrounds the conductive wire 23 on half of its periphery and an upper end 27 extends at an upper edge 29 of the composite material 20.
  • the pin 25 can take several forms without changing the invention.
  • the pin 25 may be positioned on dry or preimpregnated fibrous reinforcements 22.
  • the method comprises a step 52 of shaping the composite material 20.
  • this shaping can be achieved by crosslinking a matrix or a resin 21 penetrating the fibers of the fibrous reinforcement 22.
  • the shaping of the composite material 20 can be carried out by any known technique.
  • the pressing techniques can be implemented without degrading the conductor 23 because the pin can be shaped to absorb the pressing stresses on the conductor 23.
  • the pin 25 can be made of elastomer.
  • the pin 25 limits the impregnation of the polymer on a portion of the conductor 23 extending to the edge 29 of the composite material 20.
  • all or part of the peg 25 can be extracted to access the driver 23 from the edge 29 of the composite material 20 without requiring machining of the composite material 20.
  • the entire pin 25 is extracted, thus forming a blind hole 40 extending from the edge 29 to 23.
  • a second conductor 24 is disposed in the blind hole 40 in contact with the first conductor 23.
  • the next step 55 consists of making an electrical connection 41 between the two conductors 23, 24.
  • a solder or brazing can be implemented so as to form an electrical connection 41 between the two conductors 23, 24.
  • a binder or a brewing paste can be used to facilitate this step of making a connection.
  • the space between the second connector 24 and the internal edges of the blind hole 40 can be filled by the injection of a filling material 42, for example an adhesive.
  • FIG. 6 illustrates a variant of the invention in which the pin 25 incorporates two protruding shapes 31 arranged facing one another at the end 26 intended to grip the first conductor 23.
  • Each shape protrusion 31 is in the form of a tip and is intended to improve the insertion of the pin 25 into the fibers of the fibrous reinforcement 22.
  • FIG. 7 illustrates embodiments in which the pins 25 have a frustoconical structure 32.
  • the pin 25 has an upper base 33 which the dimensions are greater than those of the lower base 34 so as to facilitate the insertion of the peg 25 into the fibers of the fibrous reinforcement 22.
  • the lower end of the peg 25 is provided with a slot 43. As illustrated on FIG. 8, this slot 43 aims to open the lower base 34 when the pin 25 is moved against the first conductor 23 so as to extend the pin 25 on each side of the first conductor 23.
  • the pin 25 of FIG. 7 also comprises a removable conical insert 35 present inside the frustoconical structure 32.
  • the insert conic 35 can be extracted from the frustoconical structure 32 and so as to form a blind hole 40 without extracting the entirety of the pin 25.
  • the remaining fraction of the pin 25 can thus contribute to the mechanical rigidity of the composite material 20.
  • the frustoconical structure 32 has a structured external wall 37 so as to improve the adhesion of the remaining portion of the pin 25 in the composite material 20.
  • the structured face 37 of FIG. groove 45 protruding from the structured face 37.
  • roughnesses may be implemented to ensure the adhesion of the remaining portion of the pin 25.
  • the immiscible pin 25 may be associated with a miscible pin used to position the first conductor 23.
  • the invention thus makes it possible to produce a composite material 20 by integrating two electrically connected conductors 23-24.
  • the nature and shape of the conductors 23-24 can vary and the shaping of the composite material 20 can be achieved by all known methods.
  • the method of the invention makes it possible to improve the resistance of the composite material 20 with respect to the materials of the prior art integrating two electrically connected conductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau composite (20) intégrant deux éléments conducteurs (23-24) électriquement connectés, le procédé comportant les étapes suivantes réalisées consécutivement : - intégration d'un premier élément conducteur (23) dans un renfort fibreux, - positionnement d'un pion non-miscible avec ledit matériau composite (20), une première extrémité dudit pion étant positionnée au contact dudit premier élément conducteur (23) et une seconde extrémité dudit pion (25) débouchant sur un bord (29) dudit renfort fibreux (22), - mise en forme dudit matériau composite (20) par solidification d'un matériau polymère (21) dans ledit renfort fibreux (22), - extraction d'au moins une partie dudit pion (25), - positionnement (54) d'un second élément conducteur (24) à la place de l'au moins une partie dudit pion (25), et - réalisation d'une connexion électrique entre lesdits premier et second éléments conducteurs (23-24) à l'intérieur dudit matériau composite (20).

Description

PROCEDE DE FABRICATION D'UN MATERIAU COMPOSITE INTEGRANT DEUX CONDUCTEURS ELECTRIQUEMENT CONNECTES DOMAINE TECHNIQUE
L'invention concerne le domaine des matériaux composites à conducteur intégré pour la transmission du courant électrique. L'invention concerne plus particulièrement les matériaux composites intégrant deux conducteurs électriquement connectés, par exemple un connecteur connecté à un fil conducteur intégré dans un matériau composite.
L'utilisation des composites est notamment recherchée dans le domaine des transports dans un but d'allégement en vue de réduire les consommations en carburant. L'intégration des conducteurs dans le composite améliore la modularité des systèmes réalisés en composite.
A T ANTERIEUR
L'augmentation de la sécurité et des prestations multimédias a considérablement augmenté le nombre de conducteurs à bord des aéronefs ou des véhicules automobiles. Par exemple, l'aéronef A380® de la société Airbus® intègre 530 km de fils conducteurs électriques. Pour limiter l'encombrement de ces conducteurs, il est connu d'intégrer au moins une partie de ces conducteurs directement dans les matériaux composites constitutifs de l'aéronef
Une connexion entre deux conducteurs peut être effectuée, de manière classique, en dehors du matériau composite. En outre, pour limiter encore l'encombrement, il est avantageux de réaliser certaines connexions entre deux conducteurs directement dans le matériau composite. Cette connexion électrique peut permettre de positionner un connecteur sur un bord du matériau composite de sorte à reprendre un contact électrique avec un ou plusieurs conducteurs intégrés dans le matériau composite. La demande de brevet américain N° US 2002/0168184 divulgue une première méthode pour réaliser cette connexion électrique entre deux conducteurs. Dans une première étape, le matériau composite est mis en forme de sorte à intégrer un premier conducteur. Un perçage est ensuite effectué sur un bord du matériau composite solidifié jusqu'à atteindre le premier conducteur présent au cœur du matériau composite. Ce perçage permet de former un trou borgne s 'étendant depuis le bord du matériau composite jusqu'au premier conducteur. Un second conducteur est positionné dans ce trou borgne et soudé sur le premier conducteur.
Cependant, il existe un risque élevé de détérioration du premier conducteur lors du perçage du matériau composite jusqu'au premier conducteur. En outre, le perçage engendre une faiblesse du matériau composite au niveau du trou borgne propice à des départs de fissures lors de l'utilisation du matériau composite.
La demande de brevet américain N° US 2011/0120748 divulgue une seconde méthode dans laquelle une connexion électrique est réalisée entre un conducteur, intégré dans le matériau composite, et un connecteur débouchant sur un bord du matériau composite. Le fil conducteur et le connecteur sont soudés entre eux avant la mise en forme du matériau composite.
Cependant, la mise en forme du matériau composite ne peut pas être réalisée par pressage au risque de détériorer le connecteur. Ainsi, cette demande de brevet propose d'utiliser une méthode de réticulation sous vide pour mettre en forme le matériau composite. Ce procédé est particulièrement complexe à mettre en œuvre, augmentant ainsi le temps et le coût de production des pièces.
Le brevet américain N° US 5,344,696 divulgue une autre méthode dans laquelle la connexion entre les conducteurs est réalisée avant la mise en forme du matériau composite. Pour ce faire, les deux conducteurs sont soudés entre eux et disposés entre deux couches d'un renfort fibreux. La mise en forme du matériau composite est ensuite réalisée par laminage. Cependant, cette méthode présente un risque de détérioration de la connexion électrique entre les deux conducteurs lors de l'étape de laminage.
Le problème technique de l'invention consiste donc à trouver comment intégrer deux éléments conducteurs électriquement connectés dans un matériau composite sans dégrader fortement la tenue mécanique du matériau composite et sans être contraint par le procédé de mise en forme du matériau composite.
Pour répondre à ce problème technique, l'homme du métier pourrait utiliser un moule spécifique avec une dent destinée à former un trou borgne dans le matériau composite lors de la mise en forme de sorte à atteindre un conducteur intégré dans le matériau composite. Cette solution nécessite un moule spécifique et risque de détériorer le conducteur intégré dans le matériau composite lors de la mise en forme. Une autre solution envisageable serait d'utiliser un procédé d'imprégnation sous vide car il est connu de créer une poche d'air de sorte à limiter localement l'imprégnation de la préforme fibreuse. Cette technique est, cependant, très complexe à mettre en œuvre et difficilement maîtrisable. EXPOSE DE L'INVENTION
La présente invention vise à répondre à ce problème technique au moyen d'un pion non-miscible avec le matériau composite. Le pion est positionné dans les fibres du renfort fibreux en contact avec un élément conducteur et extrait, au moins en partie, après la mise en forme du matériau composite de sorte à créer un trou borgne débouchant sur l'élément conducteur. Un second élément conducteur est alors inséré par le trou borgne et connecté avec le premier élément conducteur.
A cet effet, l'invention concerne un procédé de fabrication d'un matériau composite intégrant deux éléments conducteurs électriquement connectés, ledit procédé comportant les étapes suivantes :
- intégration d'un premier élément conducteur dans un renfort fibreux destiné à former ledit matériau composite, - positionnement d'un pion non-miscible avec ledit matériau composite, une première extrémité dudit pion étant positionnée au contact dudit premier élément conducteur et une seconde extrémité dudit pion, opposée à ladite première extrémité dudit pion, débouchant sur un bord dudit renfort fibreux,
- mise en forme dudit matériau composite par solidification d'un matériau polymère dans ledit renfort fibreux,
- extraction d'au moins une partie dudit pion,
- positionnement d'un second élément conducteur à la place de l'au moins une partie dudit pion de sorte que ledit second élément conducteur s'étende depuis ledit bord dudit renfort fibreux jusqu'au premier élément conducteur, et
- réalisation d'une connexion électrique entre lesdits premier et second éléments conducteurs à l'intérieur dudit matériau composite.
L'invention permet ainsi de fabriquer un matériau composite intégrant une connexion électrique entre deux conducteurs indépendamment du procédé de mise en forme du matériau composite. En outre, l'invention permet de limiter la dégradation de la tenue mécanique du matériau composite car l'usinage du matériau composite n'est plus requis. Le pion est un élément modulable en fonction de l'application et il permet de d'aménager un accès vers un ou plusieurs conducteurs intégrés dans le matériau composite.
Selon un mode de réalisation, ladite première extrémité présente une forme saillante, l'étape de positionnement dudit pion étant réalisée en insérant ladite forme saillante entre deux fibres dudit renfort fibreux et en écartant lesdites fibres à mesure que ledit pion est inséré dans ledit renfort fibreux. Ce mode de réalisation permet d'augmenter le nombre de fibres du renfort fibreux autour du trou borgne en déplaçant les fibres à la périphérie du trou borgne. Ainsi, la résistance mécanique du matériau composite est augmentée autour du trou borgne. Selon un mode de réalisation, ladite première extrémité présente deux formes saillantes disposées en regard l'une par rapport à l'autre et configurées pour s'étendre de part et d'autre dudit premier élément conducteur lorsque ledit pion est positionné au contact dudit premier élément conducteur. Ce mode de réalisation permet d'enserrer le premier conducteur par le pion de sorte à garantir un espacement suffisant autour du premier conducteur pour réaliser la connexion électrique entre les deux conducteurs.
Selon un mode de réalisation, ledit pion présente une structure tronconique entre lesdites deux extrémités. Ce mode de réalisation permet de faciliter l'insertion du pion dans la préforme fibreuse. Avantageusement, ladite partie dudit pion correspond à un insert conique disposé dans ladite structure tronconique.
Selon un mode de réalisation, ledit pion présente une face structurée destinée à venir au contact dudit matériau composite de sorte à maintenir ledit pion dans ledit matériau composite après l'étape d'extraction d'au moins une partie dudit pion. Ce mode de réalisation vise à garantir le maintien d'une partie du pion dans le matériau composite. Avantageusement, ladite face structurée présente des rugosités et/ou des rainures. Selon un mode de réalisation, ledit procédé comporte également une étape de surmoulage dudit bord de sorte à contenir ledit pion et ledit second élément conducteur dans ledit matériau composite. Ce mode de réalisation vise également à garantir le maintien d'une partie du pion dans le matériau composite. Selon un mode de réalisation, ledit pion présente une structure parallélépipédique, l'étape de positionnement dudit pion comportant une étape de découpage d'au moins une fibre dudit renfort fibreux de sorte à aménager un emplacement pour ladite structure parallélépipédique dudit pion. Dans ce mode de réalisation, le pion prend la forme d'un capuchon positionné au-dessus du premier conducteur et extrait après la mise en forme. Avantageusement, ledit pion est réalisé par dépôt d'un polymère sous forme de filaments.
DESCRIPTION SOMMAIRE DES FIGURES
La manière de réaliser l'invention ainsi que les avantages qui en découlent, ressortiront bien du mode de réalisation qui suit, donné à titre indicatif mais non limitatif, à l'appui des figures annexées dans lesquelles les figures 1 à 9 représentent :
Figure 1 : un organigramme illustrant un procédé de réalisation d'un matériau composite selon un premier mode de réalisation de l'invention ; Figure 2 : une représentation schématique en coupe de l'étape de mise en forme du matériau composite de la figure 1 ;
Figure 3 : une représentation schématique en coupe de l'étape de positionnement d'un second conducteur de la figure 1 ;
- Figure 4 : une représentation schématique en coupe de l'étape de réalisation d'une connexion entre deux conducteurs de la figure 1 ;
Figure 5 : une représentation schématique en coupe de l'étape de remplissage du trou borgne de la figure 1 ;
Figure 6 : une représentation schématique en coupe d'un pion selon un second mode de réalisation de l'invention ;
Figure 7 : une représentation schématique en coupe d'un pion selon un troisième mode de réalisation de l'invention ;
Figure 8 : une représentation schématique en coupe du pion de la figure 7 lorsqu'il coopère avec un fil conducteur ; et
- Figure 9 : une représentation schématique en coupe d'un pion selon un quatrième mode de réalisation de l'invention.
DESCRIPTION DÉTAILLÉE DE L'INVENTION La figure 1 illustre un mode de réalisation de l'invention dans lequel le procédé comporte une première étape 50 consistant à intégrer un premier conducteur 23 dans un renfort fibreux 22 destiné à former un matériau composite 20. On entend par « matériau composite », un matériau composé d'une matrice organique 21 et de renforts fibreux 22. La matrice 21 est, par exemple, réalisée en polymère thermoplastique ou thermodurcissable. Elle peut également contenir des éléments supplémentaires (poudres ou charges) jouant un rôle d'évacuation de la chaleur.
Les renforts fibreux 22 peuvent être sous forme de laminés, de plis ou de fibres. De façon générale, ils sont soit bidimensionnels ou tridimensionnels, sous formes de tissage, tressage, piquage, non-tissés, ou tricotage. Dans le cas de renfort fibreux 22 tridimensionnel, le premier conducteur 23 est intégré soit suivant le fils de liage reliant les différentes couches superposées, ou soit dans l'entrelacement de l'épaisseur entre ces couches. Les renforts fibreux 22 tridimensionnels comprennent les structures interlocks ou NCF (Non Crimped Fabric), laminé cousus, structure sandwich, ou nid d'abeille. Les fibres des renforts fibreux 22 sont soit courtes, longues, ou continues, soit naturelles ou synthétiques, par exemple des fibres de carbone, de verre, d'aramide, de basalte...
L'intégration du premier conducteur 23 dans le matériau composite 20, permet une réduction du volume de la structure car la gaine et/ou le film entourant le fil conducteur 23 peut être supprimé. La disparition de la gaine survient dans le cas d'emploi de renforts fibreux 22 isolants, voir semi-conducteurs, possédant une résistivité supérieure à lQ.m. Par exemple, on peut citer les fils de verre, d'aramide, de basalte, de polymère, ainsi que les fibres combinant plusieurs des matériaux cités en amont.
Du point de vue mécanique, la mise en place du premier conducteur 23 dans le matériau composite 20 peut localement engendrer une problématique de concentrations de contraintes en déplaçant ponctuellement le renfort fibreux 22. Dans le volume adjacent au premier conducteur 23, le matériau composite 20 peut être plus fragile lors de sollicitations externes, et être moins résistant mécaniquement lors d'impacts externes. Cette fragilité mécanique peut être palliée, en particulier, par les solutions différentes décrites ci-après et qui peuvent être combinées.
Une première solution consiste à faire subir au conducteur 23 un traitement physique par la formation de rugosité ou l'application de fonctions chimiques. Pour ce faire, le conducteur 23 subit un traitement de surface dans le but d'assurer une meilleure interface avec la matrice 21 du matériau composite 20, et par conséquence une plus grande résistance mécanique. De préférence, les traitements physiques et/ou chimiques sont une ou la combinaison des techniques suivantes : plasma, corona, laser, chimique, sol-gel, polymérisation en surface, électrochimie, ensimage, PVD, CVD, traitement thermique, (valable dans la plupart des cas pour la fibre de verre et d'aramide), galvanisation, galvanoplastie, étamage, peinture, électrophorèse, céramique.
Une seconde solution consiste à diminuer le volume occupé par le conducteur 23, soit en réduisant la taille du conducteur 23, soit en utilisant plusieurs brins de fïls juxtaposés et en contact électrique pour former le fil conducteur 23. Une troisième solution consiste à faire varier la section d'un fil conducteur 23 monobrin pour garantir un meilleur ancrage lors de sollicitations du matériau composite 20. Une dernière solution consiste à placer plusieurs fils conducteurs 23, entre ou dans les plis, sur plusieurs lignes. En variante, l'intégration du conducteur 23 peut être réalisée par toutes les méthodes connues sans changer l'invention. Avant de mettre en forme le matériau composite 20 intégrant le premier conducteur 23, le procédé comporte une étape 51 consistant à positionner un pion 25 non- miscible avec le matériau composite 20.
On entend par pion « non-miscible », un pion 25 dont le matériau est inapte à former une phase unique avec le matériau composite 20 lors de la mise en forme du matériau composite 20.
Ce pion 25 est disposé au contact du premier conducteur 23 et s'étend jusqu'à un bord 29 du matériau composite 20. La figure 2 illustre un exemple de pion 25 de forme parallélépipédique 36 disposé au contact d'un fil conducteur 23. Une extrémité inférieure 26 du pion 25 entoure le fil conducteur 23 sur la moitié de sa périphérie et une extrémité supérieure 27 s'étend au niveau d'un bord supérieur 29 du matériau composite 20. Tel que décrit en référence avec les figures 6 à 8, le pion 25 peut prendre plusieurs formes sans changer l'invention. En outre, le pion 25 peut être positionné sur des renforts fibreux 22 secs ou pré-imprégnés.
Lorsque le pion 25 est positionné, le procédé comporte une étape 52 consistant à mettre en forme le matériau composite 20. Tel qu'illustré sur la figure 2, cette mise en forme peut être réalisée en réticulant une matrice ou une résine 21 pénétrant dans les fibres du renfort fibreux 22. La mise en forme du matériau composite 20 peut être réalisée par toutes les techniques connues. Ainsi, les techniques de pressages peuvent être mises en œuvre sans dégrader le conducteur 23 car le pion peut être conformé pour absorber les contraintes de pressage sur le conducteur 23. Pour ce faire, le pion 25 peut être réalisé en élastomère.
Lors de la mise en forme du matériau composite 20, le pion 25 limite l'imprégnation du polymère sur une portion du conducteur 23 s'étendant jusqu'au bord 29 du matériau composite 20. Ainsi, après la mise en forme du matériau composite 20, dans l'étape 53, tout ou partie du pion 25 peut être extrait afin d'accéder au conducteur 23 depuis le bord 29 du matériau composite 20 sans requérir à un usinage du matériau composite 20. Dans l'exemple de la figure 3, l'intégralité du pion 25 est extrait, formant ainsi un trou borgne 40 s'étendant depuis le bord 29 jusqu'au premier conducteur 23. Dans l'étape 54, un second conducteur 24 est disposé dans le trou borgne 40 au contact du premier conducteur 23. L'étape suivante 55 consiste à réaliser une connexion électrique 41 entre les deux conducteurs 23, 24. Par exemple, tel qu'illustré sur la figure 4, une soudure ou un brasage peuvent être mis en œuvre de sorte à former une connexion électrique 41 entre les deux conducteurs 23, 24. Un liant ou une pâte de brassage peuvent être utilisé pour faciliter cette étape de réalisation d'une connexion.
Tel qu'illustré à l'étape 56 et sur la figure 5, lorsque les deux conducteurs 23, 24 sont connectés électriquement, l'espace entre le second connecteur 24 et les bords internes du trou borgne 40 peut être comblé par l'injection d'un matériau de comblement 42, par exemple une colle.
La figure 6 illustre une variante de l'invention dans laquelle le pion 25 intègre deux formes saillantes 31 disposées en regard l'une par rapport à l'autre au niveau de l'extrémité 26 destinée à venir enserrer le premier conducteur 23. Chaque forme saillante 31 se présente sous la forme d'une pointe et vise à améliorer l'insertion du pion 25 dans les fibres du renfort fibreux 22.
Outre la forme parallélépipédique 36 des pions 25 des figures 2 à 6, les figures 7 à 9 illustrent des modes de réalisation dans lesquels les pions 25 présentent une structure tronconique 32. Dans le mode de réalisation, le pion 25 présente une base supérieure 33 dont les dimensions sont supérieures à celles de la base inférieure 34 de sorte à faciliter l'insertion du pion 25 dans les fibres du renfort fibreux 22. L'extrémité inférieure du pion 25 est pourvue d'une fente 43. Tel qu'illustré sur la figure 8, cette fente 43 vise à ouvrir la base inférieur 34 lorsque le pion 25 est déplacé contre le premier conducteur 23 de sorte à étendre le pion 25 de chaque côté du premier conducteur 23. Le pion 25 de la figure 7 comporte également un insert conique 35 amovible présent à l'intérieur de la structure tronconique 32. Ainsi, tel qu'illustré sur la figure 8, lorsque le pion 25 est disposé sur le conducteur 23, l'insert conique 35 peut être extrait de la structure tronconique 32 et sorte à former un trou borgne 40 sans extraire l'intégralité du pion 25. La fraction restante du pion 25 peut ainsi contribuer à la rigidité mécanique du matériau composite 20.
Selon une autre variante illustrée sur la figure 9, la structure tronconique 32 présente une paroi externe structurée 37 de sorte à améliorer l'adhésion de la partie restante du pion 25 dans le matériau composite 20. La face structurée 37 de la figure 9 présente une rainure 45 faisant saillie de la face structurée 37. En variante, des rugosités peuvent être mises en œuvre pour garantir l'adhésion de la partie restante du pion 25.
Selon une autre variante, le pion non-miscible 25 peut être associé à un pion miscible utilisé pour positionner le premier conducteur 23.
L'invention permet ainsi de réaliser un matériau composite 20 en intégrant deux conducteurs 23-24, électriquement connectés. La nature et la forme des conducteurs 23- 24 peuvent varier et la mise en forme du matériau composite 20 peut être réalisée par toutes les méthodes connues. En outre, le procédé de l'invention permet d'améliorer la résistance du matériau composite 20 par rapport aux matériaux de l'art antérieur intégrant deux conducteurs électriquement connectés.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un matériau composite (20) intégrant deux éléments conducteurs (23-24) électriquement connectés, caractérisé en ce que ledit procédé comporte les étapes suivantes réalisées consécutivement :
- intégration (50) d'un premier élément conducteur (23) dans un renfort fibreux (22) destiné à former ledit matériau composite (20),
- positionnement (51) d'un pion non-miscible (25) avec ledit matériau composite (20), une première extrémité (26) dudit pion (25) étant positionnée au contact dudit premier élément conducteur (23) et une seconde extrémité (27) dudit pion (25), opposée à ladite première extrémité (26) dudit pion, débouchant sur un bord (29) dudit renfort fibreux (22),
- mise en forme (52) dudit matériau composite (20) par solidification d'un matériau polymère (21) dans ledit renfort fibreux (22),
- extraction (53) d'au moins une partie dudit pion (25),
- positionnement (54) d'un second élément conducteur (24) à la place de l'au moins une partie dudit pion (25) de sorte que ledit second élément conducteur (24) s'étende depuis ledit bord (29) dudit renfort fibreux (22) jusqu'au premier élément conducteur (23), et
- réalisation (55) d'une connexion électrique entre lesdits premier et second éléments conducteurs (23-24) à l'intérieur dudit matériau composite (20).
2. Procédé de fabrication selon la revendication 1, dans lequel ladite première extrémité (26) présente une forme saillante (31), l'étape de positionnement (51) dudit pion (25) étant réalisée en insérant ladite forme saillante (31) entre deux fibres dudit renfort fibreux (22) et en écartant lesdites fibres à mesure que ledit pion (25) est inséré dans ledit renfort fibreux (22).
3. Procédé de fabrication selon la revendication 1, dans lequel ladite première extrémité (26) présente deux formes saillantes (31) disposées en regard l'une par rapport à l'autre et configurées pour s'étendre de part et d'autre dudit premier élément conducteur (23) lorsque ledit pion (25) est positionné au contact dudit premier élément conducteur (23).
4. Procédé de fabrication selon l'une des revendications 1 à 3, dans lequel ledit pion (25) présente une structure tronconique (32) entre lesdites deux extrémités (26, 27).
5. Procédé de fabrication selon la revendication 4, dans lequel ladite partie dudit pion (25) correspond à un insert conique (35) disposé dans ladite structure tronconique (32).
6. Procédé de fabrication selon l'une des revendications 1 à 5, dans lequel ledit pion (25) présente une face structurée (37) destinée à venir au contact dudit matériau composite (20) de sorte à maintenir ledit pion (25) dans ledit matériau composite (20) après l'étape d'extraction (53) d'au moins une partie dudit pion (25).
7. Procédé de fabrication selon la revendication 6, dans lequel ladite face structurée (37) présente des rugosités et/ou des rainures.
8. Procédé de fabrication selon l'une des revendications 1 à 7, dans lequel ledit procédé comporte également une étape de surmoulage dudit bord (29) de sorte à contenir ledit pion (25) et ledit second élément conducteur (24) dans ledit matériau composite (20).
9. Procédé de fabrication selon l'une des revendications 1 à 3, dans lequel ledit pion (25) présente une structure parallélépipédique (36), l'étape de positionnement (51) dudit pion (25) comportant une étape de découpage d'au moins une fibre dudit renfort fibreux (22) de sorte à aménager un emplacement pour ladite structure parallélépipédique (36) dudit pion (25).
10. Procédé de fabrication selon la revendication 9, dans lequel ledit pion (25) est réalisé par dépôt d'un polymère sous forme de filaments.
PCT/EP2017/073870 2016-10-07 2017-09-21 Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes WO2018065224A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659715 2016-10-07
FR1659715A FR3057199B1 (fr) 2016-10-07 2016-10-07 Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes

Publications (1)

Publication Number Publication Date
WO2018065224A1 true WO2018065224A1 (fr) 2018-04-12

Family

ID=57906754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/073870 WO2018065224A1 (fr) 2016-10-07 2017-09-21 Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes

Country Status (2)

Country Link
FR (1) FR3057199B1 (fr)
WO (1) WO2018065224A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344696A (en) 1990-01-24 1994-09-06 Hastings Otis Electrically conductive laminate for temperature control of aircraft surface
US20020168184A1 (en) 1999-04-24 2002-11-14 Juergen Meisiek Electrically heated aircraft composite floor panel
US20050257956A1 (en) * 2004-05-19 2005-11-24 The Boeing Company Structurally integrated circuit and associated method
US20110120748A1 (en) 2006-01-17 2011-05-26 Beru F1 Systems Limited Wiring component
EP2607062A1 (fr) * 2011-12-23 2013-06-26 REHAU AG + Co Procédé de fabrication d'un composant avec au moins un élément d'insertion intégré au moins partiellement dans le composant et outil de formage pour la réalisation du procédé

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344696A (en) 1990-01-24 1994-09-06 Hastings Otis Electrically conductive laminate for temperature control of aircraft surface
US20020168184A1 (en) 1999-04-24 2002-11-14 Juergen Meisiek Electrically heated aircraft composite floor panel
US20050257956A1 (en) * 2004-05-19 2005-11-24 The Boeing Company Structurally integrated circuit and associated method
US20110120748A1 (en) 2006-01-17 2011-05-26 Beru F1 Systems Limited Wiring component
EP2607062A1 (fr) * 2011-12-23 2013-06-26 REHAU AG + Co Procédé de fabrication d'un composant avec au moins un élément d'insertion intégré au moins partiellement dans le composant et outil de formage pour la réalisation du procédé

Also Published As

Publication number Publication date
FR3057199A1 (fr) 2018-04-13
FR3057199B1 (fr) 2020-01-31

Similar Documents

Publication Publication Date Title
EP2613926B1 (fr) Procede de realisation d'une piece electriquement conductrice en materiau composite et piece obtenue
EP3111491B1 (fr) Cellule de stockage d'énergie électrique comportant au moins un élément mâle et un élément femelle, munis d'interfaces de connexion électrique
CA2827806C (fr) Piece en materiau composite munie de moyen d'attache
WO2008025889A1 (fr) Puce microelectronique nue munie d'un evidement formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure
CA3004161C (fr) Procede de fabrication d'une piece en materiau composite comprenant un corps solidaire d'une ou plusieurs plates-formes
EP3019398A1 (fr) Pale d'hélice composite pour aéronef
FR2915929A1 (fr) Butee de suspension a element filtrant et son procede de fabrication.
EP2936565A1 (fr) Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif
FR2984034A1 (fr) Dispositif de guidage d'un ensemble de fils electriques pour rotor de moteur electrique
WO2008043948A2 (fr) Cable de contrôle éléctrique et procédé de fabrication associé
EP3507085B1 (fr) Préforme, pièce d'ossature et procédé de fabrication d'une telle préforme
EP2896067A1 (fr) Capot pour dispositif a rainure et a puce, dispositif equipe du capot, assemblage du dispositif avec un element filaire et procede de fabrication
WO2019043333A1 (fr) Texture fibreuse tissee pour la formation d'une preforme de carter
WO2018065224A1 (fr) Procede de fabrication d'un materiau composite integrant deux conducteurs electriquement connectes
FR3066428A1 (fr) Procede de realisation d’une piece coudee en materiau composite et piece coudee correspondante
EP3802077A1 (fr) Procede de fabrication d'une piece en materiau composite
FR2929048A1 (fr) Ensemble de raccordement electrique et procede de fabrication de l'ensemble
FR2938966A1 (fr) Surmoulage pour ampoule a vide
EP3189313B1 (fr) Jauge de carburant
EP3331684A1 (fr) Procede de fabrication d'un materiau composite
FR3104061A1 (fr) Matériau parafoudre et procédé pour fabriquer un composant composite fibreux
FR3067648B1 (fr) Agencement d'un moyen de transport d'energie electrique dans une structure d'un vehicule et vehicule comportant un tel agencement
EP3061595A1 (fr) Procédé de fabrication de profilé creux en matériaux composites
FR3140572A1 (fr) Procédé de fabrication d’une pièce par assemblage de pièces intermédiaires obtenues par fabrication additive par dépôt de filament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17777210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17777210

Country of ref document: EP

Kind code of ref document: A1