WO2018064859A1 - Integrated high-efficiency silt and residual soil processing apparatus - Google Patents

Integrated high-efficiency silt and residual soil processing apparatus Download PDF

Info

Publication number
WO2018064859A1
WO2018064859A1 PCT/CN2016/107452 CN2016107452W WO2018064859A1 WO 2018064859 A1 WO2018064859 A1 WO 2018064859A1 CN 2016107452 W CN2016107452 W CN 2016107452W WO 2018064859 A1 WO2018064859 A1 WO 2018064859A1
Authority
WO
WIPO (PCT)
Prior art keywords
silt
mud
curved guide
abrasive
drum
Prior art date
Application number
PCT/CN2016/107452
Other languages
French (fr)
Chinese (zh)
Inventor
陈宏伟
黄克伟
杨传锐
Original Assignee
深圳申佳原环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳申佳原环保科技有限公司 filed Critical 深圳申佳原环保科技有限公司
Publication of WO2018064859A1 publication Critical patent/WO2018064859A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0056Other disintegrating devices or methods specially adapted for specific materials not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/20Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the invention relates to a treatment device for treating sludge and dregs generated during urban construction, in particular, mud which is excavated in urban construction, such as integrated high-efficiency sludge of muck generated by subway construction, house construction and foundation excavation. Slag treatment unit.
  • Metro construction and high-rise building construction are signs of a city's rapid development. In the construction of subways and high-rise buildings, a large amount of excavated soil will inevitably be produced. There is only one way to deal with this type of soil. It is to build a number of soil receiving sites in the surrounding areas of the city. The soil generated during the urban construction process is directly sent to the receiving fields through the soil truck. This treatment method essentially transfers the soil excavated from the place to be constructed to a place where urban construction is not needed. However, it is suitable for use as a receiving place in the surrounding areas of the city, and it is less and less. It is only necessary to overload the existing receiving field and form an artificial mountain. This artificial mountain is relatively loose.
  • Cickle-less spiral blade is arranged in the conveying passage.
  • the shaftless spiral blade extends from the sludge inlet to the sludge outlet, and the end of the shaftless spiral blade near the sludge inlet is connected with a power source;
  • the stirring drum has a stirring chamber, and one end of the stirring drum is provided with a feeding port, and the other end is provided
  • the utility model is provided with a discharge port, the inlet port is connected with the sludge outlet, and the outer ring wall of the stirring drum is sleeved with a large transmission gear, and the inner side wall of the stirring chamber is fixedly connected with a plurality of lifting plates in the circumferential direction; It is connected to a large transmission gear.
  • the rotary drum mixer can fully mix the mixture of the sludge and the curing agent to make the solidification of the sludge more uniform and uniform, and the sludge can be continuously and continuously fed, and the sludge after stirring and solidification is discharged to realize the sludge. Processed water production.
  • the rotary drum mixer has a small processing capacity and is only suitable for removing sludge from the construction site, and is not suitable for the soil excavated in urban construction, such as the treatment of muck generated by subway construction, house construction and foundation.
  • the present invention provides an integrated high-efficiency sludge sludge treatment device capable of rapidly and industrially processing the soil generated in the urban construction process into a construction material and industrial soil. .
  • the technical proposal of the present invention is to provide an integrated high-efficiency sludge sludge treatment device, which is in the shape of a drum, and is mainly suitable for treating muddy soil excavated in urban construction, and at least includes an abrasive portion and a sand-sand separation portion;
  • the abrasive member on the inner wall of the drum of the abrasive portion is initially crushed by the treated mud sand entering the abrasive portion, and sent to the separated portion of the mud sand, and a high-pressure dilution water nozzle is disposed outside the separated portion of the mud sand, and the separated portion of the material is entered.
  • the mud sand is diluted into a thin mud sand, and the mud sand separation portion allows a mixture of the fine sand mixture having a particle diameter smaller than a predetermined particle diameter of the large material to pass; and the large material mixture having a particle diameter equal to or larger than the predetermined particle diameter of the large material is discharged from the discharge port.
  • the abrasive member is a herringbone structure composed of a rebar, and the head of the herringbone is preferably oriented in the direction of the feed opening.
  • the rebar is made of a high carbon iron alloy, which is 13% to 16% by weight of titanium, 4-6% carbon, 2-3% silicon, 1-3% lead, and 5-carbon tungsten carbide. 8%, boron 2-5%, chromium 2-5%, the balance is iron composition.
  • the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 and 20 m.
  • the aggregate has a predetermined particle size selected between 20 mm and 50 mm.
  • a feed section is further included to extend the time for the soil to be treated to enter the abrasive portion; a first curved guide plate is disposed on the inner wall of the drum of the feed section, and a plurality of mutually parallel axial arrangements are provided.
  • the first curved guide plate constitutes a plurality of first curved guide grooves, and the mud to be treated is fed into the abrasive portion along the first curved guide groove.
  • a second curved guide plate is disposed on the inner wall of the drum of the abrasive portion, and a plurality of second curved guide plates disposed parallel to each other constitute a plurality of second curved guide grooves.
  • a plurality of abrasive members are arranged in the second curved guide groove and a circumferential baffle for lifting the radial arrangement of the mud to be treated as the drum rotates, and the mud sand to be treated is subjected to the abrasive member on the one hand in the abrasive portion.
  • the invention adopts a drum type mud sand separating device to treat the treated mud sand into a mixture of muddy sand and an aggregate, so that the waste soil pulled from the soil truck of the construction site can be directly poured into the separation device and quickly processed into a thin mud sand and The mixture of large materials will not cause accumulation; in addition, the soil to be treated can be made into ceramics or porcelain products according to the different soil composition, and all wastes are fully utilized, realizing waste turning into treasure, is a A green sustainable project.
  • the system of the invention more than 98% of the useful materials in the washing mud can be recycled and reused, and more than 90% of the waste water can be reused after being purified.
  • FIG. 1 is a perspective view showing the structure of an integrated drum type mud sand separating apparatus of the present invention.
  • Figure 2 is a cross-sectional view showing the structure taken along line A-A of Figure 1.
  • FIG. 1 and FIG. 2 disclose an integrated drum type mud sand separating device 1.
  • the drum type mud sand separating device 1 When installed, the drum type mud sand separating device 1 is installed obliquely, and the inlet port 132 is higher than the row.
  • the material port 122 in order to facilitate the processing of the muddy sand under the action of gravity, a circular gear 14 is arranged on the circumference of the outer wall of the drum, and circular guides 15 are arranged on both sides of the gear 14, and the motor 16 drives the driving gear 161 through the gear 14 drives the drum type mud sand separating device 1 to rotate, and a circular guide rail 15 is disposed on the drums on both sides of the gear wheel 14, and the circular rail 15 cooperates with the guide wheels 17 distributed on both sides of the drum to play
  • the drum type mud sand separating device 1 includes at least an abrasive portion 11 and a mud sand separating portion 12; the abrasive member 111 on the inner wall of the drum of the abrasive portion 11 will enter the treated mud sand in the abrasive portion 11.
  • a high-pressure dilution water nozzle 121 is disposed outside the mud-sand separation portion 12, and the mud sand entering the material separation portion 12 is diluted into a thin mud sand, and the mud-sand separation portion allows the particles.
  • the large-sized sand mixture of the predetermined particle size of the large material passes through the circular hole 123; and the large-size mixture having a particle diameter of not less than or equal to the predetermined particle diameter of the large material is discharged from the discharge port 122; in this embodiment, the predetermined particle size of the large material is Between 20 mm and 50 mm, in particular, a plurality of circular holes 123 having a diameter of 20 mm to 50 mm may be disposed on the drum of the separated portion of the mud and sand, and the mud sand after the preliminary crushing is less than or equal to 20 Between mm and 50 mm, it can leak from the hole 123; and large materials with a diameter of more than 20 mm to 50 mm, including metal, bamboo, plastic, and large particles of stone and mud, are all from the row.
  • the material port 122 is discharged, and the large material discharged from the discharge port 122 is processed by an aggregate processing step to be described later.
  • the earth vehicle of 10-20 tons can directly pour the soil to be treated into the drum type mud sand separation device. In this case, it is preferable to use the drum type mud sand separation device.
  • a conveying section 13 is provided at the foremost stage to extend the time for the soil to be treated to enter the abrasive portion 11, and the soil to be treated is initially diluted by adding appropriate moisture to the conveying section 13; on the inner wall of the drum of the conveying section 13 A first curved guide plate 1311 is disposed, and a plurality of axially disposed first curved guide plates 1311 are formed to form a plurality of first curved guide grooves 131, and the mud sand to be treated is along the first curved guide groove 131. It is fed into the abrasive portion 11.
  • a second curved guide plate 112 is disposed on the inner wall of the drum of the abrasive portion 11, and a plurality of second curved guide plates 112 disposed axially parallel to each other constitute a plurality of second curved guide grooves 113.
  • the second curved guide groove 113 is provided with a plurality of abrasive members 111 and a circumferential baffle 114 for lifting the radial arrangement of the mud to be treated as the drum rotates.
  • the mud sand to be treated is carried out on the one hand in the abrasive portion 11
  • the abrasive member 111 is continuously crushed, and is also under the action of the circumferential baffle 114, and is continuously dropped after the drum is lifted to further crush; the crushed mud sand advances along the second curved guide groove 113, and enters The mud sand separation portion 12.
  • the abrasive member 111 is a herringbone structure composed of a rebar, and preferably the portion of the herringbone faces the feed opening 132.
  • the abrasive member 111 may be made of a high carbon iron alloy having a weight percentage of titanium of 13% to 16%, carbon of 4-6%, silicon of 2-3%, and lead 1- 3%, tungsten carbide 5-8%, copper 0.1-0.3%, boron 2-5%, chromium 2-5%, the balance is iron.
  • the abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium 13% by weight, carbon 4%, silicon 2%, lead 1%, tungsten carbide 5%, copper 0.1%, boron 2%, and chromium 2%. The balance is iron.
  • the abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium by weight of 14%, carbon 5%, silicon 3%, lead 2%, tungsten carbide 6%, copper 0.2%, boron 4%, and chromium 4%. The balance is iron.
  • the abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium 16% by weight, 6% carbon, 3% silicon, 3% lead, 8% tungsten carbide, 0.3% copper, 5% boron, and 5% chromium. The balance is iron.
  • the difference between the above alloys is that copper is generally considered to be a harmful element for iron alloys and cannot be used. However, when the copper element is added to the iron-titanium alloy together with tungsten carbide, the iron-titanium alloy is greatly improved. Wear resistance.
  • Test method using device, ML-10 abrasive wear tester, 200# corundum sandpaper, one ten thousand precision balance.
  • the sample speed was 180 rpm
  • the normal load force was 750 N
  • the time was 4 hours.
  • the abrasive article of the present invention has the advantage of good wear resistance compared to commercially available iron-titanium.
  • the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 m and 20 m.

Abstract

An integrated high-efficiency silt and residual soil processing apparatus (1), which has a cylindrical shape and is suitable for processing silt excavated during urban construction. The apparatus at least comprises a grinding part (11) and a silt separating part (12), wherein a grinding member (111) on the cylindrical inner wall of the grinding part (11) preliminarily crushes processed silt which enters the grinding part (11) and conveys the processed silt to the silt separating part (12); a high-pressure dilution water nozzle (121) is arranged on an outer side of the silt separating part (12) for diluting the silt entering the silt separating part (12) into thin silt; the silt separating part (12) allows a thin silt mixture having a particle size smaller than a predetermined large material particle size to pass through; while a mixture of large materials having a particle size larger than or equal to the predetermined large material particle size is discharged from a discharge opening (122). As a result of using the cylinder-shaped silt-separating device for processing silt into a mixture of thin silt and bulky materials, waste silt and soil conveyed from construction sites can be directly poured into the separating device, and quickly processed into a mixture of thin silt and bulky materials, without piling up and causing accumulation.

Description

一体式高效淤泥渣土处理装置  Integrated high-efficiency silt dregs treatment device
技术领域Technical field
  本发明涉及一种用于处理城市建设过程中产生的淤泥渣土的处理装置,尤其是在城市建设中挖出的泥土,如地铁施工、房屋建筑挖地基等产生的渣土的一体式高效淤泥渣土处理装置。The invention relates to a treatment device for treating sludge and dregs generated during urban construction, in particular, mud which is excavated in urban construction, such as integrated high-efficiency sludge of muck generated by subway construction, house construction and foundation excavation. Slag treatment unit.
技术背景technical background
  地铁建设和高层楼房建筑是一个城市飞速发展的标志。在地铁建设和高层楼房建筑中,必然会产生大量的被挖掘出来的泥土。现在处理这类泥土的方法只有一种方式,就是在城市的周边地带,适合堆土的地方建立若干泥土受纳场。把城市建设过程中产生的泥土直接通过泥土车送到这些受纳场填埋,这种处理方法其实质上就是把需要建设的地方挖掘出来的泥土转运到了暂时不需要进行城市建设的地方。可是,在城市周边适合于用来作为受纳场地方,也越来越少,不得已,只能将现有受纳场超负荷运行,形成人为的山体,这种人为的山体土质相对疏松,一旦受到地理环境变化和天气因素的影响,如地震或长时间下雨,很容易引起人为山体滑坡,造成不可估量的人为损失。如今年夏天,南方某市的这种受纳场的人为山体滑坡,就几乎将山体周边的几个工业区全部毁埋,造成了巨大的人员伤亡和财产损失。Metro construction and high-rise building construction are signs of a city's rapid development. In the construction of subways and high-rise buildings, a large amount of excavated soil will inevitably be produced. There is only one way to deal with this type of soil. It is to build a number of soil receiving sites in the surrounding areas of the city. The soil generated during the urban construction process is directly sent to the receiving fields through the soil truck. This treatment method essentially transfers the soil excavated from the place to be constructed to a place where urban construction is not needed. However, it is suitable for use as a receiving place in the surrounding areas of the city, and it is less and less. It is only necessary to overload the existing receiving field and form an artificial mountain. This artificial mountain is relatively loose. Affected by geographical changes and weather factors, such as earthquakes or heavy rains, it is easy to cause artificial landslides, causing immeasurable human losses. For example, this summer, a person in the southern city of this receiving field was a landslide, and almost all the industrial areas around the mountain were buried, causing huge casualties and property losses.
  中国专利文献CN202087272U公开了一种回转式滚筒搅拌机,包括输送装置,其一端设有污泥入口,另一端设有污泥出口,输送装置具有输送通道,输送通道内设有至少一个无轴螺旋叶片,无轴螺旋叶片自污泥入口延伸至污泥出口,无轴螺旋叶片靠近污泥入口的一端连接有动力源;搅拌滚筒,其具有搅拌腔,搅拌滚筒的一端设有入料口,另一端设有出料口,入料口与污泥出口相连,搅拌滚筒的外环壁上套设有大传动齿轮,搅拌腔的内侧壁上沿圆周方向固定连接有多片扬料板;传动装置,其与大传动齿轮相连。该回转式滚筒搅拌机可以充分搅拌污泥与固化剂的混合物,使污泥的固化更加彻底均匀,其可连续不间断的进料搅拌污泥,并使搅拌固化后的污泥排出,实现污泥处理的流水生产化。这种回转式滚筒搅拌机处理量小,只适合于工地清除淤泥,而不适合于在城市建设中挖出的泥土,如地铁施工、房屋建筑挖地基等产生的渣土的处理。Chinese Patent Publication No. CN202087272U discloses a rotary drum mixer comprising a conveying device, which has a sludge inlet at one end and a sludge outlet at the other end, the conveying device has a conveying passage, and at least one shaftless spiral blade is arranged in the conveying passage. The shaftless spiral blade extends from the sludge inlet to the sludge outlet, and the end of the shaftless spiral blade near the sludge inlet is connected with a power source; the stirring drum has a stirring chamber, and one end of the stirring drum is provided with a feeding port, and the other end is provided The utility model is provided with a discharge port, the inlet port is connected with the sludge outlet, and the outer ring wall of the stirring drum is sleeved with a large transmission gear, and the inner side wall of the stirring chamber is fixedly connected with a plurality of lifting plates in the circumferential direction; It is connected to a large transmission gear. The rotary drum mixer can fully mix the mixture of the sludge and the curing agent to make the solidification of the sludge more uniform and uniform, and the sludge can be continuously and continuously fed, and the sludge after stirring and solidification is discharged to realize the sludge. Processed water production. The rotary drum mixer has a small processing capacity and is only suitable for removing sludge from the construction site, and is not suitable for the soil excavated in urban construction, such as the treatment of muck generated by subway construction, house construction and foundation.
  因此,如何快速的工业化处理由城市建设所产生的泥土,使其变废为宝是摆在人们面前的一个亟待解决的问题。Therefore, how to quickly industrialize the soil generated by urban construction and turn it into a treasure is an urgent problem to be solved.
发明内容Summary of the invention
  为了解决现有技术的不足,本发明向社会提供一种可以将城市建设过程中产生的泥土,进行快速化工业处理,使其变为建筑用料和工业泥土的一体式高效淤泥渣土处理装置。In order to solve the deficiencies of the prior art, the present invention provides an integrated high-efficiency sludge sludge treatment device capable of rapidly and industrially processing the soil generated in the urban construction process into a construction material and industrial soil. .
  本发明的技术方案是:提供一种一体式高效淤泥渣土处理装置,为滚筒形,主要适合于用来处理城市建设中挖掘出来的泥砂土,至少包括磨料部分和泥砂分离部分;在所述磨料部分的滚筒内壁上的磨料件将进入磨料部分内的被处理泥砂初步破碎,并送入到泥砂分离部分,在泥砂分离部分的外侧设有高压稀释水喷嘴,将进入到所述物料分离部分的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过;而粒径大于等于大料预定粒径的大料混合物则被从排料口排出。The technical proposal of the present invention is to provide an integrated high-efficiency sludge sludge treatment device, which is in the shape of a drum, and is mainly suitable for treating muddy soil excavated in urban construction, and at least includes an abrasive portion and a sand-sand separation portion; The abrasive member on the inner wall of the drum of the abrasive portion is initially crushed by the treated mud sand entering the abrasive portion, and sent to the separated portion of the mud sand, and a high-pressure dilution water nozzle is disposed outside the separated portion of the mud sand, and the separated portion of the material is entered. The mud sand is diluted into a thin mud sand, and the mud sand separation portion allows a mixture of the fine sand mixture having a particle diameter smaller than a predetermined particle diameter of the large material to pass; and the large material mixture having a particle diameter equal to or larger than the predetermined particle diameter of the large material is discharged from the discharge port.
  作为对本发明的改进,所述磨料件是由螺纹钢构成的人字形结构,其人字的头最好是朝向入料口的方向。As a modification of the present invention, the abrasive member is a herringbone structure composed of a rebar, and the head of the herringbone is preferably oriented in the direction of the feed opening.
  作为对本发明的改进,所述螺纹钢是用高碳铁合金制造,由重量百分比的钛13%~16%、碳4-6%、硅2-3%、铅1-3%、碳化钨5-8%、硼2-5%、铬2-5%,余量为铁组成。As a modification of the present invention, the rebar is made of a high carbon iron alloy, which is 13% to 16% by weight of titanium, 4-6% carbon, 2-3% silicon, 1-3% lead, and 5-carbon tungsten carbide. 8%, boron 2-5%, chromium 2-5%, the balance is iron composition.
  作为对本发明的改进,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5-20米之间选择。As a modification of the present invention, the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 and 20 m.
  作为对本发明的改进,所述大料预定粒径在20毫米-50毫米之间选择。As a modification of the present invention, the aggregate has a predetermined particle size selected between 20 mm and 50 mm.
  作为对本发明的改进,还包括输料段,以延长待处理泥土进入磨料部分的时间;在所述输料段的滚筒内壁上设有第一曲形导料板,若干相互平行的轴向设置的第一曲形导料板构成若干第一曲形导料槽,待处理泥砂沿第一曲形导料槽被送入磨料部分。As an improvement to the present invention, a feed section is further included to extend the time for the soil to be treated to enter the abrasive portion; a first curved guide plate is disposed on the inner wall of the drum of the feed section, and a plurality of mutually parallel axial arrangements are provided. The first curved guide plate constitutes a plurality of first curved guide grooves, and the mud to be treated is fed into the abrasive portion along the first curved guide groove.
  作为对本发明的改进,在所述磨料部分的滚筒内壁上设有第二曲形导料板,若干相互平行的轴向设置的第二曲形导料板构成若干第二曲形导料槽,在所述第二曲形导料槽内设有若干磨料件和用于随滚筒旋转而提升待处理泥砂的径向设置的周向档板,待处理泥砂在磨料部分内一方面被进行磨料件不断击碎,同时还在周向档板作用下,不断被在滚筒提升后再下落,达到进一步击碎;被击碎的泥砂沿第二曲形导料槽前行,进入泥砂分离部分。As a modification of the present invention, a second curved guide plate is disposed on the inner wall of the drum of the abrasive portion, and a plurality of second curved guide plates disposed parallel to each other constitute a plurality of second curved guide grooves. A plurality of abrasive members are arranged in the second curved guide groove and a circumferential baffle for lifting the radial arrangement of the mud to be treated as the drum rotates, and the mud sand to be treated is subjected to the abrasive member on the one hand in the abrasive portion. Constantly crushed, and at the same time under the action of the circumferential baffle, it is continuously dropped after lifting the drum to achieve further crushing; the crushed mud sand goes along the second curved guide groove and enters the separated part of the mud and sand.
  本发明由于采用了滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物,这样,从工地用泥土车拉来的废泥土可直接倒入分离装置内,被迅速处理成稀泥砂和大料混合物,不会造成堆积;另外,被处理出来的泥土,根据泥土成份的不同可以制成陶制品或瓷制品,真正做到了所有废物被全部利用,实现了变废为宝,是一项绿绝的可持续发展的项目。采用本发明的系统可实现冲洗泥浆中98%以上的有用料回收利用,废水净化后可以实现90%以上再利用。The invention adopts a drum type mud sand separating device to treat the treated mud sand into a mixture of muddy sand and an aggregate, so that the waste soil pulled from the soil truck of the construction site can be directly poured into the separation device and quickly processed into a thin mud sand and The mixture of large materials will not cause accumulation; in addition, the soil to be treated can be made into ceramics or porcelain products according to the different soil composition, and all wastes are fully utilized, realizing waste turning into treasure, is a A green sustainable project. By adopting the system of the invention, more than 98% of the useful materials in the washing mud can be recycled and reused, and more than 90% of the waste water can be reused after being purified.
附图说明DRAWINGS
图1是本发明一体滚筒式泥砂分离装置的立体结构示意图。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing the structure of an integrated drum type mud sand separating apparatus of the present invention.
图2是图1中的A-A剖视结构示意图。Figure 2 is a cross-sectional view showing the structure taken along line A-A of Figure 1.
具体实施方式detailed description
  请参见图1和图2,图1和图2揭示的是一种一体滚筒式泥砂分离装置1,安装时,将所述滚筒式泥砂分离装置1斜着安装,其入料口132高于排料口122,以利等处理泥砂在重力的作用下下行,在滚筒外壁圆周上设圆形齿轮14,在所述齿轮14的两侧设有圆形导轨15,电机16带动驱动齿轮161通过齿轮14带动滚筒式泥砂分离装置1转动,在所述齿轮14的两侧的滚筒上设有圆形导轨15,所述圆形导轨15与分布在所述滚筒两侧的导轮17配合,起到支撑与导动的作用;所述滚筒式泥砂分离装置1至少包括磨料部分11和泥砂分离部分12;在所述磨料部分11的滚筒内壁上的磨料件111将进入磨料部分11内的被处理泥砂初步破碎,并送入到泥砂分离部分12,在泥砂分离部分12的外侧设有高压稀释水喷嘴121,将进入到所述物料分离部分12的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过圆孔123;而粒径大于等于大料预定粒径的大料混合物则被从排料口122排出;本实施例中,所述大料预定粒径在20毫米-50毫米之间选择,具体实施起来,可以是泥砂分离部分的滚筒上设置若干直径为20毫米-50毫米中的圆孔123,被初步破碎后的泥砂,当其直径小于或等于20毫米-50毫米时,可以从圆孔123中下漏;而直径大于20毫米-50毫米的大料,包括金属类、竹木类、塑料类,以及大颗粒石料和泥料等,都从排料口122排出,从排料口122排出的大料,再经后述的大料处理工序进行处理。Referring to FIG. 1 and FIG. 2, FIG. 1 and FIG. 2 disclose an integrated drum type mud sand separating device 1. When installed, the drum type mud sand separating device 1 is installed obliquely, and the inlet port 132 is higher than the row. The material port 122, in order to facilitate the processing of the muddy sand under the action of gravity, a circular gear 14 is arranged on the circumference of the outer wall of the drum, and circular guides 15 are arranged on both sides of the gear 14, and the motor 16 drives the driving gear 161 through the gear 14 drives the drum type mud sand separating device 1 to rotate, and a circular guide rail 15 is disposed on the drums on both sides of the gear wheel 14, and the circular rail 15 cooperates with the guide wheels 17 distributed on both sides of the drum to play The drum type mud sand separating device 1 includes at least an abrasive portion 11 and a mud sand separating portion 12; the abrasive member 111 on the inner wall of the drum of the abrasive portion 11 will enter the treated mud sand in the abrasive portion 11. It is initially crushed and sent to the mud-sand separation portion 12, and a high-pressure dilution water nozzle 121 is disposed outside the mud-sand separation portion 12, and the mud sand entering the material separation portion 12 is diluted into a thin mud sand, and the mud-sand separation portion allows the particles. Smaller diameter The large-sized sand mixture of the predetermined particle size of the large material passes through the circular hole 123; and the large-size mixture having a particle diameter of not less than or equal to the predetermined particle diameter of the large material is discharged from the discharge port 122; in this embodiment, the predetermined particle size of the large material is Between 20 mm and 50 mm, in particular, a plurality of circular holes 123 having a diameter of 20 mm to 50 mm may be disposed on the drum of the separated portion of the mud and sand, and the mud sand after the preliminary crushing is less than or equal to 20 Between mm and 50 mm, it can leak from the hole 123; and large materials with a diameter of more than 20 mm to 50 mm, including metal, bamboo, plastic, and large particles of stone and mud, are all from the row. The material port 122 is discharged, and the large material discharged from the discharge port 122 is processed by an aggregate processing step to be described later.
当滚筒式泥砂分离装置的直径在3米以上时,10-20吨的泥土车可以直接将待处理泥土倒入滚筒式泥砂分离装置内,这种情况下,最好在滚筒式泥砂分离装置的最前段设置一个输料段13,以延长待处理泥土进入磨料部分11的时间,并在此输料段13加入适当水分将待处理泥土进行初步稀释;在所述输料段13的滚筒内壁上设有第一曲形导料板1311,若干相互平行的轴向设置的第一曲形导料板1311构成若干第一曲形导料槽131,待处理泥砂沿第一曲形导料槽131被送入磨料部分11。 When the diameter of the drum type mud sand separation device is more than 3 meters, the earth vehicle of 10-20 tons can directly pour the soil to be treated into the drum type mud sand separation device. In this case, it is preferable to use the drum type mud sand separation device. A conveying section 13 is provided at the foremost stage to extend the time for the soil to be treated to enter the abrasive portion 11, and the soil to be treated is initially diluted by adding appropriate moisture to the conveying section 13; on the inner wall of the drum of the conveying section 13 A first curved guide plate 1311 is disposed, and a plurality of axially disposed first curved guide plates 1311 are formed to form a plurality of first curved guide grooves 131, and the mud sand to be treated is along the first curved guide groove 131. It is fed into the abrasive portion 11.
  在所述磨料部分11的滚筒内壁上设有第二曲形导料板112,若干相互平行的轴向设置的第二曲形导料板112构成若干第二曲形导料槽113,在所述第二曲形导料槽113内设有若干磨料件111和用于随滚筒旋转而提升待处理泥砂的径向设置的周向档板114,待处理泥砂在磨料部分11内一方面被进行磨料件111不断击碎,同时还在周向档板114作用下,不断被在滚筒提升后再下落,达到进一步击碎;被击碎的泥砂沿第二曲形导料槽113前行,进入泥砂分离部分12。A second curved guide plate 112 is disposed on the inner wall of the drum of the abrasive portion 11, and a plurality of second curved guide plates 112 disposed axially parallel to each other constitute a plurality of second curved guide grooves 113. The second curved guide groove 113 is provided with a plurality of abrasive members 111 and a circumferential baffle 114 for lifting the radial arrangement of the mud to be treated as the drum rotates. The mud sand to be treated is carried out on the one hand in the abrasive portion 11 The abrasive member 111 is continuously crushed, and is also under the action of the circumferential baffle 114, and is continuously dropped after the drum is lifted to further crush; the crushed mud sand advances along the second curved guide groove 113, and enters The mud sand separation portion 12.
  优选的,所述磨料件111是由螺纹钢构成的人字形结构,最好是人字的部朝向入料口132。为了提高磨料件111的耐磨性,所述磨料件111可用下述高碳铁合金制造,其由重量百分比的钛13%~16%、碳4-6%、硅2-3%、铅1-3%、碳化钨5-8%、铜0.1-0.3%、硼2-5%、铬2-5%,余量为铁。Preferably, the abrasive member 111 is a herringbone structure composed of a rebar, and preferably the portion of the herringbone faces the feed opening 132. In order to improve the wear resistance of the abrasive member 111, the abrasive member 111 may be made of a high carbon iron alloy having a weight percentage of titanium of 13% to 16%, carbon of 4-6%, silicon of 2-3%, and lead 1- 3%, tungsten carbide 5-8%, copper 0.1-0.3%, boron 2-5%, chromium 2-5%, the balance is iron.
  实施例1Example 1
  所述磨料件111可用下述高碳铁合金制造,其由重量百分比的钛13%、碳4%、硅2%、铅1%、碳化钨5%、铜0.1%、硼2%和铬2%,余量为铁。The abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium 13% by weight, carbon 4%, silicon 2%, lead 1%, tungsten carbide 5%, copper 0.1%, boron 2%, and chromium 2%. The balance is iron.
  实施例2Example 2
  所述磨料件111可用下述高碳铁合金制造,其由重量百分比的钛14%、碳5%、硅3%、铅2%、碳化钨6%、铜0.2%、硼4%、铬4%,余量为铁。The abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium by weight of 14%, carbon 5%, silicon 3%, lead 2%, tungsten carbide 6%, copper 0.2%, boron 4%, and chromium 4%. The balance is iron.
  实施例3Example 3
  所述磨料件111可用下述高碳铁合金制造,其由重量百分比的钛16%、碳6%、硅3%、铅3%、碳化钨8%、铜0.3%、硼5%、铬5%,余量为铁。The abrasive member 111 can be made of the following high carbon iron alloy, which is composed of titanium 16% by weight, 6% carbon, 3% silicon, 3% lead, 8% tungsten carbide, 0.3% copper, 5% boron, and 5% chromium. The balance is iron.
   上述合金的不同之处在,一般人认为铜对于铁合金来说是一处有害元素,不能使用,而本发明将铜元素与碳化钨一起加入到铁钛合金里时,大大地提高了铁钛合的耐磨性能。 The difference between the above alloys is that copper is generally considered to be a harmful element for iron alloys and cannot be used. However, when the copper element is added to the iron-titanium alloy together with tungsten carbide, the iron-titanium alloy is greatly improved. Wear resistance.
  本发明的磨料件与市面上购买的铁钛合的耐磨性对比测试方法及结果:The test method and result of the abrasion resistance of the abrasive article of the invention and the commercially available iron-titanium joint:
  测试方法,使用器件,ML-10型磨料磨损试验机,200#刚玉砂纸,万分之一精度天平。试样转速为180转/分钟,法向载荷力为750N,时间为4小时。Test method, using device, ML-10 abrasive wear tester, 200# corundum sandpaper, one ten thousand precision balance. The sample speed was 180 rpm, the normal load force was 750 N, and the time was 4 hours.
  试验结果: test results:
结果 result
 样品 磨损量(mg) 对照样品 6.2 实施例1 3.6 实施例2 3.7 实施例3 3.5 从上表可以看出,本发明的磨料件与市面上购买的铁钛合相比,具有耐磨性能好的优点。Sample Wear Amount (mg) Control Sample 6.2 Example 1 3.6 Example 2 3.7 Example 3 3.5 As can be seen from the above table, the abrasive article of the present invention has the advantage of good wear resistance compared to commercially available iron-titanium.
  优选的,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5米-20米之间选择。Preferably, the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 m and 20 m.

Claims (1)

  1. 1. 一种一体式高效淤泥渣土处理装置(1),为滚筒形,主要适合于用来处理城市建设中挖掘出来的泥砂土,其特征在于,至少包括磨料部分(11)和泥砂分离部分(12);在所述磨料部分(11)的滚筒内壁上的磨料件(111)将进入磨料部分(11)内的被处理泥砂初步破碎,并送入到泥砂分离部分(12),在泥砂分离部分(12)的外侧设有高压稀释水喷嘴(121),将进入到所述物料分离部分(12)的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过;而粒径大于等于大料预定粒径的大料混合物则被从排料口(122)排出。1. The utility model relates to an integrated high-efficiency sludge sludge treatment device (1), which is in the shape of a drum, and is mainly suitable for treating muddy soil excavated in urban construction, and is characterized in that it comprises at least an abrasive portion (11) and a separated part of mud and sand (12) The abrasive member (111) on the inner wall of the drum of the abrasive portion (11) initially crushes the treated mud sand entering the abrasive portion (11) and feeds it into the mud sand separation portion (12) in the mud sand separation portion. The outer side of (12) is provided with a high-pressure dilution water nozzle (121), and the mud sand entering the material separation portion (12) is diluted into a thin mud sand, and the mud sand separation portion allows the muddy sand having a particle diameter smaller than a predetermined particle diameter of the large material. The mixture passes; and the bulk mixture having a particle size greater than or equal to the predetermined particle size of the large material is discharged from the discharge port (122).
    2. 根据权利要求1所述的一体式高效淤泥渣土处理装置,其特征在于, 所述磨料件(111)是由螺纹钢构成的人字形结构,其人字的头最好是朝向入料口的方向。2. The integrated high-efficiency sludge sludge treatment apparatus according to claim 1, wherein: The abrasive member (111) is a herringbone structure composed of rebar, and the head of the herringbone is preferably oriented in the direction of the inlet.
    3. 根据权利要求2所述的一体式高效淤泥渣土处理装置,其特征在于,所述螺纹钢是用高碳铁合金制造,其由重量百分比的钛13%~16%、碳4-6%、硅2-3%、铅1-3%、碳化钨5-8%、铜0.1-0.3%、硼2-5%、铬2-5%,余量为铁组成。3. The integrated high-efficiency sludge sludge treatment apparatus according to claim 2, wherein the rebar is made of a high carbon iron alloy, which is composed of titanium in a weight percentage of 13% to 16%, carbon 4-6%, and silicon. 2-3%, lead 1-3%, tungsten carbide 5-8%, copper 0.1-0.3%, boron 2-5%, chromium 2-5%, the balance is iron composition.
    4. 根据权利要求1、2或3所述的一体式高效淤泥渣土处理装置,其特征在于,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5-20米之间选择。4. The integrated high-efficiency sludge sludge treatment device according to claim 1, 2 or 3, wherein the drum type mud sand separation device has a diameter of between 1 and 5 meters and a length of 5 to 20 meters. Choose between.
    5. 根据权利要求1、2或3所述的一体式高效淤泥渣土处理装置,其特征在于,所述大料预定粒径在20毫米-50毫米之间选择。5. The integrated high-efficiency sludge sludge treatment apparatus according to claim 1, 2 or 3, wherein the large-sized predetermined particle diameter is selected between 20 mm and 50 mm.
    6. 根据权利要求1、2或3所述的一体式高效淤泥渣土处理装置,其特征在于,还包括输料段(13),以延长待处理泥土进入磨料部分(11)的时间;在所述输料段(13)的滚筒内壁上设有第一曲形导料板(1311),若干相互平行的轴向设置的第一曲形导料板(1311)构成若干第一曲形导料槽(131),待处理泥砂沿第一曲形导料槽(131)被送入磨料部分(11)。6. The integrated high-efficiency sludge sludge treatment apparatus according to claim 1, 2 or 3, characterized by further comprising a conveying section (13) for extending the time during which the soil to be treated enters the abrasive portion (11); A first curved guide plate (1311) is disposed on the inner wall of the drum of the conveying section (13), and a plurality of first curved guide plates (1311) disposed axially parallel to each other constitute a plurality of first curved guide grooves (131), the mud sand to be treated is fed into the abrasive portion (11) along the first curved guide groove (131).
    7. 根据权利要求1、2或3所述的一体式高效淤泥渣土处理装置,其特征在于,在所述磨料部分(11)的滚筒内壁上设有第二曲形导料板(112),若干相互平行的轴向设置的第二曲形导料板(112)构成若干第二曲形导料槽(113),在所述第二曲形导料槽(113)内设有若干磨料件(111)和用于随滚筒旋转而提升待处理泥砂的径向设置的周向档板(114),待处理泥砂在磨料部分(11)内一方面被进行磨料件(111)不断击碎,同时还在周向档板(114)作用下,不断被在滚筒提升后再下落,达到进一步击碎;被击碎的泥砂沿第二曲形导料槽(113)前行,进入泥砂分离部分(12)。7. The integrated high-efficiency sludge sludge treatment device according to claim 1, 2 or 3, characterized in that a second curved guide plate (112) is provided on the inner wall of the drum of the abrasive portion (11), The second curved guide plates (112) disposed axially parallel to each other constitute a plurality of second curved guide grooves (113), and a plurality of abrasive members are disposed in the second curved guide grooves (113) ( 111) and a circumferential baffle (114) for lifting the radial arrangement of the mud to be treated as the drum rotates, the mud sand to be treated is continuously crushed on the one hand in the abrasive portion (11) by the abrasive member (111) while Under the action of the circumferential baffle (114), it is continuously dropped after the drum is lifted to further crush; the crushed mud sand advances along the second curved guide groove (113) and enters the mud-sand separation part ( 12).
PCT/CN2016/107452 2016-09-26 2016-11-28 Integrated high-efficiency silt and residual soil processing apparatus WO2018064859A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610845764 2016-09-26
CN201610879349.6 2016-10-09
CN201610879349.6A CN106238180A (en) 2016-09-26 2016-10-09 Integrated high-efficiency mud dregs processing means

Publications (1)

Publication Number Publication Date
WO2018064859A1 true WO2018064859A1 (en) 2018-04-12

Family

ID=57611291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107452 WO2018064859A1 (en) 2016-09-26 2016-11-28 Integrated high-efficiency silt and residual soil processing apparatus

Country Status (2)

Country Link
CN (1) CN106238180A (en)
WO (1) WO2018064859A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824405A (en) * 2017-01-19 2017-06-13 深圳申佳原环保科技有限公司 Integral type polygon mud dregs processing unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216424A (en) * 1998-02-02 1999-08-10 Hitachi Zosen Corp Crushed refuse sorting device
CN203196858U (en) * 2012-12-12 2013-09-18 马钢集团设计研究院有限责任公司 Material cake wet-type scattering and screening machine of high-pressure roller mill
CN205570750U (en) * 2016-01-14 2016-09-14 枣庄市金立垃圾处理有限公司 Broken bag screening machine of wet -type
CN106238444A (en) * 2016-09-26 2016-12-21 深圳申佳原环保科技有限公司 The system of industrial treatment mud dregs
CN106423422A (en) * 2016-09-26 2017-02-22 深圳申佳原环保科技有限公司 Integrated abrasion-resisting sludge muck treatment device
CN106423423A (en) * 2016-09-26 2017-02-22 深圳申佳原环保科技有限公司 Integrated silt residue soil treatment device good in grinding effect
CN206168519U (en) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 Effectual silt dregs processing apparatus of integral type grinding
CN206168930U (en) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 System for silt dregs is handled in industrialization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202638738U (en) * 2012-06-14 2013-01-02 青海大地环境工程技术有限公司 Rotary drum screening machine
CN104446077B (en) * 2014-11-14 2017-05-17 中联重科物料输送设备有限公司 Separation method and separation system of waste concrete and rolling separator
CN204912249U (en) * 2015-08-29 2015-12-30 湖南普丝环保能源有限公司 Horizontal domestic waste breaker
CN205851317U (en) * 2016-03-10 2017-01-04 赵颖 A kind of Novel cylinder round sifter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216424A (en) * 1998-02-02 1999-08-10 Hitachi Zosen Corp Crushed refuse sorting device
CN203196858U (en) * 2012-12-12 2013-09-18 马钢集团设计研究院有限责任公司 Material cake wet-type scattering and screening machine of high-pressure roller mill
CN205570750U (en) * 2016-01-14 2016-09-14 枣庄市金立垃圾处理有限公司 Broken bag screening machine of wet -type
CN106238444A (en) * 2016-09-26 2016-12-21 深圳申佳原环保科技有限公司 The system of industrial treatment mud dregs
CN106423422A (en) * 2016-09-26 2017-02-22 深圳申佳原环保科技有限公司 Integrated abrasion-resisting sludge muck treatment device
CN106423423A (en) * 2016-09-26 2017-02-22 深圳申佳原环保科技有限公司 Integrated silt residue soil treatment device good in grinding effect
CN206168519U (en) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 Effectual silt dregs processing apparatus of integral type grinding
CN206168930U (en) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 System for silt dregs is handled in industrialization

Also Published As

Publication number Publication date
CN106238180A (en) 2016-12-21

Similar Documents

Publication Publication Date Title
CN206334739U (en) A kind of building waste pulverizer for being easy to take out material
WO2018064878A1 (en) System for industrializedly processing silt and muck
KR100812340B1 (en) A spaller for construction waste
CN207071428U (en) A kind of civil engineering work waste treatment device
CN107597385A (en) A kind of building waste reclaims fuel pulverizing plant
CN206168930U (en) System for silt dregs is handled in industrialization
CN107754989A (en) A kind of building rubbish treatment device
CN107297384A (en) A kind of soil heterotopic elution screening interlock control system and its elution method for sieving
CN108080396A (en) A kind of primary dregs regeneration method
CN110248742B (en) Production device and production method of circulating aggregate
CN102974596B (en) Construction waste co-extrusion harmless treatment system and method thereof
WO2018064858A1 (en) Integrated wear-resistant silt and residual soil processing apparatus
CN106733105A (en) A kind of solid waste treatment facility for being fully ground batch mixing
WO2018064860A1 (en) Integrated type mud and sand treatment device with good grinding effect
CN206168519U (en) Effectual silt dregs processing apparatus of integral type grinding
CN210966348U (en) Construction waste recycling device
WO2018064859A1 (en) Integrated high-efficiency silt and residual soil processing apparatus
CN206652578U (en) A kind of construction and demolition wastes processing equipment
KR101194661B1 (en) Aggregate crushing equipment
CN111921674B (en) Construction waste treatment equipment
CN209772231U (en) Building concrete is useless admittedly and is handled with deironing equipment
CN212468326U (en) Novel ball mill for producing ceramsite proppant mixed powder
CN108672027A (en) A kind of New type wet ball-grinding machine
CN201592110U (en) Extrusion separator
CN210700305U (en) A high-efficient breaker for producing building aggregate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16918192

Country of ref document: EP

Kind code of ref document: A1