WO2018064838A1 - 一种混合时分复用机制 - Google Patents

一种混合时分复用机制 Download PDF

Info

Publication number
WO2018064838A1
WO2018064838A1 PCT/CN2016/101601 CN2016101601W WO2018064838A1 WO 2018064838 A1 WO2018064838 A1 WO 2018064838A1 CN 2016101601 W CN2016101601 W CN 2016101601W WO 2018064838 A1 WO2018064838 A1 WO 2018064838A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplexing
split
synchronous
split multiplexing
mac protocol
Prior art date
Application number
PCT/CN2016/101601
Other languages
English (en)
French (fr)
Inventor
张科峰
Original Assignee
武汉芯泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉芯泰科技有限公司 filed Critical 武汉芯泰科技有限公司
Priority to PCT/CN2016/101601 priority Critical patent/WO2018064838A1/zh
Priority to EP16918171.6A priority patent/EP3525409A4/en
Publication of WO2018064838A1 publication Critical patent/WO2018064838A1/zh
Priority to US16/377,313 priority patent/US10841029B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/06Arrangements for supplying the carrier waves ; Arrangements for supplying synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/826Involving periods of time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of wireless communications technologies, and in particular, to a hybrid split multiplexing mechanism.
  • a wireless communication chip for a mobile network generally uses only a TDM (Ti me Division Multiplexing) or a Statistical Time Division Multiplexing (STDM).
  • TDM Transmission me Division Multiplexing
  • STDM Statistical Time Division Multiplexing
  • TDM allocates a determined channel to each user through a control center, and the channel usage order of each user is determined and does not conflict.
  • a channel is assigned to a user and the channel is not transmitted, the channel cannot be used by other users.
  • TDM includes the following features: 1) the user's use time is allocated by the control center; 2) communication use time and wait time is known; 3) order and do not interfere with each other; 4) use rate fixed; 5) Suitable for real communication.
  • the advantages of TDM are: fixed gap distribution, easy adjustment and control, suitable for digital information transmission; its disadvantages are: low channel and equipment utilization. TDM is widely used in telecommunications telephone networks and IOTs with high requirements.
  • STDM is an asynchronous split-multiplexing mechanism.
  • STDM includes the following features: 1) without control center, the right to grab; 2) unknown length of communication and waiting time; 3) no fixed use order; 4) uneven use rate, up to the total transmission capacity of the line; 5) Applicable to non-real communication.
  • the advantages of STDM are: Improved channel and device utilization;
  • the disadvantages of STDM are: Complex technology (buffered data memory that holds input queue information and more complex addressing and control techniques). STDM is mainly used in IP Internet with low requirements.
  • TDM and STDM each have their own characteristics, and their fields of application vary according to their respective advantages.
  • the inability to coexist two mechanisms in a single chip has always been a technically unsolvable problem. That is to say, the multiplexing and multiplexing mechanism of the existing wireless communication chip cannot meet the requirements of the user for communication reality and channel high utilization.
  • the present invention is directed to the prior art that a single wireless communication chip cannot be compatible with both TDM and STDM mechanisms, and thus cannot meet the technical problems of the user's requirements for communication efficiency and high channel utilization.
  • a hybrid multiplexing and multiplexing mechanism is provided, which realizes the technical effects of compatible communication mechanisms of TDM and ST DM in a single wireless communication chip, thereby satisfying the requirements of communication reality and high channel utilization.
  • the present invention provides a hybrid split multiplexing mechanism, including:
  • the MA C protocol user accessing the channel and performing information transmission using the synchronous split multiplexing mechanism in the synchronous split multiplexing section, and/or in the statistical split multiplexing In the segment, the MAC protocol user accessing the channel using the statistical multiplexing and multiplexing mechanism and transmitting information.
  • the hybrid multiplexing and multiplexing mechanism further includes:
  • the synchronous split multiplexing section when the synchronous split multiplexing section occupyes a ratio of the length of the single inter-turn period greater than 0 and less than or equal to 1 ⁇ , the synchronous split multiplexing section is divided into The plurality of synchronous split multiplexing sub-sections enable the MAC protocol users of the plurality of synchronous split-multiplexing mechanisms to access the channel and perform information transmission in the plurality of synchronous split-multiplex sub-sections.
  • the length of the multiple synchronous split multiplexing sub-sections depends on the amount of information to be transmitted by the corresponding MAC protocol user.
  • the plurality of synchronous split multiplexing sub-sections correspond to a plurality of channels one by one.
  • the hybrid split multiplexing mechanism implements the working state switching of the multiple synchronous split multiplexing sub-sections by using a state machine model.
  • the hybrid split multiplexing mechanism implements a working state switch of the synchronous split multiplexing section and the statistical split multiplexing section by using a state machine model.
  • the hybrid multiplexing and multiplexing mechanism further includes:
  • the channel access status of the user is correspondingly
  • the MAC protocol user's actual channel access depends on the situation.
  • the channel access form of the MAC protocol user of the statistical multiplexing and multiplexing mechanism includes: collision avoidance and collision detection.
  • the MAC protocol user of the synchronous split multiplexing mechanism and the M of the statistical split multiplexing mechanism are the MAC protocol user of the synchronous split multiplexing mechanism and the M of the statistical split multiplexing mechanism
  • the information transmission mode of any MAC protocol user in the AC protocol is simplex, half duplex or duplex.
  • the synchronous split multiplexing section and/or the statistical split multiplexing section correspond to channels of different frequency bands.
  • the workflow of the hybrid multiplexing and multiplexing mechanism includes: first, determining a length of a single inter-cycle period according to a preset communication requirement; and formulating a hybrid split corresponding to the length of the single inter-turn period a multiplexing mechanism working state table; then, dividing a single inter-cycle period into a synchronous split multiplexing section and/or a statistical split multiplexing section based on the working state table; wherein, the synchronous split multiplexing section
  • the segment is a channel access segment of a MAC protocol user assigned to the synchronous split multiplexing mechanism
  • the statistical split multiplexing segment is a channel access segment of a MAC protocol user assigned to the statistical split multiplexing mechanism
  • the ratio of the length of the single split period occupied by the synchronous split multiplexing section is greater than or equal to 0 and less than or equal to 1; based on the working state table, the synchronous split multiplexing mechanism is adopted in the synchronous split multiplexing section
  • the MAC protocol user is a channel
  • FIG. 1 is a flowchart of a method for a hybrid split multiplexing mechanism according to an embodiment of the present invention
  • FIG. 2A is a schematic diagram of a ratio of a length of a single inter-turn period occupied by a synchronous split multiplexing section according to an embodiment of the present invention
  • FIG. 2B is a schematic diagram of a ratio of a length of a single inter-turn period occupied by a synchronous split multiplexing section according to an embodiment of the present invention
  • FIG. 2C is a schematic diagram of the ratio of the length of a single split time occupied by a synchronous split multiplexing section according to an embodiment of the present invention is 2/3;
  • FIG. 2D is a schematic diagram of a ratio of a length of a single inter-turn period occupied by a synchronous split multiplexing section according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a correspondence between a single inter-cycle period divided into a plurality of synchronous division multiplexing sections and a statistical division multiplexing section and a MAC protocol user according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a corresponding relationship between a single inter-cycle period divided into a plurality of synchronous division multiplexing sections and a statistical division multiplexing section and a working state according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a correspondence between a count value of a state machine counter and a channel access segment in two-dimensional coordinates according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a linked list in which a single inter-turn period is divided into three synchronous split multiplexing sections and one statistical split multiplexing section according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a connection relationship between a MAC protocol user and a communication bus according to a statistical division multiplexing mechanism according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a channel corresponding to multiple different frequency bands in a synchronous split multiplexing section and/or a statistical split multiplexing section according to an embodiment of the present invention.
  • the embodiment of the present invention solves the two mechanisms in the prior art that a single wireless communication chip cannot be compatible with TDM and STDM by providing a hybrid multiplexing and multiplexing mechanism, and thus cannot satisfy the user's communication reality.
  • the technical problem of the requirement of high availability and channel utilization realizes the technical effects of compatible communication mechanisms of TDM and STDM in a single wireless communication chip, thereby satisfying the requirements of the user for communication realism and high channel utilization.
  • the embodiment of the present invention provides a hybrid split multiplexing mechanism, including: determining a single inter-cycle period length according to a preset communication requirement; and formulating a hybrid split-multiplex mechanism corresponding to the single inter-turn period length a working status table; dividing a single inter-cycle period into a synchronous split multiplexing section and/or a statistical split multiplexing section based on the working status table; wherein the synchronous split multiplexing section is allocated to the synchronization a channel access segment of a MAC protocol user of the split multiplexing mechanism, wherein the statistical split multiplexing segment is a channel access segment of a MAC protocol user allocated to the statistical split multiplexing mechanism; the synchronous split multiplexing The ratio of the length of the single inter-cycle period occupied by the segment is greater than or equal to 0 and less than or equal to 1; based on the working state table, MAC protocol user access using the synchronous split multiplexing mechanism in the synchronous split multiplexing section
  • the channel performs information transmission, and/
  • the inter-cycle period is flexibly configured according to the communication requirement of the user, and the working status table of the hybrid bifurcation multiplexing mechanism corresponding to the length of the single inter-cycle period is determined; further, based on The working state table flexibly configures the occupation ratio of the synchronous split multiplexing section and the statistical split multiplexing section in each period to implement the synchronous split multiplexing mechanism in the synchronous split multiplexing section.
  • the MAC protocol user accesses the channel and performs information transmission, and/or uses the MAC protocol user access channel of the statistical multiplexing and multiplexing mechanism in the statistical multiplexing and multiplexing section to perform information transmission.
  • an embodiment of the present invention provides a hybrid split multiplexing mechanism (HTDM).
  • HTDM hybrid split multiplexing mechanism
  • the method flow includes:
  • a router is set as a control center master in the communication chip, and a MAC protocol user connected to the control center master includes a MAC protocol user complying with TDM and complying with Follow the STDM MAC protocol user.
  • the Control Center Master can estimate the length of the data frame to be sent by all MAC protocol users connected to it, and determine the length of the individual inter-cycle period T based on the length of the acquired data frame. Further, the control center master formulates an HTDM working state table corresponding to the length of the single inter-cycle period T based on the length of the single inter-cycle period and the length of the transmission data frame required by the MAC protocol user of the TDM, and the status information included in the working status table is as follows Table 1 shows:
  • Table 1 only lists some parameter categories of the working status table, and a complete working status table can be formed corresponding to the setting parameter values.
  • the number of MAC protocol users of the TDM may be multiple, and the status information included in the working status table is as shown in Table 2, and the TDM MAC protocol user is further included on the basis of Table 1.
  • the MAC protocol user information of the TDM may specifically include: a number of MAC protocol users of the TDM, a MAC protocol user name of each TDM, a protocol type of each TDM MAC protocol user, and a MAC protocol user of each TDM.
  • Table 2 only lists some parameter categories of the working status table, and can form a complete working status table corresponding to setting parameter values.
  • the synchronous split multiplexing section Ttd occupies a ratio K of the single inter-cycle period length T is greater than 0 and less than or equal to 1 ⁇ , according to the state work table corresponding to Table 2, the TDM-based MAC Number of protocol users, Dividing the synchronous split multiplexing section Ttd into a plurality of synchronous split multiplexing sub-sections, one-to-one corresponding to multiple channels, so that a plurality of TDM MAC protocol users are in one-to-one correspondence in the multiple synchronization ports
  • the sub-multiplexer segment accesses the corresponding channel and performs information transmission. As shown in FIG.
  • the number of MAC protocol users of the TDM is n (an integer greater than 1), and correspondingly, the synchronous split multiplexing section Ttd is divided into n synchronous split multiplexing subsections Ttdl ⁇ Ttdn.
  • the n-synchronous split-multiplex sub-segments Ttdl ⁇ Ttdn can be used as the M-A protocol users U1 ⁇ Un corresponding to n TDMs.
  • one TDM MAC protocol user can also correspond to multiple
  • the synchronous split multiplexing sub-section is not specifically limited herein.
  • the length of the plurality of synchronous split multiplexing sub-frames depends on the length of the data frame to be transmitted by the corresponding MAC protocol user.
  • the protocol types of any two MAC protocol users of the N TDM MAC protocol users may be the same or different, for example: User U1
  • the corresponding protocol type is TD-SCDMA
  • the protocol type corresponding to user U2 is WCDMA
  • the protocol type corresponding to user U3 is 802.16, ...
  • the protocol type corresponding to user Un is TD-SCDMA.
  • the user access situation of the segment cannot be agreed in advance, and the user access information such as the user and the user accessing the channel can be known only after the user finishes using the channel.
  • the MAC protocol user corresponding to the statistical division multiplexing section Tstd is Ux.
  • the HTDM implements a working state switching of the plurality of synchronous split multiplexing sub-sections Ttdl ⁇ Ttdn through a state machine model.
  • HTDM realizes the switching of the working state of the synchronous division multiplexing section T td and the statistical division multiplexing section Tstd through the state machine model.
  • a single inter-turn period T is divided into a synchronous split-multiplex section Ttd and a statistical split-multiplex section Tstd, and the synchronous split-multiplex section Ttd is divided into n synchronization splits.
  • the sub-sections Ttdl ⁇ Ttdn are used to correspond to n+1 states S1 ⁇ Sn+l, wherein the states S1 ⁇ Sn- one correspond to n synchronous split multiplex sub-sections Ttdl ⁇ Ttdn, and the state Sn+1 corresponds to The statistical division multiplexing section Tstd.
  • each operating state of the state machine corresponds to each segment divided by a single inter-turn cycle.
  • a counter and a state machine controller are further disposed inside the communication chip, and each counter segment (ie, each working state) is matched with the counter value of the counter, and the counter value is gradually accumulated or stepwise.
  • an interrupt request is sent to the state machine controller at a specific moment to achieve switching of each working state.
  • FIG. 5 is the correspondence between the counter count value Count of the counter and the channel access segment t in two-dimensional coordinates.
  • the schematic diagram is based on the step that the counter count value is gradually accumulated, and the synchronous split multiplexing section Ttd is divided into three synchronous split multiplexing subsections Ttdl ⁇ Ttd3.
  • the state machine includes four working states S1 ⁇ S4:
  • the state machine can also be implemented in conjunction with a linked list, which is a common and important data structure. It is a structure for dynamically performing storage allocation. It can create memory units as needed.
  • the linked list has a "header pointer" variable that holds an address. The address points to an element.
  • Each element in the linked list is called a "node", and each node should consist of two parts: one for the actual data the user needs, and two for the address of the next node.
  • the "head pointer” variable points to the first element; the first element points to the second element; ..., until the last element, the element no longer points to other elements, it is called the “footer” “, its address part puts a "NULL” (indicating "empty address”), and the list ends here; of course, depending on the application, the last element can also point to the first element to form a circular working mode.
  • the synchronous split multiplexing section Ttd is still divided into three synchronous split multiplexing subsections Ttdl ⁇ Ttd3, where As is the header address and Atdl is the synchronous split multiplexing.
  • the working state parameter storage address corresponding to the sub-section Ttdl, Atd2 is the working state parameter storage address corresponding to the synchronous split multiplexing sub-section Ttd2, and At d3 is the working state corresponding to the synchronous split-multiplex sub-section Ttd3
  • the parameter storage address, Astd is the storage address of the working state parameter corresponding to the statistical division multiplexing section Tstd.
  • the state machine controller After controlling the state machine, the state machine controller obtains the header address As of the linked list corresponding to the event period, and obtains the next node according to the node pointed to by the header address As (ie, the register).
  • the address such as Atdl
  • the working parameters corresponding to the synchronous split multiplexing sub-section Ttdl including: the counter of the sub-section Ttdl corresponding to the counter Value, MAC protocol user name and MAC protocol type working in the segment Ttdl, on the other hand, get the address of the next node, such as Atd2, and after the count value corresponding to the sub-section Ttdl ends, jump to The next node address, enters the working state corresponding to the next segment. Other situations and so on, will not be repeated here.
  • the last address pointed to by the address pointer should be the next node address as the header address As.
  • the working parameters in the node ie, the register
  • the M AC protocol user information of the STDM for example, the MAC protocol user working in the Tstd session
  • Name for example, the MAC protocol type, etc.
  • FIG. 5 and FIG. 6 are only for illustration. In practical applications, different inter-turn periods: 1) The order of the Ttd and the Tstd in a single inter-turn period T may be determined according to specific conditions. 2) The number and length of the sub-segments divided by the Ttd are also determined according to the specific circumstances, and are not specifically limited here; 3) The MAC corresponding to each sub-segment divided by the Ttd segment The protocol type of the protocol user is determined according to the specific situation, and is not specifically limited here; 4) When the synchronous split multiplexing section Ttd occupies a single inter-turn period length T, the ratio value K is greater than or equal to 0 and less than 1 ⁇ , in the statistical score The multiplex section Tstd, the channel access status of the M AC protocol user of the STDM depends on the actual channel access situation of the corresponding MAC protocol user.
  • the channel access form of the MAC protocol user of the STDM includes: collision avoidance and collision detection.
  • the communication bus Bus is connected with a control center master and a plurality of MAC protocol users Ul ⁇ Un, where n is an integer greater than or equal to 1, and each user in Ul ⁇ Un uses at least one MAC protocol, such as U1. 802.11, U2 uses 802.3, Un uses 802.15.4.
  • each protocol user's counter When the bus is idle, each protocol user's counter generates a random number, and starts to perform a subtraction count until a protocol user first counts to 0, then detects whether the bus is idle again, and the bus is idle. Status ⁇ , send data. In contrast, other protocol users can only receive data.
  • 2 conflict detection eg 802.3
  • the information transmission mode of any MA C protocol user of the TDM MAC protocol user and the STDM MAC protocol user is simplex, half duplex, or duplex.
  • the MAC protocol user uses one channel for transmitting and receiving data
  • the information transmission mode is full-duplex
  • the MAC protocol user uses different channels for transmitting and receiving data.
  • the synchronous split multiplexing section Ttd and/or the statistical split multiplexing section Tstd correspond to channels of different frequency bands. As shown in Fig. 8, the synchronous split multiplexing section Ttd is still divided into three synchronous split multiplexing subsections Ttdl ⁇ Ttd3 as an example, and X represents a single interturn period in terms of the division of the diurnal period.
  • T is divided into ⁇ Ttdl, Ttd2, Ttd2 and Tstd, which correspond to four different numbered channels CH1, CH2, CH3 and CH4;
  • Y means that in a certain segment, it can be The subchannels of m different frequency bands fl ⁇ fm are generated, where m is an integer greater than 1; it can be understood that the channel CH1 includes m parallel subchannels CH1 l ⁇ CHlm, and the channel CH2 includes m parallel subchannels CH21 ⁇ CH2m, channel CH3 includes m parallel subchannels CH31 ⁇ CH3m, and channel CH4 includes m parallel subchannels CH41 ⁇ CH4m. In the specific implementation process, the number of subchannels included in each channel may also be different.
  • the working state table After generating the working state table, it may be allocated to each user in units of subchannels according to the communication requirements of the user, such as user U1.
  • the subchannels CH1 l ⁇ CHlm and CH21 ⁇ CH22 are allocated, and the user U2 allocates the subchannels CH23 ⁇ CH2m, which can improve the data transmission rate and increase the channel utilization rate.
  • the inter-cycle period is flexibly configured according to user communication requirements, and an HTDM working state table corresponding to the single inter-cycle period length T is formulated; further, flexible configuration based on the working state table
  • the proportion of the synchronization division multiplexing section Ttd and the statistical division multiplexing section Tstd in each inter-cycle period is implemented to enable the TDM MAC protocol user to access the channel and perform information in the synchronous division multiplexing section Ttd. Transmission, and/or in the statistical division multiplexing section Tstd allows the MAC protocol user of the STDM to access the channel and perform information transmission.
  • the communication mechanism (specifically, the splitting mechanism or the frequency division mechanism) of the subchannel corresponding to any segment is configured, and is allocated to each user in units of subchannels, and the user is satisfied.
  • the same information transmission requirements have further improved channel utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种混合时分复用机制,属于无线通信技术领域,其方法流程包括:S1、确定单个时间周期长度;S2、制定与所述单个时间周期长度对应的工作状态表;S3、基于所述工作状态表将单个时间周期划分为同步时分复用时段和/或统计时分复用时段;其中,所述同步时分复用时段占用所述单个时间周期长度的比例值大于等于0且小于等于1;S4、基于所述工作状态表,在所述同步时分复用时段采用同步时分复用机制的MAC协议用户访问信道并进行信息传输,和/或在所述统计时分复用时段允许统计时分复用机制的MAC协议用户访问信道并进行信息传输。实现了在单一芯片中兼容上述两种通信机制,以满足用户对通信实时性和信道高利用率的要求的技术效果。

Description

发明名称:一种混合时分复用机制
技术领域
[0001] 本发明涉及无线通信技术领域, 尤其涉及一种混合吋分复用机制。
背景技术
[0002] 目前, 用于移动网络的无线通信芯片一般只使用同步吋分复用机制 (TDM, Ti me Division Multiplexing) 或者统计吋分复用机制 (STDM, Statistical Time Division Multiplexing) 。
[0003] TDM是通过控制中心为每个用户分配确定的信道, 每个用户的信道使用顺序确 定且不冲突。 当某个信道被分配给一用户且无论该信道是否有信息传送, 该信 道都不能被其他用户使用。
[0004] TDM包括以下特点: 1) 用户的使用吋间由控制中心分配; 2) 通信使用吋间与 等待吋间已知; 3) 有顺序且互不干扰; 4) 使用速率固定; 5) 适用于实吋通信 。 TDM的优点为: 吋隙分配固定, 便于调节控制, 适于数字信息的传输; 其缺 点为: 信道与设备利用率低。 TDM广泛应用在实吋性要求较高的电信电话网络 、 物联网 IOT等领域。
[0005] STDM是一种异步吋分复用机制, 当用户有数据要传输吋直接抢用线路资源, 当用户暂停发送数据吋, 线路的传输能力可以被其他用户使用。 STDM包括以下 特点: 1) 没有控制中心, 抢到者有权; 2) 通信长度与等待吋间未知; 3) 无固 定使用顺序; 4) 使用速率不平均, 最高可以达到线路总的传输能力; 5) 适用 于非实吋通信。 STDM的优点为: 提高了信道和设备利用率; STDM的缺点为: 技术复杂 (需使用保存输入排队信息的缓冲数据存储器和比较复杂的寻址、 控 制技术) 。 STDM主要应用于实吋性要求不高的 IP互联网。
[0006] 不难看出, TDM与 STDM各有特点, 根据各自的优点, 其适用的领域不尽相同 。 然而, 单个芯片中两种机制无法并存使用一直是技术上无法攻克的难题。 也 就是说, 现有的无线通信芯片的吋分复用机制无法同吋满足用户对通信实吋性 和信道高利用率的要求。 技术问题
[0007] 现有技术中存在, 单个无线通信芯片无法兼容 TDM和 STDM两种机制, 进而无 法同吋满足用户对通信实吋性和信道高利用率的要求的技术问题。
问题的解决方案
技术解决方案
[0008] 本发明针对现有技术中存在的, 单个无线通信芯片无法兼容 TDM和 STDM两种 机制, 进而无法同吋满足用户对通信实吋性和信道高利用率的要求的技术问题 。 提供了一种混合吋分复用机制, 实现了在单一无线通信芯片中兼容 TDM和 ST DM两种通信机制, 进而可满足用户对通信实吋性和信道高利用率的要求的技术 效果。
[0009] 本发明提供了一种混合吋分复用机制, 包括:
[0010] 根据预设通信需求, 确定单个吋间周期长度;
[0011] 制定与所述单个吋间周期长度对应的混合吋分复用机制工作状态表;
[0012] 基于所述工作状态表将单个吋间周期划分为同步吋分复用吋段和 /或统计吋分 复用吋段; 其中, 所述同步吋分复用吋段为分配给同步吋分复用机制的 MAC协 议用户的信道访问吋段, 所述统计吋分复用吋段为分配给统计吋分复用机制的 M AC协议用户的信道访问吋段; 所述同步吋分复用吋段占用所述单个吋间周期长 度的比例值大于等于 0且小于等于 1 ;
[0013] 基于所述工作状态表, 在所述同步吋分复用吋段采用同步吋分复用机制的 MA C协议用户访问信道并进行信息传输, 和 /或在所述统计吋分复用吋段采用统计吋 分复用机制的 MAC协议用户访问信道并进行信息传输。
[0014] 可选的, 所述混合吋分复用机制还包括:
[0015] 当所述同步吋分复用吋段占用所述单个吋间周期长度的比例值大于 0且小于等 于 1吋, 基于所述工作状态表将所述同步吋分复用吋段划分为多个同步吋分复用 子吋段, 以使多个同步吋分复用机制的 MAC协议用户一一对应在所述多个同步 吋分复用子吋段访问信道并进行信息传输。
[0016] 可选的, 所述多个同步吋分复用子吋段的长度依据对应的 MAC协议用户所要 传输的信息量而定。 [0017] 可选的, 所述多个同步吋分复用子吋段一一对应多个信道。
[0018] 可选的, 所述混合吋分复用机制通过状态机模型来实现所述多个同步吋分复用 子吋段的工作状态切换。
[0019] 可选的, 所述混合吋分复用机制通过状态机模型来实现同步吋分复用吋段和统 计吋分复用吋段的工作状态切换。
[0020] 可选的, 所述混合吋分复用机制还包括:
[0021] 当所述同步吋分复用吋段占用所述单个吋间周期长度的比例值大于等于 0且小 于 1吋, 在所述统计吋分复用吋段, 用户的信道访问状态依据对应的 MAC协议用 户的实际信道访问情况而定。
[0022] 可选的, 统计吋分复用机制的 MAC协议用户的信道访问形式包括: 冲突避免 和冲突检测。
[0023] 可选的, 所述同步吋分复用机制的 MAC协议用户和所述统计吋分复用机制的 M
AC协议用户中任一 MAC协议用户的信息传输模式为单工、 半双工或双工。
[0024] 可选的, 所述同步吋分复用吋段和 /或统计吋分复用吋段对应多个不同频段的 信道。
发明的有益效果
有益效果
[0025] 本发明中提供的一个或多个技术方案, 至少具有如下技术效果或优点:
[0026] 由于在本发明中, 混合吋分复用机制的工作流程, 包括: 首先, 根据预设通信 需求, 确定单个吋间周期长度; 制定与所述单个吋间周期长度对应的混合吋分 复用机制工作状态表; 接着, 基于所述工作状态表将单个吋间周期划分为同步 吋分复用吋段和 /或统计吋分复用吋段; 其中, 所述同步吋分复用吋段为分配给 同步吋分复用机制的 MAC协议用户的信道访问吋段, 所述统计吋分复用吋段为 分配给统计吋分复用机制的 MAC协议用户的信道访问吋段; 所述同步吋分复用 吋段占用所述单个吋间周期长度的比例值大于等于 0且小于等于 1 ; 基于所述工 作状态表, 在所述同步吋分复用吋段采用同步吋分复用机制的 MAC协议用户访 问信道并进行信息传输, 和 /或在所述统计吋分复用吋段采用统计吋分复用机制 的 MAC协议用户访问信道并进行信息传输。 也就是说, 通过根据用户通信需求 , 灵活配置吋间周期, 并制定与所述单个吋间周期长度对应的混合吋分复用机 制工作状态表; 进一步, 基于该工作状态表灵活配置各吋间周期中同步吋分复 用吋段和统计吋分复用吋段的占用比例, 以实现在所述同步吋分复用吋段采用 同步吋分复用机制的 MAC协议用户访问信道并进行信息传输, 和 /或在所述统计 吋分复用吋段采用统计吋分复用机制的 MAC协议用户访问信道并进行信息传输 。 有效地解决了现有技术中单个无线通信芯片无法兼容 TDM和 STDM两种机制 , 进而无法同吋满足用户对通信实吋性和信道高利用率的要求的技术问题。 实 现了在单一无线通信芯片中兼容 TDM和 STDM两种通信机制, 进而可满足用户 对通信实吋性和信道高利用率的要求的技术效果。
对附图的简要说明
附图说明
[0027] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据提供的附图获得其它的附图。
[0028] 图 1为本发明实施例提供的一种混合吋分复用机制的方法流程图;
[0029] 图 2A为本发明实施例提供的同步吋分复用吋段占用单个吋间周期长度的比例为 0的示意图;
[0030] 图 2B为本发明实施例提供的同步吋分复用吋段占用单个吋间周期长度的比例为 1/3的示意图;
[0031] 图 2C为本发明实施例提供的同步吋分复用吋段占用单个吋间周期长度的比例为 2/3的示意图;
[0032] 图 2D为本发明实施例提供的同步吋分复用吋段占用单个吋间周期长度的比例为 1的示意图;
[0033] 图 3为本发明实施例提供的单个吋间周期被划分为多个同步吋分复用吋段和一 个统计吋分复用吋段吋与 MAC协议用户的对应关系示意图;
[0034] 图 4为本发明实施例提供的单个吋间周期被划分为多个同步吋分复用吋段和一 个统计吋分复用吋段吋与工作状态的对应关系示意图; [0035] 图 5为本发明实施例提供的状态机计数器的计数值与信道访问吋段在二维坐标 中的对应关系示意图;
[0036] 图 6为本发明实施例提供的单个吋间周期被划分为三个同步吋分复用吋段和一 个统计吋分复用吋段的链表结构示意图;
[0037] 图 7为本发明实施例提供的统计吋分复用机制的 MAC协议用户与通信总线的连 接关系示意图;
[0038] 图 8为本发明实施例提供的同步吋分复用吋段和 /或统计吋分复用吋段对应多个 不同频段的信道的示意图。
本发明的实施方式
[0039] 本发明实施例通过提供一种混合吋分复用机制, 解决了现有技术中存在的, 单 个无线通信芯片无法兼容 TDM和 STDM两种机制, 进而无法同吋满足用户对通 信实吋性和信道高利用率的要求的技术问题, 实现了在单一无线通信芯片中兼 容 TDM和 STDM两种通信机制, 进而可满足用户对通信实吋性和信道高利用率 的要求的技术效果。
[0040] 本发明实施例的技术方案为解决上述技术问题, 总体思路如下:
[0041] 本发明实施例提供了一种混合吋分复用机制, 包括: 根据预设通信需求, 确定 单个吋间周期长度; 制定与所述单个吋间周期长度对应的混合吋分复用机制工 作状态表; 基于所述工作状态表将单个吋间周期划分为同步吋分复用吋段和 /或 统计吋分复用吋段; 其中, 所述同步吋分复用吋段为分配给同步吋分复用机制 的 MAC协议用户的信道访问吋段, 所述统计吋分复用吋段为分配给统计吋分复 用机制的 MAC协议用户的信道访问吋段; 所述同步吋分复用吋段占用所述单个 吋间周期长度的比例值大于等于 0且小于等于 1 ; 基于所述工作状态表, 在所述 同步吋分复用吋段采用同步吋分复用机制的 MAC协议用户访问信道并进行信息 传输, 和 /或在所述统计吋分复用吋段采用统计吋分复用机制的 MAC协议用户访 问信道并进行信息传输。
[0042] 可见, 在本发明方案中, 通过根据用户通信需求, 灵活配置吋间周期, 并制定 与所述单个吋间周期长度对应的混合吋分复用机制工作状态表; 进一步, 基于 该工作状态表灵活配置各吋间周期中同步吋分复用吋段和统计吋分复用吋段的 占用比例, 以实现在所述同步吋分复用吋段采用同步吋分复用机制的 MAC协议 用户访问信道并进行信息传输, 和 /或在所述统计吋分复用吋段采用统计吋分复 用机制的 MAC协议用户访问信道并进行信息传输。 有效地解决了现有技术中单 个无线通信芯片无法兼容 TDM和 STDM两种机制, 进而无法同吋满足用户对通 信实吋性和信道高利用率的要求的技术问题。 实现了在单一无线通信芯片中兼 容 TDM和 STDM两种通信机制, 进而可满足用户对通信实吋性和信道高利用率 的要求的技术效果。
[0043] 为了更好的理解上述技术方案, 下面将结合说明书附图以及具体的实施方式对 上述技术方案进行详细的说明, 应当理解本发明实施例以及实施例中的具体特 征是对本申请技术方案的详细的说明, 而不是对本申请技术方案的限定, 在不 冲突的情况下, 本发明实施例以及实施例中的技术特征可以相互组合。
[0044] 实施例一
[0045] 请参考图 1和图 2A-图 2D, 本发明实施例提供了一种混合吋分复用机制 (HTDM
, Hybrid Time Division Multiplexing) , 其方法流程包括:
[0046] Sl、 根据预设通信需求, 确定单个吋间周期长度 T;
[0047] S2、 制定与所述单个吋间周期长度 T对应的 HTDM工作状态表;
[0048] S3、 基于所述工作状态表将单个吋间周期划分为同步吋分复用吋段 Ttd和 /或统 计吋分复用吋段 Tstd; 其中, 所述同步吋分复用吋段 Ttd为分配给同步吋分复用 机制 (TDM, Time Division Multiplexing) 的 MAC协议用户的信道访问吋段, 所 述统计吋分复用吋段 Tstd为分配给统计吋分复用机制 (STDM, Statistical Time Division Multiplexing) 的 MAC协议用户的信道访问吋段; 所述同步吋分复用吋 段 Ttd占用所述单个吋间周期长度 T的比例值 K大于等于 0且小于等于 1 ;
[0049] S4、 基于所述工作状态表, 在所述同步吋分复用吋段 Ttd采用 TDM的 MAC协议 用户访问信道并进行信息传输, 和 /或在所述统计吋分复用吋段 Tstd采用 STDM的 MAC协议用户访问信道并进行信息传输。
[0050] 在具体实施过程中, 在通讯芯片内部设置有路由器 Router作为控制中心 Master , 与控制中心 Master连接的 MAC协议用户, 包括遵循 TDM的 MAC协议用户和遵 循 STDM的 MAC协议用户。 控制中心 Master可估算与其相连的所有 MAC协议用 户所要发送的数据帧的长度, 并基于所获取的数据帧的长度确定单个吋间周期 长度 T。 进一步, 控制中心 Master基于单个吋间周期长度 Τ和 TDM的 MAC协议用 户所需传输数据帧的长度制定与单个吋间周期长度 T对应的 HTDM工作状态表, 该工作状态表所包含的状态信息如下表 1所示:
[0051] 表 1一种 HTDM工作状态表
[] 藥个对闺焉繫铁度 1 S OM时段 1漏纖 震
T m 1 霞 则 丽:
[0052] 其中, 表 1仅列出所述工作状态表的部分参数类别, 可对应设置参数值形成完 整的工作状态表。 同步吋分复用吋段 Ttd占用单个吋间周期长度 T的比例值 (κ= Ttd/T) 在 0~1之间可调, 如图 2A-图 2D所示, 以 K=0、 1/3、 2/3、 1为例, 示出了 同步吋分复用吋段 Ttd占用单个吋间周期长度 Τ的比例关系。
[0053] 进一步, 在具体实施过程中, TDM的 MAC协议用户可以为多个, 此吋工作状 态表所包含的状态信息如下表 2所示, 在表 1的基础上还包括 TDM的 MAC协议用 户信息:
[0054] 表 2另一种 HTDM工作状态表
[]
Figure imgf000009_0001
[0055] 其中, TDM的 MAC协议用户信息具体可包括: TDM的 MAC协议用户数量、 每 一 TDM的 MAC协议用户名称、 每一 TDM的 MAC协议用户的协议类型、 每一 TD M的 MAC协议用户的待传输数据帧的长度、 TDM的 MAC协议用户协议类型中每 一类型协议待传输的帧符号长度。 同表 1, 表 2仅列出所述工作状态表的部分参 数类别, 可对应设置参数值形成完整的工作状态表。
[0056] 当所述同步吋分复用吋段 Ttd占用所述单个吋间周期长度 T的比例值 K大于 0且小 于等于 1吋, 可根据表 2所对应的状态工作表, 基于 TDM的 MAC协议用户数量, 将所述同步吋分复用吋段 Ttd划分为多个同步吋分复用子吋段, 一一对应多个信 道, 以使多个 TDM的 MAC协议用户一一对应在所述多个同步吋分复用子吋段访 问对应的信道并进行信息传输。 如图 3所示, TDM的 MAC协议用户数量为 n (为 大于 1的整数) , 对应地, 将同步吋分复用吋段 Ttd划分为 n个同步吋分复用子吋 段 Ttdl~Ttdn。 其中, n个同步吋分复用子吋段 Ttdl~Ttdn可——对应 n个 TDM的 M AC协议用户 Ul~Un, 当然, 在具体实施过程中, 一个 TDM的 MAC协议用户也可 对应多个同步吋分复用子吋段, 这里不作具体限定。 另外, 所述多个同步吋分 复用子吋段的长度依据对应的 MAC协议用户待传输数据帧的长度而定。
[0057] 以一个 TDM的 MAC协议用户对应一种协议类型为例, n个 TDM的 MAC协议用 户 (Ul~Un) 中任意两个 MAC协议用户的协议类型可相同也可不同, 例如: 用 户 U1对应的协议类型为 TD-SCDMA、 用户 U2对应的协议类型为 WCDMA、 用户 U3对应的协议类型为 802.16、 ...、 用户 Un对应的协议类型为 TD-SCDMA等。
[0058] 对于统计吋分复用吋段 Tstd而言, 该吋段的用户访问情况无法事先约定, 只能 在用户使用完信道之后, 才能知道访问信道的用户和用户访问吋长等用户使用 信息, 如图 3所示, 定义统计吋分复用吋段 Tstd对应的 MAC协议用户为 Ux。
[0059] 在具体实施过程中, HTDM通过状态机模型来实现所述多个同步吋分复用子吋 段 Ttdl~Ttdn的工作状态切换。 HTDM通过状态机模型来实现同步吋分复用吋段 T td和统计吋分复用吋段 Tstd的工作状态切换。 具体的, 请参考图 4, 单个吋间周 期 T划分为同步吋分复用吋段 Ttd和统计吋分复用吋段 Tstd, 且同步吋分复用吋段 Ttd划分为 n个同步吋分复用子吋段 Ttdl~Ttdn, 一一对应 n+1个状态 Sl~Sn+l, 其 中, 状态 Sl~Sn—一对应 n个同步吋分复用子吋段 Ttdl~Ttdn, 状态 Sn+1对应统计 吋分复用吋段 Tstd。
[0060] 从上述的内容可知, 状态机的各工作状态与单个吋间周期所划分的各吋段相对 应。 在具体实施过程中, 在通讯芯片内部还设置有计数器和状态机控制器, 通 过将每个吋段 (即每个工作状态) 与计数器的计数值进行对应, 在计数器的计 数值逐步累加或逐步递减的过程中, 在特定的吋刻向状态机控制器发送中断请 求, 以实现各工作状态的切换。
[0061] 请参考图 5, 为计数器的计数值 Count与信道访问吋段 t在二维坐标中的对应关系 示意图, 以计数器的计数值逐步累加、 同步吋分复用吋段 Ttd划分为 3个同步吋分 复用子吋段 Ttdl~ Ttd3为例, 状态机包括四个工作状态 S1~S4:
[0062] 当 Count大于等于 0且小于 C1吋, 状态机工作在吋段 Ttdl, 对应工作状态 S1 ;
[0063] 当 Count大于等于 C1且小于 C2吋, 状态机工作在吋段 Ttd2, 对应工作状态 S2;
[0064] 当 Count大于等于 C2且小于 C3吋, 状态机工作在吋段 Ttd3, 对应工作状态 S3;
[0065] 当 Count大于等于 C3且小于 C4吋, 状态机工作在吋段 Tstd, 对应工作状态 S4。
[0066] 其中, 吋段 Ttdl~Ttd3共同构成完整的同步吋分复用吋段 Ttd, 计数器在计数值 Count=0 (即幵始计数吋) , 向状态机控制器发送第一中断请求, 以进入状态 S1 ; 计数器在计数值 Coimt=Cl, 向状态机控制器发送第二中断请求, 以进入状态 S 2; 计数器在计数值 Coimt=C2, 向状态机控制器发送第三中断请求, 以进入状态 S3; 计数器在计数值 Coimt=C3, 向状态机控制器发送第四中断请求, 以进入状 态 S4; 计数器在计数值 Coimt=C4, 向状态机控制器发送第五中断请求, 指示已 完成一个吋间周期的工作, 同吋对计数器进行归零, 以用于在下一个周期重新 幵始计数。
[0067] 在具体实施过程中, 状态机还可结合链表来实现, 链表是一种常见的重要的数 据结构。 它是动态地进行存储分配的一种结构。 它可以根据需要幵辟内存单元 。 链表有一个"头指针"变量, 它存放一个地址。 该地址指向一个元素。 链表中每 一个元素称为 "结点", 每个结点都应包括两个部分: 一为用户需要用的实际数据 , 二为下一个结点的地址。 因此, "头指针"变量指向第一个元素; 第一个元素又 指向第二个元素; ......, 直到最后一个元素, 该元素不再指向其它元素, 它称 为"表尾", 它的地址部分放一个 "NULL" (表示 "空地址") , 链表到此结束; 当 然, 根据具体应用需要, 最后一个元素还可指向第一个元素, 以形成一个循环 工作模式。
[0068] 请参考图 6, 仍以同步吋分复用吋段 Ttd划分为 3个同步吋分复用子吋段 Ttdl~Ttd 3为例, As为表头地址, Atdl为同步吋分复用子吋段 Ttdl所对应的工作状态参数 存储地址, Atd2为同步吋分复用子吋段 Ttd2所对应的工作状态参数存储地址, At d3为同步吋分复用子吋段 Ttd3所对应的工作状态参数存储地址, Astd为统计吋分 复用吋段 Tstd所对应的工作状态参数存储地址。 [0069] 在对状态机进行控制吋, 状态机控制器获取对应该事件周期的链表的表头地址 As , 并根据表头地址 As所指向的结点 (即寄存器) , 获取下一个结点的地址, 如 Atdl, 进一步, 根据地址 Atdl所指向的结点 (即寄存器) , 一方面获取同步 吋分复用子吋段 Ttdl所对应的工作参数, 包括: 子吋段 Ttdl所对应的计数器的计 数值、 在吋段 Ttdl工作的 MAC协议用户名称和 MAC协议类型等, 另一方面, 获 取下一个结点的地址, 如 Atd2, 并在子吋段 Ttdl所对应的计数值结束吋, 跳转到 下一个结点地址, 进入到下一个吋段所对应的工作状态。 其它情况依此类推, 这里不再一一赘述。
[0070] 需要指出的是, 地址指针所指向的最后一个地址, 如 Astd, 所指向的下一个结 点地址应为表头地址 As。 另外, 由于 STDM无法明确地对 MAC协议用户的通信 进行控制, 地址 Astd所指向的结点 (即寄存器) 中的工作参数不包括 STDM的 M AC协议用户信息 (如吋段 Tstd工作的 MAC协议用户名称、 MAC协议类型等) 。
[0071] 图 5和图 6仅用于举例说明, 在实际应用中, 不同的吋间周期: 1) 吋段 Ttd和吋 段 Tstd在单个吋间周期 T中的先后顺序可依据具体情况而定, 这里不作具体限定 ; 2) 吋段 Ttd所划分的子吋段的个数和长度也依据具体情况而定, 这里不作具体 限定; 3) 吋段 Ttd所划分的各个子吋段所对应的 MAC协议用户的协议类型依据 具体情况而定, 这里不作具体限定; 4) 当同步吋分复用吋段 Ttd占用单个吋间周 期长度 T的比例值 K大于等于 0且小于 1吋, 在统计吋分复用吋段 Tstd, STDM的 M AC协议用户的信道访问状态依据对应的 MAC协议用户的实际信道访问情况而定
[0072] 针对上述第 4) 点, STDM的 MAC协议用户的信道访问形式包括: 冲突避免和 冲突检测。 请参考图 7, 通信总线 Bus上连接有控制中心 Master和多个 MAC协议 用户 Ul~Un, 其中, n为大于等于 1的整数, Ul~Un中各用户采用至少一种 MAC 协议, 如 U1采用 802.11、 U2采用 802.3、 Un采用 802.15.4。
[0073] ①冲突避免 (如 802.11)
[0074] 当总线空闲吋, 每个协议用户的计数器各产生一个随机数, 并幵始做减法计数 , 直到某个协议用户最先计数为 0, 则再次检测总线是否空闲, 并在总线处于空 闲状态吋, 发送数据。 相对的, 其它协议用户则只可接收数据。 [0075] ②冲突检测 (如 802.3)
[0076] 当总线空闲吋, 多个协议用户向总线发送数据, 当检测到冲突 (即多个协议用 户同吋向总线发送数据) 吋, 则产生随机延吋 T dday, 并幵始做减法计数, 当 T dday=o吋, 向总线发送数据, 故延吋最短的用户抢先占用总线; 当延吋最短的用 户占用总线进行数据发送吋, 控制中心 Master通过广播告知其它用户信道已被占 用, 则其它用户只可接收数据。
[0077] 在具体实施过程中, TDM的 MAC协议用户和 STDM的 MAC协议用户中任一 MA C协议用户的信息传输模式为单工、 半双工或双工。 其中, 当信息传输模式为半 双工吋, MAC协议用户收发数据使用一个信道, 当信息传输模式为全双工吋, MAC协议用户收发数据使用不同信道。
[0078] 在具体实施过程中, 同步吋分复用吋段 Ttd和 /或统计吋分复用吋段 Tstd对应多 个不同频段的信道。 如图 8所示, 仍以同步吋分复用吋段 Ttd划分为 3个同步吋分 复用子吋段 Ttdl~ Ttd3为例, X表示以吋间周期的划分而言, 将单个吋间周期 T划 分为吋段 Ttdl、 Ttd2、 Ttd2和 Tstd, 这四个吋段一一对应四个不同编号的信道 CH 1、 CH2、 CH3和 CH4; Y表示以一确定的吋段而言, 可同吋产生 m个不同频段 fl ~fm的子信道, 其中, m为大于 1的整数; 可理解为, 信道 CH1包含 m个并行的子 信道 CHl l~CHlm, 信道 CH2包含 m个并行的子信道 CH21~CH2m, 信道 CH3包含 m个并行的子信道 CH31~CH3m, 信道 CH4包含 m个并行的子信道 CH41~CH4m。 在具体实施过程中, 每个信道所包含的子信道的个数也可不同, 在生成工作状 态表吋, 可根据用户的通信需求, 以子信道为单位分配给每一个用户, 如用户 U 1分配子信道 CHl l~CHlm和 CH21~CH22, 用户 U2分配子信道 CH23~CH2m, 这 样既可以提高数据传输率, 还可以增加信道的利用率。
[0079] 总而言之, 在本发明方案中, 通过根据用户通信需求, 灵活配置吋间周期, 并 制定与所述单个吋间周期长度 T对应的 HTDM工作状态表; 进一步, 基于该工作 状态表灵活配置各吋间周期中同步吋分复用吋段 Ttd和统计吋分复用吋段 Tstd的 占用比例, 以实现在所述同步吋分复用吋段 Ttd允许 TDM的 MAC协议用户访问信 道并进行信息传输, 和 /或在所述统计吋分复用吋段 Tstd允许 STDM的 MAC协议 用户访问信道并进行信息传输。 有效地解决了现有技术中单个无线通信芯片无 法兼容 TDM和 STDM两种机制, 进而无法同吋满足用户对通信实吋性和信道高 利用率的要求的技术问题。 实现了在单一无线通信芯片中兼容 TDM和 STDM两 种通信机制, 进而可满足用户对通信实吋性和信道高利用率的要求的技术效果
[0080] 另外, 根据通信需求, 配置任一吋段所对应的子信道的通信机制 (具体为吋分 机制或频分机制) , 并以子信道为单位分配给每一个用户, 在满足用户的信息 传输需求的同吋, 进一步提高了信道利用率。
[0081] 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创 造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权利要求意 欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0082] 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等 同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
一种混合吋分复用机制, 其特征在于, 包括:
根据预设通信需求, 确定单个吋间周期长度;
制定与所述单个吋间周期长度对应的混合吋分复用机制工作状态表; 基于所述工作状态表将单个吋间周期划分为同步吋分复用吋段和 /或 统计吋分复用吋段; 其中, 所述同步吋分复用吋段为分配给同步吋分 复用机制的 MAC协议用户的信道访问吋段, 所述统计吋分复用吋段 为分配给统计吋分复用机制的 MAC协议用户的信道访问吋段; 所述 同步吋分复用吋段占用所述单个吋间周期长度的比例值大于等于 0且 小于等于 1 ;
基于所述工作状态表, 在所述同步吋分复用吋段采用同步吋分复用机 制的 MAC协议用户访问信道并进行信息传输, 和 /或在所述统计吋分 复用吋段采用统计吋分复用机制的 MAC协议用户访问信道并进行信 息传输。
如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述混合吋分 复用机制还包括:
当所述同步吋分复用吋段占用所述单个吋间周期长度的比例值大于 0 且小于等于 1吋, 基于所述工作状态表将所述同步吋分复用吋段划分 为多个同步吋分复用子吋段, 以使多个同步吋分复用机制的 MAC协 议用户一一对应在所述多个同步吋分复用子吋段访问信道并进行信息 传输。
如权利要求 2所述的混合吋分复用机制, 其特征在于, 所述多个同步 吋分复用子吋段的长度依据对应的 MAC协议用户所要传输的信息量 而定。
如权利要求 2所述的混合吋分复用机制, 其特征在于, 所述多个同步 吋分复用子吋段一一对应多个信道。
如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述混合吋分 复用机制通过状态机模型来实现所述多个同步吋分复用子吋段的工作 状态切换。
[权利要求 6] 如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述混合吋分 复用机制通过状态机模型来实现同步吋分复用吋段和统计吋分复用吋 段的工作状态切换。
[权利要求 7] 如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述混合吋分 复用机制还包括:
当所述同步吋分复用吋段占用所述单个吋间周期长度的比例值大于等 于 0且小于 1吋, 在所述统计吋分复用吋段, 用户的信道访问状态依据 对应的 MAC协议用户的实际信道访问情况而定。
[权利要求 8] 如权利要求 7所述的混合吋分复用机制, 其特征在于, 统计吋分复用 机制的 MAC协议用户的信道访问形式包括: 冲突避免和冲突检测。
[权利要求 9] 如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述同步吋分 复用机制的 MAC协议用户和所述统计吋分复用机制的 MAC协议用户 中任一 MAC协议用户的信息传输模式为单工、 半双工或双工。
[权利要求 10] 如权利要求 1所述的混合吋分复用机制, 其特征在于, 所述同步吋分 复用吋段和 /或统计吋分复用吋段对应多个不同频段的信道。
PCT/CN2016/101601 2016-10-09 2016-10-09 一种混合时分复用机制 WO2018064838A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/101601 WO2018064838A1 (zh) 2016-10-09 2016-10-09 一种混合时分复用机制
EP16918171.6A EP3525409A4 (en) 2016-10-09 2016-10-09 HYBRID TIME DIVISION MULTIPLEXING MECHANISM
US16/377,313 US10841029B2 (en) 2016-10-09 2019-04-08 Hybrid time-division multiplexing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101601 WO2018064838A1 (zh) 2016-10-09 2016-10-09 一种混合时分复用机制

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/377,313 Continuation US10841029B2 (en) 2016-10-09 2019-04-08 Hybrid time-division multiplexing

Publications (1)

Publication Number Publication Date
WO2018064838A1 true WO2018064838A1 (zh) 2018-04-12

Family

ID=61830736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101601 WO2018064838A1 (zh) 2016-10-09 2016-10-09 一种混合时分复用机制

Country Status (3)

Country Link
US (1) US10841029B2 (zh)
EP (1) EP3525409A4 (zh)
WO (1) WO2018064838A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367709B (zh) * 2020-10-30 2022-07-29 新华三技术有限公司 一种信道控制方法、装置及设备
US11272271B1 (en) * 2020-11-12 2022-03-08 Verizon Patent And Licensing Inc. Systems and methods for collision resolution during ONU activation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151094A (zh) * 1994-11-17 1997-06-04 美国电话及电报公司 能够在宽频带通信网络上以同步传送模式和分组模式访问多种业务的方法和设备
WO2003055113A1 (en) * 2001-12-20 2003-07-03 Bandwidth Technology Corp. System and method of disharmonic frequency multiplexing
CN1524396A (zh) * 2001-05-09 2004-08-25 西门子公司 动态信道分配的方法
CN101814945A (zh) * 2009-12-24 2010-08-25 航天恒星科技有限公司 一种卫星通信系统帧结构
CN103582139A (zh) * 2013-11-22 2014-02-12 中国电子科技集团公司第五十四研究所 Tdma星状网综合业务中心交换与信道分配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225638A (ja) * 1983-06-07 1984-12-18 Kokusai Electric Co Ltd 時分割多重通信方式
US7054286B2 (en) * 2000-10-27 2006-05-30 L-3 Communications Corporation Bandwidth allocation and data multiplexing scheme for direct sequence CDMA systems
KR101037850B1 (ko) * 2003-05-09 2011-05-31 엔엑스피 비 브이 무선 네트워크에서의 트래픽을 스케줄링하기 위한 방법,장치 및 시스템
US8483105B2 (en) * 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
CN105052235A (zh) * 2013-03-15 2015-11-11 交互数字专利控股公司 用于无线lan系统的多频带操作
US9419777B2 (en) * 2013-07-15 2016-08-16 Zte Corporation Full duplex operation in a wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151094A (zh) * 1994-11-17 1997-06-04 美国电话及电报公司 能够在宽频带通信网络上以同步传送模式和分组模式访问多种业务的方法和设备
CN1524396A (zh) * 2001-05-09 2004-08-25 西门子公司 动态信道分配的方法
WO2003055113A1 (en) * 2001-12-20 2003-07-03 Bandwidth Technology Corp. System and method of disharmonic frequency multiplexing
CN101814945A (zh) * 2009-12-24 2010-08-25 航天恒星科技有限公司 一种卫星通信系统帧结构
CN103582139A (zh) * 2013-11-22 2014-02-12 中国电子科技集团公司第五十四研究所 Tdma星状网综合业务中心交换与信道分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525409A4 *

Also Published As

Publication number Publication date
EP3525409A1 (en) 2019-08-14
US20190238246A1 (en) 2019-08-01
EP3525409A4 (en) 2020-05-20
US10841029B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
US11516820B2 (en) Resource allocation method for sidelink and terminal
US6674750B1 (en) Apparatus and method for communicating time-division multiplexed data and packet data on a shared bus
CN1327641C (zh) 无线个人区域网络中用于语音通信的无线通信装置与方法
WO2020125654A1 (zh) 一种bsr上报方法及装置
WO2009059460A1 (en) Method and device for scheduling resource between different tdd systems
KR20160035023A (ko) 서브캐리어 그룹 및 프레임 포맷에 대한 wlan ofdma 설계 시스템 및 방법
US20180234877A1 (en) Method for creating media access control entity, device, and system
CN101459964B (zh) 无线资源分配的方法及其相关通讯装置
JP2015509341A (ja) データおよび音声サービスの共存を実現するための送信方法、システム及び通信装置
WO2010043183A1 (zh) 业务数据传输方法、系统及设备
WO2018064838A1 (zh) 一种混合时分复用机制
WO2012116539A1 (zh) 一种令牌发放方法和系统
CN109729025A (zh) 一种处理灵活以太网的数据的方法及相关设备
JP2004159282A (ja) 無線通信システム及びその無線通信方法
WO2014090162A1 (zh) 一种节点调度方法、设备及系统
CN109246709A (zh) 建立无线承载的方法及基站
WO2010075673A1 (zh) 资源配置和数据传输的方法、装置及通信系统
CN107919932B (zh) 一种混合时分复用机制
WO2012122906A1 (zh) 一种信道占用方法、移动ap和外接sta
WO2010142242A1 (zh) 多载波系统的调度方法及设备
TWI590690B (zh) 無線網路管理方法與網路管理者節點
EP4068709A1 (en) Network slice message transmission method, electronic device and storage medium
CN107534999A (zh) 一种数据传输方法及接入点、站点
WO2018085989A1 (zh) 一种信道分配及帧传输控制器
TWI222802B (en) Wireless LAN, method of data transmission and reception by wireless LAN and medium on which control program for data transmission and reception is recorded

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016918171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016918171

Country of ref document: EP

Effective date: 20190509