WO2018064783A1 - Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie - Google Patents

Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie Download PDF

Info

Publication number
WO2018064783A1
WO2018064783A1 PCT/CH2017/000091 CH2017000091W WO2018064783A1 WO 2018064783 A1 WO2018064783 A1 WO 2018064783A1 CH 2017000091 W CH2017000091 W CH 2017000091W WO 2018064783 A1 WO2018064783 A1 WO 2018064783A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar thermal
transfer fluid
heat transfer
circuit
Prior art date
Application number
PCT/CH2017/000091
Other languages
English (en)
Inventor
François Ignace GEINOZ
David Orlando
Original Assignee
CUENI, Marcel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CUENI, Marcel filed Critical CUENI, Marcel
Publication of WO2018064783A1 publication Critical patent/WO2018064783A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/20Solar heat collectors using working fluids having circuits for two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a solar thermal sensor for roofing and / or façade of a building, comprising at least one layer of a thermally insulating material, at least one circuit of at least one conduit containing a circulating heat transfer fluid, and mounted under a roof and / or inside a wall of said building, said at least one duct being arranged to capture by radiation and / or convection, thermal energy produced directly or indirectly by solar radiation on said roof and or on said wall of said building. It also relates to a solar thermal capture process, performed with said solar thermal sensor above.
  • the known sensors are usually placed directly on the surface of a roof or facade, and are therefore exposed to all hazards, so that they must be protected, especially against frost or Shocks or dirt that have the effect of significantly reducing the efficiency of the devices. Therefore their installation is expensive, the risk of their behavior is high and their efficiency very random.
  • their installation is subject to strict regulations, which can go as far as prohibiting installation depending on the site, for aesthetic or safety reasons, particularly in areas close to airfields, where a glass surface reflecting on roofs can be annoying, even dangerous for air traffic, civil and / or military. Therefore solar collectors for heating a heat transfer fluid, and placed directly on a built support, including a roof or a facade can not be maintained without protection and without means of safety. Presentation of the invention
  • the present invention proposes to overcome all the drawbacks mentioned above, by producing solar energy sensors whose installation is economical, which require practically no authorization from the authorities of the cities and municipalities, because they are not visible on the exterior surfaces of buildings. Their use can be extended practically all year round, because they are designed to work at low temperature, as part of a thermal energy capture, the latter being injected into an energy network, or to charge energy. thermal, geothermal storage elements arranged to accumulate thermal energy in the soil or in appropriate storage bins.
  • the solar thermal sensor for roofing and / or facade of a building, as defined in the preamble and characterized in that said solar thermal sensor comprises at least one layer of a thermally conductive material, disposed between said layer of thermally insulating material and said at least one circuit of at least one conduit containing said heat transfer fluid, in order to capture the thermal energy produced by radiation and / or radiation at best by said heat transfer fluid, which circulates in said cooling circuit; at least one duct.
  • said layer of thermally conductive material constitutes a first space having a shape which at least partially encloses a circuit of at least one conduit containing said heat transfer fluid.
  • Said layer of thermally conductive material advantageously forms a second space which is in direct contact with a circulating air space disposed between an upper free surface of said layer of thermally conductive material and an inner surface directly in contact with a facade of a building.
  • said layer of thermally conductive material forms a second space which is in direct contact with a circulating air space disposed between an upper free surface of said layer of thermo-conductive material and an inner surface directly under contact with a roof and / or facade of a building.
  • Said layer of a thermally insulating material is preferably made with a rigid insulating material, in which cells are formed to receive said at least one circuit of at least one conduit containing said heat transfer fluid.
  • said cavities formed on the surface of said layer of insulating material have a depth at least equal to the radius of the cross section of said ducts.
  • said circulating air layer is located between said free surface of said heat-conducting layer and the inner surface of said roof.
  • Said circulating air layer is preferably located between said free surface of said heat-conducting layer and an inner wall of said facade.
  • Said thick layer of insulating material is preferably arranged directly applied to the inner wall of an outer wall of said facade and said partitions.
  • the method according to the invention is characterized in that a conduit circuit is placed in direct contact, with a preformed thermo-conducting layer providing a network of cells in which said conduits are disposed, and depositing said a heat-conducting layer on the surface of a thick layer of insulating material, formed under said roof and / or inside said building with respect to one of its facades, such that said duct circuit is partially in contact, a part of the surface of the ducts, with at least one layer of circulating air that has been formed in front of the free surface of said heat-conducting layer, and a heat-transfer liquid is circulated in said circuit of conduits for radiative and convective sensing of thermal energy transmitted by said thermally conductive layer and said air layer in contact with the surface of said conduits.
  • a flow of air is advantageously generated in said circulating air layer to increase the heat exchange between said air flow and said heat transfer fluid circulating in said duct network.
  • the invention also relates to the application for capturing solar thermal energy with said solar thermal sensor and to provide it in an anergy-type thermal energy distribution network, in which the temperature of the heat transfer fluid of the network has a a value substantially comprised between 2 and 20 ° C and preferably between 9 and 15 ° C, in which the solar thermal sensing is carried out in at least one duct circuit containing a heat transfer fluid and wherein said heat transfer fluid is coupled to said heat transfer fluid of the anergy network, with a view to supplying said heat transfer fluid of the anergy network with thermal energy via a heat exchanger.
  • the application wherein the supply of heat energy by said heat transfer fluid to said network heat transfer fluid is advantageously proportional to the temperature differential between said heat transfer fluid and said heat transfer fluid network follow separate separate paths.
  • FIG. 1 is a partial view of a sloping roofing sensor of a building, according to the invention
  • FIG. 2 is a view of a building façade sensor, according to the invention, this sensor can be alone or combined with a sloped roof sensor
  • Figure 3 is a view of a flat roof roof sensor of a building, according to the invention.
  • the solar collector 10 is specific for a roof
  • the solar collector 30 is specific for a façade associated with a roof with a solar collector for an inclined roof
  • the solar collector 40 is intended for a flat roof.
  • the cover of the roof can be achieved in different ways, known per se. It can, for example, be made of natural or artificial tiles, sheet metal plates, or any other material, especially translucent tiles, which make it possible to increase the heat-generating radiation on the sensors and to increase their effectiveness. .
  • the solar collector 10 comprises at least one network of a duct circuit 13, arranged to convey a coolant 14, the ducts 13 being preformed into rectilinear and curved sections so that they can be connected together, in part glued together, to constitute a continuous circuit of conduits 13 and to form a heat transfer fluid circuit.
  • the ducts 13 are preferably assembled by gluing tubular segments which are, for example, tubular segments made of polyethylene or similar glued, or are joined by sealing means adapted to allow a fixed network to be formed.
  • the conduits 13 which constitute a continuous circuit may advantageously be polyethylene tubes of circular section and they are advantageously deposited in a network of cells 15, preformed in a layer of a thermally conductive material 16.
  • Said cells 15 have equivalent dimensions to those of the conduits 13, so that the network of cells 15 can accommodate and accommodate the continuous circuit of conduits 13.
  • the diameter of the ducts 13 is such that the ducts are forced into the cells 15 and are held in position.
  • the layer of the thermally conductive material 16 is advantageously deposited on the upper surface of a thick layer 17 of insulating material which is itself laid in support on an inner support 18 of the roof 12, this support being for example made of paneling or the like.
  • the thick layer 17 of insulating material is preferably made of a relatively rigid material so that its surface can be preformed and comprise cells 15 arranged to receive a network in which said ducts 13 are disposed.
  • a circulating air space 20 is preserved which sweeps the free surface of the conduits 13 emerging from the upper surface of the cells 15, and the lower surface of said cover 1 1 of the roof 12.
  • the thermal energy which radiatively heats the surface of the roof 1 1, is transmitted by convection to the air of said circulating air space 20 and to the layer of said thermally conductive material 16, to ultimately heat the heat transfer fluid 14 which circulates in the conduit circuit 13.
  • Part of the heat captured by the roof may be radiated to the mass of said thermally conductive material 16 and transmitted through the walls of the cells 15 and then ducts 13 which bear with them to the coolant 14.
  • the objective of the method is to capture the maximum amount of thermal energy and to transmit it to the coolant 14 for the purpose of sending it to an urban distribution network of this heat energy via a low temperature network, called anergy network. .
  • Anergy network a low temperature network
  • FIG. 2 illustrates another embodiment of a solar collector 30 according to the invention, which is a facade sensor whose objective is to convert solar radiation into thermal energy that can be used by an anergy-type network, with advantages similar to those described above.
  • the solar collector 30 is intended to capture thermal energy initially produced by the radiation of the sun on the surface of the facade 31.
  • conduits 13 of the continuous circuit are advantageously polyethylene or polypropylene tubes or the like, which have circular sections, and which are deposited in a network of cells 15 preformed in a layer of a thermally conductive material. cavities 15 have dimensions equivalent to those of conduits 13, so that the network of cells 15 can accommodate and accommodate the continuous circuit of conduits 13.
  • the diameter of the ducts 13 is such that the ducts 13 are forcibly engaged in the cells 15 and are held in position.
  • the layer of thermally conductive material 16 is disposed on the inner surface a thick layer 17 of insulating material bearing against the inner surface of the wall of the facade 31.
  • the thick layer 17 of insulating material is made preferably of a relatively rigid material, so that its surface can be preformed and include cells 15 arranged to receive said conduits 13. The relative stiffness of the materials ensures the connection of the components.
  • the facade 30 further includes an inner partition 32 which is disposed at a distance from the inner surface of the thermally conductive material layer 16 by providing a circulating air space 20 between the thermally conductive material layer 16 and the inner wall 32 of the thermally conductive material layer 16. the inner wall of the facade 30.
  • the facade has strictly the same characteristics as the roof and in addition, the roof and the facade have exactly the same so that, in this construction, the facade and the roof can be associated to allow to combine their specificities .
  • the thermal input can be considerably improved because it results from the permanent combination of the intake captured by the sensor elements of the facade and the sensor elements of the roof, because the expenses due to costs usually incurred to the protection of visible sensors on external structures are no longer necessary and because the transport of thermal energy is through an anergy network that can work almost without thermal protection because it can work without surrounding structures thermal insulation, the thermal profitability of an organization of this type can be considerably improved.
  • FIG. 3 illustrates a solar collector 40 specifically intended for use on a flat roof 12a which comprises a sheet 41a of impervious material, disposed on the surface of the roof, a thick layer 17 of a rigid insulating material, which is placed on the upper surface of a support 41b, for example corrugated sheet.
  • the solar collector 40 is composed of a continuous circuit of conduits 13, arranged to convey a coolant 14.
  • the conduits 13 of the continuous circuit are advantageously polyethylene or similar tubes of circular section which are deposited in a network of cells
  • the said cells 15 have dimensions equivalent to those of the ducts 13, so that the network of the cells 15 can accommodate and accommodate the continuous circuit of ducts 13.
  • layer of thermally conductive material 16 is disposed on the upper surface of the thick layer 17 of insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Le Capteur thermique solaire (10) de toiture d'un bâtiment, monté sous une toiture (12) et comporte au moins un circuit de conduits (13) d'un fluide caloporteur (14) agencé pour capter par rayonnement et/ou par convection de l'énergie thermique produite directement ou indirectement par le rayonnement solaire. Le circuit de conduits (13) est en contact direct, sur une partie de la surface des conduits, avec une couche d'un matériau thermo-conducteur (16) préformée ménageant un réseau d'alvéoles (15) dans lequel sont disposés lesdits conduits (13), ladite couche thermo-conductrice (16) étant déposée à la surface d'une couche épaisse (17) de matériau isolant et avec un espace d'air circulant (18) localisé entre la surface intérieur de la couverture de la toiture (12) et la surface supérieure de ladite couche de matériau thermo-conducteur (16).

Description

CAPTEUR THERMIQUE SOLAIRE, PROCEDE DE CAPTAGE THERMIQUE SOLAIRE AVEC LEDIT CAPTEUR ET APPLICATION DANS UN RESEAU URBAIN DE DISTRIBUTION D'ENERGIE DU TYPE ANERGIE Domaine technique
La présente invention concerne un capteur thermique solaire de toiture et/ou de façade d'un bâtiment, comportant au moins une couche d'un matériau thermiquement isolant, au moins un circuit d'au moins un conduit contenant un fluide caloporteur circulant, et monté sous une toiture et/ou à l'intérieur d'une paroi dudit bâtiment, ledit au moins un conduit étant agencé pour capter par rayonnement et/ou par convection, de l'énergie thermique produite directement ou indirectement par radiation solaire sur ladite toiture et/ou sur ladite paroi dudit bâtiment. Elle concerne également un procédé de captage thermique solaire, effectué avec ledit capteur thermique solaire ci-dessus.
Elle concerne enfin une application du procédé de captage thermique solaire effectué avec ledit capteur thermique solaire dans un réseau de distribution d'énergie du type anergie.
Technique antérieure
On connaît de nombreux types de capteurs solaires à circulation de fluide caloporteur, agencés pour capter de l'énergie calorifique en vue de l'injecter dans un circuit de chauffage classique, souvent utilisé pour chauffer l'eau d'une piscine. L'objectif de ces capteurs est habituellement la production de fluide caloporteur chaud, c'est-à-dire ayant une température très supérieure à la température ambiante, ou la température de l'eau d'une piscine, pour permettre d'élever cette température, notamment en arrière-saison, pour prolonger la période d'utilisation des piscines dans les régions tempérées. Les capteurs connus présentent l'inconvénient d'être trop performants pendant les périodes de forte chaleur et peu performants pendant les autres périodes. En outre, les capteurs connus sont habituellement disposés directement à la surface d'une toiture ou d'une façade, et sont, de ce fait, exposés à tous les dangers, de sorte qu'ils doivent être protégés, notamment contre le gel ou les chocs ou contre les salissures qui ont pour effet de réduire considérablement l'efficacité des appareils. De ce fait leur installation est coûteuse, le risque de leur tenue est élevé et leur efficacité très aléatoire. De plus, leur installation est soumise à des réglementations strictes, qui peuvent aller jusqu'à une interdiction d'installation selon les sites, pour des raisons esthétiques ou sécuritaires, en particulier dans des zones proches de terrains d'aviation, où une surface vitrée réfléchissante sur des toitures peut être gênante, voire dangereuse pour le trafic aérien, civil et/ou militaire. Par conséquent des capteurs solaires destinés à chauffer un fluide caloporteur, et placés directement sur un support construit, notamment une toiture ou une façade ne peuvent pas être maintenus sans protection et sans moyens de sécurité. Exposé de l'invention
La présente invention se propose de pallier l'ensemble des inconvénients mentionnés ci-dessus, en réalisant des capteurs d'énergie solaire dont l'installation est économique, qui ne nécessitent pratiquement aucune autorisation de la part des autorités des villes et des communes, parce qu'ils ne sont pas apparents sur les surfaces extérieures des bâtiments. Leur utilisation peut être étendue pratiquement sur toute l'année, parce qu'ils sont conçus pour travailler en basse température, dans le cadre d'un captage d'énergie thermique, cette dernière étant injectée dans un réseau anergie, ou pour charger en énergie thermique, des éléments de stockage géothermique agencés pour accumuler de l'énergie thermique dans le sol ou dans des corbeilles de stockage appropriées. Ces buts sont atteints par le capteur thermique solaire de toiture et/ou de façade d'un bâtiment, tel que défini en préambule et caractérisé en ce que ledit capteur thermique solaire comporte au moins une couche d'un matériau thermiquement conducteur, disposée entre ladite couche de matériau thermiquement isolant et ledit au moins un circuit d'au moins un conduit contenant ledit fluide caloporteur, afin de capter l'énergie thermique produite par rayonnement et/ou par radiation au mieux par ledit fluide caloporteur, qui circule dans ledit circuit d'au moins un conduit. Selon un mode de réalisation avantageux, ladite couche de matériau thermiquement conducteur constitue un premier espace ayant une forme qui enclave au moins partiellement un circuit d'au moins un conduit contenant ledit fluide caloporteur. Ladite couche de matériau thermiquement conducteur, forme avantageusement un deuxième espace qui est en contact direct avec un espace d'air circulant disposé entre une surface libre supérieure de ladite couche de matériau thermiquement conducteur et une surface intérieure directement en contact avec une façade d'un bâtiment.
Selon un mode de réalisation avantageux, ladite couche de matériau thermiquement conducteur, forme un deuxième espace qui est en contact direct avec un espace d'air circulant disposé entre une surface libre supérieure de ladite couche de matériau thermo-conducteur et une surface intérieure directement en contact avec une toiture et/ou une façade d'un bâtiment.
Ladite couche d'un matériau thermiquement isolant est de préférence réalisée avec un matériau isolant rigide, dans lequel sont formés des alvéoles agencés pour recevoir ledit au moins un circuit d'au moins un conduit contenant ledit fluide caloporteur. Selon une forme de réalisation avantageuse, lesdits alvéoles ménagés en surface de ladite couche de matériau isolant ont une profondeur au moins égale au rayon de la section transversale desdits conduits. Avantageusement ladite couche d'air circulant est localisée entre ladite surface libre de ladite couche thermo-conductrice et la surface intérieure de ladite toiture.
Ladite couche d'air circulant est de préférence localisée entre ladite surface libre de ladite couche thermo-conductrice et une cloison intérieure de ladite façade.
Ladite couche épaisse de matériau isolant est, de préférence, disposée directement en applique sur la paroi intérieure d'un mur extérieur de ladite façade et lesdites cloisons.
Le procédé selon l'invention est caractérisé en ce que l'on met en place un circuit de conduits en contact direct, avec une couche thermo-conductrice préformée ménageant un réseau d'alvéoles dans lequel sont disposés lesdits conduits, l'on dépose ladite couche thermo-conductrice à la surface d'une couche épaisse de matériau isolant, ménagée sous ladite toiture et/ou à l'intérieur dudit bâtiment par rapport à un de ses façades, de telle manière que ledit circuit de conduits est partiellement en contact, par une partie de la surface des conduits, avec au moins une couche d'air circulant que l'on a ménagée en avant de la surface libre de ladite couche thermo-conductrice, et l'on fait circuler un liquide caloporteur dans ledit circuit de conduits pour qu'il capte, par rayonnement et par convection, de l'énergie thermique transmise par ladite couche thermo-conductrice et par ladite couche d'air, en contact avec la surface desdits conduits. Selon le procédé, l'on génère avantageusement un flux d'air dans ladite couche d'air circulant pour accroître l'échange thermique entre ledit flux d'air et ledit fluide caloporteur qui circule dans ledit réseau de conduits. L'invention concerne également l'application pour capter de l'énergie thermique solaire avec ledit capteur thermique solaire et à l'apporter dans un réseau de distribution d'énergie thermique du type anergie, dans lequel la température du fluide caloporteur du réseau a une valeur sensiblement comprise entre 2 et 20°C et de préférence entre 9 et 15°C, dans lequel le captage thermique solaire s'effectue dans au moins un circuit de conduits contenant un fluide caloporteur et dans lequel ledit fluide caloporteur est couplé audit fluide caloporteur du réseau anergie, en vue d'apporter audit fluide caloporteur du réseau anergie, de l'énergie thermique, via un échangeur de chaleur thermique. L'application, dans laquelle l'apport d'énergie thermique par ledit fluide caloporteur de circuit audit fluide caloporteur de réseau est avantageusement proportionnelle au différentiel de température entre ledit fluide caloporteur de circuit et ledit fluide caloporteur de réseau suivent des voies distinctes séparées.
Description sommaire des dessins
La présente invention et ses principaux avantages apparaîtront mieux dans la description d'une forme de réalisation préférée, en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue partielle d'un capteur de toiture en pente d'un bâtiment, selon l'invention, la figure 2 est une vue d'un capteur de façade d'un bâtiment, selon l'invention, ce capteur pouvant être seul ou combiné avec un capteur de toiture en pente, et la figure 3 est une vue d'un capteur de toiture pour toit plat d'un bâtiment, selon l'invention.
Meilleure(s) manière(s) de réaliser l'invention
En référence aux figures, le capteur solaire 10 est spécifique pour une toiture, le capteur solaire 30 est spécifique pour une façade associée à une toiture avec un capteur solaire pour une toiture inclinée, et le capteur solaire 40 est destiné à une toiture plate. Il est bien entendu que la couverture de la toiture peut être réalisée de différentes manières, connues en soi. Elle peut, par exemple être en tuiles naturelles ou artificielles, en plaques de tôle, ou en toute autre matière, notamment en tuiles translucides, qui permettent d'augmenter le rayonnement producteur de chaleur, sur les capteurs et d'en augmenter l'efficacité. Le capteur solaire 10, comporte au moins un réseau d'un circuit de conduits 13, agencés pour véhiculer un fluide caloporteur 14, les conduits 13 étant préformés en tronçons rectilignes et courbes pour pouvoir être connectés ensemble, en partie collés entre eux, pour constituer un circuit continu de conduits 13 et pour former un circuit de fluide caloporteur. L'assemblage des conduits 13 est préférablement réalisé par collage de segments tubulaires qui sont, par exemple des segments tubulaires en polyéthylène ou similaire collés, ou sont réunis par des moyens de fixation étanche adaptés pour permettre de constituer un réseau fixe.
Les conduits 13 qui constituent un circuit continu, peuvent avantageusement être des tubes en polyéthylène de section circulaire et ils sont avantageusement déposés dans un réseau d'alvéoles 15, préformés dans une couche d'un matériau thermoconducteur 16. Lesdits alvéoles 15 ont des dimensions équivalentes à celles des conduits 13, de sorte que le réseau des alvéoles 15 peut accueillir et loger le circuit continu de conduits 13. Le diamètre des conduits 13 est tel que les conduits soient engagés de force dans les alvéoles 15 et soient maintenus en position. La couche du matériau thermoconducteur 16 est avantageusement déposée sur la surface supérieure d'une couche épaisse 17 de matériau isolant qui est elle-même posée en appui sur un support intérieur 18 de la toiture 12, ce support étant par exemple réalisé en lambris ou similaires. La couche épaisse 17 de matériau isolant est réalisée, de préférence en un matériau relativement rigide, de telle manière que sa surface puisse être préformée et comporter des alvéoles 15 agencés pour 5 recevoir un réseau dans lequel sont disposés lesdits conduits 13.
Entre la surface supérieure de la couche de matériau isolant épaisse 7 et la surface inférieure de la couverture 11 de la toiture 12, est préservé un espace d'air circulant 20 qui balaye la surface libre des conduits 13 émergeant de la î o surface supérieure des alvéoles 15, et la surface inférieure de ladite couverture 1 1 de la toiture 12. L'énergie thermique qui chauffe par rayonnement la surface de la toiture 1 1 , se transmet par convection à l'air dudit espace d'air circulant 20 et à la couche dudit matériau thermoconducteur 16, pour réchauffer en finalité le fluide caloporteur 14 qui circule dans le circuit de conduits 13. Par ailleurs
15 une partie de la chaleur captée par la toiture peut être communiquée par rayonnement à la masse dudit matériau thermoconducteur 16 et transmise, à travers les parois des alvéoles 15 puis des conduits 13 qui sont en appui avec eux, au fluide caloporteur 14.
20 L'objectif du procédé est de capter la quantité maximale d'énergie thermique et de la transmettre au fluide caloporteur 14 en vue de l'envoyer dans un réseau urbain de distribution de cette énergie calorifique via un réseau à basse température, appelé réseau anergie. L'intérêt économique de cette démarche est lié au fait que la fabrication et l'installation de ces capteurs est extrêmement
25 bon marché, puisqu'ils sont cachés par rapport à l'extérieur du bâtiment, ce qui a pour conséquence d'évité toute obligation de les protéger par rapport à des agressions, notamment météorologiques, de les protéger de l'extérieur ou d'éviter toute contrainte qui consisterait à prendre des précautions du type environnemental. Même si la quantité d'énergie thermique est relativement
30 faible, par rapport à un panneau solaire à exposition directe, ces capteurs 10 ont l'avantage de fonctionner quasiment toute l'année et de contribuer en continu à approvisionner un réseau anergie, avec une énergie thermique bon marché, de façon régulière, avec un coût extrêmement faibleet surtout en évitant toutes les contraintes économiques ou sécuritaires qui sont habituellement exigées par les contraintes légales. La figure 2 illustre une autre forme de réalisation d'un capteur solaire 30 selon l'invention, qui est un capteur de façade dont l'objectif est de convertir le rayonnement solaire en énergie thermique utilisable par un réseau de type anergie, avec des avantages spécifiques similaires à ceux décrits ci-dessus. Le capteur solaire 30 est destiné à capter de l'énergie thermique produite initialement par le rayonnement du soleil sur la surface de la façade 31 . Il comporte, comme précédemment un circuit continu de conduits 13, agencés pour véhiculer un fluide caloporteur 14, et qui sont préformés en tronçons rectilignes, dont certains sont parallèles entre eux, et qui sont reliés deux à deux pour constituer ledit circuit continu de conduits 13. Les conduits 13 du circuit continu, sont avantageusement des tubes en polyéthylène ou en polypropylène ou des similaires, qui ont des sections circulaires, et qui sont déposés dans un réseau d'alvéoles 15 préformés dans une couche d'un matériau thermoconducteur 16. Lesdits alvéoles 15 ont des dimensions équivalentes à celles des conduits 13, de sorte que le réseau des alvéoles 15 puisse accueillir et loger le circuit continu de conduits 13. Le diamètre des conduits 13 est tel que les conduits 13 soient engagés de force dans les alvéoles 15 et soient maintenus en position. Ce maintien en place des éléments qui constituent le réseau de conduits 13 est dû au fait que les éléments du réseau ont des dimensions proches des composants des alvéoles qui assurent la tenue des conduits 3. La couche de matériau thermoconducteur 16 est disposée sur la surface intérieure d'une couche épaisse 17 de matériau isolant en appui contre la surface intérieure de la paroi de la façade 31. La couche épaisse 17 de matériau isolant est réalisée, de préférence en un matériau relativement rigide, de telle manière que sa surface puisse être préformée et comporter des alvéoles 15 agencés pour recevoir lesdits conduits 13. La relative rigidité des matériaux assure la liaison des composants. La façade 30 comporte en outre une cloison intérieure 32 qui est disposée à une certaine distance de la surface intérieure de la couche de matériau thermoconducteur 16 en ménageant un espace d'air circulant 20 entre la couche de matériau thermoconducteur 16 et la cloison intérieure 32 de la paroi intérieure de la façade 30.
Dans le présent cas, la façade a strictement les même caractéristiques que la toiture et de surcroît, la toiture et la façade ont strictement la même de sorte que, dans cette construction, la façade et la toiture peuvent être associées pour permettre de combiner leurs spécificités. Ainsi l'apport thermique peut être considérablement amélioré du fait qu'il résulte de la combinaison permanente de l'apport capté par les éléments capteurs de la façade et des éléments capteurs de la toiture, du fait que les dépenses dues à des frais habituellement consacrés à la protection de capteurs apparents sur les structures extérieures ne sont plus nécessaires et du fait que le transport d'énergie thermique se fait à travers un réseau anergie qui peut travailler quasiment sans protection thermique parce qu'il peut travailler sans s'entourer de structures d'isolation thermique, la rentabilité thermique d'une organisation de ce type peut être considérablement améliorée.
La figure 3 illustre un capteur solaire 40 spécifiquement destiné à une utilisation sur une toiture plate 12a qui comporte une feuille 41 a d'un matériau étanche, disposée à la surface de la toiture, une couche épaisse 17 d'un matériau isolant rigide, qui est placée sur la surface supérieure d'un support 41 b, par exemple en tôle ondulée. Le capteur solaire 40 est composé d'un circuit continu de conduits 13, agencés pour véhiculer un fluide caloporteur 14. Les conduits 13 du circuit continu, sont avantageusement des tubes en polyéthylène ou similaire de section circulaire qui sont déposés dans un réseau d'alvéoles 15 préformés dans une couche d'un matériau thermoconducteur 16. Lesdits alvéoles 15 ont des dimensions équivalentes à celles des conduits 13, de sorte que le réseau des alvéoles 15 puisse accueillir et loger le circuit continu de conduits 13. La couche de matériau thermoconducteur 16 est disposée sur la surface supérieure de la couche épaisse 17 de matériau isolant.
Dans cette réalisation, aucun espace d'air circulant n'est prévu entre le 5 matériau thermoconducteur 16 et la couche épaisse 17 de matériau isolant, les conduits 13 étant directement posés sous la feuille 41a de matériau étanche. Néanmoins, les conduits 13 sont directement en contact avec la couche de couverture 41 a de la toiture. Il en résulte que les calories qui sont captées par la couche 41 a sont collectées par la feuille 41a et en partie retransmises au î o fluide caloporteur 14 qui circule à l'intérieur du conduit 13.
Diverses variantes pourraient être imaginées par l'homme de l'art, en ce qui concerne la réalisation des capteurs solaires et de leur disposition. En particulier, les variantes destinées à la toiture des figures 1 et 3 et la variante 15 destinée à la façade de la figure 2, pourraient être combinées. Les parties caractéristiques pourraient être combinées et multipliées du fait que les particularités de chaque réalisation pourraient être ajoutées les unes aux autres pour obtenir des effets combinés.

Claims

REVENDICATIONS
1. Capteur thermique solaire (10, 30, 40) de toiture (12, 12a) et/ou de façade (31 ) d'un bâtiment, comportant au moins une couche d'un matériau thermiquement isolant (17), au moins un circuit d'au moins un conduit (13) contenant un fluide caloporteur (14) circulant, et monté sous une toiture et/ou à l'intérieur d'une paroi dudit bâtiment, ledit au moins un conduit (13) étant agencé pour capter par rayonnement et/ou par convection, de l'énergie thermique produite directement ou indirectement par radiation solaire sur ladite toiture et/ou sur ladite paroi dudit bâtiment, caractérisé en ce que ledit capteur thermique solaire (10, 30, 40) comporte au moins une couche d'un matériau thermiquement conducteur (16), disposée entre ladite couche de matériau thermiquement isolant (17) et ledit au moins un circuit d'au moins un conduit (13) contenant ledit fluide caloporteur (14), afin de capter l'énergie thermique produite par rayonnement et/ou par radiation au mieux par ledit fluide caloporteur (14), qui circule dans ledit circuit d'au moins un conduit (13).
2. Capteur thermique solaire, selon la revendication 1 , caractérisé en ce que ladite couche de matériau thermiquement conducteur (16) forme un premier espace (15) ayant une forme qui enclave au moins partiellement un circuit d'au moins un conduit (13) contenant ledit fluide caloporteur (14).
3. Capteur thermique solaire, selon la revendication 1 , caractérisé en ce que ladite couche de matériau thermiquement conducteur (16), forme un deuxième espace qui est en contact direct avec un espace d'air circulant (20) disposé entre une surface libre supérieure de ladite couche de matériau thermo-conducteur (16) et une surface intérieure directement en contact avec une toiture (12, 12a) et/ou une façade (31 ) d'un bâtiment.
4. Capteur thermique solaire, selon la revendication 1 , caractérisé en ce que ladite couche de matériau thermiquement conducteur (16), forme un deuxième espace qui est en contact direct avec un espace d'air circulant (20) disposé entre une surface libre supérieure de ladite couche de matériau thermiquement conducteur (16) et une surface intérieure directement en contact avec une façade (32) d'un bâtiment.
5. Capteur thermique solaire selon la revendication 1 , caractérisé en ce que ladite couche d'un matériau thermiquement isolant (17) est réalisée avec un matériau isolant rigide, dans lequel sont formés des alvéoles (15) agencés pour recevoir ledit au moins un circuit d'au moins un conduit (13) contenant ledit fluide caloporteur (14).
6. Capteur thermique solaire selon l'une des revendications 1 à 4, caractérisé en ce que lesdits alvéoles (15) ménagés en surface de ladite couche de matériau isolant (17) ont une profondeur au moins égale au rayon de la section transversale desdits conduits (13).
7. Capteur thermique solaire selon la revendication 1 , caractérisé en ce que ladite couche d'air circulant (20) est localisée entre ladite surface libre de ladite couche thermo-conductrice (16) et la surface intérieure de ladite toiture.
8. Capteur thermique solaire selon la revendication 1 , caractérisé en ce que ladite couche d'air circulant (20) est localisée entre ladite surface libre de ladite couche thermo-conductrice (16) et une cloison intérieure (32) de ladite façade.
9. Capteur thermique solaire selon la revendication 1 , caractérisé en ce que ladite couche épaisse de matériau isolant (17) est disposée directement en applique sur la paroi intérieure d'un mur extérieur de ladite façade et lesdites cloisons (13).
10. Procédé de captage thermique solaire, effectué avec ledit capteur thermique solaire, selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on met en place un circuit de conduits (13) en contact direct, avec une couche thermo-conductrice préformée (16) ménageant un réseau d'alvéoles (15) dans lequel sont disposés lesdits conduits, l'on dépose ladite couche thermo-conductrice à la surface d'une couche épaisse de matériau isolant (17), ménagée sous ladite toiture et/ou à l'intérieur dudit bâtiment par rapport à un de ses façades, de telle manière que ledit circuit de conduits (13) est partiellement en contact, par une partie de la surface des conduits, avec au moins une couche d'air circulant (20) que l'on a ménagée en avant de la surface libre de ladite couche thermo-conductrice, et l'on fait circuler un liquide caloporteur dans ledit circuit de conduits pour qu'il capte, par rayonnement et par convection, de l'énergie thermique transmise par ladite couche thermoconductrice et par ladite couche d'air, en contact avec la surface desdits conduits (13).
1 1 . Procédé de captage thermique selon la revendication 10, caractérisé en ce que l'on génère un flux d'air dans ladite couche d'air circulant (20) pour accroître l'échange thermique entre ledit flux d'air et ledit fluide caloporteur qui circule dans ledit réseau de conduits.
12. Application du procédé de captage thermique solaire effectué selon l'une des revendications 10 et 1 1 , pour capter de l'énergie thermique solaire avec ledit capteur thermique solaire et à l'apporter dans un réseau de distribution d'énergie thermique du type anergie, dans lequel la température du fluide caloporteur du réseau a une valeur sensiblement comprise entre 2 et 20°C et de préférence entre 9 et 15°C, dans lequel le captage thermique solaire s'effectue dans au moins un circuit de conduits contenant un fluide caloporteur et dans lequel ledit fluide caloporteur est couplé audit fluide caloporteur du réseau anergie, en vue d'apporter audit fluide caloporteur du réseau anergie, de l'énergie thermique, via un échangeur de chaleur thermique.
13. Application selon la revendication 12, dans laquelle l'apport d'énergie thermique par ledit fluide caloporteur (14) de circuit audit fluide caloporteur de réseau est proportionnel au différentiel de température entre ledit fluide caloporteur de circuit et ledit fluide caloporteur de réseau suivent des voies distinctes séparées.
PCT/CH2017/000091 2016-10-05 2017-10-04 Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie WO2018064783A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01325/16 2016-10-05
CH01325/16A CH713010B1 (fr) 2016-10-05 2016-10-05 Capteur solaire thermique, procédé de captage solaire thermique et application de ce procédé.

Publications (1)

Publication Number Publication Date
WO2018064783A1 true WO2018064783A1 (fr) 2018-04-12

Family

ID=60331369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2017/000091 WO2018064783A1 (fr) 2016-10-05 2017-10-04 Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie

Country Status (2)

Country Link
CH (1) CH713010B1 (fr)
WO (1) WO2018064783A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009472A1 (fr) * 1978-09-13 1980-04-02 Walter Jäger Elément de construction à usage multiple, en particulier pour échangeurs de chaleur ainsique procédé et dispositif pour sa fabrication
US4290414A (en) * 1979-08-07 1981-09-22 John Sharp Solar heating collectors
DE3147632A1 (de) * 1981-12-02 1983-06-16 August Brötje GmbH & Co, 2902 Rastede Fassaden-absorber
US20090044797A1 (en) * 2007-08-13 2009-02-19 Michael Robert Klement Radiant baffle/collector for roof construction and retrofit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009472A1 (fr) * 1978-09-13 1980-04-02 Walter Jäger Elément de construction à usage multiple, en particulier pour échangeurs de chaleur ainsique procédé et dispositif pour sa fabrication
US4290414A (en) * 1979-08-07 1981-09-22 John Sharp Solar heating collectors
DE3147632A1 (de) * 1981-12-02 1983-06-16 August Brötje GmbH & Co, 2902 Rastede Fassaden-absorber
US20090044797A1 (en) * 2007-08-13 2009-02-19 Michael Robert Klement Radiant baffle/collector for roof construction and retrofit

Also Published As

Publication number Publication date
CH713010B1 (fr) 2023-02-28
CH713010A2 (fr) 2018-04-13

Similar Documents

Publication Publication Date Title
EP2332181B1 (fr) Dispositif de production d'énergie à partir du rayonnement solaire
EP2354713B1 (fr) Système solaire thermique pour chauffer un espace habitable.
FR2939162A1 (fr) Toiture solaire
EP2623909B1 (fr) Panneau photovoltaïque à récupération thermique
FR2999830B1 (fr) Element de traitement d'un rayonnement solaire ameliore ainsi qu'un suiveur solaire et une centrale solaire equipee d'un tel element
WO2018064783A1 (fr) Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie
FR2536156A1 (fr) Capteur d'energie calorifique a circulation d'un gaz comportant un echangeur au contact dudit gaz
FR2950131A1 (fr) Dispositif de ventilation d'un batiment de type puits canadien
FR2995390A1 (fr) Module solaire hybride thermique et photovoltaique
FR2912444A1 (fr) Dispositif de capteur thermique solaire integre aux toitures et terrasses
FR2913487A1 (fr) Amelioration aux echangeurs gaz/sol ou liquides/sol et installations de chauffage ou de climatisation utilisant de tels echangeurs ameliores.
EP4214453B1 (fr) Système de chauffage solaire
EP3561402B1 (fr) Procédé et dispositif de contrôle thermique d'un bâtiment
FR2983221A3 (fr) Module de construction et procede de fabrication dudit module
FR2937713A1 (fr) Unite d'echange de chaleur pour batiment
FR3029367A1 (fr) Panneau photovoltaique avec radiateurs
WO2022058688A1 (fr) Système de chauffage solaire
FR3047022A1 (fr) Element d'enveloppe de batiment comprenant un materiau a changement de phase, et batiment correspondant
FR3080120A1 (fr) Systeme de regulation thermique
FR3047550B1 (fr) Panneau solaire
FR2942029A1 (fr) Panneau solaire thermique vertical
JP2009092362A (ja) 太陽光熱の反射集熱装置
FR3135515A1 (fr) Panneau solaire photovoltaïque et thermique.
EP2354714B1 (fr) Système solaire thermique et procédé pour chauffer un espace habitable.
FR3005813A1 (fr) Panneau solaire hybride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17798091

Country of ref document: EP

Kind code of ref document: A1