WO2018062248A1 - 無線端末及び基地局 - Google Patents

無線端末及び基地局 Download PDF

Info

Publication number
WO2018062248A1
WO2018062248A1 PCT/JP2017/034903 JP2017034903W WO2018062248A1 WO 2018062248 A1 WO2018062248 A1 WO 2018062248A1 JP 2017034903 W JP2017034903 W JP 2017034903W WO 2018062248 A1 WO2018062248 A1 WO 2018062248A1
Authority
WO
WIPO (PCT)
Prior art keywords
notification
transmission
mbms service
level
enb
Prior art date
Application number
PCT/JP2017/034903
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018542626A priority Critical patent/JP6670944B2/ja
Publication of WO2018062248A1 publication Critical patent/WO2018062248A1/ja
Priority to US16/365,438 priority patent/US11310631B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a radio terminal and a base station for a mobile communication system.
  • MBMS Multimedia Broadcast Multicast Service
  • MBSFN Multicast Broadcast Single Frequency Network
  • SC-PTM Single Cell Point-To-Multipoint
  • wireless terminals targeting MTC (Machine Type Communication) and IoT (Internet of Things) services that perform communication without human intervention are being studied.
  • MTC Machine Type Communication
  • IoT Internet of Things
  • Such a wireless terminal is required to realize low cost, wide coverage, and low power consumption.
  • 3GPP a new category of wireless terminals in which the transmission / reception bandwidth is limited to only a part of the system transmission / reception band is specified. Coverage enhancement technology including repetitive transmission (repetition) is applied to such a new category of wireless terminals.
  • a wireless terminal includes a receiving unit that receives an MBMS service distributed from a base station using coverage enhancement technology including repeated transmission, a control unit that determines whether a predetermined event has occurred, A transmission unit configured to transmit a notification regarding a coverage enhancement level required by the wireless terminal to the base station in response to occurrence of the predetermined event.
  • the predetermined event is that the base station is requested to transmit the notification or the MBMS service cannot be normally received.
  • a base station receives a notification regarding a coverage enhancement level to be applied to an MBMS service from a network device, and uses the coverage enhancement technique including repetitive transmission based on the notification to transmit the MBMS service based on the notification.
  • a wireless terminal includes a control unit that performs a cell reselection operation of selecting a cell to be used as a serving cell.
  • the control unit selects the cell by ranking based on wireless quality. Even when the coverage enhancement technique is required for the wireless terminal, the control unit uses the ranking when the wireless terminal is receiving or interested in receiving the MBMS service. Rather, the cell belonging to the frequency to which the MBMS service is distributed is preferentially selected.
  • SIB20 SIB20 concerning an embodiment. It is a figure which shows the SCPTM configuration information (SCPTM Configuration) in SC-MCCH which concerns on embodiment. It is a figure which shows the downlink physical channel for eMTC UE which concerns on embodiment. It is a figure which shows the random access procedure for eMTC UE and NB-IoT UE which concern on embodiment. It is a figure which shows an example of the operation
  • the mobile communication system according to the embodiment is an LTE (Long Term Evolution) system whose specifications are defined by 3GPP.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system according to the embodiment.
  • FIG. 2 is a diagram illustrating a network configuration related to MBMS.
  • the LTE system includes a radio terminal (UE: User Equipment) 100, a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10, and a core network (EPC: Evolved Packet Core) 20. Is provided.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile communication device.
  • the UE 100 performs radio communication with the eNB 200 that manages a cell (serving cell) in which the UE 100 is located.
  • the E-UTRAN 10 includes a base station (eNB: evolved Node-B) 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells.
  • eNB200 performs radio
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • the EPC 20 includes a mobility management entity (MME) and a serving gateway (S-GW) 300.
  • MME performs various mobility control etc. with respect to UE100.
  • S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 includes an MCE (Multi-Cell / Multicast Coordinating Entity) 11.
  • the MCE 11 is connected to the eNB 200 via the M2 interface and is connected to the MME 300 via the M3 interface (see FIG. 2).
  • the MCE 11 performs MBSFN radio resource management / allocation and the like. Specifically, the MCE 11 performs MBSFN transmission scheduling. On the other hand, scheduling of SC-PTM transmission is performed by the eNB 200.
  • the EPC 20 includes an MBMS GW (MBMS Gateway) 21.
  • the MBMS GW 21 is connected to the eNB 200 via the M1 interface, is connected to the MME 300 via the Sm interface, and is connected to the BM-SC 22 via the SG-mb and SGi-mb interfaces (see FIG. 2).
  • the MBMS GW 21 performs IP multicast data transmission, session control, and the like for the eNB 200.
  • the EPC 20 includes a BM-SC (Broadcast Multicast Service Center) 22.
  • the BM-SC 22 is connected to the MBMS GW 21 via the SG-mb and SGi-mb interfaces, and is connected to the P-GW 23 via the SGi interface (see FIG. 2).
  • the BM-SC 22 performs management / allocation of TMGI (Temporary Mobile Group Identity).
  • a network outside the EPC 20 may be provided with a GCS AS (Group Communication Service Application Server) 31.
  • GCS AS31 is an application server for group communication.
  • the GCS AS 31 is connected to the BM-SC 22 via the MB2-U and MB2-C interfaces, and is connected to the P-GW 23 via the SGi interface.
  • the GCS AS 31 performs group management and data distribution in group communication.
  • FIG. 3 is a diagram illustrating a configuration of the UE 100 (wireless terminal) according to the embodiment. As illustrated in FIG. 3, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs a baseband signal to control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes described later.
  • FIG. 4 is a diagram illustrating a configuration of the eNB 200 (base station) according to the embodiment.
  • the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 230 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes various processes described later.
  • the backhaul communication unit 240 is connected to the adjacent eNB via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the backhaul communication unit 240 can also be used for communication performed on the M1 interface and communication performed on the M2 interface.
  • FIG. 5 is a diagram showing a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of the UE 100 and the physical layer of the eNB 200, data and control signals are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by HARQ (Hybrid ARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, data and control signals are transmitted via the transport channel.
  • the MAC layer of the eNB 200 includes a scheduler. The scheduler determines the uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and the resource blocks allocated to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection When there is no connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 6 is a diagram illustrating a configuration of a downlink channel of the LTE system.
  • FIG. 6A shows the mapping between the logical channel (Downlink Logical Channel) and the transport channel (Downlink Transport Channel).
  • PCCH Paging Control Channel
  • PCH PCH
  • BCCH Broadcast Control Channel
  • BCCH Broadcast Control Channel
  • DL-SCH Downlink Shared Channel
  • CCCH Common Control Channel
  • CCCH is a logical channel for transmission control information between the UE 100 and the eNB 200.
  • the CCCH is used when the UE 100 does not have an RRC connection with the network.
  • CCCH is mapped to DL-SCH.
  • DCCH (Dedicated Control Channel) is a logical channel for transmitting individual control information between the UE 100 and the network.
  • the DCCH is used when the UE 100 has an RRC connection.
  • DCCH is mapped to DL-SCH.
  • DTCH (Dedicated Traffic Channel) is an individual logical channel for data transmission. DTCH is mapped to DL-SCH.
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-MTCH is a point-to-multipoint downlink channel for transmitting data from the network to UE 100 using SC-PTM transmission.
  • SC-MCCH Single Cell Multicast Control Channel
  • the SC-MTCH is a point-to-multipoint downlink channel for transmitting MBMS control information for one or more SC-MTCHs from the network to the UE 100.
  • SC-MCCH is used for UE 100 that receives or is interested in receiving MBMS using SC-PTM. Also, only one SC-MCCH exists in one cell.
  • MCCH Multicast Control Channel
  • MCH Multicast Channel
  • MTCH Multicast Traffic Channel
  • FIG. 6B shows a mapping between a transport channel (Downlink Transport Channel) and a physical channel (Downlink Physical Channel).
  • BCH is mapped to PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • MCH is mapped to PMCH (Physical Multicast Channel). MCH supports MBSFN transmission by multiple cells.
  • PCH and DL-SCH are mapped to PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • DL-SCH supports HARQ, link adaptation, and dynamic resource allocation.
  • PDCCH carries PDSCH (DL-SCH, PCH) resource allocation information, HARQ information related to DL-SCH, and the like.
  • the PDCCH carries an uplink scheduling grant.
  • FIG. 7 is a diagram illustrating a configuration of a radio frame of the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a PDCCH for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a PDSCH for transmitting downlink data.
  • an MBSFN subframe that is a subframe for MBSFN transmission can be set.
  • both ends in the frequency direction in each subframe are regions used mainly as PUCCH for transmitting an uplink control signal.
  • the remaining part in each subframe is an area that can be used mainly as a PUSCH for transmitting uplink data.
  • the UE 100 in the RRC idle state measures the quality of a neighboring cell adjacent to the current serving cell, and selects a cell to be used as a serving cell from among cells satisfying the selection condition.
  • a frequency having a higher priority than the frequency priority of the current serving cell The UE 100 always measures the quality of a frequency having a high priority.
  • a frequency having a priority equal to or lower than the priority of the frequency of the current serving cell The UE 100 measures the quality of the frequency having the same priority or the lower priority when the quality of the current serving cell falls below a predetermined threshold.
  • the frequency priority of the neighboring cell is higher than the priority of the current serving cell: UE100 is over a predetermined time period (Treselection RAT) Squal> Thresh X , cell satisfies the relationship HighQ, or, over a predetermined time period (Treselection RAT) Srxlev> Thresh X , selects a cell satisfying the relationship HighP.
  • Selection RAT selection RAT
  • Srxlev> Thresh X selects a cell satisfying the relationship HighP.
  • the criterion to be satisfied by the neighboring cell may be referred to as “S-criteria”.
  • Q Qualmeas is the quality level of the neighboring cell (RSRQ)
  • Q qualmin is the minimum required quality level
  • Q Qualminoffset is a predetermined offset that is constantly applied to the adjacent cells
  • Qoffset temp is adjacent cells Offset temporarily applied to Thresh X and HighQ are predetermined threshold values .
  • Srxlev represents a cell selection reception level.
  • Q rxlevmeas is the reception level (RSRP) of neighboring cells
  • Q rxlevmin is the minimum required reception level
  • Q rxlevminoffset is a predetermined offset that is regularly applied to neighboring cells
  • Pcompensation is the uplink It is a parameter relating to capability
  • Qoffset temp is an offset temporarily applied to neighboring cells.
  • Thresh X and HighP are predetermined threshold values .
  • the frequency priority of the neighboring cell is the same as the current serving cell priority:
  • the UE 100 calculates the ranking R s of the current serving cell and the ranking R n of the neighboring cell, and selects a cell having a ranking R n higher than R s as a target cell over a predetermined period (Trection RAT ).
  • Trection RAT a predetermined period
  • the criterion to be satisfied by the neighboring cell may be referred to as “R-criteria”.
  • Q meas , s is the reception level (RSRP) of the current serving cell
  • Q meas , n is the reception level (RSRP) of the neighboring cell.
  • Q Hyst is a hysteresis value for facilitating reselection of the current serving cell as the target cell.
  • Qoffset temp is an offset that is temporarily applied to the current serving cell and neighboring cells.
  • the priority of the frequency of the neighboring cell is lower than the priority of the current serving cell: UE100 is over a predetermined time period (Treselection RAT) Squal ⁇ Thresh Serving , LowQ is satisfied, or, for a predetermined period (Treselection RAT) Srxlev ⁇ Thresh Serving , in assumption under that LowP is satisfied, the above-described ( A target cell is selected from adjacent cells by the same method as in B1).
  • Thresh Serving, LowQ, and Thresh Serving, LowP are predetermined threshold values , similarly to Thresh X, HighQ and Thresh X, HighP .
  • SIB System Information Block
  • Various parameters used for selecting the target cell are included in information (SIB: System Information Block) broadcast from the eNB 200.
  • Various parameters priority frequency (cellReselectionPriority), a predetermined period (Treselection RAT), various offset (Q qualminoffset, Q rxlevminoffset, Qoffset temp, Q Hyst, Qoffset), various threshold (Thresh X, HighQ, Thresh X , HighP, (Thresh Serving, LowQ , Thresh Serving, LowP )).
  • MBSFN transmission data is transmitted via the PMCH in units of MBSFN areas composed of a plurality of cells.
  • SC-PTM transmission data is transmitted on a cell basis via the PDSCH.
  • the UE 100 may receive the MBMS service in the RRC connected state, or may receive the MBMS service in the RRC idle state. In the following, it is mainly assumed that the UE 100 receives the MBMS service in the RRC idle state.
  • FIG. 8 is a diagram showing an example of SC-PTM operation.
  • step S ⁇ b> 11 the UE 100 acquires a USD (User Service Description) from the EPC 20 via the eNB 200.
  • USD provides basic information for each MBMS service.
  • the USD includes, for each MBMS service, TMGI for identifying the MBMS service, a frequency at which the MBMS service is provided, and provision start / end times of the MBMS service.
  • step S12 the UE 100 receives the SIB 20 from the eNB 200 via the BCCH.
  • the SIB 20 includes information (scheduling information) necessary for acquiring the SC-MCCH.
  • FIG. 9 is a diagram showing the SIB 20. As shown in FIG.
  • the SIB 20 includes a sc-mcch-ModificationPeriod indicating a cycle in which the contents of the SC-MCCH can be changed, a sc-mcch-RepetitionPeriod indicating the SC-MCCH transmission (retransmission) time interval in terms of the number of radio frames, Sc-mcch-Offset indicating the offset of the radio frame on which the SC-MCCH is scheduled, sc-mcch-Subframe indicating the subframe on which the SC-MCCH is scheduled, and the like.
  • step S13 the UE 100 receives the SCPTM configuration information (SCPTM Configuration) from the eNB 200 via the SC-MCCH based on the SIB20.
  • SC-RNTI Single Cell RNTI
  • FIG. 10 is a diagram showing SCPTM configuration information (SCPTM Configuration) in SC-MCCH.
  • the SCPTM setting information includes control information applicable to an MBMS service transmitted via SC-MRB (Single Cell MBMS Point to Multipoint Radio Bearer).
  • the SCPTM setting information includes sc-mtch-InfoList including the setting of each SC-MTCH in the cell transmitting the information, and scptmNeighbourCellList which is a list of neighboring cells that provide the MBMS service via the SC-MRB.
  • the sc-mtch-InfoList includes one or more SC-MTCH-Info.
  • Each SC-MTCH-Info includes information on the MBMS session in progress (mbmsSessionInfo) transmitted via the SC-MRB, a G-RNTI (Group RNTI) corresponding to the MBMS session, and DRX for the SC-MTCH. It contains sc-mtch-schedulingInfo which is information.
  • the mbmsSessionInfo includes a TMGI that identifies the MBMS service and a session ID (sessionId).
  • G-RNTI is an RNTI that identifies a multicast group (specifically, an SC-MTCH addressed to a specific group).
  • G-RNTI is mapped one-to-one with TMGI.
  • sc-mtch-schedulingInfo includes onDurationTimerSCPTM, drx-InactivityTimerSCPTM, schedulingPeriodStartOffsetSCPTM.
  • the schedulingPeriodOffsetSCPTM includes SC-MTCH-SchedulingCycle and SC-MTCH-SchedulingOffset.
  • step S14 the UE 100 receives an MBMS service (multicast data) corresponding to the TMGI that it is interested in via the SC-MTCH based on the SC-MTCH-SchedulingInfo in the SCPTM configuration information (SCPTM Configuration).
  • the eNB 200 transmits PDCCH using G-RNTI, and then transmits multicast data via the PDSCH.
  • control signals (signaling) described with reference to FIG. 10 are examples, and some control signals may be omitted or the order of the control signals may be changed due to optimization for power saving reception or the like. May be.
  • the UE 100 in a new category is a UE 100 whose transmission / reception bandwidth is limited to only a part of the system transmission / reception band.
  • the new UE categories are referred to as, for example, category M1 and NB (Narrow Band) -IoT category.
  • the category M1 is an eMTC (enhanced machine type communications) UE.
  • the NB-IoT UE is category NB1.
  • the category M1 limits the transmission / reception bandwidth of the UE 100 to 1.08 MHz (that is, a bandwidth of 6 resource blocks), and supports a coverage enhancement (CE: Enhanced Coverage) technique using repeated transmission or the like.
  • the NB-IoT category further limits the UE 100 transmit / receive bandwidth to 180 kHz (ie, one resource block bandwidth) and supports coverage enhancement techniques.
  • Repeat transmission is a technique for repeatedly transmitting the same signal using a plurality of subframes.
  • the system bandwidth of the LTE system is 10 MHz, of which the transmission / reception bandwidth is 9 MHz (that is, the bandwidth of 50 resource blocks).
  • the UE 100 of category M1 cannot receive a downlink radio signal transmitted with a bandwidth wider than 6 resource blocks, it cannot receive a normal PDCCH.
  • MPDCCH MTC-PDCCH
  • NPDCCH NB-PDCCH
  • NB-PDCCH PDCCH for NB-IoT
  • FIG. 11 is a diagram showing a downlink physical channel for eMTC UE.
  • the eNB 200 transmits the MPDCCH within 6 resource blocks.
  • MPDCCH includes scheduling information for allocating PDSCH.
  • MPDCCH allocates PDSCH of a subframe different from the subframe in which the MPDCCH is transmitted.
  • the eNB 200 transmits the PDSCH within 6 resource blocks.
  • eNB200 allocates PDSCH over several sub-frames, in order to repeatedly transmit the same signal.
  • the UE 100 of category M1 specifies the assigned PDSCH by receiving the MPDCCH, and receives data transmitted on the assigned PDSCH.
  • FIG. 12 is a diagram showing a random access procedure for eMTC UE and NB-IoT UE.
  • the UE 100 In the initial state of FIG. 12, the UE 100 is in the RRC idle state. The UE 100 executes a random access procedure to transition to the RRC connected state.
  • UE100 has selected the cell of eNB200 as a serving cell.
  • the UE 100 does not satisfy the first cell selection criterion (first S-criteria) for normal coverage, and the second cell selection criterion (second S-criteria) for enhanced coverage May be determined to be in enhanced coverage.
  • first S-criteria first S-criteria
  • second S-criteria second S-criteria
  • “UE in enhanced coverage” means a UE that is required to use coverage enhancement technology (enhanced coverage mode) to access the cell. Note that eMTC UE must use the enhanced coverage mode.
  • the eNB 200 transmits PRACH (Physical Random Access Channel) related information by broadcast signaling (for example, SIB).
  • the PRACH related information includes various parameters provided for each coverage enhancement level (CE level).
  • the CE level may be referred to as “enhanced coverage level”.
  • the CE level is defined as a total of four levels of CE levels 0 to 3.
  • Various parameters include an RSRP (Reference Signal Received Power) threshold, a PRACH resource, and the maximum number of preamble transmissions.
  • the PRACH resource includes a radio resource (time / frequency resource) and a signal sequence (preamble sequence).
  • the UE 100 stores the received PRACH related information.
  • step S22 the UE 100 measures RSRP based on the reference signal transmitted from the eNB 200.
  • the UE 100 determines its own CE level by comparing the measured RSRP with the RSRP threshold for each CE level.
  • the CE level indicates the degree of coverage enhancement required for the UE 100.
  • the CE level is related to at least the number of transmissions in repetitive transmission (that is, the number of repetitions).
  • step S24 the UE 100 selects a PRACH resource corresponding to its own CE level.
  • step S25 the UE 100 transmits Msg 1 (random access preamble) to the eNB 200 using the selected PRACH resource.
  • the eNB 200 specifies the CE level of the UE 100 based on the PRACH resource used for the received Msg 1.
  • step S26 the eNB 200 transmits Msg 2 (random access response) including scheduling information indicating the PUSCH resource allocated to the UE 100 to the UE 100.
  • Msg 2 random access response
  • the UE 100 can transmit Msg 1 a plurality of times up to the maximum number of preamble transmissions corresponding to its own CE level until Msg 2 is normally received.
  • step S27 the UE 100 transmits Msg 3 to the eNB 200 based on the scheduling information.
  • Msg 3 may be an RRC Connection Request message.
  • step S28 the eNB 200 transmits Msg 4 to the UE 100.
  • step S29 the UE 100 transitions to the RRC connected state in response to reception of Msg 4. Thereafter, the eNB 200 controls repetitive transmission to the UE 100 based on the specified CE level.
  • the first embodiment will be described below.
  • the first embodiment assumes a scenario in which firmware and the like are collectively distributed to the above-described new category UE 100 by multicast / broadcast using MBMS. Further, it is assumed that the UE 100 in the RRC idle state mainly receives an MBMS service distributed by SC-PTM.
  • the UE 100 includes a receiving unit 110 that receives an MBMS service distributed from the eNB 200 using a coverage enhancement technique including repeated transmission, and a control unit 130 that determines whether or not a predetermined event has occurred.
  • a transmission unit 120 that transmits a notification indicating the CE level required by the UE 100 (hereinafter referred to as “CE level notification”) to the eNB 200 in response to occurrence of a predetermined event.
  • the predetermined event is that the eNB 200 is requested to transmit the CE level notification or the MBMS service cannot be normally received.
  • the CE level notification may be Msg 1 (random access preamble) described above or a message different from Msg 1. However, in the method using Msg 1, there is much signaling associated with the CE level notification, and the UE 100 can transition to the RRC connected state unnecessarily.
  • Msg 1 information for preventing the UE 100 from transitioning to the RRC connected state may be included in Msg 1 or Msg 3.
  • a sequence (signal sequence) indicating CE level notification may be used, or CE level notification resources (time / frequency resources) may be used for transmission. In this case, the UE 100 and the eNB 200 may terminate the random access procedure halfway without establishing an RRC connection.
  • the CE level notification may include information directly indicating the CE level value determined by the UE 100.
  • the CE level notification may include information that indirectly indicates the CE level value determined by the UE 100. Such information may be the number of repeated transmissions corresponding to the CE level, or may be RSRP measured by the UE 100.
  • the CE level notification may include a service identifier (TMGI) of one or more MBMS services that the UE 100 is receiving or interested in receiving.
  • TMGI service identifier
  • the reception unit 110 of the UE 100 receives a notification request for requesting transmission of a CE level notification from the eNB 200 before starting reception of the MBMS service.
  • the transmission unit 120 of the UE 100 transmits a CE level notification to the eNB 200 in response to receiving the notification request. That is, the operation pattern 1 is a pattern in which the UE 100 notifies the CE level according to a request from the eNB 200.
  • eNB200 can apply suitable repeat count and / or MCS to MBMS delivery based on the CE level of UE100.
  • the control unit 130 of the UE 100 determines whether or not the MBMS service can be normally received after the reception of the MBMS service is started.
  • the transmission unit 120 of the UE 100 transmits a CE level notification to the eNB 200 when it is determined that the MBMS service cannot be normally received. That is, the operation pattern 2 is a pattern in which the UE 100 autonomously determines the CE level notification timing. Thereby, eNB200 can change appropriately the frequency
  • ENB200 may transmit the trigger designation information for designating whether to apply operation pattern 1 or operation pattern 2 to UE100.
  • the UE 100 controls the CE level notification transmission according to the specified operation pattern.
  • the receiving unit 110 of the UE 100 may receive setting information indicating the common resource shared by the plurality of UEs 100 from the eNB 200 in order to transmit the CE level notification.
  • the transmission unit 120 of the UE 100 may transmit the CE level notification to the eNB 200 using the common resource.
  • a common resource it is not necessary for the eNB 200 to individually allocate resources to the UE 100. Therefore, even if the UE 100 is in the RRC idle state, the CE level notification can be transmitted to the eNB 200.
  • the control unit 130 of the UE 100 may prohibit transmission of the next CE level notification until a predetermined time elapses after the CE level notification is transmitted.
  • the control unit 130 of the UE 100 may enable transmission of the next CE level notification after a predetermined time has elapsed since the CE level notification was transmitted.
  • the predetermined time may be set from the eNB 200 to the UE 100 in the setting information, for example. Thereby, it is possible to prevent the same UE 100 from continuously transmitting the CE level notification.
  • the control unit 130 of the UE 100 may prohibit the transmission of the CE level notification in response to the reception state (for example, RSRP) being better than the threshold.
  • the control unit 130 of the UE 100 may enable the CE level notification to be transmitted in response to the reception state being worse than the threshold value.
  • the eNB 200 may set the threshold for the UE 100 by broadcast signaling (for example, SIB).
  • the threshold may be a threshold included in the second cell selection criterion for enhanced coverage, or may be another threshold.
  • the CE level notification may be transmitted only to the UE 100 in the enhanced coverage, or the CE level notification may be transmitted only to the UE 100 having a predetermined CE level or less.
  • FIG. 13 is a diagram illustrating an example of the operation pattern 1 according to the first embodiment.
  • the UE 100 is in the RRC idle state.
  • the UE 100 is a UE that is in enhanced coverage, that is, a UE that is required to use a coverage enhancement technique (enhanced coverage mode).
  • the eNB 200 transmits setting information indicating common resources that a plurality of UEs 100 should use in common for transmission of CE level notifications.
  • the setting information is transmitted by broadcast or multicast.
  • the eNB 200 (transmission unit 210) transmits the setting information using SIB, SC-MCCH, or MCCH.
  • the setting information includes parameters indicating common resources (time resources, frequency resources, and / or signal sequences).
  • the common resource may be reserved for each CE level.
  • the setting information may further include a power control parameter for controlling the transmission power of the CE level notification.
  • the time resource parameter may include information indicating a system frame number (SFN), information indicating a subframe (bitmap), and the like.
  • the frequency resource parameter may include information indicating a start point or an end point of a resource block, information indicating a range of consecutive resource blocks (number of resource blocks), and the like.
  • the setting information may include a period (or start time / end time) during which the common resource is provided.
  • the period may be defined as seconds or may be defined by a frame number (SFN, subframe, etc.).
  • the period may be a predetermined value (for example, 10 subframe periods).
  • the eNB 200 transmits a notification request for requesting transmission of a CE level notification.
  • the notification request is transmitted by broadcast or multicast.
  • the eNB 200 (transmission unit 210) transmits a notification request using a system information block (SIB), SC-MCCH, or MCCH.
  • SIB system information block
  • SC-MCCH SC-MCCH
  • MCCH MCCH
  • the notification request may include a service identifier (TMGI) of one or a plurality of MBMS services targeted for CE level notification.
  • the notification request may include information indicating that the UE 100 in the RRC idle state is targeted.
  • step S102 may be performed before step S101.
  • step S102 may be performed simultaneously with step S101.
  • the notification request and the setting information may be included in one message.
  • UE 100 receives the notification request and the setting information.
  • the UE 100 may determine whether or not it is interested in receiving the MBMS service in response to receiving the notification request. As an example, when an upper layer is set to start reception of the MBMS service, it is determined that it is interested in receiving the MBMS service. When not interested in receiving the MBMS service, the UE 100 may not transmit the CE level notification to the eNB 200. Here, the description will be made assuming that the UE 100 is interested in receiving the MBMS service. Further, when the MBMS service that is the target of CE level notification is designated, the UE 100 may determine whether or not the designated MBMS service matches the MBMS service that it is interested in. When the designated MBMS service does not match the MBMS service that the user is interested in, the UE 100 does not need to transmit the CE level notification to the eNB 200.
  • step S104 the UE 100 selects a resource (time resource, frequency resource, and / or signal sequence) included in the common resource based on the setting information.
  • the UE 100 may select a resource corresponding to its own CE level from the common resources.
  • the UE 100 transmits a CE level notification to the eNB 200 using the selected resource.
  • the CE level notification may include information indicating the CE level of the UE 100 and / or information (TMGI) indicating the MBMS service that the UE 100 is interested in receiving.
  • TMGI information indicating the MBMS service that the UE 100 is interested in receiving.
  • the UE 100 can transmit the CE level notification to the eNB 200 using the common resource even in the RRC idle state.
  • ENB 200 receives the CE level notification.
  • the eNB 200 may fail to decode the CE level notification transmitted using the resource.
  • the eNB 200 succeeds in decoding the CE level notification.
  • the eNB 200 grasps the CE level of each UE 100 that is interested in receiving the MBMS service.
  • the eNB 200 may transfer the CE level notification received from the UE 100 to the MME 300 and / or the MCE 11 or the like.
  • step S106 the eNB 200 determines the number of repeated transmissions and / or MCS to be applied to the MBMS service distributed by SC-PTM based on the grasped CE level.
  • step S107 the eNB 200 distributes the MBMS service by SC-PTM using the determined number of repeated transmissions and / or MCS.
  • FIG. 14 is a diagram illustrating an example of the operation pattern 2 of the first embodiment. Here, differences from the operation pattern 1 will be mainly described, and redundant description will be omitted.
  • the UE 100 is a UE in an RRC idle state and in enhanced coverage.
  • step S201 the eNB 200 transmits setting information indicating common resources that a plurality of UEs 100 should use in common for transmission of CE level notifications.
  • the eNB 200 distributes the MBMS service by SC-PTM using a predetermined number of repeated transmissions and / or a predetermined MCS.
  • the predetermined number of repeated transmissions and / or the predetermined MCS may be, for example, the maximum number of repeated transmissions and / or the lowest MCS so that a UE having a very poor reception state can receive the MBMS service.
  • the lowest MCS is the MCS with the lowest data rate and the highest error resilience.
  • step S203 the UE 100 starts receiving the MBMS service distributed by SC-PTM.
  • starting reception of the MBMS service means starting reception of control information and / or data for the MBMS service (SC-PTM). Therefore, the reception of the SC-MTCH is not limited to the reception of the SC-MTCH, and the reception of the SIB 20 may be started.
  • step S204 the UE 100 determines whether or not the MBMS service that it is interested in can be received normally.
  • the UE 100 determines that the MBMS service cannot be normally received in response to the failure to decode the SC-MTCH carrying data belonging to the MBMS service that it is interested in.
  • UE100 may judge that the said MBMS service cannot be received normally according to the indicator value (for example, RSRP, error rate, etc.) of a receiving state having deteriorated from the threshold value.
  • the indicator value for example, RSRP, error rate, etc.
  • the UE 100 may predict whether or not decoding of SC-MTCH carrying data belonging to the MBMS service that it is interested in will be successful.
  • the eNB 200 may provide the UE 100 with information used for the prediction.
  • the eNB 200 may transmit, in the SC-MCCH (SC-PTM setting information), information indicating the number of repeated transmissions of SC-MTCH (data) and / or MCS as information used for the prediction.
  • the information used for prediction may be the minimum number of repeated transmissions of SC-MTCH and / or SC-MCCH. That is, the eNB 200 notifies that each packet is repeatedly transmitted at least the minimum number of repeated transmissions in SC-PTM transmission (or MBMS session).
  • the UE 100 can determine whether or not the SC-PTM transmission can be received according to the level of enhanced coverage.
  • the information used for prediction may be the maximum number of repeated transmissions of SC-MTCH and / or SC-MCCH.
  • the UE 100 can determine whether or not there is a possibility of receiving the SC-PTM transmission based on the information.
  • the UE 100 may predict whether or not the SC-MCCH carrying the control information belonging to the MBMS service in which it is interested will be successfully decoded.
  • the eNB 200 transmits information on the correspondence relationship between the SC-MCCH and the MBMS service (TMGI) to the UE 100 in the SIB 20.
  • TMGI the MBMS service
  • the UE 100 identifies the number of SC-MCCH repeated transmissions and / or MCS carrying control information belonging to the MBMS service that it is interested in, and determines whether or not the SC-MCCH is successfully decoded. Predict.
  • step S204 When it is determined that the MBMS service that it is interested in cannot be normally received (step S204: YES), the UE 100 performs an operation for transmitting a CE level notification.
  • the UE 100 may determine whether or not a predetermined time has elapsed since the previous CE level notification was transmitted.
  • the UE 100 starts a timer set from the eNB 200 when transmitting a CE level notification or determining transmission of a CE level notification.
  • the UE 100 prohibits (invalidates) the transmission of the CE level notification while the timer is operating.
  • the UE 100 validates the transmission of the CE level notification after the timer expires.
  • step S206 the UE 100 selects a resource (time resource, frequency resource, and / or signal sequence) included in the common resource based on the setting information.
  • the UE 100 may select a resource corresponding to its own CE level from the common resources.
  • step S207 the UE 100 transmits a CE level notification to the eNB 200 using the selected resource.
  • the content of the CE level notification may be the same as that of the operation pattern 1.
  • the CE level notification may include information indicating that it cannot be received or may include NACK.
  • ENB 200 receives the CE level notification. Based on the CE level notification, the eNB 200 grasps the CE level of each UE 100 that is interested in receiving the MBMS service. The eNB 200 may transfer the CE level notification received from the UE 100 to the MME 300 and / or the MCE 11 or the like.
  • step S208 the eNB 200 changes the number of repeated transmissions and / or MCS applied to the MBMS service distributed by SC-PTM based on the grasped CE level. Then, the eNB 200 distributes the MBMS service by SC-PTM using the changed number of repeated transmissions and / or MCS.
  • a predetermined layer for example, RRC layer
  • the predetermined layer may notify the upper layer of information (for example, TMGI information) of the MBMS service that cannot be received.
  • the UE 100 may attempt a transition to the RRC connected state in order to perform MBMS service reception by unicast. Specifically, the UE 100 may transmit an RRC Connection Request message to the eNB 200. The transmission of the RRC Connection Request message may be performed by an instruction from an upper layer. In this case, the CE level notification after step S205 may not be performed. Or UE100 may perform this operation
  • FIG. 15 is a diagram illustrating a first example of the common resource according to the first embodiment.
  • one section in the time direction represents one radio frame (or one subframe).
  • the common resource (A set of resources) is a part of the uplink radio resource of the eNB 200.
  • the common resource includes a plurality of resource blocks (PRB: Physical Resource Block).
  • PRB Physical Resource Block
  • the UEs # 1 to # 6 transmit CE level notifications to the eNB 200 using resource blocks included in the common resource.
  • the resource block may be selected randomly.
  • UE # 1 selects resource block A
  • UE # 2 selects resource block B
  • UE # 3 selects resource block C
  • UE # 4 to # 6 select resource block D. Selected. That is, resource block collision occurs between UEs # 4 to # 6.
  • the eNB 200 may fail to decode the CE level notification transmitted using the resource block D in which the collision has occurred.
  • the eNB 200 succeeds in decoding the CE level notifications of the UEs # 1 to # 3.
  • the number of resource blocks used for transmission of the CE level notification is not limited to one, and may be two or more.
  • the number of resource blocks used for transmitting the CE level notification may be set by the eNB 200 as one of the parameters of the setting information.
  • the UE 100 acquires a random number generated by itself or a unique identifier of itself.
  • the unique identifier may be an IMSI (International Mobile Subscriber Identity).
  • the unique identifier may be S-TMSI (SAE-Temporary Mobile Subscriber Identity) or a telephone number.
  • the unique identifier may be an identifier assigned to the UE 100 by the eNB 200.
  • the UE 100 determines whether or not transmission of the CE level notification is permitted based on the random number or the unique identifier.
  • the UE 100 may determine the transmission timing of the CE level notification based on a random number or a unique identifier.
  • the transmission timing may be defined by a system frame number (SFN) that identifies a radio frame, or may be defined by a subframe number that identifies a subframe frame.
  • UE100 may receive the predetermined value transmitted from eNB200.
  • the predetermined value may be a threshold value or a variable for determining whether the random number or the unique identifier satisfies a predetermined condition.
  • the UE 100 may determine whether or not transmission of the CE level notification is permitted based on the random number or the unique identifier and a predetermined value. Further, the UE 100 may determine the transmission timing of the CE level notification based on a random number or unique identifier and a predetermined value.
  • each of the UEs # 1 to # 6 determines whether or not transmission of its own CE level notification is permitted.
  • UEs # 1, # 3, and # 4 satisfy the conditions, but UEs # 2, # 5, and # 6 do not satisfy the conditions.
  • the UEs # 1, # 3, and # 4 transmit CE level notifications using resource blocks in the common resource.
  • UE # 2, # 5, and # 6 are prohibited from transmitting CE level notifications.
  • the UE 100 generates a random number (range 0 to 1), and compares the threshold (range 0 to 1) notified from the eNB 200 with the random number.
  • the UE 100 determines that transmission of the CE level notification is permitted, and validates the CE level notification transmission function. “The random number satisfies the threshold condition” may be that the random number exceeds the threshold condition or that the random number falls below the threshold condition. On the other hand, when the random number does not satisfy the threshold condition, the UE 100 determines that transmission of the CE level notification is not permitted, and invalidates the CE level notification transmission function. As another example, the UE 100 acquires its own IMSI, and determines whether or not the IMSI satisfies a condition defined by variables (“N” and “T”) notified from the eNB 200.
  • IMSI mod 1024 a value based on IMSI (for example, IMSI mod 1024) may be used.
  • an inequality >, ⁇ , ⁇ , or ⁇ ) may be used instead of using an equation.
  • each of the UEs # 1 to # 6 determines its own CE level notification transmission timing based on IMSI (or random number).
  • UE # 1 and # 2 determine SFN # 1 as the transmission timing of CE level notification
  • UE # 3 and # 4 determine SFN # 2 as the transmission timing of CE level notification
  • UE # 5 and # 6 determine SFN # 3 as the CE level notification transmission timing.
  • the transmission timing of CE level notifications of a plurality of UEs can be distributed in the time direction.
  • the UE 100 acquires its own IMSI, and determines a variable (“N”) notified from the eNB 200 and an SFN that satisfies a condition defined by the IMSI.
  • a value based on IMSI for example, IMSI mod 1024
  • the UE 100 determines to transmit the CE level notification in the SFN that satisfies the condition.
  • the UE 100 determines not to transmit the CE level notification in the SFN that does not satisfy the condition.
  • a random number may be used instead of the IMSI.
  • FIG. 18 is a diagram illustrating a third example of the common resource according to the first embodiment.
  • the setting information indicates a plurality of common resources including common resources corresponding to a plurality of CE levels.
  • the UE 100 selects a common resource corresponding to its own CE level from a plurality of common resources, and transmits a CE level notification to the eNB 200 using the resources included in the selected common resource.
  • the CE level is associated with the common resource.
  • the information amount of CE level notification can be reduced.
  • the CE level notification may be configured by a 1-bit flag such as a scheduling request (SR).
  • the eNB 200 grasps the CE level of each UE 100 that is receiving or interested in receiving the MBMS service by counting the CE level notification for each common resource.
  • SR scheduling request
  • the UE 100 selects a common resource corresponding to its own CE level from a plurality of common resources, and transmits a CE level notification to the eNB 200 using the resources included in the selected common resource.
  • a TMGI and a CE level may be associated with each of a plurality of common resources.
  • a common resource corresponding to TMGI # 1 and CE level 0 a common resource corresponding to TMGI # 1 and CE level 1, and so on are set.
  • the eNB 200 may transmit information indicating the correspondence relationship between the TMGI, the CE level, and the common resource to the UE 100 in the setting information.
  • the UE 100 selects a plurality of common resources corresponding to the service identifier (TMGI) of the MBMS service that the UE 100 is receiving or interested in receiving, and selects the common resource corresponding to its own CE level from the plurality of common resources. Resources may be further selected.
  • TMGI service identifier
  • the eNB 200 determines the number of repeated transmissions and / or MCS to be applied to the MBMS service distributed by SC-PTM based on the CE level notification received from the UE 100.
  • the eNB 200 determines the number of repeated transmissions and / or MCS based on information received from other network devices in addition to or instead of the CE level notification received from the UE 100. decide.
  • the eNB 200 according to the second embodiment includes a reception unit (backhaul communication unit 240) that receives a notification indicating a CE level to be applied to the MBMS service from another network device, and coverage that includes repeated transmission based on the notification.
  • a control unit 230 that distributes the MBMS service using the enhancement technology.
  • the other network device may be MME300 or MCE11.
  • FIG. 19 is a diagram illustrating an operation example of the second embodiment.
  • the UE 100 may notify its CE level to the GCS-AS 31 or the BM-SC 22.
  • the UE 100 notifies the changed CE level every time its own CE level changes.
  • the GCS-AS 31 or BM-SC 22 grasps the CE level of each UE 100 that is receiving or interested in receiving the MBMS service, and determines the CE level (number of repeated transmissions and / or MCS) to be applied to the MBMS service.
  • the determined CE level may be notified to the MME 300 or the MCE 11 (step S302).
  • the UE 100 may notify the MME 300 or the MCE 11 of its own CE level.
  • the eNB 200 may notify the MME 300 or the MCE 11 of the CE level of the UE 100 ascertained during the random access procedure.
  • the eNB 200 notifies the MME 300 of the number of repeated transmissions (CE level) of MPDCCH when the UE context is released.
  • the MME 300 or the MCE 11 may determine and / or manage the CE level for each MBMS service based on the notified CE level.
  • step S305 the MME 300 or the MCE 11 notifies the eNB 200 of the CE level for each MBMS service (TMGI).
  • TMGI the CE level for each MBMS service
  • the MME 300 or the MCE 11 notifies the eNB 200 of the CE level for each TMGI by a message (MBMS Session Start / Modification) for starting or changing the delivery of the MBMS service.
  • step S306 the eNB 200 determines or changes the number of repeated transmissions and / or MCS applied to the MBMS service distributed by SC-PTM based on the notified CE level. Then, the eNB 200 delivers the MBMS service by SC-PTM using the determined or changed number of repeated transmissions and / or MCS.
  • the third embodiment is an embodiment in which the UE 100 can continuously receive the MBMS service in a scenario in which the UE 100 in the RRC idle state in the enhanced coverage performs MBMS reception.
  • control unit 130 which performs the cell reselection operation
  • coverage enhancement technology including repetitive transmission is required for UE 100 (that is, when UE 100 is in enhanced coverage)
  • control unit 130 selects a cell based on ranking based on radio quality.
  • the UE 100 can perform “S ⁇ for enhanced coverage” for the same frequency (intra-frequency) and another frequency (inter-frequency). Ranking using “criteria” or “R-criteria” is applied.
  • the UE 100 in enhanced coverage preferentially selects a cell with the best radio quality (reception level) without considering the frequency priority.
  • the operation in this case is the same as the operation in the case of “(B2) the priority of the frequency of the neighboring cell is the same as the priority of the current serving cell” in the “Overview of Cell Reselection Operation” described above.
  • the UE 100 can select a frequency or a cell to which the MBMS service is not distributed. Therefore, there is a possibility that the UE 100 receiving the MBMS service or interested in receiving the UE 100 cannot continuously receive the MBMS service.
  • the UE 100 uses the ranking when the UE 100 receives the MBMS service or is interested in reception even when the coverage enhancement technique is required for the UE 100. Rather, the cell belonging to the frequency to which the MBMS service is distributed is preferentially selected. As an example, if the UE 100 in the enhanced coverage is interested in receiving the MBMS service distributed by SC-PTM, the UE 100 considers the frequency (or cell) to which the MBMS service is distributed as the highest priority and performs the ranking operation. Not performed. Thereby, even the UE 100 in the enhanced coverage can continuously receive the MBMS service.
  • the operation according to the third embodiment is as follows: “If a UE that is receiving or interested in receiving an MBMS service can receive the MBMS service only while camping on the frequency at which the MBMS service is provided, the UE is enhanced.
  • the frequency may be regarded as the highest priority regardless of whether or not it is in coverage.
  • the operation according to the third embodiment is “the same frequency when the current serving cell cannot be accessed without using the coverage enhancement technology and the highest priority frequency for providing the MBMS service is not set. (Intra-frequency) and another frequency (inter-frequency) may be defined as “apply ranking using“ S-criteria ”or“ R-criteria ”for enhanced coverage”.
  • FIG. 20 is a diagram illustrating an operation example of the third embodiment.
  • step S401 the UE 100 in the RRC idle state determines whether or not the coverage enhancement technique is required for itself (that is, whether or not the UE 100 is in the enhanced coverage).
  • step S402 the UE 100 performs a normal cell reselection operation such as the above-described “outline of cell reselection operation”.
  • step S403 the UE 100 determines whether the MBMS service is received or interested in reception.
  • step S404 the UE 100 uses the ranking to consider the radio quality without considering the frequency priority. Preferentially selects the best cell.
  • step S405 when receiving the MBMS service or interested in reception (step S403: YES), in step S405, the UE 100 preferentially selects cells belonging to the frequency to which the MBMS service is distributed without performing ranking. select.
  • RSRP Reference Signal Received Quality
  • RS-SINR Reference Signal signal-to-interference-plus-noise ratio
  • firmware distribution is assumed as the MBMS service.
  • group message distribution, group chat message distribution, virus definition file distribution, periodic update file distribution such as weather forecast, irregular file distribution such as breaking news, night file distribution such as video content (off-peak distribution), MBMS services such as audio / video streaming distribution, telephone / video telephone (group communication), live video distribution, and radio audio distribution may be assumed.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a mobile communication system other than the LTE system.
  • the Rel-13 SC-PTM architecture is assumed for NB-IoT and MTC multicast designs.
  • RAN2 assumes that the legacy SC-MTCH mechanism in which SC-MTCH is scheduled by PDCCH is reused for NB-IoT and MTC multicast to achieve flexible scheduling.
  • RAN2 assumes that SC-MTCH transmission repetition is introduced for multicast in NB-IoT and MTC.
  • CE level information (for example, repetition) is one of the AS configurations for SC-MTCH.
  • This appendix describes the internals of multicast enhancement that supports enhanced coverage (CE).
  • GCS AS handles UE location knowledge, ie GCS session and group management including a list of cell IDs. Therefore, it is possible to add CE level management for each UE in each cell and the impact of CN can be foreseen (eg, MB2 between GCS AS and BM-SC).
  • MME is responsible for MBMS session management such as start / stop.
  • the MME is notified by the eNB about the CE level of the specific UE, ie, UEPaging CoverageInformation including mpdcch-NumRepension.
  • the information is not guaranteed to be valid, but may be reused.
  • the MCE determines MBMS session control.
  • SC-PTM the cell ID of the MBMS bearer and the list of QoS are notified to the eNB via, for example, an MBMS session start request. Therefore, although it is possible to add CE level management in cell units, the RAN specifications are affected.
  • ENB The eNB manages radio resources in detail.
  • An eNB may have a CE level for each RRC Connected UE, but may not have a CE level for an RRC IDLE UE.
  • the CE level is notified only when a PRACH is transmitted (for an MO call) or when paging is started (for an MT call).
  • the eNB does not have complete knowledge of the CE level of UEs interested in SC-PTM, such as RRC IDLE or mobile UEs.
  • the eNB should be responsible if RAN2 follows the Rel-13 SC-PTM principle, ie "scheduling is performed by the eNB".
  • each option has advantages and disadvantages, but at this point there is no option that has complete knowledge of determining the CE level of SC-PTM.
  • the CE level is RAN-derived information
  • the eNB receives CE level information, this information becomes transparent to the core network or application layer.
  • the eNB is a slightly preferred node to process the CE level for scheduling.
  • SC-PTM CE level should be determined by RAN node, preferably eNB.
  • the CE level report where the UE is located eg report via GC1
  • the CE level report where the UE is located is accurate / dynamic decision, i.e. for the appropriate number of iterations and adaptive MCS And useful.
  • the UE needs to report every time the CE level changes it can cause excessive overhead.
  • UE power consumption due to reports may be a problem.
  • An entity can blindly decide the CE level of SC-PTM, for example to assume the worst case. This is a simple method of transmitting SC-PTM with the maximum number of repetitions and the minimum MCS, which may become the baseline at this point.
  • CE repetition guarantees stronger reception of UEs in normal coverage.
  • SC-PTM it does not take enough benefit from SC-PTM, ie it is less spectrally efficient due to static / modest scheduling.
  • the UE may consume more battery than it actually needs due to the long duration of SC-PTM reception. That is, even if a cell-centric UE can receive an actual file with a high MCS in a short period of time, a low MCS requires more subframes to deliver the file to all UEs.
  • the number of UL signaling needs to be minimized to avoid excessive overhead and additional UE consumption.
  • the eNB queries the UE only once whether the MBMS service is received with enhanced coverage, as in the existing MBMS counting procedure. If the IDLE UE also needs to send a report, it is better to process without a transition to RRC Connected. In this sense, assuming that the eNB does not need to determine which UE to send the report, the existing CE level reporting during the RACH procedure can be considered as one approach.
  • Another possibility of changing the CE level during SC-PTM is that reporting is only started when the UE can no longer successfully receive SC-PTM. As suggested, this may be integrated into a feedback scheme for retransmission.
  • Proposal 2 RAN2 needs to consider CE level reporting in consideration of the minimum UL signaling and the time unit assigned to WI.
  • UEs interested in or receiving MBMS services may prioritize frequencies that provide SC-PTM over other frequencies, i.e., consider as the highest priority.
  • “Ranking with enhanced coverage cell selection criteria S applies to intra-frequency and inter-frequency cell reselection when the current serving cell is accessible only using enhanced coverage” If the UE is in enhanced coverage, consider all frequencies as equal priority. Since SC-PTM reception in enhanced coverage is not clearly defined in Rel-13, the current specification allows UEs in enhanced coverage to prioritize SC-PTM frequencies as done in normal coverage Should be clear.
  • RAN2 should also discuss whether some minor enhancements are needed, such as adding annotations to specifications with high priority concepts or enhancing the ranking mechanism.
  • Proposal 3 RAN2 should discuss and clarify whether UEs in enhanced coverage can prioritize frequencies that provide interesting multicast services.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る無線端末は、繰り返し送信を含むカバレッジ強化技術を用いて基地局から配信されるMBMSサービスを受信する受信部と、所定のイベントが発生したか否かを判断する制御部と、前記所定のイベントが発生したことに応じて、前記無線端末が必要とするカバレッジ強化レベルに関する通知を前記基地局に送信する送信部と、を備える。前記所定のイベントは、前記通知の送信を前記基地局から要求されたこと、又は前記MBMSサービスを正常に受信できないことである。

Description

無線端末及び基地局
 本発明は、移動通信システムのための無線端末及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、無線端末にマルチキャスト/ブロードキャストサービスを提供するMBMS(Multimedia Broadcast Multicast Service)が仕様化されている。MBMS用の無線伝送方式としては、MBSFN(Multicast Broadcast Single Frequency Network)伝送及びSC-PTM(Single Cell Point-To-Multipoint)伝送の2つの方式がある。
 一方、人が介在することなく通信を行うMTC(Machine Type Communication)やIoT(Internet of Things)サービスを対象とした無線端末が検討されている。このような無線端末は、低コスト化、カバレッジ広域化、及び低消費電力化を実現することが求められる。このため、3GPPにおいて、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。このような新たなカテゴリの無線端末には、繰り返し送信(repetition)を含むカバレッジ強化技術が適用される。
 一実施形態に係る無線端末は、繰り返し送信を含むカバレッジ強化技術を用いて基地局から配信されるMBMSサービスを受信する受信部と、所定のイベントが発生したか否かを判断する制御部と、前記所定のイベントが発生したことに応じて、前記無線端末が必要とするカバレッジ強化レベルに関する通知を前記基地局に送信する送信部と、を備える。前記所定のイベントは、前記通知の送信を前記基地局から要求されたこと、又は前記MBMSサービスを正常に受信できないことである。
 一実施形態に係る基地局は、MBMSサービスに適用すべきカバレッジ強化レベルに関する通知をネットワーク装置から受信する受信部と、前記通知に基づいて、繰り返し送信を含むカバレッジ強化技術を用いて前記MBMSサービスを配信する制御部と、を備える。
 一実施形態に係る無線端末は、サービングセルとして用いるセルを選択するセル再選択動作を行う制御部を備える。繰り返し送信を含むカバレッジ強化技術が前記無線端末に必要とされる場合、前記制御部は、無線品質に基づくランキングにより前記セルを選択する。前記カバレッジ強化技術が前記無線端末に必要とされる場合であっても、前記無線端末がMBMSサービスを受信している又は受信に興味を持つ場合には、前記制御部は、前記ランキングを用いることなく、前記MBMSサービスが配信される周波数に属する前記セルを優先的に選択する。
実施形態に係るLTEシステムの構成を示す図である。 実施形態に係るMBMSに係るネットワーク構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 実施形態に係るLTEシステムの下りリンクのチャネルの構成を示す図である。 実施形態に係るLTEシステムの無線フレームの構成を示す図である。 実施形態に係るSC-PTMの動作例を示す図である。 実施形態に係るSIB20を示す図である。 実施形態に係るSC-MCCH中のSCPTM設定情報(SCPTM Configuration)を示す図である。 実施形態に係るeMTC UE向けの下りリンク物理チャネルを示す図である。 実施形態に係るeMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャを示す図である。 第1実施形態の動作パターン1の一例を示す図である。 第1実施形態の動作パターン2の一例を示す図である。 第1実施形態に係る共通リソースの第1の例を示す図である。 第1実施形態に係る共通リソースの第2の例を示す図である。 第1実施形態に係る共通リソースの第2の例を示す図である。 第1実施形態に係る共通リソースの第3の例を示す図である。 第2実施形態の動作例を示す図である。 第3実施形態の動作例を示す図である。
 (移動通信システム)
 実施形態に係る移動通信システムの構成について説明する。実施形態に係る移動通信システムは、3GPPで仕様が策定されているLTE(Long Term Evolution)システムである。図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、MBMSに係るネットワーク構成を示す図である。
 図1に示すように、LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E-UTRAN:Evolved-UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。
 E-UTRAN10は、基地局(eNB:evolved Node-B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理する。eNB200は、eNB200が管理するセルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。
 EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S-GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 次に、MBMS向けのネットワークエンティティについて説明する。E-UTRAN10は、MCE(Multi-Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続され、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。具体的には、MCE11は、MBSFN伝送のスケジューリングを行う。これに対し、SC-PTM伝送のスケジューリングはeNB200により行われる。
 EPC20は、MBMS GW(MBMS Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続され、Smインターフェイスを介してMME300と接続され、SG-mb及びSGi-mbインターフェイスを介してBM-SC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送及びセッション制御等を行う。
 また、EPC20は、BM-SC(Broadcast Multicast Service Center)22を含む。BM-SC22は、SG-mb及びSGi-mbインターフェイスを介してMBMS GW21と接続され、SGiインターフェイスを介してP-GW23と接続される(図2参照)。BM-SC22は、TMGI(Temporary Mobile Group Identity)の管理・割当等を行う。
 EPC20の外部のネットワーク(すなわち、インターネット)には、GCS AS(Group Communication Service Application Server)31が設けられてもよい。GCS AS31は、グループ通信用のアプリケーションサーバである。GCS AS31は、MB2-U及びMB2-Cインターフェイスを介してBM-SC22と接続され、SGiインターフェイスを介してP-GW23と接続される。GCS AS31は、グループ通信におけるグループの管理及びデータ配信等を行う。
 図3は、実施形態に係るUE100(無線端末)の構成を示す図である。図3に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理を実行する。
 図4は、実施形態に係るeNB200(基地局)の構成を示す図である。図4に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する各種の処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。バックホール通信部240は、M1インターフェイス上で行う通信及びM2インターフェイス上で行う通信にも用いられ得る。
 図5は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されており、第1レイヤは物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MACレイヤは、データの優先制御、HARQ(Hybrid ARQ)による再送処理等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMACレイヤは、スケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態である。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理等を行う。
 図6は、LTEシステムの下りリンクのチャネルの構成を示す図である。図6(a)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。
 図6(a)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。
 BCCH(Broadcast Control Channel)は、システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)及びDL-SCH(Downlink Shared Channel)にマッピングされる。
 CCCH(Common Control Channel)は、UE100とeNB200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL-SCHにマッピングされる。
 DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL-SCHにマッピングされる。
 DTCH(Dedicated Traffic Channel)は、データ送信のための個別論理チャネルである。DTCHは、DL-SCHにマッピングされる。
 SC-MTCH(Single Cell Multicast Traffic Channel)は、SC-PTM伝送のための論理チャネルである。SC-MTCHは、SC-PTM伝送を用いてネットワークからUE100にデータを送信するための1対多チャネル(point-to-multipoint downlink channel)である。
 SC-MCCH(Single Cell Multicast Control Channel)は、SC-PTM伝送のための論理チャネルである。SC-MTCHは、1又は複数のSC-MTCHのためのMBMS制御情報をネットワークからUE100に送信するための1対多チャネル(point-to-multipoint downlink channel)である。SC-MCCHは、SC-PTMを用いてMBMSを受信する又は受信に興味を持つUE100に用いられる。また、SC-MCCHは、1つのセルに1つのみ存在する。
 MCCH(Multicast Control Channel)は、MBSFN伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。
 MTCH(Multicast Traffic Channel)は、MBSFN伝送のための論理チャネルである。MTCHは、MCHにマッピングされる。
 図6(b)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。
 図6(b)に示すように、BCHは、PBCH(Physical Broadcast Channel)にマッピングされる。
 MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、複数のセルによるMBSFN伝送をサポートする。
 PCH及びDL-SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL-SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。
 PDCCHは、PDSCH(DL-SCH、PCH)のリソース割り当て情報及びDL-SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジューリンググラントを運ぶ。
 図7は、LTEシステムの無線フレームの構成を示す図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図7に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして用いられる領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送向けのサブフレームであるMBSFNサブフレームが設定され得る。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。
 (セル再選択動作の概要)
 RRCアイドル状態にあるUE100は、開始条件が満たされた場合に、現在のサービングセルに隣接する隣接セルの品質を測定し、選択条件を満たすセルの中からサービングセルとして用いるセルを選択する。
 第1に、開始条件は、以下に示す通りである。
 (A1)現在のサービングセルの周波数の優先度よりも高い優先度を有する周波数:
 UE100は、高い優先度を有する周波数の品質を常に測定する。
 (A2)現在のサービングセルの周波数の優先度と等しい優先度又は低い優先度を有する周波数:
 UE100は、現在のサービングセルの品質が所定閾値を下回った場合に、等しい優先度又は低い優先度を有する周波数の品質を測定する。
 第2に、選択条件は、以下に示す通りである。
 (B1)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも高い:
 UE100は、所定期間(TreselectionRAT)に亘ってSqual>ThreshX,HighQの関係を満たすセル、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev>ThreshX,HighPの関係を満たすセルを選択する。このようなケースにおいて、隣接セルが満たすべき基準を“S-criteria”と称することもある。
 但し、Squalは、セル選択品質レベルを表す。Squalは、Squal=Qqualmeas-(Qqualmin+Qqualminoffset)-Qoffsettempによって算出される。Qqualmeasは、隣接セルの品質レベル(RSRQ)であり、Qqualminは、最小要求品質レベルであり、Qqualminoffsetは、隣接セルに定常的に適用される所定オフセットであり、Qoffsettempは、隣接セルに一時的に適用されるオフセットである。ThreshX,HighQは、所定閾値である。
 また、Srxlevは、セル選択受信レベルを表す。Srxlevは、Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettempによって算出される。Qrxlevmeasは、隣接セルの受信レベル(RSRP)であり、Qrxlevminは、最小要求受信レベルであり、Qrxlevminoffsetは、隣接セルに定常的に適用される所定オフセットであり、Pcompensationは、アップリンクの能力に関するパラメータであり、Qoffsettempは、隣接セルに一時的に適用されるオフセットである。ThreshX,HighPは、所定閾値である。
 (B2)隣接セルの周波数の優先度が現在のサービングセルの優先度と同じである:
 UE100は、現在のサービングセルのランキングR及び隣接セルのランキングRを算出するとともに、所定期間(TreselectionRAT)に亘ってRよりも高いランキングRを有するセルを対象セルとして選択する。このようなケースにおいて、隣接セルが満たすべき基準を“R-criteria”と称することもある。
 但し、Rは、R=Qmeas+QHyst-Qoffsettempによって算出される。Rは、R=Qmeas-Qoffset-Qoffsettempによって算出される。Qmeasは、現在のサービングセルの受信レベル(RSRP)であり、Qmeasは、隣接セルの受信レベル(RSRP)である。QHystは、現在のサービングセルが対象セルとして再選択されやすくするためのヒステリシス値である。Qoffsettempは、現在のサービングセル及び隣接セルに一時的に適用されるオフセットである。
 (B3)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも低い:
 UE100は、所定期間(TreselectionRAT)に亘ってSqual<ThreshServing,LowQが満たされる、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev<ThreshServing,LowPが満たされるという前提下において、上述した(B1)と同様の手法によって隣接セルの中から対象セルを選択する。
 但し、ThreshServing,LowQ及びThreshServing,LowPは、ThreshX,HighQ及びThreshX,HighPと同様に、所定閾値である。
 なお、対象セルの選択で用いる各種パラメータは、eNB200からブロードキャストされる情報(SIB:System Information Block)に含まれる。各種パラメータは、周波数の優先度(cellReselectionPriority)、所定期間(TreselectionRAT)、各種オフセット(Qqualminoffset、Qrxlevminoffset、Qoffsettemp、QHyst、Qoffset)、各種閾値(ThreshX,HighQ、ThreshX,HighP、ThreshServing,LowQ、ThreshServing,LowP)を含む。
 (SC-PTMの概要)
 MBMS用の無線伝送方式としては、MBSFN伝送及びSC-PTM伝送の2つの方式がある。MBSFN伝送においては、複数のセルからなるMBSFNエリア単位で、PMCHを介してデータが送信される。これに対し、SC-PTM伝送においては、セル単位で、PDSCHを介してデータが送信される。以下においては、UE100がSC-PTM受信を行うシナリオを主として想定するが、MBSFNを想定してもよい。
 UE100は、RRCコネクティッド状態でMBMSサービスを受信してもよいし、RRCアイドル状態でMBMSサービスを受信してもよい。以下において、UE100がRRCアイドル状態でMBMSサービスを受信するケースを主として想定する。
 図8は、SC-PTMの動作例を示す図である。
 図8に示すように、ステップS11において、UE100は、eNB200を介してEPC20からUSD(User Service Description)を取得する。USDは、各MBMSサービスの基本的な情報を提供する。USDは、MBMSサービスごとに、当該MBMSサービスを識別するTMGIと、当該MBMSサービスが提供される周波数と、当該MBMSサービスの提供開始・終了時間と、を含む。
 ステップS12において、UE100は、BCCHを介してeNB200からSIB20を受信する。SIB20は、SC-MCCHの取得に必要な情報(スケジューリング情報)を含む。図9は、SIB20を示す図である。図9に示すように、SIB20は、SC-MCCHの内容が変更され得る周期を示すsc-mcch-ModificationPeriod、SC-MCCHの送信(再送)時間間隔を無線フレーム数で示すsc-mcch-RepetitionPeriod、SC-MCCHがスケジュールされる無線フレームのオフセットを示すsc-mcch-Offset、及びSC-MCCHがスケジュールされるサブフレームを示すsc-mcch-Subframe等を含む。
 ステップS13において、UE100は、SIB20に基づいて、SC-MCCHを介してeNB200からSCPTM設定情報(SCPTM Configuration)を受信する。物理レイヤにおいてSC-MCCHの送信にはSC-RNTI(Single Cell RNTI)が用いられる。図10は、SC-MCCH中のSCPTM設定情報(SCPTM Configuration)を示す図である。図10に示すように、SCPTM設定情報は、SC-MRB(Single Cell MBMS Point to Multipoint Radio Bearer)を介して送信されるMBMSサービスに適用可能な制御情報を含む。SCPTM設定情報は、当該情報を送信するセルにおける各SC-MTCHの設定を含むsc-mtch-InfoList、及びSC-MRBを介してMBMSサービスを提供する隣接セルのリストであるscptmNeighbourCellListを含む。sc-mtch-InfoListは、1又は複数のSC-MTCH-Infoを含む。各SC-MTCH-Infoは、SC-MRBを介して送信される進行中のMBMSセッションの情報(mbmsSessionInfo)、当該MBMSセッションに対応するG-RNTI(Group RNTI)、及びSC-MTCHのためのDRX情報であるsc-mtch-schedulingInfoを含む。mbmsSessionInfoは、MBMSサービスを識別するTMGI及びセッションID(sessionId)を含む。G-RNTIは、マルチキャストグループ(具体的には、特定グループ宛てのSC-MTCH)を識別するRNTIである。G-RNTIは、TMGIと1対1でマッピングされる。sc-mtch-schedulingInfoは、onDurationTimerSCPTM、drx-InactivityTimerSCPTM、schedulingPeriodStartOffsetSCPTMを含む。schedulingPeriodStartOffsetSCPTMは、SC-MTCH-SchedulingCycle及びSC-MTCH-SchedulingOffsetを含む。
 ステップS14において、UE100は、SCPTM設定情報(SCPTM Configuration)中のSC-MTCH-SchedulingInfoに基づいて、SC-MTCHを介して、自身が興味のあるTMGIに対応するMBMSサービス(マルチキャストデータ)を受信する。物理レイヤにおいて、eNB200は、G-RNTIを用いてPDCCHを送信した後、PDSCHを介してマルチキャストデータを送信する。
 なお、図10に関連して説明した制御信号(シグナリング)は一例であり、省電力受信のための最適化等により、一部の制御信号が適宜省略されたり、制御信号の順序が入れ替わったりしてもよい。
 (eMTC及びNB-IoTの概要)
 実施形態において、新たなカテゴリのUE100が存在するシナリオを想定する。新たなカテゴリのUE100は、システム送受信帯域の一部のみに送受信帯域幅が制限されるUE100である。新たなUEカテゴリは、例えば、カテゴリM1及びNB(Narrow Band)-IoTカテゴリと称される。カテゴリM1は、eMTC(enhanced Machine Type Communications)UEである。NB-IoT UEは、カテゴリNB1である。カテゴリM1は、UE100の送受信帯域幅を1.08MHz(すなわち、6リソースブロックの帯域幅)に制限するとともに、繰り返し送信等を用いたカバレッジ強化(CE:Enhanced Coverage)技術をサポートする。NB-IoTカテゴリは、UE100の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限するとともに、カバレッジ強化技術をサポートする。繰り返し送信は、複数のサブフレームを用いて同一の信号を繰り返し送信する技術である。一例として、LTEシステムのシステム帯域幅は10MHzであり、そのうちの送受信帯域幅は9MHz(すなわち、50リソースブロックの帯域幅)である。一方、カテゴリM1のUE100は、6リソースブロックよりも広い帯域幅で送信される下りリンク無線信号を受信することができないため、通常のPDCCHを受信することができない。このため、MTC向けのPDCCHであるMPDCCH(MTC-PDCCH)が導入される。同様な理由で、NB-IoT向けのPDCCHであるNPDCCH(NB-PDCCH)が導入される。
 図11は、eMTC UE向けの下りリンク物理チャネルを示す図である。図11に示すように、eNB200は、6リソースブロック以内でMPDCCHを送信する。MPDCCHは、PDSCHを割り当てるためのスケジューリング情報を含む。一例として、MPDCCHは、当該MPDCCHが送信されるサブフレームとは異なるサブフレームのPDSCHを割り当てる。eNB200は、6リソースブロック以内でPDSCHを送信する。また、eNB200は、同一の信号の繰り返し送信を行うために、複数のサブフレームに亘ってPDSCHを割り当てる。カテゴリM1のUE100は、MPDCCHを受信することで割り当てPDSCHを特定し、割り当てPDSCHで送信されるデータを受信する。
 図12は、eMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャを示す図である。図12の初期状態において、UE100は、RRCアイドル状態にある。UE100は、RRCコネクティッド状態に遷移するためにランダムアクセスプロシージャを実行する。
 UE100は、eNB200のセルをサービングセルとして選択している。UE100は、通常のカバレッジのための第1のセル選択基準(第1のS-criteria)が満たされず、強化カバレッジ(enhanced coverage)のための第2のセル選択基準(第2のS-criteria)が満たされた場合、自身が強化カバレッジに居ると判断してもよい。「強化カバレッジに居るUE」とは、セルにアクセスするためにカバレッジ強化技術(強化カバレッジモード)を用いることが必要とされるUEを意味する。なお、eMTC UEは、強化カバレッジモードを用いることが必須である。
 図12に示すように、ステップS21において、eNB200は、PRACH(Physical Random Access Channel)関連情報をブロードキャストシグナリング(例えば、SIB)により送信する。PRACH関連情報は、カバレッジ強化レベル(CEレベル)ごとに設けられた各種のパラメータを含む。CEレベルは、「enhanced coverage level」と称されてもよい。一例として、CEレベルは、CEレベル0乃至3の合計4つのレベルが規定される。各種のパラメータは、RSRP(Reference Signal Received Power)閾値、PRACHリソース、及び最大プリアンブル送信回数を含む。PRACHリソースは、無線リソース(時間・周波数リソース)及び信号系列(プリアンブル系列)を含む。UE100は、受信したPRACH関連情報を記憶する。
 ステップS22において、UE100は、eNB200から送信される参照信号に基づいてRSRPを測定する。
 ステップS23において、UE100は、測定したRSRPをCEレベルごとのRSRP閾値と比較することにより、自身のCEレベルを決定する。CEレベルは、UE100に必要とされるカバレッジ強化の度合いを示す。CEレベルは、少なくとも繰り返し送信における送信回数(すなわち、Repetition回数)と関連する。
 ステップS24において、UE100は、自身のCEレベルに対応するPRACHリソースを選択する。
 ステップS25において、UE100は、選択したPRACHリソースを用いてMsg 1(ランダムアクセスプリアンブル)をeNB200に送信する。eNB200は、受信したMsg 1に用いられたPRACHリソースに基づいて、UE100のCEレベルを特定する。
 ステップS26において、eNB200は、UE100に割り当てたPUSCHリソースを示すスケジューリング情報を含むMsg 2(ランダムアクセス応答)をUE100に送信する。なお、UE100は、Msg 2を正常に受信するまで、自身のCEレベルに対応する最大プリアンブル送信回数までMsg 1を複数回送信し得る。
 ステップS27において、UE100は、スケジューリング情報に基づいて、Msg 3をeNB200に送信する。Msg 3は、RRC Connection Requestメッセージであってもよい。
 ステップS28において、eNB200は、Msg 4をUE100に送信する。
 ステップS29において、UE100は、Msg 4の受信に応じてRRCコネクティッド状態に遷移する。その後、eNB200は、特定したCEレベルに基づいて、UE100への繰り返し送信を制御する。
 (第1実施形態)
 以下において、第1実施形態について説明する。第1実施形態は、上述した新たなカテゴリのUE100に対して、MBMSを用いたマルチキャスト/ブロードキャストによりファームウェア等の一括配信を行うシナリオを想定する。また、RRCアイドル状態のUE100がSC-PTMにより配信されるMBMSサービスを受信するケースを主として想定する。
 第1実施形態に係るUE100は、繰り返し送信を含むカバレッジ強化技術を用いてeNB200から配信されるMBMSサービスを受信する受信部110と、所定のイベントが発生したか否かを判断する制御部130と、所定のイベントが発生したことに応じて、UE100が必要とするCEレベルを示す通知(以下、「CEレベル通知」と称する)をeNB200に送信する送信部120と、を備える。所定のイベントは、CEレベル通知の送信をeNB200から要求されたこと、又はMBMSサービスを正常に受信できないことである。
 CEレベル通知は、上述したMsg 1(ランダムアクセスプリアンブル)であってもよいし、Msg 1とは異なるメッセージであってもよい。但し、Msg 1を用いる方法は、CEレベル通知に伴うシグナリングが多く、かつ、UE100が不必要にRRCコネクティッド状態に遷移し得る。Msg 1を用いる場合、UE100をRRCコネクティッド状態に遷移させないための情報をMsg 1又はMsg 3に含めてもよい。もしくは、CEレベル通知である事を示すシーケンス(信号系列)を用いてもよいし、CEレベル通知用のリソース(時間・周波数リソース)を用いて送信してもよい。この場合、UE100及びeNB200は、RRC接続を確立することなくランダムアクセスプロシージャを途中で終了させてもよい。
 CEレベル通知は、UE100が決定したCEレベルの値を直接的に示す情報を含んでもよい。或いは、CEレベル通知は、UE100が決定したCEレベルの値を間接的に示す情報を含んでもよい。このような情報は、CEレベルに対応する繰り返し送信回数であってもよいし、UE100が測定したRSRPであってもよい。さらに、CEレベル通知は、UE100が受信している又は受信に興味を持つ1又は複数のMBMSサービスのサービス識別子(TMGI)を含んでもよい。
 第1実施形態の動作パターン1において、UE100の受信部110は、MBMSサービスの受信開始前において、CEレベル通知の送信を要求する通知要求をeNB200から受信する。UE100の送信部120は、通知要求の受信に応じて、CEレベル通知をeNB200に送信する。すなわち、動作パターン1は、UE100がeNB200の要求に従ってCEレベルを通知するパターンである。これにより、eNB200は、UE100のCEレベルに基づいて、適切な繰り返し送信回数及び/又はMCSをMBMS配信に適用することができる。
 第1実施形態の動作パターン2において、UE100の制御部130は、MBMSサービスの受信開始後において、MBMSサービスを正常に受信できるか否かを判断する。UE100の送信部120は、MBMSサービスを正常に受信できないと判断されたことに応じて、CEレベル通知をeNB200に送信する。すなわち、動作パターン2は、UE100が自律的にCEレベルの通知タイミングを決定するパターンである。これにより、eNB200は、UE100のCEレベルに基づいて、MBMS配信に適用する繰り返し送信回数及び/又はMCSを適切に変更することができる。
 eNB200は、動作パターン1を適用すべきか又は動作パターン2を適用すべきかを指定するためのトリガ指定情報をUE100に送信してもよい。UE100は、指定された動作パターンに従ってCEレベル通知の送信を制御する。
 第1実施形態において、UE100の受信部110は、CEレベル通知を送信するために複数のUE100が共用する共通リソースを示す設定情報をeNB200から受信してもよい。UE100の送信部120は、共通リソースを用いてCEレベル通知をeNB200に送信してもよい。このような共通リソースを用いることにより、eNB200がUE100に個別にリソース割り当てを行う必要がなくなるため、RRCアイドル状態のUE100であってもCEレベル通知をeNB200に送信することができる。
 第1実施形態において、UE100の制御部130は、CEレベル通知を送信してから所定時間が経過するまで、次のCEレベル通知の送信を禁止してもよい。UE100の制御部130は、CEレベル通知を送信してから所定時間が経過した後、次のCEレベル通知の送信を可能にしてもよい。当該所定時間は、例えば設定情報中でeNB200からUE100に設定されてもよい。これにより、同一のUE100が連続的にCEレベル通知を送信することを防止することができる。
 第1実施形態において、UE100の制御部130は、受信状態(例えば、RSRP)が閾値よりも良好であることに応じて、CEレベル通知の送信を禁止してもよい。UE100の制御部130は、受信状態が閾値よりも劣悪であることに応じて、CEレベル通知の送信を可能にしてもよい。eNB200は、ブロードキャストシグナリング(例えば、SIB)により閾値をUE100に設定してもよい。閾値は、強化カバレッジのための第2のセル選択基準に含まれる閾値であってもよいし、他の閾値であってもよい。言い換えると、強化カバレッジに居るUE100のみを対象としてCEレベル通知の送信を可能にしてもよいし、所定のCEレベル以下のUE100のみを対象としてCEレベル通知の送信を可能にしてもよい。
 図13は、第1実施形態の動作パターン1の一例を示す図である。UE100は、RRCアイドル状態である。また、UE100は、強化カバレッジに居るUE、すなわち、カバレッジ強化技術(強化カバレッジモード)を用いることが必要とされるUEである。
 図13に示すように、ステップS101において、eNB200は、複数のUE100がCEレベル通知の送信に共通に用いるべき共通リソースを示す設定情報を送信する。設定情報は、ブロードキャスト又はマルチキャストで送信される。例えば、eNB200(送信部210)は、SIB、SC-MCCH、又はMCCHを用いて設定情報を送信する。設定情報は、共通リソース(時間リソース、周波数リソース、及び/又は信号系列)を示すパラメータを含む。共通リソースは、CEレベルごとに確保されてもよい。設定情報は、CEレベル通知の送信電力を制御するための電力制御パラメータをさらに含んでもよい。時間リソースパラメータは、システムフレーム番号(SFN)を示す情報、サブフレームを示す情報(ビットマップ)等を含んでもよい。周波数リソースパラメータは、リソースブロックの始点又は終点を示す情報、連続するリソースブロックの範囲(リソースブロック数)を示す情報等を含んでもよい。設定情報は、共通リソースが提供される期間(又は、開始時間/終了時間)を含んでもよい。当該期間は、秒として定義されてもよく、フレーム番号(SFN、サブフレーム等)で定義されてもよい。当該期間は、予め決められた値(例えば、10サブフレーム期間等)であってもよい。当該期間が存在する場合、UE100は、当該期間内においてCEレベル通知を送信する。言い換えると、UE100は、当該期間の経過後はCEレベル通知を送信しない。
 ステップS102において、eNB200は、CEレベル通知の送信を要求する通知要求を送信する。通知要求は、ブロードキャスト又はマルチキャストで送信される。例えば、eNB200(送信部210)は、システム情報ブロック(SIB)、SC-MCCH、又はMCCHを用いて通知要求を送信する。通知要求は、CEレベル通知の対象とする1又は複数のMBMSサービスのサービス識別子(TMGI)を含んでもよい。通知要求は、RRCアイドル状態のUE100を対象とすることを示す情報を含んでもよい。
 なお、ステップS102は、ステップS101の前に行われてもよい。或いは、ステップS102は、ステップS101と同時に行われてもよい。この場合、通知要求及び設定情報は、1つのメッセージに含まれてもよい。
 UE100は、通知要求及び設定情報を受信する。
 ステップS103において、UE100は、通知要求の受信に応じて、自身がMBMSサービスの受信に興味を持つか否かを判断してもよい。一例として、MBMSサービスの受信を開始するよう上位レイヤから設定されている場合、自身がMBMSサービスの受信に興味を持つと判断する。MBMSサービスの受信に興味を持たない場合、UE100は、CEレベル通知をeNB200に送信しなくてもよい。ここでは、UE100がMBMSサービスの受信に興味を持つと仮定して説明を進める。また、CEレベル通知の対象とするMBMSサービスが指定されている場合、UE100は、指定されたMBMSサービスと自身が興味を持つMBMSサービスとが一致するか否かを判断してもよい。指定されたMBMSサービスと自身が興味を持つMBMSサービスとが一致しない場合、UE100は、CEレベル通知をeNB200に送信しなくてもよい。
 ステップS104において、UE100は、設定情報に基づいて、共通リソースに含まれるリソース(時間リソース、周波数リソース、及び/又は信号系列)を選択する。UE100は、自身のCEレベルに対応するリソースを共通リソースの中から選択してもよい。
 ステップS105において、UE100は、選択されたリソースを用いて、CEレベル通知をeNB200に送信する。CEレベル通知は、UE100のCEレベルを示す情報及び/又はUE100が受信に興味を持つMBMSサービスを示す情報(TMGI)を含んでもよい。ここで、UE100は、RRCアイドル状態であっても、共通リソースを用いてCEレベル通知をeNB200に送信可能である。
 eNB200は、CEレベル通知を受信する。なお、複数のUE100間でリソースの衝突が発生した場合、eNB200は、当該リソースを用いて送信されたCEレベル通知の復号に失敗し得る。これに対し、リソース衝突が発生しない場合、eNB200は、CEレベル通知の復号に成功する。eNB200は、CEレベル通知に基づいて、MBMSサービスの受信に興味を持つ各UE100のCEレベルを把握する。eNB200は、UE100から受信したCEレベル通知をMME300及び/又はMCE11等に転送してもよい。
 ステップS106において、eNB200は、把握したCEレベルに基づいて、SC-PTMにより配信するMBMSサービスに適用する繰り返し送信回数及び/又はMCSを決定する。
 ステップS107において、eNB200は、決定した繰り返し送信回数及び/又はMCSを用いて、MBMSサービスをSC-PTMにより配信する。
 図14は、第1実施形態の動作パターン2の一例を示す図である。ここでは、動作パターン1との相違点を主として説明し、重複する説明を省略する。UE100は、RRCアイドル状態であって、強化カバレッジに居るUEである。
 図14に示すように、ステップS201において、eNB200は、複数のUE100がCEレベル通知の送信に共通に用いるべき共通リソースを示す設定情報を送信する。
 ステップS202において、eNB200は、所定の繰り返し送信回数及び/又は所定のMCSを用いて、MBMSサービスをSC-PTMにより配信する。受信状態が非常に劣悪なUEでもMBMSサービスを受信できるように、所定の繰り返し送信回数及び/又は所定のMCSは、例えば最大の繰り返し送信回数及び/又は最低のMCSであってもよい。最低のMCSとは、最もデータレートが低く、かつ最も誤り耐性が高いMCSである。
 ステップS203において、UE100は、SC-PTMにより配信されるMBMSサービスの受信を開始する。ここで、「MBMSサービスの受信を開始する」とは、MBMSサービス(SC-PTM)のための制御情報及び/又はデータの受信を開始することを意味する。よって、SC-MTCHの受信を開始することに限らず、SC-MCCHの受信を開始することであってもよいし、SIB20の受信を開始することであってもよい。
 ステップS204において、UE100は、自身が興味を持つMBMSサービスを正常に受信できるか否かを判断する。一例として、UE100は、自身が興味を持つMBMSサービスに属するデータを運搬するSC-MTCHの復号に失敗したことに応じて、当該MBMSサービスを正常に受信できないと判断する。或いは、UE100は、受信状態の指標値(例えば、RSRP、誤り率等)が閾値よりも劣化したことに応じて、当該MBMSサービスを正常に受信できないと判断してもよい。
 他の例として、UE100は、自身が興味を持つMBMSサービスに属するデータを運搬するSC-MTCHの復号に成功するか否かを予測してもよい。eNB200は、当該予測に用いる情報をUE100に提供してもよい。eNB200は、当該予測に用いる情報として、SC-MTCH(データ)の初送の繰り返し送信回数及び/又はMCSを示す情報をSC-MCCH(SC-PTM設定情報)中で送信してもよい。もしくは、予測に用いる情報は、SC-MTCH及び/又はSC-MCCHの最小繰り返し送信回数でもよい。すなわち、eNB200は、SC-PTM伝送(もしくはMBMSセッション)において各パケットを、少なくとも最小繰り返し送信回数だけ繰り返し送信する事を報知する。当該報知情報により、UE100は、強化カバレッジのレベルに応じて、当該SC-PTM伝送を受信できるか否かを判断する事ができる。もしくは、予測に用いる情報は、SC-MTCH及び/又はSC-MCCHの最大繰り返し送信回数であってもよい。UE100は、当該情報により、当該SC-PTM伝送を受信できる見込みがあるのか否かを判断する事ができる。
 他の例として、UE100は、自身が興味を持つMBMSサービスに属する制御情報を運搬するSC-MCCHの復号に成功するか否かを予測してもよい。繰り返し送信回数及び/又はMCSが異なる複数のSC-MCCHが提供される場合、eNB200は、SC-MCCHとMBMSサービス(TMGI)との対応関係に関する情報をSIB20中でUE100に送信する。UE100は、SIB20に基づいて、自身が興味を持つMBMSサービスに属する制御情報を運搬するSC-MCCHの繰り返し送信回数及び/又はMCSを特定し、当該SC-MCCHの復号に成功するか否かを予測する。
 自身が興味を持つMBMSサービスを正常に受信できないと判断した場合(ステップS204:YES)、UE100は、CEレベル通知を送信するための動作を行う。
 ステップS205において、UE100は、前回のCEレベル通知を送信してから所定時間が経過した否かを判断してもよい。一例として、UE100は、CEレベル通知の送信時又はCEレベル通知の送信決定時に、eNB200から設定されたタイマを開始させる。UE100は、タイマの動作中は、CEレベル通知の送信を禁止(無効化)する。UE100は、タイマの満了後に、CEレベル通知の送信を有効化する。
 ステップS206において、UE100は、設定情報に基づいて、共通リソースに含まれるリソース(時間リソース、周波数リソース、及び/又は信号系列)を選択する。UE100は、自身のCEレベルに対応するリソースを共通リソースの中から選択してもよい。
 ステップS207において、UE100は、選択されたリソースを用いて、CEレベル通知をeNB200に送信する。CEレベル通知の内容は、動作パターン1と同様であってもよい。動作パターン2において、CEレベル通知は、受信できない旨を示す情報を含んでもよいし、NACKを含んでもよい。
 eNB200は、CEレベル通知を受信する。eNB200は、CEレベル通知に基づいて、MBMSサービスの受信に興味を持つ各UE100のCEレベルを把握する。eNB200は、UE100から受信したCEレベル通知をMME300及び/又はMCE11等に転送してもよい。
 ステップS208において、eNB200は、把握したCEレベルに基づいて、SC-PTMにより配信するMBMSサービスに適用する繰り返し送信回数及び/又はMCSを変更する。そして、eNB200は、変更後の繰り返し送信回数及び/又はMCSを用いて、MBMSサービスをSC-PTMにより配信する。
 なお、ステップS204において、MBMS受信不可と判断した場合、UE100の所定レイヤ(例えばRRCレイヤ)は、UE100の上位レイヤ(例えばNASレイヤ)に対して、当該MBMS受信が不可である事を通知してもよい。その際、所定レイヤは、受信が不可であるMBMSサービスの情報(例えばTMGI情報)を上位レイヤに通知してもよい。或いは、ステップS204において、MBMS受信不可と判断した場合、UE100は、ユニキャストによるMBMSサービス受信を行うために、RRCコネクティッド状態への遷移を試みてもよい。具体的には、UE100は、RRC Connection RequestメッセージをeNB200に対して送信してもよい。当該RRC Connection Requestメッセージの送信は上位レイヤからの指示によって実施されてもよい。なお、この場合、ステップS205以降のCEレベル通知は行わなくてもよい。もしくは、UE100は、ステップS201の設定情報においてCEレベル通知に関する情報が無い場合に、本動作を行ってもよい。
 図15は、第1実施形態に係る共通リソースの第1の例を示す図である。図15において、時間方向の1つの区画は、1つの無線フレーム(又は1つのサブフレーム)を示す。
 図15に示すように、共通リソース(A set of resources)は、eNB200の上りリンク無線リソースの一部である。一例として、共通リソースは、複数のリソースブロック(PRB:Physical Resource Block)からなる。UE#1乃至#6は、eNB200から受信する通知要求及び設定情報に基づいて、共通リソースに含まれるリソースブロックを用いてCEレベル通知をeNB200に送信する。リソースブロックは、ランダムに選択されてもよい。
 図15の例において、UE#1がリソースブロックAを選択し、UE#2がリソースブロックBを選択し、UE#3がリソースブロックCを選択し、UE#4乃至#6がリソースブロックDを選択している。すなわち、UE#4乃至#6間でリソースブロックの衝突が発生している。eNB200は、衝突が発生したリソースブロックDを用いて送信されたCEレベル通知の復号に失敗し得る。これに対し、リソースブロックA、B、Cについては衝突が発生していないため、eNB200は、UE#1乃至#3のそれぞれのCEレベル通知の復号に成功する。なお、CEレベル通知の送信に用いるリソースブロックの数は、1つである場合に限らず、2以上の数であってもよい。CEレベル通知の送信に用いるリソースブロックの数は、設定情報のパラメータの1つとしてeNB200が設定してもよい。
 図16及び図17は、第1実施形態に係る共通リソースの第2の例を示す図である。第2の例は、複数のUE100間でリソースの衝突が生じる可能性を低下させる例である。UE100は、自身が発生させた乱数又は自身の固有識別子を取得する。固有識別子は、IMSI(International Mobile Subscriber Identity)であってもよい。或いは、固有識別子は、S-TMSI(SAE-Temporary Mobile Subscriber Identity)であってもよいし、電話番号であってもよい。或いは、固有識別子は、eNB200がUE100に割り当てた識別子であってもよい。UE100は、乱数又は固有識別子に基づいて、CEレベル通知の送信が許可されるか否かを判断する。UE100は、乱数又は固有識別子に基づいて、CEレベル通知の送信タイミングを決定してもよい。送信タイミングは、無線フレームを識別するシステムフレーム番号(SFN)により定義されてもよいし、サブフレームフレームを識別するサブフレーム番号により定義されてもよい。また、UE100は、eNB200から送信された所定値を受信してもよい。所定値は、乱数又は固有識別子が所定の条件を満たしたか否かを判断するための閾値又は変数であってもよい。UE100は、乱数又は固有識別子と、所定値とに基づいて、CEレベル通知の送信が許可されるか否かを判断してもよい。さらに、UE100は、乱数又は固有識別子と、所定値とに基づいて、CEレベル通知の送信タイミングを判断してもよい。
 図16に示すように、UE#1乃至#6のそれぞれは、自身のCEレベル通知の送信が許可されているか否かを判断する。図16の例において、UE#1、#3、及び#4は条件を満たすが、UE#2、#5、及び#6は条件を満たさない。この場合、UE#1、#3、及び#4は、共通リソース内のリソースブロックを用いてCEレベル通知を送信する。一方、UE#2、#5、及び#6は、CEレベル通知の送信が禁止される。一例として、UE100は、乱数(0~1の範囲)を発生させ、eNB200から通知された閾値(0~1の範囲)と乱数とを比較する。UE100は、乱数が閾値条件を満たした場合に、CEレベル通知の送信が許可されていると判断し、CEレベル通知の送信機能を有効化する。「乱数が閾値条件を満たす」とは、乱数が閾値条件を超えたことであってもよいし、乱数が閾値条件を下回ったことであってもよい。一方、UE100は、乱数が閾値条件を満たさない場合に、CEレベル通知の送信が許可されていないと判断し、CEレベル通知の送信機能を無効化する。他の例として、UE100は、自身のIMSIを取得し、eNB200から通知された変数(”N”、”T”)により定義される条件をIMSIが満たすか否かを判断する。このような条件として、「(IMSI) mod (N) = (T)」という条件式を用いてもよい。当該条件式において、IMSIそのものを用いることに代えて、IMSIに基づく値(例えば、IMSI mod 1024)を用いてもよい。当該条件式において、等式を用いることに代えて、不等式(>、<、≦、又は≧)を用いてもよい。UE100は、IMSIが条件を満たした場合に、CEレベル通知の送信が許可されていると判断し、CEレベル通知の送信機能を有効化する。一方、UE100は、IMSIが条件を満たさない場合に、CEレベル通知の送信が許可されていないと判断し、CEレベル通知の送信機能を無効化する。
 図17に示すように、UE#1乃至#6のそれぞれは、自身のCEレベル通知の送信タイミングをIMSI(又は乱数)に基づいて決定する。図17の例において、UE#1及び#2はSFN#1をCEレベル通知の送信タイミングとして決定し、UE#3及び#4はSFN#2をCEレベル通知の送信タイミングとして決定し、UE#5及び#6はSFN#3をCEレベル通知の送信タイミングとして決定している。このように、複数のUEのCEレベル通知の送信タイミングを時間方向に分散させることができる。一例として、UE100(制御部130)は、自身のIMSIを取得し、eNB200から通知された変数(”N”)及びIMSIにより定義される条件を満たすSFNを決定する。このような条件として、「(IMSI) mod (N) = (SFN) mod (N)」という条件式を用いてもよい。当該条件式において、IMSIそのものを用いることに代えて、IMSIに基づく値(例えば、IMSI mod 1024)を用いてもよい。UE100は、条件を満たしたSFNにおいてCEレベル通知を送信することを決定する。一方、UE100は、条件を満たさないSFNにおいてCEレベル通知を送信しないことを決定する。他の例として、IMSIに代えて乱数を用いてもよい。
 図18は、第1実施形態に係る共通リソースの第3の例を示す図である。第3の例において、設定情報は、複数のCEレベルに対応する共通リソースからなる複数の共通リソースを示す。UE100は、自身のCEレベルに対応する共通リソースを複数の共通リソースの中から選択し、選択した共通リソースに含まれるリソースを用いてCEレベル通知をeNB200に送信する。このように、CEレベルと共通リソースとを対応付ける。このような対応関係を導入することにより、CEレベル通知の情報量を削減することができる。一例として、CEレベル通知は、スケジューリング要求(SR)のような1ビットのフラグにより構成してもよい。eNB200は、共通リソースごとにCEレベル通知をカウントすることにより、MBMSサービスを受信している又は受信に興味を持つ各UE100のCEレベルを把握する。
 図18(a)に示すように、CEレベル0乃至3に対応する4つの共通リソースが設定されている。UE100は、自身のCEレベルに対応する共通リソースを複数の共通リソースの中から選択し、選択した共通リソースに含まれるリソースを用いてCEレベル通知をeNB200に送信する。
 図18(b)に示すように、複数の共通リソースのそれぞれには、TMGIとCEレベルとが対応付けられていてもよい。一例として、TMGI#1且つCEレベル0に対応する共通リソースと、TMGI#1且つCEレベル1に対応する共通リソースと、・・・が設定される。eNB200は、TMGIとCEレベルと共通リソースとの対応関係を示す情報を設定情報中でUE100に送信してもよい。UE100は、自身が受信している又は受信に興味を持つMBMSサービスのサービス識別子(TMGI)に対応する複数の共通リソースを選択し、当該複数の共通リソースの中から自身のCEレベルに対応する共通リソースをさらに選択してもよい。
 (第2実施形態)
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。
 第1実施形態において、eNB200は、UE100から受信するCEレベル通知に基づいて、SC-PTMにより配信するMBMSサービスに適用する繰り返し送信回数及び/又はMCSを決定していた。これに対し、第2実施形態において、eNB200は、UE100から受信するCEレベル通知に加えて又はCEレベル通知に代えて、他のネットワーク装置から受信する情報に基づいて繰り返し送信回数及び/又はMCSを決定する。第2実施形態に係るeNB200は、MBMSサービスに適用すべきCEレベルを示す通知を他のネットワーク装置から受信する受信部(バックホール通信部240)と、当該通知に基づいて、繰り返し送信を含むカバレッジ強化技術を用いてMBMSサービスを配信する制御部230と、を備える。他のネットワーク装置とは、MME300又はMCE11であってもよい。
 図19は、第2実施形態の動作例を示す図である。
 図19に示すように、ステップS301において、UE100は、自身のCEレベルをGCS-AS31又はBM-SC22に通知してもよい。一例として、UE100は、自身のCEレベルが変化する度に、変化後のCEレベルを通知する。GCS-AS31又はBM-SC22は、MBMSサービスを受信している又は受信に興味を持つ各UE100のCEレベルを把握し、MBMSサービスに適用するCEレベル(繰り返し送信回数及び/又はMCS)を決定し、決定したCEレベルをMME300又はMCE11に通知してもよい(ステップS302)。
 或いは、ステップS303において、UE100は、自身のCEレベルをMME300又はMCE11に通知してもよい。或いは、ステップS304において、eNB200は、ランダムアクセスプロシージャ時に把握したUE100のCEレベルをMME300又はMCE11に通知してもよい。一例として、eNB200は、UEコンテキスト解放時に、MPDCCHの繰り返し送信回数(CEレベル)をMME300に通知する。
 MME300又はMCE11は、通知されたCEレベルに基づいて、MBMSサービスごとのCEレベルを決定及び/又は管理してもよい。
 ステップS305において、MME300又はMCE11は、MBMSサービス(TMGI)ごとのCEレベルをeNB200に通知する。一例として、MME300又はMCE11は、MBMSサービスの配信開始又は変更のためのメッセージ(MBMS Session Start/Modification)等で、TMGI毎にCEレベルをeNB200に通知する。
 ステップS306において、eNB200は、通知されたCEレベルに基づいて、SC-PTMにより配信するMBMSサービスに適用する繰り返し送信回数及び/又はMCSを決定又は変更する。そして、eNB200は、決定又は変更した繰り返し送信回数及び/又はMCSを用いて、MBMSサービスをSC-PTMにより配信する。
 (第3実施形態)
 以下において、第3実施形態について、第1及び第2実施形態との相違点を主として説明する。
 第3実施形態は、強化カバレッジに居るRRCアイドル状態のUE100がMBMS受信を行うシナリオにおいて、MBMSサービスをUE100が継続的に受信可能とする実施形態である。
 第3実施形態に係るUE100は、RRCアイドル状態においてサービングセルとして用いるセルを選択するセル再選択動作を行う制御部130を備える。繰り返し送信を含むカバレッジ強化技術がUE100に必要とされる場合(すなわち、UE100が強化カバレッジに居る場合)、制御部130は、無線品質に基づくランキングによりセルを選択する。
 具体的には、UE100は、現在のサービングセルがカバレッジ強化技術を用いなければアクセスできない場合に、同一周波数(intra-frequency)及び別の周波数(inter-frequency)について、強化カバレッジのための“S-criteria”又は“R-criteria”を用いたランキングを適用する。言い換えると、強化カバレッジに居るUE100は、周波数優先度を考慮せずに、無線品質(受信レベル)が最も良好なセルを優先的に選択する。この場合の動作は、上述した「セル再選択動作の概要」の「(B2)隣接セルの周波数の優先度が現在のサービングセルの優先度と同じである」場合の動作と同様である。
 しかしながら、このような方法では、MBMSサービスが配信されない周波数又はセルをUE100が選択し得る。よって、MBMSサービスを受信している又は受信に興味を持つUE100がMBMSサービスをUE100が継続的に受信できない虞がある。
 よって、第3実施形態に係るUE100は、カバレッジ強化技術がUE100に必要とされる場合であっても、自身がMBMSサービスを受信している又は受信に興味を持つ場合には、ランキングを用いることなく、MBMSサービスが配信される周波数に属するセルを優先的に選択する。一例として、強化カバレッジに居るUE100は、SC-PTMにより配信されるMBMSサービスの受信に興味がある場合、当該MBMSサービスが配信される周波数(又はセル)を最高優先度と見なすとともに、ランキング動作を行わない。これにより、強化カバレッジに居るUE100であっても、MBMSサービスを継続的に受信可能とすることができる。
 第3実施形態に係る動作は、「MBMSサービスを受信している又は受信に興味を持つUEは、当該MBMSサービスが提供される周波数でキャンプする間のみ当該MBMSサービスを受信できる場合、UEが強化カバレッジに居るか否かと無関係に、当該周波数を最高優先度とみなすことができる」と規定されてもよい。或いは、第3実施形態に係る動作は、「現在のサービングセルがカバレッジ強化技術を用いなければアクセスできない場合で、かつ、MBMSサービスを提供する最高優先度の周波数が設定されていない場合に、同一周波数(intra-frequency)及び別の周波数(inter-frequency)について、強化カバレッジのための“S-criteria”又は“R-criteria”を用いたランキングを適用する。」と規定されてもよい。
 図20は、第3実施形態の動作例を示す図である。
 図20に示すように、ステップS401において、RRCアイドル状態のUE100は、カバレッジ強化技術が自身に必要とされるか否か(すなわち、自身が強化カバレッジに居るか否か)を判断する。
 カバレッジ強化技術が自身に必要とされない場合(ステップS401:NO)、ステップS402において、UE100は、上述した「セル再選択動作の概要」のような通常のセル再選択動作を行う。
 一方、カバレッジ強化技術が自身に必要とされる場合(ステップS401:YES)、ステップS403において、UE100は、MBMSサービスを受信している又は受信に興味を持つか否かを判断する。
 MBMSサービスを受信しておらず、かつMBMSサービスの受信に興味を持たない場合(ステップS403:NO)、ステップS404において、UE100は、周波数優先度を考慮せずに、ランキングを用いて、無線品質が最も良好なセルを優先的に選択する。
 一方、MBMSサービスを受信している又は受信に興味を持つ場合(ステップS403:YES)、ステップS405において、UE100は、ランキングを行わずに、MBMSサービスが配信される周波数に属するセルを優先的に選択する。
 (その他の実施形態)
 上述した実施形態において、「CEレベル」を送受信するケースを主として説明したが、「CEレベル」を「繰り返し送信回数」と読み替えてもよい。
 上述した実施形態において、UE100における受信状態の指標値としてRSRPを用いる一例を説明したが、RSRP以外の指標値を用いてもよい。一例として、RSRQ(Reference Signal Received Quality)又はRS-SINR(Reference Signal signal-to-interference-plus-noise ratio)を受信状態の指標値として用いてもよい。
 上述した各実施形態を別個独立に実施する場合に限らず、2以上の実施形態を組み合わせて実施してもよい。例えば、一の実施形態に係る一部の処理を他の実施形態に追加してもよい。或いは、一の実施形態に係る一部の処理を他の実施形態の一部の構成と置換してもよい。
 上述した実施形態において、MBMSサービスとしてファームウェア配信を想定していた。しかしながら、グループメッセージ配信、グループチャットメッセージ配信、ウィルス定義ファイルの配信、天気予報のような定期更新ファイルの配信、ニュース速報のような不定期ファイル配信、映像コンテンツ等の夜間ファイル配信(オフピーク配信)、音声/映像ストリーミング配信、電話/ビデオ電話(グループ通信)、ライブ映像配信、ラジオ音声配信等のMBMSサービスを想定してもよい。
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本発明を適用してもよい。
 (付記)
 (1.はじめに)
 FeMTCとeNB-IoTのマルチキャスト拡張に関する議論が開始され、以下のように合意に達した。
 Rel-13 SC-PTMアーキテクチャは、NB-IoTおよびMTCのマルチキャスト設計に想定されている。
 RAN2は、PDCCHによってSC-MTCHがスケジューリングされるレガシーSC-MTCHメカニズムが、NB-IoTおよびMTCのマルチキャストに再利用され、柔軟なスケジューリングを達成すると想定する。
 RAN2は、NB-IoTおよびMTCにおけるマルチキャストのためにSC-MTCH送信の繰り返しが導入されると想定する。
 CEレベル情報(例えば、繰り返し)は、SC-MTCHのためのAS構成の1つである。
 この付記では、強化カバレッジ(CE)をサポートするマルチキャスト強化の内部について説明する。
 (2.検討)
 (2.1.CEレベルの情報ハンドリング)
 「Rel-13 SC-PTMアーキテクチャは、NB-IoTおよびMTCのマルチキャスト設計に想定されている」と合意したが、マルチキャスティングのCEレベル、すなわち、繰り返し回数などを決定する責任がどのエンティティによってハンドルされるか結論されていない。いくつかのオプションがある。
 GCS AS:GCS ASは、UE位置の知識、すなわちセルIDのリストを含むGCSセッションおよびグループ管理をハンドルする。従って、各セル内の各UEのCEレベルの管理を追加することが可能であり、CNの影響が予見され得る(例えば、GCS ASとBM-SCとの間のMB2)。
 MME:MMEは、開始/停止などのMBMSセッション管理の責任を負っている。Rel-13ページングの最適化のために、UE Context Releaseが処理されるときに、MMEは、特定のUEのCEレベル、すなわち、mpdcch-NumRepetitionを含むUEPagingCoverageInformationについてeNBによって通知される。情報は、RRC IDLEにおけるUEモビリティの場合には有効性が保証されていないが、再利用されてもよい。
 MCE:MCEは、MBMSセッション制御を決定する。SC-PTMの場合、MBMSベアラのセルIDおよびQoSのリストは、例えば、MBMSセッション開始要求を介してeNBに通知される。したがって、セル単位でCEレベルの管理を追加することは可能ですが、RANの仕様には影響がある。
 eNB:eNBは、無線リソースを詳細に管理する。eNBは、各RRC ConnectedのUEに対するCEレベルを有するが、RRC IDLEのUEに対するCEレベルを有しないかもしれない。また、CEレベルは、(MO呼のために)PRACHが送信される時、又は(MT呼のために)ページングが開始される時にのみ通知される。したがって、eNBは、RRC IDLEまたは移動性のUEなど、SC-PTMに興味を持つUEのCEレベルの完全な知識を持っていない。RAN2がRel-13 SC-PTMの原則、すなわち、「スケジューリングはeNBによって行われる」に従うならばeNBが責任を持つべきである。
 各オプションには長所と短所があるが、この時点ではSC-PTMのCEレベルの決定に関する完全な知識を有するオプションはない。CEレベルがRAN由来の情報であることを考慮すると、不要なクロスレイヤ相互作用を避けるために、RANノード内で処理することが望ましい。例えば、GCS ASまたはMMEのいずれかがUEのCEレベル情報を受信したとしても、SC-PTM送信の設定はeNBによって決定されるため、eNBと調整する必要がある。一方、eNBがCEレベルの情報を受信した場合、この情報は、コアネットワークまたはアプリケーションレイヤに対して透過的になる。また、CEレベルがUEのモビリティによって動的に変更されると仮定すべき場合、eNBは、スケジューリングのためにCEレベルを処理するためにわずかに優先されるノードである。
 提案1:SC-PTMのCEレベルは、RANノード、好ましくはeNBによって決定されるべきである。
 上述したように、エンティティは、Rel-14マルチキャスト拡張のためのCEレベルについての十分な知識を有することができない。したがって、特定のMBMSサービスのCEレベルを決定する方法が問題になる。いくつかの潜在的なアプローチが考えられる。
 UEからの報告に基づく:どのエンティティが決定するかにかかわらず、UEが位置するCEレベルの報告、例えばGC1を介した報告は、正確/動的決定、すなわち適切な繰り返し回数及びアダプティブMCSに対して有用である。しかしながら、RAN2に指摘されているように、UEがCEレベルが変化するたびに報告する必要がある場合、それは過剰なオーバヘッドを引き起こす可能性がある。また、報告によるUEの電力消費が問題となる可能性がある。
 ブラインド決定:エンティティは、例えば、最悪の場合を想定するために、ブラインド的にSC-PTMのCEレベルを決定することができる。これは、最大繰り返し回数と最低MCSでSC-PTMを送信する簡単な方法であり、この時点ではベースラインになる可能性がある。加えて、CEの繰り返しは、通常のカバレッジにおけるUEのより強固な受信を保証する。しかしながら、それはSC-PTMからの十分な利益を取らない、すなわち、静的/控えめのスケジューリングによってスペクトル効率が低い。さらに、UEは、SC-PTM受信の長い持続時間のために、実際に必要とする以上にバッテリを消費し得る。すなわち、セル中心のUEが短い期間で高いMCSで実際ファイルを受信することができても、低いMCSは、すべてのUEにファイルを配信するためにより多くのサブフレームを必要とする。
 新たな報告が指定された場合、過剰なオーバヘッド及び追加のUE消費を避けるために、ULシグナリングの数を最小限に抑える必要がある。
 最初のCEレベル決定の可能性の1つは、eNBは、MBMSサービスが既存のMBMSカウント手順のように、強化カバレッジで受信されるかどうか一度だけUEに問い合わせることである。IDLEのUEも報告を送信する必要がある場合は、RRC Connectedへの移行なしで処理する方がよい。この意味で、どのUEが報告を送信するかをeNBが決定する必要がないと仮定すると、RACH手順中の既存のCEレベル報告は、アプローチの1つと考えることができる。
 SC-PTM中のCEレベル変更の別の可能性は、UEがもはやSC-PTMを成功に受信できなくなったときにのみ報告が開始されることである。提案されているように、これを再送のためのフィードバック方式内に統合してもよい。
 しかし、技術的な観点から、優れたアプローチではないにもかかわらず、このWIに割り当てられた時間単位の制限のために、このリリースおけるブラインド決定に依存することも考えられる。
 提案2:RAN2は、最小ULシグナリングとWIに割り当てられた時間単位を考慮して、CEレベルの報告を考慮する必要がある。
 (2.2.セル再選択)
 現在のアイドルモード手順によれば、MBMSサービスに興味を持つ又は受信しているUEは、他の周波数よりもSC-PTMを提供する周波数を優先させ得る、すなわち、最高優先度として考慮する。一方、「強化カバレッジ用のセル選択基準Sでのランキングは、現在のサービングセルが強化カバレッジを用いてのみアクセス可能である場合に周波数内および周波数間セル再選択に適用される」と指定されており、UEが強化カバレッジ内にある場合は、すべての周波数を等しい優先度とみなす。強化カバレッジにおけるSC-PTM受信がRel-13で明確に定義されていないので、現在の仕様により、強化カバレッジ内のUEは、通常のカバレッジで行われるようにSC-PTM周波数を優先させることができることを明確にすべきである。また、RAN2は、優先度の高いコンセプトを持つ仕様に注釈を追加するか、ランキングメカニズムを強化するなど、いくつかの小さな強化が必要かどうかについて議論すべきである。
 提案3:RAN2は、強化カバレッジ内のUEが、興味のあるマルチキャストサービスを提供する周波数を優先させることができるか否かについて議論し、明確にするべきである。
 米国仮出願第62/402161号(2016年9月30日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明は移動通信分野において有用である。
 

Claims (8)

  1.  移動通信システムのための無線端末であって、
     繰り返し送信を含むカバレッジ強化技術を用いて基地局から配信されるMBMSサービスを受信する受信部と、
     所定のイベントが発生したか否かを判断する制御部と、
     前記所定のイベントが発生したことに応じて、前記無線端末が必要とするカバレッジ強化レベルに関する通知を前記基地局に送信する送信部と、を備え、
     前記所定のイベントは、前記通知の送信を前記基地局から要求されたこと、又は前記MBMSサービスを正常に受信できないことである
     無線端末。
  2.  前記受信部は、前記MBMSサービスの受信開始前において、前記通知の送信を要求する通知要求を前記基地局から受信し、
     前記送信部は、前記通知要求の受信に応じて、前記通知を前記基地局に送信する
     請求項1に記載の無線端末。
  3.  前記制御部は、前記MBMSサービスの受信開始後において、前記MBMSサービスを正常に受信できるか否かを判断し、
     前記送信部は、前記MBMSサービスを正常に受信できないと判断されたことに応じて、前記通知を前記基地局に送信する
     請求項1に記載の無線端末。
  4.  前記受信部は、前記通知を送信するために複数の無線端末が共用する共通リソースを示す設定情報を前記基地局からさらに受信し、
     前記送信部は、前記共通リソースを用いて前記通知を前記基地局に送信する
     請求項1に記載の無線端末。
  5.  前記制御部は、前記通知を送信してから所定時間が経過するまで、次の通知の送信を禁止し、
     前記制御部は、前記通知を送信してから前記所定時間が経過した後、前記次の通知の送信を可能にする
     請求項1に記載の無線端末。
  6.  前記制御部は、前記受信状態が閾値よりも良好であることに応じて、前記通知の送信を禁止し、
     前記制御部は、前記受信状態が前記閾値よりも劣悪であることに応じて、前記通知の送信を可能にする
     請求項1に記載の無線端末。
  7.  移動通信システムのための基地局であって、
     MBMSサービスに適用すべきカバレッジ強化レベルに関する通知をネットワーク装置から受信する受信部と、
     前記通知に基づいて、繰り返し送信を含むカバレッジ強化技術を用いて前記MBMSサービスを配信する制御部と、を備える
     基地局。
  8.  移動通信システムのための無線端末であって、
     サービングセルとして用いるセルを選択するセル再選択動作を行う制御部を備え、
     繰り返し送信を含むカバレッジ強化技術が前記無線端末に必要とされる場合、前記制御部は、無線品質に基づくランキングにより前記セルを選択し、
     前記カバレッジ強化技術が前記無線端末に必要とされる場合であっても、前記無線端末がMBMSサービスを受信している又は受信に興味を持つ場合には、前記制御部は、前記ランキングを用いることなく、前記MBMSサービスが配信される周波数に属する前記セルを優先的に選択する
     無線端末。
PCT/JP2017/034903 2016-09-30 2017-09-27 無線端末及び基地局 WO2018062248A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018542626A JP6670944B2 (ja) 2016-09-30 2017-09-27 無線端末及び基地局
US16/365,438 US11310631B2 (en) 2016-09-30 2019-03-26 Radio terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662402161P 2016-09-30 2016-09-30
US62/402,161 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,438 Continuation US11310631B2 (en) 2016-09-30 2019-03-26 Radio terminal and base station

Publications (1)

Publication Number Publication Date
WO2018062248A1 true WO2018062248A1 (ja) 2018-04-05

Family

ID=61762683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034903 WO2018062248A1 (ja) 2016-09-30 2017-09-27 無線端末及び基地局

Country Status (3)

Country Link
US (1) US11310631B2 (ja)
JP (1) JP6670944B2 (ja)
WO (1) WO2018062248A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3468293B1 (en) * 2016-08-29 2021-05-19 LG Electronics Inc. Method by which terminal receives mbms service and apparatus for supporting same
US11178698B2 (en) * 2017-05-31 2021-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Power control of random access in NB-IoT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024802A1 (ja) * 2011-08-12 2013-02-21 京セラ株式会社 移動通信方法、移動端末、及びプロセッサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151037A2 (ko) * 2009-06-23 2010-12-29 한국전자통신연구원 멀티미디어 브로드캐스트/멀티캐스트 서비스에서 오류 패킷의 재전송 요구 정보 전송 방법 및 재전송 요구에 대한 오류 패킷 재전송 방법
EP3100536B1 (en) * 2014-01-29 2020-03-11 Interdigital Patent Holdings, Inc. Method of access and link adaptation for coverage enhanced wireless transmissions
WO2015116870A1 (en) 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Method and apparatus for implementing coverage enhancement (ce) operations
WO2016048045A1 (en) * 2014-09-23 2016-03-31 Lg Electronics Inc. Method and apparatus for signaling usable downlink subframes for low cost user equipment in wireless communication system
US10645675B2 (en) 2015-01-26 2020-05-05 Lg Electronics Inc. Method and apparatus for providing MBMS service for low complexity user equipment in wireless communication system
WO2016163734A1 (ko) * 2015-04-07 2016-10-13 엘지전자 주식회사 커버리지 확장 레벨을 기반으로 값을 적용하는 방법 및 장치
WO2017014549A1 (ko) * 2015-07-20 2017-01-26 엘지전자 주식회사 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
US11051193B2 (en) * 2015-07-22 2021-06-29 Qualcomm Incorporated Configurable measurement gap and window for machine type communications
EP3487193B1 (en) * 2016-08-12 2020-05-27 Huawei Technologies Co., Ltd. Service transmission method and wireless communication device
EP3468293B1 (en) * 2016-08-29 2021-05-19 LG Electronics Inc. Method by which terminal receives mbms service and apparatus for supporting same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024802A1 (ja) * 2011-08-12 2013-02-21 京セラ株式会社 移動通信方法、移動端末、及びプロセッサ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"RLM enhancements in Further enhanced MIC", 3GPP TSG-RAN WG4#80 R4-166625, 12 August 2016 (2016-08-12), XP051135967 *
CATT: "Multicast for NB-IoT and eMTC", 3GPP TSG-RAN WG2#95 R2-164767, 12 August 2016 (2016-08-12), XP051133624 *
ERICSSON: "Overview of SC-PIM and common eMTC and NB-IoT aspects", 3GPP TSG-RAN WG2 TDOC R2-165636, 13 August 2016 (2016-08-13), XP051134275 *
ERICSSON: "Random access for NB- IOT", 3GPP TSG RAN WG2 MEETING NB-IOT R2-160470, 13 January 2016 (2016-01-13), XP051066474 *
HUAWEI ET AL.: "How to define the extent of coverage enhancement", 3GPP TSG-RAN WG1#82 R1-153748, 15 August 2015 (2015-08-15), XP050993534 *
SAMSUNG: "Paging reception procedure in the enhanced coverage mode", 3GPP TSG-RAN WG2#91 R2-153448, 15 August 2015 (2015-08-15), XP050992956 *

Also Published As

Publication number Publication date
US11310631B2 (en) 2022-04-19
JP6670944B2 (ja) 2020-03-25
JPWO2018062248A1 (ja) 2019-07-18
US20190222969A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6741969B2 (ja) 移動通信システム
US10939251B2 (en) User equipment and base station
JP6766169B2 (ja) 無線端末及び基地局
US20180035340A1 (en) Base station and user terminal in mobile communication system
JP6812530B2 (ja) 無線端末、プロセッサ、及び方法
JP6751765B2 (ja) 無線端末及び基地局
JP6408173B2 (ja) 無線端末及びネットワーク装置
JP6732206B2 (ja) 無線端末及び基地局
US11310631B2 (en) Radio terminal and base station
US10505650B2 (en) Radio terminal and network apparatus
JP7319474B2 (ja) 通信制御方法
WO2018143246A1 (ja) 無線端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856197

Country of ref document: EP

Kind code of ref document: A1