WO2018062151A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2018062151A1
WO2018062151A1 PCT/JP2017/034690 JP2017034690W WO2018062151A1 WO 2018062151 A1 WO2018062151 A1 WO 2018062151A1 JP 2017034690 W JP2017034690 W JP 2017034690W WO 2018062151 A1 WO2018062151 A1 WO 2018062151A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
valve body
passage
piston
damping force
Prior art date
Application number
PCT/JP2017/034690
Other languages
French (fr)
Japanese (ja)
Inventor
幹郎 山下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018062151A1 publication Critical patent/WO2018062151A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages

Definitions

  • the present invention relates to a shock absorber.
  • This application claims priority on September 27, 2016 based on Japanese Patent Application No. 2016-188038 filed in Japan, the contents of which are incorporated herein by reference.
  • an object of the present invention is to provide a shock absorber capable of greatly changing the damping force according to the frequency from the region where the piston speed is low.
  • the shock absorber is slidably fitted into the cylinder in which the working fluid is sealed, and the cylinder has two chambers, a first chamber and a second chamber. And a piston rod connected to the piston and extending to the outside of the cylinder, and a first passage and a second passage through which the working fluid flows from one of the first chamber and the second chamber by the movement of the piston And a first valve body that is provided in the first passage and generates a damping force, and the second passage is opened with a pressure smaller than that of the first valve body to generate the damping force.
  • the second valve body when the working fluid flows from the first chamber to the second chamber, the second valve body is movable in the housing while defining the inside of the housing into an upstream side and a downstream side, and the second chamber Can be opened when working fluid flows from the to the first chamber
  • a frequency response unit having a third valve element such, but are provided in series.
  • the first chamber is a rod-side chamber
  • the second chamber is a bottom-side chamber
  • the first chamber is in the extension stroke.
  • a three-valve body moves in the housing while defining the inside of the housing on the upstream side and the downstream side, thereby changing the damping force according to the frequency, and in the contraction stroke, the third valve body May be openable.
  • the second valve side of the third valve body is arranged in the housing at the upstream side during the contraction stroke.
  • a frequency sensitive portion having a fourth valve body that is movable in the housing while being defined on the downstream side and that can be opened during the extension stroke may be provided.
  • the frequency sensitive part includes a cylindrical case member and a shaft part disposed in the case member. And an annular elastic seal that is disposed in the case member so as to penetrate the shaft portion, the inner peripheral side or the outer peripheral side is supported, and the non-support side seals between the case member or the shaft portion
  • the member may be provided with a ring-shaped third valve body that can be bent, and two chambers in the case member that are defined by the third valve body.
  • the damping force in the shock absorber, can be greatly varied according to the frequency from the region where the piston speed is low.
  • FIG. 1 is a hydraulic circuit diagram showing a shock absorber according to a first embodiment of the present invention. It is a characteristic line figure which shows notionally the relation of damping force with respect to piston speed of a buffer concerning a 1st embodiment of the present invention.
  • the shock absorber 11 is a so-called single cylinder type hydraulic shock absorber, and has a cylinder 12 in which an oil liquid as a working fluid is enclosed.
  • the cylinder 12 is a bottomed cylindrical integral molded product, and a cover 15 is attached so as to cover the upper opening side of the bottomed cylindrical shape.
  • a plate-like body 16 is attached to the cover 15 on the side opposite to the cylinder 12.
  • the cylinder 12 includes a cylindrical body portion 21 and a bottom portion 22 that closes a lower portion of the body portion 21, and the body portion 21 is open on the opposite side of the bottom portion 22 in the axial direction.
  • the cover 15 has a cylindrical portion 25 and an inner flange portion 26.
  • the inner flange portion 26 extends radially inward from the upper end side of the tubular portion 25.
  • the cover 15 is placed on the opening side of the body portion 21 so that the upper end opening of the body portion 21 is covered with the inner flange portion 26 and the outer peripheral surface of the body portion 21 is covered with the tubular portion 25.
  • the cover 15 and a part of the cylindrical portion 25 are crimped inward in the radial direction, and the cover 15 is fixed to the trunk portion 21.
  • the plate-like body 16 is fixed on the opposite side to the cylindrical portion 25 of the inner flange portion 26 in the axial direction.
  • the piston 30 is slidably fitted in the body portion 21 of the cylinder 12.
  • the piston 30 divides the inside of the cylinder 12 into two chambers, an upper chamber 31 (first chamber, rod side chamber) and a lower chamber 32 (second chamber, bottom side chamber).
  • a partition piston 35 is provided in the body portion 21 of the cylinder 12 on the bottom 22 side of the piston 30.
  • the partition piston 35 is partitioned from the lower chamber 32 between the bottom portion 22 and a chamber 36 is formed.
  • An oil liquid as a working fluid is sealed in the upper chamber 31 and the lower chamber 32 in the cylinder 12, and a high-pressure gas is sealed in the chamber 36 in the cylinder 12.
  • the other end side of the piston rod 41 whose one end extends to the outside of the cylinder 12 is inserted into the cylinder 12.
  • the piston 30 is connected to the other end side of the piston rod 41 disposed in the cylinder 12.
  • the piston 30 and the piston rod 41 move together.
  • the piston 30 moves to the upper chamber 31 side.
  • the piston 30 moves to the lower chamber 32 side.
  • the upper chamber 31 is a rod side chamber in which the piston rod 41 is disposed
  • the lower chamber 32 is a bottom side chamber on the bottom 22 side of the cylinder 12.
  • the rod guide 42 is fitted to the upper end opening side of the cylinder 12.
  • a seal member 43 is fitted on the upper side, which is the outside of the cylinder 12, with respect to the rod guide 42.
  • a part of the upper end portion of the cylinder 12 is caulked inward in the radial direction to lock the seal member 43.
  • a friction member 44 is provided between the rod guide 42 and the seal member 43.
  • the rod guide 42, the seal member 43, and the friction member 44 all have an annular shape.
  • the piston rod 41 is slidably inserted inside the rod guide 42, the friction member 44, and the seal member 43, and extends to the outside of the cylinder 12.
  • the rod guide 42 supports the piston rod 41 so as to be movable in the axial direction while restricting the radial movement of the piston rod 41, and guides the movement of the piston rod 41.
  • the outer peripheral portion of the seal member 43 is in close contact with the cylinder 12, and the inner peripheral portion of the seal member 23 is in sliding contact with the outer peripheral portion of the piston rod 41 moving in the axial direction, so that the oil in the cylinder 12 leaks to the outside.
  • the inner peripheral portion of the friction member 44 is in sliding contact with the outer peripheral portion of the piston rod 41, and the friction member 44 causes the piston rod 41 to generate a frictional resistance.
  • the friction member 44 is not a member intended for sealing.
  • the piston rod 41 includes a rod body 51, a tip rod 55, an annular member 57, and a nut member 58.
  • the rod body 51 is inserted through the rod guide 42, the seal member 43, and the friction member 44 and extends from the cylinder 12 to the outside.
  • the tip rod 55 has a female screw 54 at the end inside the cylinder 12 in the rod main body 51, and the male screw 52 is screwed into the female screw 54 and extends from the rod main body 51 to the bottom 22 side.
  • the annular member 57 is in contact with the tip rod 55 by inserting the rod body 51 inward.
  • the nut member 58 is screwed to the male screw 52 so as to sandwich the annular member 57 with the tip rod 55.
  • a locking member 61 is fixed to the outer periphery of the rod body 51 on the tip rod 55 side.
  • annular spring receivers 62 and 63 are provided between the locking member 61 and the rod guide 42.
  • the spring receivers 62 and 63 are configured to be slidable along the rod body 51 by inserting the rod body 51 inward.
  • a rebound spring 64 made of a coil spring is interposed between the spring receivers 62 and 63 so that the rod body 51 is inserted inside the rebound spring 64.
  • a shock absorber 65 made of an annular elastic material is provided on the opposite side of the spring receiver 63 on the rod guide 42 side from the rebound spring 64.
  • the buffer body 65 is also slidable along the rod body 51 by inserting the rod body 51 inward.
  • the tip rod 55 has a base shaft portion 71 in which a female screw 54 is formed, and an attachment shaft portion 72 having a smaller diameter.
  • a piston 30 or the like is attached to the attachment shaft portion 72.
  • An end portion of the base shaft portion 71 on the mounting shaft portion 72 side is formed with a shaft step portion 73 that extends from the mounting shaft portion 72 along the direction orthogonal to the axis.
  • a passage groove 75 extending in the axial direction is formed at an intermediate position in the axial direction on the outer peripheral portion of the attachment shaft portion 72.
  • a male screw 76 is formed at the tip position on the opposite side of the axial base shaft portion 71.
  • the passage groove 75 is formed so that the cross-sectional shape on the surface orthogonal to the central axis of the piston rod 41 is any one of a rectangle, a square, and a D-shape.
  • a protruding portion of the piston rod 41 from the cylinder 12 is arranged at the top and supported by the vehicle body, and the bottom 22 side of the cylinder 12 is arranged at the bottom and connected to the wheel side.
  • the cylinder 12 side may be supported by the vehicle body, and the piston rod 41 may be connected to the wheel side.
  • the flow path formed in at least one of the piston 30 and the piston rod 41 is formed so that the fluid resistance of the flow path varies depending on the vibration speed and amplitude, thereby suppressing vibration. By doing so, the ride comfort of the vehicle body is improved.
  • inertial force and centrifugal force generated in the vehicle body as the vehicle travels also act. For example, a centrifugal force is generated in the vehicle body when the traveling direction is changed by a steering operation, and a force based on the centrifugal force acts between the cylinder 12 and the piston rod 41.
  • the shock absorber 11 has good characteristics against vibration based on the force generated in the vehicle body as the vehicle travels, and high stability in vehicle travel can be obtained.
  • the piston 30 has a piston main body 83.
  • the piston main body 83 has two piston components 80 and 81 and a sliding member 82.
  • the piston structural bodies 80 and 81 are two metal members that are connected to each other and in which the mounting shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion.
  • the sliding member 82 is an annular synthetic resin member that is integrally attached to the outer peripheral surfaces of the piston structural bodies 80 and 81 and slides in the cylinder 12.
  • the piston body 83 divides the inside of the cylinder 12 into two chambers, an upper chamber 31 and a lower chamber 32.
  • the piston main body 83 includes a plurality of first passage holes 88 (only one place is shown because of the cross section in FIG. 2) and a plurality of second passage holes 89 (only one place is shown because of the cross section shown in FIG. 2). And are provided.
  • the plurality of first passage holes 88 are formed so as to be able to communicate with the upper chamber 31 and the lower chamber 32 by penetrating in the axial direction.
  • the plurality of second passage holes 89 are formed so as to communicate with the upper chamber 31 and the lower chamber 32 by penetrating in the axial direction.
  • the passage of the plurality of first passage holes 88 and the passage of the plurality of second passage holes 89 cause the hydraulic fluid as the working fluid to flow between the upper chamber 31 and the lower chamber 32 by the movement of the piston 30.
  • the upper chamber 31 and the lower chamber 32 communicate with each other.
  • the plurality of first passage holes 88 are formed at an equal pitch in the circumferential direction with one second passage hole 89 interposed between the first passage holes 88.
  • the first axial side (upper side in FIG. 2) of the piston body 83 opens radially outward, and the second axial side (lower side in FIG. 2) opens radially inward.
  • a damping force generation mechanism 90 that generates a damping force is provided for each first passage hole 88.
  • the damping force generation mechanism 90 includes a valve body 91 (first valve body) that is disposed on the lower chamber 32 side, which is one end side in the axial direction of the piston body 83, and is attached to the attachment shaft portion 72 of the piston rod 41. ing.
  • the passage inside the first passage hole 88 is an extension through which the oil liquid passes during the movement of the piston 30 toward the upper chamber 31, that is, the extension stroke in which the piston rod 41 and the piston 30 move to the extension side (upper side in FIG. 2).
  • Side passage 108 (first passage) is formed.
  • the damping force generation mechanism 90 provided for each first passage hole 88 constitutes an extension-side damping force generation mechanism that generates a damping force by suppressing the flow of oil in the extension-side passage 108.
  • the valve body 91 is provided in the passage 108 and generates a damping force.
  • the second passage hole 89 constituting the remaining half of the plurality of passage holes 88 and 89 has one first passage hole 88 sandwiched between the second passage holes 89 in the circumferential direction, etc.
  • the other side of the piston body 83 in the axial direction (lower side in FIG. 2) opens radially outward, and one side in the axial direction (upper side in FIG. 2) opens radially inward.
  • Each second passage hole 89 is provided with a damping force generating mechanism 92 that generates a damping force.
  • the damping force generation mechanism 92 includes a valve body 93 that is disposed on the upper chamber 31 side that is the other end side in the axial direction of the piston main body 83 and is attached to the piston rod 41.
  • the passage inside the second passage hole 89 moves in the contraction stroke in which the piston 30 moves toward the lower chamber 32, that is, the piston rod 41 and the piston 30 move toward the contraction side (the lower side in FIG. 2).
  • a contraction-side passage 119 is formed.
  • the damping force generation mechanism 92 provided in each second passage hole 89 constitutes a contraction-side damping force generation mechanism that generates a damping force by suppressing the flow of oil in the passage in the contraction-side passage 119. Yes.
  • the piston body 83 has an annular shape, and the mounting shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion of the piston body 83.
  • An annular valve seat 97 is formed on the end of the piston body 83 on the lower chamber 32 side in the axial direction and radially outside the opening on the lower chamber 32 side of the first passage hole 88.
  • the valve seat portion 97 and the valve body 91 constitute a damping force generation mechanism 90.
  • An annular valve seat 99 is formed on the end of the piston body 83 on the upper chamber 31 side in the axial direction, on the radially outer side than the opening on the upper chamber 31 side of the second passage hole 89.
  • the valve seat 99 and the valve body 93 constitute a damping force generation mechanism 92.
  • the outer peripheral side of the valve seat portion 97 is formed in a step shape whose axial height is lower than that of the valve seat portion 97, and this step-shaped portion is below the second passage hole 89 on the contraction side.
  • An opening on the chamber 32 side is arranged.
  • the outer peripheral side of the valve seat part 99 is formed in a stepped shape having a lower height in the axial direction than the valve seat part 99, and the first side on the extending side is formed in this stepped part.
  • An opening on the upper chamber 31 side of the passage hole 88 is disposed.
  • the valve body 91 is configured by stacking a plurality of perforated disk-shaped disks 101.
  • the outer diameter of the disk 101 closest to the piston body 83 is the largest, and the outer diameter of the disk 101 on the opposite side to the piston body 83 is smaller than the disk 101.
  • the outer diameter of the disk 101 at the intermediate portion in the stacking direction is the intermediate diameter of each disk at both ends in the stacking direction.
  • a mounting shaft 72 is fitted to the inner periphery of the disc 101.
  • the valve body 91 is in contact with the valve seat portion 97 of the piston body 83 by the disk 101 closest to the piston body 83 to open and close the passage in the first passage hole 88.
  • a plurality of perforated disc-shaped disks 103 are provided between the valve body 91 and the piston main body 83.
  • Each of the plurality of disks 103 has an outer diameter smaller than the inner diameter of the valve seat portion 97.
  • the valve body 91 is provided with a perforated disk-shaped disc 104 on the opposite side to the piston body 83.
  • the disc 104 has a smaller outer diameter than the disc 101 at the end of the valve body 91 on the side opposite to the piston main body 83.
  • the disc 104 on the side opposite to the valve body 91 is provided with a perforated disc-like disc 105.
  • the disk 105 has a larger outer diameter than the disk 104.
  • a mounting shaft 72 is fitted to the inner periphery of the disks 103 to 105.
  • the valve body 91 can be detached from and seated on the valve seat portion 97.
  • the valve body 91 can open the passage in the first passage hole 88 to the lower chamber 32 by being separated from the valve seat portion 97, and allows the flow of oil from the upper chamber 31 to the lower chamber 32. Suppress.
  • the disc 101 in contact with the valve seat portion 97 in the valve body 91 has a notch 107 formed on the outer peripheral side.
  • the cutout portion 107 and the valve seat portion 97 constitute a fixed orifice 106.
  • the fixed orifice 106 allows the upper chamber 31 and the lower chamber 32 to communicate with each other even when the disk 101 is in contact with the valve seat portion 97.
  • the disk 105 suppresses deformation beyond the regulation in the opening direction of the valve body 91.
  • the passage in the first passage hole 88 on the extension side provided in the piston main body 83, the fixed orifice 106, and the gap between the valve body 91 and the valve seat portion 97 at the time of the seating are separated by the piston 30 in the extension stroke.
  • An extension-side passage 108 through which the oil liquid flows from the upper chamber 31 toward the lower chamber 32 by movement is formed.
  • the expansion-side damping force generation mechanism 90 is provided in the contraction-side passage 108 and generates a damping force.
  • the valve body 93 is configured by stacking a plurality of perforated disk-shaped disks 111.
  • the valve body 93 has the largest outer diameter of the disk 111 on the piston body 83 side, and the outer diameter of the disk 111 on the opposite side to the piston body 83 is smaller than this. Further, the outer diameter of the disk 111 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks 111 at both ends in the stacking direction.
  • a mounting shaft 72 is fitted to the inner periphery of these disks 111.
  • the valve body 93 is in contact with the valve seat 99 of the piston body 83 by the disk 111 closest to the piston body 83 to open and close the passage in the second passage hole 89.
  • each disk 113 is provided between the valve body 93 and the piston main body 83.
  • the outer diameter of each disk 113 is the same diameter and is smaller than the inner diameter of the valve seat portion 99.
  • the valve body 93 is provided with a perforated disk-shaped disk 114 on the side opposite to the piston body 83.
  • the disk 114 has a smaller outer diameter than the disk 111 at the end of the valve body 93 opposite to the piston body 83.
  • the disc 114 is provided with a plurality of perforated disc-shaped discs 115 on the side opposite to the valve body 93.
  • the plurality of disks 115 have the same outer diameter, and the outer diameter is larger than that of the disk 114.
  • a perforated disk-shaped disk 116 is provided on the opposite side of the disk 115 from the disk 114.
  • the outer diameter of the disk 116 is smaller than that of the disk 115.
  • a mounting shaft 72 is fitted to the inner peripheral portions of the disks 113 to 116.
  • the valve body 93 can be detached from and seated on the valve seat portion 99.
  • the valve body 93 can open the passage in the second passage hole 89 to the upper chamber 31 by separating from the valve seat portion 99, and allows the flow of oil from the lower chamber 32 to the upper chamber 31. Suppress.
  • a notch 118 is formed on the outer peripheral side of the disk 111 in contact with the valve seat portion 99.
  • the notch 118 and the valve seat 99 constitute a fixed orifice 117.
  • the fixed orifice 117 allows the upper chamber 31 and the lower chamber 32 to communicate with each other even when the disk 111 is in contact with the valve seat portion 99.
  • the disc 115 suppresses deformation beyond the regulation in the opening direction of the valve body 93.
  • the passage in the second passage hole 89 on the contraction side provided in the piston main body 83, the fixed orifice 117, and the clearance between the valve body 93 and the valve seat portion 99 at the time of the separation are the positions of the piston 30 in the contraction stroke.
  • a contraction-side passage 119 from which the oil liquid flows from the lower chamber 32 toward the upper chamber 31 by the movement is formed.
  • the contraction-side damping force generating mechanism 92 is provided in the contraction-side passage 119 and generates a damping force.
  • a valve mechanism 131 is provided on the mounting shaft 72 of the tip rod 55 adjacent to the disc 116 on the side opposite to the valve body 93.
  • the valve mechanism 131 constitutes the piston 30 together with the piston main body 83.
  • the valve mechanism 131 includes a case body 132, a passage forming member 133, a valve body 134 (second valve body), a seat member 135, an O-ring 136, and a valve body 137.
  • the case body 132 has a perforated disc-shaped bottom plate portion 141 and a cylindrical tubular portion 142 extending in the axial direction from the outer peripheral side of the bottom plate portion 141.
  • a mounting shaft portion 72 is fitted to the inner peripheral portion of the bottom plate portion 141.
  • the bottom plate portion 141 is in contact with the disk 116, and the cylindrical portion 142 extends from the bottom plate portion 141 in the direction opposite to the disk 116.
  • the passage forming member 133 is disposed in the cylindrical portion 142 of the case body 132.
  • the passage forming member 133 includes a cylindrical passage forming portion 145 and an annular inner flange portion 146 that protrudes radially inward from one axial end side of the passage forming portion 145.
  • the attachment shaft portion 72 is fitted to the inner peripheral portion of the inner flange portion 146, and the passage forming portion 145 is in contact with the bottom plate portion 141 of the case body 132.
  • a passage groove 147 penetrating in the radial direction is formed in the passage forming portion 145.
  • the passage groove 75 of the attachment shaft portion 72 crosses the bottom plate portion 141 of the case body 132 and opens at a position between the inner flange portion 146 and the bottom plate portion 141.
  • the sheet member 135 has an annular shape, and the mounting shaft portion 72 is fitted to the inner peripheral portion.
  • the sheet member 135 is disposed in the cylindrical portion 142 of the case body 132 and is disposed on the opposite side of the valve body 134 from the passage forming member 133.
  • the sheet member 135 has an O-ring 136 attached to the outer peripheral portion thereof, and is fitted into the cylindrical portion 142 of the case body 132 at the outer peripheral portion. At that time, the O-ring 136 seals the gap between the sheet member 135 and the case body 132.
  • the sheet member 135 is formed between the case body 132 and an intermediate chamber 150 that is partitioned from the upper chamber 31.
  • the sheet member 135 communicates a plurality of first passage holes 151 that allow the upper chamber 31 and the intermediate chamber 150 to communicate with each other (only one location is shown in the cross-sectional view in FIG. 2), and the upper chamber 31 and the intermediate chamber 150.
  • a plurality of second passage holes 152 (only one place is shown in FIG. 2 because of the cross section) are provided.
  • the first passage holes 151 are formed at an equal pitch in the circumferential direction with one second passage hole 152 interposed between the first passage holes 151, and one axial direction side of the sheet member 135 (FIG. 2). 2) is opened radially outward, and the other axial side (lower side in FIG. 2) is opened radially inward.
  • a damping force generation mechanism 155 including a valve body 134 that generates a damping force is provided for each first passage hole 151.
  • the valve body 134 of the damping force generation mechanism 155 is disposed on the intermediate chamber 150 side on one end side in the axial direction of the seat member 135 and is attached to the piston rod 41.
  • the passage in the first passage hole 151 is an extension-side passage through which oil passes when the piston rod 41 and the piston 30 move to the extension side (the upper side in FIG. 2).
  • the damping force generation mechanism 155 provided for each first passage hole 151 generates an extension-side damping force that suppresses the flow of oil in the passage in the extension-side first passage hole 151 and generates a damping force. It is a mechanism.
  • the second passage hole 152 constituting the remaining half of the plurality of passage holes 151, 152 has one first passage hole 151 sandwiched between the second passage holes 152 in the circumferential direction, etc.
  • the other side of the sheet member 135 in the axial direction (the lower side in FIG. 2) opens radially outward, and one side in the axial direction (the upper side in FIG. 2) opens radially inward.
  • a damping force generation mechanism 156 including a valve body 137 that generates a damping force is provided for each second passage hole 152.
  • the valve body 137 of the damping force generation mechanism 156 is disposed on the opposite side to the intermediate chamber 150, which is the other end side of the seat member 135 in the axial direction, and is attached to the piston rod 41.
  • the passage in the second passage hole 152 is a passage on the contraction side through which the oil liquid passes when the piston rod 41 and the piston 30 move to the contraction side (the lower side in FIG. 2).
  • a damping force generation mechanism 156 provided for each second passage hole 152 suppresses the flow of oil in the passage in the second passage hole 152 on the contraction side and generates a damping force on the compression side.
  • the mechanism is configured.
  • an annular valve seat 161 is formed on the outer side in the radial direction than the opening of the first passage hole 151 on the intermediate chamber 150 side.
  • the valve seat portion 161 and the valve body 134 constitute a damping force generation mechanism 155.
  • an annular valve seat 162 is formed at the end of the seat member 135 opposite to the axial intermediate chamber 150 on the outer side in the radial direction than the opening of the second passage hole 152 on the upper chamber 31 side. ing.
  • the valve seat portion 162 and the valve body 137 constitute a damping force generation mechanism 156.
  • the outer side in the radial direction of the valve seat portion 161 is formed in a step shape whose axial direction height is lower than that of the valve seat portion 161, and in the second passage hole 152 on the contraction side in this step shape portion.
  • An opening on the intermediate chamber 150 side is arranged.
  • the outer side in the radial direction of the valve seat portion 162 is formed in a stepped shape having a lower axial height than the valve seat portion 162, and the stepped portion is extended to the second portion on the extending side.
  • An opening on the upper chamber 31 side in the one passage hole 151 is arranged.
  • the valve element 134 is configured by stacking a plurality of perforated disk-shaped disks 171.
  • the outer diameter of the disk 171 closest to the sheet member 135 is the largest, and the outer diameter of the disk 171 opposite to the sheet member 135 is smaller than this. Further, the outer diameter of the disk 171 at the intermediate portion in the stacking direction is the intermediate diameter of each disk at both ends in the stacking direction.
  • the mounting shaft portion 72 is fitted to the inner peripheral portions of the plurality of disks 171. The valve body 134 abuts on the valve seat portion 161 of the seat member 135 with the disc 171 closest to the seat member 135 to open and close the passage in the first passage hole 151.
  • a plurality of perforated disc-shaped discs 173 are provided between the valve body 134 and the seat member 135.
  • the outer diameter of each disk 173 is the same, and is smaller than the inner diameter of the valve seat portion 161.
  • a plurality of perforated disc-shaped disks 174 are provided on the opposite side of the valve body 134 from the sheet member 135.
  • the outer diameter of each disk 174 is the same, and is smaller than the disk 171 at the end opposite to the seat member 135 of the valve body 134.
  • the plurality of disks 175 have the same outer diameter, and the outer diameter is larger than that of the disk 174.
  • a mounting shaft 72 is fitted to the inner peripheral portions of these disks 173 to 175.
  • the valve element 134 can be detached from and seated on the valve seat portion 161.
  • the valve body 134 can open the passage in the first passage hole 151 to the intermediate chamber 150 by separating from the valve seat portion 161.
  • the valve body 134 suppresses the flow of oil from the upper chamber 31 to the intermediate chamber 150 while allowing it.
  • a notch 177 is formed on the outer peripheral side of the disc 171 in contact with the valve seat 161 in the valve body 134.
  • the notch 177 and the valve seat 161 constitute a fixed orifice 176.
  • the fixed orifice 176 allows the upper chamber 31 and the intermediate chamber 150 to communicate with each other even when the disk 171 is in contact with the valve seat portion 161.
  • the disk 175 suppresses deformation beyond the regulation in the opening direction of the valve body 134.
  • the valve body 137 is configured by stacking a plurality of perforated disc-shaped disks 181.
  • the outer diameter of the disk 181 closest to the seat member 135 is the largest, and the outer diameter of the disk 181 opposite to the seat member 135 is smaller than this.
  • the outer diameter of the disk 181 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks at both ends in the stacking direction.
  • a mounting shaft 72 is fitted to the inner periphery of these disks 181.
  • the valve body 137 contacts the valve seat portion 162 of the seat member 135 with the disk 181 closest to the seat member 135 to open and close the passage in the second passage hole 152.
  • a plurality of perforated disc-shaped disks 183 are provided between the valve body 137 and the seat member 135.
  • the outer diameter of each disk 183 is the same diameter and is smaller than the inner diameter of the valve seat portion 162.
  • a plurality of discs 184 are provided on the opposite side of the valve body 137 from the sheet member 135.
  • the outer diameter of each disk 184 is the same diameter, and is smaller than the disk 181 at the end of the valve body 137 opposite to the seat member 135.
  • the disk 184 is provided with a perforated disk-shaped disk 185 on the side opposite to the valve body 134.
  • the outer diameter of the disk 185 is larger than that of the disk 184.
  • the disk 185 is provided with an annular ring member 186 on the side opposite to the disk 184.
  • the outer diameter of the annular member 186 is smaller than that of the disk 185.
  • a mounting shaft 72 is fitted to the inner peripheral portions of the disks 183 to 185 and the annular member 186.
  • the annular member 186 is in contact with the shaft step portion 73 of the tip rod 55.
  • the valve body 137 can be detached from and seated on the valve seat portion 162.
  • the valve body 137 can open the passage in the second passage hole 152 to the upper chamber 31 by separating from the valve seat portion 162.
  • the valve body 137 suppresses the oil liquid from the intermediate chamber 150 to the upper chamber 31 while allowing it to flow.
  • a notch 188 is formed on the outer peripheral side of the disk 181 that contacts the valve seat portion 162.
  • the cutout portion 188 and the valve seat portion 162 constitute a fixed orifice 187.
  • the fixed orifice 187 allows the upper chamber 31 and the intermediate chamber 150 to communicate with each other even when the disk 181 is in contact with the valve seat portion 162.
  • the disk 185 suppresses deformation beyond the regulation in the opening direction of the valve body 137.
  • the frequency sensitive portion 200 is provided on the mounting shaft portion 72 of the tip rod 55 adjacent to the opposite side of the disc 105 from the valve body 91.
  • the frequency sensitive unit 200 is configured to make the damping force variable in response to the frequency of reciprocation of the piston 30 (hereinafter referred to as the piston frequency) during the extension stroke.
  • the frequency sensitive unit 200 includes, in order from the axial disk 105 side, a case member 201, a passage forming disk 202, a plurality of disks 203 and a valve body (third valve body) 204, a plurality of sheet disks 205, And a lid member 206.
  • the case member 201 has a bottomed cylindrical shape, and the attachment shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion.
  • the passage forming disc 202, the plurality of discs 203, the plurality of sheet discs 205, and the lid member 206 are all in the shape of a perforated disk with a constant thickness, and are attached as shaft portions of the tip rod 55 to the inner peripheral portion The shaft portion 72 is fitted.
  • a portion of the attachment shaft portion 72 that is disposed in the case member 201 constitutes the frequency sensitive portion 200.
  • the valve body 204 has an annular shape, and is disposed in the case member 201 with the attachment shaft portion 72 penetrating inside.
  • the lid member 206 is fitted to the case member 201, and the lid member 206 and the case member 201 constitute a housing 210.
  • the case member 201 includes a perforated disk-shaped base 221 along the direction orthogonal to the axis, an annular projecting portion 220, a cylindrical inner cylindrical portion 222, a cylindrical sheet portion 223, and an annular cylindrical shape.
  • the cylindrical part 224 is provided.
  • the annular projecting portion 220 projects from the inner peripheral side of the base portion 221 to one side in the axial direction.
  • the inner cylindrical portion 222 protrudes from the inner peripheral side of the base portion 221 to the other side in the axial direction.
  • the seat portion 223 protrudes from the intermediate position in the radial direction of the base portion 221 to the same side as the inner cylindrical portion 222.
  • the cylindrical portion 224 extends from the outer peripheral edge portion of the base portion 221 to the same side as the sheet portion 223.
  • a small-diameter hole 225 is formed in the inner peripheral portion of the case member 201, and a large-diameter hole 226 having a larger diameter than the small-diameter hole 225 is formed on the inner cylindrical portion 222 side in the axial direction.
  • the small-diameter hole portion 225 is formed so that the attachment shaft portion 72 of the tip rod 55 is fitted on the annular projecting portion 220 side in the axial direction.
  • the passage groove 75 of the attachment shaft 72 is opened in the large diameter hole 226 across the small diameter hole 225.
  • the passage groove 75 includes a bottom plate portion 141, a disc 116, a plurality of discs 115, a disc 114, a valve body 93, a plurality of discs 113, a piston main body 83, a plurality of discs 103, a valve of the case body 132 shown in FIG.
  • the annular protrusion 220 is in contact with the disk 105, and the inner cylindrical portion 222 is in contact with the inner peripheral side of the passage forming disk 202.
  • the seat portion 223 of the case member 201 supports the valve body 204 at the end portion on the protruding front end side of the seat portion 223.
  • a cutout portion 231 is formed in the sheet portion 223.
  • the notch 231 is partially formed in the circumferential direction and penetrates in the radial direction.
  • the passage forming disc 202 is disposed in the cylindrical portion 224 of the case member 201.
  • the outer diameter of the passage forming disk 202 is larger than the portion of the inner cylindrical portion 222 in contact with the inner cylindrical portion 222 and smaller than the inner diameter of the sheet portion 223.
  • the passage forming disk 202 has a notch 232 formed on the inner peripheral side. The notch 232 crosses the contact portion of the inner cylindrical portion 222 with the passage forming disk 202 in the radial direction.
  • the plurality of disks 203 are arranged in the cylindrical portion 224 of the case member 201. The outer diameters of the respective disks 203 are the same, and are smaller than the outer diameter of the passage forming disk 202.
  • the valve body 204 is disposed in the cylindrical portion 224 of the case member 201, and includes a metal base disk 235 and a rubber seal member 236 fixed to the outer peripheral side of the base disk 235.
  • the valve body 204 is configured to be elastically deformable, that is, bendable.
  • the base disk 235 has a perforated circular flat plate shape with a constant thickness, and the inner diameter is larger than the outer diameter of the disk 203. As a result, the base disk 235 is configured to be arranged with a gap in the radial direction with respect to the disk 203 inside the base disk 235.
  • the base disk 235 is thinner than the combined thickness of the plurality of disks 203.
  • the outer diameter of the base disk 235 is larger than the outer diameter of the sheet portion 223 of the case member 201.
  • the seal member 236 is fixed to the outer peripheral side of the base disk 235.
  • the seal member 236 is an elastic body, and has a cylindrical seal body 238 and a plurality of protrusions 239.
  • the seal body 238 protrudes from the base disk 235 to the side opposite to the axial lid member 206.
  • the plurality of projecting portions 239 project from the base disk 235 toward the lid member 206 in the axial direction.
  • the seal member 236 connects the seal body 238 and the plurality of protrusions 239 at the outer periphery of the base disk 235, and in this state, the seal body 238 and the plurality of protrusions 239 are both surfaces of the base disk 235. It is fixed to.
  • the outer diameter of the base disk 235 is smaller than the inner diameter of the cylindrical portion 224 of the case member 201. Therefore, an annular gap is provided between the base disk 235 and the case member 201.
  • the seal member 236 connects the seal body 238 and the protrusion 239 through this gap. With such a configuration, the sealing member 236 can be easily fixed to the base disk 235.
  • the seal body 238 has an inner diameter at the end on the base disk 235 side, that is, a minimum inner diameter, larger than the outer diameter of the seat portion 223. Accordingly, the valve body 204 is configured such that the base disk 235 can be seated on the seat portion 223 of the case member 201.
  • the plurality of protrusions 239 are arranged at intervals in the circumferential direction of the base disk 235.
  • a radial groove 241 penetrating in the radial direction is formed between adjacent protrusions 239.
  • the notch part 231 is provided in the seat part 223, the pressure receiving area on the side where the seal main body part 238 of the valve body 204 is provided and the side where the protruding part 239 is provided are approximately the same.
  • the plurality of sheet disks 205 are arranged in the cylindrical portion 224 of the case member 201.
  • the outer diameter of the sheet disk 205 closest to the disk 203 is the smallest, and the outer diameter of the sheet disk 205 on the opposite side of the disk 203 is larger than this. Further, the outer diameter of the sheet disk 205 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks at both ends in the stacking direction.
  • the outer diameter of the sheet disk 205 closest to the disk 203 is larger than the outer diameter of the disk 203 and the inner diameter of the base disk 235.
  • the base disc 235 of the valve body 204 is disposed between the passage forming disc 202 and the seat disc 205, and the thickness of the base disc 235 is thicker than the axial distance between the seat disc 205 and the seat portion 223.
  • the valve body 204 is supported with the radially intermediate portion in contact with the seat portion 223, and the inner peripheral side is in contact with and supported by the seat disk 205.
  • the inner peripheral side of the base disk 235 is configured to be movable in the axial direction between the passage forming disk 202 and the sheet disk 205. Further, the valve body 204 is provided with an annular seal member 236 that seals between the valve member 204 and the case member 201 on the outer peripheral side which is the non-support side. The seal member 236 contacts the housing 210 and is centered with respect to the housing 210.
  • the inner peripheral side of the valve body 204 has a simple support structure in which the sheet disc 205 is supported only on one side without being clamped from both sides.
  • the lid member 206 has a perforated disk shape, and the attachment shaft portion 72 of the tip rod 55 is fitted inside. Further, the outside of the lid member 206 is fitted in the cylindrical portion 224 of the case member 201.
  • the lid member 206 is formed with a plurality of through holes 247 penetrating in the axial direction outward in the radial direction from the sheet disk 205.
  • the plurality of through holes 247 are formed radially outside the seat disk 205 in the lid member 206, and are radially inward from the seal member 236 that contacts the lid member 206 when the base disk 235 is bent. Is formed.
  • the seal body 238 of the valve body 204 is in contact with the inner peripheral surface of the tubular portion 224 of the case member 201 over the entire circumference, and seals the gap between the valve body 204 and the tubular portion 224. That is, the valve body 204 is a packing valve.
  • the seal main body 238 always seals the gap between the valve body 204 and the cylindrical portion 224 even if the valve body 204 is deformed within a range allowed in the housing 210.
  • the valve body 204 is centered with respect to the housing 210 as described above when the seal body 238 contacts the cylindrical portion 224 over the entire circumference.
  • the valve body 204 divides the inside of the housing 210 into a variable volume variable chamber 245 on the base 221 side of the case member 201 and a variable volume variable chamber 246 on the lid member 206 side.
  • the frequency sensitive unit 200 has two variable chambers 245 and 246 in the case member 201 defined by the valve body 204.
  • the variable chamber 246 always communicates with the lower chamber 32 through a passage in the through hole 247 of the lid member 206.
  • the base disc 235 When the pressure in the variable chamber 245 is higher than the pressure in the variable chamber 246, the base disc 235 abuts the seat disc 205 over the entire circumference and does not form a gap between the valve disc 204 and the seat disc 205. Therefore, the flow of oil from the variable chamber 245 to the variable chamber 246 is restricted. Further, when the pressure in the variable chamber 246 is higher than the pressure in the variable chamber 245, the valve disc 204 is separated from the seat disc 205 to form a gap between the base disc 235 and the variable disc 246. That is, the flow of the oil liquid from the lower chamber 32 to the variable chamber 245 is allowed.
  • the valve body 204 and the seat disk 205 constitute a check valve 248.
  • the passage in the passage groove 75 of the intermediate chamber 150, the tip rod 55, the passage in the large-diameter hole portion 226 of the case member 201 shown in FIG. 3, and the passage in the notch 232 of the passage formation disk 202 are extended passages.
  • 251 (second passage) is formed.
  • the extension-side passage 251 is a passage through which oil liquid flows from the upper chamber 31 toward the variable chamber 245 by the movement of the piston 30 in the extension stroke.
  • a gap between the valve body 137 and the valve seat portion 162 forms a contraction-side passage 252.
  • the contraction-side passage 252 is a passage through which oil liquid flows from the lower chamber 32 toward the upper chamber 31 by the movement of the piston 30 in the contraction stroke.
  • the passages in the passage groove 75 of the intermediate chamber 150 and the tip rod 55 are common to the passages 251 and 252.
  • a damping force generation mechanism 155 including the valve body 134 and a frequency sensitive unit 200 including the valve body 204 shown in FIG. 3 are provided in series.
  • the valve body 134 (see FIG. 2) of the damping force generation mechanism 155 provided in the passage 251 is similar to the passage 251 in the extension stroke, and the damping force generation mechanism 90 provided in the passage 108 from which the oil liquid flows out from the upper chamber 31 in the extension stroke.
  • the valve is opened with a pressure smaller than that of the valve body 91 to generate a damping force. That is, the valve body 134 has lower rigidity than the valve body 91.
  • the damping force generation mechanism 155 is a soft valve
  • the damping force generation mechanism 90 is a hard valve.
  • the valve body 137 of the damping force generation mechanism 156 provided in the passage 252 is a damping force generation mechanism 92 provided in the passage 119 through which the oil liquid flows from the lower chamber 32 toward the upper chamber 31 in the contraction stroke.
  • the valve body 93 is opened with a pressure smaller than that of the valve body 93 to generate a damping force. That is, the valve body 137 has lower rigidity than the valve body 93.
  • the damping force generation mechanism 156 is a soft valve
  • the damping force generation mechanism 92 is a hard valve.
  • the frequency sensitive unit 200 shown in FIG. 3 provided in the passage 251 moves when the piston 30 moves to the upper chamber 31 side shown in FIG. 2 and the oil liquid flows from the upper chamber 31 toward the lower chamber 32.
  • the pressure in the variable chamber 245 shown in FIG. 2 becomes higher than the pressure in the variable chamber 246 on the downstream side.
  • the valve body 204 of the check valve 248 is seated and closed on the seat disk 205, and the housing 210 is divided into an upstream variable chamber 245 and a downstream variable chamber 246, while the housing 210 is within the housing 210.
  • the variable chamber 245 is expanded and moved so as to narrow the variable chamber 246.
  • the frequency sensitive unit 200 can vary the damping force according to the frequency.
  • the frequency sensitive unit 200 moves in the variable chamber 245 shown in FIG. 3 when the piston 30 moves to the lower chamber 32 side and the oil liquid flows from the lower chamber 32 toward the upper chamber 31 shown in FIG.
  • the pressure in the variable chamber 246 is higher than the pressure in the first chamber.
  • the valve body 204 of the check valve 248 opens and is separated from the seat disk 205.
  • the check valve 248 opens the passage 252 and the oil liquid flows out from the lower chamber 32 toward the upper chamber 31.
  • the lid member 206 is provided with a plurality of perforated disk-shaped disks 255 on the opposite side to the sheet disk 205.
  • the outer diameter of each disk 255 is the same, and is smaller than the inscribed circle of the plurality of through holes 247 in the radial direction of the lid member 206.
  • Each disk 255 is provided with an annular member 256 on the side opposite to the lid member 206.
  • the annular member 256 has an outer diameter larger than that of the disk 255.
  • a mounting shaft portion 72 is fitted to the inner peripheral portions of the disk 255 and the annular member 256.
  • the annular member 256 is provided with a nut 260 on the side opposite to the disk 255 and screwed to the male screw 76 of the mounting shaft portion 72.
  • neither the inner peripheral side nor the outer peripheral side of the valve body 204 is clamped in the axial direction.
  • the nut 260 is a general-purpose hex nut.
  • FIG. 4 shows a hydraulic circuit diagram of the shock absorber 11 according to the first embodiment. That is, a damping force generation mechanism 90 that is a hard valve is provided in a passage 108 that connects the upper chamber 31 and the lower chamber 32, and a damping force generation mechanism 92 that is a hard valve is provided in a passage 119 that connects the upper chamber 31 and the lower chamber 32. The fixed orifices 106 and 117 are provided in the passages 108 and 119, respectively. Further, a damping force generation mechanism 155 that is a soft valve is provided in the passage 251 between the upper chamber 31 and the intermediate chamber 150, and a damping force generation mechanism 156 that is a soft valve is provided in the passage 252 between the upper chamber 31 and the intermediate chamber 150. Are provided, and fixed orifices 176 and 187 are provided in the passages 251 and 252, respectively.
  • a frequency sensitive unit 200 is provided between the intermediate chamber 150 and the lower chamber 32.
  • the frequency sensitive unit 200 closes the check valve 248 to define the variable chambers 245 and 246, and supplies the oil solution from the intermediate chamber 150 to the variable chamber 245. accept. Thereby, the damping force is varied according to the frequency.
  • the frequency sensitive unit 200 opens the check valve 248 and causes the oil solution to flow from the lower chamber 32 to the intermediate chamber 150.
  • a damping force is generated that is approximately proportional to the square of the velocity. Therefore, the characteristic of the damping force with respect to the piston speed is such that the rate of increase of the damping force is higher with respect to the increase of the piston speed in the low speed region (orifice region) on the left end side in FIG. 5, as indicated by the broken line X1 in FIG. Become. Further, when the piston speed increases, the oil from the upper chamber 31 opens the valve body 91 of the damping force generating mechanism 90 on the extension side from the passage in the first passage hole 88 that constitutes the passage 108, while the valve body is opened.
  • a damping force having a valve characteristic (a damping force is substantially proportional to the piston speed) is generated.
  • the rate of increase of the damping force is slightly lower than the low speed region (orifice region) with respect to the increase in piston speed.
  • the characteristic of the damping force with respect to the piston speed when only the contraction-side damping force generating mechanism 92 acts in the contraction stroke in which the piston rod 41 moves to the contraction side is shown by a broken line X2 in FIG.
  • the oil liquid from the lower chamber 32 passes through the contraction-side passageway 119.
  • a damping force having an orifice characteristic (a damping force is approximately proportional to the square of the piston speed) is generated in the upper chamber 31 through the passage in the second passage hole 89 and the fixed orifice 117.
  • the characteristic of the damping force with respect to the piston speed is, as shown by a broken line X2 in FIG. 5, in the low speed region (orifice region) on the left end side in FIG. Becomes higher.
  • the oil introduced into the passage in the second passage hole 89 constituting the contraction-side passage 119 from the lower chamber 32 basically opens the valve body 93 while opening the valve body 93 and the valve.
  • a damping force having a valve characteristic (a damping force is approximately proportional to the piston speed) is generated.
  • the rate of increase of the damping force with respect to the increase of the piston speed is slightly lower than the low speed region (orifice region).
  • the valve body 204 is deformed and the oil liquid is introduced into the variable chamber 245 from the upper chamber 31, whereby the flow rate of the oil liquid flowing from the upper chamber 31 through the passage 108 to the lower chamber 32 is reduced.
  • the characteristic of the damping force with respect to the piston speed is as shown by a solid line X3 in FIG. 5, and the damping force on the extension side becomes softer from the low speed region (orifice region) on the left end side in FIG.
  • the inner peripheral side of the valve body 204 is separated from the passage forming disc 202 and is supported only on one side by the seat disc 205, the inner peripheral side easily deforms so as to approach the passage forming disc 202.
  • the outer peripheral projection 239 is easily deformed so as to approach the lid member 206.
  • the fluid from the upper chamber 31 opens the valve body 134 of the damping force generation mechanism 155 that is a soft valve on the extension side from the passage in the first passage hole 151, and the valve body 134 and the valve It passes between the sheet portion 161 and is introduced into the variable chamber 245 of the frequency sensitive portion 200 through the intermediate chamber 150 and the passage in the passage groove 75. Also at this time, since the valve body 204 is deformed to introduce the oil into the variable chamber 245, the flow rate of the oil flowing from the upper chamber 31 through the passage 108 to the lower chamber 32 is reduced. For this reason, the damping force on the extension side continues to be soft in the low speed region on the left end side in FIG.
  • the oil liquid from the upper chamber 31 is introduced into the variable chamber 245 of the frequency sensing unit 200 by opening the valve body 134 of the damping force generation mechanism 155 that is a soft valve as described above.
  • the valve body 91 of the damping force generation mechanism 90 while opening the valve body 91 of the damping force generation mechanism 90 on the extension side from the passage in the first passage hole 88 constituting the passage 108, it passes between the valve body 91 and the valve seat portion 97, It flows to 32.
  • the characteristic of the damping force with respect to the piston speed is such that the extension side damping force is soft even in the middle to high speed range from the middle in the left-right direction in FIG.
  • the frequency of deformation of the valve body 204 also increases and the oil liquid from the upper chamber 31 is supplied to the variable chamber 245 of the frequency sensing unit 200 as described above each time the extension stroke is performed.
  • the deformation frequency of the valve body 204 also follows and becomes low. For this reason, although the oil liquid flows from the upper chamber 31 to the variable chamber 245 in the initial stage of the extension stroke, the valve body 204 stops after contacting the lid member 206, and then the variable chamber is passed from the upper chamber 31 through the passage 251. The oil liquid does not flow to 245. As a result, the flow rate of the oil liquid that is introduced from the upper chamber 31 into the passage 108 including the passage in the first passage hole 88 and flows through the damping force generation mechanism 90 to the lower chamber 32 is not reduced, and the piston speed is reduced.
  • the characteristics of the damping force are the same as when only the damping force generating mechanism 90 acts, and the extension side damping force becomes hard as indicated by the broken line X1 in FIG.
  • the characteristic when the piston frequency is high is the same as the characteristic when the piston frequency is high as shown by the solid line X3 in FIG. Soft from the low speed range (orifice range) to the high speed range.
  • the frequency sensitive unit 200 is not provided, and the hard valve damping force generation mechanism 92 and the soft valve damping force generation mechanism 156 are in parallel.
  • the characteristic of the damping force with respect to the piston speed is as shown by a solid line X4 in FIG. 5, compared with the case where only the damping force generating mechanism 92 shown by the broken line X2 in FIG.
  • the piston speed is soft from low speed range (orifice range) to high speed range.
  • a two-dot chain line X5 shown in FIG. 5 is a damping force characteristic when only the damping force generation mechanism 156 that is a soft valve is provided without the damping force generation mechanism 92 that is a hard valve.
  • Patent Document 1 described above describes a shock absorber provided with a damping force variable mechanism that varies the damping force according to the frequency.
  • the shock absorber there is a demand to make the damping force largely variable according to the frequency from the region where the piston speed is low.
  • the shock absorber 11 is provided with a valve body 91 that generates a damping force in the passage 108 through which the oil liquid flows out of the upper chamber 31 by the movement of the piston 30.
  • a valve body 134 that opens with a pressure smaller than the valve body 91 to generate a damping force in another passage 251 from which the oil liquid flows out from the upper chamber 31 by the movement of the piston 30, and the upper chamber 31 to the lower chamber 32.
  • a valve that is movable in the housing 210 while defining the inside of the housing 210 into an upstream side and a downstream side when the oil liquid flows in the housing 210 and that can be opened when the oil liquid flows from the lower chamber 32 to the upper chamber 31.
  • a frequency sensitive unit 200 having a body 204 is provided in series. As a result, the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
  • the upper chamber 31 is a rod side chamber and the lower chamber 32 is a bottom side chamber, and during the extension stroke, the valve body 204 moves in the housing 210 while defining the inside of the housing 210 into the upstream side and the downstream side.
  • the damping force can be varied according to the frequency, and the valve body 204 can be opened during the contraction stroke. Thereby, it becomes possible to greatly vary the damping force according to the frequency from the region where the piston speed is slow in the extension stroke.
  • FIG. 6 is a Lissajous waveform that simulates the operation of the shock absorber 11 when the speed of the piston 30 is 0.03 m / s and shows the relationship between the piston stroke and the damping force.
  • the operating frequency of the piston 30 increases from the outside toward the inside, and in the vicinity of the origin where the stroke of the piston 30 is small, the damping force at the high frequency is compared to the damping force at the low frequency. It can be seen that can be lowered as shown by the arrow Y1.
  • FIG. 7 is a diagram showing the relationship between the frequency and the damping force at the time of simulating the operation when the speed of the piston 30 is 0.03 m / s. This result also shows that the damping force at the high frequency on the right side can be lowered as shown by the arrow Y2 with respect to the damping force at the low frequency on the left side in FIG.
  • FIG. 8 is a Lissajous waveform that simulates the operation of the shock absorber 11 when the speed of the piston 30 is 0.3 m / s and shows the relationship between the piston stroke and the damping force.
  • the operating frequency of the piston 30 increases from the outside toward the inside, and in the vicinity of the origin where the stroke of the piston 30 is small, the damping force at the high frequency is compared with the damping force at the low frequency. It can be seen that can be lowered as shown by arrow Y3.
  • FIG. 9 is a diagram showing the relationship between the frequency and the damping force at the time of simulating the operation when the speed of the piston 30 is 0.3 m / s. From this result, it can be seen that the damping force at the high frequency on the right side can be lowered as shown by the arrow Y4 with respect to the damping force at the low frequency on the left side in FIG.
  • the frequency sensitive unit 200 is configured to define variable chambers 245 and 246 in the case member 201 with an annular elastically deformable valve body 204 provided with an annular seal member 236 for sealing between the case member 201 and the case. It is configured. With this configuration, the axial length can be shortened, and the overall basic length of the shock absorber 11 can be shortened and downsized.
  • the frequency sensitive part 200 has a skewer structure, the inner periphery of each of the piston 30 and the case member 201 of the frequency sensitive part 200 is fastened to the piston rod 41 with a general-purpose nut 260 in a state where the piston rod 41 is inserted. can do. Therefore, the piston 30 and the frequency sensitive part 200 can be easily fastened to the piston rod 41, and the assemblability is greatly improved. Further, the axial length can be shortened.
  • the damping force variable adjustment range of the frequency sensitive unit 200 can be widened.
  • the frequency sensitive unit 200 that functions in the expansion stroke is provided, and the frequency sensitive unit that functions in the contraction stroke is not provided. For this reason, while suppressing the increase in cost, for example, by making the damping force variable in response to the piston frequency in the extension stroke, it is possible to improve the riding comfort for an effective road surface condition or the like. In addition, it is difficult to control the posture with a shock absorber having a frequency sensitive portion that makes the damping force variable in response to the piston frequency in the contraction stroke, and the frequency sensitive portion 200 that makes the damping force variable in response to the piston frequency in the extension stroke.
  • the present invention is suitable for use in a vehicle capable of effectively controlling the attitude with a shock absorber.
  • a case member 201A is used instead of the case member 201 of the first embodiment.
  • the case member 201A is different from the case member 201 of the first embodiment in that a cylindrical portion 224A having a longer axial length than the cylindrical portion 224 is provided.
  • the lid member 206 is provided with a plurality of sheet disks 205 ⁇ / b> A similar to the sheet disk 205 in the opposite direction to the sheet disk 205 on the opposite side to the sheet disk 205.
  • the seat disc 205A is provided with a plurality of discs 203A similar to the disc 203 and a valve disc 204A (fourth valve disc) similar to the valve disc 204 on the side opposite to the lid member 206.
  • the valve body 204 ⁇ / b> A is provided in series with the valve body 204 in the opposite direction to the valve body 204.
  • the lid member 281A is provided on the disc 203A and the valve body 204A on the opposite side to the seat disc 205A.
  • the lid member 281 ⁇ / b> A is a member having an annular projecting portion 220, a base portion 221, an inner cylindrical portion 222, a sheet portion 223, and a notch portion 231 of the case member 201, and the cylindrical portion 224 is not provided.
  • a plurality of through holes 282A are formed in the base 221 of the lid member 281A.
  • the lid member 281A is fitted into the tubular portion 224A of the case member 201A with the seat portion 223 facing the valve body 204A, and the lid member 281A and the case member 201A constitute a tubular housing 210A.
  • the passage forming disk 202, the plurality of disks 203, the valve body 204, the plurality of sheet disks 205, the lid member 206, the plurality of sheet disks 205A, the plurality of disks 203A, and the valve body 204A are cylindrical shapes of the case member 201A. It is arranged in the part 224A.
  • the lid member 281A is fitted in the cylindrical portion 224A of the case member 201A.
  • the frequency sensitive part 200A similar to the frequency sensitive part 200 of 1st Embodiment,
  • the lid member 206, the cylindrical portion 224A of the case member 201A, the plurality of sheet discs 205A, the plurality of discs 203A, the valve body 204A, and the lid member 281A provide another frequency sensitive portion 284A. It is composed.
  • the portion of the mounting shaft 72 that is disposed in the case member 201A constitutes the frequency sensitive portions 200A and 284A.
  • the valve body 204A has an annular shape, and is disposed in the case member 201A with the attachment shaft portion 72 penetrating inward.
  • the valve body 204A is supported by the seat disk 205A on the inner peripheral side.
  • the valve body 204A is configured such that the inner peripheral side of the base disk 235 is movable in the axial direction between the seat disk 205A and the lid member 281A.
  • the valve body 204A is provided with an annular seal member 236 that seals between the case member 201A and the outer peripheral side which is the non-support side.
  • the valve body 204A is centered with respect to the housing 210A when the seal member 236 contacts the housing 210A.
  • the inner peripheral side of the valve body 204A is a simple support structure that is supported by the sheet disk 205A only on one side without being clamped from both sides.
  • the seal body 238 of the valve body 204A contacts the inner peripheral surface of the cylindrical portion 224A of the case member 201A over the entire circumference, and seals the gap between the valve body 204A and the cylindrical portion 224A.
  • the seal body 238 of the valve body 204A also always seals the gap between the valve body 204A and the cylindrical portion 224A even if the valve body 204A is deformed within the allowable range within the housing 210A.
  • the valve body 204A is centered with respect to the housing 210A as described above when the seal main body portion 238 contacts the cylindrical portion 224A over the entire circumference.
  • the valve body 204A partitions the inside of the housing 210A into a variable volume variable chamber 245 on the base 221 side of the case member 201A and a variable volume variable chamber 246A between the valve bodies 204 and 204A.
  • the valve body 204A divides the inside of the housing 210A into a variable chamber 246A and a variable chamber 285A having a variable capacity on the lid member 281A side of the valve body 204A.
  • the frequency sensitive part 284A has two variable chambers 246A and 285A in the case member 201A defined by the valve body 204A.
  • the variable chamber 285A is in continuous communication with the lower chamber 32 through a passage in the through hole 282A of the lid member 281A.
  • the frequency sensitive part 284A is provided on the lower chamber 32 side of the valve body 204 of the frequency sensitive part 200A.
  • valve disc 204A When the pressure in the variable chamber 285A is higher than the pressure in the variable chamber 246A, the valve disc 204A does not form a gap between the base disc 235 and the seat disc 205A due to contact with the seat disc 205A. Therefore, the flow of the oil liquid from the variable chamber 285A to the variable chamber 246A is restricted. Further, when the pressure in the variable chamber 246A is higher than the pressure in the variable chamber 285A, the valve disc 204A forms a gap between the base disk 235 and the seat disk 205A by separating from the seat disk 205A. To the variable chamber 285A, that is, the flow of the oil liquid to the lower chamber 32 is allowed.
  • the valve body 204A and the seat disk 205A constitute a check valve 248A.
  • the frequency sensitive portion 200A causes the pressure of the variable chamber 245 to be lower than that of the variable chamber 246A on the downstream side. Higher than pressure.
  • the valve body 204 of the check valve 248 is seated and closed on the seat disk 205, defining the inside of the housing 210A into the upstream variable chamber 245 and the downstream variable chamber 246A.
  • the variable chamber 245A is expanded and moved so as to narrow the variable chamber 246A.
  • the frequency sensing unit 284A causes the valve body 204A of the check valve 248A to separate from the seat disk 205A and open the valve, thereby increasing the pressure in the variable chamber 246A. It suppresses and becomes that it becomes resistance of movement of valve element 204. As a result, the frequency sensitive unit 200A can vary the damping force according to the frequency, like the frequency sensitive unit 200 of the first embodiment.
  • the frequency sensitive portion 284A causes the pressure in the variable chamber 285A to be in the downstream variable chamber 246A. Higher than pressure.
  • the valve body 204A of the check valve 248A is seated and closed on the seat disk 205A, and the housing 210A is defined as an upstream variable chamber 285A and a downstream variable chamber 246A.
  • the variable chamber 285A can be expanded and the variable chamber 246A can be narrowed.
  • the frequency sensing unit 200A causes the valve body 204 of the check valve 248 to move away from the seat disk 205 and open, thereby increasing the pressure in the variable chamber 246A. It suppresses and becomes that it becomes resistance of movement of valve body 204A. As a result, the frequency sensitive unit 284A varies the damping force according to the frequency in the contraction stroke.
  • FIG. 11 shows a hydraulic circuit diagram of the second embodiment. That is, when the oil is flowing from the upper chamber 31 toward the lower chamber 32 in the extension stroke, the frequency sensing unit 200A closes the check valve 248 to define the variable chambers 245 and 246A, and the damping force according to the frequency. Make it variable. Further, when the oil is flowing from the lower chamber 32 toward the upper chamber 31 in the contraction stroke, the frequency sensing unit 284A closes the check valve 248A to define the variable chambers 285A and 246A, and the damping force according to the frequency. Make it variable.
  • the oil liquid from the lower chamber 32 is introduced into the variable chamber 285A of the frequency sensitive portion 284A even in a region where the piston speed is low.
  • the characteristic of the damping force with respect to the piston speed is as shown by a solid line X6 in FIG. 12, and the damping force becomes soft from the low speed region (orifice region) on the left end side in FIG.
  • a sensitive portion 284 ⁇ / b> A is provided on the lower chamber 32 side of the valve body 204.
  • a frequency sensitive unit 300 different from the stretched frequency sensitive unit 200 of the first embodiment is provided.
  • Each of the frequency sensitive parts 300 includes a housing 303 including a perforated disk-like lid member 301 into which the attachment shaft part 72 is fitted and a bottomed cylindrical case member 302.
  • the mounting shaft portion 72 disposed in the case member 302 also constitutes the frequency sensitive portion 300.
  • the lid member 301 is provided with a cylindrical sheet portion 305, and the sheet portion 305 is formed with a notch portion 306 that always communicates the inner peripheral side and the outer peripheral side of the sheet portion 305.
  • a small-diameter hole 307 that fits into the mounting shaft 72 and a large-diameter hole 308 that is larger in diameter than the small-diameter hole 307 are formed.
  • a valve body 311 (third valve body) is provided in the case member 302.
  • the valve body 311 has a metal perforated disk-shaped disk 312 and a rubber elastic seal member 313 provided on the inner peripheral side of the disk 312 and has an annular shape.
  • the valve body 311 can be bent, and is disposed in the case member 302 with the attachment shaft portion 72 penetrating inside.
  • the case member 302 has a perforated disk-shaped bottom portion 315 and a tubular portion 316 extending in the axial direction from the outer peripheral edge portion of the bottom portion 315, and the lid member 301 is fitted to the tubular portion 316. Yes.
  • a through hole 317 that opens to the lower chamber is formed in the bottom 315 of the case member 302.
  • the step part 322 is formed in the inner peripheral side of the cylindrical part 316 of the case member 302 by providing the large diameter part 320 and the small diameter part 321.
  • the step portion 322 supports the outer peripheral side of the valve body 311.
  • the axial dimension between the step portion 322 and the sheet portion 143 is smaller than the thickness of the disk 312. Thereby, a set load can be applied to the valve body 311.
  • the seal member 313 provided on the non-supporting side of the valve body 311 is provided on the attachment shaft portion 72 side of the tip rod 55 constituting the piston rod 41. A space between the valve body 311 and the tip rod 55 is sealed by an annular seal member 313.
  • variable chambers 331 and a variable chamber 332 are defined by a valve body 311.
  • a variable chamber 331 that communicates with the passage in the passage groove 75 and a variable chamber 332 that communicates with the lower chamber 32 through a passage in the through hole 317 are defined.
  • the valve body 311 restricts the flow of oil from the variable chamber 331 to the variable chamber 332 by sitting on the stepped portion 322. Further, the valve body 311 is a check valve 333 that opens when the valve body 311 is separated from the stepped portion 322 and allows the flow of oil from the variable chamber 332 to the variable chamber 331.
  • the supporting side and the non-supporting side of the valve body 311 are reversed inside and outside the valve body 204 of the frequency sensitive unit 200 of the first embodiment. Are the same.
  • the frequency sensitive portion 284A of the second embodiment also supports the valve body 204A on the outer peripheral side and seals between the mounting shaft portion 72 on the inner peripheral side, which is the non-support side, as in the third embodiment. You may make it the structure to do.
  • a first aspect includes a cylinder in which a working fluid is enclosed, a piston that is slidably fitted in the cylinder, and divides the cylinder into two chambers, a first chamber and a second chamber, and the piston.
  • a piston rod that is connected and extends to the outside of the cylinder; a first passage and a second passage through which working fluid flows from one of the first chamber and the second chamber by the movement of the piston; and the first passage A second valve body that generates a damping force by opening the second passage with a pressure smaller than that of the first valve body.
  • the working fluid flows from the first chamber to the second chamber, it is movable in the housing while defining the inside of the housing on the upstream side and the downstream side, and from the second chamber to the first chamber 3rd valve body which can be opened when working fluid flows A frequency response unit having, but are provided in series. As a result, the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
  • the first chamber is a rod-side chamber
  • the second chamber is a bottom-side chamber
  • the third valve body is upstream in the housing during an extension stroke.
  • the damping force is varied according to the frequency by moving within the housing while defining the side and the downstream side, and the third valve body can be opened during the contraction stroke.
  • the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
  • a third aspect is the second aspect, in which the third valve body is defined on the second chamber side in the housing while the housing is defined as an upstream side and a downstream side during the contraction stroke.
  • a frequency sensitive part having a fourth valve body that is movable and can be opened during the extension stroke is provided.
  • the frequency sensitive portion includes a cylindrical case member, a shaft portion disposed in the case member, and the shaft portion.
  • An annular elastic seal member that is disposed in the case member, is supported on the inner or outer peripheral side, and seals between the case member or the shaft portion on the non-supporting side, so that it can be bent.
  • the third valve body and two chambers in the case member defined and provided by the third valve body are provided.
  • shock absorber it is possible to provide a shock absorber capable of greatly changing the damping force according to the frequency from the region where the piston speed is low.
  • Shock absorber 12 Cylinder 30 Piston 31 Upper chamber (first chamber, rod side chamber) 32 Lower chamber (second chamber, bottom chamber) 41 Piston rod 72 Mounting shaft (shaft) 91 Valve body (first valve body) 108 passage (first passage) 134 Valve body (second valve body) 200, 200A, 284A, 300 Frequency sensitive part 201, 201A, 302 Case member 204, 311 Valve body (third valve body) 204A Valve body (4th valve body) 210, 210A, 303 Housing 236 Seal member 245, 246, 246A, 285A, 331, 332 Variable chamber (chamber) 251 passage (second passage)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

This shock absorber has: first and second passages having working fluid flowing thereto from either a first chamber or a second chamber, as a result of movement of a piston; and a first valve that generates damping force and is provided in the first passage. The second passage has provided therein, in series: a second valve that opens at a smaller pressure than the first valve and generates damping force; and a frequency-sensitive section having a third valve that, when working fluid flows from the first chamber to the second chamber, can move inside a housing while defining the inside of the housing into an upstream side and a downstream side, and can open when working fluid flows from the second chamber to the first chamber.

Description

緩衝器Shock absorber
 本発明は、緩衝器に関する。
 本願は、2016年9月27日に、日本に出願された特願2016-188038号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a shock absorber.
This application claims priority on September 27, 2016 based on Japanese Patent Application No. 2016-188038 filed in Japan, the contents of which are incorporated herein by reference.
 従来、周波数に応じて減衰力を可変とする減衰力可変機構を備えた緩衝器がある(例えば、特許文献1参照)。 Conventionally, there is a shock absorber provided with a damping force variable mechanism that varies the damping force according to the frequency (see, for example, Patent Document 1).
日本国特開2011-202800号公報Japanese Unexamined Patent Publication No. 2011-202800
 緩衝器において、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させたいという要求がある。 There is a demand for a shock absorber to vary the damping force greatly according to the frequency from the region where the piston speed is slow.
 したがって、本発明は、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能な緩衝器の提供を目的とする。 Therefore, an object of the present invention is to provide a shock absorber capable of greatly changing the damping force according to the frequency from the region where the piston speed is low.
 本発明の第1の態様によれば、緩衝器は、作動流体が封入されるシリンダと、前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を第1室および第2室の2室に区画するピストンと、前記ピストンに連結されると共に前記シリンダの外部に延出されるピストンロッドと、ピストンの移動により第1室および第2室の一方から作動流体が流れ出す第1通路および第2通路と、前記第1通路に設けられて減衰力を発生させる第1弁体と、を有し、前記第2通路には、前記第1弁体よりも小さな圧力で開弁して減衰力を発生させる第2弁体と、前記第1室から前記第2室に作動流体が流れるとき、ハウジング内を上流側と下流側とに画成しつつ前記ハウジング内で移動可能であり、前記第2室から前記第1室に作動流体が流れるときに開弁可能な第3弁体を有する周波数感応部と、が直列に設けられている。 According to the first aspect of the present invention, the shock absorber is slidably fitted into the cylinder in which the working fluid is sealed, and the cylinder has two chambers, a first chamber and a second chamber. And a piston rod connected to the piston and extending to the outside of the cylinder, and a first passage and a second passage through which the working fluid flows from one of the first chamber and the second chamber by the movement of the piston And a first valve body that is provided in the first passage and generates a damping force, and the second passage is opened with a pressure smaller than that of the first valve body to generate the damping force. And when the working fluid flows from the first chamber to the second chamber, the second valve body is movable in the housing while defining the inside of the housing into an upstream side and a downstream side, and the second chamber Can be opened when working fluid flows from the to the first chamber A frequency response unit having a third valve element such, but are provided in series.
 本発明の第2の態様によれば、第1の態様に係る緩衝器は、前記第1室はロッド側室であり、前記第2室はボトム側室であって、伸び行程のときは、前記第3弁体が前記ハウジング内を前記上流側と前記下流側とに画成しつつ前記ハウジング内で移動することにより減衰力を周波数に応じて可変させ、縮み行程のときは、前記第3弁体が開弁可能であってもよい。 According to the second aspect of the present invention, in the shock absorber according to the first aspect, the first chamber is a rod-side chamber, the second chamber is a bottom-side chamber, and the first chamber is in the extension stroke. A three-valve body moves in the housing while defining the inside of the housing on the upstream side and the downstream side, thereby changing the damping force according to the frequency, and in the contraction stroke, the third valve body May be openable.
 本発明の第3の態様によれば、第2の態様に係る緩衝器において、前記第3弁体の前記第2室側には、前記縮み行程のときは、前記ハウジング内を前記上流側と前記下流側とに画成しつつ前記ハウジング内で移動可能であり、前記伸び行程のときは開弁可能な第4弁体を有する周波数感応部が設けられていてもよい。 According to the third aspect of the present invention, in the shock absorber according to the second aspect, the second valve side of the third valve body is arranged in the housing at the upstream side during the contraction stroke. A frequency sensitive portion having a fourth valve body that is movable in the housing while being defined on the downstream side and that can be opened during the extension stroke may be provided.
 本発明の第4の態様によれば、第1から第3のいずれかの態様に係る緩衝器において、前記周波数感応部は、筒状のケース部材と、前記ケース部材内に配置される軸部と、前記軸部を貫通させて前記ケース部材内に配置され、内周側または外周側が支持され、非支持側に前記ケース部材との間または前記軸部との間をシールする環状の弾性シール部材が設けられ、撓み可能な環状の前記第3弁体と、前記第3弁体により画成されて設けられた前記ケース部材内の2つの室と、を有してもよい。 According to the fourth aspect of the present invention, in the shock absorber according to any one of the first to third aspects, the frequency sensitive part includes a cylindrical case member and a shaft part disposed in the case member. And an annular elastic seal that is disposed in the case member so as to penetrate the shaft portion, the inner peripheral side or the outer peripheral side is supported, and the non-support side seals between the case member or the shaft portion The member may be provided with a ring-shaped third valve body that can be bent, and two chambers in the case member that are defined by the third valve body.
 本発明によれば、緩衝器において、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 According to the present invention, in the shock absorber, the damping force can be greatly varied according to the frequency from the region where the piston speed is low.
本発明の第1実施形態に係る緩衝器を示す断面図である。It is sectional drawing which shows the shock absorber which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る緩衝器を示すピストン周辺の部分断面図である。It is a fragmentary sectional view of the piston periphery which shows the buffer which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る緩衝器を示す周波数感応部周辺の部分断面図である。It is a fragmentary sectional view around the frequency sensitive part which shows the buffer concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る緩衝器を示す油圧回路図である。1 is a hydraulic circuit diagram showing a shock absorber according to a first embodiment of the present invention. 本発明の第1実施形態に係る緩衝器のピストン速度に対する減衰力の関係を概念的に示す特性線図である。It is a characteristic line figure which shows notionally the relation of damping force with respect to piston speed of a buffer concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る緩衝器のピストン速度が0.03m/sのときのストロークと減衰力との関係を示すリサージュ波形線図である。It is a Lissajous waveform diagram which shows the relationship between the stroke and damping force when the piston speed of the shock absorber according to the first embodiment of the present invention is 0.03 m / s. 本発明の第1実施形態に係る緩衝器のピストン速度が0.03m/sのときの周波数に対する減衰力の関係を示す周波数特性線図である。It is a frequency characteristic diagram which shows the relationship of the damping force with respect to the frequency when the piston speed of the buffer which concerns on 1st Embodiment of this invention is 0.03 m / s. 本発明の第1実施形態に係る緩衝器のピストン速度が0.3m/sのときのストロークと減衰力との関係を示すリサージュ波形線図である。It is a Lissajous waveform diagram which shows the relationship between the stroke and damping force when the piston speed of the shock absorber according to the first embodiment of the present invention is 0.3 m / s. 本発明の第1実施形態に係る緩衝器のピストン速度が0.3m/sのときの周波数に対する減衰力の関係を示す周波数特性線図である。It is a frequency characteristic diagram which shows the relationship of the damping force with respect to the frequency when the piston speed of the buffer which concerns on 1st Embodiment of this invention is 0.3 m / s. 本発明の第2実施形態に係る緩衝器を示す周波数感応部周辺の部分断面図である。It is a fragmentary sectional view around a frequency sensitive part showing a buffer concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る緩衝器を示す油圧回路図である。It is a hydraulic circuit diagram which shows the buffer which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る緩衝器のピストン速度に対する減衰力の関係を概念的に示す特性線図である。It is a characteristic diagram which shows notionally the relationship of the damping force with respect to the piston speed of the buffer which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る緩衝器を示す周波数感応部周辺の部分断面図である。It is a fragmentary sectional view around the frequency sensitive part which shows the buffer concerning a 3rd embodiment of the present invention.
(第1実施形態)
 本発明の第1実施形態を図1から図9に基づいて説明する。なお、以下の説明においては、説明の便宜上、図面における上側を「上」とし、図面における下側を「下」として説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. In the following description, for convenience of explanation, the upper side in the drawing is described as “upper”, and the lower side in the drawing is described as “lower”.
 図1に示すように、第1実施形態に係る緩衝器11は、いわゆる単筒型の油圧緩衝器であり、作動流体としての油液が封入されるシリンダ12を有している。シリンダ12は、有底円筒状の一体成形品であり、有底円筒状の上部開口側を覆うようにカバー15が取り付けられている。カバー15にはシリンダ12とは反対側に板状体16が取り付けられている。シリンダ12は、円筒状の胴部21と、胴部21の下部を閉塞する底部22とからなり、胴部21では、底部22とは軸方向の反対側が開口している。 As shown in FIG. 1, the shock absorber 11 according to the first embodiment is a so-called single cylinder type hydraulic shock absorber, and has a cylinder 12 in which an oil liquid as a working fluid is enclosed. The cylinder 12 is a bottomed cylindrical integral molded product, and a cover 15 is attached so as to cover the upper opening side of the bottomed cylindrical shape. A plate-like body 16 is attached to the cover 15 on the side opposite to the cylinder 12. The cylinder 12 includes a cylindrical body portion 21 and a bottom portion 22 that closes a lower portion of the body portion 21, and the body portion 21 is open on the opposite side of the bottom portion 22 in the axial direction.
 カバー15は、筒状部25と内フランジ部26とを有している。内フランジ部26は、筒状部25の上端側から径方向内方に延出する。カバー15は、胴部21の上端開口部を内フランジ部26で覆い、胴部21の外周面を筒状部25で覆うように胴部21の開口側に被せられている。この状態で、カバー15と筒状部25の一部とが径方向内方に加締められて、カバー15が胴部21に固定されている。内フランジ部26の筒状部25とは軸方向の反対側に板状体16が固定されている。 The cover 15 has a cylindrical portion 25 and an inner flange portion 26. The inner flange portion 26 extends radially inward from the upper end side of the tubular portion 25. The cover 15 is placed on the opening side of the body portion 21 so that the upper end opening of the body portion 21 is covered with the inner flange portion 26 and the outer peripheral surface of the body portion 21 is covered with the tubular portion 25. In this state, the cover 15 and a part of the cylindrical portion 25 are crimped inward in the radial direction, and the cover 15 is fixed to the trunk portion 21. The plate-like body 16 is fixed on the opposite side to the cylindrical portion 25 of the inner flange portion 26 in the axial direction.
 シリンダ12の胴部21内には、ピストン30が摺動可能に嵌装されている。ピストン30は、シリンダ12内を上室31(第1室,ロッド側室)と下室32(第2室,ボトム側室)の2室に区画している。また、シリンダ12の胴部21内には、ピストン30よりも底部22側に区画ピストン35が設けられている。区画ピストン35は、底部22との間に下室32と区画して室36を形成している。シリンダ12内の上室31および下室32内には作動流体としての油液が封入されており、シリンダ12内の室36内には高圧ガスが封入されている。 The piston 30 is slidably fitted in the body portion 21 of the cylinder 12. The piston 30 divides the inside of the cylinder 12 into two chambers, an upper chamber 31 (first chamber, rod side chamber) and a lower chamber 32 (second chamber, bottom side chamber). A partition piston 35 is provided in the body portion 21 of the cylinder 12 on the bottom 22 side of the piston 30. The partition piston 35 is partitioned from the lower chamber 32 between the bottom portion 22 and a chamber 36 is formed. An oil liquid as a working fluid is sealed in the upper chamber 31 and the lower chamber 32 in the cylinder 12, and a high-pressure gas is sealed in the chamber 36 in the cylinder 12.
 シリンダ12内には、一端がシリンダ12の外部へと延出されるピストンロッド41の他端側が挿入されている。このピストンロッド41のシリンダ12内に配置される他端側にピストン30が連結されている。ピストン30およびピストンロッド41は一体に移動する。ピストンロッド41がシリンダ12からの突出量を増やす伸び行程において、ピストン30は上室31側へ移動する。ピストンロッド41がシリンダ12からの突出量を減らす縮み行程において、ピストン30は下室32側へ移動する。
 上室31はピストンロッド41が配置されたロッド側室となり、下室32はシリンダ12の底部22側にあるボトム側室となっている。
The other end side of the piston rod 41 whose one end extends to the outside of the cylinder 12 is inserted into the cylinder 12. The piston 30 is connected to the other end side of the piston rod 41 disposed in the cylinder 12. The piston 30 and the piston rod 41 move together. In the extension stroke in which the piston rod 41 increases the amount of protrusion from the cylinder 12, the piston 30 moves to the upper chamber 31 side. In the contraction stroke in which the piston rod 41 reduces the amount of protrusion from the cylinder 12, the piston 30 moves to the lower chamber 32 side.
The upper chamber 31 is a rod side chamber in which the piston rod 41 is disposed, and the lower chamber 32 is a bottom side chamber on the bottom 22 side of the cylinder 12.
 シリンダ12の上端開口側には、ロッドガイド42が嵌合されている。ロッドガイド42よりもシリンダ12の外部側である上側にシール部材43が嵌合されている。シリンダ12の上端部は、一部が径方向内方に加締められて、シール部材43を係止している。ロッドガイド42とシール部材43との間には摩擦部材44が設けられている。ロッドガイド42、シール部材43および摩擦部材44は、いずれも環形状を有している。ピストンロッド41は、これらロッドガイド42、摩擦部材44およびシール部材43のそれぞれの内側に摺動可能に挿通されてシリンダ12の外部に延出されている。 The rod guide 42 is fitted to the upper end opening side of the cylinder 12. A seal member 43 is fitted on the upper side, which is the outside of the cylinder 12, with respect to the rod guide 42. A part of the upper end portion of the cylinder 12 is caulked inward in the radial direction to lock the seal member 43. A friction member 44 is provided between the rod guide 42 and the seal member 43. The rod guide 42, the seal member 43, and the friction member 44 all have an annular shape. The piston rod 41 is slidably inserted inside the rod guide 42, the friction member 44, and the seal member 43, and extends to the outside of the cylinder 12.
 ここで、ロッドガイド42は、ピストンロッド41の径方向移動を規制しつつ軸方向に移動可能にピストンロッド41を支持して、ピストンロッド41の移動を案内する。シール部材43の外周部はシリンダ12に密着し、シール部材23の内周部が、軸方向に移動するピストンロッド41の外周部に摺接して、シリンダ12内の油液が外部に漏洩するのを防止する。摩擦部材44の内周部がピストンロッド41の外周部に摺接して、摩擦部材44はピストンロッド41に摩擦抵抗を発生させる。なお、摩擦部材44は、シールを目的とする部材ではない。 Here, the rod guide 42 supports the piston rod 41 so as to be movable in the axial direction while restricting the radial movement of the piston rod 41, and guides the movement of the piston rod 41. The outer peripheral portion of the seal member 43 is in close contact with the cylinder 12, and the inner peripheral portion of the seal member 23 is in sliding contact with the outer peripheral portion of the piston rod 41 moving in the axial direction, so that the oil in the cylinder 12 leaks to the outside. To prevent. The inner peripheral portion of the friction member 44 is in sliding contact with the outer peripheral portion of the piston rod 41, and the friction member 44 causes the piston rod 41 to generate a frictional resistance. The friction member 44 is not a member intended for sealing.
 ピストンロッド41は、ロッド本体51と、先端ロッド55と、円環部材57と、ナット部材58とから構成されている。ロッド本体51は、ロッドガイド42、シール部材43および摩擦部材44に挿通されてシリンダ12から外部へと延出される。先端ロッド55は、ロッド本体51におけるシリンダ12内側の端部に雌ネジ54を有し、雄ネジ52が雌ネジ54に螺合されて、ロッド本体51から底部22側に延びる。円環部材57は、ロッド本体51を内側に挿通させて先端ロッド55に当接する。ナット部材58は、円環部材57を先端ロッド55との間で挟持するように雄ネジ52に螺合される。 The piston rod 41 includes a rod body 51, a tip rod 55, an annular member 57, and a nut member 58. The rod body 51 is inserted through the rod guide 42, the seal member 43, and the friction member 44 and extends from the cylinder 12 to the outside. The tip rod 55 has a female screw 54 at the end inside the cylinder 12 in the rod main body 51, and the male screw 52 is screwed into the female screw 54 and extends from the rod main body 51 to the bottom 22 side. The annular member 57 is in contact with the tip rod 55 by inserting the rod body 51 inward. The nut member 58 is screwed to the male screw 52 so as to sandwich the annular member 57 with the tip rod 55.
 先端ロッド55側におけるロッド本体51の外周部には、係止部材61が固定されている。ロッド本体51の外周側には、係止部材61とロッドガイド42との間に、円環状のバネ受62,63が設けられている。これらバネ受62,63は、ロッド本体51を内側に挿通させることでロッド本体51に沿って摺動可能に構成されている。これらバネ受62,63の間には、コイルスプリングからなるリバウンドスプリング64が、リバウンドスプリング64の内側にロッド本体51を挿通させるようにして介装されている。ロッドガイド42側のバネ受63におけるリバウンドスプリング64とは反対側には円環状の弾性材料からなる緩衝体65が設けられている。緩衝体65もロッド本体51を内側に挿通させることでロッド本体51に沿って摺動可能となっている。 A locking member 61 is fixed to the outer periphery of the rod body 51 on the tip rod 55 side. On the outer peripheral side of the rod body 51, annular spring receivers 62 and 63 are provided between the locking member 61 and the rod guide 42. The spring receivers 62 and 63 are configured to be slidable along the rod body 51 by inserting the rod body 51 inward. A rebound spring 64 made of a coil spring is interposed between the spring receivers 62 and 63 so that the rod body 51 is inserted inside the rebound spring 64. A shock absorber 65 made of an annular elastic material is provided on the opposite side of the spring receiver 63 on the rod guide 42 side from the rebound spring 64. The buffer body 65 is also slidable along the rod body 51 by inserting the rod body 51 inward.
 先端ロッド55は、雌ネジ54が形成された基軸部71と、これより小径の取付軸部72とを有している。取付軸部72にはピストン30等が取り付けられている。基軸部71における取付軸部72側の端部は、取付軸部72から軸直交方向に沿って広がる軸段部73が形成されている。取付軸部72の外周部には、軸方向の中間位置に軸方向に延在する通路溝75が形成されている。取付軸部72において、軸方向の基軸部71とは反対側の先端位置に雄ネジ76が形成されている。通路溝75は、ピストンロッド41の中心軸線に直交する面での断面の形状が長方形、正方形、D字状のいずれかであるように形成されている。 The tip rod 55 has a base shaft portion 71 in which a female screw 54 is formed, and an attachment shaft portion 72 having a smaller diameter. A piston 30 or the like is attached to the attachment shaft portion 72. An end portion of the base shaft portion 71 on the mounting shaft portion 72 side is formed with a shaft step portion 73 that extends from the mounting shaft portion 72 along the direction orthogonal to the axis. A passage groove 75 extending in the axial direction is formed at an intermediate position in the axial direction on the outer peripheral portion of the attachment shaft portion 72. In the mounting shaft portion 72, a male screw 76 is formed at the tip position on the opposite side of the axial base shaft portion 71. The passage groove 75 is formed so that the cross-sectional shape on the surface orthogonal to the central axis of the piston rod 41 is any one of a rectangle, a square, and a D-shape.
 緩衝器11は、例えばピストンロッド41のシリンダ12からの突出部分が上部に配置されて車体により支持され、シリンダ12の底部22側が下部に配置されて車輪側に連結される。これとは逆に、シリンダ12側が車体により支持され、ピストンロッド41が車輪側に連結されるように配置しても良い。車輪が走行に伴って振動すると、その振動に伴ってシリンダ12とピストンロッド41との位置が相対的に変化するが、上記変化はピストン30およびピストンロッド41の少なくともいずれか一方に形成された流路の流体抵抗により抑制される。以下で詳述するように、ピストン30およびピストンロッド41の少なくともいずれか一方に形成された流路は、流路の流体抵抗が振動の速度や振幅により異なるように作られており、振動を抑制することにより、車体の乗り心地が改善される。上記シリンダ12とピストンロッド41との間には、車輪で発生する振動の他に、車両の走行に伴って車体に発生する慣性力や遠心力も作用する。例えばハンドル操作により走行方向が変化することにより車体に遠心力が発生し、この遠心力に基づく力がシリンダ12とピストンロッド41との間に作用する。以下で説明するとおり、緩衝器11は、車両の走行に伴って車体に発生する力に基づく振動に対して良好な特性を有しており、車両走行における高い安定性が得られる。 In the shock absorber 11, for example, a protruding portion of the piston rod 41 from the cylinder 12 is arranged at the top and supported by the vehicle body, and the bottom 22 side of the cylinder 12 is arranged at the bottom and connected to the wheel side. On the contrary, the cylinder 12 side may be supported by the vehicle body, and the piston rod 41 may be connected to the wheel side. When the wheels vibrate as the vehicle travels, the positions of the cylinder 12 and the piston rod 41 change relatively with the vibration. The change is a flow formed in at least one of the piston 30 and the piston rod 41. Suppressed by the fluid resistance of the path. As will be described in detail below, the flow path formed in at least one of the piston 30 and the piston rod 41 is formed so that the fluid resistance of the flow path varies depending on the vibration speed and amplitude, thereby suppressing vibration. By doing so, the ride comfort of the vehicle body is improved. Between the cylinder 12 and the piston rod 41, in addition to vibrations generated by the wheels, inertial force and centrifugal force generated in the vehicle body as the vehicle travels also act. For example, a centrifugal force is generated in the vehicle body when the traveling direction is changed by a steering operation, and a force based on the centrifugal force acts between the cylinder 12 and the piston rod 41. As will be described below, the shock absorber 11 has good characteristics against vibration based on the force generated in the vehicle body as the vehicle travels, and high stability in vehicle travel can be obtained.
 図2に示すように、ピストン30は、ピストン本体83を有している。ピストン本体83は、二つのピストン構成体80,81と、摺動部材82とを有している。ピストン構成体80,81は、互いに連結されて内周部に先端ロッド55の取付軸部72が嵌合される二つの金属製の部材である。摺動部材82は、ピストン構成体80,81の外周面に一体に装着されてシリンダ12内を摺動する円環状の合成樹脂製の部材である。ピストン30では、ピストン本体83が、シリンダ12内を上室31と下室32との2室に区画している。 As shown in FIG. 2, the piston 30 has a piston main body 83. The piston main body 83 has two piston components 80 and 81 and a sliding member 82. The piston structural bodies 80 and 81 are two metal members that are connected to each other and in which the mounting shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion. The sliding member 82 is an annular synthetic resin member that is integrally attached to the outer peripheral surfaces of the piston structural bodies 80 and 81 and slides in the cylinder 12. In the piston 30, the piston body 83 divides the inside of the cylinder 12 into two chambers, an upper chamber 31 and a lower chamber 32.
 ピストン本体83には、複数(図2では断面とした関係上一カ所のみ図示)の第1通路穴88と、複数(図2では断面とした関係上一カ所のみ図示)の第2通路穴89とが設けられている。複数の第1通路穴88は、軸方向に貫通することで上室31と下室32とを連通可能に形成されている。複数の第2通路穴89は、軸方向に貫通することで上室31と下室32とを連通可能に形成されている。つまり、複数の第1通路穴88内の通路及び複数の第2通路穴89内の通路が、ピストン30の移動により上室31と下室32との間を作動流体である油液が流れるように上室31と下室32とに連通する。複数の第1通路穴88は、円周方向において、各第1通路穴88間に一カ所の第2通路穴89を挟んで等ピッチで形成されている。ピストン本体83の軸方向の第1側(図2の上側)が径方向外側に開口し、軸方向の第2側(図2の下側)が径方向内側に開口している。 The piston main body 83 includes a plurality of first passage holes 88 (only one place is shown because of the cross section in FIG. 2) and a plurality of second passage holes 89 (only one place is shown because of the cross section shown in FIG. 2). And are provided. The plurality of first passage holes 88 are formed so as to be able to communicate with the upper chamber 31 and the lower chamber 32 by penetrating in the axial direction. The plurality of second passage holes 89 are formed so as to communicate with the upper chamber 31 and the lower chamber 32 by penetrating in the axial direction. In other words, the passage of the plurality of first passage holes 88 and the passage of the plurality of second passage holes 89 cause the hydraulic fluid as the working fluid to flow between the upper chamber 31 and the lower chamber 32 by the movement of the piston 30. The upper chamber 31 and the lower chamber 32 communicate with each other. The plurality of first passage holes 88 are formed at an equal pitch in the circumferential direction with one second passage hole 89 interposed between the first passage holes 88. The first axial side (upper side in FIG. 2) of the piston body 83 opens radially outward, and the second axial side (lower side in FIG. 2) opens radially inward.
 各第1通路穴88に対して、減衰力を発生する減衰力発生機構90が設けられている。減衰力発生機構90は、ピストン本体83の軸方向の一端側である下室32側に配置されて、ピストンロッド41の取付軸部72に取り付けられる弁体91(第1弁体)を有している。第1通路穴88の内側の通路が、ピストン30の上室31側への移動、つまりピストンロッド41およびピストン30が伸び側(図2の上側)に移動する伸び行程において油液が通過する伸び側の通路108(第1通路)を構成している。各第1通路穴88に対して設けられた減衰力発生機構90は、伸び側の通路108の油液の流動を抑制して減衰力を発生させる伸び側の減衰力発生機構を構成している。弁体91は、通路108に設けられて減衰力を発生させる。 A damping force generation mechanism 90 that generates a damping force is provided for each first passage hole 88. The damping force generation mechanism 90 includes a valve body 91 (first valve body) that is disposed on the lower chamber 32 side, which is one end side in the axial direction of the piston body 83, and is attached to the attachment shaft portion 72 of the piston rod 41. ing. The passage inside the first passage hole 88 is an extension through which the oil liquid passes during the movement of the piston 30 toward the upper chamber 31, that is, the extension stroke in which the piston rod 41 and the piston 30 move to the extension side (upper side in FIG. 2). Side passage 108 (first passage) is formed. The damping force generation mechanism 90 provided for each first passage hole 88 constitutes an extension-side damping force generation mechanism that generates a damping force by suppressing the flow of oil in the extension-side passage 108. . The valve body 91 is provided in the passage 108 and generates a damping force.
 また、複数の通路穴88,89のうちの残りの半数を構成する第2通路穴89は、円周方向において、各第2通路穴89間に一カ所の第1通路穴88を挟んで等ピッチで形成されており、ピストン本体83の軸線方向他側(図2の下側)が径方向外側に開口し、軸線方向一側(図2の上側)が径方向内側に開口している。 Further, the second passage hole 89 constituting the remaining half of the plurality of passage holes 88 and 89 has one first passage hole 88 sandwiched between the second passage holes 89 in the circumferential direction, etc. The other side of the piston body 83 in the axial direction (lower side in FIG. 2) opens radially outward, and one side in the axial direction (upper side in FIG. 2) opens radially inward.
 各第2通路穴89に、減衰力を発生する減衰力発生機構92が設けられている。減衰力発生機構92は、ピストン本体83の軸方向の他端側である上室31側に配置されて、ピストンロッド41に取り付けられる弁体93を有している。第2通路穴89の内側の通路が、ピストン30の下室32側への移動、つまりピストンロッド41およびピストン30が縮み側(図2の下側)に移動する縮み行程において油液が通過する縮み側の通路119を構成している。各第2通路穴89に設けられた減衰力発生機構92は、縮み側の通路119内の通路の油液の流動を抑制して減衰力を発生させる縮み側の減衰力発生機構を構成している。 Each second passage hole 89 is provided with a damping force generating mechanism 92 that generates a damping force. The damping force generation mechanism 92 includes a valve body 93 that is disposed on the upper chamber 31 side that is the other end side in the axial direction of the piston main body 83 and is attached to the piston rod 41. The passage inside the second passage hole 89 moves in the contraction stroke in which the piston 30 moves toward the lower chamber 32, that is, the piston rod 41 and the piston 30 move toward the contraction side (the lower side in FIG. 2). A contraction-side passage 119 is formed. The damping force generation mechanism 92 provided in each second passage hole 89 constitutes a contraction-side damping force generation mechanism that generates a damping force by suppressing the flow of oil in the passage in the contraction-side passage 119. Yes.
 ピストン本体83は、円環形状を有しており、ピストン本体83の内周部に先端ロッド55の取付軸部72が嵌合している。ピストン本体83の軸方向の下室32側の端部には、第1通路穴88の下室32側の開口よりも径方向外側に環状のバルブシート部97が形成されている。バルブシート部97と、弁体91とは減衰力発生機構90を構成する。また、ピストン本体83の軸方向の上室31側の端部には、第2通路穴89の上室31側の開口よりも径方向外側に、環状のバルブシート部99が形成されている。バルブシート99と、弁体93とは減衰力発生機構92を構成する。 The piston body 83 has an annular shape, and the mounting shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion of the piston body 83. An annular valve seat 97 is formed on the end of the piston body 83 on the lower chamber 32 side in the axial direction and radially outside the opening on the lower chamber 32 side of the first passage hole 88. The valve seat portion 97 and the valve body 91 constitute a damping force generation mechanism 90. An annular valve seat 99 is formed on the end of the piston body 83 on the upper chamber 31 side in the axial direction, on the radially outer side than the opening on the upper chamber 31 side of the second passage hole 89. The valve seat 99 and the valve body 93 constitute a damping force generation mechanism 92.
 ピストン本体83において、バルブシート部97の外周側は、バルブシート部97よりも軸線方向高さが低い段差状に形成されており、この段差状の部分に縮み側の第2通路穴89の下室32側の開口が配置されている。また、同様に、ピストン本体83において、バルブシート部99の外周側は、バルブシート部99よりも軸線方向高さが低い段差状に形成されており、この段差状の部分に伸び側の第1通路穴88の上室31側の開口が配置されている。 In the piston main body 83, the outer peripheral side of the valve seat portion 97 is formed in a step shape whose axial height is lower than that of the valve seat portion 97, and this step-shaped portion is below the second passage hole 89 on the contraction side. An opening on the chamber 32 side is arranged. Similarly, in the piston main body 83, the outer peripheral side of the valve seat part 99 is formed in a stepped shape having a lower height in the axial direction than the valve seat part 99, and the first side on the extending side is formed in this stepped part. An opening on the upper chamber 31 side of the passage hole 88 is disposed.
 弁体91は、複数枚の有孔円板状のディスク101が重ねられて構成されている。弁体91は、最もピストン本体83側のディスク101の外径が最も大径で、最もピストン本体83とは反対側のディスク101の外径がディスク101よりも小径となっている。また、積み重ね方向の中間部のディスク101の外径は、積み重ね方向の両端部の各ディスクの中間径となっている。これらディスク101の内周部に取付軸部72が嵌合している。弁体91は、最もピストン本体83側のディスク101でピストン本体83のバルブシート部97に当接して、第1通路穴88内の通路を開閉する。 The valve body 91 is configured by stacking a plurality of perforated disk-shaped disks 101. In the valve body 91, the outer diameter of the disk 101 closest to the piston body 83 is the largest, and the outer diameter of the disk 101 on the opposite side to the piston body 83 is smaller than the disk 101. Further, the outer diameter of the disk 101 at the intermediate portion in the stacking direction is the intermediate diameter of each disk at both ends in the stacking direction. A mounting shaft 72 is fitted to the inner periphery of the disc 101. The valve body 91 is in contact with the valve seat portion 97 of the piston body 83 by the disk 101 closest to the piston body 83 to open and close the passage in the first passage hole 88.
 弁体91とピストン本体83との間には、複数枚の有孔円板状のディスク103が設けられている。この複数のディスク103は、いずれもバルブシート部97の内径よりも外径が小径となっている。弁体91には、ピストン本体83とは反対側に、有孔円板状のディスク104が設けられている。ディスク104は、ピストン本体83とは反対側における弁体91の端部のディスク101よりも外径が小径となっている。弁体91とは反対側のディスク104には、有孔円板状のディスク105が設けられている。ディスク105は、ディスク104よりも外径が大径である。これらディスク103~105の内周部に取付軸部72が嵌合している。 Between the valve body 91 and the piston main body 83, a plurality of perforated disc-shaped disks 103 are provided. Each of the plurality of disks 103 has an outer diameter smaller than the inner diameter of the valve seat portion 97. The valve body 91 is provided with a perforated disk-shaped disc 104 on the opposite side to the piston body 83. The disc 104 has a smaller outer diameter than the disc 101 at the end of the valve body 91 on the side opposite to the piston main body 83. The disc 104 on the side opposite to the valve body 91 is provided with a perforated disc-like disc 105. The disk 105 has a larger outer diameter than the disk 104. A mounting shaft 72 is fitted to the inner periphery of the disks 103 to 105.
 弁体91は、バルブシート部97に離着座可能である。弁体91は、バルブシート部97から離座することで第1通路穴88内の通路を下室32に開放可能であって、上室31から下室32への油液の流れを許容しつつ抑制する。弁体91におけるバルブシート部97に当接するディスク101には、外周側に切欠部107が形成されている。この切欠部107と、バルブシート部97とは固定オリフィス106を構成している。固定オリフィス106は、ディスク101がバルブシート部97に当接状態にあっても上室31と下室32とを連通させる。ディスク105は、弁体91の開方向への規定以上の変形を抑制する。 The valve body 91 can be detached from and seated on the valve seat portion 97. The valve body 91 can open the passage in the first passage hole 88 to the lower chamber 32 by being separated from the valve seat portion 97, and allows the flow of oil from the upper chamber 31 to the lower chamber 32. Suppress. The disc 101 in contact with the valve seat portion 97 in the valve body 91 has a notch 107 formed on the outer peripheral side. The cutout portion 107 and the valve seat portion 97 constitute a fixed orifice 106. The fixed orifice 106 allows the upper chamber 31 and the lower chamber 32 to communicate with each other even when the disk 101 is in contact with the valve seat portion 97. The disk 105 suppresses deformation beyond the regulation in the opening direction of the valve body 91.
 ピストン本体83に設けられた伸び側の第1通路穴88内の通路と、固定オリフィス106と、離座時の弁体91とバルブシート部97との隙間とが、伸び行程でのピストン30の移動により上室31から下室32に向けて油液が流れ出す伸び側の通路108を構成している。伸び側の減衰力発生機構90は、この縮み側の通路108に設けられて減衰力を発生させる。 The passage in the first passage hole 88 on the extension side provided in the piston main body 83, the fixed orifice 106, and the gap between the valve body 91 and the valve seat portion 97 at the time of the seating are separated by the piston 30 in the extension stroke. An extension-side passage 108 through which the oil liquid flows from the upper chamber 31 toward the lower chamber 32 by movement is formed. The expansion-side damping force generation mechanism 90 is provided in the contraction-side passage 108 and generates a damping force.
 弁体93は、複数枚の有孔円板状のディスク111が重ねられて構成されている。弁体93は、最もピストン本体83側のディスク111の外径が最も大径で、最もピストン本体83とは反対側のディスク111の外径がこれよりも小径となっている。また、積み重ね方向の中間部のディスク111の外径は、積み重ね方向の両端部の各ディスク111の中間径となっている。これらディスク111の内周部に取付軸部72が嵌合している。弁体93は、最もピストン本体83側のディスク111でピストン本体83のバルブシート部99に当接して、第2通路穴89内の通路を開閉する。 The valve body 93 is configured by stacking a plurality of perforated disk-shaped disks 111. The valve body 93 has the largest outer diameter of the disk 111 on the piston body 83 side, and the outer diameter of the disk 111 on the opposite side to the piston body 83 is smaller than this. Further, the outer diameter of the disk 111 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks 111 at both ends in the stacking direction. A mounting shaft 72 is fitted to the inner periphery of these disks 111. The valve body 93 is in contact with the valve seat 99 of the piston body 83 by the disk 111 closest to the piston body 83 to open and close the passage in the second passage hole 89.
 弁体93とピストン本体83との間には、有孔円板状の複数枚のディスク113が設けられている。各ディスク113の外径は、同径であり、バルブシート部99の内径よりも小径である。弁体93には、ピストン本体83とは反対側に、有孔円板状のディスク114が設けられている。ディスク114は、弁体93におけるピストン本体83とは反対側の端部のディスク111よりも外径が小径となっている。ディスク114には、弁体93とは反対側に、有孔円板状の複数枚のディスク115が設けられている。複数のディスク115は、同外径であり、ディスク114よりも外径が大径となっている。ディスク115におけるディスク114とは反対側に、有孔円板状のディスク116が設けられている。ディスク116の外径は、ディスク115よりも小径である。これらディスク113~116の内周部に取付軸部72が嵌合している。 Between the valve body 93 and the piston main body 83, a plurality of perforated disc-shaped disks 113 are provided. The outer diameter of each disk 113 is the same diameter and is smaller than the inner diameter of the valve seat portion 99. The valve body 93 is provided with a perforated disk-shaped disk 114 on the side opposite to the piston body 83. The disk 114 has a smaller outer diameter than the disk 111 at the end of the valve body 93 opposite to the piston body 83. The disc 114 is provided with a plurality of perforated disc-shaped discs 115 on the side opposite to the valve body 93. The plurality of disks 115 have the same outer diameter, and the outer diameter is larger than that of the disk 114. On the opposite side of the disk 115 from the disk 114, a perforated disk-shaped disk 116 is provided. The outer diameter of the disk 116 is smaller than that of the disk 115. A mounting shaft 72 is fitted to the inner peripheral portions of the disks 113 to 116.
 弁体93は、バルブシート部99に離着座可能である。弁体93は、バルブシート部99から離座することで第2通路穴89内の通路を上室31に開放可能であって、下室32から上室31への油液の流れを許容しつつ抑制する。弁体93において、バルブシート部99に当接するディスク111には、外周側に切欠部118が形成されている。この切欠部118と、バルブシート部99とは固定オリフィス117を構成している。固定オリフィス117は、ディスク111がバルブシート部99に当接状態にあっても上室31と下室32とを連通させる。ディスク115は、弁体93の開方向への規定以上の変形を抑制する。 The valve body 93 can be detached from and seated on the valve seat portion 99. The valve body 93 can open the passage in the second passage hole 89 to the upper chamber 31 by separating from the valve seat portion 99, and allows the flow of oil from the lower chamber 32 to the upper chamber 31. Suppress. In the valve body 93, a notch 118 is formed on the outer peripheral side of the disk 111 in contact with the valve seat portion 99. The notch 118 and the valve seat 99 constitute a fixed orifice 117. The fixed orifice 117 allows the upper chamber 31 and the lower chamber 32 to communicate with each other even when the disk 111 is in contact with the valve seat portion 99. The disc 115 suppresses deformation beyond the regulation in the opening direction of the valve body 93.
 ピストン本体83に設けられた縮み側の第2通路穴89内の通路と、固定オリフィス117と、離座時の弁体93とバルブシート部99との隙間とが、縮み行程でのピストン30の移動により下室32から上室31に向けて油液が流れ出す縮み側の通路119を構成している。縮み側の減衰力発生機構92は、この縮み側の通路119に設けられて減衰力を発生させる。 The passage in the second passage hole 89 on the contraction side provided in the piston main body 83, the fixed orifice 117, and the clearance between the valve body 93 and the valve seat portion 99 at the time of the separation are the positions of the piston 30 in the contraction stroke. A contraction-side passage 119 from which the oil liquid flows from the lower chamber 32 toward the upper chamber 31 by the movement is formed. The contraction-side damping force generating mechanism 92 is provided in the contraction-side passage 119 and generates a damping force.
 先端ロッド55の取付軸部72には、ディスク116における弁体93とは反対側に隣接して、バルブ機構131が設けられている。バルブ機構131は、ピストン本体83と共にピストン30を構成している。バルブ機構131は、ケース体132と、通路形成部材133と、弁体134(第2弁体)と、シート部材135と、Oリング136と、弁体137とを有している。 A valve mechanism 131 is provided on the mounting shaft 72 of the tip rod 55 adjacent to the disc 116 on the side opposite to the valve body 93. The valve mechanism 131 constitutes the piston 30 together with the piston main body 83. The valve mechanism 131 includes a case body 132, a passage forming member 133, a valve body 134 (second valve body), a seat member 135, an O-ring 136, and a valve body 137.
 ケース体132は、有孔円板状の底板部141と、底板部141の外周側から軸方向に延出する円筒状の筒状部142とを有している。底板部141の内周部に取付軸部72が嵌合している。ケース体132は、底板部141がディスク116に当接しており、筒状部142を底板部141からディスク116とは反対方向に延出させている。 The case body 132 has a perforated disc-shaped bottom plate portion 141 and a cylindrical tubular portion 142 extending in the axial direction from the outer peripheral side of the bottom plate portion 141. A mounting shaft portion 72 is fitted to the inner peripheral portion of the bottom plate portion 141. In the case body 132, the bottom plate portion 141 is in contact with the disk 116, and the cylindrical portion 142 extends from the bottom plate portion 141 in the direction opposite to the disk 116.
 通路形成部材133は、ケース体132の筒状部142内に配置されている。通路形成部材133は、円筒状の通路形成部145と、通路形成部145の軸方向の一端側から径方向内方に突出する円環状の内フランジ部146とを有している。内フランジ部146の内周部に取付軸部72が嵌合しており、通路形成部145がケース体132の底板部141に当接している。通路形成部145には、径方向に貫通する通路溝147が形成されている。取付軸部72の通路溝75は、ケース体132の底板部141を横断しており、内フランジ部146と底板部141との間の位置に開口している。 The passage forming member 133 is disposed in the cylindrical portion 142 of the case body 132. The passage forming member 133 includes a cylindrical passage forming portion 145 and an annular inner flange portion 146 that protrudes radially inward from one axial end side of the passage forming portion 145. The attachment shaft portion 72 is fitted to the inner peripheral portion of the inner flange portion 146, and the passage forming portion 145 is in contact with the bottom plate portion 141 of the case body 132. A passage groove 147 penetrating in the radial direction is formed in the passage forming portion 145. The passage groove 75 of the attachment shaft portion 72 crosses the bottom plate portion 141 of the case body 132 and opens at a position between the inner flange portion 146 and the bottom plate portion 141.
 シート部材135は、円環形状を有しており、内周部に取付軸部72が嵌合している。シート部材135は、ケース体132の筒状部142内に配置されて、弁体134における通路形成部材133とは反対側に配置されている。シート部材135は、外周部にOリング136が装着されており、外周部においてケース体132の筒状部142内に嵌合している。その際に、Oリング136がシート部材135とケース体132との隙間をシールする。シート部材135は、ケース体132との間に、中間室150を、上室31と区画して形成している。 The sheet member 135 has an annular shape, and the mounting shaft portion 72 is fitted to the inner peripheral portion. The sheet member 135 is disposed in the cylindrical portion 142 of the case body 132 and is disposed on the opposite side of the valve body 134 from the passage forming member 133. The sheet member 135 has an O-ring 136 attached to the outer peripheral portion thereof, and is fitted into the cylindrical portion 142 of the case body 132 at the outer peripheral portion. At that time, the O-ring 136 seals the gap between the sheet member 135 and the case body 132. The sheet member 135 is formed between the case body 132 and an intermediate chamber 150 that is partitioned from the upper chamber 31.
 シート部材135には、上室31と中間室150とを連通させる複数(図2では断面とした関係上一カ所のみ図示)の第1通路穴151と、上室31と中間室150とを連通させる複数(図2では断面とした関係上一カ所のみ図示)の第2通路穴152とが設けられている。
 第1通路穴151は、円周方向において、各第1通路穴151間に一カ所の第2通路穴152を挟んで等ピッチで形成されており、シート部材135の軸方向一側(図2の上側)が径方向外側に開口し、軸方向他側(図2の下側)が径方向内側に開口している。
The sheet member 135 communicates a plurality of first passage holes 151 that allow the upper chamber 31 and the intermediate chamber 150 to communicate with each other (only one location is shown in the cross-sectional view in FIG. 2), and the upper chamber 31 and the intermediate chamber 150. A plurality of second passage holes 152 (only one place is shown in FIG. 2 because of the cross section) are provided.
The first passage holes 151 are formed at an equal pitch in the circumferential direction with one second passage hole 152 interposed between the first passage holes 151, and one axial direction side of the sheet member 135 (FIG. 2). 2) is opened radially outward, and the other axial side (lower side in FIG. 2) is opened radially inward.
 各第1通路穴151に対して、減衰力を発生する弁体134を含む減衰力発生機構155が設けられている。減衰力発生機構155の弁体134は、シート部材135における軸方向の一端側にある中間室150側に配置されて、ピストンロッド41に取り付けられている。第1通路穴151内の通路は、ピストンロッド41およびピストン30が伸び側(図2の上側)に移動するときに油液が通過する伸び側の通路である。各第1通路穴151に対して設けられた減衰力発生機構155は、伸び側の第1通路穴151内の通路の油液の流動を抑制して減衰力を発生させる伸び側の減衰力発生機構となっている。 A damping force generation mechanism 155 including a valve body 134 that generates a damping force is provided for each first passage hole 151. The valve body 134 of the damping force generation mechanism 155 is disposed on the intermediate chamber 150 side on one end side in the axial direction of the seat member 135 and is attached to the piston rod 41. The passage in the first passage hole 151 is an extension-side passage through which oil passes when the piston rod 41 and the piston 30 move to the extension side (the upper side in FIG. 2). The damping force generation mechanism 155 provided for each first passage hole 151 generates an extension-side damping force that suppresses the flow of oil in the passage in the extension-side first passage hole 151 and generates a damping force. It is a mechanism.
 また、複数の通路穴151,152のうちの残りの半数を構成する第2通路穴152は、円周方向において、各第2通路穴152間に一カ所の第1通路穴151を挟んで等ピッチで形成されており、シート部材135の軸線方向他側(図2の下側)が径方向外側に開口し、軸線方向一側(図2の上側)が径方向内側に開口している。 In addition, the second passage hole 152 constituting the remaining half of the plurality of passage holes 151, 152 has one first passage hole 151 sandwiched between the second passage holes 152 in the circumferential direction, etc. The other side of the sheet member 135 in the axial direction (the lower side in FIG. 2) opens radially outward, and one side in the axial direction (the upper side in FIG. 2) opens radially inward.
 各第2通路穴152に対して、減衰力を発生する弁体137を含む減衰力発生機構156が設けられている。減衰力発生機構156の弁体137は、シート部材135の軸方向の他端側である中間室150とは反対側に配置されて、ピストンロッド41に取り付けられている。第2通路穴152内の通路は、ピストンロッド41およびピストン30が縮み側(図2の下側)に移動するときに油液が通過する縮み側の通路である。各第2通路穴152に対して設けられた減衰力発生機構156は、縮み側の第2通路穴152内の通路の油液の流動を抑制して減衰力を発生させる縮み側の減衰力発生機構を構成している。 A damping force generation mechanism 156 including a valve body 137 that generates a damping force is provided for each second passage hole 152. The valve body 137 of the damping force generation mechanism 156 is disposed on the opposite side to the intermediate chamber 150, which is the other end side of the seat member 135 in the axial direction, and is attached to the piston rod 41. The passage in the second passage hole 152 is a passage on the contraction side through which the oil liquid passes when the piston rod 41 and the piston 30 move to the contraction side (the lower side in FIG. 2). A damping force generation mechanism 156 provided for each second passage hole 152 suppresses the flow of oil in the passage in the second passage hole 152 on the contraction side and generates a damping force on the compression side. The mechanism is configured.
 シート部材135における軸方向の中間室150側の端部には、第1通路穴151における中間室150側の開口よりも径方向外側に、環状のバルブシート部161が形成されている。バルブシート部161と、弁体134とは減衰力発生機構155を構成する。また、シート部材135における軸方向の中間室150とは反対側の端部には、第2通路穴152における上室31側の開口よりも径方向外側に、環状のバルブシート部162が形成されている。バルブシート部162と弁体137とは減衰力発生機構156を構成する。 At the end of the seat member 135 on the intermediate chamber 150 side in the axial direction, an annular valve seat 161 is formed on the outer side in the radial direction than the opening of the first passage hole 151 on the intermediate chamber 150 side. The valve seat portion 161 and the valve body 134 constitute a damping force generation mechanism 155. In addition, an annular valve seat 162 is formed at the end of the seat member 135 opposite to the axial intermediate chamber 150 on the outer side in the radial direction than the opening of the second passage hole 152 on the upper chamber 31 side. ing. The valve seat portion 162 and the valve body 137 constitute a damping force generation mechanism 156.
 シート部材135において、バルブシート部161の径方向外側は、バルブシート部161よりも軸線方向高さが低い段差状に形成されており、この段差状の部分に縮み側の第2通路穴152における中間室150側の開口が配置されている。また、同様に、シート部材135において、バルブシート部162の径方向外側は、バルブシート部162よりも軸線方向高さが低い段差状に形成されており、この段差状の部分に伸び側の第1通路穴151における上室31側の開口が配置されている。 In the seat member 135, the outer side in the radial direction of the valve seat portion 161 is formed in a step shape whose axial direction height is lower than that of the valve seat portion 161, and in the second passage hole 152 on the contraction side in this step shape portion. An opening on the intermediate chamber 150 side is arranged. Similarly, in the seat member 135, the outer side in the radial direction of the valve seat portion 162 is formed in a stepped shape having a lower axial height than the valve seat portion 162, and the stepped portion is extended to the second portion on the extending side. An opening on the upper chamber 31 side in the one passage hole 151 is arranged.
 弁体134は、複数枚の有孔円板状のディスク171が重ねられて構成されている。弁体134は、最もシート部材135側のディスク171の外径が最も大径で、最もシート部材135とは反対側のディスク171の外径がこれよりも小径である。また、積み重ね方向の中間部のディスク171の外径は、積み重ね方向の両端部の各ディスクの中間径となっている。複数のディスク171の内周部に取付軸部72が嵌合している。弁体134は、最もシート部材135側のディスク171でシート部材135のバルブシート部161に当接して、第1通路穴151内の通路を開閉する。 The valve element 134 is configured by stacking a plurality of perforated disk-shaped disks 171. In the valve body 134, the outer diameter of the disk 171 closest to the sheet member 135 is the largest, and the outer diameter of the disk 171 opposite to the sheet member 135 is smaller than this. Further, the outer diameter of the disk 171 at the intermediate portion in the stacking direction is the intermediate diameter of each disk at both ends in the stacking direction. The mounting shaft portion 72 is fitted to the inner peripheral portions of the plurality of disks 171. The valve body 134 abuts on the valve seat portion 161 of the seat member 135 with the disc 171 closest to the seat member 135 to open and close the passage in the first passage hole 151.
 弁体134とシート部材135との間には、複数枚の有孔円板状のディスク173が設けられている。各ディスク173の外径は、同径であり、バルブシート部161の内径よりも小径である。弁体134におけるシート部材135とは反対側には、複数枚の有孔円板状のディスク174が設けられている。各ディスク174の外径は、同径であり、弁体134のシート部材135とは反対側の端部のディスク171よりも小径である。ディスク174における弁体134とは反対側には、有孔円板状の複数枚のディスク175が設けられている。この複数のディスク175は、同外径であり、ディスク174よりも外径が大径となっている。これらディスク173~175の内周部に取付軸部72が嵌合している。 A plurality of perforated disc-shaped discs 173 are provided between the valve body 134 and the seat member 135. The outer diameter of each disk 173 is the same, and is smaller than the inner diameter of the valve seat portion 161. A plurality of perforated disc-shaped disks 174 are provided on the opposite side of the valve body 134 from the sheet member 135. The outer diameter of each disk 174 is the same, and is smaller than the disk 171 at the end opposite to the seat member 135 of the valve body 134. On the opposite side of the disc 174 from the valve body 134, a plurality of perforated disc-shaped discs 175 are provided. The plurality of disks 175 have the same outer diameter, and the outer diameter is larger than that of the disk 174. A mounting shaft 72 is fitted to the inner peripheral portions of these disks 173 to 175.
 弁体134は、バルブシート部161に離着座可能である。弁体134は、バルブシート部161から離座することで第1通路穴151内の通路を中間室150に開放可能である。弁体134は、上室31から中間室150への油液の流れを許容しつつ抑制する。弁体134におけるバルブシート部161に当接するディスク171には、外周側に切欠部177が形成されている。この切欠部177と、バルブシート部161とは固定オリフィス176を構成している。固定オリフィス176は、ディスク171がバルブシート部161に当接状態にあっても上室31と中間室150とを連通させる。ディスク175は、弁体134の開方向への規定以上の変形を抑制する。 The valve element 134 can be detached from and seated on the valve seat portion 161. The valve body 134 can open the passage in the first passage hole 151 to the intermediate chamber 150 by separating from the valve seat portion 161. The valve body 134 suppresses the flow of oil from the upper chamber 31 to the intermediate chamber 150 while allowing it. A notch 177 is formed on the outer peripheral side of the disc 171 in contact with the valve seat 161 in the valve body 134. The notch 177 and the valve seat 161 constitute a fixed orifice 176. The fixed orifice 176 allows the upper chamber 31 and the intermediate chamber 150 to communicate with each other even when the disk 171 is in contact with the valve seat portion 161. The disk 175 suppresses deformation beyond the regulation in the opening direction of the valve body 134.
 弁体137は、有孔円板状の複数枚のディスク181が重ねられて構成されている。弁体137は、最もシート部材135側のディスク181の外径が最も大径で、最もシート部材135とは反対側のディスク181の外径がこれよりも小径である。また、積み重ね方向の中間部のディスク181の外径は、積み重ね方向の両端部の各ディスクの中間径となっている。これらディスク181の内周部に取付軸部72が嵌合している。弁体137は、最もシート部材135側のディスク181でシート部材135のバルブシート部162に当接して、第2通路穴152内の通路を開閉する。 The valve body 137 is configured by stacking a plurality of perforated disc-shaped disks 181. In the valve body 137, the outer diameter of the disk 181 closest to the seat member 135 is the largest, and the outer diameter of the disk 181 opposite to the seat member 135 is smaller than this. Further, the outer diameter of the disk 181 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks at both ends in the stacking direction. A mounting shaft 72 is fitted to the inner periphery of these disks 181. The valve body 137 contacts the valve seat portion 162 of the seat member 135 with the disk 181 closest to the seat member 135 to open and close the passage in the second passage hole 152.
 弁体137とシート部材135との間には、複数枚の有孔円板状のディスク183が設けられている。各ディスク183の外径は、同径であり、バルブシート部162の内径よりも小径となっている。弁体137におけるシート部材135とは反対側には、複数枚のディスク184が設けられている。各ディスク184の外径は、同径であり、弁体137におけるシート部材135とは反対側の端部のディスク181よりも小径である。
 ディスク184には、弁体134とは反対側に、有孔円板状のディスク185が設けられている。ディスク185の外径は、ディスク184よりも大径となっている。ディスク185には、ディスク184とは反対側に、円環状の円環部材186が設けられている。円環部材186の外径は、ディスク185よりも小径である。これらディスク183~185および円環部材186の内周部に取付軸部72が嵌合している。円環部材186は、先端ロッド55の軸段部73に当接している。
Between the valve body 137 and the seat member 135, a plurality of perforated disc-shaped disks 183 are provided. The outer diameter of each disk 183 is the same diameter and is smaller than the inner diameter of the valve seat portion 162. A plurality of discs 184 are provided on the opposite side of the valve body 137 from the sheet member 135. The outer diameter of each disk 184 is the same diameter, and is smaller than the disk 181 at the end of the valve body 137 opposite to the seat member 135.
The disk 184 is provided with a perforated disk-shaped disk 185 on the side opposite to the valve body 134. The outer diameter of the disk 185 is larger than that of the disk 184. The disk 185 is provided with an annular ring member 186 on the side opposite to the disk 184. The outer diameter of the annular member 186 is smaller than that of the disk 185. A mounting shaft 72 is fitted to the inner peripheral portions of the disks 183 to 185 and the annular member 186. The annular member 186 is in contact with the shaft step portion 73 of the tip rod 55.
 弁体137は、バルブシート部162に離着座可能である。弁体137は、バルブシート部162から離座することで第2通路穴152内の通路を上室31に開放可能である。弁体137は、中間室150から上室31への油液の流れを許容しつつ抑制する。弁体137において、バルブシート部162に当接するディスク181には、外周側に切欠部188が形成されている。この切欠部188と、バルブシート部162とは固定オリフィス187を構成している。固定オリフィス187は、ディスク181がバルブシート部162に当接状態にあっても上室31と中間室150とを連通させる。ディスク185は、弁体137の開方向への規定以上の変形を抑制する。 The valve body 137 can be detached from and seated on the valve seat portion 162. The valve body 137 can open the passage in the second passage hole 152 to the upper chamber 31 by separating from the valve seat portion 162. The valve body 137 suppresses the oil liquid from the intermediate chamber 150 to the upper chamber 31 while allowing it to flow. In the valve body 137, a notch 188 is formed on the outer peripheral side of the disk 181 that contacts the valve seat portion 162. The cutout portion 188 and the valve seat portion 162 constitute a fixed orifice 187. The fixed orifice 187 allows the upper chamber 31 and the intermediate chamber 150 to communicate with each other even when the disk 181 is in contact with the valve seat portion 162. The disk 185 suppresses deformation beyond the regulation in the opening direction of the valve body 137.
 図3に示すように、先端ロッド55の取付軸部72には、ディスク105における弁体91とは反対側に隣接して、周波数感応部200が設けられている。周波数感応部200は、伸び行程でピストン30の往復動の周波数(以下、ピストン周波数と称す)に感応して減衰力を可変とするように構成されている。 As shown in FIG. 3, the frequency sensitive portion 200 is provided on the mounting shaft portion 72 of the tip rod 55 adjacent to the opposite side of the disc 105 from the valve body 91. The frequency sensitive unit 200 is configured to make the damping force variable in response to the frequency of reciprocation of the piston 30 (hereinafter referred to as the piston frequency) during the extension stroke.
 周波数感応部200は、軸方向のディスク105側から順に、ケース部材201と、通路形成ディスク202と、複数枚のディスク203および弁体(第3弁体)204と、複数枚のシートディスク205と、蓋部材206とを有している。ケース部材201は、有底筒状であり、内周部に先端ロッド55の取付軸部72が嵌合している。通路形成ディスク202、複数枚のディスク203、複数枚のシートディスク205および蓋部材206は、いずれも一定厚さの有孔円板形状であり、内周部に先端ロッド55の軸部としての取付軸部72が嵌合している。取付軸部72もケース部材201内に配置される部分が周波数感応部200を構成している。弁体204は、環状であり、内側に取付軸部72を貫通させて、ケース部材201内に配置されている。蓋部材206は、ケース部材201に嵌合されており、蓋部材206とケース部材201とでハウジング210を構成している。 The frequency sensitive unit 200 includes, in order from the axial disk 105 side, a case member 201, a passage forming disk 202, a plurality of disks 203 and a valve body (third valve body) 204, a plurality of sheet disks 205, And a lid member 206. The case member 201 has a bottomed cylindrical shape, and the attachment shaft portion 72 of the tip rod 55 is fitted to the inner peripheral portion. The passage forming disc 202, the plurality of discs 203, the plurality of sheet discs 205, and the lid member 206 are all in the shape of a perforated disk with a constant thickness, and are attached as shaft portions of the tip rod 55 to the inner peripheral portion The shaft portion 72 is fitted. A portion of the attachment shaft portion 72 that is disposed in the case member 201 constitutes the frequency sensitive portion 200. The valve body 204 has an annular shape, and is disposed in the case member 201 with the attachment shaft portion 72 penetrating inside. The lid member 206 is fitted to the case member 201, and the lid member 206 and the case member 201 constitute a housing 210.
 ケース部材201は、軸直交方向に沿う有孔円板状の基部221と、円環状の環状突出部220と、円筒状の内側円筒状部222と、円筒状のシート部223と、環円筒状の筒状部224とを有している。環状突出部220は、基部221の内周側から軸方向一側に突出する。内側円筒状部222は、基部221の内周側から軸方向他側に突出する。シート部223は、基部221の径方向の中間位置から内側円筒状部222と同側に突出する。筒状部224は、基部221の外周縁部からシート部223と同側に延出する。 The case member 201 includes a perforated disk-shaped base 221 along the direction orthogonal to the axis, an annular projecting portion 220, a cylindrical inner cylindrical portion 222, a cylindrical sheet portion 223, and an annular cylindrical shape. The cylindrical part 224 is provided. The annular projecting portion 220 projects from the inner peripheral side of the base portion 221 to one side in the axial direction. The inner cylindrical portion 222 protrudes from the inner peripheral side of the base portion 221 to the other side in the axial direction. The seat portion 223 protrudes from the intermediate position in the radial direction of the base portion 221 to the same side as the inner cylindrical portion 222. The cylindrical portion 224 extends from the outer peripheral edge portion of the base portion 221 to the same side as the sheet portion 223.
 ケース部材201の内周部には、小径穴部225が形成されており、軸方向の内側円筒状部222側に小径穴部225より大径の大径穴部226が形成されている。小径穴部225は、軸方向の環状突出部220側に先端ロッド55の取付軸部72を嵌合させるように形成されている。取付軸部72の通路溝75は、小径穴部225を横断して、大径穴部226内に開口している。通路溝75は、図2に示すケース体132の底板部141、ディスク116、複数枚のディスク115、ディスク114、弁体93、複数枚のディスク113、ピストン本体83、複数枚のディスク103、弁体91、ディスク104、ディスク105および図3に示すケース部材201の小径穴部225を軸方向に貫通している。 A small-diameter hole 225 is formed in the inner peripheral portion of the case member 201, and a large-diameter hole 226 having a larger diameter than the small-diameter hole 225 is formed on the inner cylindrical portion 222 side in the axial direction. The small-diameter hole portion 225 is formed so that the attachment shaft portion 72 of the tip rod 55 is fitted on the annular projecting portion 220 side in the axial direction. The passage groove 75 of the attachment shaft 72 is opened in the large diameter hole 226 across the small diameter hole 225. The passage groove 75 includes a bottom plate portion 141, a disc 116, a plurality of discs 115, a disc 114, a valve body 93, a plurality of discs 113, a piston main body 83, a plurality of discs 103, a valve of the case body 132 shown in FIG. The body 91, the disk 104, the disk 105, and the small diameter hole 225 of the case member 201 shown in FIG.
 ケース部材201は、環状突出部220がディスク105に当接しており、内側円筒状部222が通路形成ディスク202の内周側に当接している。ケース部材201のシート部223は、シート部223の突出先端側の端部で、弁体204を支持している。シート部223には、切欠部231が形成されている。切欠部231は、周方向には部分的に形成され径方向に貫通している。切欠部231により、ケース部材201におけるシート部223の径方向内側と径方向外側とが常時連通する。 In the case member 201, the annular protrusion 220 is in contact with the disk 105, and the inner cylindrical portion 222 is in contact with the inner peripheral side of the passage forming disk 202. The seat portion 223 of the case member 201 supports the valve body 204 at the end portion on the protruding front end side of the seat portion 223. A cutout portion 231 is formed in the sheet portion 223. The notch 231 is partially formed in the circumferential direction and penetrates in the radial direction. By the cutout portion 231, the radially inner side and the radially outer side of the sheet portion 223 in the case member 201 are always in communication.
 通路形成ディスク202は、ケース部材201の筒状部224内に配置されている。通路形成ディスク202の外径は、内側円筒状部222のこれに接触する部分よりも大径且つシート部223の内径よりも小径である。通路形成ディスク202には、内周側に切欠部232が形成されている。切欠部232は、内側円筒状部222の通路形成ディスク202への接触部分を径方向に横断している。複数枚のディスク203は、ケース部材201の筒状部224内に配置されている。各ディスク203の外径は、同径であって、通路形成ディスク202の外径よりも小径である。 The passage forming disc 202 is disposed in the cylindrical portion 224 of the case member 201. The outer diameter of the passage forming disk 202 is larger than the portion of the inner cylindrical portion 222 in contact with the inner cylindrical portion 222 and smaller than the inner diameter of the sheet portion 223. The passage forming disk 202 has a notch 232 formed on the inner peripheral side. The notch 232 crosses the contact portion of the inner cylindrical portion 222 with the passage forming disk 202 in the radial direction. The plurality of disks 203 are arranged in the cylindrical portion 224 of the case member 201. The outer diameters of the respective disks 203 are the same, and are smaller than the outer diameter of the passage forming disk 202.
 弁体204は、ケース部材201の筒状部224内に配置されており、金属製のベースディスク235と、ベースディスク235の外周側に固着されるゴム製のシール部材236とからなっている。弁体204は、弾性変形可能、つまり撓み可能に構成されている。ベースディスク235は、一定厚さの有孔円形平板形状を有しており、内径がディスク203の外径よりも大径である。これにより、ベースディスク235は、ベースディスク235の内側のディスク203に対し径方向に隙間をもって配置可能に構成されている。ベースディスク235は、複数枚のディスク203を合わせた厚さよりも厚さが薄い。ベースディスク235の外径は、ケース部材201のシート部223の外径よりも大径である。 The valve body 204 is disposed in the cylindrical portion 224 of the case member 201, and includes a metal base disk 235 and a rubber seal member 236 fixed to the outer peripheral side of the base disk 235. The valve body 204 is configured to be elastically deformable, that is, bendable. The base disk 235 has a perforated circular flat plate shape with a constant thickness, and the inner diameter is larger than the outer diameter of the disk 203. As a result, the base disk 235 is configured to be arranged with a gap in the radial direction with respect to the disk 203 inside the base disk 235. The base disk 235 is thinner than the combined thickness of the plurality of disks 203. The outer diameter of the base disk 235 is larger than the outer diameter of the sheet portion 223 of the case member 201.
 シール部材236は、ベースディスク235の外周側に固着されている。シール部材236は、弾性体であり、円筒状のシール本体部238と、複数の突出部239とを有している。シール本体部238は、ベースディスク235から軸方向の蓋部材206とは反対側に突出する。複数の突出部239は、ベースディスク235から軸方向の蓋部材206側に突出する。シール部材236は、ベースディスク235の外周部においてシール本体部238と複数の突出部239とを連結しており、この状態で、シール本体部238と複数の突出部239とがベースディスク235の両面に固着されている。ベースディスク235の外径は、ケース部材201の筒状部224の内径よりも小径である。よって、ベースディスク235と、ケース部材201との間には、環状の隙間が設けられる。シール部材236は、この隙間を介してシール本体部238と突出部239とを連結している。このような構成としたことにより、ベースディスク235へのシール部材236の固着を容易にしている。 The seal member 236 is fixed to the outer peripheral side of the base disk 235. The seal member 236 is an elastic body, and has a cylindrical seal body 238 and a plurality of protrusions 239. The seal body 238 protrudes from the base disk 235 to the side opposite to the axial lid member 206. The plurality of projecting portions 239 project from the base disk 235 toward the lid member 206 in the axial direction. The seal member 236 connects the seal body 238 and the plurality of protrusions 239 at the outer periphery of the base disk 235, and in this state, the seal body 238 and the plurality of protrusions 239 are both surfaces of the base disk 235. It is fixed to. The outer diameter of the base disk 235 is smaller than the inner diameter of the cylindrical portion 224 of the case member 201. Therefore, an annular gap is provided between the base disk 235 and the case member 201. The seal member 236 connects the seal body 238 and the protrusion 239 through this gap. With such a configuration, the sealing member 236 can be easily fixed to the base disk 235.
 シール本体部238は、ベースディスク235側の端部の内径、つまり最小内径が、シート部223の外径よりも大径である。これにより、弁体204は、ベースディスク235がケース部材201のシート部223に着座可能に構成されている。複数の突出部239は、ベースディスク235の周方向に間隔をあけて配置されている。隣り合う突出部239の間には、径方向に貫通する径方向溝241が形成されている。なお、シート部223に切欠部231が設けられているため、弁体204のシール本体部238が設けられる側と、突出部239が設けられる側の受圧面積とは同じ程度となる。 The seal body 238 has an inner diameter at the end on the base disk 235 side, that is, a minimum inner diameter, larger than the outer diameter of the seat portion 223. Accordingly, the valve body 204 is configured such that the base disk 235 can be seated on the seat portion 223 of the case member 201. The plurality of protrusions 239 are arranged at intervals in the circumferential direction of the base disk 235. A radial groove 241 penetrating in the radial direction is formed between adjacent protrusions 239. In addition, since the notch part 231 is provided in the seat part 223, the pressure receiving area on the side where the seal main body part 238 of the valve body 204 is provided and the side where the protruding part 239 is provided are approximately the same.
 複数枚のシートディスク205は、ケース部材201の筒状部224内に配置されている。最もディスク203側のシートディスク205の外径が最も小径であり、最もディスク203とは反対側のシートディスク205の外径がこれよりも大径となっている。また、積み重ね方向の中間部のシートディスク205の外径は、積み重ね方向の両端部の各ディスクの中間径となっている。最もディスク203側のシートディスク205の外径は、ディスク203の外径およびベースディスク235の内径よりも大径である。弁体204のベースディスク235は、通路形成ディスク202とシートディスク205との間に配置されており、ベースディスク235の厚さがシートディスク205とシート部223との軸方向距離よりも厚い。これにより、弁体204は、径方向中間部がシート部223に当接して支持され、内周側がシートディスク205に当接して支持される。 The plurality of sheet disks 205 are arranged in the cylindrical portion 224 of the case member 201. The outer diameter of the sheet disk 205 closest to the disk 203 is the smallest, and the outer diameter of the sheet disk 205 on the opposite side of the disk 203 is larger than this. Further, the outer diameter of the sheet disk 205 at the intermediate portion in the stacking direction is the intermediate diameter of the respective disks at both ends in the stacking direction. The outer diameter of the sheet disk 205 closest to the disk 203 is larger than the outer diameter of the disk 203 and the inner diameter of the base disk 235. The base disc 235 of the valve body 204 is disposed between the passage forming disc 202 and the seat disc 205, and the thickness of the base disc 235 is thicker than the axial distance between the seat disc 205 and the seat portion 223. As a result, the valve body 204 is supported with the radially intermediate portion in contact with the seat portion 223, and the inner peripheral side is in contact with and supported by the seat disk 205.
 弁体204において、ベースディスク235の内周側が、通路形成ディスク202とシートディスク205との間で軸方向に移動可能に構成されている。また、弁体204は、非支持側である外周側にケース部材201との間をシールする環状のシール部材236が設けられている。シール部材236がハウジング210に接触してハウジング210に対し芯出しされる。弁体204の内周側は、両面側からクランプされずに片面側のみシートディスク205に支持される単純支持構造となっている。 In the valve body 204, the inner peripheral side of the base disk 235 is configured to be movable in the axial direction between the passage forming disk 202 and the sheet disk 205. Further, the valve body 204 is provided with an annular seal member 236 that seals between the valve member 204 and the case member 201 on the outer peripheral side which is the non-support side. The seal member 236 contacts the housing 210 and is centered with respect to the housing 210. The inner peripheral side of the valve body 204 has a simple support structure in which the sheet disc 205 is supported only on one side without being clamped from both sides.
 蓋部材206は、有孔円板状であり、内側に先端ロッド55の取付軸部72が嵌合している。また、蓋部材206の外側が、ケース部材201の筒状部224内に嵌合している。蓋部材206には、シートディスク205よりも径方向外側に軸方向に貫通する複数の貫通穴247が形成されている。複数の貫通穴247は、蓋部材206におけるシートディスク205よりも径方向外側に形成されており、かつ、ベースディスク235が撓むことで蓋部材206に接触するシール部材236よりも径方向内側に形成されている。 The lid member 206 has a perforated disk shape, and the attachment shaft portion 72 of the tip rod 55 is fitted inside. Further, the outside of the lid member 206 is fitted in the cylindrical portion 224 of the case member 201. The lid member 206 is formed with a plurality of through holes 247 penetrating in the axial direction outward in the radial direction from the sheet disk 205. The plurality of through holes 247 are formed radially outside the seat disk 205 in the lid member 206, and are radially inward from the seal member 236 that contacts the lid member 206 when the base disk 235 is bent. Is formed.
 弁体204のシール本体部238は、ケース部材201の筒状部224の内周面に全周にわたり接触して、弁体204と筒状部224との隙間をシールする。つまり、弁体204はパッキンバルブである。シール本体部238は、弁体204がハウジング210内で許容される範囲で変形しても、弁体204と筒状部224との隙間を常時シールする。弁体204は、シール本体部238が筒状部224に全周にわたり接触することで上記のようにハウジング210に対し芯出しされる。 The seal body 238 of the valve body 204 is in contact with the inner peripheral surface of the tubular portion 224 of the case member 201 over the entire circumference, and seals the gap between the valve body 204 and the tubular portion 224. That is, the valve body 204 is a packing valve. The seal main body 238 always seals the gap between the valve body 204 and the cylindrical portion 224 even if the valve body 204 is deformed within a range allowed in the housing 210. The valve body 204 is centered with respect to the housing 210 as described above when the seal body 238 contacts the cylindrical portion 224 over the entire circumference.
 弁体204は、ハウジング210内を、ケース部材201の基部221側の容量可変な可変室245と、蓋部材206側の容量可変な可変室246とに区画する。言い換えれば、周波数感応部200は、弁体204により画成されて設けられたケース部材201内の2つの可変室245,246を有している。可変室246は蓋部材206の貫通穴247内の通路を介して下室32に常時連通している。 The valve body 204 divides the inside of the housing 210 into a variable volume variable chamber 245 on the base 221 side of the case member 201 and a variable volume variable chamber 246 on the lid member 206 side. In other words, the frequency sensitive unit 200 has two variable chambers 245 and 246 in the case member 201 defined by the valve body 204. The variable chamber 246 always communicates with the lower chamber 32 through a passage in the through hole 247 of the lid member 206.
 弁体204は、可変室245の圧力が可変室246の圧力よりも高いとき、ベースディスク235が全周にわたってシートディスク205に当接してシートディスク205との間に隙間を形成しない。よって、可変室245から可変室246への油液の流れを規制する。また、弁体204は、可変室246の圧力が可変室245の圧力よりも高いとき、ベースディスク235がシートディスク205から離座しシートディスク205との間に隙間を形成して、可変室246つまり下室32から可変室245への油液の流れを許容する。弁体204とシートディスク205とがチェック弁248を構成している。 When the pressure in the variable chamber 245 is higher than the pressure in the variable chamber 246, the base disc 235 abuts the seat disc 205 over the entire circumference and does not form a gap between the valve disc 204 and the seat disc 205. Therefore, the flow of oil from the variable chamber 245 to the variable chamber 246 is restricted. Further, when the pressure in the variable chamber 246 is higher than the pressure in the variable chamber 245, the valve disc 204 is separated from the seat disc 205 to form a gap between the base disc 235 and the variable disc 246. That is, the flow of the oil liquid from the lower chamber 32 to the variable chamber 245 is allowed. The valve body 204 and the seat disk 205 constitute a check valve 248.
 図2に示すシート部材135の第1通路穴151内の通路、固定オリフィス176、離座時の弁体134とバルブシート部161との隙間、通路形成部材133の通路溝147内の通路を含む中間室150、先端ロッド55の通路溝75内の通路、図3に示すケース部材201の大径穴部226内の通路、および通路形成ディスク202の切欠部232内の通路が、伸び側の通路251(第2通路)を構成している。伸び側の通路251は、伸び行程でのピストン30の移動により上室31から可変室245に向けて油液が流れ出す通路である。 2 includes a passage in the first passage hole 151 of the seat member 135, a fixed orifice 176, a gap between the valve body 134 and the valve seat portion 161 at the time of separation, and a passage in the passage groove 147 of the passage forming member 133. The passage in the passage groove 75 of the intermediate chamber 150, the tip rod 55, the passage in the large-diameter hole portion 226 of the case member 201 shown in FIG. 3, and the passage in the notch 232 of the passage formation disk 202 are extended passages. 251 (second passage) is formed. The extension-side passage 251 is a passage through which oil liquid flows from the upper chamber 31 toward the variable chamber 245 by the movement of the piston 30 in the extension stroke.
 蓋部材206の貫通穴247内の通路、可変室246、離座時の弁体204とシートディスク205との隙間、可変室245、通路形成ディスク202の切欠部232内の通路、ケース部材201の大径穴部226内の通路、先端ロッド55の通路溝75内の通路、図2に示す中間室150、シート部材135の第2通路穴152内の通路、固定オリフィス187、および離座時の弁体137とバルブシート部162との隙間が、縮み側の通路252を構成している。縮み側の通路252は、縮み行程でのピストン30の移動により下室32から上室31に向けて油液が流れ出す通路である。中間室150および先端ロッド55の通路溝75内の通路等は、通路251,252で共通となっている。 The passage in the through-hole 247 of the lid member 206, the variable chamber 246, the gap between the valve body 204 and the seat disc 205 at the time of separation, the passage in the notch 232 of the variable chamber 245 and the passage formation disc 202, the case member 201 The passage in the large-diameter hole portion 226, the passage in the passage groove 75 of the tip rod 55, the passage in the second passage hole 152 of the seat member 135 shown in FIG. 2, the fixed orifice 187, and the seating position A gap between the valve body 137 and the valve seat portion 162 forms a contraction-side passage 252. The contraction-side passage 252 is a passage through which oil liquid flows from the lower chamber 32 toward the upper chamber 31 by the movement of the piston 30 in the contraction stroke. The passages in the passage groove 75 of the intermediate chamber 150 and the tip rod 55 are common to the passages 251 and 252.
 そして、通路251に、弁体134を含む減衰力発生機構155と、図3に示す弁体204を含む周波数感応部200とが直列に設けられている。通路251に設けられた減衰力発生機構155の弁体134(図2参照)は、伸び行程において通路251と同様に上室31から油液が流れ出す通路108に設けられた減衰力発生機構90の弁体91よりも小さな圧力で開弁して減衰力を発生させる。つまり、弁体134は、弁体91よりも剛性が低い。減衰力発生機構90,155のうち、減衰力発生機構155はソフトバルブとなり、減衰力発生機構90はハードバルブとなっている。 In the passage 251, a damping force generation mechanism 155 including the valve body 134 and a frequency sensitive unit 200 including the valve body 204 shown in FIG. 3 are provided in series. The valve body 134 (see FIG. 2) of the damping force generation mechanism 155 provided in the passage 251 is similar to the passage 251 in the extension stroke, and the damping force generation mechanism 90 provided in the passage 108 from which the oil liquid flows out from the upper chamber 31 in the extension stroke. The valve is opened with a pressure smaller than that of the valve body 91 to generate a damping force. That is, the valve body 134 has lower rigidity than the valve body 91. Of the damping force generation mechanisms 90 and 155, the damping force generation mechanism 155 is a soft valve, and the damping force generation mechanism 90 is a hard valve.
 通路252に設けられた減衰力発生機構156の弁体137は、縮み行程において通路252と同様に下室32から上室31へ向けて油液が流れ出す通路119に設けられた減衰力発生機構92の弁体93よりも小さな圧力で開弁して減衰力を発生させる。つまり、弁体137は、弁体93よりも剛性が低い。減衰力発生機構92,156のうち、減衰力発生機構156はソフトバルブとなり、減衰力発生機構92がハードバルブとなっている。 The valve body 137 of the damping force generation mechanism 156 provided in the passage 252 is a damping force generation mechanism 92 provided in the passage 119 through which the oil liquid flows from the lower chamber 32 toward the upper chamber 31 in the contraction stroke. The valve body 93 is opened with a pressure smaller than that of the valve body 93 to generate a damping force. That is, the valve body 137 has lower rigidity than the valve body 93. Of the damping force generation mechanisms 92 and 156, the damping force generation mechanism 156 is a soft valve, and the damping force generation mechanism 92 is a hard valve.
 通路251に設けられた図3に示す周波数感応部200は、ピストン30が図2に示す上室31側に移動して、上室31から下室32に向け油液が流れる伸び行程のときは、図2に示す可変室245の圧力が下流側の可変室246の圧力よりも高くなる。これにより、チェック弁248の弁体204が、シートディスク205に着座し閉じていて、ハウジング210内を上流側の可変室245と下流側の可変室246とに画成しつつ、ハウジング210内で可変室245を広げ可変室246を狭めるように移動する。その結果、周波数感応部200は、減衰力を周波数に応じて可変させることができる。 The frequency sensitive unit 200 shown in FIG. 3 provided in the passage 251 moves when the piston 30 moves to the upper chamber 31 side shown in FIG. 2 and the oil liquid flows from the upper chamber 31 toward the lower chamber 32. The pressure in the variable chamber 245 shown in FIG. 2 becomes higher than the pressure in the variable chamber 246 on the downstream side. As a result, the valve body 204 of the check valve 248 is seated and closed on the seat disk 205, and the housing 210 is divided into an upstream variable chamber 245 and a downstream variable chamber 246, while the housing 210 is within the housing 210. The variable chamber 245 is expanded and moved so as to narrow the variable chamber 246. As a result, the frequency sensitive unit 200 can vary the damping force according to the frequency.
 また、周波数感応部200は、ピストン30が下室32側に移動して、下室32から図2に示す上室31に向け油液が流れる縮み行程のときは、図3に示す可変室245の圧力よりも可変室246の圧力の方が高くなる。その結果、チェック弁248の弁体204が開弁してシートディスク205から離座する。これにより、チェック弁248が通路252を開き、下室32から上室31に向けて油液が流れ出す。 Further, the frequency sensitive unit 200 moves in the variable chamber 245 shown in FIG. 3 when the piston 30 moves to the lower chamber 32 side and the oil liquid flows from the lower chamber 32 toward the upper chamber 31 shown in FIG. The pressure in the variable chamber 246 is higher than the pressure in the first chamber. As a result, the valve body 204 of the check valve 248 opens and is separated from the seat disk 205. As a result, the check valve 248 opens the passage 252 and the oil liquid flows out from the lower chamber 32 toward the upper chamber 31.
 蓋部材206には、シートディスク205とは反対側に、複数枚の有孔円板状のディスク255が設けられている。各ディスク255の外径は、同径であり、蓋部材206の径方向における複数の貫通穴247の内接円よりも小径である。各ディスク255には、蓋部材206とは反対側に、円環状の円環部材256が設けられている。この円環部材256は、ディスク255よりも外径が大径となっている。これらディスク255および円環部材256の内周部に取付軸部72が嵌合している。円環部材256には、ディスク255とは反対側に、取付軸部72の雄ネジ76に螺合されてナット260が設けられている。 The lid member 206 is provided with a plurality of perforated disk-shaped disks 255 on the opposite side to the sheet disk 205. The outer diameter of each disk 255 is the same, and is smaller than the inscribed circle of the plurality of through holes 247 in the radial direction of the lid member 206. Each disk 255 is provided with an annular member 256 on the side opposite to the lid member 206. The annular member 256 has an outer diameter larger than that of the disk 255. A mounting shaft portion 72 is fitted to the inner peripheral portions of the disk 255 and the annular member 256. The annular member 256 is provided with a nut 260 on the side opposite to the disk 255 and screwed to the male screw 76 of the mounting shaft portion 72.
 図2に示す円環部材186、ディスク185、複数枚のディスク184、弁体137、複数枚のディスク183、シート部材135、複数枚のディスク173、弁体134、複数枚のディスク174、複数枚のディスク175、通路形成部材133、ケース体132の底板部141、ディスク116、複数枚のディスク115、ディスク114、弁体93、複数枚のディスク113、ピストン本体83、複数枚のディスク103、弁体91、ディスク104,105、図3に示すケース部材201、通路形成ディスク202、複数枚のディスク203、複数枚のシートディスク205、蓋部材206、複数枚のディスク255および円環部材256は、それぞれ内周側または全部が、図2に示す先端ロッド55の軸段部73と図3に示すナット260とに挟持されて軸方向にクランプされている。他方、弁体204の内周側および外周側は、共に、軸方向にクランプされることはない。ナット260は、汎用の六角ナットである。 The annular member 186, the disk 185, the plurality of disks 184, the valve body 137, the plurality of disks 183, the sheet member 135, the plurality of disks 173, the valve body 134, the plurality of disks 174, the plurality of sheets shown in FIG. Disc 175, passage forming member 133, bottom plate portion 141 of case body 132, disc 116, discs 115, disc 114, valve body 93, discs 113, piston body 83, discs 103, valve The body 91, the disks 104 and 105, the case member 201, the passage forming disk 202, the plurality of disks 203, the plurality of sheet disks 205, the lid member 206, the plurality of disks 255, and the annular member 256 shown in FIG. Each of the inner peripheral side or all of the shaft step 73 of the tip rod 55 shown in FIG. It is sandwiched and bets 260 is clamped in the axial direction. On the other hand, neither the inner peripheral side nor the outer peripheral side of the valve body 204 is clamped in the axial direction. The nut 260 is a general-purpose hex nut.
 図4に第1実施形態に係る緩衝器11の油圧回路図を示す。すなわち、上室31と下室32とを結ぶ通路108にハードバルブである減衰力発生機構90が、上室31と下室32とを結ぶ通路119にハードバルブである減衰力発生機構92が、それぞれ設けられ、通路108,119に固定オリフィス106,117が設けられている。
 また、上室31と中間室150との間の通路251にソフトバルブである減衰力発生機構155が、上室31と中間室150との間の通路252にソフトバルブである減衰力発生機構156が、それぞれ設けられ、通路251,252に固定オリフィス176,187が設けられている。
FIG. 4 shows a hydraulic circuit diagram of the shock absorber 11 according to the first embodiment. That is, a damping force generation mechanism 90 that is a hard valve is provided in a passage 108 that connects the upper chamber 31 and the lower chamber 32, and a damping force generation mechanism 92 that is a hard valve is provided in a passage 119 that connects the upper chamber 31 and the lower chamber 32. The fixed orifices 106 and 117 are provided in the passages 108 and 119, respectively.
Further, a damping force generation mechanism 155 that is a soft valve is provided in the passage 251 between the upper chamber 31 and the intermediate chamber 150, and a damping force generation mechanism 156 that is a soft valve is provided in the passage 252 between the upper chamber 31 and the intermediate chamber 150. Are provided, and fixed orifices 176 and 187 are provided in the passages 251 and 252, respectively.
 また、中間室150と下室32との間に周波数感応部200が設けられている。周波数感応部200は、上室31から下室32に向けて油液が流れるときに、チェック弁248が閉じ可変室245,246を画成して、中間室150から可変室245に油液を受け入れる。これにより、減衰力を周波数に応じて可変させる。また、周波数感応部200は、下室32から上室31に向けて油液が流れるときに、チェック弁248が開き、下室32から中間室150に油液を流す。 Further, a frequency sensitive unit 200 is provided between the intermediate chamber 150 and the lower chamber 32. When the oil solution flows from the upper chamber 31 toward the lower chamber 32, the frequency sensitive unit 200 closes the check valve 248 to define the variable chambers 245 and 246, and supplies the oil solution from the intermediate chamber 150 to the variable chamber 245. accept. Thereby, the damping force is varied according to the frequency. Further, when the oil solution flows from the lower chamber 32 toward the upper chamber 31, the frequency sensitive unit 200 opens the check valve 248 and causes the oil solution to flow from the lower chamber 32 to the intermediate chamber 150.
 ピストンロッド41が伸び側に移動する伸び行程で、減衰力発生機構90のみが作用する場合のピストン速度に対する減衰力の特性を図5に破線X1で示す。ピストンロッド41が伸び側に移動する伸び行程で、図2に示す伸び側のハードバルブである減衰力発生機構90のみが作用する場合には、ピストン30の移動速度(以下、「ピストン速度」と称す。)が遅い時、上室31からの油液は、通路108を構成する、第1通路穴88内の通路および固定オリフィス106を介して下室32に流れ、オリフィス特性(減衰力がピストン速度の2乗にほぼ比例する)の減衰力が発生する。このため、ピストン速度に対する減衰力の特性は、図5に破線X1で示すように、図5の左端側の低速域(オリフィス域)では、ピストン速度の上昇に対して減衰力の上昇率が高くなる。また、ピストン速度が速くなると、上室31からの油液は、通路108を構成する、第1通路穴88内の通路から伸び側の減衰力発生機構90の弁体91を開きながら、弁体91とバルブシート部97との間を通って下室32に流れ、バルブ特性(減衰力がピストン速度にほぼ比例する)の減衰力が発生する。このため、ピストン速度に対する減衰力の特性は、ピストン速度の上昇に対して減衰力の上昇率が、低速域(オリフィス域)よりもやや下がる。 The characteristic of the damping force with respect to the piston speed when only the damping force generating mechanism 90 acts in the extension stroke in which the piston rod 41 moves to the extension side is shown by a broken line X1 in FIG. When only the damping force generating mechanism 90, which is the hard valve on the extension side shown in FIG. 2, acts in the extension stroke in which the piston rod 41 moves to the extension side, the moving speed of the piston 30 (hereinafter referred to as “piston speed”). When the oil pressure from the upper chamber 31 is low, the fluid from the upper chamber 31 flows into the lower chamber 32 through the passage in the first passage hole 88 and the fixed orifice 106 constituting the passage 108, and the orifice characteristic (damping force is changed to the piston). A damping force is generated that is approximately proportional to the square of the velocity. Therefore, the characteristic of the damping force with respect to the piston speed is such that the rate of increase of the damping force is higher with respect to the increase of the piston speed in the low speed region (orifice region) on the left end side in FIG. 5, as indicated by the broken line X1 in FIG. Become. Further, when the piston speed increases, the oil from the upper chamber 31 opens the valve body 91 of the damping force generating mechanism 90 on the extension side from the passage in the first passage hole 88 that constitutes the passage 108, while the valve body is opened. Flow between 91 and the valve seat portion 97 flows into the lower chamber 32, and a damping force having a valve characteristic (a damping force is substantially proportional to the piston speed) is generated. For this reason, in the characteristic of the damping force with respect to the piston speed, the rate of increase of the damping force is slightly lower than the low speed region (orifice region) with respect to the increase in piston speed.
 ピストンロッド41が縮み側に移動する縮み行程で、縮み側の減衰力発生機構92のみが作用する場合のピストン速度に対する減衰力の特性を図5に破線X2で示す。ピストンロッド41が縮み側に移動する縮み行程で、縮み側の減衰力発生機構92のみが作用する場合には、ピストン速度が遅い時、下室32からの油液は、縮み側の通路119を構成する第2通路穴89内の通路および固定オリフィス117を介して上室31に流れオリフィス特性(減衰力がピストン速度の2乗にほぼ比例する)の減衰力が発生する。このため、ピストン速度に対する減衰力の特性は、図5に破線X2で示すように、図5の左端側の低速域(オリフィス域)では、ピストン速度の上昇に対して比較的減衰力の上昇率が高くなる。また、ピストン速度が速くなると、下室32から縮み側の通路119を構成する第2通路穴89内の通路に導入された油液が、基本的に弁体93を開きながら弁体93とバルブシート部99との間を通って上室31に流れ、バルブ特性(減衰力がピストン速度にほぼ比例する)の減衰力が発生する。このため、ピストン速度に対する減衰力の特性は、ピストン速度の上昇に対して減衰力の上昇率が、低速域(オリフィス域)よりもやや下がる。 The characteristic of the damping force with respect to the piston speed when only the contraction-side damping force generating mechanism 92 acts in the contraction stroke in which the piston rod 41 moves to the contraction side is shown by a broken line X2 in FIG. In the contraction stroke in which the piston rod 41 moves to the contraction side, when only the contraction-side damping force generation mechanism 92 acts, when the piston speed is low, the oil liquid from the lower chamber 32 passes through the contraction-side passageway 119. A damping force having an orifice characteristic (a damping force is approximately proportional to the square of the piston speed) is generated in the upper chamber 31 through the passage in the second passage hole 89 and the fixed orifice 117. For this reason, the characteristic of the damping force with respect to the piston speed is, as shown by a broken line X2 in FIG. 5, in the low speed region (orifice region) on the left end side in FIG. Becomes higher. Further, when the piston speed is increased, the oil introduced into the passage in the second passage hole 89 constituting the contraction-side passage 119 from the lower chamber 32 basically opens the valve body 93 while opening the valve body 93 and the valve. Flowing between the seat portion 99 and the upper chamber 31, a damping force having a valve characteristic (a damping force is approximately proportional to the piston speed) is generated. For this reason, in the characteristic of the damping force with respect to the piston speed, the rate of increase of the damping force with respect to the increase of the piston speed is slightly lower than the low speed region (orifice region).
 以上が、図2に示す減衰力発生機構90,92のみが作用する場合であるが、第1実施形態では、図3に示す周波数感応部200が、ピストン速度が同じ場合でも、ピストン周波数に応じて減衰力を可変とする。 The above is the case where only the damping force generation mechanisms 90 and 92 shown in FIG. 2 act, but in the first embodiment, the frequency sensitive unit 200 shown in FIG. 3 responds to the piston frequency even when the piston speed is the same. The damping force is variable.
 つまり、ピストン周波数が高いときの伸び行程では、ピストン速度が遅い時、上記のように減衰力発生機構90のみが作用する場合では固定オリフィス106を介して流れるオリフィス域であっても、上室31からの油液が、第1通路穴151内の通路から固定オリフィス176、中間室150、および通路溝75内の通路を介して周波数感応部200の可変室245に導入される。これに応じて、それまでシート部223とシートディスク205とに当接していた弁体204が、突出部239を蓋部材206に近づけるように変形して可変室245に油液を導入させながら、可変室246から蓋部材206の貫通穴247内の通路を介して下室32に油液を排出させる。 That is, in the extension stroke when the piston frequency is high, when only the damping force generation mechanism 90 acts as described above when the piston speed is low, the upper chamber 31 even in the orifice region flowing through the fixed orifice 106. Is introduced from the passage in the first passage hole 151 into the variable chamber 245 of the frequency sensitive unit 200 through the fixed orifice 176, the intermediate chamber 150, and the passage in the passage groove 75. Accordingly, while the valve body 204 that has been in contact with the seat portion 223 and the seat disk 205 is deformed so that the protruding portion 239 approaches the lid member 206 and oil is introduced into the variable chamber 245, Oil is discharged from the variable chamber 246 to the lower chamber 32 through a passage in the through hole 247 of the lid member 206.
 このように弁体204が変形して可変室245に上室31から油液を導入することにより、上室31から通路108を通過して下室32に流れる油液の流量が減る。
 このため、ピストン速度に対する減衰力の特性は、図5に実線X3で示すようになり、図5の左端側の低速域(オリフィス域)から伸び側の減衰力がソフトになる。ここで、弁体204の内周側は、通路形成ディスク202から離間してシートディスク205に片面側からのみ支持されているため、内周側が通路形成ディスク202に近づくように変形し易く、よって、外周側の突出部239が蓋部材206に近づくように容易に変形する。
In this manner, the valve body 204 is deformed and the oil liquid is introduced into the variable chamber 245 from the upper chamber 31, whereby the flow rate of the oil liquid flowing from the upper chamber 31 through the passage 108 to the lower chamber 32 is reduced.
For this reason, the characteristic of the damping force with respect to the piston speed is as shown by a solid line X3 in FIG. 5, and the damping force on the extension side becomes softer from the low speed region (orifice region) on the left end side in FIG. Here, since the inner peripheral side of the valve body 204 is separated from the passage forming disc 202 and is supported only on one side by the seat disc 205, the inner peripheral side easily deforms so as to approach the passage forming disc 202. The outer peripheral projection 239 is easily deformed so as to approach the lid member 206.
 ピストン速度がやや速くなると、上室31からの油液が、第1通路穴151内の通路から伸び側のソフトバルブである減衰力発生機構155の弁体134を開きながら、弁体134とバルブシート部161との間を通り、中間室150、および通路溝75内の通路を介して周波数感応部200の可変室245に導入される。このときも、弁体204が変形して可変室245に油液を導入させるため、上室31から通路108を通過して下室32に流れる油液の流量が減る。このため、図5の左端側の低速域において引き続き伸び側の減衰力がソフトになる。 When the piston speed increases slightly, the fluid from the upper chamber 31 opens the valve body 134 of the damping force generation mechanism 155 that is a soft valve on the extension side from the passage in the first passage hole 151, and the valve body 134 and the valve It passes between the sheet portion 161 and is introduced into the variable chamber 245 of the frequency sensitive portion 200 through the intermediate chamber 150 and the passage in the passage groove 75. Also at this time, since the valve body 204 is deformed to introduce the oil into the variable chamber 245, the flow rate of the oil flowing from the upper chamber 31 through the passage 108 to the lower chamber 32 is reduced. For this reason, the damping force on the extension side continues to be soft in the low speed region on the left end side in FIG.
 ピストン速度がさらに速くなると、上室31からの油液は、上記のようにソフトバルブである減衰力発生機構155の弁体134を開いて周波数感応部200の可変室245に導入されるのに加えて、通路108を構成する第1通路穴88内の通路から伸び側の減衰力発生機構90の弁体91を開きながら、弁体91とバルブシート部97との間を通って、下室32に流れる。このため、ピストン速度に対する減衰力の特性は、図5の左右方向中間から右側の中高速域でも、伸び側の減衰力がソフトになる。 When the piston speed is further increased, the oil liquid from the upper chamber 31 is introduced into the variable chamber 245 of the frequency sensing unit 200 by opening the valve body 134 of the damping force generation mechanism 155 that is a soft valve as described above. In addition, while opening the valve body 91 of the damping force generation mechanism 90 on the extension side from the passage in the first passage hole 88 constituting the passage 108, it passes between the valve body 91 and the valve seat portion 97, It flows to 32. For this reason, the characteristic of the damping force with respect to the piston speed is such that the extension side damping force is soft even in the middle to high speed range from the middle in the left-right direction in FIG.
 ピストン周波数が高いときの伸び行程では、弁体204の変形の周波数も追従して高くなり、伸び行程の都度、上記のように上室31からの油液を周波数感応部200の可変室245に導入する。 In the extension stroke when the piston frequency is high, the frequency of deformation of the valve body 204 also increases and the oil liquid from the upper chamber 31 is supplied to the variable chamber 245 of the frequency sensing unit 200 as described above each time the extension stroke is performed. Introduce.
 他方で、ピストン周波数が低いときの伸び行程では、弁体204の変形の周波数も追従して低くなる。このため、伸び行程の初期に、上室31から可変室245に油液が流れるものの、その後は弁体204が蓋部材206に当接して停止し、上室31から通路251を介して可変室245に油液が流れなくなる。これにより、上室31から第1通路穴88内の通路を含む通路108に導入され、減衰力発生機構90を通過して下室32に流れる油液の流量が減らない状態となり、ピストン速度に対する減衰力の特性は、減衰力発生機構90のみが作用する場合と同様になって、図5に破線X1で示すように伸び側の減衰力がハードになる。 On the other hand, in the extension stroke when the piston frequency is low, the deformation frequency of the valve body 204 also follows and becomes low. For this reason, although the oil liquid flows from the upper chamber 31 to the variable chamber 245 in the initial stage of the extension stroke, the valve body 204 stops after contacting the lid member 206, and then the variable chamber is passed from the upper chamber 31 through the passage 251. The oil liquid does not flow to 245. As a result, the flow rate of the oil liquid that is introduced from the upper chamber 31 into the passage 108 including the passage in the first passage hole 88 and flows through the damping force generation mechanism 90 to the lower chamber 32 is not reduced, and the piston speed is reduced. The characteristics of the damping force are the same as when only the damping force generating mechanism 90 acts, and the extension side damping force becomes hard as indicated by the broken line X1 in FIG.
 このように、伸び行程において、図5に破線X1で示すピストン周波数が低いときのハードな特性に対して、ピストン周波数が高いときの特性は、図5に実線X3で示すように、ピストン速度が遅い低速域(オリフィス域)から高速域まで全域にわたってソフトになる。 In this way, during the extension stroke, the characteristic when the piston frequency is high is the same as the characteristic when the piston frequency is high as shown by the solid line X3 in FIG. Soft from the low speed range (orifice range) to the high speed range.
 縮み行程では、ピストン速度が遅い時、下室32からの油液が、一方で通路119から、固定オリフィス117を通って上室31に流れ、他方で、下室32からの油液が、周波数感応部200内のチェック弁248を構成する弁体204をシートディスク205から離座させて、通路252を通り、固定オリフィス187から上室31に流れる。これにより、ピストン速度に対する減衰力の特性は、図5に実線X4で示すようになり、図5の左端側の低速域(オリフィス域)から縮み側の減衰力がソフトになる。 In the contraction stroke, when the piston speed is low, the oil from the lower chamber 32 flows from the passage 119 to the upper chamber 31 through the fixed orifice 117, and on the other hand, the oil from the lower chamber 32 has a frequency. The valve body 204 constituting the check valve 248 in the sensitive unit 200 is separated from the seat disk 205, passes through the passage 252, and flows from the fixed orifice 187 to the upper chamber 31. Thereby, the characteristic of the damping force with respect to the piston speed becomes as shown by a solid line X4 in FIG. 5, and the damping force on the contraction side becomes soft from the low speed region (orifice region) on the left end side in FIG.
 ピストン速度がやや速くなると、通路252を通る下室32からの油液が、ソフトバルブである減衰力発生機構156の弁体137を開きながら、弁体137とバルブシート部162との間を通って、上室31に導入される。これにより、バルブ特性の減衰力が発生するため、ピストン速度に対する減衰力の特性は、図5の左右方向中間の低中速域では、ピストン速度の上昇に対して減衰力の上昇率はやや下がる。 When the piston speed increases slightly, the oil from the lower chamber 32 passing through the passage 252 passes between the valve body 137 and the valve seat portion 162 while opening the valve body 137 of the damping force generation mechanism 156 that is a soft valve. And introduced into the upper chamber 31. As a result, a damping force of the valve characteristic is generated. Therefore, the damping force characteristic with respect to the piston speed is slightly reduced in the middle speed range of FIG. .
 ピストン速度がさらに速くなると、下室32からの油液は、通路252を通る上記の流れに加えて、通路119の流れが、減衰力発生機構92の弁体93を開きながら、弁体93とバルブシート部99との間を通って、上室31に導入される。これにより、ピストン速度に対する減衰力の特性は、図5のさらに右側の高速域では、ピストン速度の上昇に対して減衰力の上昇率はさらに下がる。 When the piston speed is further increased, the fluid from the lower chamber 32, in addition to the above flow through the passage 252, the flow of the passage 119 opens the valve body 93 of the damping force generation mechanism 92, It is introduced into the upper chamber 31 through the space between the valve seat 99. Thereby, the characteristic of the damping force with respect to the piston speed further decreases in the rate of increase of the damping force with respect to the increase of the piston speed in the high speed region on the right side of FIG.
 つまり、縮み行程では、周波数感応部200がなく、ハードバルブの減衰力発生機構92とソフトバルブの減衰力発生機構156とが並列している構造になる。これらが並列している構造によって、ピストン速度に対する減衰力の特性は、図5に実線X4で示すようになり、図5に破線X2で示す減衰力発生機構92のみが設けられる場合と比べて、ピストン速度が遅い低速域(オリフィス域)から高速域まで全域にわたってソフトになる。ここで、図5に示す二点鎖線X5は、ハードバルブである減衰力発生機構92を設けずにソフトバルブである減衰力発生機構156のみを設けた場合の減衰力特性である。 That is, in the contraction stroke, the frequency sensitive unit 200 is not provided, and the hard valve damping force generation mechanism 92 and the soft valve damping force generation mechanism 156 are in parallel. With the structure in which these are arranged in parallel, the characteristic of the damping force with respect to the piston speed is as shown by a solid line X4 in FIG. 5, compared with the case where only the damping force generating mechanism 92 shown by the broken line X2 in FIG. The piston speed is soft from low speed range (orifice range) to high speed range. Here, a two-dot chain line X5 shown in FIG. 5 is a damping force characteristic when only the damping force generation mechanism 156 that is a soft valve is provided without the damping force generation mechanism 92 that is a hard valve.
 上記した特許文献1には、周波数に応じて減衰力を可変とする減衰力可変機構を備えた緩衝器が記載されている。緩衝器において、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させたいという要求がある。 Patent Document 1 described above describes a shock absorber provided with a damping force variable mechanism that varies the damping force according to the frequency. In the shock absorber, there is a demand to make the damping force largely variable according to the frequency from the region where the piston speed is low.
 第1実施形態に係る緩衝器11は、ピストン30の移動により上室31から油液が流れ出す通路108に減衰力を発生させる弁体91を設けている。また、ピストン30の移動により上室31から油液が流れ出す別の通路251に、弁体より91も小さな圧力で開弁して減衰力を発生させる弁体134と、上室31から下室32に油液が流れるとき、ハウジング210内を上流側と下流側とに画成しつつハウジング210内で移動可能であり、下室32から上室31に油液が流れるときに開弁可能な弁体204を有する周波数感応部200と、を直列に設けている。これにより、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 The shock absorber 11 according to the first embodiment is provided with a valve body 91 that generates a damping force in the passage 108 through which the oil liquid flows out of the upper chamber 31 by the movement of the piston 30. In addition, a valve body 134 that opens with a pressure smaller than the valve body 91 to generate a damping force in another passage 251 from which the oil liquid flows out from the upper chamber 31 by the movement of the piston 30, and the upper chamber 31 to the lower chamber 32. A valve that is movable in the housing 210 while defining the inside of the housing 210 into an upstream side and a downstream side when the oil liquid flows in the housing 210 and that can be opened when the oil liquid flows from the lower chamber 32 to the upper chamber 31. A frequency sensitive unit 200 having a body 204 is provided in series. As a result, the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
 また、上室31がロッド側室であり、下室32はボトム側室であり、伸び行程のときは、弁体204がハウジング210内を上流側と下流側とに画成しつつハウジング210内で移動することにより減衰力を周波数に応じて可変させ、縮み行程のときは、弁体204が開弁可能である。これにより、伸び行程で、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 Further, the upper chamber 31 is a rod side chamber and the lower chamber 32 is a bottom side chamber, and during the extension stroke, the valve body 204 moves in the housing 210 while defining the inside of the housing 210 into the upstream side and the downstream side. Thus, the damping force can be varied according to the frequency, and the valve body 204 can be opened during the contraction stroke. Thereby, it becomes possible to greatly vary the damping force according to the frequency from the region where the piston speed is slow in the extension stroke.
 図6は、緩衝器11において、ピストン30の速度が0.03m/sでの作動をシミュレーションし、その際のピストンストロークと減衰力との関係を示したリサージュ波形である。図6では、外側から内側に行くにしたがってピストン30の作動周波数が高くなっており、ピストン30のストロークが小さい原点近辺において、低周波数の時の減衰力に対して、高周波数の時の減衰力を矢印Y1で示すように低くできることがわかる。また、図7は、ピストン30の速度が0.03m/sでの作動をシミュレーションし、その際の周波数と減衰力との関係を示した図である。この結果からも、図7の左側の低周波数の時の減衰力に対して、右側の高周波数の時の減衰力を矢印Y2で示すように低くできることがわかる。 FIG. 6 is a Lissajous waveform that simulates the operation of the shock absorber 11 when the speed of the piston 30 is 0.03 m / s and shows the relationship between the piston stroke and the damping force. In FIG. 6, the operating frequency of the piston 30 increases from the outside toward the inside, and in the vicinity of the origin where the stroke of the piston 30 is small, the damping force at the high frequency is compared to the damping force at the low frequency. It can be seen that can be lowered as shown by the arrow Y1. FIG. 7 is a diagram showing the relationship between the frequency and the damping force at the time of simulating the operation when the speed of the piston 30 is 0.03 m / s. This result also shows that the damping force at the high frequency on the right side can be lowered as shown by the arrow Y2 with respect to the damping force at the low frequency on the left side in FIG.
 図8は、緩衝器11において、ピストン30の速度が0.3m/sでの作動をシミュレーションし、その際のピストンストロークと減衰力との関係を示したリサージュ波形である。図8でも、外側から内側に行くにしたがってピストン30の作動周波数が高くなっており、ピストン30のストロークが小さい原点近辺において、低周波数の時の減衰力に対して、高周波数の時の減衰力を矢印Y3で示すように低くできることがわかる。また、図9は、ピストン30の速度が0.3m/sでの作動をシミュレーションし、その際の周波数と減衰力との関係を示した図である。この結果からも、図9の左側の低周波数の時の減衰力に対して、右側の高周波数の時の減衰力を矢印Y4で示すように低くできることがわかる。 FIG. 8 is a Lissajous waveform that simulates the operation of the shock absorber 11 when the speed of the piston 30 is 0.3 m / s and shows the relationship between the piston stroke and the damping force. Also in FIG. 8, the operating frequency of the piston 30 increases from the outside toward the inside, and in the vicinity of the origin where the stroke of the piston 30 is small, the damping force at the high frequency is compared with the damping force at the low frequency. It can be seen that can be lowered as shown by arrow Y3. FIG. 9 is a diagram showing the relationship between the frequency and the damping force at the time of simulating the operation when the speed of the piston 30 is 0.3 m / s. From this result, it can be seen that the damping force at the high frequency on the right side can be lowered as shown by the arrow Y4 with respect to the damping force at the low frequency on the left side in FIG.
 周波数感応部200は、ケース部材201との間をシールする環状のシール部材236が設けられた環状の弾性変形可能な弁体204でケース部材201内に可変室245,246を画成するように構成されている。この構成により、軸方向長を短縮可能であり、緩衝器11の全体の基本長を短く小型化することが可能となる。 The frequency sensitive unit 200 is configured to define variable chambers 245 and 246 in the case member 201 with an annular elastically deformable valve body 204 provided with an annular seal member 236 for sealing between the case member 201 and the case. It is configured. With this configuration, the axial length can be shortened, and the overall basic length of the shock absorber 11 can be shortened and downsized.
 また、周波数感応部200は串刺し構造のため、ピストン30および周波数感応部200のケース部材201のそれぞれの内周側を、ピストンロッド41が挿通された状態で汎用のナット260でピストンロッド41に締結することができる。よって、ピストン30および周波数感応部200をピストンロッド41に締結することが容易にでき、組み立て性が飛躍的に向上する。また、軸方向長を短縮可能である。 Moreover, since the frequency sensitive part 200 has a skewer structure, the inner periphery of each of the piston 30 and the case member 201 of the frequency sensitive part 200 is fastened to the piston rod 41 with a general-purpose nut 260 in a state where the piston rod 41 is inserted. can do. Therefore, the piston 30 and the frequency sensitive part 200 can be easily fastened to the piston rod 41, and the assemblability is greatly improved. Further, the axial length can be shortened.
 また、弁体204の内周側が、両面側からクランプされずに片面側のみ支持されているため、変形が容易となり、可変室245,246の容積を容易に変更することができる。よって、周波数感応部200の減衰力可変調整幅を広くさせることができる。 Further, since the inner peripheral side of the valve body 204 is supported only on one side without being clamped from both sides, the deformation becomes easy and the volumes of the variable chambers 245 and 246 can be easily changed. Therefore, the damping force variable adjustment range of the frequency sensitive unit 200 can be widened.
 また、伸び行程において機能する周波数感応部200が設けられており、縮み行程において機能する周波数感応部が設けられていない。このため、コスト増を抑制しつつ、例えば伸び行程でピストン周波数に感応して減衰力を可変とすることにより効果的な路面状態等に対して、乗り心地の向上が図れる。また、縮み行程においてピストン周波数に感応して減衰力を可変とする周波数感応部を有する緩衝器では姿勢制御が難しく、伸び行程においてピストン周波数に感応して減衰力を可変とする周波数感応部200を有する緩衝器で効果的に姿勢制御が可能な車両に用いて好適となる。 Further, the frequency sensitive unit 200 that functions in the expansion stroke is provided, and the frequency sensitive unit that functions in the contraction stroke is not provided. For this reason, while suppressing the increase in cost, for example, by making the damping force variable in response to the piston frequency in the extension stroke, it is possible to improve the riding comfort for an effective road surface condition or the like. In addition, it is difficult to control the posture with a shock absorber having a frequency sensitive portion that makes the damping force variable in response to the piston frequency in the contraction stroke, and the frequency sensitive portion 200 that makes the damping force variable in response to the piston frequency in the extension stroke. The present invention is suitable for use in a vehicle capable of effectively controlling the attitude with a shock absorber.
(第2実施形態)
 次に、本発明の緩衝器の第2実施形態を、主に図10~図12に基づいて第1実施形態との相違部分を中心に説明する。なお、第1実施形態と共通する部位については、同一称呼、同一の符号で表す。
(Second Embodiment)
Next, a second embodiment of the shock absorber according to the present invention will be described mainly based on FIGS. 10 to 12 with a focus on differences from the first embodiment. In addition, about the site | part which is common in 1st Embodiment, it represents with the same name and the same code | symbol.
 図10に示すように、第2実施形態においては、第1実施形態のケース部材201に代えて、ケース部材201Aが用いられている。ケース部材201Aは、筒状部224よりも軸方向長さが長い筒状部224Aを設けた点が第1実施形態のケース部材201と異なる。また、蓋部材206には、シートディスク205とは反対側に、シートディスク205と同様の複数枚のシートディスク205Aが、シートディスク205とは反対向きに設けられている。また、シートディスク205Aには、蓋部材206とは反対側に、ディスク203と同様の複数枚のディスク203Aと、弁体204と同様の弁体204A(第4弁体)とが設けられている。弁体204Aは、弁体204とは反対向きに、弁体204と直列で設けられている。 As shown in FIG. 10, in the second embodiment, a case member 201A is used instead of the case member 201 of the first embodiment. The case member 201A is different from the case member 201 of the first embodiment in that a cylindrical portion 224A having a longer axial length than the cylindrical portion 224 is provided. In addition, the lid member 206 is provided with a plurality of sheet disks 205 </ b> A similar to the sheet disk 205 in the opposite direction to the sheet disk 205 on the opposite side to the sheet disk 205. The seat disc 205A is provided with a plurality of discs 203A similar to the disc 203 and a valve disc 204A (fourth valve disc) similar to the valve disc 204 on the side opposite to the lid member 206. . The valve body 204 </ b> A is provided in series with the valve body 204 in the opposite direction to the valve body 204.
 ディスク203Aおよび弁体204Aには、シートディスク205Aとは反対側に、蓋部材281Aが設けられている。蓋部材281Aは、ケース部材201の環状突出部220と基部221と内側円筒状部222とシート部223と切欠部231とを有し、筒状部224が設けられていない形状の部材である。また、蓋部材281Aの基部221には複数の貫通穴282Aが形成されている。蓋部材281Aは、シート部223を弁体204Aに向けた状態で、ケース部材201Aの筒状部224Aに嵌合されて、蓋部材281Aとケース部材201Aとで筒状のハウジング210Aを構成する。 The lid member 281A is provided on the disc 203A and the valve body 204A on the opposite side to the seat disc 205A. The lid member 281 </ b> A is a member having an annular projecting portion 220, a base portion 221, an inner cylindrical portion 222, a sheet portion 223, and a notch portion 231 of the case member 201, and the cylindrical portion 224 is not provided. A plurality of through holes 282A are formed in the base 221 of the lid member 281A. The lid member 281A is fitted into the tubular portion 224A of the case member 201A with the seat portion 223 facing the valve body 204A, and the lid member 281A and the case member 201A constitute a tubular housing 210A.
 通路形成ディスク202、複数枚のディスク203、弁体204、複数枚のシートディスク205、蓋部材206、複数枚のシートディスク205A、複数枚のディスク203Aおよび弁体204Aは、ケース部材201Aの筒状部224A内に配置されている。蓋部材281Aは、ケース部材201Aの筒状部224A内に嵌合されている。 The passage forming disk 202, the plurality of disks 203, the valve body 204, the plurality of sheet disks 205, the lid member 206, the plurality of sheet disks 205A, the plurality of disks 203A, and the valve body 204A are cylindrical shapes of the case member 201A. It is arranged in the part 224A. The lid member 281A is fitted in the cylindrical portion 224A of the case member 201A.
 第2実施形態においては、第1実施形態の周波数感応部200と同様の周波数感応部200Aとなっており、ケース部材201Aの基部221と、内側円筒状部222と、シート部223と、筒状部224Aおよび切欠部231と、通路形成ディスク202と、複数枚のディスク203と、弁体204と、複数枚のシートディスク205と、蓋部材206とを有する。
 また、蓋部材206と、ケース部材201Aの筒状部224Aと、複数枚のシートディスク205Aと、複数枚のディスク203Aと、弁体204Aと、蓋部材281Aとが、別の周波数感応部284Aを構成している。取付軸部72もケース部材201A内に配置される部分が各周波数感応部200A,284Aを構成している。弁体204Aは、環状であり、取付軸部72を内側に貫通させてケース部材201A内に配置されている。
In 2nd Embodiment, it becomes the frequency sensitive part 200A similar to the frequency sensitive part 200 of 1st Embodiment, The base 221 of the case member 201A, the inner side cylindrical part 222, the sheet | seat part 223, and cylindrical shape 224 </ b> A and notch portion 231, passage forming disk 202, a plurality of disks 203, a valve body 204, a plurality of sheet disks 205, and a lid member 206.
Further, the lid member 206, the cylindrical portion 224A of the case member 201A, the plurality of sheet discs 205A, the plurality of discs 203A, the valve body 204A, and the lid member 281A provide another frequency sensitive portion 284A. It is composed. The portion of the mounting shaft 72 that is disposed in the case member 201A constitutes the frequency sensitive portions 200A and 284A. The valve body 204A has an annular shape, and is disposed in the case member 201A with the attachment shaft portion 72 penetrating inward.
 弁体204Aは、内周側において、シートディスク205Aに支持されている。弁体204Aは、ベースディスク235の内周側が、シートディスク205Aと蓋部材281Aとの間で軸方向に移動可能に構成されている。また、弁体204Aには、非支持側である外周側にケース部材201Aとの間をシールする環状のシール部材236が設けられている。弁体204Aは、シール部材236がハウジング210Aに接触してハウジング210Aに対し芯出しされる。
 弁体204Aの内周側は、両面側からクランプされずに片面側のみシートディスク205Aに支持される単純支持構造である。
The valve body 204A is supported by the seat disk 205A on the inner peripheral side. The valve body 204A is configured such that the inner peripheral side of the base disk 235 is movable in the axial direction between the seat disk 205A and the lid member 281A. In addition, the valve body 204A is provided with an annular seal member 236 that seals between the case member 201A and the outer peripheral side which is the non-support side. The valve body 204A is centered with respect to the housing 210A when the seal member 236 contacts the housing 210A.
The inner peripheral side of the valve body 204A is a simple support structure that is supported by the sheet disk 205A only on one side without being clamped from both sides.
 弁体204Aのシール本体部238は、ケース部材201Aの筒状部224Aの内周面に全周にわたり接触して、弁体204Aと筒状部224Aとの隙間をシールする。弁体204Aのシール本体部238も、弁体204Aがハウジング210A内で許容される範囲で変形しても、弁体204Aと筒状部224Aとの隙間を常時シールする。弁体204Aは、シール本体部238が筒状部224Aに全周にわたり接触することで上記のようにハウジング210Aに対し芯出しされる。 The seal body 238 of the valve body 204A contacts the inner peripheral surface of the cylindrical portion 224A of the case member 201A over the entire circumference, and seals the gap between the valve body 204A and the cylindrical portion 224A. The seal body 238 of the valve body 204A also always seals the gap between the valve body 204A and the cylindrical portion 224A even if the valve body 204A is deformed within the allowable range within the housing 210A. The valve body 204A is centered with respect to the housing 210A as described above when the seal main body portion 238 contacts the cylindrical portion 224A over the entire circumference.
 弁体204Aは、ハウジング210A内を、ケース部材201Aの基部221側の容量可変な可変室245と、弁体204,204A間の容量可変な可変室246Aとに区画する。弁体204Aは、ハウジング210A内を、可変室246Aと、弁体204Aの蓋部材281A側の容量可変な可変室285Aとに区画する。言い換えれば、周波数感応部284Aは、弁体204Aにより画成されて設けられたケース部材201A内の2つの可変室246A,285Aを有している。可変室285Aは蓋部材281Aの貫通穴282A内の通路を介して下室32に常時連通している。周波数感応部284Aは、周波数感応部200Aの弁体204の下室32側に設けられている。 The valve body 204A partitions the inside of the housing 210A into a variable volume variable chamber 245 on the base 221 side of the case member 201A and a variable volume variable chamber 246A between the valve bodies 204 and 204A. The valve body 204A divides the inside of the housing 210A into a variable chamber 246A and a variable chamber 285A having a variable capacity on the lid member 281A side of the valve body 204A. In other words, the frequency sensitive part 284A has two variable chambers 246A and 285A in the case member 201A defined by the valve body 204A. The variable chamber 285A is in continuous communication with the lower chamber 32 through a passage in the through hole 282A of the lid member 281A. The frequency sensitive part 284A is provided on the lower chamber 32 side of the valve body 204 of the frequency sensitive part 200A.
 弁体204Aは、可変室285Aの圧力が可変室246Aの圧力よりも高いとき、ベースディスク235がシートディスク205Aに当接してシートディスク205Aとの間に隙間を形成しない。よって、可変室285Aから可変室246Aへの油液の流れを規制する。また、弁体204Aは、可変室246Aの圧力が可変室285Aの圧力よりも高いとき、ベースディスク235がシートディスク205Aから離座しシートディスク205Aとの間に隙間を形成して、可変室246Aから可変室285Aへ、つまり下室32への油液の流れを許容する。弁体204Aとシートディスク205Aとがチェック弁248Aを構成している。 When the pressure in the variable chamber 285A is higher than the pressure in the variable chamber 246A, the valve disc 204A does not form a gap between the base disc 235 and the seat disc 205A due to contact with the seat disc 205A. Therefore, the flow of the oil liquid from the variable chamber 285A to the variable chamber 246A is restricted. Further, when the pressure in the variable chamber 246A is higher than the pressure in the variable chamber 285A, the valve disc 204A forms a gap between the base disk 235 and the seat disk 205A by separating from the seat disk 205A. To the variable chamber 285A, that is, the flow of the oil liquid to the lower chamber 32 is allowed. The valve body 204A and the seat disk 205A constitute a check valve 248A.
 周波数感応部200Aは、ピストン30が上室31側に移動して、上室31から下室32に向け油液が流れる伸び行程のときは、可変室245の圧力が下流側の可変室246Aの圧力よりも高くなる。これにより、チェック弁248の弁体204が、シートディスク205に着座し閉じていてハウジング210A内を上流側の可変室245と下流側の可変室246Aとに画成しつつ、ハウジング210A内で、可変室245Aを広げ可変室246Aを狭めるように移動する。その際に、周波数感応部284Aは、可変室246Aの圧力が高くなっても、チェック弁248Aの弁体204Aが、シートディスク205Aから離座し開弁して、可変室246Aの圧力の上昇を抑制し、弁体204の移動の抵抗となることを抑制する。その結果、周波数感応部200Aが、第1実施形態の周波数感応部200と同様に、減衰力を周波数に応じて可変させることができる。 When the piston 30 moves to the upper chamber 31 side and the oil liquid flows from the upper chamber 31 toward the lower chamber 32, the frequency sensitive portion 200A causes the pressure of the variable chamber 245 to be lower than that of the variable chamber 246A on the downstream side. Higher than pressure. As a result, the valve body 204 of the check valve 248 is seated and closed on the seat disk 205, defining the inside of the housing 210A into the upstream variable chamber 245 and the downstream variable chamber 246A. The variable chamber 245A is expanded and moved so as to narrow the variable chamber 246A. At that time, even if the pressure in the variable chamber 246A increases, the frequency sensing unit 284A causes the valve body 204A of the check valve 248A to separate from the seat disk 205A and open the valve, thereby increasing the pressure in the variable chamber 246A. It suppresses and becomes that it becomes resistance of movement of valve element 204. As a result, the frequency sensitive unit 200A can vary the damping force according to the frequency, like the frequency sensitive unit 200 of the first embodiment.
 周波数感応部284Aは、ピストン30が下室32側に移動して、下室32から上室31に向け油液が流れる縮み行程のときは、可変室285Aの圧力が下流側の可変室246Aの圧力よりも高くなる。これにより、チェック弁248Aの弁体204Aが、シートディスク205Aに着座し閉じていてハウジング210A内を上流側の可変室285Aと下流側の可変室246Aとに画成しつつ、ハウジング210A内で、可変室285Aを広げ可変室246Aを狭めるように移動可能となる。その際に、周波数感応部200Aは、可変室246Aの圧力が高くなっても、チェック弁248の弁体204が、シートディスク205から離座し開弁して、可変室246Aの圧力の上昇を抑制し、弁体204Aの移動の抵抗となることを抑制する。その結果、周波数感応部284Aが、縮み行程において、減衰力を周波数に応じて可変させることになる。 When the piston 30 moves to the lower chamber 32 side and the oil liquid flows from the lower chamber 32 toward the upper chamber 31, the frequency sensitive portion 284A causes the pressure in the variable chamber 285A to be in the downstream variable chamber 246A. Higher than pressure. As a result, the valve body 204A of the check valve 248A is seated and closed on the seat disk 205A, and the housing 210A is defined as an upstream variable chamber 285A and a downstream variable chamber 246A. The variable chamber 285A can be expanded and the variable chamber 246A can be narrowed. At that time, even if the pressure in the variable chamber 246A increases, the frequency sensing unit 200A causes the valve body 204 of the check valve 248 to move away from the seat disk 205 and open, thereby increasing the pressure in the variable chamber 246A. It suppresses and becomes that it becomes resistance of movement of valve body 204A. As a result, the frequency sensitive unit 284A varies the damping force according to the frequency in the contraction stroke.
 図11に第2実施形態の油圧回路図を示す。すなわち、周波数感応部200Aが、伸び行程で上室31から下室32に向けて油液が流れるときに、チェック弁248が閉じ可変室245,246Aを画成して減衰力を周波数に応じて可変させる。また、周波数感応部284Aが、縮み行程で下室32から上室31に向けて油液が流れるときに、チェック弁248Aが閉じ可変室285A,246Aを画成して減衰力を周波数に応じて可変させる。 FIG. 11 shows a hydraulic circuit diagram of the second embodiment. That is, when the oil is flowing from the upper chamber 31 toward the lower chamber 32 in the extension stroke, the frequency sensing unit 200A closes the check valve 248 to define the variable chambers 245 and 246A, and the damping force according to the frequency. Make it variable. Further, when the oil is flowing from the lower chamber 32 toward the upper chamber 31 in the contraction stroke, the frequency sensing unit 284A closes the check valve 248A to define the variable chambers 285A and 246A, and the damping force according to the frequency. Make it variable.
 第2実施形態では、ピストン周波数が高いときの縮み行程では、ピストン速度が遅い領域であっても、下室32からの油液が、周波数感応部284Aの可変室285Aに導入される。このため、ピストン速度に対する減衰力の特性は、図12に実線X6で示すようになり、図12の左端側の低速域(オリフィス域)から伸び側まで減衰力がソフトになる。 In the second embodiment, in the contraction stroke when the piston frequency is high, the oil liquid from the lower chamber 32 is introduced into the variable chamber 285A of the frequency sensitive portion 284A even in a region where the piston speed is low. For this reason, the characteristic of the damping force with respect to the piston speed is as shown by a solid line X6 in FIG. 12, and the damping force becomes soft from the low speed region (orifice region) on the left end side in FIG.
 第2実施形態では、縮み行程のとき、ハウジング210A内を上流側と下流側とに画成しつつハウジング210A内で移動可能であり、伸び行程のときは開弁可能な弁体204Aを有する周波数感応部284Aが弁体204の下室32側に設けられている。これにより、縮み行程でも、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 In the second embodiment, the frequency having the valve body 204A that can move in the housing 210A while defining the inside of the housing 210A on the upstream side and the downstream side in the contraction stroke, and can open in the expansion stroke. A sensitive portion 284 </ b> A is provided on the lower chamber 32 side of the valve body 204. As a result, even in the contraction stroke, the damping force can be greatly varied according to the frequency from the region where the piston speed is low.
(第3実施形態)
 次に、本発明の緩衝器の第3実施形態を、主に図13に基づいて第1実施形態との相違部分を中心に説明する。なお、第1実施形態と共通する部位については、同一称呼、同一の符号で表す。
(Third embodiment)
Next, a third embodiment of the shock absorber according to the present invention will be described mainly on the difference from the first embodiment based on FIG. In addition, about the site | part which is common in 1st Embodiment, it represents with the same name and the same code | symbol.
 図13に示すように、第3実施形態においては、第1実施形態の伸び側の周波数感応部200とは異なる周波数感応部300が設けられている。周波数感応部300は、いずれも取付軸部72を嵌合させる有孔円板状の蓋部材301と有底筒状のケース部材302とからなるハウジング303を有している。ケース部材302内に配置される取付軸部72も周波数感応部300を構成している。 As shown in FIG. 13, in the third embodiment, a frequency sensitive unit 300 different from the stretched frequency sensitive unit 200 of the first embodiment is provided. Each of the frequency sensitive parts 300 includes a housing 303 including a perforated disk-like lid member 301 into which the attachment shaft part 72 is fitted and a bottomed cylindrical case member 302. The mounting shaft portion 72 disposed in the case member 302 also constitutes the frequency sensitive portion 300.
 蓋部材301に円筒状のシート部305が設けられており、シート部305には、シート部305の内周側と外周側とを常時連通する切欠部306が形成されている。蓋部材301の内周側には取付軸部72に嵌合する小径穴部307と、小径穴部307より大径の大径穴部308とが形成されている。 The lid member 301 is provided with a cylindrical sheet portion 305, and the sheet portion 305 is formed with a notch portion 306 that always communicates the inner peripheral side and the outer peripheral side of the sheet portion 305. On the inner peripheral side of the lid member 301, a small-diameter hole 307 that fits into the mounting shaft 72 and a large-diameter hole 308 that is larger in diameter than the small-diameter hole 307 are formed.
 ケース部材302内に、弁体311(第3弁体)が設けられている。弁体311は、金属製の有孔円板状のディスク312とディスク312の内周側に設けられたゴム製の弾性のシール部材313とを有しており、環状である。弁体311は、撓み可能であり、内側に取付軸部72を貫通させてケース部材302内に配置されている。 A valve body 311 (third valve body) is provided in the case member 302. The valve body 311 has a metal perforated disk-shaped disk 312 and a rubber elastic seal member 313 provided on the inner peripheral side of the disk 312 and has an annular shape. The valve body 311 can be bent, and is disposed in the case member 302 with the attachment shaft portion 72 penetrating inside.
 ケース部材302は、有孔円板状の底部315と、底部315の外周縁部から軸方向に延びる筒状部316とを有しており、筒状部316に蓋部材301を嵌合させている。ケース部材302の底部315には下室に開口する貫通穴317が形成されている。 The case member 302 has a perforated disk-shaped bottom portion 315 and a tubular portion 316 extending in the axial direction from the outer peripheral edge portion of the bottom portion 315, and the lid member 301 is fitted to the tubular portion 316. Yes. A through hole 317 that opens to the lower chamber is formed in the bottom 315 of the case member 302.
 ケース部材302の筒状部316の内周側には、大径部320および小径部321が設けられることで段部322が形成されている。段部322が弁体311の外周側を支持している。なお、段部322とシート部143との間の軸方向の寸法はディスク312の厚さよりも小さい。これにより、弁体311にセット荷重を与えることができる。弁体311の非支持側に設けられるシール部材313は、ピストンロッド41を構成する先端ロッド55の取付軸部72側に設けられる。弁体311と、先端ロッド55との間は、環状のシール部材313によりシールされる。 The step part 322 is formed in the inner peripheral side of the cylindrical part 316 of the case member 302 by providing the large diameter part 320 and the small diameter part 321. The step portion 322 supports the outer peripheral side of the valve body 311. The axial dimension between the step portion 322 and the sheet portion 143 is smaller than the thickness of the disk 312. Thereby, a set load can be applied to the valve body 311. The seal member 313 provided on the non-supporting side of the valve body 311 is provided on the attachment shaft portion 72 side of the tip rod 55 constituting the piston rod 41. A space between the valve body 311 and the tip rod 55 is sealed by an annular seal member 313.
 ピストンロッド41が先端ロッド55に取り付けられた状態で、先端ロッド55の通路溝75内の通路と、周波数感応部300の蓋部材301の大径穴部308内の通路とが連通する。ケース部材302内には、弁体311によって2つの可変室331と可変室332とが画成されて設けられている。通路溝75内の通路に連通する可変室331と貫通穴317内の通路を介して下室32に連通する可変室332とが画成されている。弁体311は、段部322に着座することにより可変室331から可変室332への油液の流れを規制する。また、弁体311は、段部322から離座することにより開弁して可変室332から可変室331への油液の流れを許容するチェック弁333となっている。 In a state where the piston rod 41 is attached to the tip rod 55, the passage in the passage groove 75 of the tip rod 55 and the passage in the large-diameter hole 308 of the lid member 301 of the frequency sensing unit 300 communicate with each other. In the case member 302, two variable chambers 331 and a variable chamber 332 are defined by a valve body 311. A variable chamber 331 that communicates with the passage in the passage groove 75 and a variable chamber 332 that communicates with the lower chamber 32 through a passage in the through hole 317 are defined. The valve body 311 restricts the flow of oil from the variable chamber 331 to the variable chamber 332 by sitting on the stepped portion 322. Further, the valve body 311 is a check valve 333 that opens when the valve body 311 is separated from the stepped portion 322 and allows the flow of oil from the variable chamber 332 to the variable chamber 331.
 第3実施形態の周波数感応部300は、弁体311の支持側と非支持側とが、第1実施形態の周波数感応部200の弁体204に対して、内外逆となっているが、機能は同じである。 In the frequency sensitive unit 300 of the third embodiment, the supporting side and the non-supporting side of the valve body 311 are reversed inside and outside the valve body 204 of the frequency sensitive unit 200 of the first embodiment. Are the same.
 なお、第2実施形態の周波数感応部284Aについても、第3実施形態と同様に、弁体204Aを外周側で支持し、非支持側である内周側で取付軸部72との間をシールする構造にしても良い。 Note that the frequency sensitive portion 284A of the second embodiment also supports the valve body 204A on the outer peripheral side and seals between the mounting shaft portion 72 on the inner peripheral side, which is the non-support side, as in the third embodiment. You may make it the structure to do.
 以上に述べた実施形態は、以下の態様が考えられる。 The embodiment described above can be considered as follows.
 第1の態様は、作動流体が封入されるシリンダと、前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を第1室および第2室の2室に区画するピストンと、前記ピストンに連結されると共に前記シリンダの外部に延出されるピストンロッドと、前記ピストンの移動により前記第1室および前記第2室の一方から作動流体が流れ出す第1通路および第2通路と、前記第1通路に設けられて減衰力を発生させる第1弁体と、を有し、前記第2通路には、前記第1弁体よりも小さな圧力で開弁して減衰力を発生させる第2弁体と、前記第1室から前記第2室に作動流体が流れるとき、ハウジング内を上流側と下流側とに画成しつつ前記ハウジング内で移動可能であり、前記第2室から前記第1室に作動流体が流れるときに開弁可能な第3弁体を有する周波数感応部と、が直列に設けられている。これにより、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 A first aspect includes a cylinder in which a working fluid is enclosed, a piston that is slidably fitted in the cylinder, and divides the cylinder into two chambers, a first chamber and a second chamber, and the piston. A piston rod that is connected and extends to the outside of the cylinder; a first passage and a second passage through which working fluid flows from one of the first chamber and the second chamber by the movement of the piston; and the first passage A second valve body that generates a damping force by opening the second passage with a pressure smaller than that of the first valve body. When the working fluid flows from the first chamber to the second chamber, it is movable in the housing while defining the inside of the housing on the upstream side and the downstream side, and from the second chamber to the first chamber 3rd valve body which can be opened when working fluid flows A frequency response unit having, but are provided in series. As a result, the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
 第2の態様は、第1の態様において、前記第1室はロッド側室であり、前記第2室はボトム側室であって、伸び行程のときは、前記第3弁体が前記ハウジング内を上流側と下流側とに画成しつつ前記ハウジング内で移動することにより減衰力を周波数に応じて可変させ、縮み行程のときは、前記第3弁体が開弁可能である。これにより、伸び行程において、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 According to a second aspect, in the first aspect, the first chamber is a rod-side chamber, the second chamber is a bottom-side chamber, and the third valve body is upstream in the housing during an extension stroke. The damping force is varied according to the frequency by moving within the housing while defining the side and the downstream side, and the third valve body can be opened during the contraction stroke. As a result, in the extension stroke, the damping force can be varied greatly according to the frequency from the region where the piston speed is low.
 第3の態様は、第2の態様において、前記第3弁体の前記第2室側には、縮み行程のときは、ハウジング内を上流側と下流側とに画成しつつ前記ハウジング内で移動可能であり、伸び行程のときは開弁可能な第4弁体を有する周波数感応部が設けられている。これにより、縮み行程において、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能となる。 A third aspect is the second aspect, in which the third valve body is defined on the second chamber side in the housing while the housing is defined as an upstream side and a downstream side during the contraction stroke. A frequency sensitive part having a fourth valve body that is movable and can be opened during the extension stroke is provided. As a result, in the contraction stroke, the damping force can be greatly varied according to the frequency from the region where the piston speed is low.
 第4の態様は、第1乃至第3のいずれか一態様において、前記周波数感応部は、筒状のケース部材と、前記ケース部材内に配置される軸部と、前記軸部を貫通させて前記ケース部材内に配置され、内周側または外周側が支持され、非支持側に前記ケース部材との間または前記軸部との間をシールする環状の弾性シール部材が設けられ、撓み可能な環状の前記第3弁体と、前記第3弁体により画成されて設けられた前記ケース部材内の2つの室と、を有する。これにより、軸方向長を短縮可能であり、全体の基本長を短く小型化することが可能となる。 According to a fourth aspect, in any one of the first to third aspects, the frequency sensitive portion includes a cylindrical case member, a shaft portion disposed in the case member, and the shaft portion. An annular elastic seal member that is disposed in the case member, is supported on the inner or outer peripheral side, and seals between the case member or the shaft portion on the non-supporting side, so that it can be bent. The third valve body and two chambers in the case member defined and provided by the third valve body. Thereby, the axial length can be shortened, and the overall basic length can be shortened and miniaturized.
 以上、本発明の各実施形態を説明したが、本発明の技術範囲は上記実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲において各実施形態における構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 The embodiments of the present invention have been described above. However, the technical scope of the present invention is not limited to only the above-described embodiments, and combinations of components in the embodiments are changed without departing from the spirit of the present invention. It is possible to make various changes to each component or delete them. The present invention is not limited by the above description, but only by the scope of the appended claims.
 上記緩衝器によれば、ピストン速度が遅い領域から周波数に応じて減衰力を大きく可変させることが可能な緩衝器を提供できる。 According to the above shock absorber, it is possible to provide a shock absorber capable of greatly changing the damping force according to the frequency from the region where the piston speed is low.
 11 緩衝器
 12 シリンダ
 30 ピストン
 31 上室(第1室,ロッド側室)
 32 下室(第2室,ボトム側室)
 41 ピストンロッド
 72 取付軸部(軸部)
 91 弁体(第1弁体)
 108 通路(第1通路)
 134 弁体(第2弁体)
 200,200A,284A,300 周波数感応部
 201,201A,302 ケース部材
 204,311 弁体(第3弁体)
 204A 弁体(第4弁体)
 210,210A,303 ハウジング
 236 シール部材
 245,246,246A,285A,331,332 可変室(室)
 251 通路(第2通路)
11 Shock absorber 12 Cylinder 30 Piston 31 Upper chamber (first chamber, rod side chamber)
32 Lower chamber (second chamber, bottom chamber)
41 Piston rod 72 Mounting shaft (shaft)
91 Valve body (first valve body)
108 passage (first passage)
134 Valve body (second valve body)
200, 200A, 284A, 300 Frequency sensitive part 201, 201A, 302 Case member 204, 311 Valve body (third valve body)
204A Valve body (4th valve body)
210, 210A, 303 Housing 236 Seal member 245, 246, 246A, 285A, 331, 332 Variable chamber (chamber)
251 passage (second passage)

Claims (4)

  1.  作動流体が封入されるシリンダと、
     前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を第1室および第2室の2室に区画するピストンと、
     前記ピストンに連結されると共に前記シリンダの外部に延出されるピストンロッドと、
     前記ピストンの移動により前記第1室および前記第2室の一方から作動流体が流れ出す第1通路および第2通路と、
     前記第1通路に設けられて減衰力を発生させる第1弁体と、を有し、
     前記第2通路には、
     前記第1弁体よりも小さな圧力で開弁して減衰力を発生させる第2弁体と、
     前記第1室から前記第2室に作動流体が流れるとき、ハウジング内を上流側と下流側とに画成しつつ前記ハウジング内で移動可能であり、前記第2室から前記第1室に作動流体が流れるときに開弁可能な第3弁体を有する周波数感応部と、
    が直列に設けられていることを特徴とする緩衝器。
    A cylinder filled with a working fluid;
    A piston that is slidably fitted in the cylinder and divides the cylinder into two chambers, a first chamber and a second chamber;
    A piston rod connected to the piston and extending outside the cylinder;
    A first passage and a second passage through which working fluid flows from one of the first chamber and the second chamber by the movement of the piston;
    A first valve body provided in the first passage for generating a damping force,
    In the second passage,
    A second valve body that opens with a smaller pressure than the first valve body to generate a damping force;
    When the working fluid flows from the first chamber to the second chamber, it is movable in the housing while defining the inside of the housing on the upstream side and the downstream side, and operates from the second chamber to the first chamber. A frequency sensitive portion having a third valve element that can be opened when fluid flows;
    Is provided in series.
  2.  前記第1室はロッド側室であり、前記第2室はボトム側室であって、
     伸び行程のときは、前記第3弁体が前記ハウジング内を前記上流側と前記下流側とに画成しつつ前記ハウジング内で移動することにより減衰力を周波数に応じて可変させ、
     縮み行程のときは、前記第3弁体が開弁可能であることを特徴とする請求項1に記載の緩衝器。
    The first chamber is a rod side chamber, the second chamber is a bottom side chamber,
    During the extension stroke, the third valve body moves within the housing while defining the upstream side and the downstream side to vary the damping force according to the frequency,
    2. The shock absorber according to claim 1, wherein the third valve body is openable during a contraction stroke. 3.
  3.  前記第3弁体の前記第2室側には、
     前記縮み行程のときは、前記ハウジング内を前記上流側と前記下流側とに画成しつつ前記ハウジング内で移動可能であり、前記伸び行程のときは開弁可能な第4弁体を有する周波数感応部が設けられていることを特徴とする請求項2に記載の緩衝器。
    In the second chamber side of the third valve body,
    A frequency having a fourth valve body that is movable in the housing while defining the inside of the housing at the upstream side and the downstream side during the contraction stroke, and that can be opened during the extension stroke. The shock absorber according to claim 2, further comprising a sensitive portion.
  4.  前記周波数感応部は、
     筒状のケース部材と、
     前記ケース部材内に配置される軸部と、
     前記軸部を貫通させて前記ケース部材内に配置され、内周側または外周側が支持され、非支持側に前記ケース部材との間または前記軸部との間をシールする環状の弾性シール部材が設けられ、撓み可能な環状の前記第3弁体と、
     前記第3弁体により画成されて設けられた前記ケース部材内の2つの室と、を有することを特徴とする請求項1乃至3のいずれか一項に記載の緩衝器。
    The frequency sensitive part is
    A cylindrical case member;
    A shaft portion disposed in the case member;
    An annular elastic seal member that is disposed in the case member through the shaft portion, is supported on the inner or outer peripheral side, and seals between the case member or the shaft portion on the non-support side. An annular third valve body provided and deflectable;
    The shock absorber according to any one of claims 1 to 3, further comprising two chambers in the case member defined by the third valve body.
PCT/JP2017/034690 2016-09-27 2017-09-26 Shock absorber WO2018062151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188038A JP2019206971A (en) 2016-09-27 2016-09-27 Buffer
JP2016-188038 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018062151A1 true WO2018062151A1 (en) 2018-04-05

Family

ID=61762739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034690 WO2018062151A1 (en) 2016-09-27 2017-09-26 Shock absorber

Country Status (2)

Country Link
JP (1) JP2019206971A (en)
WO (1) WO2018062151A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137207A1 (en) * 2018-12-25 2020-07-02 日立オートモティブシステムズ株式会社 Shock absorber
WO2020174906A1 (en) * 2019-02-26 2020-09-03 日立オートモティブシステムズ株式会社 Shock absorber
CN112081856A (en) * 2019-06-12 2020-12-15 株式会社万都 Frequency sensitive shock absorber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230045082A (en) 2020-10-21 2023-04-04 히다치 아스테모 가부시키가이샤 buffer
JP7496801B2 (en) 2021-06-28 2024-06-07 日立Astemo株式会社 Shock absorber
WO2023042817A1 (en) * 2021-09-15 2023-03-23 日立Astemo株式会社 Damping force generation mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085245A (en) * 2007-09-27 2009-04-23 Showa Corp Damping force adjusting structure of hydraulic shock absorber
JP2012067880A (en) * 2010-09-24 2012-04-05 Showa Corp Frequency response type hydraulic damper
JP2012197905A (en) * 2011-03-23 2012-10-18 Kyb Co Ltd Damping device
JP2015059621A (en) * 2013-09-19 2015-03-30 カヤバ工業株式会社 Shock absorber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085245A (en) * 2007-09-27 2009-04-23 Showa Corp Damping force adjusting structure of hydraulic shock absorber
JP2012067880A (en) * 2010-09-24 2012-04-05 Showa Corp Frequency response type hydraulic damper
JP2012197905A (en) * 2011-03-23 2012-10-18 Kyb Co Ltd Damping device
JP2015059621A (en) * 2013-09-19 2015-03-30 カヤバ工業株式会社 Shock absorber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111836B2 (en) 2018-12-25 2022-08-02 日立Astemo株式会社 buffer
KR20210072091A (en) * 2018-12-25 2021-06-16 히다치 아스테모 가부시키가이샤 buffer
JPWO2020137207A1 (en) * 2018-12-25 2021-10-28 日立Astemo株式会社 Buffer
RU2765666C1 (en) * 2018-12-25 2022-02-01 Хитачи Астэмо, Лтд. Shock absorber
WO2020137207A1 (en) * 2018-12-25 2020-07-02 日立オートモティブシステムズ株式会社 Shock absorber
KR102556709B1 (en) 2018-12-25 2023-07-17 히다치 아스테모 가부시키가이샤 buffer
WO2020174906A1 (en) * 2019-02-26 2020-09-03 日立オートモティブシステムズ株式会社 Shock absorber
KR20210094072A (en) * 2019-02-26 2021-07-28 히다치 아스테모 가부시키가이샤 buffer
JPWO2020174906A1 (en) * 2019-02-26 2021-12-16 日立Astemo株式会社 Buffer
JP7055236B2 (en) 2019-02-26 2022-04-15 日立Astemo株式会社 Shock absorber
KR102582860B1 (en) * 2019-02-26 2023-09-25 히다치 아스테모 가부시키가이샤 buffer
CN112081856A (en) * 2019-06-12 2020-12-15 株式会社万都 Frequency sensitive shock absorber
CN112081856B (en) * 2019-06-12 2023-06-13 汉拿万都株式会社 Frequency-sensitive shock absorber

Also Published As

Publication number Publication date
JP2019206971A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018062151A1 (en) Shock absorber
JP6076433B2 (en) Shock absorber
JP5758235B2 (en) Shock absorber
JP6838768B2 (en) Buffer
JP6108550B2 (en) Shock absorber
JP6838220B2 (en) Buffer
JP6663920B2 (en) Shock absorber
CN109790900B (en) Buffer device
JP5851159B2 (en) Shock absorber
JP2020002976A (en) Shock absorber
JP7206174B2 (en) buffer
JP2020016288A (en) Shock absorber
JP2009299751A (en) Shock absorber
JP6800056B2 (en) Buffer
JP2020016269A (en) Shock absorber
JP5894874B2 (en) Shock absorber
JP2013007471A (en) Buffer
JP2017190806A (en) shock absorber
JP7378634B2 (en) buffer
JP7350182B2 (en) buffer
WO2023037722A1 (en) Shock absorber
JP2023106804A (en) Shock absorber
JP2018119556A (en) Shock absorber
JP5639882B2 (en) Shock absorber
JP5639881B2 (en) Shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP