WO2018062148A1 - Modeling material, three-dimensional model, method for producing modeling material, and method for producing three-dimensional model - Google Patents

Modeling material, three-dimensional model, method for producing modeling material, and method for producing three-dimensional model Download PDF

Info

Publication number
WO2018062148A1
WO2018062148A1 PCT/JP2017/034684 JP2017034684W WO2018062148A1 WO 2018062148 A1 WO2018062148 A1 WO 2018062148A1 JP 2017034684 W JP2017034684 W JP 2017034684W WO 2018062148 A1 WO2018062148 A1 WO 2018062148A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
sheet
lens
modeling material
lenses
Prior art date
Application number
PCT/JP2017/034684
Other languages
French (fr)
Japanese (ja)
Inventor
冨澤 秀樹
橋本 斉和
木戸 健夫
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018062148A1 publication Critical patent/WO2018062148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Definitions

  • the present invention relates to a modeling material, a three-dimensional modeled object, and a manufacturing method thereof.
  • a technique is known that uses a sheet in which a large number of protrusion lenses are arranged in parallel in order to improve expressiveness or expressive diversity. For example, it is possible to observe a variable-view image (changing image) or a stereoscopic image (stereoscopic image) using a lenticular sheet in which a large number of semi-cylindrical so-called cylindrical lenses are arranged in a direction orthogonal to the extending direction.
  • a technology There is a technology.
  • the left eye and the right eye observe the stereoscopic image by observing the left viewpoint image and the right viewpoint image with parallax through the respective cylindrical lenses. can do.
  • the observed pattern is switched by the movement of the observation point, that is, the change in the viewing angle.
  • the lenticular sheet is also used as a material of a molded body having a three-dimensional shape, that is, a modeling material.
  • a three-dimensional lenticular has been proposed as a molded body in which a lenticular sheet having a printed layer formed on the back surface is molded into the same shape as a part of the toy body and is attached to a part of the surface of the toy body.
  • a three-dimensional shape is provided with a decorative film in which the thermal deformation temperature of the material constituting the cylindrical lens provided on one sheet surface of the transparent sheet is 50 ° C. higher than the thermal deformation temperature of the material constituting the transparent sheet.
  • a decorative product as a molded body is also proposed (for example, see Patent Document 2).
  • a material for the cylindrical lens of the decorative product an ultraviolet ray or an electron beam curable acrylic resin is most suitable.
  • this decorative product a product provided with a layer formed from ABS resin (acrylonitrile-butadiene-styrene copolymer) is described.
  • thermoplastic resin sheet having a concavo-convex shape and a thermoplastic resin layer formed of a thermoplastic resin so as to fill the concave portion of the thermoplastic resin sheet are provided on the concavo-convex shape surface.
  • a decorative molding decorative sheet on which an image is formed has been proposed as a modeling material (see, for example, Patent Document 3).
  • the transparent or translucent thermoplastic resin sheet is formed of a thermoplastic resin having a deflection temperature under load of 1.80 MPa in the range of 120 ° C. or higher and 160 ° C. or lower. Prevents the disappearance of And said uneven
  • corrugated shape is formed by pressing an embossing board or an embossing roll from the surface in which the image is formed.
  • the lenticular sheet used for molding in Patent Document 1 and the decorative film of Patent Document 2 may cause the lens to crack and / or excessively deform in the molding process depending on the three-dimensional shape of the target molded body.
  • the decorative film of patent document 2 forms the lens by application
  • the decorative sheet for decorative molding in Patent Document 3 is uneven by pressing from the surface on which the image is formed even if the uneven shape formed inside the sheet is maintained in the subsequent forming process. Since the shape is formed, the positional correspondence between the image and the uneven shape is not precise. Therefore, the decorative molding decorative sheet is desired to be improved as a material of a molded body for uses requiring high accuracy.
  • the present invention provides a sheet-shaped modeling material in which a plurality of lenses are arranged, which is excellent in manufacturing efficiency and suppresses cracking and excessive deformation of the lens in the molding process, and a three-dimensional modeled object obtained from the modeling material And a method for manufacturing the same.
  • the modeling material of the present invention has a sheet shape including a light transmissive sheet and a lens portion, and a plurality of lenses arranged.
  • the sheet is formed from a first thermoplastic resin.
  • the lens portion is provided on one sheet surface of the sheet, includes the plurality of lenses, and is formed of a second thermoplastic resin different from the first thermoplastic resin.
  • the lens is preferably a ridge, and the lens portion is preferably arranged with a plurality of the above-mentioned lenses in parallel.
  • the first thermoplastic resin and the second thermoplastic resin are preferably acrylic resins.
  • the thickness of the sheet is preferably in the range of 50 ⁇ m to 400 ⁇ m.
  • thermoplastic resin is preferably an acrylonitrile-butadiene-styrene copolymer.
  • the three-dimensional structure of the present invention includes a light transmissive sheet, a lens portion, and a structure body.
  • the sheet has a curved sheet surface and is formed of a first thermoplastic resin.
  • the lens portion is provided on one of the sheet surfaces of the sheet so as to be curved along the curved surface, is formed of the second thermoplastic resin, and a plurality of lenses are disposed.
  • the modeled object main body is disposed on the other sheet surface side of the sheet, and has a thickness of at least 0.5 mm.
  • the lens of the three-dimensional structure is preferably a ridge, and it is preferable that a plurality of lenses are arranged in parallel in the lens portion.
  • the manufacturing method of a modeling material of the present invention includes a film forming step and a lens forming step, and manufactures a sheet-shaped modeling material in which a plurality of lenses are arranged.
  • the film forming step forms a film by co-extruding the molten first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin.
  • the lens forming step forms the plurality of lenses by pressing the film from the second thermoplastic resin side with a shape imparting member having a plurality of concave portions formed on the surface.
  • the manufacturing method of the three-dimensional structure according to the present invention includes a film forming step, a lens forming step, a molding step, and a main body forming step.
  • a film is formed by co-extruding a light-transmitting first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin.
  • the lens forming step a light-transmitting sheet formed from the first thermoplastic resin by pressing the film from the second thermoplastic resin side with a shape-imparting member having a plurality of concave portions formed on the surface And a molding material including the plurality of lenses and a lens portion provided on one sheet surface of the sheet and formed of the second thermoplastic resin.
  • the modeling material is molded into a three-dimensional shape.
  • the main body forming step forms a molded article main body having a thickness of at least 0.5 mm from the molten resin by supplying the molten resin to the first thermoplastic resin side of the modeling material.
  • the manufacturing efficiency is excellent, and cracking and excessive deformation of the lens are suppressed in the molding process, and the three-dimensional modeled object of the present invention is excessively broken and cracked. Deformation is suppressed.
  • a modeling material in which cracking and excessive deformation of the lens are suppressed in the molding process is efficiently manufactured.
  • a three-dimensional modeled object in which cracking and excessive deformation of the lens are suppressed is obtained.
  • the modeling material 10 shown in FIG. 1 embodying the present invention is a material that is made into a three-dimensional modeled object (hereinafter, three-dimensional modeled object) by molding under heating.
  • the modeling material 10 includes a sheet 11 and a lens unit 12, and further includes an image forming unit 15 and a protective layer 16 in the present embodiment.
  • the sheet 11 in this example is only required to have a light transmitting property, that is, a light transmitting property.
  • the sheet 11 is transparent to the extent that an image recorded in the image forming unit 15 can be recognized.
  • the light here is visible light (wavelength range of approximately 380 nm to 750 nm).
  • the lens unit 12 is provided on one sheet surface (hereinafter referred to as a first sheet surface) 11 a of the sheet 11.
  • a first sheet surface 11 a of the sheet 11.
  • the second sheet surface 11 b.
  • the lens unit 12 includes a plurality of ridged lenses 17, and each lens 17 is columnar.
  • the plurality of lenses 17 are arranged in parallel in a direction orthogonal to the direction in which the protruding lens 17 extends (hereinafter referred to as the extending direction), that is, in contact with each other.
  • the symbol ED is the extending direction of the lens 17, and the symbol LD is the arranging direction of the plurality of lenses 17.
  • the lens unit 12 is transparent.
  • the boundary between them is not visually recognized.
  • the boundary is illustrated with a broken line for convenience of explanation.
  • the boundary between the lens portion 12 and the sheet 11 is a surface connecting valleys formed by adjacent lenses 17 in FIG.
  • the boundary between the lens portion 12 and the sheet 11 is not limited to this example, and may be lower in FIG.
  • the first sheet surface 11a in that case is located below the valleys in FIG.
  • the lens 17 is a cylindrical lens.
  • the cylindrical lens here is not limited to a semi-cylindrical section having a strict cross-sectional shape, that is, a convex lens surface (hereinafter referred to as a first lens surface) having a circular arc shape. Also included are lenses where the cross-sectional shape is a parabola, elliptical arc, or other convex curve.
  • the width W17 of the lens 17 and the pitch P17 of the lens 17 are preferably in the range of 50 ⁇ m or more and 300 ⁇ m or less. In this embodiment, the width W17 is set to 128 ⁇ m (200 lpi) (lpi is line per inch). As shown in FIG. 1, the width W17 of the lens 17 is a dimension of the lens 17 in the arrangement direction LD of the plurality of lenses 17, and the pitch P17 is a distance between the tops of the lenses 17 on the first lens surface side.
  • the radius of curvature of the lens 17 is preferably in the range of 25 ⁇ m or more and 200 ⁇ m or less, and is approximately 75 ⁇ m in this embodiment.
  • the sheet 11 is formed from a first thermoplastic resin (thermoplastic polymer), and the lens portion 12 is formed from a second thermoplastic resin different from the first thermoplastic resin.
  • the deflection temperature under load of the first thermoplastic resin is Tfa
  • the deflection temperature under load of the second thermoplastic resin is Tfb.
  • a ratio obtained by Tfa / Tfb (hereinafter referred to as a deflection temperature ratio) is in the range of 0.65 to 0.95, and is set to 0.81, for example, in the present embodiment.
  • the deflection temperature ratio is 0.65 or more
  • the sheet 11 is surely formed into the target three-dimensional shape in the three-dimensional shape as compared with the case of less than 0.65, and the lens portion 12 And cracking of the lens 17 (hereinafter collectively referred to simply as “the cracking of the lens 17”) can be suppressed.
  • the deflection temperature ratio is 0.95 or less
  • the sheet 11 is surely formed into the target three-dimensional shape in the subsequent molding as compared with the case where the deflection temperature ratio is larger than 0.95, and the lens 17 is heated. Excessive deformation is reliably suppressed.
  • the deflection temperature ratio is within the above range, the modeling material 10 is surely balanced between the ease of molding of the sheet 11 and the ease of molding of the lens portion 12, and as a result, has a three-dimensional shape.
  • the lens is prevented from cracking and excessive deformation. Therefore, a thermoplastic resin having a deflection temperature under load that satisfies this deflection temperature ratio is used as the first thermoplastic resin and the second thermoplastic resin.
  • the deflection temperature ratio is more preferably in the range of 0.70 to 0.90, and still more preferably in the range of 0.75 to 0.85.
  • the above-mentioned deflection temperature under load is the deflection temperature under load (HDT) measured according to ISO (International Organization for Standardization) 75-1, 2 in 2004.
  • the load is set to 0.45 MPa, which is a low load.
  • Test specimen preparation conditions, annealing conditions, and test conditions are tested in accordance with ISO 8257 PMMA (polymethylmethacrylate) resin standard of 2004 or recommended conditions.
  • the first thermoplastic resin and the second thermoplastic resin are preferably resins having some of the same chemical structure, more preferably resins having the same chemical structure in the main chain. .
  • thermoplastic resin and the second thermoplastic resin acrylic resin, polycarbonate (hereinafter referred to as PC), polyvinyl chloride (hereinafter referred to as PVC), polyethylene terephthalate (hereinafter referred to as PET), respectively.
  • Triacetyl cellulose (hereinafter referred to as TAC), acrylonitrile-butadiene-styrene copolymer (hereinafter referred to as ABS), and the like are preferable.
  • acrylic resin, PC, and PVC are more preferable, and acrylic resin is weather resistant (light And the resistance to heat and humidity are more preferable.
  • the first thermoplastic resin and the second thermoplastic resin are, for example, acrylic resins.
  • the thickness Ta of the sheet 11 is preferably in the range of 50 ⁇ m or more and 400 ⁇ m or less, and is 225 ⁇ m in this embodiment.
  • the thickness Ta is more preferably in the range of 75 ⁇ m or more and 350 ⁇ m or less, and further preferably in the range of 100 ⁇ m or more and 300 ⁇ m or less.
  • the image forming unit 15 is a so-called image display body for observing a different image by moving the observation point when observing from the lens unit 12 side in a dashboard material 30 (see FIGS. 7 and 8) described later. . Therefore, in the case of using a material for a transparent three-dimensional object such as a light source cover in the illumination device, the image forming unit 15 is not necessarily provided.
  • the image forming unit 15 is provided on the second sheet surface 11 b of the sheet 11. In this example, since the image forming unit 15 is provided as a printing unit recorded by printing on the second sheet surface 11b, the thickness is not conceived. However, in FIG. is there.
  • the image forming unit may include a printing unit as a recording layer on which an image is recorded and a support provided with the printing unit. In this case, the printing unit is in contact with the second sheet surface 11b. .
  • the image forming unit 15 may be a transfer layer in which an image is formed by transfer, a picture or a drawing drawn with a pigment or a dye.
  • the image forming unit 15 of this example is formed by a paint, and the paint may be a pigment or a dye.
  • the dashboard material 30 (see FIG. 7 and FIG. 8), which will be described later, has two first observation points and second observation points that are different in the arrangement direction LD, and the first observation point is the first observation point.
  • the second image 22 different from the first image 21 can be observed from the second observation point so that the image 21 can be observed.
  • the image forming unit 15 has a plurality of images for variable viewing. At each of the first observation point and the second observation point, the same image is observed by the left and right eyes.
  • the image forming unit 15 includes linear image portions (hereinafter referred to as linear image portions) 21a, 21b, 21c,..., 22a, corresponding to the first image 21 and the second image 22, respectively. 22b, 22,...
  • the pair extends in the ED, and is arranged alternately in the arrangement direction LD and corresponding to each lens 23. That is, as shown in FIG. 1, the image forming unit 15 is divided into a plurality of regions corresponding to each of the plurality of lenses 17 in the arrangement direction LD, and these plurality of regions are separated from the linear image unit 21a.
  • two observation points are set in the arrangement direction LD, so the number of images is two, ie, the first image 21 and the second image 22, but the number of observation points to be set is
  • the number and the number of images are not limited to two. That is, in the arrangement direction LD, the number of observation points to be set and the number of images for variable viewing may be three or more.
  • each of the linear image portions 21a, 21b, 21c,... Is formed as one region extending in the extending direction ED, but is not limited thereto.
  • each of the linear image portions 21a, 21b, 21c,... May be configured by a plurality of rectangular regions divided in the extending direction ED. These rectangular areas may be the same image or different images. The same applies to each of the linear image portions 22a, 22b, 22,.
  • the first image 21 and the second image 22 are not limited to images for variable viewing, and may be images for stereoscopic viewing. That is, the first viewpoint image 21 and the second viewpoint image 22 may be a right viewpoint image and a left viewpoint image in which a stereoscopic image is observed by parallax between the left eye and the right eye.
  • the first image 21 and the second image 22 may be different images from either the variable view image or the stereoscopic image.
  • the first image 21 and the second image 22 may constitute an image such as a scene or a scene description which is one pattern.
  • the protective layer 16 is for protecting the image forming unit 15 from the heat of the molten resin when a material of a dashboard material body 41 (see FIG. 8) to be described later contacts in a molten state.
  • the protective layer 16 is provided on the surface of the image forming unit 15 opposite to the side in contact with the sheet 11.
  • the protective layer 16 also has a function of protecting the sheet 11 and the lens unit 12 from the heat of the molten resin. Therefore, when there is no image forming unit 15, the protective layer 16 may be provided on the second sheet surface 11 b of the sheet 11.
  • the protective layer 16 is for protecting the image forming unit 15, the sheet 11, and the lens unit 12 from the heat of the molten resin, as in the case where the dashboard material body 41 is not provided.
  • the protective layer 16 from the viewpoint of preventing the image forming unit 15 from being damaged when the image forming unit 15 contacts another object.
  • the protective layer 16 is made of a third thermoplastic resin.
  • the third thermoplastic resin is not particularly limited as long as it is a resin that is not modified (for example, decomposed) by the molten resin, and examples thereof include ABS, PVC, acrylic resin, PC, and polyester. More preferably, the third thermoplastic resin is the same resin as the molten resin. This is because the adhesion with the dashboard material body 41 is further improved.
  • the third thermoplastic resin of this embodiment is ABS.
  • the thickness Tc of the protective layer 16 is not particularly limited, but is preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • the thickness Tc is 100 ⁇ m or more, the deformation of the image forming unit 15, the lens unit 12, and the sheet 11 due to the heat of the molten resin is more reliably suppressed as compared with the case where the thickness Tc is less than 100 ⁇ m.
  • the thickness Tc is 1000 ⁇ m or less, it is more reliably formed into a target three-dimensional shape as compared with a case where the thickness Tc is larger than 1000 ⁇ m.
  • the thickness Tc is more preferably in the range of 150 ⁇ m or more and 800 ⁇ m or less, and further preferably in the range of 200 ⁇ m or more and 600 ⁇ m or less.
  • the lens of the protrusion provided in the lens unit is not limited to a cylindrical lens, and may be a prism, for example.
  • the modeling material 110 is a mode in which the lens portion 12 of the modeling material 10 is changed to the lens portion 112.
  • the same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the lens unit 112 includes a plurality of protruding lenses 117, and each lens 117 has a columnar shape like the lens 17, but is different from the lens 17 in that it is a prism.
  • the plurality of lenses 117 are arranged in a direction perpendicular to the extending direction ED of the lens 117 while being in contact with each other.
  • the lens part 112 is transparent.
  • the boundary between them is not visually recognized.
  • FIG. 2 the boundary is illustrated with a broken line for convenience of explanation.
  • the boundary between the lens portion 112 and the sheet 11 is a surface connecting the valley portions formed by the adjacent lenses 117 in FIG.
  • the boundary between the lens portion 112 and the sheet 11 is not limited to this example, and may be lower in FIG.
  • the first sheet surface 11a in that case is below the valleys in FIG.
  • the width W117 of the lens 117 and the pitch P117 of the lens 117 are preferably in the range of 50 ⁇ m or more and 300 ⁇ m or less, and in this embodiment, are 100 ⁇ m. As shown in FIG. 2, the width W117 of the lens 117 is the dimension of the lens 117 in the arrangement direction LD, and the pitch P117 is the distance between the tops of the lens 117 on the first lens surface side.
  • the thickness Tb of the lens portion 112 (equal to the height of the lens 117 in this example) is preferably in the range of 25 ⁇ m or more and 200 ⁇ m or less, and is 30 ⁇ m in this embodiment.
  • the lens provided in the lens unit is not limited to a protruding lens, and may be a microlens, for example.
  • the modeling material 120 is a mode in which the lens portion 12 of the modeling material 10 is changed to the lens portion 122 and the image forming portion 15 is changed to the image forming portion 125.
  • the same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the lens unit 122 includes a plurality of lenses 127.
  • the lens 127 is a convex lens, but may be a concave lens.
  • the surface shape of the lens 127 is hemispherical.
  • the surface shape of the lens 127 may be a spherical crown shape (partial spherical shape) other than a hemispherical shape, and in that case, it may not be a strict spherical crown shape.
  • the lens 127 can be freely set with respect to a specific shape such as a surface or a cross section.
  • the surface may be formed of a parabola or an elliptic arc.
  • the surface may be formed by combining a plurality of curved surfaces.
  • the lens 127 may have a cone shape (conical shape or pyramid shape) or a frustum shape.
  • the lens part 122 is also transparent like the lens part 12 and the lens part 112. Therefore, although the boundary between the lens unit 122 and the sheet 11 is not visually recognized, the boundary is illustrated by a broken line in FIG. 3 for convenience of explanation.
  • the boundary between the lens portion 122 and the sheet 11 is a surface connecting the valley portions formed by the adjacent lenses 127 in FIG.
  • the boundary between the lens portion 122 and the sheet 11 is not limited to this example, and may be lower in FIG.
  • the first sheet surface 11a in that case is below the valleys in FIG.
  • the plurality of lenses 127 are in a square arrangement on the first sheet surface 11a in a state of being in contact with each other.
  • the pitch P127 of the lens 127 is preferably in the range of 508.0 ⁇ m (50 lpi) or more and 25.4 ⁇ m (1000 lpi) or less, and is 150 ⁇ m in this embodiment.
  • the diameter D127 of the lenses 127 is equal to the pitch P127 and is 150 ⁇ m.
  • the image forming unit 125 is a so-called image display body on which an image 137 observed when viewed from the lens unit 122 side when used for a dashboard material 30 (see FIG. 7) described later is displayed.
  • the image forming unit 125 is configured in the same manner as the image forming unit 15 except for the displayed image 137.
  • the image 137 is, for example, a pattern such as carbon tone, woodgrain tone, aluminum tone, stone tone, earth wall tone, or a monochromatic solid image. Further, the image may be an image such as a landscape or a scene description. Further, it may be a so-called piano black image observed in a mirror-like black color, or a pearl white image in which a different luster is visually recognized depending on an observation angle, such as a pearl surface.
  • the image of the image forming unit 125 is used for the dashboard material 30 or the like, the image is viewed through each lens 127 of the lens unit 122, and therefore, the region visually recognized differs depending on the observation point.
  • the first image 137a is visible in the region visually recognized from the first observation point
  • the second image 137b is visible in the region visually recognized from the second observation point.
  • the third image 137c may be displayed in the region to be displayed
  • the fourth image 137d may be displayed in the region visually recognized from the fourth observation point. Thereby, a different image is visually recognized depending on the observation point.
  • the number of images visually recognized from the observation point may be three or less, or may be five or more. Further, the present invention is not limited to the example in which different images are visually recognized depending on the observation point as described above, that is, the example in which the image for variable vision is displayed on the image forming unit 125. For example, a right viewpoint image and a left viewpoint image for observing a stereoscopic image by parallax between the left eye and the right eye may be displayed as a stereoscopic image.
  • the lens unit 142 illustrated in FIG. 5 may have such an arrangement pattern in which the lenses 127 are alternately arranged on the first sheet surface 11a.
  • the lens part 152 shown in FIG. 6 has the lens 127a arrange
  • the lens 127 see FIG. 3
  • the lens 127a includes both ends in the first direction D1 and a second direction orthogonal to the first direction D1.
  • the two end portions in the direction D2 are respectively rectangles cut off.
  • the rectangular lenses 127a are squarely arranged to eliminate gaps between the lenses.
  • a part or all of the lenses may be arranged (separated) at intervals.
  • a plurality of types of lenses having different shapes and / or sizes may be arranged on the first sheet surface 11a. Further, the lens pitch may be varied depending on the position.
  • the modeling material 10, 110, 120 is a material of a three-dimensional model.
  • the dashboard material 30 illustrated in FIG. 7 is an example of a three-dimensional model.
  • the dashboard material 30 is an interior part of the automobile 31 and constitutes a part of the dashboard 34.
  • the dashboard member 30 has a three-dimensional shape that is convexly curved toward the opposing observer side, and has a front surface portion 30A having an elliptical cross section, and is disposed on each of the left and right sides of the front surface portion 30A in FIG.
  • the side part 30B made into one is formed integrally.
  • the three-dimensional modeled object a member that has a curved shape different from that of the dashboard material 30 and is, for example, a part of the steering wheel 35 or the door panel 36 can be given.
  • the three-dimensional model is not limited to an automobile interior item, and may be, for example, a home appliance, a suitcase, a toy, or the like.
  • the arrow line X indicates the vertical direction
  • the arrow line Y indicates the left and right direction when the windshield (windshield, windscreen) is viewed from the inside of the automobile 31
  • the arrow line Z indicates the forward direction.
  • the dashboard material 30 is composed of a dashboard material body 41 and a decorative member 42 that overlap in the thickness direction.
  • the decorative member 42 is obtained by deforming the modeling material into a three-dimensional shape, and any of the above-described modeling material 10, the modeling material 110, and the modeling material 120 can be used as the modeling material.
  • the lens portion of the modeling material 120 may be any of the lens portion 122, the lens portion 142, and the lens portion 152 described above.
  • the modeling material 10 is used will be described as an example.
  • the decorative member 42 is obtained by deforming the modeling material 10 into a three-dimensional shape, and is arranged so as to cover the observer side surface of the dashboard material main body 41.
  • the dashboard member 30 is curved as described above, but is drawn flat for convenience in FIG.
  • the dashboard material main body 41 is a shaped article main body for forming the dashboard 34, and has impact resistance, rigidity, heat resistance, etc. for functioning as the dashboard 34, and is formed from a thermoplastic resin. .
  • thermoplastic resin forming the dashboard body 41 various known materials such as an alloy (blend) of ABS and ABS, acrylonitrile / styrene / glass fiber, and the like can be used. In the embodiment, it is an ABS.
  • the acrylonitrile / styrene / glass fiber is an acrylonitrile-styrene copolymer containing glass fiber, and is a so-called composite material of acrylonitrile / styrene copolymer and glass fiber.
  • the thickness T41 of the dashboard material main body 41 is not particularly limited, and may be appropriately set according to the intended function and material as the dashboard 34, but is preferably at least 0.5 mm. When the thickness T41 is 0.5 mm or more, the mechanical strength of the dashboard member 30 is greater than when the thickness T41 is smaller than 0.5 mm.
  • the thickness T41 is more preferably in the range of 0.5 mm to 30 mm. When the thickness T41 is 30 mm or less, the weight is smaller than when the thickness T41 is larger than 30 mm, which contributes to the weight reduction of the automobile 31 (see FIG. 7).
  • the thickness T41 is more preferably in the range of 1 mm to 20 mm, and particularly preferably in the range of 2 mm to 10 mm.
  • the decoration member 42 is for changing the appearance of light by refracting light incident from the outside.
  • the decorative member 42 has the same layer structure as the modeling material 10 and is formed of the same material as the modeling material 10 because the modeling material 10 is deformed into a three-dimensional shape. Therefore, the sheet 11 of the decorative member 42 is formed from the first thermoplastic resin, the lens portion 12 is formed from the second thermoplastic resin, and the protective layer 16 is formed from the third thermoplastic resin. ing. Further, since the decorative member 42 is obtained by deforming the modeling material 10 into a three-dimensional shape, the shape and height of the lens 17, the thickness of the lens portion 12, the thickness of the sheet 11, and the like have portions different from the modeling material 10.
  • the names and symbols of the constituent members of the decorative member 42 are the same as the names and symbols of the constituent members of the modeling material 10, and the illustration of the layer structure of the decorative member 42 is omitted.
  • the decorative member 42 is provided in close contact with the dashboard material body 41 so that the protective layer 16 is in contact with the dashboard material body 41.
  • the seat 11 of the decorative member 42 has a curved shape similar to the dashboard material 30, and details of the shape will be described later with reference to another drawing.
  • the decorative member 42 has a plurality of ridged lenses 17 on one surface, and in FIG. 8, each lens 23 is depicted as a ridge extending in the depth direction of the drawing.
  • the decoration member 42 is arranged in a state where each lens 23 faces the observer side and the opposite surface faces the dashboard material body 41 side.
  • the thickness T42 of the decorative member 42 is slightly different depending on the position. Note that the decorative member 42 is provided with the lens portion 12 along the curved surface of the curved sheet 11, and thus is curved in the same manner as the sheet 11 and the dashboard material 10, but is drawn flat for convenience in FIG. It is.
  • seat 11 of the decoration member 42 is demonstrated, referring FIG.
  • the 1st sheet surface 11a and the 2nd sheet surface 11b have the same shape, it demonstrates in detail about the 1st sheet surface 11a, and abbreviate
  • the seat 11 of the decorative member 42 is a constituent member of the front face portion 11 ⁇ / b> A that is a constituent member of the front face portion 30 ⁇ / b> A (see FIG. 1) and the side face portion 30 ⁇ / b> B (see FIG. 1).
  • the side surface portion 11B is integrally formed.
  • the first sheet surface 11a of the decorative member 42 has three regions with different normal directions, and one of the normal directions of each region is a curved surface having an inclination in a plane including the other two. Has been. Specifically:
  • Arbitrary two regions on the first sheet surface 11a of the front surface portion 11A are defined as a first region AR1 and a second region AR2, and an arbitrary region on the first sheet surface 11a of the side surface portion 11B is defined as a third region AR3.
  • the first area AR1 and the second area AR2 are taken on the XZ plane, but the present invention is not limited to this.
  • the normal from the first region AR1 is the first normal N1
  • the normal from the second region AR2 is the second normal N2
  • the normal from the third region is the third normal N3
  • a plane PL including the direction of the first normal line N1 and the direction of the second normal line N2 is considered.
  • the plane PL is a plane including two “directions”.
  • the plane PL is the same plane as the plane including the two straight lines.
  • the plane containing the two straight lines cannot be considered, but the plane containing the “direction” of the two straight lines can be considered, and this plane (in the twisted position) A plane including the “directions” of two straight lines) is considered as the plane PL.
  • the plane PL is not defined as a plane including two straight lines but is defined as a plane including “directions” of the two straight lines, so that the first normal line N1 and the second normal line N2 are assumed to be Even in the twisted position, the plane PL is considered.
  • the direction of the third normal line N3 is inclined with respect to the plane PL.
  • the first region AR1 and the second region AR2 may be taken from the side surface portion 11B, and the third region AR3 may be taken from the front surface portion 11A.
  • the first region AR1 and the third region AR3 may be taken from the front surface portion 11A, and the second region AR2 may be taken from the side surface portion 11B.
  • the sheet 11 is bent in the extending direction ED of the lens 17 and the arrangement direction LD of the plurality of lenses 17. Since the lens unit 12 and the image forming unit 15 are provided to be curved along the curved surfaces as described above, the decorative member 42 also includes the extending direction ED of the lens 17 and the plurality of lenses 17.
  • the arrangement direction LD has a bent shape.
  • the first image 21 (see FIG. 1) and the second image 22 (see FIG. 1) are obtained as images having nonuniformity in the light reflected at the interface between the sheet 11 and the image forming unit 15, respectively. Observed, for example, with color shading and / or brightness differences.
  • the image to be observed becomes the first by moving from one of the first observation point and the second observation point to the other. Switching from the first image 21 to the second image 22 or from the second image 22 to the first image 21 also changes the appearance of light in the switched image.
  • the way the light appears differs from part to part of the decorative member 42, and the switching timing also differs from part to part, so that the observed image is observed as a pattern with many changes, for example.
  • the design is enhanced and the interior is rich in decorativeness.
  • the modeling material manufacturing apparatus 50 that manufactures the modeling material 10 includes an extruder 52, a lens forming unit 55, a printing machine 56, a cutting machine 58, and the like.
  • the extruder 52 melts each of the first thermoplastic resin 61a and the second thermoplastic resin 61b by heating, and forms each of these flows into a film shape. By merging them, they are extruded onto the circumferential surface of the first support roller 71 of the lens forming unit 55 in a state where they are overlapped in the thickness direction (coextrusion). In addition, the extruder 52 extrudes the 1st thermoplastic resin 61a and the 2nd thermoplastic resin 61b in the state in which the 2nd thermoplastic resin 61b is located on the 1st thermoplastic resin 61a in FIG. .
  • the film 61 in which the second thermoplastic resin 61b is superimposed on the first thermoplastic resin 61a is continuously formed on the peripheral surface of the first support roller 71 (film forming step).
  • the first thermoplastic resin 61a and the second thermoplastic resin 61b are extruded onto the first support roller 71, but the present invention is not limited thereto.
  • a delivery device (not shown) for delivering a long support is provided upstream of the first support roller 71, the support is delivered from this delivery device, and the first thermoplastic resin 61a and the first thermoplastic resin 61a are supplied onto the support.
  • the second thermoplastic resin 61b may be extruded. In that case, the film 61 composed of the first thermoplastic resin 61a and the second thermoplastic resin 61b is supplied to the first support roller 71 together with the support.
  • a driving roller (not shown) that rotates in the circumferential direction is disposed between the lens forming unit 55 and the cutting machine 58.
  • the film 61 is wound around the drive roller, and the film 61 is conveyed toward the downstream side of the modeling material manufacturing apparatus 50 by the rotation of the drive roller.
  • the lens forming unit 55 is for forming (shaping) each lens 17 of the modeling material 10.
  • the lens forming unit 55 includes a first support roller 71, a second support roller 72, and a shape imparting roller 73 as a shape imparting member.
  • the first support roller 71, the second support roller 72, and the shape imparting roller 73 are arranged in a state where the rotation axis is in the width direction of the film 61, that is, the depth direction of the paper surface of FIG. 10.
  • a first support roller 71, a shape imparting roller 73, and a second support roller 72 are arranged in order from the upstream side.
  • first support roller 71 and the second support roller 72 are arranged on the opposite side of the shape imparting roller 73 with respect to the transport path of the film 61, and the film 61 is wound around the peripheral surface.
  • the first support roller 71 and the second support roller 72 may be driven to rotate as the film 61 is transported, or the first support roller 71 and the second support roller 72 are synchronized with the transport of the film 61 by a motor. And may be rotated.
  • the shape imparting roller 73 cooperates with the first support roller 71 and the second support roller 72 to continuously connect the lens portion 12 having a lens surface protruding in a semi-cylindrical shape to the second thermoplastic resin 61 b of the film 61.
  • the first support roller 71 and the second support roller 72 function as a support member that supports the film 61, and also function as a shape-giving member for forming a protruding lens surface.
  • a plurality of concave portions 73 a having a semi-cylindrical cross section are formed on the peripheral surface of the shape imparting roller 73 in order to form the lens portion 12.
  • Each recess 73 a extends in the axial direction of the shape imparting roller 73, that is, in the width direction of the film 61, and the plurality of recesses 73 a are formed side by side along the circumferential direction of the shape imparting roller 73.
  • the shape imparting roller 73 is rotated by a motor 76 with the film 61 sandwiched between the first support roller 71 and the second support roller 72.
  • the rotation direction of the shape imparting roller 73 is a direction in which the film 61 is conveyed (counterclockwise direction in FIG. 10).
  • the shape imparting roller 73 causes the film 61 being transported to move on the first support roller 71, the second support roller 72, and between the first support roller 71 and the second support roller 72.
  • the shape of the recess 73a is transferred to the second thermoplastic resin 61b to form the lens portion 12 (lens formation step).
  • each recessed part 73a is extended in the circumferential direction of the shape provision roller, ie, the longitudinal direction of the film 61, and the some recessed part 73a may be formed along with the axial direction of the shape provision roller.
  • the shape of the recess 73a of the shape imparting roller 73 is determined according to the shape of the lens 17 to be formed (see FIG. 1).
  • a convex portion formed by adjacent concave lenses and concave lenses is set as the shape of the concave portion 73 a of the shape imparting roller 73.
  • the forming material 110 having the lens 117 can be formed by forming the concave portion 72a of the shape imparting roller 73 in a triangular shape
  • the forming material 120 having the lens 127 can be formed by forming the concave portion 72a in the hemispherical shape. Can be made.
  • the shape of the concave portion on the surface of the shape imparting member is determined according to the lens shape of the target lens portion.
  • the shape imparting roller 73 is provided with a pressure regulator 77 as in the present embodiment.
  • the pressure adjuster 77 adjusts the pressing force of the shape imparting roller 73 against the second thermoplastic resin 61b when the shape of the recess 73a is transferred.
  • the pressure adjuster 77 adjusts the pressing force to form the lens unit 12 more reliably.
  • the first thermoplastic resin 61 a becomes the sheet 11.
  • the lower part of the second thermoplastic resin 61b in FIG. 10 may constitute the upper part of the sheet 11 in FIG.
  • the shape imparting roller 63 is used as the shape imparting member to continuously form the lens 17 on the long film 61, but the shape imparting member is not limited thereto.
  • a plate-like shape imparting member having a recess 73a formed on the surface may be used.
  • the film 61 on which the lens unit 12 is formed is guided to the printing machine 56.
  • the printing machine 56 forms the image forming unit 15 on the second sheet surface 11 b (see FIG. 1) of the sheet 11.
  • the support may be peeled off from the film 61 between the lens forming unit 55 and the printing machine 56.
  • the film 61 provided with the image forming unit 15 is guided to a cutting machine 58 and is cut into a sheet by the cutting machine 58.
  • the film on which the lens unit 12 is formed is guided from the lens forming unit 55 to the cutting machine 58 without passing through the printing machine 56.
  • the film 61 provided with the image forming unit 15 and the protective layer 16 are heat-laminated at 100 ° C. for 1 minute, and thereby fused.
  • the protective layer 16 is not provided, there is no this fusion process.
  • the modeling material 10 is obtained.
  • the modeling material 10 forms a film by co-extrusion and forms a lens by pressing, it is efficiently manufactured.
  • a molding apparatus 80 shown in FIG. 11 is for molding the produced sheet-shaped modeling material 10 into a three-dimensional shape.
  • the molding apparatus 80 includes a mold unit 82, a moving mechanism 83, a heater 84, and a control unit 86, and performs a thermoforming process under heating.
  • the molding method is not limited to thermoforming, and for example, a technique such as vacuum molding or vacuum / pressure forming may be used.
  • the mold unit 82 includes a first mold 87, a second mold 88, and a body mold 89.
  • the body mold 89 has a rectangular cross-sectional shape in the horizontal direction in FIG. 11 orthogonal to the compression direction.
  • the body die 89 has a guide hole 89 a penetrating in the compression direction by the first die 87 and the second die 88.
  • the compression direction is the vertical direction in FIG.
  • the first mold 87 and the second mold 88 are guided by the inner wall of the guide hole 89a and are movable in the compression direction.
  • the first mold 87 and the second mold 88 are molded into a three-dimensional shape by compression molding the modeling material 10 in the body mold 89 (molding step).
  • transfer surfaces 87a and 88a each having a curved shape of the decorative member 42 are formed on opposing surfaces facing each other.
  • the transfer surface 87a of the first mold 87 is formed in a convex shape
  • the transfer surface 88a of the second mold 88 is formed in a concave shape.
  • the moving mechanism 83 moves the first mold 87 and the second mold 88 in the direction of increasing or decreasing the distance from each other. Further, when the modeling material 10 is accommodated in the trunk mold 89, the first mold 87 is moved upward, and is thereby retracted from the trunk mold 89.
  • the heater 84 heats the molding unit 10 in the body mold 89 by heating the mold unit 82.
  • the moving mechanism 83 and the heater 84 are controlled by the control unit 86.
  • the controller 86 adjusts the temperature in the body mold 89 by controlling the amount of heat generated by the heater 84.
  • the temperature in the body mold 89 is set to a temperature that is 10 ° C. higher than the deflection temperature under load Tfb of the second thermoplastic resin 61b, which is also the case in this embodiment.
  • the unnecessary portion may be cut off.
  • the modeling material 10 provided with the protective layer 16 is molded into a three-dimensional shape by the molding device 80, but the modeling material 10 not provided with the protective layer 16 and a film material that becomes the protective layer 16 (not shown). May be provided to the molding apparatus 80 and molded in a state where they are stacked.
  • the three-dimensional shaped molding material 10 is set in a known injection molding machine (not shown).
  • the dashboard material main body 41 is formed by supplying the molten resin which forms the dashboard material main body 41 to the protective layer 16 side, and the dashboard material 30 is manufactured by this (main body formation step).
  • the dashboard material 41 is formed on the image forming layer 15 from a molten resin.
  • the dashboard material 41 is formed on the sheet 11 from a molten resin. In this way, the molten resin is supplied to the sheet side of the modeling material regardless of the presence or absence of the image forming layer 15 and the protective layer 16 to form a modeled article main body.
  • the three-dimensional shaped molding material 10 is used for an injection molding machine, but the present invention is not limited to this.
  • the planar modeling material 10 may be set in an injection molding machine and molded into a three-dimensional shape together with the molten resin forming the dashboard material body 41.
  • the above dashboard material 30 is an example of a three-dimensionally shaped object having a curved shape protruding in one direction, but may be a three-dimensionally shaped object curved in a plurality of directions. That is, the modeling material 10 can be molded also into a three-dimensional modeled object that is curved in a plurality of directions.
  • the mold unit 82 of the molding apparatus 80 is used in accordance with the curved shape of the target three-dimensional modeled object. What is necessary is just to replace with a type
  • the modeling material manufacturing apparatus 50 produced 14 types of modeling material 10.
  • the obtained lens 17 of each molded article 10 is a cylindrical lens having a width W17 of 128 ⁇ m (200 lpi) and a radius of curvature of approximately 75 ⁇ m.
  • the dashboard material 30 was manufactured using
  • the modeling material 120 provided with the lens portion 122 was produced by the modeling material manufacturing apparatus 50 in which the shape imparting roller 73 was replaced with a shape imparting roller in which the inverted concave portion of the lens 127 was formed on the peripheral surface.
  • the width D127 of the lens 127 of the obtained modeling material 120 was 150 ⁇ m.
  • a dashboard material was produced from the obtained shaped material 120 using a molding apparatus 80 and an injection molding machine (not shown) in the same manner as in Examples 1 to 16, and Example 15 was obtained.
  • the modeling material 110 provided with the lens part 112 was made by the modeling material manufacturing apparatus 50 in which the shape imparting roller 73 was replaced with a shape imparting roller in which the cross-sectional shape of the recess 73a was triangular. Both the width W117 and the pitch P117 of the lens 117 of the obtained modeling material 110 were 100 ⁇ m, and the thickness Tb of the lens portion 112 was 30 ⁇ m. Dashboard materials were produced from the obtained shaped material 110 using a molding apparatus 80 and an injection molding machine (not shown) in the same manner as in Examples 1 to 16, and Example 16 was obtained.
  • Table 1 shows the first thermoplastic resin 61a and the second thermoplastic resin 61b used.
  • “Acrylic” in the “Type” column of Table 1 means acrylic resin.
  • Delpet registered trademark
  • Iupilon registered trademark
  • Mitsubishi Gas Chemical Co., Ltd. Mitsubishi Gas Chemical Co., Ltd.
  • the PVC manufactured by Sekisui Chemical Co., Ltd. is described as “Sekisui PVC”.
  • each dashboard member 30 lenses 17, 117, and 127 having the smallest height were specified, and their heights Ha were measured.
  • the height of each of the lenses 17, 117, 127 is set to Hb, and the lens is calculated by the calculation formula ⁇ (Hb ⁇ Ha) / Hb ⁇ ⁇ 100.
  • the rate of height reduction (unit:%) was obtained. And it evaluated as a deformation
  • a to C are acceptable and D is unacceptable.
  • Elongation It cut out from the modeling materials 10 and 110 to the magnitude
  • the sheet 11 is stretched at a tensile speed of 10 mm / min in the extending direction ED at a temperature 10 ° C. higher than the deflection temperature Tfb of the sheet 11.
  • the elongation to the breaking point that is, the elongation to break was determined. Specifically, 1 cm each of one side of the modeling material sample and one side facing the one side was sandwiched, and 3 cm was extended. Thus, the elongation of the modeling material sample was evaluated as the elongation of the lens 17.
  • the elongation to the breaking point was determined under the same conditions and method except that the extending direction of the modeling material sample was changed to an arbitrary direction. In addition, the smaller the elongation (unit:%), the easier it is to crack in molding. A to C in the following criteria are acceptable and D is unacceptable.
  • D Elongation was less than 20%.
  • the lens deformation and cracking and the lens elongation were evaluated by the same method as in the example.
  • the evaluation results are shown in Table 1.

Abstract

Provided are: a sheet-like modeling material which is provided with a plurality of lenses and has excellent production efficiency, while being suppressed in cracking and excessive deformation of the lenses during the forming process; a three-dimensional model which is obtained from this modeling material; a method for producing this modeling material; and a method for producing this three-dimensional model. A modeling material (10, 110, 120) according to the present invention is formed into a sheet, and is provided with a light-transmitting sheet (11) that is formed from a first thermoplastic resin and a lens part (12, 112, 122, 142, 142, 152) that is formed from a second thermoplastic resin. The lens part (12, 112, 122, 142, 142, 152) is provided with a plurality of lenses (17, 117, 127). If Tfa is the deflection temperature under load of the first thermoplastic resin and Tfb is the deflection temperature under load of the second thermoplastic resin, Tfa/Tfb is within the range of from 0.65 to 0.95 (inclusive).

Description

造形材、立体造形物、及びそれらの製造方法Modeling material, three-dimensional modeled object, and manufacturing method thereof
 本発明は、造形材、立体造形物、及びそれらの製造方法に関する。 The present invention relates to a modeling material, a three-dimensional modeled object, and a manufacturing method thereof.
 自動車の内装または電化製品の外観などの意匠性を高めたり差別化するためのものとして、加飾フィルムがある。加飾フィルムとしてはフィルム基材に図柄を印刷などにより施したものが多いが、こうした加飾フィルムは、表現力または表現の多様性などに限界がある。 There is a decorative film as a way to enhance or differentiate the design of automobile interiors or the appearance of electrical appliances. Many decorative films have a pattern printed on a film base material, but such decorative films have limitations in expressiveness or variety of expressions.
 表現力の向上または表現の多様性を図るために、突条の多数のレンズが並列に配されたシートを用いる技術が知られている。例えば、半円柱状のいわゆるシリンドリカルレンズをその延在方向と直交する方向に多数並べたレンチキュラシートを用い、可変視用の画像(チェンジング画像)または立体視用の画像(立体画像)を観察できるようにした技術がある。これは、レンチキュラシートの平坦なレンズ面側である背面側に、例えば左右の2視点から撮影した左視点画像及び右視点画像をそれぞれストライプ状に分割したストライプ画像を交互に配置したものであり、1個のシリンドリカルレンズの平坦なレンズ面に、隣接する2つのストライプ画像を位置させたものである。立体視用の画像が形成されている場合には、左眼と右眼とが、各シリンドリカルレンズを介して、視差のある左視点画像及び右視点画像をそれぞれ観察することで、立体画像を観察することができる。また、可変視用の画像が形成されている場合には、観察点の移動、すなわち視認角度の変化によって、観察される図柄が切り替わる。 A technique is known that uses a sheet in which a large number of protrusion lenses are arranged in parallel in order to improve expressiveness or expressive diversity. For example, it is possible to observe a variable-view image (changing image) or a stereoscopic image (stereoscopic image) using a lenticular sheet in which a large number of semi-cylindrical so-called cylindrical lenses are arranged in a direction orthogonal to the extending direction. There is a technology. This is an arrangement in which stripe images obtained by dividing a left viewpoint image and a right viewpoint image taken from two left and right viewpoints into stripes are alternately arranged on the back side, which is the flat lens surface side of the lenticular sheet, Two adjacent stripe images are positioned on the flat lens surface of one cylindrical lens. When a stereoscopic image is formed, the left eye and the right eye observe the stereoscopic image by observing the left viewpoint image and the right viewpoint image with parallax through the respective cylindrical lenses. can do. When an image for variable viewing is formed, the observed pattern is switched by the movement of the observation point, that is, the change in the viewing angle.
 レンチキュラシートは立体形状をもつ成形体の材料、すなわち造形材としても用いられる。例えば、印刷層が裏面に形成されたレンチキュラシートを玩具体の一部の形状と同一形状に成形し、玩具体の一部の表面に貼り付けた成形体としての三次元レンチキュラが提案されている(例えば、特許文献1参照)。また、例えば、透明シートの一方のシート面上に設けたシリンドリカルレンズを構成する材料の熱変形温度が透明シートを構成する材料の熱変形温度よりも50℃以上高い加飾フィルムを備え、立体形状とされた成形体としての加飾製品も提案されている(例えば、特許文献2参照)。この加飾製品のシリンドリカルレンズの素材としては紫外線または電子線硬化型のアクリル樹脂が最適とされている。また、この加飾製品として、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)から形成された層を備えるものが記載されている。 The lenticular sheet is also used as a material of a molded body having a three-dimensional shape, that is, a modeling material. For example, a three-dimensional lenticular has been proposed as a molded body in which a lenticular sheet having a printed layer formed on the back surface is molded into the same shape as a part of the toy body and is attached to a part of the surface of the toy body. (For example, refer to Patent Document 1). In addition, for example, a three-dimensional shape is provided with a decorative film in which the thermal deformation temperature of the material constituting the cylindrical lens provided on one sheet surface of the transparent sheet is 50 ° C. higher than the thermal deformation temperature of the material constituting the transparent sheet. A decorative product as a molded body is also proposed (for example, see Patent Document 2). As a material for the cylindrical lens of the decorative product, an ultraviolet ray or an electron beam curable acrylic resin is most suitable. Further, as this decorative product, a product provided with a layer formed from ABS resin (acrylonitrile-butadiene-styrene copolymer) is described.
 また、凹凸形状をもつ透明または半透明の熱可塑性樹脂シートと、この熱可塑性樹脂シートの凹部を充填するように熱可塑性樹脂で形成した熱可塑性樹脂層とを備え、凹凸形状とされた面に画像が形成されている加飾成形用化粧シートが造形材として提案されている(例えば、特許文献3参照)。上記の透明または半透明の熱可塑性樹脂シートは、1.80MPaにおける荷重たわみ温度が120℃以上160℃以下の範囲の熱可塑性樹脂により形成されており、これにより、高温環境下における上記の凹凸形状の消失を防いでいる。そして、上記の凹凸形状は、画像が形成されている面からエンボス板やエンボスロールを押圧することにより形成している。 In addition, a transparent or translucent thermoplastic resin sheet having a concavo-convex shape and a thermoplastic resin layer formed of a thermoplastic resin so as to fill the concave portion of the thermoplastic resin sheet are provided on the concavo-convex shape surface. A decorative molding decorative sheet on which an image is formed has been proposed as a modeling material (see, for example, Patent Document 3). The transparent or translucent thermoplastic resin sheet is formed of a thermoplastic resin having a deflection temperature under load of 1.80 MPa in the range of 120 ° C. or higher and 160 ° C. or lower. Prevents the disappearance of And said uneven | corrugated shape is formed by pressing an embossing board or an embossing roll from the surface in which the image is formed.
特開2005-131261号公報JP 2005-131261 A 特表2016-508084号公報Special table 2016-508084 gazette 特開2014-162126号公報JP 2014-162126 A
 しかしながら、特許文献1において成形に供するレンチキュラシートと特許文献2の加飾フィルムとは、目的とする成形体の立体形状によっては、成形過程においてレンズに割れ及び/または過度な変形が生じることがある。また、特許文献2の加飾フィルムは、レンズを上記の硬化型のアクリル樹脂の塗布と硬化とにより形成しており、そのため製造効率がよいとは言えない。 However, the lenticular sheet used for molding in Patent Document 1 and the decorative film of Patent Document 2 may cause the lens to crack and / or excessively deform in the molding process depending on the three-dimensional shape of the target molded body. . Moreover, the decorative film of patent document 2 forms the lens by application | coating and hardening of said curable acrylic resin, Therefore It cannot be said that manufacturing efficiency is good.
 特許文献3の加飾成形用化粧シートは、前述のように、シートの内部に形成した凹凸形状が後の成形工程で維持されたとしても、そもそも画像が形成されている面からの押圧により凹凸形状が形成されるので画像と凹凸形状との位置対応が精緻ではない。そのため、この加飾成形用化粧シートは、高い精度が求められる用途の成形体の材料としては改善が望まれる。 As described above, the decorative sheet for decorative molding in Patent Document 3 is uneven by pressing from the surface on which the image is formed even if the uneven shape formed inside the sheet is maintained in the subsequent forming process. Since the shape is formed, the positional correspondence between the image and the uneven shape is not precise. Therefore, the decorative molding decorative sheet is desired to be improved as a material of a molded body for uses requiring high accuracy.
 そこで本発明は、複数のレンズが配されており、製造効率に優れ、成形過程においてレンズの割れと過度な変形とが抑制されるシート状の造形材と、この造形材から得られる立体造形物、及びそれらの製造方法を提供することを目的とする。 Accordingly, the present invention provides a sheet-shaped modeling material in which a plurality of lenses are arranged, which is excellent in manufacturing efficiency and suppresses cracking and excessive deformation of the lens in the molding process, and a three-dimensional modeled object obtained from the modeling material And a method for manufacturing the same.
 本発明の造形材は、光透過性のシートと、レンズ部とを備え、複数のレンズが配されたシート状である。シートは、第1の熱可塑性樹脂から形成されている。レンズ部は、シートの一方のシート面に設けられ、上記の複数のレンズを有し、第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂から形成されている。第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である。 The modeling material of the present invention has a sheet shape including a light transmissive sheet and a lens portion, and a plurality of lenses arranged. The sheet is formed from a first thermoplastic resin. The lens portion is provided on one sheet surface of the sheet, includes the plurality of lenses, and is formed of a second thermoplastic resin different from the first thermoplastic resin. When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is within the range of 0.65 to 0.95. is there.
 レンズは突条であることが好ましく、レンズ部は上記の複数のレンズが並列に配されていることが好ましい。 The lens is preferably a ridge, and the lens portion is preferably arranged with a plurality of the above-mentioned lenses in parallel.
 第1の熱可塑性樹脂と第2の熱可塑性樹脂とは、アクリル樹脂であることが好ましい。 The first thermoplastic resin and the second thermoplastic resin are preferably acrylic resins.
 シートの厚みは50μm以上400μm以下の範囲内であることが好ましい。 The thickness of the sheet is preferably in the range of 50 μm to 400 μm.
 シートの他方のシート面に設けられ、画像が形成された画像形成部を備えることが好ましい。画像形成部のシートと反対側の面に設けられ、第3の熱可塑性樹脂から形成されている保護層を備えることが好ましい。第3の熱可塑性樹脂はアクリロニトリル-ブタジエン-スチレン共重合体であることが好ましい。 It is preferable to provide an image forming unit provided on the other sheet surface of the sheet and having an image formed thereon. It is preferable to provide a protective layer provided on the surface of the image forming portion opposite to the sheet and formed from a third thermoplastic resin. The third thermoplastic resin is preferably an acrylonitrile-butadiene-styrene copolymer.
 本発明の立体造形物は、光透過性のシートと、レンズ部と、造形物本体とを備える。シートは、曲面とされたシート面を有し、第1の熱可塑性樹脂で形成されている。レンズ部は、シートの一方のシート面に、上記の曲面に沿って湾曲して設けられ、第2の熱可塑性樹脂から形成されており、複数のレンズが配されている。造形物本体は、シートの他方のシート面側に配され、少なくとも0.5mmの厚みに形成されている。第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である。 The three-dimensional structure of the present invention includes a light transmissive sheet, a lens portion, and a structure body. The sheet has a curved sheet surface and is formed of a first thermoplastic resin. The lens portion is provided on one of the sheet surfaces of the sheet so as to be curved along the curved surface, is formed of the second thermoplastic resin, and a plurality of lenses are disposed. The modeled object main body is disposed on the other sheet surface side of the sheet, and has a thickness of at least 0.5 mm. When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is within the range of 0.65 to 0.95. is there.
 立体造形物のレンズは突条であることが好ましく、レンズ部は複数のレンズが並列に配されていることが好ましい。 The lens of the three-dimensional structure is preferably a ridge, and it is preferable that a plurality of lenses are arranged in parallel in the lens portion.
 本発明の造形材の製造方法は、フィルム形成ステップと、レンズ形成ステップとを有し、複数のレンズが配されたシート状の造形材を製造する。フィルム形成ステップは、溶融した第1の熱可塑性樹脂と、第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂とを、共押出することによりフィルムを形成する。レンズ形成ステップは、表面に複数の凹部が形成されている形状付与部材によって、フィルムを第2の熱可塑性樹脂側から押圧することにより、上記の複数のレンズを形成する。第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である。 The manufacturing method of a modeling material of the present invention includes a film forming step and a lens forming step, and manufactures a sheet-shaped modeling material in which a plurality of lenses are arranged. The film forming step forms a film by co-extruding the molten first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin. The lens forming step forms the plurality of lenses by pressing the film from the second thermoplastic resin side with a shape imparting member having a plurality of concave portions formed on the surface. When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is within the range of 0.65 to 0.95. is there.
 本発明の立体造形物の製造方法は、フィルム形成ステップと、レンズ形成ステップと、成型ステップと、本体形成ステップとを有する。フィルム形成ステップは、光透過性の第1の熱可塑性樹脂と第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂とを、共押出することによりフィルムを形成する。レンズ形成ステップは、表面に複数の凹部が形成されている形状付与部材によってフィルムを第2の熱可塑性樹脂側から押圧することにより、第1の熱可塑性樹脂から形成されている光透過性のシートと、上記の複数のレンズを有し、シートの一方のシート面に設けられ、第2の熱可塑性樹脂から形成されているレンズ部とを備える造形材にする。成型ステップは、造形材を、立体形状に成型する。本体形成ステップは、造形材の第1の熱可塑性樹脂側に溶融樹脂を供給することにより、溶融樹脂から少なくとも0.5mmの厚みの造形物本体を形成する。第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である。 The manufacturing method of the three-dimensional structure according to the present invention includes a film forming step, a lens forming step, a molding step, and a main body forming step. In the film forming step, a film is formed by co-extruding a light-transmitting first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin. In the lens forming step, a light-transmitting sheet formed from the first thermoplastic resin by pressing the film from the second thermoplastic resin side with a shape-imparting member having a plurality of concave portions formed on the surface And a molding material including the plurality of lenses and a lens portion provided on one sheet surface of the sheet and formed of the second thermoplastic resin. In the molding step, the modeling material is molded into a three-dimensional shape. The main body forming step forms a molded article main body having a thickness of at least 0.5 mm from the molten resin by supplying the molten resin to the first thermoplastic resin side of the modeling material. When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is within the range of 0.65 to 0.95. is there.
 複数のレンズが配されている本発明の造形材によれば、製造効率に優れ、成形過程においてレンズの割れと過度な変形とが抑制され、本発明の立体造形物はレンズの割れと過度な変形が抑えられている。本発明の造形材の製造方法によれば、成形過程においてレンズの割れと過度な変形とが抑制された造形材が効率よく製造される。本発明の立体造形物の製造方法によれば、レンズの割れと過度な変形が抑えられた立体造形物が得られる。 According to the modeling material of the present invention in which a plurality of lenses are arranged, the manufacturing efficiency is excellent, and cracking and excessive deformation of the lens are suppressed in the molding process, and the three-dimensional modeled object of the present invention is excessively broken and cracked. Deformation is suppressed. According to the method for manufacturing a modeling material of the present invention, a modeling material in which cracking and excessive deformation of the lens are suppressed in the molding process is efficiently manufactured. According to the manufacturing method of the three-dimensional modeled object of the present invention, a three-dimensional modeled object in which cracking and excessive deformation of the lens are suppressed is obtained.
本発明を実施した造形材の層構造を説明する分解説明図である。It is decomposition | disassembly explanatory drawing explaining the layer structure of the modeling material which implemented this invention. 別の造形材の層構造を説明する分解説明図である。It is decomposition | disassembly explanatory drawing explaining the layer structure of another modeling material. 別の造形材の層構造を説明する分解説明図である。It is decomposition | disassembly explanatory drawing explaining the layer structure of another modeling material. 4つの観察位置から4種類の画像を視認させる構成の説明図である。It is explanatory drawing of the structure which makes four types of images visually recognized from four observation positions. レンズの別の配置態様を示す説明図である。It is explanatory drawing which shows another arrangement | positioning aspect of a lens. レンズを隙間無く配した例を示す説明図である。It is explanatory drawing which shows the example which has arrange | positioned the lens without the clearance gap. 造形材を用いて製造したダッシュボード材の使用態様を示す説明図である。It is explanatory drawing which shows the usage condition of the dashboard material manufactured using the modeling material. ダッシュボード材の層構造を説明する断面説明図である。It is sectional explanatory drawing explaining the layer structure of a dashboard material. 装飾部材における曲面とされたシート面の説明図である。It is explanatory drawing of the sheet | seat surface made into the curved surface in a decoration member. 造形材製造装置の概略図である。It is the schematic of a modeling material manufacturing apparatus. 成型装置の断面概略図である。It is a section schematic diagram of a forming device.
 本発明を実施した図1に示す造形材10は、加熱下での成形により立体形状の造形物(以下、立体造形物)とされる材料である。造形材10は、シート11とレンズ部12とを備え、本実施形態では、さらに画像形成部15と保護層16とを備えている。この例でのシート11は、光が透過する性質、すなわち光透過性を有すればよく、本実施形態では画像形成部15に記録された画像が認識できる程度に透明である。ここでの光は、可視光(波長範囲が概ね380nm以上750nm以下の領域)である。 The modeling material 10 shown in FIG. 1 embodying the present invention is a material that is made into a three-dimensional modeled object (hereinafter, three-dimensional modeled object) by molding under heating. The modeling material 10 includes a sheet 11 and a lens unit 12, and further includes an image forming unit 15 and a protective layer 16 in the present embodiment. The sheet 11 in this example is only required to have a light transmitting property, that is, a light transmitting property. In this embodiment, the sheet 11 is transparent to the extent that an image recorded in the image forming unit 15 can be recognized. The light here is visible light (wavelength range of approximately 380 nm to 750 nm).
 レンズ部12は、シート11の一方のシート面(以下、第1シート面と称する)11aに設けられている。なお、図1において、シート11の他方のシート面(以下、第2シート面と称する)には符号11bを付している。レンズ部12は、突条の複数のレンズ17を備え、各レンズ17は柱状である。これら複数のレンズ17は互いに接した状態で、突条のレンズ17が延びた方向(以下、延在方向と称する)と直交する方向に並んで配列、すなわち並列に配されている。なお、図中の符号EDはレンズ17の延在方向であり、符号LDは複数のレンズ17の並び方向である。レンズ部12は透明である。本実施形態のようにレンズ部12とシート11とがともに透明である場合などには互いの境界は視認されないが、図1では説明の便宜上、境界を破線で図示してある。レンズ部12とシート11との境界は、図1においては隣り合うレンズ17同士で形成される各谷部を結んだ面である。ただし、レンズ部12とシート11との境界はこの例に限られず、上記の各谷部よりも図1における下方である場合もある。その場合の第1シート面11aは、各谷部よりも図1における下方にある。 The lens unit 12 is provided on one sheet surface (hereinafter referred to as a first sheet surface) 11 a of the sheet 11. In FIG. 1, the other sheet surface of the sheet 11 (hereinafter referred to as the second sheet surface) is denoted by reference numeral 11 b. The lens unit 12 includes a plurality of ridged lenses 17, and each lens 17 is columnar. The plurality of lenses 17 are arranged in parallel in a direction orthogonal to the direction in which the protruding lens 17 extends (hereinafter referred to as the extending direction), that is, in contact with each other. In the figure, the symbol ED is the extending direction of the lens 17, and the symbol LD is the arranging direction of the plurality of lenses 17. The lens unit 12 is transparent. When the lens unit 12 and the sheet 11 are both transparent as in the present embodiment, the boundary between them is not visually recognized. However, in FIG. 1, the boundary is illustrated with a broken line for convenience of explanation. The boundary between the lens portion 12 and the sheet 11 is a surface connecting valleys formed by adjacent lenses 17 in FIG. However, the boundary between the lens portion 12 and the sheet 11 is not limited to this example, and may be lower in FIG. The first sheet surface 11a in that case is located below the valleys in FIG.
 レンズ17は、シリンドリカルレンズとされている。しかし、ここでのシリンドリカルレンズとは、断面形状が厳格な半円柱、すなわち凸のレンズ面(以下、第1レンズ面と称する)の断面形状が円弧である場合に限定されず、第1レンズ面の断面形状が放物線、楕円弧、その他の凸の曲線である場合のレンズも含む。 The lens 17 is a cylindrical lens. However, the cylindrical lens here is not limited to a semi-cylindrical section having a strict cross-sectional shape, that is, a convex lens surface (hereinafter referred to as a first lens surface) having a circular arc shape. Also included are lenses where the cross-sectional shape is a parabola, elliptical arc, or other convex curve.
 レンズ17の幅W17とレンズ17のピッチP17とは、50μm以上300μm以下の範囲内であることが好ましく、本実施形態では128μm(200lpi)としている(lpiは、line per inchである)。図1に示すように、レンズ17の幅W17とは複数のレンズ17の並び方向LDにおけるレンズ17の寸法であり、ピッチP17は、レンズ17の第1レンズ面側における頂部間距離である。レンズ17の曲率半径は25μm以上200μm以下の範囲内が好ましく、本実施形態では概ね75μmとしている。 The width W17 of the lens 17 and the pitch P17 of the lens 17 are preferably in the range of 50 μm or more and 300 μm or less. In this embodiment, the width W17 is set to 128 μm (200 lpi) (lpi is line per inch). As shown in FIG. 1, the width W17 of the lens 17 is a dimension of the lens 17 in the arrangement direction LD of the plurality of lenses 17, and the pitch P17 is a distance between the tops of the lenses 17 on the first lens surface side. The radius of curvature of the lens 17 is preferably in the range of 25 μm or more and 200 μm or less, and is approximately 75 μm in this embodiment.
 シート11は、第1の熱可塑性樹脂(熱可塑性ポリマー)から形成されており、レンズ部12は、第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂から形成されている。ここで、第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、第2の熱可塑性樹脂の荷重たわみ温度をTfbとする。Tfa/Tfbで求める比(以下、たわみ温度比と称する)は0.65以上0.95以下の範囲内であり、本実施形態では例えば0.81としている。たわみ温度比が0.65以上であることにより、0.65未満である場合に比べて、立体形状にする成形において、シート11が目的とする立体形状に確実に成形され、かつ、レンズ部12とレンズ17の割れ(以下、これらをまとめて単に「レンズ17の割れ」と称する)とが抑えられる。たわみ温度比が0.95以下であることにより、0.95よりも大きい場合に比べて、後の成形において、シート11が目的とする立体形状に確実に成形され、かつ、加熱によるレンズ17の過度な変形が確実に抑えられる。このように、たわみ温度比が上記範囲内であることにより、造形材10は、シート11の成形し易さとレンズ部12の成形し易さとのバランスが確実にとられ、その結果、立体形状にする成形過程においてレンズの割れと過度な変形とが抑えられる。したがって、このたわみ温度比を満たすような荷重たわみ温度をもつ熱可塑性樹脂を、第1の熱可塑性樹脂及び第2の熱可塑性樹脂として用いる。たわみ温度比は、0.70以上0.90以下の範囲内であることがより好ましく、0.75以上0.85以下の範囲内であることがさらに好ましい。 The sheet 11 is formed from a first thermoplastic resin (thermoplastic polymer), and the lens portion 12 is formed from a second thermoplastic resin different from the first thermoplastic resin. Here, the deflection temperature under load of the first thermoplastic resin is Tfa, and the deflection temperature under load of the second thermoplastic resin is Tfb. A ratio obtained by Tfa / Tfb (hereinafter referred to as a deflection temperature ratio) is in the range of 0.65 to 0.95, and is set to 0.81, for example, in the present embodiment. When the deflection temperature ratio is 0.65 or more, the sheet 11 is surely formed into the target three-dimensional shape in the three-dimensional shape as compared with the case of less than 0.65, and the lens portion 12 And cracking of the lens 17 (hereinafter collectively referred to simply as “the cracking of the lens 17”) can be suppressed. Since the deflection temperature ratio is 0.95 or less, the sheet 11 is surely formed into the target three-dimensional shape in the subsequent molding as compared with the case where the deflection temperature ratio is larger than 0.95, and the lens 17 is heated. Excessive deformation is reliably suppressed. Thus, when the deflection temperature ratio is within the above range, the modeling material 10 is surely balanced between the ease of molding of the sheet 11 and the ease of molding of the lens portion 12, and as a result, has a three-dimensional shape. In the molding process, the lens is prevented from cracking and excessive deformation. Therefore, a thermoplastic resin having a deflection temperature under load that satisfies this deflection temperature ratio is used as the first thermoplastic resin and the second thermoplastic resin. The deflection temperature ratio is more preferably in the range of 0.70 to 0.90, and still more preferably in the range of 0.75 to 0.85.
 上記の荷重たわみ温度は、2004年度のISO(国際標準化機構、International Organization for Standardization) 75-1、2に準じて測定する荷重たわみ温度(HDT)である。荷重は、低荷重である0.45MPaとしている。また試験片の作製条件とアニーリング条件と試験条件とは、2004年度のISO 8257のPMMA(ポリメチルメタアクリレート)樹脂規格または推奨する条件に従って試験を行う。 The above-mentioned deflection temperature under load is the deflection temperature under load (HDT) measured according to ISO (International Organization for Standardization) 75-1, 2 in 2004. The load is set to 0.45 MPa, which is a low load. Test specimen preparation conditions, annealing conditions, and test conditions are tested in accordance with ISO 8257 PMMA (polymethylmethacrylate) resin standard of 2004 or recommended conditions.
 第1の熱可塑性樹脂と第2の熱可塑性樹脂とは、一部の化学構造が互いに同じである樹脂であることが好ましく、主鎖中に互いに同じ化学構造をもつ樹脂であることがより好ましい。 The first thermoplastic resin and the second thermoplastic resin are preferably resins having some of the same chemical structure, more preferably resins having the same chemical structure in the main chain. .
 第1の熱可塑性樹脂と第2の熱可塑性樹脂としては、それぞれ、アクリル樹脂、ポリカーボネート(以下、PCと称する)、ポリ塩化ビニル(以下PVCと称する)、ポリエチレンテレフタレート(以下、PETと称する)、トリアセチルセルロース(以下、TACと称する)、アクリロニトリル-ブタジエン-スチレン共重合体(以下、ABSと称する)などが好ましく、中でも、アクリル樹脂とPCとPVCとがより好ましく、アクリル樹脂が耐候性(光と熱と湿度に対する耐性)に優れる観点でさらに好ましい。本実施形態では第1の熱可塑性樹脂と第2の熱可塑性樹脂とを、例えばアクリル樹脂としている。 As the first thermoplastic resin and the second thermoplastic resin, acrylic resin, polycarbonate (hereinafter referred to as PC), polyvinyl chloride (hereinafter referred to as PVC), polyethylene terephthalate (hereinafter referred to as PET), respectively. Triacetyl cellulose (hereinafter referred to as TAC), acrylonitrile-butadiene-styrene copolymer (hereinafter referred to as ABS), and the like are preferable. Among them, acrylic resin, PC, and PVC are more preferable, and acrylic resin is weather resistant (light And the resistance to heat and humidity are more preferable. In the present embodiment, the first thermoplastic resin and the second thermoplastic resin are, for example, acrylic resins.
 シート11の厚みTaは、50μm以上400μm以下の範囲内であることが好ましく、本実施形態では225μmとしている。シート11の厚みTaが50μm以上400μm以下の範囲内であることにより、50μm未満及び400μmより大きい場合に比べて、後の成形において、目的とする立体形状に確実に成形され、かつ、レンズの割れと過度な変形とがより確実に抑えられる。厚みTaは、75μm以上350μm以下の範囲内であることがより好ましく、100μm以上300μm以下の範囲内であることがさらに好ましい。 The thickness Ta of the sheet 11 is preferably in the range of 50 μm or more and 400 μm or less, and is 225 μm in this embodiment. When the thickness Ta of the sheet 11 is in the range of 50 μm or more and 400 μm or less, compared with the case where the thickness Ta is less than 50 μm or more than 400 μm, it is surely formed into the desired three-dimensional shape in the later forming, and the lens is cracked. And excessive deformation can be suppressed more reliably. The thickness Ta is more preferably in the range of 75 μm or more and 350 μm or less, and further preferably in the range of 100 μm or more and 300 μm or less.
 画像形成部15は、後述のダッシュボード材30(図7,図8参照)においてレンズ部12側から観察した際に、観察点の移動によって異なる画像が観察されるためのいわゆる画像表示体である。したがって、照明装置における光源のカバーなどの透明な立体造形物の材料とする場合には、画像形成部15は必ずしも設けなくてよい。画像形成部15は、シート11の第2シート面11bに設けられている。本例では、画像形成部15を第2シート面11bに印刷することにより記録した印刷部として設けているので厚みは観念されないが、図1においては説明の便宜上、厚みをもった層状に描いてある。画像形成部は、画像が記録された記録層としての印刷部と、印刷部が設けられた支持体とから構成されてもよく、この場合には、第2シート面11bには印刷部が接する。画像形成部15は、画像が転写により形成された転写層、顔料または染料により描かれた絵画や書画などであってもよい。本例の画像形成部15は塗料により形成したものであり、塗料としては顔料または染料等でもよい。 The image forming unit 15 is a so-called image display body for observing a different image by moving the observation point when observing from the lens unit 12 side in a dashboard material 30 (see FIGS. 7 and 8) described later. . Therefore, in the case of using a material for a transparent three-dimensional object such as a light source cover in the illumination device, the image forming unit 15 is not necessarily provided. The image forming unit 15 is provided on the second sheet surface 11 b of the sheet 11. In this example, since the image forming unit 15 is provided as a printing unit recorded by printing on the second sheet surface 11b, the thickness is not conceived. However, in FIG. is there. The image forming unit may include a printing unit as a recording layer on which an image is recorded and a support provided with the printing unit. In this case, the printing unit is in contact with the second sheet surface 11b. . The image forming unit 15 may be a transfer layer in which an image is formed by transfer, a picture or a drawing drawn with a pigment or a dye. The image forming unit 15 of this example is formed by a paint, and the paint may be a pigment or a dye.
 後述のダッシュボード材30(図7,図8参照)には、並び方向LDにおいて異なる2箇所の第1観察点と第2観察点とが設定されており、第1観察点からは第1の画像21を観察できるように、第2観察点からは第1の画像21と異なる第2の画像22を観察できるようにしてある。このように、画像形成部15は、可変視用の複数の画像を有する。第1観察点と第2観察点とのそれぞれにおいては、左右の目によって同一の画像が観察される。画像形成部15は、第1の画像21と第2の画像22とのそれぞれに応じた線状の画像部(以下、線状画像部と称する)21a,21b,21c,・・・,22a,22b,22,・・・からなる。第1の画像21を構成する線状画像部21a,21b,21c,・・・と第2の画像22を構成する線状画像部22a,22b,22c,・・・とは、それぞれ延在方向EDに延びており、並び方向LDにおいて交互に、かつ、各レンズ23に対応するように1対ずつ配されている。すなわち、図1に示すように、画像形成部15は、並び方向LDにおいて、複数のレンズ17の個々に対応する複数の領域に分割されており、これら複数の領域は、線状画像部21aと線状画像部22aとの対、線状画像部21bと線状画像部22bとの対、線状画像部21cと線状画像部22cとの対、・・・からそれぞれ構成されている。 The dashboard material 30 (see FIG. 7 and FIG. 8), which will be described later, has two first observation points and second observation points that are different in the arrangement direction LD, and the first observation point is the first observation point. The second image 22 different from the first image 21 can be observed from the second observation point so that the image 21 can be observed. Thus, the image forming unit 15 has a plurality of images for variable viewing. At each of the first observation point and the second observation point, the same image is observed by the left and right eyes. The image forming unit 15 includes linear image portions (hereinafter referred to as linear image portions) 21a, 21b, 21c,..., 22a, corresponding to the first image 21 and the second image 22, respectively. 22b, 22,... The linear image portions 21a, 21b, 21c,... Constituting the first image 21 and the linear image portions 22a, 22b, 22c,. The pair extends in the ED, and is arranged alternately in the arrangement direction LD and corresponding to each lens 23. That is, as shown in FIG. 1, the image forming unit 15 is divided into a plurality of regions corresponding to each of the plurality of lenses 17 in the arrangement direction LD, and these plurality of regions are separated from the linear image unit 21a. A pair of the linear image portion 22a, a pair of the linear image portion 21b and the linear image portion 22b, a pair of the linear image portion 21c and the linear image portion 22c,...
 この例では、並び方向LDにおいて、観察点を2つに設定していることから画像の数を、第1の画像21と第2の画像22との2つとしているが、設定する観察点の数と画像の数とは2つに限られない。すなわち、並び方向LDにおいて、設定する観察点の数と可変視用の画像の数とは3以上であってもよい。 In this example, two observation points are set in the arrangement direction LD, so the number of images is two, ie, the first image 21 and the second image 22, but the number of observation points to be set is The number and the number of images are not limited to two. That is, in the arrangement direction LD, the number of observation points to be set and the number of images for variable viewing may be three or more.
 この例では、線状画像部21a,21b,21c,・・・のそれぞれは、延在方向EDに延びたひとつの領域として形成されているが、これに限られない。例えば、線状画像部21a,21b,21c,・・・のそれぞれは、延在方向EDにおいて分割された複数の矩形の領域によって構成されてもよい。そして、これらの矩形の領域は、互いに同じ画像であってもよいし、異なる画像であってもよい。線状画像部22a,22b,22,・・・のそれぞれについても同様である。 In this example, each of the linear image portions 21a, 21b, 21c,... Is formed as one region extending in the extending direction ED, but is not limited thereto. For example, each of the linear image portions 21a, 21b, 21c,... May be configured by a plurality of rectangular regions divided in the extending direction ED. These rectangular areas may be the same image or different images. The same applies to each of the linear image portions 22a, 22b, 22,.
 第1の画像21と第2の画像22とは、可変視用の画像に限られず、立体視用の画像でもよい。すなわち、左目と右目との視差によって立体画像が観察されるような右視点画像と左視点画像とを第1の画像21と第2の画像22とにしてもよい。第1の画像21と第2の画像22とは、可変視用と立体視用とのいずれの画像とも異なる画像でもよい。例えば、第1の画像21と第2の画像22とによって、ひとつの柄である例えば一風景または一場面の描写等の画像を構成してもよい。 The first image 21 and the second image 22 are not limited to images for variable viewing, and may be images for stereoscopic viewing. That is, the first viewpoint image 21 and the second viewpoint image 22 may be a right viewpoint image and a left viewpoint image in which a stereoscopic image is observed by parallax between the left eye and the right eye. The first image 21 and the second image 22 may be different images from either the variable view image or the stereoscopic image. For example, the first image 21 and the second image 22 may constitute an image such as a scene or a scene description which is one pattern.
 保護層16は、後述するダッシュボード材本体41(図8参照)の材料が溶融した状態で接する際に、その溶融樹脂の熱から画像形成部15を保護するためのものである。保護層16は、画像形成部15のシート11と接する側とは反対側の面に設けられている。保護層16は、上記の溶融樹脂の熱からシート11とレンズ部12とを保護する機能も担っている。そのため画像形成部15が無い場合には、保護層16はシート11の第2シート面11bに設けるとよい。このように、保護層16は、画像形成部15とシート11とレンズ部12とを上記の溶融樹脂の熱から保護するためのものであるから、ダッシュボード材本体41を設けない場合のように溶融樹脂との接触が無い場合には、設けなくてもよい。ただし、画像形成部15を設ける場合には、画像形成部15が他の物に接触した際の傷付きを防止する観点において保護層16を設ける方が好ましい。 The protective layer 16 is for protecting the image forming unit 15 from the heat of the molten resin when a material of a dashboard material body 41 (see FIG. 8) to be described later contacts in a molten state. The protective layer 16 is provided on the surface of the image forming unit 15 opposite to the side in contact with the sheet 11. The protective layer 16 also has a function of protecting the sheet 11 and the lens unit 12 from the heat of the molten resin. Therefore, when there is no image forming unit 15, the protective layer 16 may be provided on the second sheet surface 11 b of the sheet 11. Thus, since the protective layer 16 is for protecting the image forming unit 15, the sheet 11, and the lens unit 12 from the heat of the molten resin, as in the case where the dashboard material body 41 is not provided. If there is no contact with the molten resin, it may not be provided. However, when the image forming unit 15 is provided, it is preferable to provide the protective layer 16 from the viewpoint of preventing the image forming unit 15 from being damaged when the image forming unit 15 contacts another object.
 保護層16は、第3の熱可塑性樹脂から形成されている。第3の熱可塑性樹脂としては上記の溶融樹脂により変性(例えば分解)しない樹脂であれば特に限定されず、例えば、ABS、PVC、アクリル樹脂、PC、ポリエステルなどが挙げられる。第3の熱可塑性樹脂は、上記の溶融樹脂と同じ樹脂であることがより好ましい。ダッシュボード材本体41との密着力がより向上するからである。本実施形態の第3の熱可塑性樹脂はABSである。 The protective layer 16 is made of a third thermoplastic resin. The third thermoplastic resin is not particularly limited as long as it is a resin that is not modified (for example, decomposed) by the molten resin, and examples thereof include ABS, PVC, acrylic resin, PC, and polyester. More preferably, the third thermoplastic resin is the same resin as the molten resin. This is because the adhesion with the dashboard material body 41 is further improved. The third thermoplastic resin of this embodiment is ABS.
 保護層16の厚みTcは、特に限定されないが、100μm以上1000μm以下の範囲内であることが好ましい。厚みTcが100μm以上であることにより、100μm未満である場合に比べて、溶融樹脂の熱による画像形成部15とレンズ部12とシート11との変性がより確実に抑えられる。厚みTcが1000μm以下であることにより、1000μmよりも大きい場合に比べて、目的とする立体形状に、より確実に成形される。厚みTcは、150μm以上800μm以下の範囲内であることがより好ましく、200μm以上600μm以下の範囲内であることがさらに好ましい。 The thickness Tc of the protective layer 16 is not particularly limited, but is preferably in the range of 100 μm to 1000 μm. When the thickness Tc is 100 μm or more, the deformation of the image forming unit 15, the lens unit 12, and the sheet 11 due to the heat of the molten resin is more reliably suppressed as compared with the case where the thickness Tc is less than 100 μm. When the thickness Tc is 1000 μm or less, it is more reliably formed into a target three-dimensional shape as compared with a case where the thickness Tc is larger than 1000 μm. The thickness Tc is more preferably in the range of 150 μm or more and 800 μm or less, and further preferably in the range of 200 μm or more and 600 μm or less.
 レンズ部が備える突条のレンズはシリンドリカルレンズに限られず、例えばプリズムでもよい。図2において、造形材110は、造形材10のレンズ部12をレンズ部112に変えた態様である。なお、図2において図1と同じ部材には図1と同じ符号を付し、説明を略す。 The lens of the protrusion provided in the lens unit is not limited to a cylindrical lens, and may be a prism, for example. In FIG. 2, the modeling material 110 is a mode in which the lens portion 12 of the modeling material 10 is changed to the lens portion 112. In FIG. 2, the same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG.
 レンズ部112は、突条の複数のレンズ117を備え、各レンズ117はレンズ17と同様に柱状であるが、プリズムである点でレンズ17と異なる。これら複数のレンズ117は互いに接した状態で、レンズ117の延在方向EDと直交する方向に並んでいる。レンズ部112は透明である。本実施形態ではレンズ部112とシート11とがともに透明であるから互いの境界は視認されないが、図2では説明の便宜上、境界を破線で図示してある。レンズ部112とシート11との境界は、図2においては隣り合うレンズ117同士で形成される各谷部を結んだ面である。ただし、レンズ部112とシート11との境界はこの例に限られず、上記の各谷部よりも図2における下方であってもよい。その場合の第1シート面11aは、各谷部よりも図2における下方にある。 The lens unit 112 includes a plurality of protruding lenses 117, and each lens 117 has a columnar shape like the lens 17, but is different from the lens 17 in that it is a prism. The plurality of lenses 117 are arranged in a direction perpendicular to the extending direction ED of the lens 117 while being in contact with each other. The lens part 112 is transparent. In the present embodiment, since both the lens unit 112 and the sheet 11 are transparent, the boundary between them is not visually recognized. However, in FIG. 2, the boundary is illustrated with a broken line for convenience of explanation. The boundary between the lens portion 112 and the sheet 11 is a surface connecting the valley portions formed by the adjacent lenses 117 in FIG. However, the boundary between the lens portion 112 and the sheet 11 is not limited to this example, and may be lower in FIG. The first sheet surface 11a in that case is below the valleys in FIG.
 レンズ117の幅W117とレンズ117のピッチP117とは、50μm以上300μm以下の範囲内であることが好ましく、本実施形態では100μmとしている。図2に示すように、レンズ117の幅W117は並び方向LDにおけるレンズ117の寸法であり、ピッチP117は、レンズ117の第1レンズ面側における頂部間距離である。レンズ部112の厚みTb(この例ではレンズ117の高さに等しい)は25μm以上200μm以下の範囲内が好ましく、本実施形態では30μmとしている。 The width W117 of the lens 117 and the pitch P117 of the lens 117 are preferably in the range of 50 μm or more and 300 μm or less, and in this embodiment, are 100 μm. As shown in FIG. 2, the width W117 of the lens 117 is the dimension of the lens 117 in the arrangement direction LD, and the pitch P117 is the distance between the tops of the lens 117 on the first lens surface side. The thickness Tb of the lens portion 112 (equal to the height of the lens 117 in this example) is preferably in the range of 25 μm or more and 200 μm or less, and is 30 μm in this embodiment.
 レンズ部が備えるレンズは突条のレンズに限られず、例えばマイクロレンズでもよい。図3において、造形材120は、造形材10のレンズ部12をレンズ部122に、画像形成部15を画像形成部125に、それぞれ変えた態様である。なお、図3において図1と同じ部材には図1と同じ符号を付し、説明を略す。 The lens provided in the lens unit is not limited to a protruding lens, and may be a microlens, for example. In FIG. 3, the modeling material 120 is a mode in which the lens portion 12 of the modeling material 10 is changed to the lens portion 122 and the image forming portion 15 is changed to the image forming portion 125. 3, the same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG.
 レンズ部122は、複数のレンズ127を備える。レンズ127は凸レンズであるが、凹レンズでもよい。レンズ127の表面形状は半球形としている。レンズ127の表面の形状は半球形以外の球冠状(部分球状)であってもよく、その場合には厳格な球冠の形でなくてもよい。レンズ127は、表面や断面などの具体的な形状については自由に設定できる。例えば、表面が放物線または楕円弧などで形成されたものであってもよい。さらに、複数の曲面を組み合わせることによって表面が形成されたものであってもよい。また、レンズ127は、錐形状(円錐状または角錐状)、または錘台状であってもよい。 The lens unit 122 includes a plurality of lenses 127. The lens 127 is a convex lens, but may be a concave lens. The surface shape of the lens 127 is hemispherical. The surface shape of the lens 127 may be a spherical crown shape (partial spherical shape) other than a hemispherical shape, and in that case, it may not be a strict spherical crown shape. The lens 127 can be freely set with respect to a specific shape such as a surface or a cross section. For example, the surface may be formed of a parabola or an elliptic arc. Furthermore, the surface may be formed by combining a plurality of curved surfaces. The lens 127 may have a cone shape (conical shape or pyramid shape) or a frustum shape.
 レンズ部122もレンズ部12及びレンズ部112と同様に透明である。したがって、レンズ部122とシート11との境界は視認されないが、図3では説明の便宜上、境界を破線で図示してある。レンズ部122とシート11との境界は、図3においては隣り合うレンズ127同士で形成される各谷部を結んだ面である。ただし、レンズ部122とシート11との境界はこの例に限られず、上記の各谷部よりも図3における下方であってもよい。その場合の第1シート面11aは、各谷部よりも図3における下方にある。 The lens part 122 is also transparent like the lens part 12 and the lens part 112. Therefore, although the boundary between the lens unit 122 and the sheet 11 is not visually recognized, the boundary is illustrated by a broken line in FIG. 3 for convenience of explanation. The boundary between the lens portion 122 and the sheet 11 is a surface connecting the valley portions formed by the adjacent lenses 127 in FIG. However, the boundary between the lens portion 122 and the sheet 11 is not limited to this example, and may be lower in FIG. The first sheet surface 11a in that case is below the valleys in FIG.
 複数のレンズ127は互いに接した状態で、第1シート面11aに正方配列している。レンズ127のピッチP127は508.0μm(50lpi)以上25.4μm(1000lpi)以下の範囲内であることが好ましく、本実施形態では150μmとしている。この例では、複数のレンズ127は互いに接した状態で正方配列しているから、レンズ127の径D127はピッチP127に等しく、150μmである。 The plurality of lenses 127 are in a square arrangement on the first sheet surface 11a in a state of being in contact with each other. The pitch P127 of the lens 127 is preferably in the range of 508.0 μm (50 lpi) or more and 25.4 μm (1000 lpi) or less, and is 150 μm in this embodiment. In this example, since the plurality of lenses 127 are arranged in a square shape in contact with each other, the diameter D127 of the lenses 127 is equal to the pitch P127 and is 150 μm.
 画像形成部125は、例えば後述のダッシュボード材30(図7参照)に用いた場合において、レンズ部122側から観察した際に観察される画像137が表示されたいわゆる画像表示体である。画像形成部125は、表示されている画像137を除いて画像形成部15と同様に構成されている。 The image forming unit 125 is a so-called image display body on which an image 137 observed when viewed from the lens unit 122 side when used for a dashboard material 30 (see FIG. 7) described later is displayed. The image forming unit 125 is configured in the same manner as the image forming unit 15 except for the displayed image 137.
 画像137は、例えば、カーボン調、木目調、アルミ調、石材調、土壁調などの柄、または単色ベタ画像である。また、画像は、風景や一場面の描写等の画像であってもよい。また、鏡面状の黒色に観察されるいわゆるピアノブラックの画像、真珠表面のように観察する角度によって異なる光沢が視認されるあるパールホワイトの画像でもよい。 The image 137 is, for example, a pattern such as carbon tone, woodgrain tone, aluminum tone, stone tone, earth wall tone, or a monochromatic solid image. Further, the image may be an image such as a landscape or a scene description. Further, it may be a so-called piano black image observed in a mirror-like black color, or a pearl white image in which a different luster is visually recognized depending on an observation angle, such as a pearl surface.
 さらに、画像形成部125の画像は、ダッシュボード材30などに用いた場合には、レンズ部122の各レンズ127を介して視認されるため、観察点によって視認される領域が異なる。このため、例えば、図4に示すように、第1観察点から視認される領域に第1の画像137a、第2観察点から視認される領域に第2の画像137b、第3観察点から視認される領域に第3の画像137c、第4観察点から視認される領域に第4の画像137dをそれぞれ表示してもよい。これにより、観察点によって異なる画像が視認される。 Furthermore, when the image of the image forming unit 125 is used for the dashboard material 30 or the like, the image is viewed through each lens 127 of the lens unit 122, and therefore, the region visually recognized differs depending on the observation point. For this reason, for example, as shown in FIG. 4, the first image 137a is visible in the region visually recognized from the first observation point, and the second image 137b is visible in the region visually recognized from the second observation point. The third image 137c may be displayed in the region to be displayed, and the fourth image 137d may be displayed in the region visually recognized from the fourth observation point. Thereby, a different image is visually recognized depending on the observation point.
 観察点から視認される画像の種類は3つ以下であってもよいし、5つ以上であってもよい。また、前述のように観察点によって異なる画像を視認させる例、すなわち、画像形成部125に可変視用の画像を表示する例に限定されない。例えば、左目と右目との視差によって立体画像が観察されるための右視点画像と左視点画像とを、立体視用の画像として表示してもよい。 The number of images visually recognized from the observation point may be three or less, or may be five or more. Further, the present invention is not limited to the example in which different images are visually recognized depending on the observation point as described above, that is, the example in which the image for variable vision is displayed on the image forming unit 125. For example, a right viewpoint image and a left viewpoint image for observing a stereoscopic image by parallax between the left eye and the right eye may be displayed as a stereoscopic image.
 なお、マイクロレンズの配置パターン及びピッチは上記の例に限定されない。例えば、図5に示すレンズ部142は、第1シート面11aにレンズ127が互い違い(zigzag)に配列されており、このような配置パターンでもよい。また、図6に示すレンズ部152は、第1シート面11aにレンズ127aが隙間なく配置されており、このような態様でもよい。レンズ127aは、レンズ127(図3参照)をその凸のレンズ面である第1レンズ面側から見たときに、第1の方向D1における両端部と、第1の方向D1と直交する第2の方向D2における両端部とを、それぞれ切り落とした矩形とされている。このように矩形のレンズ127aを正方配列することによりレンズ間の隙間を無くしている。マイクロレンズを有するレンズ部は、一部または全部のレンズを、間隔を開けて配置(離間配置)してもよい。また、形状及び/または大きさの異なる複数種類のレンズを第1シート面11aに配してもよい。さらに、位置によってレンズのピッチを異ならせてもよい。 Note that the arrangement pattern and pitch of the microlenses are not limited to the above example. For example, the lens unit 142 illustrated in FIG. 5 may have such an arrangement pattern in which the lenses 127 are alternately arranged on the first sheet surface 11a. Moreover, the lens part 152 shown in FIG. 6 has the lens 127a arrange | positioned on the 1st sheet | seat surface 11a without a gap, and such an aspect may be sufficient as it. When the lens 127 (see FIG. 3) is viewed from the first lens surface side that is the convex lens surface, the lens 127a includes both ends in the first direction D1 and a second direction orthogonal to the first direction D1. The two end portions in the direction D2 are respectively rectangles cut off. In this way, the rectangular lenses 127a are squarely arranged to eliminate gaps between the lenses. In the lens unit having the microlens, a part or all of the lenses may be arranged (separated) at intervals. A plurality of types of lenses having different shapes and / or sizes may be arranged on the first sheet surface 11a. Further, the lens pitch may be varied depending on the position.
 造形材10,110,120は立体造形物の材料とされる。図7に示すダッシュボード材30は、立体造形物の一例である。ダッシュボード材30は、自動車31の内装品であり、ダッシュボード34の一部を構成している。ダッシュボード材30は、対向する観察者側に凸に湾曲した立体形状とされ、断面楕円弧状にされた前面部30Aと、前面部30Aの図7における左右の各側方に配され、球面状にされた側面部30Bとが一体に形成されたものである。立体造形物の他の例としては、ダッシュボード材30と異なる湾曲形状をもち、ステアリングホイール35またはドアパネル36の例えば一部とされる部材が挙げられる。また、立体造形物は、自動車の内装品に限られず、例えば、家電、スーツケース、玩具などでもよい。なお、図7において、矢線Xは鉛直方向、矢線Yは自動車31内からフロントガラス(自動車の前方側の窓、windshield,windscreen)を見たときにおける左右方向、矢線Zは前方向をそれぞれ意味する。 The modeling material 10, 110, 120 is a material of a three-dimensional model. The dashboard material 30 illustrated in FIG. 7 is an example of a three-dimensional model. The dashboard material 30 is an interior part of the automobile 31 and constitutes a part of the dashboard 34. The dashboard member 30 has a three-dimensional shape that is convexly curved toward the opposing observer side, and has a front surface portion 30A having an elliptical cross section, and is disposed on each of the left and right sides of the front surface portion 30A in FIG. The side part 30B made into one is formed integrally. As another example of the three-dimensional modeled object, a member that has a curved shape different from that of the dashboard material 30 and is, for example, a part of the steering wheel 35 or the door panel 36 can be given. In addition, the three-dimensional model is not limited to an automobile interior item, and may be, for example, a home appliance, a suitcase, a toy, or the like. In FIG. 7, the arrow line X indicates the vertical direction, the arrow line Y indicates the left and right direction when the windshield (windshield, windscreen) is viewed from the inside of the automobile 31, and the arrow line Z indicates the forward direction. Each means.
 ダッシュボード材30は、図8に示すように、厚み方向に重なったダッシュボード材本体41と装飾部材42とにより構成されている。装飾部材42は、造形材が立体形状に変形したものであり、造形材としては前述の造形材10と造形材110と造形材120とのいずれを用いることができる。また、造形材120のレンズ部は、前述のレンズ部122とレンズ部142とレンズ部152とのいずれであってもよい。以下、造形材10を用いた場合を例に説明する。 As shown in FIG. 8, the dashboard material 30 is composed of a dashboard material body 41 and a decorative member 42 that overlap in the thickness direction. The decorative member 42 is obtained by deforming the modeling material into a three-dimensional shape, and any of the above-described modeling material 10, the modeling material 110, and the modeling material 120 can be used as the modeling material. Further, the lens portion of the modeling material 120 may be any of the lens portion 122, the lens portion 142, and the lens portion 152 described above. Hereinafter, a case where the modeling material 10 is used will be described as an example.
 装飾部材42は、造形材10が立体形状に変形したものであり、ダッシュボード材本体41の観察者側表面を覆うように配されている。なお、ダッシュボード材30は前述のように湾曲しているが、図8においては便宜上平坦に描いてある。ダッシュボード材本体41は、ダッシュボード34を形成するための造形物本体であり、ダッシュボード34として機能するための耐衝撃性と剛性と耐熱性などを有し、熱可塑性樹脂から形成されている。 The decorative member 42 is obtained by deforming the modeling material 10 into a three-dimensional shape, and is arranged so as to cover the observer side surface of the dashboard material main body 41. The dashboard member 30 is curved as described above, but is drawn flat for convenience in FIG. The dashboard material main body 41 is a shaped article main body for forming the dashboard 34, and has impact resistance, rigidity, heat resistance, etc. for functioning as the dashboard 34, and is formed from a thermoplastic resin. .
 ダッシュボード材本体41を形成する熱可塑性樹脂としては、例えば、ABS、PCと称する)とABSとのアロイ(ブレンド)、アクリロニトリル・スチレン・グラスファイバなど公知の種々のものを用いることができ、本実施形態では、ABSとしてある。なお、上記のアクリロニトリル・スチレン・グラスファイバとは、グラスファイバを含有するアクリロニトリル-スチレン共重合体であり、アクリロニトリル-スチレン共重合体とグラスファイバとのいわゆる複合材料である。 As the thermoplastic resin forming the dashboard body 41, various known materials such as an alloy (blend) of ABS and ABS, acrylonitrile / styrene / glass fiber, and the like can be used. In the embodiment, it is an ABS. The acrylonitrile / styrene / glass fiber is an acrylonitrile-styrene copolymer containing glass fiber, and is a so-called composite material of acrylonitrile / styrene copolymer and glass fiber.
 ダッシュボード材本体41の厚みT41は特に限定されず、ダッシュボード34としての目的とする機能と素材とに応じて適宜設定してよいが、小さくとも0.5mmであることが好ましい。厚みT41が0.5mm以上であることにより、0.5mmよりも小さい場合に比べて、ダッシュボード材30の機械的強度が大きい。厚みT41は0.5mm以上30mm以下の範囲内であることがより好ましい。厚みT41が30mm以下であることにより、30mmよりも大きい場合に比べて重量が小さいから自動車31(図7参照)の軽量化に寄与する。厚みT41は、1mm以上20mm以下の範囲内であることがさらに好ましく、2mm以上10mm以下の範囲内であることが特に好ましい。 The thickness T41 of the dashboard material main body 41 is not particularly limited, and may be appropriately set according to the intended function and material as the dashboard 34, but is preferably at least 0.5 mm. When the thickness T41 is 0.5 mm or more, the mechanical strength of the dashboard member 30 is greater than when the thickness T41 is smaller than 0.5 mm. The thickness T41 is more preferably in the range of 0.5 mm to 30 mm. When the thickness T41 is 30 mm or less, the weight is smaller than when the thickness T41 is larger than 30 mm, which contributes to the weight reduction of the automobile 31 (see FIG. 7). The thickness T41 is more preferably in the range of 1 mm to 20 mm, and particularly preferably in the range of 2 mm to 10 mm.
 装飾部材42は、外部から入射した光を屈折させるなどにより、光の見え方に変化を与えるためのものである。装飾部材42は、前述の通り、造形材10が立体形状に変形したものだから、造形材10と同様の層構造を有し、造形材10と同じ素材から形成されている。したがって、装飾部材42のシート11は第1の熱可塑性樹脂から形成されており、レンズ部12は第2の熱可塑性樹脂から形成されており、保護層16は第3の熱可塑性樹脂から形成されている。また、装飾部材42は造形材10が立体形状に変形したものだから、レンズ17の形状や高さ、レンズ部12の厚み、シート11の厚みなどが造形材10とは異なった部分を有するが、構成部材は同じであるので、装飾部材42の構成部材のそれぞれの名称及び符号は、造形材10の構成部材の名称及び符号と同じにし、また、装飾部材42の層構造の図示は略す。装飾部材42は、保護層16がダッシュボート材本体41と接する状態に、ダッシュボード材本体41と密着して設けられている。装飾部材42のシート11は、ダッシュボード材30と同様に湾曲した形状をもち、その形状の詳細については、別の図面を用いて後述する。 The decoration member 42 is for changing the appearance of light by refracting light incident from the outside. As described above, the decorative member 42 has the same layer structure as the modeling material 10 and is formed of the same material as the modeling material 10 because the modeling material 10 is deformed into a three-dimensional shape. Therefore, the sheet 11 of the decorative member 42 is formed from the first thermoplastic resin, the lens portion 12 is formed from the second thermoplastic resin, and the protective layer 16 is formed from the third thermoplastic resin. ing. Further, since the decorative member 42 is obtained by deforming the modeling material 10 into a three-dimensional shape, the shape and height of the lens 17, the thickness of the lens portion 12, the thickness of the sheet 11, and the like have portions different from the modeling material 10. Since the constituent members are the same, the names and symbols of the constituent members of the decorative member 42 are the same as the names and symbols of the constituent members of the modeling material 10, and the illustration of the layer structure of the decorative member 42 is omitted. The decorative member 42 is provided in close contact with the dashboard material body 41 so that the protective layer 16 is in contact with the dashboard material body 41. The seat 11 of the decorative member 42 has a curved shape similar to the dashboard material 30, and details of the shape will be described later with reference to another drawing.
 装飾部材42は、一方の表面に突条の複数のレンズ17を有しており、図8においては、各レンズ23は、突条が紙面奥行方向に延びているものとして描いてある。装飾部材42は、各レンズ23が観察者側に、反対側の面がダッシュボード材本体41側に向いた状態で配される。装飾部材42の厚みT42は、位置によって若干異なる。なお、装飾部材42は、湾曲したシート11の曲面に沿ってレンズ部12が設けられているから、シート11及びダッシュボード材10と同様に湾曲しているが、図8においては便宜上平坦に描いてある。 The decorative member 42 has a plurality of ridged lenses 17 on one surface, and in FIG. 8, each lens 23 is depicted as a ridge extending in the depth direction of the drawing. The decoration member 42 is arranged in a state where each lens 23 faces the observer side and the opposite surface faces the dashboard material body 41 side. The thickness T42 of the decorative member 42 is slightly different depending on the position. Note that the decorative member 42 is provided with the lens portion 12 along the curved surface of the curved sheet 11, and thus is curved in the same manner as the sheet 11 and the dashboard material 10, but is drawn flat for convenience in FIG. It is.
 装飾部材42のシート11の第1シート面11a及び第2シート面11bとの曲面について、図9を参照しながら説明する。なお、第1シート面11aと第2シート面11bとは同様の形状をもつので、第1シート面11aについて詳細に説明し、第2シート面11bについては説明を略す。装飾部材42のシート11は、図9に示すようにダッシュボード材30の前面部30A(図1参照)の構成部材である前面部11Aと、側面部30B(図1参照)の構成部材である側面部11Bとが一体に形成されたものである。装飾部材42の第1シート面11aは、法線の方向が異なる3つの領域を有しており、各領域の法線の方向のうち1つが他の2つを含む平面に傾きをもつ曲面とされている。具体的には以下である。 The curved surface with the 1st sheet surface 11a and the 2nd sheet surface 11b of the sheet | seat 11 of the decoration member 42 is demonstrated, referring FIG. In addition, since the 1st sheet surface 11a and the 2nd sheet surface 11b have the same shape, it demonstrates in detail about the 1st sheet surface 11a, and abbreviate | omits description about the 2nd sheet surface 11b. As shown in FIG. 9, the seat 11 of the decorative member 42 is a constituent member of the front face portion 11 </ b> A that is a constituent member of the front face portion 30 </ b> A (see FIG. 1) and the side face portion 30 </ b> B (see FIG. 1). The side surface portion 11B is integrally formed. The first sheet surface 11a of the decorative member 42 has three regions with different normal directions, and one of the normal directions of each region is a curved surface having an inclination in a plane including the other two. Has been. Specifically:
 前面部11Aの第1シート面11a上の任意の2つの領域を第1領域AR1と第2領域AR2とし、側面部11Bの第1シート面11a上の任意の領域を第3領域AR3とする。なお、図9においては、第1領域AR1と第2領域AR2とは、XZ平面上に採っているが、これに限られない。第1領域AR1からの法線を第1法線N1とし、第2領域AR2からの法線を第2法線N2とし、第3領域からの法線を第3法線N3とするときに、第1法線N1の方向と第2法線N2との方向とを含む平面PLが観念される。このように、平面PLは、2つの「方向」を含む平面である。よって、本例のように2つの「直線(第1法線N1と第2法線N2)」がねじれの位置にない場合、平面PLは、2つの直線を含む平面と同じ平面となる。一方、2つの直線がねじれの位置にある場合、この2つの直線を含む平面は観念できないが、この2つの直線の「方向」を含む平面は観念可能であり、この平面(ねじれの位置にある2つの直線の「方向」を含む平面)が平面PLとして観念される。すなわち、平面PLは、2つの直線を含む平面として定義しておらず、2つの直線の「方向」を含む平面として定義しているので、第1法線N1と第2法線N2とが仮にねじれの位置にある場合であっても、平面PLは観念される。そして、第3法線N3の方向は、平面PLに対して傾いている。なお、第1領域AR1と第2領域AR2とを側面部11Bから採り、かつ、第3領域AR3を前面部11Aから採ってもよい。また、第1領域AR1と第3領域AR3とを前面部11Aから採り、かつ、第2領域AR2を側面部11Bから採ってもよい。 Arbitrary two regions on the first sheet surface 11a of the front surface portion 11A are defined as a first region AR1 and a second region AR2, and an arbitrary region on the first sheet surface 11a of the side surface portion 11B is defined as a third region AR3. In FIG. 9, the first area AR1 and the second area AR2 are taken on the XZ plane, but the present invention is not limited to this. When the normal from the first region AR1 is the first normal N1, the normal from the second region AR2 is the second normal N2, and the normal from the third region is the third normal N3, A plane PL including the direction of the first normal line N1 and the direction of the second normal line N2 is considered. Thus, the plane PL is a plane including two “directions”. Therefore, when two “straight lines (first normal line N1 and second normal line N2)” are not in the twisted position as in this example, the plane PL is the same plane as the plane including the two straight lines. On the other hand, if the two straight lines are in a twisted position, the plane containing the two straight lines cannot be considered, but the plane containing the “direction” of the two straight lines can be considered, and this plane (in the twisted position) A plane including the “directions” of two straight lines) is considered as the plane PL. That is, the plane PL is not defined as a plane including two straight lines but is defined as a plane including “directions” of the two straight lines, so that the first normal line N1 and the second normal line N2 are assumed to be Even in the twisted position, the plane PL is considered. The direction of the third normal line N3 is inclined with respect to the plane PL. Note that the first region AR1 and the second region AR2 may be taken from the side surface portion 11B, and the third region AR3 may be taken from the front surface portion 11A. Alternatively, the first region AR1 and the third region AR3 may be taken from the front surface portion 11A, and the second region AR2 may be taken from the side surface portion 11B.
 したがって、シート11は、レンズ17の延在方向EDと複数のレンズ17の並び方向LDとに曲がっている。そして、レンズ部12と画像形成部15とはそれぞれ、以上のような曲面に沿って湾曲して設けられているから、装飾部材42も、レンズ17の延在方向EDと、複数のレンズ17の並び方向LDとに、曲がった形状を有する。 Therefore, the sheet 11 is bent in the extending direction ED of the lens 17 and the arrangement direction LD of the plurality of lenses 17. Since the lens unit 12 and the image forming unit 15 are provided to be curved along the curved surfaces as described above, the decorative member 42 also includes the extending direction ED of the lens 17 and the plurality of lenses 17. The arrangement direction LD has a bent shape.
 これにより、シート11と画像形成部15との界面で反射した光に不均一さをもった画像として第1の画像21(図1参照)と第2の画像22(図1参照)とがそれぞれ観察され、たとえば色の濃淡及び/または明度差をもって観察される。可変視用の第1の画像21と第2の画像22とが形成されている場合には、第1観察点と第2観察点との一方から他方への移動によって、観察される画像が第1の画像21から第2の画像22へ、または第2の画像22から第1の画像21へと切り替わり、切り替え後の画像においても、光の見え方に変化を与える。そのため、観察点の移動中は、光の見え方が装飾部材42の部位毎に異なり、また、切り替わりのタイミングも部位毎に異なるから、観察される画像は、変化に富んだ例えば図柄として観察される。その結果、意匠性が高まり、装飾性に富む内装となる。 As a result, the first image 21 (see FIG. 1) and the second image 22 (see FIG. 1) are obtained as images having nonuniformity in the light reflected at the interface between the sheet 11 and the image forming unit 15, respectively. Observed, for example, with color shading and / or brightness differences. In the case where the first image 21 and the second image 22 for variable vision are formed, the image to be observed becomes the first by moving from one of the first observation point and the second observation point to the other. Switching from the first image 21 to the second image 22 or from the second image 22 to the first image 21 also changes the appearance of light in the switched image. For this reason, during the movement of the observation point, the way the light appears differs from part to part of the decorative member 42, and the switching timing also differs from part to part, so that the observed image is observed as a pattern with many changes, for example. The As a result, the design is enhanced and the interior is rich in decorativeness.
 ダッシュボード材30の製造方法について、以下に説明する。図10に示すように、造形材10を製造する造形材製造装置50は、押出機52と、レンズ形成ユニット55と、印刷機56と、切断機58などから構成されている。 The manufacturing method of the dashboard material 30 will be described below. As shown in FIG. 10, the modeling material manufacturing apparatus 50 that manufactures the modeling material 10 includes an extruder 52, a lens forming unit 55, a printing machine 56, a cutting machine 58, and the like.
 押出機52は、第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとをそれぞれ加熱することにより溶融し、これらの各流れを膜状に形成した後に、形成された膜状の流れを合流させることにより、厚み方向に重ねた状態でレンズ形成ユニット55の第1支持ローラ71の周面へ押し出す(共押出)。なお、押出機52は図10において第1の熱可塑性樹脂61aの上に第2の熱可塑性樹脂61bが位置する状態に、第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとを押し出す。これにより、第1支持ローラ71の周面には、第1の熱可塑性樹脂61aの上に第2の熱可塑性樹脂61bが重なったフィルム61が連続的に形成される(フィルム形成ステップ)。なお、この例では、第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとを第1支持ローラ71上へ押し出しているが、この態様に限られない。例えば、長尺の支持体を送出する送出機(図示無し)を第1支持ローラ71の上流に設け、この送出機から支持体を送出し、支持体上へ第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとを押し出してもよい。その場合には、第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとからなるフィルム61は支持体とともに第1支持ローラ71へ供給される。 The extruder 52 melts each of the first thermoplastic resin 61a and the second thermoplastic resin 61b by heating, and forms each of these flows into a film shape. By merging them, they are extruded onto the circumferential surface of the first support roller 71 of the lens forming unit 55 in a state where they are overlapped in the thickness direction (coextrusion). In addition, the extruder 52 extrudes the 1st thermoplastic resin 61a and the 2nd thermoplastic resin 61b in the state in which the 2nd thermoplastic resin 61b is located on the 1st thermoplastic resin 61a in FIG. . As a result, the film 61 in which the second thermoplastic resin 61b is superimposed on the first thermoplastic resin 61a is continuously formed on the peripheral surface of the first support roller 71 (film forming step). In this example, the first thermoplastic resin 61a and the second thermoplastic resin 61b are extruded onto the first support roller 71, but the present invention is not limited thereto. For example, a delivery device (not shown) for delivering a long support is provided upstream of the first support roller 71, the support is delivered from this delivery device, and the first thermoplastic resin 61a and the first thermoplastic resin 61a are supplied onto the support. The second thermoplastic resin 61b may be extruded. In that case, the film 61 composed of the first thermoplastic resin 61a and the second thermoplastic resin 61b is supplied to the first support roller 71 together with the support.
 なお、レンズ形成ユニット55と切断機58との間には、周方向に回転する駆動ローラ(図示無し)が配されている。フィルム61は、この駆動ローラに巻き掛けられており、駆動ローラの回転により造形材製造装置50の下流に向かってフィルム61は搬送される。 A driving roller (not shown) that rotates in the circumferential direction is disposed between the lens forming unit 55 and the cutting machine 58. The film 61 is wound around the drive roller, and the film 61 is conveyed toward the downstream side of the modeling material manufacturing apparatus 50 by the rotation of the drive roller.
 レンズ形成ユニット55は、造形材10の各レンズ17を形成(賦形)するためのものである。レンズ形成ユニット55は、第1支持ローラ71と、第2支持ローラ72と、形状付与部材としての形状付与ローラ73とを備える。第1支持ローラ71と第2支持ローラ72と形状付与ローラ73とは回転軸をフィルム61の幅方向、すなわち図10の紙面奥行き方向にした状態に配してある。上流側から順に第1支持ローラ71、形状付与ローラ73、第2支持ローラ72が配置されている。 The lens forming unit 55 is for forming (shaping) each lens 17 of the modeling material 10. The lens forming unit 55 includes a first support roller 71, a second support roller 72, and a shape imparting roller 73 as a shape imparting member. The first support roller 71, the second support roller 72, and the shape imparting roller 73 are arranged in a state where the rotation axis is in the width direction of the film 61, that is, the depth direction of the paper surface of FIG. 10. A first support roller 71, a shape imparting roller 73, and a second support roller 72 are arranged in order from the upstream side.
 第1支持ローラ71と第2支持ローラ72とは、この例では、フィルム61の搬送路に関して形状付与ローラ73とは反対側に配されており、周面にフィルム61が巻き掛けられる。第1支持ローラ71と第2支持ローラ72とは、フィルム61の搬送にともなって従動回転してもよいし、第1支持ローラ71と第2支持ローラ72とをモータによりフィルム61の搬送に同期して回転させてもよい。 In this example, the first support roller 71 and the second support roller 72 are arranged on the opposite side of the shape imparting roller 73 with respect to the transport path of the film 61, and the film 61 is wound around the peripheral surface. The first support roller 71 and the second support roller 72 may be driven to rotate as the film 61 is transported, or the first support roller 71 and the second support roller 72 are synchronized with the transport of the film 61 by a motor. And may be rotated.
 形状付与ローラ73は、第1支持ローラ71及び第2支持ローラ72と協働して、フィルム61の第2の熱可塑性樹脂61bに、半円柱状に突出したレンズ面をもつレンズ部12を連続的に形成する。すなわち、第1支持ローラ71と第2支持ローラ72とは、フィルム61を支持する支持部材として機能し、かつ、突出したレンズ面を形成するための形状付与の部材としても機能する。 The shape imparting roller 73 cooperates with the first support roller 71 and the second support roller 72 to continuously connect the lens portion 12 having a lens surface protruding in a semi-cylindrical shape to the second thermoplastic resin 61 b of the film 61. Form. That is, the first support roller 71 and the second support roller 72 function as a support member that supports the film 61, and also function as a shape-giving member for forming a protruding lens surface.
 形状付与ローラ73の周面には、レンズ部12を形成するために、断面半円柱状の凹部73aが複数形成されている。各凹部73aは、形状付与ローラ73の軸方向、すなわちフィルム61の幅方向に延びており、複数の凹部73aは形状付与ローラ73の周方向に沿って並んで形成されている。この形状付与ローラ73は、第1支持ローラ71及び第2支持ローラ72とのそれぞれの間にフィルム61を狭持した状態で、モータ76により回転する。形状付与ローラ73の回転方向は、フィルム61を搬送する方向(図10中における反時計回りの方向)である。この形状付与ローラ73は、搬送中のフィルム61を、第1支持ローラ71上と、第2支持ローラ72上と、第1支持ローラ71と第2支持ローラ72との間とのそれぞれにおいて、第2の熱可塑性樹脂61b側から押圧することによりこの第2の熱可塑性樹脂61bに凹部73aの形状を転写し、レンズ部12を形成する(レンズ形成ステップ)。なお、各凹部73aが、形状付与ローラの周方向、すなわちフィルム61の長手方向に延びており、複数の凹部73aが形状付与ローラの軸方向に沿って並んで形成されていてもよい。 A plurality of concave portions 73 a having a semi-cylindrical cross section are formed on the peripheral surface of the shape imparting roller 73 in order to form the lens portion 12. Each recess 73 a extends in the axial direction of the shape imparting roller 73, that is, in the width direction of the film 61, and the plurality of recesses 73 a are formed side by side along the circumferential direction of the shape imparting roller 73. The shape imparting roller 73 is rotated by a motor 76 with the film 61 sandwiched between the first support roller 71 and the second support roller 72. The rotation direction of the shape imparting roller 73 is a direction in which the film 61 is conveyed (counterclockwise direction in FIG. 10). The shape imparting roller 73 causes the film 61 being transported to move on the first support roller 71, the second support roller 72, and between the first support roller 71 and the second support roller 72. By pressing from the side of the second thermoplastic resin 61b, the shape of the recess 73a is transferred to the second thermoplastic resin 61b to form the lens portion 12 (lens formation step). In addition, each recessed part 73a is extended in the circumferential direction of the shape provision roller, ie, the longitudinal direction of the film 61, and the some recessed part 73a may be formed along with the axial direction of the shape provision roller.
 形状付与ローラ73の凹部73aの形状は、形成するレンズ17(図1参照)の形状に応じて決められている。例えばレンズ17が凹レンズである場合には、隣り合う凹レンズと凹レンズとによって形成される凸部分が、形状付与ローラ73の凹部73aの形状として設定される。また、例えば、形状付与ローラ73の凹部72aを断面三角形に形成することにより、レンズ117をもつ造形材110をつくることができ、また、半球形に形成することにより、レンズ127をもつ造形材120をつくることができる。このように、形状付与部材の表面の凹部の形状は、目的とするレンズ部のレンズ形状に応じて決められる。 The shape of the recess 73a of the shape imparting roller 73 is determined according to the shape of the lens 17 to be formed (see FIG. 1). For example, when the lens 17 is a concave lens, a convex portion formed by adjacent concave lenses and concave lenses is set as the shape of the concave portion 73 a of the shape imparting roller 73. Further, for example, the forming material 110 having the lens 117 can be formed by forming the concave portion 72a of the shape imparting roller 73 in a triangular shape, and the forming material 120 having the lens 127 can be formed by forming the concave portion 72a in the hemispherical shape. Can be made. Thus, the shape of the concave portion on the surface of the shape imparting member is determined according to the lens shape of the target lens portion.
 形状付与ローラ73には、本実施形態のように圧力調整機77が設けられていることが好ましい。圧力調整機77は、凹部73aの形状を転写する際の、第2の熱可塑性樹脂61bに対する形状付与ローラ73の押圧力を調整するものである。圧力調整機77は押圧力を調整することにより、より確実にレンズ部12を形成する。第1の熱可塑性樹脂61aはシート11になる。形状付与ローラ73の押圧力が弱い場合には、第2の熱可塑性樹脂61bの図10における下部は、シート11の図10における上部を構成することがある。 It is preferable that the shape imparting roller 73 is provided with a pressure regulator 77 as in the present embodiment. The pressure adjuster 77 adjusts the pressing force of the shape imparting roller 73 against the second thermoplastic resin 61b when the shape of the recess 73a is transferred. The pressure adjuster 77 adjusts the pressing force to form the lens unit 12 more reliably. The first thermoplastic resin 61 a becomes the sheet 11. When the pressing force of the shape imparting roller 73 is weak, the lower part of the second thermoplastic resin 61b in FIG. 10 may constitute the upper part of the sheet 11 in FIG.
 この例では、長尺のフィルム61に対して連続的にレンズ17を形成するために形状付与部材として形状付与ローラ63を用いているが、形状付与部材はこれに限られない。例えば枚葉のフィルムにレンズを形成する場合などには、表面に凹部73aが形成された例えば板状の形状付与部材を用いてもよい。 In this example, the shape imparting roller 63 is used as the shape imparting member to continuously form the lens 17 on the long film 61, but the shape imparting member is not limited thereto. For example, when a lens is formed on a sheet of film, for example, a plate-like shape imparting member having a recess 73a formed on the surface may be used.
 レンズ部12が形成されたフィルム61は、印刷機56へ案内される。印刷機56はシート11の第2シート面11b(図1参照)に画像形成部15を形成する。前述のように、支持体上にフィルム61を形成した場合には、レンズ形成ユニット55と印刷機56との間において、フィルム61から支持体を剥ぎ取ればよい。画像形成部15を備えたフィルム61は、切断機58へ案内され、この切断機58により、シート状にカットされる。画像形成部15を形成しない場合には、レンズ部12が形成されたフィルムは、印刷機56を経ることなく、レンズ形成ユニット55から切断機58へ案内される。 The film 61 on which the lens unit 12 is formed is guided to the printing machine 56. The printing machine 56 forms the image forming unit 15 on the second sheet surface 11 b (see FIG. 1) of the sheet 11. As described above, when the film 61 is formed on the support, the support may be peeled off from the film 61 between the lens forming unit 55 and the printing machine 56. The film 61 provided with the image forming unit 15 is guided to a cutting machine 58 and is cut into a sheet by the cutting machine 58. When the image forming unit 15 is not formed, the film on which the lens unit 12 is formed is guided from the lens forming unit 55 to the cutting machine 58 without passing through the printing machine 56.
 画像形成部15を備えたフィルム61と保護層16とを、100℃1分間熱ラミネーションを行い、これにより融着させる。保護層16を設けない場合には、この融着工程は無い。以上のようにして、造形材10が得られる。以上のように、造形材10は、共押出によりフィルムを形成し、また、押圧によりレンズを形成するから、効率よく製造される。 The film 61 provided with the image forming unit 15 and the protective layer 16 are heat-laminated at 100 ° C. for 1 minute, and thereby fused. When the protective layer 16 is not provided, there is no this fusion process. As described above, the modeling material 10 is obtained. As mentioned above, since the modeling material 10 forms a film by co-extrusion and forms a lens by pressing, it is efficiently manufactured.
 図11に示す成型装置80は、作製されたシート状の造形材10を立体形状に成型するためのものである。成型装置80は、金型ユニット82、移動機構83、ヒータ84、及び制御部86を備え、加熱下において熱成型処理をするものである。ただし、成型方法は、熱成型に限られず、例えば、真空成型、真空圧空成型などの手法を用いてもよい。 A molding apparatus 80 shown in FIG. 11 is for molding the produced sheet-shaped modeling material 10 into a three-dimensional shape. The molding apparatus 80 includes a mold unit 82, a moving mechanism 83, a heater 84, and a control unit 86, and performs a thermoforming process under heating. However, the molding method is not limited to thermoforming, and for example, a technique such as vacuum molding or vacuum / pressure forming may be used.
 金型ユニット82は、第1金型87、第2金型88、及び胴型89を有する。胴型89は、圧縮方向と直交する図11における水平方向の断面形状が矩形である。胴型89は、第1金型87及び第2金型88による圧縮方向に貫通するガイド穴89aを有する。なお、圧縮方向は、図11における上下方向である。第1金型87及び第2金型88は、ガイド穴89aの内壁にガイドされて圧縮方向に移動自在である。第1金型87及び第2金型88は、胴型89内において、造形材10を圧縮成型することにより、立体形状に成型する(成型ステップ)。 The mold unit 82 includes a first mold 87, a second mold 88, and a body mold 89. The body mold 89 has a rectangular cross-sectional shape in the horizontal direction in FIG. 11 orthogonal to the compression direction. The body die 89 has a guide hole 89 a penetrating in the compression direction by the first die 87 and the second die 88. The compression direction is the vertical direction in FIG. The first mold 87 and the second mold 88 are guided by the inner wall of the guide hole 89a and are movable in the compression direction. The first mold 87 and the second mold 88 are molded into a three-dimensional shape by compression molding the modeling material 10 in the body mold 89 (molding step).
 第1金型87及び第2金型88には、互いに対向する対向面に、それぞれ装飾部材42の湾曲形状をもつ転写面87a、88aが形成されている。第1金型87の転写面87aは凸型に形成されており、第2金型88の転写面88aは凹型に形成されている。 In the first mold 87 and the second mold 88, transfer surfaces 87a and 88a each having a curved shape of the decorative member 42 are formed on opposing surfaces facing each other. The transfer surface 87a of the first mold 87 is formed in a convex shape, and the transfer surface 88a of the second mold 88 is formed in a concave shape.
 移動機構83は、第1金型87と第2金型88とをそれぞれ、互いの距離を増減する方向に移動する。また、造形材10を胴型89内に収容する場合には、第1金型87を上方に移動し、これにより胴型89から退避させる。ヒータ84は、金型ユニット82を加熱することにより、胴型89内の造形材10を加熱する。移動機構83及びヒータ84は、制御部86によって制御される。制御部86は、ヒータ84の発熱量を制御することにより、胴型89内の温度を調節する。胴型89内の温度は、第2の熱可塑性樹脂61bの荷重たわみ温度Tfbよりも10℃高い温度とし、本実施形態でもそのようにしている。また、造形材10の加熱時間は1分以上5分以下の範囲内とすることが好ましく、本実施形態では3分としている。 The moving mechanism 83 moves the first mold 87 and the second mold 88 in the direction of increasing or decreasing the distance from each other. Further, when the modeling material 10 is accommodated in the trunk mold 89, the first mold 87 is moved upward, and is thereby retracted from the trunk mold 89. The heater 84 heats the molding unit 10 in the body mold 89 by heating the mold unit 82. The moving mechanism 83 and the heater 84 are controlled by the control unit 86. The controller 86 adjusts the temperature in the body mold 89 by controlling the amount of heat generated by the heater 84. The temperature in the body mold 89 is set to a temperature that is 10 ° C. higher than the deflection temperature under load Tfb of the second thermoplastic resin 61b, which is also the case in this embodiment. Moreover, it is preferable to make the heating time of the modeling material 10 into the range of 1 minute or more and 5 minutes or less, and is 3 minutes in this embodiment.
 上記の方法で立体形状にされた後において、造形材10の縁部が不要な場合には、その不要部分を切除してもよい。なお、この例では、保護層16を備える造形材10を、成型装置80により立体形状に成形しているが、保護層16を備えない造形材10と保護層16になるフィルム材(図示無し)とを成型装置80へ供し、これらを重ねた状態で成形してもよい。 When the edge of the modeling material 10 is unnecessary after the three-dimensional shape is formed by the above method, the unnecessary portion may be cut off. In this example, the modeling material 10 provided with the protective layer 16 is molded into a three-dimensional shape by the molding device 80, but the modeling material 10 not provided with the protective layer 16 and a film material that becomes the protective layer 16 (not shown). May be provided to the molding apparatus 80 and molded in a state where they are stacked.
 次に、立体形状にされた造形材10を、公知の射出成型機(図示無し)内にセットする。そして、保護層16側に、ダッシュボード材本体41を形成する溶融樹脂を供給することにより、ダッシュボート材本体41を形成し、これによりダッシュボード材30が製造される(本体形成ステップ)。保護層16を設けない場合には、画像形成層15上に、溶融樹脂からダッシュボート材41を形成する。また、画像形成層15と保護層16とを設けない場合には、シート11上に、溶融樹脂からダッシュボート材41を形成する。このように、溶融樹脂は、画像形成層15と保護層16との有無に関わらず、造形材のシート側に供給され、造形物本体を形成する。 Next, the three-dimensional shaped molding material 10 is set in a known injection molding machine (not shown). And the dashboard material main body 41 is formed by supplying the molten resin which forms the dashboard material main body 41 to the protective layer 16 side, and the dashboard material 30 is manufactured by this (main body formation step). When the protective layer 16 is not provided, the dashboard material 41 is formed on the image forming layer 15 from a molten resin. When the image forming layer 15 and the protective layer 16 are not provided, the dashboard material 41 is formed on the sheet 11 from a molten resin. In this way, the molten resin is supplied to the sheet side of the modeling material regardless of the presence or absence of the image forming layer 15 and the protective layer 16 to form a modeled article main body.
 なお、上記の例では、立体形状とされた造形材10を射出成型機に供しているが、これに限られない。例えば、平面状の造形材10を、射出成型機内にセットし、ダッシュボード材本体41を形成する溶融樹脂とともに立体形状に成形してもよい。 In the above example, the three-dimensional shaped molding material 10 is used for an injection molding machine, but the present invention is not limited to this. For example, the planar modeling material 10 may be set in an injection molding machine and molded into a three-dimensional shape together with the molten resin forming the dashboard material body 41.
 上記のダッシュボード材30は、一方向に突出した湾曲形状をもつ立体造形物の例であるが、複数方向に湾曲した形状の立体造形物でもよい。すなわち、造形材10は、複数方向に湾曲した形状の立体造形物にも成型可能であり、そのためには成型装置80の金型ユニット82を、目的とする立体造形物の湾曲形状に応じた金型ユニットに代えればよい。 The above dashboard material 30 is an example of a three-dimensionally shaped object having a curved shape protruding in one direction, but may be a three-dimensionally shaped object curved in a plurality of directions. That is, the modeling material 10 can be molded also into a three-dimensional modeled object that is curved in a plurality of directions. For that purpose, the mold unit 82 of the molding apparatus 80 is used in accordance with the curved shape of the target three-dimensional modeled object. What is necessary is just to replace with a type | mold unit.
 [実施例1]~[実施例16]
 造形材製造装置50により、14種類の造形材10をつくった。得られた各造形物10のレンズ17は幅W17が128μm(200lpi)、曲率半径が概ね75μmのシリンドリカルレンズであり、得られた各造形材10から、成型装置80と射出成型機(図示無し)とを用いてそれぞれダッシュボード材30を製造し、実施例1~14とした。
[Example 1] to [Example 16]
The modeling material manufacturing apparatus 50 produced 14 types of modeling material 10. The obtained lens 17 of each molded article 10 is a cylindrical lens having a width W17 of 128 μm (200 lpi) and a radius of curvature of approximately 75 μm. The dashboard material 30 was manufactured using
 形状付与ローラ73を、レンズ127の反転形状の凹部が周面に形成されている形状付与ローラに置き換えた造形材製造装置50により、レンズ部122を備える造形材120をつくった。得られた造形材120のレンズ127の幅D127は150μmであった。得られた造形材120から、実施例1~16と同様に、成型装置80と射出成型機(図示無し)とを用いてそれぞれダッシュボード材を製造し、実施例15とした。 The modeling material 120 provided with the lens portion 122 was produced by the modeling material manufacturing apparatus 50 in which the shape imparting roller 73 was replaced with a shape imparting roller in which the inverted concave portion of the lens 127 was formed on the peripheral surface. The width D127 of the lens 127 of the obtained modeling material 120 was 150 μm. A dashboard material was produced from the obtained shaped material 120 using a molding apparatus 80 and an injection molding machine (not shown) in the same manner as in Examples 1 to 16, and Example 15 was obtained.
 形状付与ローラ73を、凹部73aの断面形状を三角形にした形状付与ローラに置き換えた造形材製造装置50により、レンズ部112を備える造形材110をつくった。得られた造形材110のレンズ117の幅W117とピッチP117とはともに100μmであり、レンズ部112の厚みTbは30μmであった。得られた造形材110から、実施例1~16と同様に、成型装置80と射出成型機(図示無し)とを用いてそれぞれダッシュボード材を製造し、実施例16とした。 The modeling material 110 provided with the lens part 112 was made by the modeling material manufacturing apparatus 50 in which the shape imparting roller 73 was replaced with a shape imparting roller in which the cross-sectional shape of the recess 73a was triangular. Both the width W117 and the pitch P117 of the lens 117 of the obtained modeling material 110 were 100 μm, and the thickness Tb of the lens portion 112 was 30 μm. Dashboard materials were produced from the obtained shaped material 110 using a molding apparatus 80 and an injection molding machine (not shown) in the same manner as in Examples 1 to 16, and Example 16 was obtained.
 各実施例での成型装置80における胴型89内の温度と造形材10,120,110の加熱時間は前述の通りである。用いた第1の熱可塑性樹脂61aと第2の熱可塑性樹脂61bとは表1に示す。 The temperature in the body mold 89 and the heating time of the molding materials 10, 120, 110 in the molding apparatus 80 in each embodiment are as described above. Table 1 shows the first thermoplastic resin 61a and the second thermoplastic resin 61b used.
 表1の「種類」欄の「アクリル」はアクリル樹脂を意味する。表1の「製品名」欄において、旭化成(株)製のデルペット(登録商標)は「デルペット」と記載し、三菱ガス化学(株)製のユーピロン(登録商標)は「ユーピロン」と記載し、積水化学工業(株)製のPVCは「セキスイPVC」と記載する。 “Acrylic” in the “Type” column of Table 1 means acrylic resin. In the "Product Name" column of Table 1, Delpet (registered trademark) manufactured by Asahi Kasei Co., Ltd. is described as "Delpet", and Iupilon (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd. is described as "Iupilon". The PVC manufactured by Sekisui Chemical Co., Ltd. is described as “Sekisui PVC”.
 得られた各ダッシュボード材30につきレンズ17,117,127の変形を評価し、成型装置80へ供する造形材10の伸びを評価した。各評価方法と評価基準とは下記の通りであり、評価結果は表1に示す。 The deformation of the lenses 17, 117, 127 was evaluated for each obtained dashboard material 30, and the elongation of the modeling material 10 provided to the molding apparatus 80 was evaluated. Each evaluation method and evaluation criteria are as follows, and the evaluation results are shown in Table 1.
 1.レンズの変形
 各ダッシュボード材30において、最も高さが小さいレンズ17,117,127を特定し、それらの高さHaをそれぞれ測定した。成型装置80に供する前の平面状の造形材10,110,120のそれぞれにおいてレンズ17,117,127の各高さをHbとし、{(Hb-Ha)/Hb}×100の算出式によりレンズの高さ減少率(単位は%)を求めた。そして、以下の基準により、レンズの変形として評価した。A~Cは合格であり、Dは不合格である。
  A;高さ減少率が5%以下であった。
  B;高さ減少率が5%より大きく10%以下であった。
  C;高さ減少率が10%より大きく15%以下であった。
  D;高さ減少率が15%より大きかった。
1. Lens Deformation In each dashboard member 30, lenses 17, 117, and 127 having the smallest height were specified, and their heights Ha were measured. In each of the planar shaped materials 10, 110, 120 before being provided to the molding apparatus 80, the height of each of the lenses 17, 117, 127 is set to Hb, and the lens is calculated by the calculation formula {(Hb−Ha) / Hb} × 100. The rate of height reduction (unit:%) was obtained. And it evaluated as a deformation | transformation of a lens with the following references | standards. A to C are acceptable and D is unacceptable.
A: The height reduction rate was 5% or less.
B: The height reduction rate was more than 5% and 10% or less.
C: The height reduction rate was greater than 10% and 15% or less.
D: Height reduction rate was greater than 15%.
 2.伸び
 造形材10,110から5cm×1cmの大きさに切り出して造形材サンプルとした。これらの造形材サンプルについて、株式会社島津製作所製「オートグラフAGS-X」を用いて、シート11の荷重たわみ温度Tfbよりも10℃高い温度で延在方向EDに10mm/minの引張り速度で伸ばし、破断点までの伸び、すなわち割れるまでの伸びを求めた。具体的には、造形材サンプルの一辺側と、その一辺と対向する一辺側との各1cmずつをそれぞれ挟み、3cm分を伸ばした。このように造形材サンプルの伸びを、レンズ17の伸びとして評価した。造形材120については、造形材サンプルの伸ばした方向を任意の方向にしたこと以外は同様の条件及び方法で、破断点までの伸びを求めた。なお、伸び(単位は%)が小さいほど、成形において割れやすいことを意味しており、以下の基準におけるA~Cが合格、Dが不合格である。
  A;伸びが40%以上であった
  B;伸びが30%以上40%未満であった。
  C;伸びが20%以上30%未満であった。
  D;伸びが20%未満であった。
2. Elongation It cut out from the modeling materials 10 and 110 to the magnitude | size of 5 cm x 1 cm, and was set as the modeling material sample. About these modeling material samples, using “Autograph AGS-X” manufactured by Shimadzu Corporation, the sheet 11 is stretched at a tensile speed of 10 mm / min in the extending direction ED at a temperature 10 ° C. higher than the deflection temperature Tfb of the sheet 11. The elongation to the breaking point, that is, the elongation to break was determined. Specifically, 1 cm each of one side of the modeling material sample and one side facing the one side was sandwiched, and 3 cm was extended. Thus, the elongation of the modeling material sample was evaluated as the elongation of the lens 17. For the modeling material 120, the elongation to the breaking point was determined under the same conditions and method except that the extending direction of the modeling material sample was changed to an arbitrary direction. In addition, the smaller the elongation (unit:%), the easier it is to crack in molding. A to C in the following criteria are acceptable and D is unacceptable.
A: Elongation was 40% or more B: Elongation was 30% or more and less than 40%.
C: The elongation was 20% or more and less than 30%.
D: Elongation was less than 20%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 第2の熱可塑性樹脂として表1に示す材料を用い、造形材をつくった。得られた造形材から、ダッシュボード材を実施例と同様の条件でつくった。
[Comparative Example 1]
A modeling material was made using the material shown in Table 1 as the second thermoplastic resin. From the obtained modeling material, a dashboard material was produced under the same conditions as in the example.
 実施例と同じ方法により、レンズの変形及び割れと、レンズの伸びとを評価した。評価結果は表1に示す。 The lens deformation and cracking and the lens elongation were evaluated by the same method as in the example. The evaluation results are shown in Table 1.
 10,110,120  造形材
 11  シート
 11a 第1シート面
 11b 第2シート面
 11A 前面部
 11B 側面部
 12,112,122,142,152  レンズ部
 15,125  画像形成部
 16  保護層
 17,117,127  レンズ
 21,137a  第1の画像
 21a,21b,21c,・・・ 線状画像部
 22,137b  第2の画像
 22a,22b,22c,・・・ 線状画像部
 30  ダッシュボード材
 30A 前面部
 30B 側面部
 31  自動車
 34  ダッシュボード
 35  ステアリングホイール
 36  ドアパネル
 41  ダッシュボード材本体
 42  装飾部材
 50  造形材製造装置
 52  押出機
 55  レンズ形成ユニット
 56  印刷機
 58  切断機
 61  フィルム
 61a 第1の熱可塑性樹脂
 61b 第2の熱可塑性樹脂
 71  第1支持ローラ
 72  第2支持ローラ
 73  形状付与ローラ
 73a 凹部
 76  モータ
 77  圧力調整機
 80  成型装置
 82  金型ユニット
 83  移動機構
 84  ヒータ
 86  制御部
 87  第1金型
 87a 転写面
 88  第2金型
 88a 転写面
 89  胴型
 89a ガイド穴
 137 画像
 137c 第3の画像
 137d 第4の画像
 AR1 第1領域
 AR2 第2領域
 AR3 第3領域
 D1  第1の方向
 D2  第2の方向
 D127 径
 ED  延在方向
 LD  並び方向
 N1  第1法線
 N2
 X  鉛直方向
 Y  左右方向
 Z  前方向
10, 110, 120 Modeling material 11 Sheet 11a First sheet surface 11b Second sheet surface 11A Front surface portion 11B Side surface portion 12, 112, 122, 142, 152 Lens portion 15, 125 Image forming portion 16 Protective layer 17, 117, 127 Lens 21, 137a First image 21a, 21b, 21c,... Linear image portion 22, 137b Second image 22a, 22b, 22c,... Linear image portion 30 Dashboard material 30A Front portion 30B Side surface Part 31 Automobile 34 Dashboard 35 Steering wheel 36 Door panel 41 Dashboard material body 42 Decoration member 50 Modeling material manufacturing device 52 Extruder 55 Lens forming unit 56 Printer 58 Cutting machine 61 Film 61a First thermoplastic resin 61b Second Thermoplastic resin 71 1st Support roller 72 Second support roller 73 Shape imparting roller 73a Concave portion 76 Motor 77 Pressure regulator 80 Molding device 82 Mold unit 83 Moving mechanism 84 Heater 86 Controller 87 First mold 87a Transfer surface 88 Second mold 88a Transfer surface 89 barrel type 89a guide hole 137 image 137c third image 137d fourth image AR1 first area AR2 second area AR3 third area D1 first direction D2 second direction D127 diameter ED extending direction LD alignment direction N1 First normal line N2
X Vertical direction Y Left-right direction Z Forward direction

Claims (13)

  1.  複数のレンズが配されたシート状の造形材において、
     第1の熱可塑性樹脂から形成されており、光透過性のシートと、
     前記シートの一方のシート面に設けられ、前記複数のレンズを有し、前記第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂から形成されているレンズ部と、
     を備え、
     前記第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、前記第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である造形材。
    In a sheet-shaped molding material in which a plurality of lenses are arranged,
    Formed of a first thermoplastic resin, a light transmissive sheet;
    A lens portion provided on one sheet surface of the sheet, having a plurality of lenses, and formed from a second thermoplastic resin different from the first thermoplastic resin;
    With
    When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is in the range of 0.65 to 0.95. The molding material inside.
  2.  前記レンズは突条である請求項1に記載の造形材。 The molding material according to claim 1, wherein the lens is a protrusion.
  3.  前記レンズ部は前記複数のレンズが並列に配されている請求項2に記載の造形材。 The molding material according to claim 2, wherein the lens unit includes the plurality of lenses arranged in parallel.
  4.  前記第1の熱可塑性樹脂と前記第2の熱可塑性樹脂とは、アクリル樹脂である請求項1ないし3のいずれか1項に記載の造形材。 The modeling material according to any one of claims 1 to 3, wherein the first thermoplastic resin and the second thermoplastic resin are acrylic resins.
  5.  前記シートの厚みは50μm以上400μm以下の範囲内である請求項1ないし4のいずれか1項に記載の造形材。 The modeling material according to any one of claims 1 to 4, wherein a thickness of the sheet is in a range of 50 µm to 400 µm.
  6.  前記シートの他方のシート面に設けられ、画像が形成された画像形成部を備える請求項1ないし5のいずれか1項に記載の造形材。 The modeling material according to any one of claims 1 to 5, further comprising an image forming unit provided on the other sheet surface of the sheet and having an image formed thereon.
  7.  前記画像形成部の前記シートと反対側の面に設けられ、第3の熱可塑性樹脂から形成されている保護層を備える請求項6に記載の造形材。 The modeling material according to claim 6, further comprising a protective layer provided on a surface opposite to the sheet of the image forming unit and formed of a third thermoplastic resin.
  8.  前記第3の熱可塑性樹脂はアクリロニトリル-ブタジエン-スチレン共重合体である請求項7に記載の造形材。 The molding material according to claim 7, wherein the third thermoplastic resin is an acrylonitrile-butadiene-styrene copolymer.
  9.  曲面とされたシート面を有し、第1の熱可塑性樹脂で形成されている光透過性のシートと、
     前記シートの一方のシート面に、前記曲面に沿って湾曲して設けられ、第2の熱可塑性樹脂から形成されており、複数のレンズが配されているレンズ部と、
     前記シートの他方のシート面側に配され、少なくとも0.5mmの厚みに形成されている造形物本体と、
     を備え、
     前記第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、前記第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である立体造形物。
    A light-transmitting sheet having a curved sheet surface and formed of a first thermoplastic resin;
    A lens portion provided on one sheet surface of the sheet by being curved along the curved surface, formed from a second thermoplastic resin, and a plurality of lenses disposed;
    A shaped article main body arranged on the other sheet surface side of the sheet and formed to a thickness of at least 0.5 mm;
    With
    When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is in the range of 0.65 to 0.95. A three-dimensional modeled object.
  10.  前記レンズは突条である請求項9に記載の立体造形物。 The three-dimensional structure according to claim 9, wherein the lens is a protrusion.
  11.  前記レンズ部は前記複数のレンズが並列に配されている請求項10に記載の立体造形物。 The three-dimensional structure according to claim 10, wherein the lens unit includes the plurality of lenses arranged in parallel.
  12.  複数のレンズが配されたシート状の造形材の製造方法において、
     溶融した第1の熱可塑性樹脂と前記第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂とを、共押出することによりフィルムを形成するフィルム形成ステップと、
     表面に複数の凹部が形成されている形状付与部材によって、前記フィルムを前記第2の熱可塑性樹脂側から押圧することにより、前記複数のレンズを形成するレンズ形成ステップと、
     を有し、
     前記第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、前記第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である造形材の製造方法。
    In the manufacturing method of the sheet-shaped modeling material in which a plurality of lenses are arranged,
    A film forming step of forming a film by co-extrusion of the molten first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin;
    A lens forming step of forming the plurality of lenses by pressing the film from the second thermoplastic resin side with a shape imparting member having a plurality of recesses formed on the surface;
    Have
    When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is in the range of 0.65 to 0.95. The manufacturing method of the modeling material which is inside.
  13.  光透過性の第1の熱可塑性樹脂と前記第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂とを、共押出することによりフィルムを形成するフィルム形成ステップと、
     表面に複数の凹部が形成されている形状付与部材によって前記フィルムを前記第2の熱可塑性樹脂側から押圧することにより、前記第1の熱可塑性樹脂から形成されている光透過性のシートと、前記複数のレンズを有し、前記シートの一方のシート面に設けられ、前記第2の熱可塑性樹脂から形成されているレンズ部とを備える造形材にするレンズ形成ステップと、
     前記造形材を、立体形状に成型する成型ステップと、
     前記造形材の前記第1の熱可塑性樹脂側に溶融樹脂を供給することにより、前記溶融樹脂から少なくとも0.5mmの厚みの造形物本体を形成する本体形成ステップと、
     を有し、
     前記第1の熱可塑性樹脂の荷重たわみ温度をTfaとし、前記第2の熱可塑性樹脂の荷重たわみ温度をTfbとするときに、Tfa/Tfbで求める比が0.65以上0.95以下の範囲内である立体造形物の製造方法。
    A film forming step of forming a film by coextrusion of a light-transmissive first thermoplastic resin and a second thermoplastic resin different from the first thermoplastic resin;
    A light transmissive sheet formed from the first thermoplastic resin by pressing the film from the second thermoplastic resin side with a shape-imparting member having a plurality of recesses formed on the surface; A lens forming step including a plurality of lenses and forming a modeling material including a lens portion provided on one sheet surface of the sheet and formed from the second thermoplastic resin;
    A molding step of molding the modeling material into a three-dimensional shape;
    A main body forming step of forming a molded article main body having a thickness of at least 0.5 mm from the molten resin by supplying a molten resin to the first thermoplastic resin side of the modeling material;
    Have
    When the deflection temperature under load of the first thermoplastic resin is Tfa and the deflection temperature under load of the second thermoplastic resin is Tfb, the ratio obtained by Tfa / Tfb is in the range of 0.65 to 0.95. The manufacturing method of the three-dimensional molded item which is inside.
PCT/JP2017/034684 2016-09-29 2017-09-26 Modeling material, three-dimensional model, method for producing modeling material, and method for producing three-dimensional model WO2018062148A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-192089 2016-09-29
JP2016192089 2016-09-29
JP2017-088815 2017-04-27
JP2017088815 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018062148A1 true WO2018062148A1 (en) 2018-04-05

Family

ID=61759686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034684 WO2018062148A1 (en) 2016-09-29 2017-09-26 Modeling material, three-dimensional model, method for producing modeling material, and method for producing three-dimensional model

Country Status (1)

Country Link
WO (1) WO2018062148A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046196A (en) * 2006-08-11 2008-02-28 Sumitomo Chemical Co Ltd Stacked film for lens shape impartation and lens film
JP2009292026A (en) * 2008-06-04 2009-12-17 Kaneka Corp Method for manufacturing decorative sheet with designability showing cubic effect
JP2011148266A (en) * 2010-01-25 2011-08-04 Fujifilm Corp Method for producing printing sheet
JP2012201020A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Irregular surface sheet, and method for manufacturing same
JP2015157875A (en) * 2014-02-21 2015-09-03 三菱レイヨン株式会社 Curable composition, fine rugged structure, decorative sheet, decorative resin molded article, and production method of decorative resin molded article
JP2016064667A (en) * 2015-12-21 2016-04-28 五洋紙工株式会社 Decorative film for film insert molding and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046196A (en) * 2006-08-11 2008-02-28 Sumitomo Chemical Co Ltd Stacked film for lens shape impartation and lens film
JP2009292026A (en) * 2008-06-04 2009-12-17 Kaneka Corp Method for manufacturing decorative sheet with designability showing cubic effect
JP2011148266A (en) * 2010-01-25 2011-08-04 Fujifilm Corp Method for producing printing sheet
JP2012201020A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Irregular surface sheet, and method for manufacturing same
JP2015157875A (en) * 2014-02-21 2015-09-03 三菱レイヨン株式会社 Curable composition, fine rugged structure, decorative sheet, decorative resin molded article, and production method of decorative resin molded article
JP2016064667A (en) * 2015-12-21 2016-04-28 五洋紙工株式会社 Decorative film for film insert molding and manufacturing method therefor

Similar Documents

Publication Publication Date Title
TWI556990B (en) A 3d printed decorative film and products made thereof
JP6481315B2 (en) Decorative sheet
WO2017126540A1 (en) Molding material, manufacturing method therefor, three-dimensionally shaped article, and manufacturing method therefor
US8728360B2 (en) Apparatus and method for producing optical sheeting
JP6731052B2 (en) Three-dimensional object
JP2016508084A (en) Printed decorative film with three-dimensional effect and its decorative products
US20200348454A1 (en) Three-dimensional modeled article
US20200346486A1 (en) Three-dimensional modeled article
KR101627431B1 (en) A Light Guiding Decorative Composite Sheet and Components Made Thereof
JP5396966B2 (en) Decorative sheet and decorative resin molded product
US20190155043A1 (en) Three-dimensional molded article
WO2018062148A1 (en) Modeling material, three-dimensional model, method for producing modeling material, and method for producing three-dimensional model
JP2018051990A (en) Method for manufacturing three-dimensional object
CN109003540B (en) Curved surface cover plate, display device and manufacturing method
KR102642114B1 (en) Three-dimensional sheet for thermal forming
JP5152070B2 (en) Decorative sheet, decorative molded product, and injection molding simultaneous decoration method
WO2024101436A1 (en) Decorative outer-cover material, decorative member, display system, manufacturing method for decorative outer-cover material, and manufacturing method for decorative member
JP2019510659A (en) Film structure for variable flexibility
WO2018062149A1 (en) Three-dimensional object and method for manufacturing three-dimensional object
WO2014128762A1 (en) Covering material using lenticular lens sheet and method for producing same
CN117984908A (en) Optical decorative film for vehicle and optical decorative assembly for vehicle interior
KR20210157644A (en) Lenticular container and manufacturing method thereof
KR200234086Y1 (en) Apparatus for cutting lenticular sheet
TWM453100U (en) A stereoscopic decoration plate and light box made of thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP