WO2018062116A1 - Balloon catheter - Google Patents

Balloon catheter Download PDF

Info

Publication number
WO2018062116A1
WO2018062116A1 PCT/JP2017/034594 JP2017034594W WO2018062116A1 WO 2018062116 A1 WO2018062116 A1 WO 2018062116A1 JP 2017034594 W JP2017034594 W JP 2017034594W WO 2018062116 A1 WO2018062116 A1 WO 2018062116A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
diameter
balloon catheter
shaft
central
Prior art date
Application number
PCT/JP2017/034594
Other languages
French (fr)
Japanese (ja)
Inventor
一洋 永田
武史 飯塚
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018062116A1 publication Critical patent/WO2018062116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a balloon catheter.
  • Priority is claimed on Japanese Patent Application No. 2016-190533, filed September 29, 2016, the content of which is incorporated herein by reference.
  • a balloon catheter is known as a treatment tool used with a medical endoscope or the like.
  • a balloon catheter is used for the purpose of, for example, expanding a stenosis such as a digestive tract and securing a lumen, and includes an expandable balloon.
  • pressure resistance against pressure applied during expansion and positional deviation prevention performance during expansion are required.
  • Patent Document 1 describes a balloon for expanding a constriction part (balloon catheter) that can prevent positional deviation from a constriction part at the time of balloon expansion by the dog-bone shape of the expanded state of the naturally expanded state.
  • Patent Document 2 describes a balloon catheter provided with a balloon that becomes substantially cylindrical at the time of expansion by reducing the thickness of both end portions in the longitudinal direction as compared with the thickness of the central portion.
  • the conventional balloon catheter as described above has the following problems.
  • the balloon since the balloon has a dog bone-shaped three-dimensional shape, when folded, the outer diameter after folding is not due to the overlapping of the balloon near the dog bone without being flat feathered. It gets bigger. Therefore, the outer diameter of the balloon at the time of folding becomes large, and the variation in the outer diameter in the longitudinal direction becomes large.
  • the present invention has been made in view of the above problems, and provides a balloon catheter capable of suppressing axial displacement during attachment to a lumen without reducing the pressure resistance and insertion / extraction performance of the balloon.
  • the purpose is to
  • the balloon catheter according to the aspect of the present invention is fixed to a shaft that circulates the expansion fluid through the distal end opening, and to the distal end side of the outer periphery of the shaft than the distal end opening.
  • a balloon having an enlarged diameter portion expanded by the expansion fluid supplied from the distal end side opening portion, the enlarged diameter portion moving from the first fixed portion toward the second fixed portion.
  • the first end, the central portion, and the second end are adjacent to each other in this order, and 100% modulus of the material of the first end and the second end is the material of the central portion. Less than 100% modulus.
  • the length in the longitudinal direction of the shaft of the first end and the second end is 15% or more and 25% or less of the length in the longitudinal direction of the shaft of the enlarged diameter portion It is also good.
  • the breaking strength of the material of the first end and the second end may be 80% or more of the breaking strength of the material of the central part.
  • the maximum outer diameter of the first end portion, the central portion, and the second end portion may be equal to one another.
  • the first end portion and the second end portion are directed to the central portion, respectively.
  • the balloon catheter of this invention is effective in the ability to suppress the position shift of the axial direction at the time of mounting
  • FIG. 1 is a schematic partial cross-sectional view showing an example of the configuration of the balloon catheter according to the embodiment of the present invention in a naturally-deployed state.
  • FIG. 2 is a schematic graph showing an example of the change in the wall thickness of the balloon of the balloon catheter according to the embodiment of the present invention.
  • the balloon catheter 10 of the present embodiment is an elongated member extending along the central axis O from the proximal end on the right side to the distal end on the left side.
  • the balloon catheter 10 is used by being inserted from the tip into the lumen of a patient.
  • the balloon catheter 10 comprises a shaft 1 and a balloon 2.
  • the balloon 2 can be expanded and contracted.
  • FIG. 1 shows the expanded state of the balloon 2 in a natural unfolded state.
  • the naturally deployed state of the balloon 2 is defined as the maximum state in which the balloon 2 is expanded without generating tension (stress) in a state in which the balloon 2 is fixed to the shaft 1.
  • the state in which the balloon 2 is expanded more than the naturally expanded state is referred to as the “expanded state”.
  • the balloon 2 is contracted in the initial state before the balloon catheter 10 is inserted into the lumen, and the outer periphery of the shaft 1 is folded in a plurality of thin wings. It is wrapped around the department.
  • the balloon 2 has a fold or crease (hereinafter, referred to as a fold or the like) by a known folding process or the like in advance so that the initial state is restored when the balloon 2 contracts after expanding.
  • the balloon catheter 10 in the initial state is an elongated member having generally the same outer diameter.
  • the type of lumen into which the balloon catheter 10 is inserted is not limited.
  • the balloon catheter 10 may be inserted into the digestive tract, esophagus, bile duct, urethra, blood vessels and the like.
  • the outer diameter in the initial state of the balloon catheter 10 the maximum outer diameter in the natural deployed state of the balloon 2 and the outer diameter in the expanded state of the balloon 2 correspond to the inner diameter of the lumen to be inserted.
  • a direction along the axis is an axial direction and a circumferential direction is a circumferential direction
  • a direction along a line intersecting the axis in a plane orthogonal to the axis is referred to as a radial direction.
  • the shaft 1 is an elongated member extending along the central axis O from the proximal end to the distal end of the balloon catheter 10.
  • the longitudinal direction of the shaft 1 coincides with the axial direction along the central axis O.
  • the shaft 1 is formed of a flexible resin material.
  • the shaft 1 may be formed by a single tube or may be formed by a plurality of tubes.
  • the shaft 1 in the present embodiment includes, as an example, an inner tube 1B and an outer tube 1A.
  • a multi-lumen tube or the like may be used.
  • the inner tube 1 B is a tubular member extending over the entire length of the shaft 1.
  • the outer shape of the inner tube 1B is not limited.
  • the outer peripheral surface 1 e of the inner tube 1 B is circular with the central axis O as a center in a cross section orthogonal to the central axis O.
  • a through hole axially penetrating along the central axis O is formed. This through hole may be used, for example, for the purpose of inserting a guide wire or flowing a drug to be supplied to a lumen.
  • the inner diameter of the inner circumferential surface 1f of the through hole is set to an appropriate size according to the application.
  • the through hole inside the inner tube 1B does not penetrate the outer peripheral surface 1e.
  • the outer diameter of the outer peripheral surface 1e is set to a size that allows an inner tube 1B to be inserted by opening a gap inside an outer tube 1A described later.
  • the outer tube 1A is a pipe member through which the inner tube 1B is inserted.
  • the length of the outer tube 1A is shorter than the length of the inner tube 1B.
  • the inner tube 1B inserted into the outer tube 1A extends to the tip side more than the tip of the outer tube 1A.
  • FIG. 1 although the proximal end of the outer tube 1A and the proximal end of the inner tube 1B are drawn to be in line, this is an example.
  • the inner tube 1B may extend to the proximal end side of the outer tube 1A, or the outer tube 1A and the inner tube 1B may branch to each other on the proximal end side.
  • the outer shape of the outer tube 1A is not limited.
  • the outer peripheral surface 1a of the outer tube 1A has a circular shape centered on the central axis O in a cross section orthogonal to the central axis O.
  • a through hole penetrating in the axial direction is formed in the inside of the outer tube 1A.
  • An internal flow path P having an annular cross section surrounding the outer peripheral surface 1 e is formed between the inner peripheral surface 1 b of the through hole and the outer peripheral surface 1 e of the inner tube 1 B inserted into the inside.
  • the outer diameter of the outer peripheral surface 1a of the outer tube 1A is smaller than the inner diameter of the lumen into which the shaft 1 is to be inserted.
  • an expansion fluid (not shown) for expanding the balloon 2 described later can flow.
  • the expanding fluid may be liquid or gas.
  • the internal flow path P communicates with the outside through the proximal end opening 1d on the proximal end side of the outer tube 1A and the inner tube 1B and the distal end opening 1c on the distal end side of the outer tube 1A.
  • the proximal end opening 1 d is connectable to an expansion fluid supply unit (not shown).
  • the distal end side opening 1 c communicates with the inside of a balloon 2 described later.
  • Examples of the material of the shaft 1 include nylon, polyamide, PTFE (polytetrafluoroethylene) and the like.
  • the balloon 2 is a member which is formed of a thin film and becomes tubular in an expanded state.
  • the tip of the shaft 1 is inserted into the balloon 2.
  • the balloon 2 includes a first fixing portion 2A, an enlarged diameter portion 2B, and a second fixing portion 2C from the distal end side to the proximal end side.
  • the first fixing portion 2A is a cylindrical portion fixed in close contact with the outer peripheral surface 1e of the inner tube 1B at the end of the inner tube 1B which is closer to the end than the end opening 1c.
  • fixed part 2A and the outer peripheral surface 1e can be a suitable fixing method which can seal the fluid for expansion.
  • the first fixing portion 2A may be welded to the outer peripheral surface 1e.
  • the length of the first fixing portion 2A in the axial direction is represented by L 2A .
  • the length L 2A is set to an appropriate length such that the fixing strength required for the first fixing portion 2A can be obtained.
  • the enlarged diameter portion 2B has a cylindrical shape larger in diameter than the outer peripheral surface 1e which can be deformed between the state of being separated and expanded from the outer peripheral surface 1e of the inner tube 1B and the contracted state contacting or close to the outer peripheral surface 1e. It is a department. Below, the shape of the enlarged diameter part 2B in a natural expansion
  • the enlarged diameter portion 2B includes a first end 2D, a central portion 2E, and a second end 2F from the distal end side to the proximal end side.
  • the first end 2D, the center 2E, and the second end 2F are adjacent in this order.
  • the length of the enlarged diameter portion 2B in the axial direction is represented by L 2B .
  • the first end 2D includes a diameter transition portion 2a and a constant diameter portion 2b from the distal end side to the proximal end side.
  • the lengths of the diameter transition portion 2a and the constant diameter portion 2b in the axial direction are represented by L 2a and L 2b , respectively.
  • the first end 2D may be configured of only the diameter transition portion 2a.
  • L 2 b of the constant diameter portion 2 b is 0 or more so that the case where the constant diameter portion 2 b is not included can be included.
  • L 2 b 0 corresponds to the case where the constant diameter portion 2 b is not provided.
  • the constant diameter portion 2b in the following description may be read as the base end of the diameter transition portion 2a.
  • the diameter transition portion 2a is a cylindrical portion whose outer diameter gradually increases from the base end of the first fixed portion 2A toward the base end.
  • the outer shape of the diameter transition portion 2a may be a strict conical surface in which the rate of change of the outer diameter in the axial direction is constant, or the rate of change of the outer diameter changes the outer side of the conical surface. Or it may be variously curved inward.
  • the diameter transition portion 2a may have, for example, a bowl shape, a shell shape, a bell shape, a funnel shape, a trumpet shape or the like.
  • the cross-sectional shape in the radial direction of the diameter transition portion 2a may be a rounded C-shape at the tip or a V-shape with a tapered tip.
  • the rate of change of the outer diameter is monotonous from the positive maximum value to the zero or more minimum value.
  • the outer shape of the diameter transition portion 2a shown in FIG. 1 is a convex curved surface which bulges outside the conical surface connecting the tip and the proximal end, and has a shape close to a partial spherical surface.
  • the constant diameter portion 2 b is a cylindrical portion of a length L 2 b whose outer diameter matches the diameter of the proximal end of the diameter transition portion 2 a.
  • the fixed diameter portion 2b is connected to the base end of the diameter transition portion 2a without any level difference (however, for example, minute irregularities generated in manufacturing such as parting line etc. are excluded).
  • the outer diameter of the constant diameter portion 2b is represented by D 0 in the natural deployed state.
  • the tip end of the fixed diameter portion 2b is smoothly connected to the base end of the diameter transition portion 2a in the axial direction when the rate of change of the outer diameter at the base end of the diameter transition portion 2a is zero.
  • the tip of the fixed diameter portion 2b is connected to form a bent portion with the base end of the diameter transition portion 2a when the rate of change of the outer diameter at the base end of the diameter transition portion 2a is a positive value.
  • FIG. 1 as an example, the case where the rate of change of the outer diameter at the base end of the diameter transition portion 2a is 0 and the diameter transition portion 2a and the constant diameter portion 2b are connected smoothly is illustrated.
  • the diameter transition portion 2a and the constant diameter portion 2b of the first end portion 2D are all formed of the same material.
  • the material of the first end 2D may be different from the material of the first fixing portion 2A, but in the present embodiment, as an example, the first end 2D and the first fixing portion 2A are formed of similar materials. It is done.
  • the material of the first end 2D has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2 and has a 100% modulus lower than the 100% modulus of the material of the central portion 2E described later A resin material is used.
  • the breaking strength of the material of the first end 2D is more preferably 80% or more of the breaking strength of the material of the central portion 2E described later.
  • thermoplastic polyamide system elastomer polyethylene (PE), a thermoplastic polyurethane elastomer (PTU) etc. are mentioned, for example.
  • the central portion 2E is a cylindrical portion connected to the base end of the first end portion 2D without any level difference (however, for example, minute irregularities generated in manufacturing such as parting lines are excluded).
  • the outer shape of the naturally developed state of the central portion 2E is the same as the outer diameter D of the proximal end of the first end 2D, corresponding to the first end 2D having a circular cross section. It is a cylindrical surface of 0 .
  • the length of the central portion 2E in the axial direction is represented by L 2E .
  • FIG. 1 is a schematic view, the first end 2D and the central portion 2E are drawn as being joined via a joint 2e along a plane orthogonal to the central axis O.
  • the joint portion 2e between the first end portion 2D and the central portion 2E may be deviated from a plane orthogonal to the central axis O or may be corrugated for manufacturing reasons to be described later. Furthermore, at the joint 2e between the first end 2D and the central portion 2E, the material of the first end 2D and the material of the central portion 2E are mixed for a manufacturing reason to be described later, and a clear boundary is It does not have to appear. In these cases, the position of the joint 2e related to the length of the first end 2D and the central portion 2E in the axial direction is defined as the position of a plane orthogonal to the central axis O so as to average these material distributions. Ru.
  • the material of the central portion 2E has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2 at the time of use, and 100% modulus of the material of the first end 2D and the second end 2F described later Materials having a higher 100% modulus are used.
  • the resin material used for the central portion 2E all the materials conventionally used for the balloon of the balloon catheter can be used, as well as the materials usable for the first end 2D, as long as the above-mentioned conditions are satisfied.
  • the second end portion 2F includes a constant diameter portion 2c and a diameter transition portion 2d from the distal end side to the proximal end side.
  • the lengths of the constant diameter portion 2c and the diameter transition portion 2d in the axial direction are respectively represented by L 2c and L 2d .
  • the 2nd end 2F may be constituted only by diameter transition part 2d.
  • L 2 c 0 corresponds to the case where the constant diameter portion 2 c is not provided. In this case, unless otherwise specified, the constant diameter portion 2c in the following description is read as the tip of the diameter transition portion 2d.
  • the distal end of the second end 2F is connected to the proximal end of the central portion 2E without any step (except, for example, minute irregularities generated in manufacturing such as a parting line).
  • a joint 2f between the second end 2F and the central part 2E is schematically drawn in the same manner as the joint 2e.
  • the joint 2 f can have the same shape as the joint 2 e.
  • the position of the joint 2f related to the length of the second end 2F and the central part 2E in the axial direction is the same as the joint 2e, and the material distribution of the material of the second end 2F and the material of the central part 2E is averaged. Is defined as the position of a plane orthogonal to the central axis O.
  • the constant diameter portion 2c and the diameter transition portion 2d in the second end portion 2F have the same shape as the constant diameter portion 2b and the diameter transition portion 2a in the first end portion 2D, respectively.
  • the diameter transition part 2d is a cylindrical part whose outer diameter gradually reduces as it goes from the base end of the central part 2E to the base end side.
  • the constant diameter portion 2c and the diameter transition portion 2d of the second end portion 2F may have the same shape as the constant diameter portion 2b and the diameter transition portion 2a at the first end portion 2D, respectively, except for the direction.
  • the length in the axial direction or the rate of change of the outer diameter at the diameter transition portion 2d is the diameter of the constant diameter portion 2b of the first end portion 2D. It may be different from the transition part 2a.
  • the constant diameter portion 2c and the diameter transition portion 2d of the second end portion 2F are formed of the same material.
  • the material of the second end 2F may be different from or the same as the material of the first end 2D. Similar to the first end 2D, the material of the second end 2F has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2, and 100% modulus of the material of the central portion 2E described later Materials with lower 100% modulus are used.
  • the breaking strength of the material of the second end 2F is, like the material of the first end 2D, more preferably 80% or more of the breaking strength of the material of the central portion 2E.
  • As the resin material used for the second end 2F all materials conventionally used for the balloon of the balloon catheter can be used, as well as the materials usable for the first end 2D, provided that the above conditions are satisfied. is there.
  • the second fixing portion 2C is connected to the proximal end of the second end 2F, and is fixed in close contact with the outer peripheral surface 1a of the outer tube 1A at the distal end of the outer tube 1A which is proximal to the distal end side opening 1c. It is a cylindrical part that has been As a method of fixing the second fixing portion 2C and the outer peripheral surface 1a, an appropriate fixing method capable of sealing the expansion fluid is possible.
  • the second fixing portion 2C may be welded to the outer peripheral surface 1a.
  • the length of the second fixed portion 2C in the axial direction is represented by L 2C .
  • the length L 2 C is set to an appropriate length such that the fixing strength required for the second fixing portion 2 C can be obtained.
  • the length L 2B of the enlarged diameter portion 2B in the axial direction is the length of the first end 2D, the central portion 2E, and the second end 2F in the axial direction (L 2a + L 2b + L 2E + L 2c + L 2d ).
  • the length L2B is set to an appropriate length that can expand the narrowing of the lumen into which the balloon 2 is inserted.
  • the lengths of the first end 2D and the second end 2F in the axial direction (longitudinal direction of the shaft 1) may be 15% or more and 25% or less of the length of the enlarged diameter portion 2B in the axial direction. .
  • the lengths of the first end 2D and the second end 2F in the axial direction may be equal to the maximum outer diameters of the first end 2D and the second end 2F in the expanded state.
  • the balloon 2 is closely fixed to the outer peripheral surfaces 1e and 1a, which are the outer peripheral portions of the distal end portion of the shaft 1, by the first fixing portion 2A and the second fixing portion 2C.
  • the enlarged diameter portion 2B around the outer peripheral surface 1e on the tip side with respect to the tip side opening 1c, an internal space S through which the expansion fluid flows in and out through the tip side opening 1c is formed.
  • the expansion fluid flows into the internal space S through the distal end opening 1c
  • the enlarged diameter portion 2B expands.
  • the internal pressure of the internal space S rises.
  • the enlarged diameter portion 2B contracts. Since the enlarged diameter portion 2B is creased or the like as described above, the folded shape in the initial state is restored as it is contracted.
  • the balloon 2 may be manufactured, for example, by blow molding using a mold that transfers the shape in a naturally developed state.
  • a parison tube in which a forming material of the first fixing portion 2A and the first end 2D, a forming material of the central portion 2E, and a forming material of the second end 2F and the second fixing portion 2C are joined in this order
  • the parison tube is manufactured and placed in the interior of the mold described above to effect blow molding. That is, when the parison tube is expanded toward the inner surface of the mold and brought into close contact with the molding surface of the mold and cured, the shape of the molding surface is transferred as the outer shape of the expanded parison tube. Thereby, the balloon 2 is manufactured.
  • the expanded parison tube is thinned according to the diameter expansion rate.
  • the thickness at the time of expansion may also vary.
  • Manufacturing variations of the balloon 2 may also occur in the axial direction.
  • the dissimilar material joint in the parison tube before expansion may not necessarily be formed along a plane orthogonal to the axial direction.
  • the blow molding since there is a possibility that the deformation in the axial direction may also vary during expansion, the axial position of the joint portion of the different material may change during the expansion.
  • the shapes of the joints 2e and 2f deviate from the shape along the plane orthogonal to the central axis O as schematically shown in FIG. There is also.
  • FIG. 2 schematically shows an example of the thickness distribution in the axial direction of a balloon 2 manufactured from a constant thickness parison tube.
  • the horizontal axis represents the position of the balloon 2 in the axial direction
  • the vertical axis represents the thickness.
  • the origin 0 on the horizontal axis corresponds to the position of the tip of the balloon 2 (the tip of the first fixing portion 2A).
  • the point a indicates the position of the tip of the enlarged diameter portion 2B (the tip of the diameter transition portion 2a).
  • the point b indicates the position of the boundary between the diameter transition portion 2a and the constant diameter portion 2b.
  • a point c (d) indicates the position of the joint 2e (2f).
  • a point e indicates the position of the boundary between the constant diameter portion 2c and the diameter transition portion 2d.
  • Points b and e correspond to the positions of the parting line of the mold.
  • the point f indicates the position of the proximal end of the enlarged diameter portion 2B (the proximal end of the diameter transition portion 2d).
  • the point g indicates the position of the proximal end of the balloon 2 (the proximal end of the second fixed portion 2C).
  • the wall thickness of the balloon 2 is substantially the same thickness t 3 and the thickness of the parison tube at the proximal end of the tip and the second fixing portion 2C of the first fixing portion 2A.
  • the proximal end of the first fixed portion 2A (the tip of the second fixed portion 2C) is stretched toward the center at the time of expansion, and thus decreases to a thickness t 2 (where t 2 ⁇ t 3 ). Since the diameter transition portion 2a (diameter transition portion 2d) gradually expands in diameter from the tip (base end) toward the central portion 2E, the thickness of the diameter transition portion 2a (diameter transition portion 2d) is gradually decreases from the thickness t 2 from the end) toward the central portion 2E.
  • the inner tube 1B is inserted into the outer tube 1A, and the first fixed portion 2A is on the outer peripheral surface 1e and the second fixed portion 2C is on the outer peripheral surface 1a. It is fixed to each by heat fusion etc.
  • the balloon 2 fixed to the shaft 1 is folded so as to make a fold or the like by a known folding process or the like, and is wound around the inner tube 1B.
  • the balloon catheter 10 is manufactured.
  • the balloon 2 is folded so as to have an outer diameter substantially equal to the outer diameter of the shaft 1.
  • FIG. 3 is a schematic partial cross-sectional view showing an example of the configuration of the balloon catheter according to the embodiment of the present invention in the expanded diameter state.
  • the balloon catheter 10 is, for example, a proximal end of a guide wire (not shown, the same applies hereinafter) inserted in advance to the placement position of the balloon 2 in the patient's body from the distal end side of the shaft 1 to the inner circumferential surface 1f of the inner tube 1B.
  • a guide wire By following the guide wire, it is inserted into the patient's body.
  • the balloon catheter 10 is inserted, as necessary, through an insertion tube member inserted into the body, such as an endoscope (not shown).
  • an endoscope not shown.
  • the distal end portion of the balloon catheter 10 has a diameter as small as the outer diameter of the shaft 1 and, like the shaft 1, can be smoothly inserted into the patient's body.
  • the operator connects a fluid supply device (not shown, hereinafter the same) to the proximal opening 1 d of the shaft 1.
  • the operator operates the fluid supply device to introduce the expansion fluid into the internal flow path P.
  • the expanding fluid introduced into the internal flow path P flows into the internal space S of the balloon 2 from the distal end opening 1c at the distal end of the outer tube 1A.
  • the balloon 2 expands.
  • the diameter-increased portion 2B is expanded in diameter, and the inner surface of the lumen in contact with the diameter-increased portion 2B is pushed apart.
  • the operator stops the supply and pressurization of the expansion fluid.
  • the balloon 2 is expanded to a certain expanded state, and the lumen is expanded to a predetermined shape.
  • the treatment of the expansion of the lumen by balloon catheter 10 is completed.
  • the shape of the diameter-expanded state of the balloon 2 will be described using an example in which the balloon 2 is expanded in free space.
  • the balloon 2 expands into the naturally deployed state as shown in FIG. 1 when the expansion fluid corresponding to the volume in the naturally deployed state is introduced.
  • Tension (stress) is not generated in the balloon 2 in the natural expanded state, the balloon 2 will generally cylindrical shape of the outer diameter D 0.
  • the expansion fluid is further supplied into the internal space S, the internal pressure of the balloon 2 rises, and the balloon 2 is expanded.
  • the balloon 2 differs in material depending on the part, so the expansion rate differs depending on the elongation property and thickness of the material of each part.
  • the elongation properties of the material of each part can be represented by the magnitude of 100% modulus.
  • the thinner the portion the greater the stress and thus the easier it is to stretch. That is, in the balloon 2, the expansion rate becomes relatively large at the portion of the first end 2D close to the joint 2e and the portion of the second end 2F close to the joint 2f. As a result, as shown in FIG. 3, the portion of the first end 2D near the joint 2e and the portion of the second end 2F near the joint 2f have outer diameters D 2B and D 2D respectively (where D 2B > D 0 , D 2D > D 0 ).
  • the outer diameter of the portion excluding both ends of the central portion 2E is D 2E smaller than the outer diameters D 2B and D 2D (where D 0 ⁇ D 2E ⁇ D 2B , D 0 ⁇ D 2E ⁇ Stay in D 2 D).
  • D 2B D 2D .
  • the tip 2g (base end 2i) of the central portion 2E receives tensile stress including a component directed radially outward from the first end 2D (second end 2F) via the joint 2e (2f). , D 2E and D 2B (D 2D ) expand to an outer diameter.
  • the distal end side of the central portion 2E closer to the joint portion 2e than the distal end portion 2g and the proximal end side of the central end 2e near the joint portion 2f are formed.
  • Bulging portions 2j, 2k outer diameter D 2B, D 2D can be appropriately sized to positional deviation in the axial direction of the balloon 2 at the time of insertion into the lumen can be suppressed. For example, it may be 103% or more and 120% or less of the outer diameter D 2E of the intermediate portion 2 h.
  • the positional deviation of the balloon 2 may be suppressed to such an extent that the balloon 2 does not come out of the narrowed portion of the lumen at the time of diameter expansion.
  • the balloon is not formed with bulges at both ends, and the central part of the central part has a maximum outer diameter and the diameter is reduced toward both ends so that the central part is thickened and expanded.
  • the constriction portion abuts on the top of the convex surface at the center of the central portion, an unstable contact state is formed.
  • the narrowed portion is in a stable contact state. Try to move relative to the end of the direction.
  • the balloon having no bulging portion at both ends may be pushed out in the axial direction during diameter expansion.
  • the diameter of the intermediate portion is smaller than that of the bulges 2j and 2k. Since the length of the portion 2h becomes short, the contact amount between the lumen and the central portion 2E becomes too small, so that the effect of suppressing the axial movement by the bulging portions 2j and 2k may be reduced.
  • FIG. 4 is a schematic front view of the balloon catheter of the comparative example in a naturally deployed state.
  • FIG. 5 is a schematic front view of the balloon catheter of the comparative example in the expanded state.
  • the shape of the natural expansion state is the first fixing portion 2A of this embodiment and the enlarged diameter portion from the distal end side to the proximal end side.
  • a diameter transition portion 200a having the same outer shape as the diameter transition portion 2a of the present embodiment, a constant diameter portion 2b, a central portion 2E, and a constant diameter portion 2c from the distal end side to the proximal end side.
  • a diameter transition portion 200c having an outer shape similar to that of the diameter transition portion 2d.
  • the constant diameter portion 2b of the present embodiment, the central portion 2E, and like the constant diameter portion 2c, the outer diameter of the central portion 200b in the natural development state is D 0.
  • the balloon 200 is formed of one type of material, the 100% modulus of the material of the enlarged diameter portion 200B is constant regardless of the part.
  • the balloon 200 is manufactured, for example, by blow molding a parison tube made of a single material using a mold for molding the balloon 2 of the present embodiment.
  • the thickness distribution of the balloon 200 is similar to the thickness distribution of the balloon 2.
  • the balloon 200 in the expanded state is expanded in a substantially cylindrical shape having a constant outer diameter D 200B (where D 200B > D 0 ) over substantially the entire length of the central portion 200b.
  • D 200B constant outer diameter
  • Such a substantially uniform diameter expansion condition occurs when the lumen does not have a constriction.
  • the amount of biting into the lumen of the balloon 200 becomes substantially constant over the entire length, sliding movement of the balloon 200 in the axial direction is likely to occur.
  • the balloon 200 of the comparative example which is inflated as shown in FIG. 5 in free space, is a portion where the balloon located at the non-narrowed portion is the narrow portion when inflated in the lumen having the narrowed portion and the non-narrowed portion. There is less expansion resistance than the part of the balloon located at. For this reason, in a lumen having a constricted part and a non-constricted part, inflation starts from a balloon located in the non-constricted part. For this reason, inflation is started from either the front or back end of the balloon unless the stenosis is accurately located at the center of the balloon, so the balloon tends to move due to the reaction force from the stenosis at the balloon being inflated. is there.
  • the balloon may be subjected to a drag to move.
  • the balloon 200 of the comparative example since the balloon 200 of the comparative example is easily moved due to the resistance of the constriction part during the uneven expansion, it may be separated from the constriction part in the expansion process. Even if the shaft is not completely removed, the balloon may be locked by the uneven bulging portions at both ends, so that the shaft may be easily removed from the narrowed portion only by lightly pushing and pulling the shaft.
  • the wall thickness of both ends of the central portion 200b or the diameter transition portions 200a and 200c is compared to the middle portion of the central portion 200b. It is also conceivable to make it thinner. However, in this case, since the breaking strength is reduced at the portion where the thickness is thin, the pressure resistance of the balloon is reduced.
  • the shape of the balloon in a naturally deployed state into a dog bone shape since the shape of the balloon in a naturally-expanded state becomes a complicated three-dimensional shape, when the balloon is contracted, it can not be folded into a plurality of flat wings. Thereby, even if it winds around a shaft in the state which folded the balloon, a part will rise and an uneven part will arise.
  • the balloon 2 of the present embodiment since the balloon 2 of the present embodiment is substantially cylindrical in a naturally deployed state, it can be folded into a plurality of flat plates if the folding position is appropriately set when the balloon 2 is contracted. It is.
  • the outer diameter when wound around the shaft 1 is substantially uniform. Therefore, the balloon can be smoothly inserted into and removed from the lumen. Similarly, insertion and removal to a tube member such as an endoscope which is inserted to guide the balloon 2 can be smoothly performed.
  • the operator After the expansion of the balloon 2 is completed, the operator performs the removal operation of the balloon catheter 10.
  • the operator operates the fluid supply device to decompress the expansion fluid and aspirate the expansion fluid from the proximal opening 1d.
  • the expansion fluid in the internal space S is gradually discharged into the internal flow path P from the distal end opening 1 c.
  • the balloon 2 is contracted according to the discharge amount of the expansion fluid.
  • the balloon 2 is in the same state as being wound around the shaft 1 as in the initial state.
  • the operator retracts the balloon catheter 10 along the guide wire or with the guide wire, and withdraws from the lumen. At this time, since the outer diameter of the reduced balloon 2 is substantially the same as the outer diameter of the shaft 1, smooth removal is possible.
  • the balloon catheter 10 provided with the balloon 2 of the present embodiment, it is possible to suppress axial positional deviation at the time of attachment to the lumen without reducing the pressure resistance and the insertion / extraction performance of the balloon 2. . For this reason, at the time of diameter expansion, the balloon 2 is disposed at the narrowing portion without being separated from the narrowing portion of the lumen.
  • the shaft has an internal flow passage used for the circulation of the expansion fluid, and a through hole used for other applications such as insertion of a guide wire and circulation of a chemical solution, for example. I explained in the example.
  • the shaft may be formed with only the internal flow path.
  • the inner tube 1B may be replaced by a tube whose tip is sealed or a solid rod-like member.
  • the shaft may be configured such that the distal end side opening is provided on the side surface of the single-lumen tube whose distal end is sealed.
  • Examples 1 to 8 of the balloon catheter 10 of the above embodiment will be described together with Comparative Examples 1 to 4.
  • the structures of the balloons in Examples 1 to 8 and Comparative Examples 1 to 4 and the evaluation results are shown in the following Table 1.
  • [Table 1] the material of the balloon and the length ratio (%) of each part of the balloon are shown among the configurations of the balloon.
  • the ratio of the axial length of each part to the axial length of the enlarged diameter part is displayed as a percentage of the length ratio of the balloon.
  • Specific material names of the materials in the following [Table 1] are shown in the following [Table 2].
  • the resin A, the resin B, the resin C, the resin D, the resin E, and the resin F the value of 100% modulus increases in this order.
  • Example 1 As shown in Table 1, in the balloon 2 in Example 1, the resin C was used for the first end 2D and the second end 2F, and the resin F was used for the central portion 2E.
  • Resin C is PEBAX (registered trademark) 6333 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of resin C are 17 MPa and 55 MPa, respectively.
  • Resin F is Grilamid (registered trademark) L25 (trade name; manufactured by Emskemy). The 100% modulus and tensile strength at break of the resin F are 28 MPa and 71 MPa, respectively.
  • the tensile breaking strengths of the first end 2D and the second end 2F are 77% of the tensile breaking strength of the central portion 2E.
  • the axial lengths of the enlarged diameter portion 2B, the first end 2D, the central portion 2E, and the second end 2F are 100 mm, 25 mm (length ratio 25%), 50 mm, respectively. (Length ratio 50%), 25 mm (Length ratio 25%).
  • the outer diameter D 0 of the balloon 2 in the natural deployed state in this example was 16.5 mm.
  • the thickness of each of the central portion 2E and the constant diameter portions 2b and 2c was 0.04 mm. The thickness was determined as half of the thickness of two sheets measured by bending the balloon 2.
  • the balloon 2 of Example 1 was made by blow molding, forming a parison tube from the above-mentioned materials.
  • the balloon 2 of Example 1 was fixed by welding to a shaft 1 having an outer diameter of the inner tube 1B of 1.6 mm and an outer diameter of the outer tube 1A of 2.0 mm.
  • the outer diameter of the balloon 2 was substantially uniform in the axial direction, and was about 2.7 mm.
  • the balloon catheter 10 of Example 1 was formed.
  • Example 2 As shown in [Table 1], in the configuration of the balloon 2 in Example 2, the length ratio of the first end 2D, the center 2E, and the second end 2F is 15%, 70%, and 15%, respectively. The same as in Example 1 except for the above.
  • Examples 3 and 4 As shown in Table 1, the configuration of the balloon 2 in Example 3 was the same as Example 1 except that resin E was used as the material of the central portion 2E.
  • the balloon 2 in Example 4 was the same as Example 2 except that resin E was used as the material of the central portion 2E.
  • resin E is PEBAX (registered trademark) 7233 (trade name; manufactured by Arkema).
  • the 100% modulus and tensile strength at break of resin E are 22 MPa and 67 MPa, respectively. For this reason, the tensile breaking strength of the first end 2D and the second end 2F is 82% of the tensile breaking strength of the central portion 2E.
  • Examples 5, 6 As shown in [Table 1], the configuration of the balloon 2 in Example 5 was the same as Example 3 except that resin D was used as the material of the first end 2D and the second end 2F. .
  • the configuration of the balloon 2 in Example 6 was the same as that of Example 4 except that the resin D was used as the material of the first end 2D and the second end 2F.
  • resin D is PEBAX (registered trademark) 7033 (trade name; manufactured by Arkema).
  • the 100% modulus and tensile strength at break of resin D are 21 MPa and 59 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 88% of the tensile breaking strength of the central portion 2E.
  • Example 7 As shown in [Table 1], in the configuration of the balloon 2 in Example 7, the resin B was used as the material of the first end 2D and the second end 2F, the first end 2D, and the central part Except for the fact that the length ratio of 2E and the second end 2F was set to 20%, 60%, and 20%, respectively, it was assumed that it was the same as Example 1.
  • the resin B is PEBAX (registered trademark) 5533 (trade name; manufactured by Arkema).
  • the 100% modulus and tensile strength at break of the resin B are 16 MPa and 44 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 62% of the tensile breaking strength of the central portion 2E.
  • Example 8 As shown in [Table 1], the configuration of the balloon 2 in Example 8 is the same as Example 7 except that resin A was used as the material of the first end 2D and the second end 2F. .
  • Resin A is PEBAX (registered trademark) 4033 (trade name; manufactured by Arkema).
  • the 100% modulus and tensile strength at break of the resin A are 13 MPa and 36 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 51% of the tensile breaking strength of the central portion 2E.
  • Comparative Example 1 As shown in [Table 1], in the configuration of the balloon in Comparative Example 1, resin C was used as the material of the central portion, and resin F was used as the material of the first end and the second end. , The same as Example 7. Therefore, the 100% modulus at the first end and the second end is 11 MPa larger than the 100% modulus at the central portion. The tensile breaking strength of the first end and the second end was 129% of the tensile breaking strength of the central portion.
  • Comparative Example 2 As shown in Table 1, the configuration of the balloon in Comparative Example 2 was the same as Comparative Example 1 except that resin D was used as the material of the central portion. Therefore, the 100% modulus at the first end and the second end was 7 MPa larger than the 100% modulus at the central portion. The tensile breaking strength of the first end and the second end was 120% of the tensile breaking strength of the central part.
  • FIG. 6 is a schematic cross-sectional view showing the shape of a narrowed portion used for evaluation of positional deviation.
  • the positional deviation was evaluated using an evaluation jig 100 as shown in FIG.
  • the evaluation jig 100 was formed in a shape that simulates a narrow portion of a lumen whose internal diameter of the non-constriction portion is 20 mm.
  • the evaluation jig 100 is provided with a through hole 101 in which a taper portion 101a, a circular hole portion 101b, and a taper portion 101c are coaxially formed in this order in a block material made of silicone.
  • the circular hole portion 101 b is a shape portion that simulates a narrowed portion.
  • the circular hole portion 101 b had a diameter ⁇ of 5 mm and a length ⁇ of 10 mm.
  • the tapered portion 101a (101c) is expanded in diameter from the distal end (proximal end) of the circular hole portion 101b toward the distal end (proximal end) to the inner diameter of the non-constricted portion of the lumen.
  • the taper angle ⁇ of the tapered portions 101a and 101c was 25 °.
  • the balloon of the balloon catheter of each example and each comparative example was inserted into the circular hole portion 101b of the evaluation jig 100, and the expansion fluid consisting of warm water was introduced into the internal space of the balloon.
  • the balloon was thus expanded.
  • the pressure of the expansion fluid was set to a pressure at which the outer diameter of the central portion of the enlarged diameter portion in the free space became 18 mm.
  • the pressure varies depending on the material of the central portion of the enlarged diameter portion, but was 2026.5 hPa to 4053.0 hPa in Examples 1 to 8 and 2026.5 hPa to 4053.0 hPa in Comparative Examples 1 to 4. Thereby, each balloon was able to expand the hole portion 101 b.
  • the evaluation of the releasability was performed by measuring the amount of force when the balloon catheter in a deflated state was inserted into and removed from the evaluation jig 100.
  • the insertion capacity is 7N or less and the extraction capacity is 20N or less, "Good” (described as “o” in [Table 1])
  • the insertion capacity exceeds 7N, or the extraction capacity is When it exceeded 20 N, it was evaluated as “defect” (denoted as "good” and described as "x” in [Table 1]).
  • Comparative Example 3 the reason why the “displacement” becomes defective in Comparative Example 3 is that the diameter-increased portion of Comparative Example 3 is formed of a single material. That is, when the balloon starts to inflate from the non-constriction part, the expansion of both ends becomes uneven, and as a result of being expanded in one direction by the drag of the constriction part, it is dislodged when it is pushed and pulled to one side. Is considered to be The reason why the “removability” is “defective (x)” in Comparative Examples 1 to 3 is considered to be that the material at both ends is formed of the resins E and F having a relatively large modulus of 100%.
  • Comparative Example 4 was evaluated as “good (o)” for "pressure resistance strength” and "removability” but because "displacement” was “defect (x)", “poor” as a comprehensive evaluation. It was evaluated as (no good, described as "x” in [Table 1]). In Comparative Example 4, the reason why the “displacement” is “defect (x)” is considered to be the same reason as in Comparative Example 3. The reason why the “removability” was “good ( ⁇ )” in Comparative Example 4 is considered to be that the 100% modulus of the material at both ends of the Comparative Example is made of the resin C smaller than the resins E and F. .

Abstract

A balloon catheter (10) is provided with: a shaft (1) that distributes an expansion fluid through a leading end-side opening (1c); and a balloon (2) that has a first fixing part (2A) which is fixed on an outer peripheral surface (1e) of the shaft (1) at a location closer to the leading end side than the leading end-side opening (1c), a second fixing part (2C) which is fixed on the outer peripheral surface (1e) of the shaft (1) at a location closer to the base end side than the leading end-side opening (1c), and an expandable diameter part (2B) which is formed between the first fixing part (2A) and the second fixing part (2C), and which expands in diameter by the expansion fluid, wherein the expandable diameter part (2B) is configured to have a first end part (2D), a central part (2E), and a second end part (2F) disposed adjacent to each other in this sequence, and the material for the first end part (2D) and the second end part (2F) has a 100% modulus lower than that of the material for the central part (2E).

Description

バルーンカテーテルBalloon catheter
 本発明は、バルーンカテーテルに関する。
 本願は、2016年9月29日に、日本に出願された特願2016-190533号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a balloon catheter.
Priority is claimed on Japanese Patent Application No. 2016-190533, filed September 29, 2016, the content of which is incorporated herein by reference.
 例えば、医療用内視鏡などとともに使用される処置具としてバルーンカテーテルが知られている。バルーンカテーテルは、例えば、消化管等の狭窄を拡張し管腔を確保するなどの目的に使用され、拡張可能なバルーンを備える。
 バルーンカテーテルのバルーンにおいては、拡張時の加わる圧力に対する耐圧性能と、拡張時における位置ずれ防止性能とが求められる。
 例えば、特許文献1には、展開した自然展開状態の形状がドッグボーン形状であることによって、バルーン拡張時の狭窄部からの位置ずれを防止できる狭窄部拡張用バルーン(バルーンカテーテル)が記載されている。
 例えば、特許文献2には、中央部の肉厚に比べて長手方向の両端部の肉厚を薄くすることによって、拡張時に略円筒形状になるバルーンを備えるバルーンカテーテルが記載されている。
For example, a balloon catheter is known as a treatment tool used with a medical endoscope or the like. A balloon catheter is used for the purpose of, for example, expanding a stenosis such as a digestive tract and securing a lumen, and includes an expandable balloon.
In a balloon of a balloon catheter, pressure resistance against pressure applied during expansion and positional deviation prevention performance during expansion are required.
For example, Patent Document 1 describes a balloon for expanding a constriction part (balloon catheter) that can prevent positional deviation from a constriction part at the time of balloon expansion by the dog-bone shape of the expanded state of the naturally expanded state. There is.
For example, Patent Document 2 describes a balloon catheter provided with a balloon that becomes substantially cylindrical at the time of expansion by reducing the thickness of both end portions in the longitudinal direction as compared with the thickness of the central portion.
日本国特開2001-009037号公報Japanese Patent Application Laid-Open No. 2001-009037 日本国特開2010-201007号公報Japanese Unexamined Patent Publication No. 2010-201007
 しかしながら、上記のような従来のバルーンカテーテルには以下のような問題がある。
 特許文献1に記載の技術では、バルーンがドッグボーン形状の立体形状を有するため、折り畳んだ際に、平らな羽根状にならずドッグボーン形状の近傍のバルーンの重なりによって、折り畳み後の外径が大きくなってしまう。このため、折り畳み時のバルーンの外径が大きくなるとともに、長手方向の外径のバラツキが大きくなる。このような折り畳み形状であると、折り畳まれたバルーンを管腔に対して挿抜する場合、あるいは折り畳まれたバルーンを管腔に案内するための内視鏡などの管部材に挿抜する場合の挿抜性能が低下するという問題がある。
 特許文献2に記載の技術では、バルーンの長手方向の両端部の肉厚を薄くするため、長手方向の両端部の耐圧強度が低下するという問題がある。
 両端部の耐圧強度を高めるため、中央部の肉厚をさらに厚くすることも考えられる。しかし、この場合には、バルーンを折り畳んだ際に中央部の外径が増大する。このため、折り畳まれたバルーンを管腔に対して挿抜する場合、あるいは折り畳まれたバルーンを管腔に案内するための内視鏡などの管部材に挿抜する場合の挿抜性能が低下するという問題がある。
However, the conventional balloon catheter as described above has the following problems.
In the technique described in Patent Document 1, since the balloon has a dog bone-shaped three-dimensional shape, when folded, the outer diameter after folding is not due to the overlapping of the balloon near the dog bone without being flat feathered. It gets bigger. Therefore, the outer diameter of the balloon at the time of folding becomes large, and the variation in the outer diameter in the longitudinal direction becomes large. With such a folded configuration, the insertion and removal performance when inserting and removing a folded balloon into and from a lumen, or when inserting and removing a folded balloon into a tube such as an endoscope for guiding the balloon into the lumen There is a problem that
In the technique described in Patent Document 2, there is a problem that the pressure resistance of the both end portions in the longitudinal direction is reduced in order to reduce the thickness of the both end portions in the longitudinal direction of the balloon.
It is also conceivable to further increase the thickness of the central portion in order to increase the pressure resistance of both end portions. However, in this case, the outer diameter of the central portion is increased when the balloon is folded. For this reason, there is a problem that the insertion and extraction performance is lowered when inserting and removing the folded balloon from the lumen or inserting and extracting from the tube member such as an endoscope for guiding the folded balloon to the lumen. is there.
 本発明は、上記のような問題に鑑みてなされたものであり、バルーンの耐圧強度および挿抜性能を低下させることなく、管腔への装着時の軸方向の位置ずれを抑制できるバルーンカテーテルを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a balloon catheter capable of suppressing axial displacement during attachment to a lumen without reducing the pressure resistance and insertion / extraction performance of the balloon. The purpose is to
 上記の課題を解決するために、本発明の態様のバルーンカテーテルは、先端側開口部を通して拡張用流体を流通するシャフトと、前記シャフトの外周部において前記先端側開口部よりも先端側に固定された第1固定部と、前記シャフトの外周部において前記先端側開口部よりも基端側に固定された第2固定部と、前記第1固定部および前記第2固定部との間に形成され前記先端側開口部から供給される前記拡張用流体によって拡径する拡径部と、を有するバルーンと、を備え、前記拡径部は、前記第1固定部から前記第2固定部に向かって、第1端部、中央部、および第2端部が、この順に隣り合って構成されており、前記第1端部および前記第2端部の材料の100%モジュラスが、前記中央部の材料の100%モジュラスよりも低い。 In order to solve the above-mentioned problems, the balloon catheter according to the aspect of the present invention is fixed to a shaft that circulates the expansion fluid through the distal end opening, and to the distal end side of the outer periphery of the shaft than the distal end opening. Formed between the first fixing portion and the second fixing portion, and the first fixing portion and the second fixing portion fixed on the outer peripheral portion of the shaft at the base end side with respect to the distal end side opening portion. And a balloon having an enlarged diameter portion expanded by the expansion fluid supplied from the distal end side opening portion, the enlarged diameter portion moving from the first fixed portion toward the second fixed portion. , The first end, the central portion, and the second end are adjacent to each other in this order, and 100% modulus of the material of the first end and the second end is the material of the central portion. Less than 100% modulus.
 上記バルーンカテーテルでは、前記第1端部および前記第2端部の前記シャフトの長手方向における長さは、前記拡径部の前記シャフトの長手方向における長さの15%以上25%以下であってもよい。 In the balloon catheter, the length in the longitudinal direction of the shaft of the first end and the second end is 15% or more and 25% or less of the length in the longitudinal direction of the shaft of the enlarged diameter portion It is also good.
 上記バルーンカテーテルでは、前記第1端部および前記第2端部の材料の破断強度は、前記中央部の材料の破断強度の80%以上であってもよい。 In the above balloon catheter, the breaking strength of the material of the first end and the second end may be 80% or more of the breaking strength of the material of the central part.
 上記バルーンカテーテルでは、応力が発生することなく前記拡径部が拡がった状態である前記拡径部の自然展開状態において、前記第1端部、前記中央部、および前記第2端部の最大外径は、互いに等しくてもよい。 In the above-mentioned balloon catheter, in the natural expansion state of the enlarged diameter portion in which the enlarged diameter portion is expanded without generation of stress, the maximum outer diameter of the first end portion, the central portion, and the second end portion The diameters may be equal to one another.
 上記バルーンカテーテルでは、応力が発生することなく前記拡径部が拡がった状態である前記拡径部の自然展開状態において、前記第1端部および前記第2端部は、それぞれ前記中央部に向かう方向において外径が増大する径遷移部と、前記径遷移部の最大外径となる部位から径一定で延びる定径部とを有し、前記径遷移部の外形状は椀型であってもよい。 In the above-mentioned balloon catheter, in the natural expansion state of the enlarged diameter portion in which the enlarged diameter portion is expanded without generating stress, the first end portion and the second end portion are directed to the central portion, respectively. Has a diameter transition portion in which the outer diameter increases in the direction, and a constant diameter portion extending at a constant diameter from the portion which becomes the maximum outer diameter of the diameter transition portion, and the outer shape of the diameter transition portion is a bowl shape Good.
 本発明のバルーンカテーテルによれば、バルーンの耐圧強度および挿抜性能を低下させることなく、管腔への装着時の軸方向の位置ずれを抑制できるという効果を奏する。 ADVANTAGE OF THE INVENTION According to the balloon catheter of this invention, it is effective in the ability to suppress the position shift of the axial direction at the time of mounting | wearing to a lumen | rumen, without reducing the pressure resistance and insertion / extraction performance of a balloon.
本発明の実施形態のバルーンカテーテルの自然展開状態における構成の一例を示す模式的な部分断面図である。It is a typical fragmentary sectional view showing an example of the composition in the natural deployment state of the balloon catheter of an embodiment of the present invention. 本発明の実施形態のバルーンカテーテルのバルーンの肉厚の変化の一例を示す模式的なグラフである。It is a typical graph which shows an example of the change of the thickness of the balloon of the balloon catheter of embodiment of this invention. 本発明の実施形態のバルーンカテーテルの拡径状態における構成の一例を示す模式的な部分断面図である。It is a typical fragmentary sectional view showing an example of the composition in the diameter expansion state of the balloon catheter of an embodiment of the present invention. 比較例のバルーンカテーテルの自然展開状態における模式的な正面図である。It is a typical front view in the natural deployment state of the balloon catheter of a comparative example. 比較例のバルーンカテーテルの拡径状態における模式的な正面図である。It is a typical front view in the diameter-expanded state of the balloon catheter of a comparative example. 位置ずれの評価に用いた狭窄部の形状を示す模式的な断面図である。It is a schematic cross section which shows the shape of the constriction part used for evaluation of position shift.
 本発明の実施形態のバルーンカテーテルについて説明する。
 図1は、本発明の実施形態のバルーンカテーテルの自然展開状態における構成の一例を示す模式的な部分断面図である。図2は、本発明の実施形態のバルーンカテーテルのバルーンの肉厚の変化の一例を示す模式的なグラフである。
A balloon catheter according to an embodiment of the present invention will be described.
FIG. 1 is a schematic partial cross-sectional view showing an example of the configuration of the balloon catheter according to the embodiment of the present invention in a naturally-deployed state. FIG. 2 is a schematic graph showing an example of the change in the wall thickness of the balloon of the balloon catheter according to the embodiment of the present invention.
 図1に示すように、本実施形態のバルーンカテーテル10は、図示右側の基端から図示左側の先端に向かって中心軸線Oに沿って延びる長尺部材である。バルーンカテーテル10は、先端から患者の管腔に挿入して用いられる。
 バルーンカテーテル10は、シャフト1およびバルーン2を備える。後述するように、バルーン2は拡張と収縮とが可能である。
 図1には、バルーン2が拡張した自然展開状態の形状が示されている。バルーン2の自然展開状態とは、バルーン2がシャフト1に固定された状態において、バルーン2に張力(応力)が発生することなく拡張された最大の状態であると定義する。
 以下では、バルーン2が自然展開状態よりも拡張された状態を「拡径状態」と表記する。
 図示は省略するが、バルーンカテーテル10が管腔に挿入される前の状態である初期状態では、バルーン2は、収縮されており、複数枚の薄い羽根状に折り畳まれた状態でシャフト1の外周部に巻き付いている。バルーン2は、拡径後に収縮するときに初期状態が復元されるように予め公知の折り畳み加工などによって折り目あるいは折り癖(以下、折り目等と表記する)がつけられている。
 バルーンカテーテル10は、初期状態では、全体として、略同一の外径を有する細長い長尺部材である。
As shown in FIG. 1, the balloon catheter 10 of the present embodiment is an elongated member extending along the central axis O from the proximal end on the right side to the distal end on the left side. The balloon catheter 10 is used by being inserted from the tip into the lumen of a patient.
The balloon catheter 10 comprises a shaft 1 and a balloon 2. As described below, the balloon 2 can be expanded and contracted.
FIG. 1 shows the expanded state of the balloon 2 in a natural unfolded state. The naturally deployed state of the balloon 2 is defined as the maximum state in which the balloon 2 is expanded without generating tension (stress) in a state in which the balloon 2 is fixed to the shaft 1.
In the following, the state in which the balloon 2 is expanded more than the naturally expanded state is referred to as the “expanded state”.
Although not shown, the balloon 2 is contracted in the initial state before the balloon catheter 10 is inserted into the lumen, and the outer periphery of the shaft 1 is folded in a plurality of thin wings. It is wrapped around the department. The balloon 2 has a fold or crease (hereinafter, referred to as a fold or the like) by a known folding process or the like in advance so that the initial state is restored when the balloon 2 contracts after expanding.
The balloon catheter 10 in the initial state is an elongated member having generally the same outer diameter.
 バルーンカテーテル10が挿入される管腔の種類は限定されない。例えば、バルーンカテーテル10は、消化管、食道、胆管、尿道、血管などに挿入されてもよい。ただし、バルーンカテーテル10は、バルーンカテーテル10の初期状態の外径、バルーン2の自然展開状態の最大外径、およびバルーン2の拡径状態における外径が、挿入対象である管腔の内径に応じて必要となる寸法値になるように、予め設定されている。 The type of lumen into which the balloon catheter 10 is inserted is not limited. For example, the balloon catheter 10 may be inserted into the digestive tract, esophagus, bile duct, urethra, blood vessels and the like. However, in the balloon catheter 10, the outer diameter in the initial state of the balloon catheter 10, the maximum outer diameter in the natural deployed state of the balloon 2 and the outer diameter in the expanded state of the balloon 2 correspond to the inner diameter of the lumen to be inserted. Are set in advance so as to have the required dimension values.
 以下では、バルーンカテーテル10およびバルーンカテーテル10を構成する部材において中心軸線Oに沿う相対位置を説明する際に、バルーンカテーテル10の先端により近い部位を先端部、より基端に近い部位を基端部と言う場合がある。
 本明細書では、例えば、中心軸線O等の軸線が特定できる軸状、筒状等の部材に関する相対位置について説明する場合に、軸線に沿う方向を軸方向、軸線回りに周回する方向を周方向、軸線に直交する平面において軸線に交差する線に沿う方向を径方向と称する。
In the following, when describing the relative positions along the central axis O in the balloon catheter 10 and the members constituting the balloon catheter 10, the portion closer to the tip of the balloon catheter 10 is the tip, and the portion closer to the proximal end is the proximal There is a case to say.
In the present specification, for example, when describing the relative position of a member such as an axial or cylindrical member capable of specifying an axis such as the central axis O, a direction along the axis is an axial direction and a circumferential direction is a circumferential direction A direction along a line intersecting the axis in a plane orthogonal to the axis is referred to as a radial direction.
 シャフト1は、バルーンカテーテル10の基端から先端まで中心軸線Oに沿って延びる長尺部材である。シャフト1の長手方向は、中心軸線Oに沿う軸方向に一致する。シャフト1は、可撓性を有する樹脂材料によって形成されている。
 シャフト1は、単一のチューブによって形成されてもよいし、複数のチューブによって形成されてもよい。
 本実施形態におけるシャフト1は、一例として、内チューブ1Bおよび外チューブ1Aを備える。例えば、シャフト1が単一のチューブで形成される場合には、マルチルーメンチューブなどが用いられてもよい。
The shaft 1 is an elongated member extending along the central axis O from the proximal end to the distal end of the balloon catheter 10. The longitudinal direction of the shaft 1 coincides with the axial direction along the central axis O. The shaft 1 is formed of a flexible resin material.
The shaft 1 may be formed by a single tube or may be formed by a plurality of tubes.
The shaft 1 in the present embodiment includes, as an example, an inner tube 1B and an outer tube 1A. For example, if the shaft 1 is formed of a single tube, a multi-lumen tube or the like may be used.
 内チューブ1Bは、シャフト1の全長にわたって延びる管状部材である。内チューブ1Bの外形は限定されない。本実施形態では、一例として、内チューブ1Bの外周面1eは、中心軸線Oに直交する断面において中心軸線Oを中心とする円形である。
 内チューブ1Bの内部には、中心軸線Oに沿って軸方向に貫通する貫通孔が形成されている。この貫通孔は、例えば、ガイドワイヤーを挿通したり、管腔に供給する薬剤を流したりする用途に用いられてもよい。この貫通孔の内周面1fの内径は、用途に応じた適宜の大きさとされる。
 本実施形態では、内チューブ1Bの内部の貫通孔は、外周面1eには貫通していない。
 外周面1eの外径は、後述する外チューブ1Aの内部に隙間をあけて内チューブ1Bを挿通可能な大きさとされている。
The inner tube 1 B is a tubular member extending over the entire length of the shaft 1. The outer shape of the inner tube 1B is not limited. In the present embodiment, as an example, the outer peripheral surface 1 e of the inner tube 1 B is circular with the central axis O as a center in a cross section orthogonal to the central axis O.
In the inside of the inner tube 1B, a through hole axially penetrating along the central axis O is formed. This through hole may be used, for example, for the purpose of inserting a guide wire or flowing a drug to be supplied to a lumen. The inner diameter of the inner circumferential surface 1f of the through hole is set to an appropriate size according to the application.
In the present embodiment, the through hole inside the inner tube 1B does not penetrate the outer peripheral surface 1e.
The outer diameter of the outer peripheral surface 1e is set to a size that allows an inner tube 1B to be inserted by opening a gap inside an outer tube 1A described later.
 外チューブ1Aは、内部に内チューブ1Bが挿通される管部材である。外チューブ1Aの長さは、内チューブ1Bの長さよりも短い。このため、外チューブ1Aに挿通された内チューブ1Bは、外チューブ1Aの先端よりも先端側に延在している。
 図1では、外チューブ1Aの基端と内チューブ1Bの基端とが揃っているように描かれているが、これは一例である。例えば、内チューブ1Bが外チューブ1Aよりも基端側に延出する構成でもよいし、外チューブ1Aと内チューブ1Bとが基端側において互いに分岐する構成でもよい。
 外チューブ1Aの外形は限定されない。本実施形態では、一例として、外チューブ1Aの外周面1aは、中心軸線Oに直交する断面において中心軸線Oを中心とする円形である。
 外チューブ1Aの内部には、軸方向に貫通する貫通孔が形成されている。この貫通孔の内周面1bと、内部に挿通された内チューブ1Bの外周面1eとの間には、外周面1eを囲む円環状断面を有する内部流路Pが形成されている。
 外チューブ1Aの外周面1aの外径は、シャフト1の挿入対象である管腔の内径よりも小さい。
The outer tube 1A is a pipe member through which the inner tube 1B is inserted. The length of the outer tube 1A is shorter than the length of the inner tube 1B. For this reason, the inner tube 1B inserted into the outer tube 1A extends to the tip side more than the tip of the outer tube 1A.
In FIG. 1, although the proximal end of the outer tube 1A and the proximal end of the inner tube 1B are drawn to be in line, this is an example. For example, the inner tube 1B may extend to the proximal end side of the outer tube 1A, or the outer tube 1A and the inner tube 1B may branch to each other on the proximal end side.
The outer shape of the outer tube 1A is not limited. In the present embodiment, as an example, the outer peripheral surface 1a of the outer tube 1A has a circular shape centered on the central axis O in a cross section orthogonal to the central axis O.
In the inside of the outer tube 1A, a through hole penetrating in the axial direction is formed. An internal flow path P having an annular cross section surrounding the outer peripheral surface 1 e is formed between the inner peripheral surface 1 b of the through hole and the outer peripheral surface 1 e of the inner tube 1 B inserted into the inside.
The outer diameter of the outer peripheral surface 1a of the outer tube 1A is smaller than the inner diameter of the lumen into which the shaft 1 is to be inserted.
 内部流路Pには、後述するバルーン2を拡張する拡張用流体(図示略)が流通可能である。拡張用流体は、液体でもよいし、気体でもよい。以下では、拡張用流体が温水からなる場合の例で説明する。
 内部流路Pは、外チューブ1Aおよび内チューブ1Bの基端側の基端側開口部1dを通して、また、外チューブ1Aの先端側の先端側開口部1cを通して、それぞれ外部と連通している。
 基端側開口部1dは、図示略の拡張用流体供給部と接続可能である。
 先端側開口部1cは、後述するバルーン2の内部に連通している。
In the internal flow path P, an expansion fluid (not shown) for expanding the balloon 2 described later can flow. The expanding fluid may be liquid or gas. In the following, an example in which the expansion fluid is made of warm water will be described.
The internal flow path P communicates with the outside through the proximal end opening 1d on the proximal end side of the outer tube 1A and the inner tube 1B and the distal end opening 1c on the distal end side of the outer tube 1A.
The proximal end opening 1 d is connectable to an expansion fluid supply unit (not shown).
The distal end side opening 1 c communicates with the inside of a balloon 2 described later.
 シャフト1の材質としては、例えば、ナイロン、ポリアミド、PTFE(ポリテトラフルオロエチレン)などが挙げられる。 Examples of the material of the shaft 1 include nylon, polyamide, PTFE (polytetrafluoroethylene) and the like.
 バルーン2は、薄いフィルムで形成され、拡張した状態で筒状となる部材である。バルーン2の内部には、シャフト1の先端部が挿通されている。
 バルーン2は、先端側から基端側に向かって、第1固定部2A、拡径部2B、および第2固定部2Cを備える。
The balloon 2 is a member which is formed of a thin film and becomes tubular in an expanded state. The tip of the shaft 1 is inserted into the balloon 2.
The balloon 2 includes a first fixing portion 2A, an enlarged diameter portion 2B, and a second fixing portion 2C from the distal end side to the proximal end side.
 第1固定部2Aは、先端側開口部1cよりも先端側となる内チューブ1Bの先端部において内チューブ1Bの外周面1eに密着して固定された筒状部である。第1固定部2Aと外周面1eとの固定方法は、拡張用流体が封止できる適宜の固定方法が可能である。例えば、第1固定部2Aは、外周面1eに溶着されていてもよい。
 軸方向における第1固定部2Aの長さはL2Aで表される。長さL2Aは、第1固定部2Aに必要とされる固定強度が得られる適宜の長さに設定される。
The first fixing portion 2A is a cylindrical portion fixed in close contact with the outer peripheral surface 1e of the inner tube 1B at the end of the inner tube 1B which is closer to the end than the end opening 1c. The fixing method of the 1st fixing | fixed part 2A and the outer peripheral surface 1e can be a suitable fixing method which can seal the fluid for expansion. For example, the first fixing portion 2A may be welded to the outer peripheral surface 1e.
The length of the first fixing portion 2A in the axial direction is represented by L 2A . The length L 2A is set to an appropriate length such that the fixing strength required for the first fixing portion 2A can be obtained.
 拡径部2Bは、内チューブ1Bの外周面1eから離間して拡張した状態と、外周面1eに当接または近接した収縮状態との間で変形可能な外周面1eよりも大径の筒状部である。
 以下では、まず、自然展開状態における拡径部2Bの形状について説明する。
The enlarged diameter portion 2B has a cylindrical shape larger in diameter than the outer peripheral surface 1e which can be deformed between the state of being separated and expanded from the outer peripheral surface 1e of the inner tube 1B and the contracted state contacting or close to the outer peripheral surface 1e. It is a department.
Below, the shape of the enlarged diameter part 2B in a natural expansion | deployment state is demonstrated first.
 拡径部2Bは、先端側から基端側に向かって、第1端部2D、中央部2E、および第2端部2Fを備える。第1端部2D、中央部2E、および第2端部2Fはこの順に隣り合っている。
 軸方向における拡径部2Bの長さはL2Bで表される。
The enlarged diameter portion 2B includes a first end 2D, a central portion 2E, and a second end 2F from the distal end side to the proximal end side. The first end 2D, the center 2E, and the second end 2F are adjacent in this order.
The length of the enlarged diameter portion 2B in the axial direction is represented by L 2B .
 第1端部2Dは、先端側から基端側に向かって、径遷移部2aと、定径部2bとを備える。軸方向における径遷移部2a、定径部2bの長さはそれぞれL2a、L2bで表される。ただし、第1端部2Dは、径遷移部2aのみで構成されてもよい。
 以下の説明では、定径部2bを含まない場合も包含できるように、定径部2bの長さL2bは0以上であるとして説明する。L2b=0は、定径部2bを有しない場合に相当する。この場合には、以下の説明における定径部2bは径遷移部2aの基端に読み換えればよい。
The first end 2D includes a diameter transition portion 2a and a constant diameter portion 2b from the distal end side to the proximal end side. The lengths of the diameter transition portion 2a and the constant diameter portion 2b in the axial direction are represented by L 2a and L 2b , respectively. However, the first end 2D may be configured of only the diameter transition portion 2a.
In the following description, it is assumed that the length L 2 b of the constant diameter portion 2 b is 0 or more so that the case where the constant diameter portion 2 b is not included can be included. L 2 b = 0 corresponds to the case where the constant diameter portion 2 b is not provided. In this case, the constant diameter portion 2b in the following description may be read as the base end of the diameter transition portion 2a.
 径遷移部2aは、第1固定部2Aの基端から、より基端側に向かうにつれて外径が漸次拡径する筒状部である。径遷移部2aの外形状は、軸方向における外径の変化率が一定である厳密な円錐面からなる形状であってもよいし、外径の変化率が変化することで円錐面よりも外側または内側に湾曲した種々の形状であってもよい。径遷移部2aは、例えば、椀型、砲弾型、ベル型、漏斗型、ラッパ型などの形状であってもよい。径遷移部2aの径方向の断面形状は、先端に丸みを帯びたC字状でもよいし、先端が先細りのV字状でもよい。
 図1に示す径遷移部2aは、一例として、第1固定部2Aから後述する中央部2Eの方に向かうにつれて、外径の変化率が正の最大値から0以上の最小値に向かって単調に減少する椀型である。すなわち、図1に示す径遷移部2aの外形状は、その先端と基端とを結ぶ円錐面よりも外側に膨らんだ凸湾曲面であり、部分球面に近い形状である。
The diameter transition portion 2a is a cylindrical portion whose outer diameter gradually increases from the base end of the first fixed portion 2A toward the base end. The outer shape of the diameter transition portion 2a may be a strict conical surface in which the rate of change of the outer diameter in the axial direction is constant, or the rate of change of the outer diameter changes the outer side of the conical surface. Or it may be variously curved inward. The diameter transition portion 2a may have, for example, a bowl shape, a shell shape, a bell shape, a funnel shape, a trumpet shape or the like. The cross-sectional shape in the radial direction of the diameter transition portion 2a may be a rounded C-shape at the tip or a V-shape with a tapered tip.
As an example, as the diameter transition part 2a shown in FIG. 1 goes from the first fixed part 2A toward the central part 2E described later, the rate of change of the outer diameter is monotonous from the positive maximum value to the zero or more minimum value. Is a template that reduces to That is, the outer shape of the diameter transition portion 2a shown in FIG. 1 is a convex curved surface which bulges outside the conical surface connecting the tip and the proximal end, and has a shape close to a partial spherical surface.
 定径部2bは、その外径が径遷移部2aの基端の直径と一致する長さL2bの円筒状部である。定径部2bは、径遷移部2aの基端と段差なく接続している(ただし、例えば、パーティングラインなどの製造上発生する微小な凹凸は除く)。自然展開状態における定径部2bの外径はDで表される。
 定径部2bの先端は、径遷移部2aの基端における外径の変化率が0である場合には、軸方向において径遷移部2aの基端と滑らかに接続する。定径部2bの先端は、径遷移部2aの基端における外径の変化率が正値である場合には、径遷移部2aの基端と屈曲部を形成するように接続する。
 図1では、一例として、径遷移部2aの基端における外径の変化率が0であり、径遷移部2aと定径部2bとが滑らかに接続している場合が図示されている。
The constant diameter portion 2 b is a cylindrical portion of a length L 2 b whose outer diameter matches the diameter of the proximal end of the diameter transition portion 2 a. The fixed diameter portion 2b is connected to the base end of the diameter transition portion 2a without any level difference (however, for example, minute irregularities generated in manufacturing such as parting line etc. are excluded). The outer diameter of the constant diameter portion 2b is represented by D 0 in the natural deployed state.
The tip end of the fixed diameter portion 2b is smoothly connected to the base end of the diameter transition portion 2a in the axial direction when the rate of change of the outer diameter at the base end of the diameter transition portion 2a is zero. The tip of the fixed diameter portion 2b is connected to form a bent portion with the base end of the diameter transition portion 2a when the rate of change of the outer diameter at the base end of the diameter transition portion 2a is a positive value.
In FIG. 1, as an example, the case where the rate of change of the outer diameter at the base end of the diameter transition portion 2a is 0 and the diameter transition portion 2a and the constant diameter portion 2b are connected smoothly is illustrated.
 第1端部2Dの径遷移部2aおよび定径部2bは、いずれも同一の材料で形成されている。第1端部2Dの材質は、第1固定部2Aの材質と異なっていてもよいが、本実施形態では、一例として、第1端部2Dおよび第1固定部2Aは互いに同様な材料で形成されている。
 第1端部2Dの材料としては、拡径状態のバルーン2に加えられる内圧によっても破断しない破断強度を有し、かつ後述する中央部2Eの材料の100%モジュラスよりも低い100%モジュラスを有する樹脂材料が用いられる。
 第1端部2Dの材料の破断強度は、後述する中央部2Eの材料の破断強度の80%以上であることがより好ましい。
 第1端部2Dに用いる樹脂材料としては、上述の条件を満足すれば、従来、バルーンカテーテルのバルーンに用いられている材料はすべて使用可能である。第1端部2Dの材料としては、例えば、熱可塑性ポリアミド系エラストマー、ポリエチレン(PE)、熱可塑性ポリウレタンエラストマー(PTU)などが挙げられる。
The diameter transition portion 2a and the constant diameter portion 2b of the first end portion 2D are all formed of the same material. The material of the first end 2D may be different from the material of the first fixing portion 2A, but in the present embodiment, as an example, the first end 2D and the first fixing portion 2A are formed of similar materials. It is done.
The material of the first end 2D has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2 and has a 100% modulus lower than the 100% modulus of the material of the central portion 2E described later A resin material is used.
The breaking strength of the material of the first end 2D is more preferably 80% or more of the breaking strength of the material of the central portion 2E described later.
As the resin material used for the first end 2D, all materials conventionally used for the balloon of the balloon catheter can be used as long as the above-mentioned conditions are satisfied. As a material of 1st end part 2D, a thermoplastic polyamide system elastomer, polyethylene (PE), a thermoplastic polyurethane elastomer (PTU) etc. are mentioned, for example.
 中央部2Eは、第1端部2Dの基端と段差なく接続された筒状部である(ただし、例えば、パーティングラインなどの製造上発生する微小な凹凸は除く。)。図1に示す例では、中央部2Eの自然展開状態の外形は、第1端部2Dが円断面を有することに対応して、第1端部2Dの基端の外径と同じ外径Dの円筒面である。軸方向における中央部2Eの長さはL2Eで表される。
 ここで、図1は模式図のため、第1端部2Dと中央部2Eとは、中心軸線Oに直交する平面に沿う接合部2eを介して接合されているように描かれている。しかし、第1端部2Dと中央部2Eとの接合部2eは、後述する製造上の理由で、中心軸線Oに直交する平面からずれて傾いたり、波打ったりしていてもよい。さらに、第1端部2Dと中央部2Eとの接合部2eは、後述する製造上の理由で、第1端部2Dの材料と中央部2Eの材料とが混じり合って、明確な境界線が現れていなくてもよい。これらの場合、軸方向における第1端部2Dおよび中央部2Eの長さに関わる接合部2eの位置は、これらの材料分布を平均化するような中心軸線Oに直交する平面の位置として規定される。
The central portion 2E is a cylindrical portion connected to the base end of the first end portion 2D without any level difference (however, for example, minute irregularities generated in manufacturing such as parting lines are excluded). In the example shown in FIG. 1, the outer shape of the naturally developed state of the central portion 2E is the same as the outer diameter D of the proximal end of the first end 2D, corresponding to the first end 2D having a circular cross section. It is a cylindrical surface of 0 . The length of the central portion 2E in the axial direction is represented by L 2E .
Here, since FIG. 1 is a schematic view, the first end 2D and the central portion 2E are drawn as being joined via a joint 2e along a plane orthogonal to the central axis O. However, the joint portion 2e between the first end portion 2D and the central portion 2E may be deviated from a plane orthogonal to the central axis O or may be corrugated for manufacturing reasons to be described later. Furthermore, at the joint 2e between the first end 2D and the central portion 2E, the material of the first end 2D and the material of the central portion 2E are mixed for a manufacturing reason to be described later, and a clear boundary is It does not have to appear. In these cases, the position of the joint 2e related to the length of the first end 2D and the central portion 2E in the axial direction is defined as the position of a plane orthogonal to the central axis O so as to average these material distributions. Ru.
 中央部2Eの材料としては、拡径状態のバルーン2に使用時に加えられる内圧によっても破断しない破断強度を有し、かつ第1端部2Dおよび後述する第2端部2Fの材料の100%モジュラスよりも高い100%モジュラスを有する材料が用いられる。
 中央部2Eに用いる樹脂材料としては、上述の条件を満足すれば、第1端部2Dに使用可能な材料と同様、従来、バルーンカテーテルのバルーンに用いられている材料はすべて使用可能である。
The material of the central portion 2E has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2 at the time of use, and 100% modulus of the material of the first end 2D and the second end 2F described later Materials having a higher 100% modulus are used.
As the resin material used for the central portion 2E, all the materials conventionally used for the balloon of the balloon catheter can be used, as well as the materials usable for the first end 2D, as long as the above-mentioned conditions are satisfied.
 第2端部2Fは、先端側から基端側に向かって、定径部2cと、径遷移部2dとを備える。軸方向における定径部2c、径遷移部2dの長さはそれぞれL2c、L2dで表される。ただし、第2端部2Fは、径遷移部2dのみで構成されてもよい。以下では、定径部2bと同様、定径部2cの長さについても0以上であるとして説明する。L2c=0は、定径部2cを有しない場合に相当する。この場合には、特に断らない限り、以下の説明における定径部2cは径遷移部2dの先端に読み換える。 The second end portion 2F includes a constant diameter portion 2c and a diameter transition portion 2d from the distal end side to the proximal end side. The lengths of the constant diameter portion 2c and the diameter transition portion 2d in the axial direction are respectively represented by L 2c and L 2d . However, the 2nd end 2F may be constituted only by diameter transition part 2d. In the following, as in the case of the constant diameter portion 2b, the length of the constant diameter portion 2c is also described as being 0 or more. L 2 c = 0 corresponds to the case where the constant diameter portion 2 c is not provided. In this case, unless otherwise specified, the constant diameter portion 2c in the following description is read as the tip of the diameter transition portion 2d.
 第2端部2Fの先端は、中央部2Eの基端と段差なく接続されている(ただし、例えば、パーティングラインなどの製造上発生する微小な凹凸は除く)。図1において、第2端部2Fと中央部2Eとの接合部2fは、接合部2eと同様に模式的に描かれている。接合部2fは、接合部2eと同様の形状が可能である。軸方向における第2端部2Fおよび中央部2Eの長さに関わる接合部2fの位置は、接合部2eと同様、第2端部2Fの材料と中央部2Eの材料との材料分布を平均化するような中心軸線Oに直交する平面の位置として規定される。 The distal end of the second end 2F is connected to the proximal end of the central portion 2E without any step (except, for example, minute irregularities generated in manufacturing such as a parting line). In FIG. 1, a joint 2f between the second end 2F and the central part 2E is schematically drawn in the same manner as the joint 2e. The joint 2 f can have the same shape as the joint 2 e. The position of the joint 2f related to the length of the second end 2F and the central part 2E in the axial direction is the same as the joint 2e, and the material distribution of the material of the second end 2F and the material of the central part 2E is averaged. Is defined as the position of a plane orthogonal to the central axis O.
 第2端部2Fにおける定径部2c、径遷移部2dは、それぞれ第1端部2Dにおける定径部2b、径遷移部2aと同種の形状が用いられる。ただし、径遷移部2dは、中央部2Eの基端からより基端側に向かうにつれて外径が漸次縮径する筒状部である。
 例えば、第2端部2Fの定径部2c、径遷移部2dは、それぞれ第1端部2Dにおける定径部2b、径遷移部2aと向きを除いて互いに同様の形状であってもよい。
 例えば、第2端部2Fの定径部2c、径遷移部2dは、軸方向における長さ、あるいは径遷移部2dにおける外径の変化率が、第1端部2Dの定径部2b、径遷移部2aと異なっていてもよい。
 本実施形態では、一例として、第2端部2Fの形状は、中心軸線Oに直交する平面に関して、第1端部2Dと面対称な形状であるとして説明する。したがって、特に断らない限り、L2a=L2d、L2b=L2cである。
The constant diameter portion 2c and the diameter transition portion 2d in the second end portion 2F have the same shape as the constant diameter portion 2b and the diameter transition portion 2a in the first end portion 2D, respectively. However, the diameter transition part 2d is a cylindrical part whose outer diameter gradually reduces as it goes from the base end of the central part 2E to the base end side.
For example, the constant diameter portion 2c and the diameter transition portion 2d of the second end portion 2F may have the same shape as the constant diameter portion 2b and the diameter transition portion 2a at the first end portion 2D, respectively, except for the direction.
For example, in the constant diameter portion 2c and the diameter transition portion 2d of the second end portion 2F, the length in the axial direction or the rate of change of the outer diameter at the diameter transition portion 2d is the diameter of the constant diameter portion 2b of the first end portion 2D. It may be different from the transition part 2a.
In the present embodiment, as an example, the shape of the second end 2F will be described as a shape that is plane-symmetrical to the first end 2D with respect to a plane orthogonal to the central axis O. Therefore, unless otherwise specified, L 2a = L 2d and L 2b = L 2c .
 第2端部2Fの定径部2cおよび径遷移部2dは、いずれも同一の材料で形成されている。第2端部2Fの材料は、第1端部2Dの材料と異なっていてもよいし、互いに同じでもよい。
 第2端部2Fの材料としては、第1端部2Dと同様、拡径状態のバルーン2に加えられる内圧によっても破断しない破断強度を有し、かつ後述する中央部2Eの材料の100%モジュラスよりも低い100%モジュラスを有する材料が用いられる。
 第2端部2Fの材料の破断強度は、第1端部2Dの材料と同様、中央部2Eの材料の破断強度の80%以上であることがより好ましい。
 第2端部2Fに用いる樹脂材料としては、上述の条件を満足すれば、第1端部2Dに使用可能な材料と同様、従来、バルーンカテーテルのバルーンに用いられている材料はすべて使用可能である。
The constant diameter portion 2c and the diameter transition portion 2d of the second end portion 2F are formed of the same material. The material of the second end 2F may be different from or the same as the material of the first end 2D.
Similar to the first end 2D, the material of the second end 2F has a breaking strength not to be broken even by the internal pressure applied to the expanded balloon 2, and 100% modulus of the material of the central portion 2E described later Materials with lower 100% modulus are used.
The breaking strength of the material of the second end 2F is, like the material of the first end 2D, more preferably 80% or more of the breaking strength of the material of the central portion 2E.
As the resin material used for the second end 2F, all materials conventionally used for the balloon of the balloon catheter can be used, as well as the materials usable for the first end 2D, provided that the above conditions are satisfied. is there.
 第2固定部2Cは、第2端部2Fの基端に接続され、先端側開口部1cよりも基端側となる外チューブ1Aの先端部において外チューブ1Aの外周面1aに密着して固定された筒状部である。第2固定部2Cと外周面1aとの固定方法は、拡張用流体が封止できる適宜の固定方法が可能である。例えば、第2固定部2Cは、外周面1aに溶着されていてもよい。
 軸方向における第2固定部2Cの長さはL2Cで表される。長さL2Cは、第2固定部2Cに必要とされる固定強度が得られる適宜の長さに設定される。
The second fixing portion 2C is connected to the proximal end of the second end 2F, and is fixed in close contact with the outer peripheral surface 1a of the outer tube 1A at the distal end of the outer tube 1A which is proximal to the distal end side opening 1c. It is a cylindrical part that has been As a method of fixing the second fixing portion 2C and the outer peripheral surface 1a, an appropriate fixing method capable of sealing the expansion fluid is possible. For example, the second fixing portion 2C may be welded to the outer peripheral surface 1a.
The length of the second fixed portion 2C in the axial direction is represented by L 2C . The length L 2 C is set to an appropriate length such that the fixing strength required for the second fixing portion 2 C can be obtained.
 このような構成により、自然展開状態のバルーン2において、軸方向における拡径部2Bの長さL2Bは、軸方向における第1端部2D、中央部2E、および第2端部2Fの長さの和(L2a+L2b+L2E+L2c+L2d)である。
 長さL2Bは、バルーン2が挿入される管腔の狭窄部を拡張できる適宜の長さに設定される。
 軸方向(シャフト1の長手方向)における第1端部2Dおよび第2端部2Fの長さは、それぞれ、軸方向における拡径部2Bの長さの15%以上25%以下であってもよい。
 軸方向における第1端部2Dおよび第2端部2Fの長さは、拡径状態における第1端部2Dおよび第2端部2Fの最大外径が等しくなる長さであってもよい。
With such a configuration, in the balloon 2 in a naturally deployed state, the length L 2B of the enlarged diameter portion 2B in the axial direction is the length of the first end 2D, the central portion 2E, and the second end 2F in the axial direction (L 2a + L 2b + L 2E + L 2c + L 2d ).
The length L2B is set to an appropriate length that can expand the narrowing of the lumen into which the balloon 2 is inserted.
The lengths of the first end 2D and the second end 2F in the axial direction (longitudinal direction of the shaft 1) may be 15% or more and 25% or less of the length of the enlarged diameter portion 2B in the axial direction. .
The lengths of the first end 2D and the second end 2F in the axial direction may be equal to the maximum outer diameters of the first end 2D and the second end 2F in the expanded state.
 このようにバルーン2は第1固定部2Aおよび第2固定部2Cによって、シャフト1の先端部の外周部である外周面1e、1aに密着して固定されている。拡径部2Bの内側において先端側開口部1cよりも先端側の外周面1eの回りには、先端側開口部1cを通して拡張用流体が出入りする内部空間Sが形成される。
 先端側開口部1cを通して内部空間Sに拡張用流体が流入すると拡径部2Bは拡張する。その際、内部空間Sに導入された拡張用流体は、第1固定部2Aおよび第2固定部2Cによって封止されるため、内部空間Sの内圧が上昇する。
 内部空間S内の拡張用流体が先端側開口部1cを通して内部流路Pに排出されると、拡径部2Bは収縮する。
 拡径部2Bは、上述したように折り目等がつけられているため、収縮するにつれて初期状態の折り畳み形状が復元される。
As described above, the balloon 2 is closely fixed to the outer peripheral surfaces 1e and 1a, which are the outer peripheral portions of the distal end portion of the shaft 1, by the first fixing portion 2A and the second fixing portion 2C. Inside the enlarged diameter portion 2B, around the outer peripheral surface 1e on the tip side with respect to the tip side opening 1c, an internal space S through which the expansion fluid flows in and out through the tip side opening 1c is formed.
When the expansion fluid flows into the internal space S through the distal end opening 1c, the enlarged diameter portion 2B expands. At that time, since the expansion fluid introduced into the internal space S is sealed by the first fixing portion 2A and the second fixing portion 2C, the internal pressure of the internal space S rises.
When the expansion fluid in the internal space S is discharged to the internal flow path P through the distal end opening 1c, the enlarged diameter portion 2B contracts.
Since the enlarged diameter portion 2B is creased or the like as described above, the folded shape in the initial state is restored as it is contracted.
 バルーン2は、例えば、自然展開状態の形状を転写する成形型を用いたブロー成形などによって製造されてもよい。
 例えば、第1固定部2Aおよび第1端部2Dの形成材料と、中央部2Eの形成材料と、第2端部2Fおよび第2固定部2Cの形成材料とがこの順に接合されたパリソンチューブが製作され、このパリソンチューブを上述の成形型の内部に配置してブロー成形が行われる。すなわち、パリソンチューブが成形型の内面に向かって膨張して、成形型の成形面に密着して硬化することにより、成形面の形状が膨張したパリソンチューブの外形として転写される。これによりバルーン2が製造される。
The balloon 2 may be manufactured, for example, by blow molding using a mold that transfers the shape in a naturally developed state.
For example, a parison tube in which a forming material of the first fixing portion 2A and the first end 2D, a forming material of the central portion 2E, and a forming material of the second end 2F and the second fixing portion 2C are joined in this order The parison tube is manufactured and placed in the interior of the mold described above to effect blow molding. That is, when the parison tube is expanded toward the inner surface of the mold and brought into close contact with the molding surface of the mold and cured, the shape of the molding surface is transferred as the outer shape of the expanded parison tube. Thereby, the balloon 2 is manufactured.
 膨張したパリソンチューブは、拡径率に応じて薄肉化する。ただし、パリソンチューブの肉厚のバラツキ、パリソンチューブの膨張時の変形のバラツキなどによっては、膨張時の肉厚にもバラツキが生じることがある。
 バルーン2の製造バラツキは、軸方向においても発生することがある。例えば、膨張前のパリソンチューブにおける異材料の接合部は、必ずしも軸方向に直交する平面に沿って形成されない場合がある。加えて、ブロー成形では、膨張時に軸方向の変形にもバラツキが生じるおそれがあるため、膨張時に異材料の接合部の軸方向の位置が変動することもある。
 これらの製造上の変動要因によっては、バルーン2において、接合部2e、2fの形状は、図1に模式的に示されたような中心軸線Oに直交する平面に沿った形状からはずれてしまうこともある。
The expanded parison tube is thinned according to the diameter expansion rate. However, due to the variation in thickness of the parison tube, the variation in deformation of the parison tube at the time of expansion, and the like, the thickness at the time of expansion may also vary.
Manufacturing variations of the balloon 2 may also occur in the axial direction. For example, the dissimilar material joint in the parison tube before expansion may not necessarily be formed along a plane orthogonal to the axial direction. In addition, in the blow molding, since there is a possibility that the deformation in the axial direction may also vary during expansion, the axial position of the joint portion of the different material may change during the expansion.
Depending on these manufacturing fluctuation factors, in the balloon 2, the shapes of the joints 2e and 2f deviate from the shape along the plane orthogonal to the central axis O as schematically shown in FIG. There is also.
 図2は、肉厚一定のパリソンチューブから製造したバルーン2の軸方向における肉厚分布の一例を模式的に示している。各部の肉厚における上述のような製造上の変動、バラツキは、図2の図示では省略されている。
 図2において横軸はバルーン2の軸方向における位置を表し、縦軸は肉厚を表す。
 横軸の原点0は、バルーン2の先端(第1固定部2Aの先端)の位置に対応する。点aは、拡径部2Bの先端(径遷移部2aの先端)の位置を示す。点bは、径遷移部2aと定径部2bとの境界の位置を示す。点c(d)は、接合部2e(2f)の位置を示す。点eは、定径部2cと径遷移部2dとの境界の位置を示す。点b、eは、成形型のパーティングラインの位置に該当する。点fは、拡径部2Bの基端(径遷移部2dの基端)の位置を示す。点gは、バルーン2の基端(第2固定部2Cの基端)の位置を示す。
FIG. 2 schematically shows an example of the thickness distribution in the axial direction of a balloon 2 manufactured from a constant thickness parison tube. The above-described manufacturing variations and variations in the thickness of each part are omitted in the illustration of FIG.
In FIG. 2, the horizontal axis represents the position of the balloon 2 in the axial direction, and the vertical axis represents the thickness.
The origin 0 on the horizontal axis corresponds to the position of the tip of the balloon 2 (the tip of the first fixing portion 2A). The point a indicates the position of the tip of the enlarged diameter portion 2B (the tip of the diameter transition portion 2a). The point b indicates the position of the boundary between the diameter transition portion 2a and the constant diameter portion 2b. A point c (d) indicates the position of the joint 2e (2f). A point e indicates the position of the boundary between the constant diameter portion 2c and the diameter transition portion 2d. Points b and e correspond to the positions of the parting line of the mold. The point f indicates the position of the proximal end of the enlarged diameter portion 2B (the proximal end of the diameter transition portion 2d). The point g indicates the position of the proximal end of the balloon 2 (the proximal end of the second fixed portion 2C).
 図2に示すように、バルーン2の肉厚は、第1固定部2Aの先端および第2固定部2Cの基端においてパリソンチューブの肉厚と略同じ厚さtである。第1固定部2Aの基端(第2固定部2Cの先端)は、膨張時に中央に向かって引き伸ばされるため、厚さt(ただし、t<t)に減少している。
 径遷移部2a(径遷移部2d)は、先端(基端)から中央部2Eの方に向かって漸次拡径するため、径遷移部2a(径遷移部2d)の肉厚は、先端(基端)から中央部2Eの方に向かって厚さtから漸次減少する。定径部2b(定径部2c)の近傍では、外径の変化率が0に近づくため、肉厚の変化率も小さくなる(点a~点b、点f~点e参照)。
 拡径部2Bにおいて最大の外径Dを有する、定径部2b、中央部2E、定径部2cに対応する点b~点eの間では、それぞれの肉厚は、最小の厚さt(ただし、t<t)になる。
As shown in FIG. 2, the wall thickness of the balloon 2 is substantially the same thickness t 3 and the thickness of the parison tube at the proximal end of the tip and the second fixing portion 2C of the first fixing portion 2A. The proximal end of the first fixed portion 2A (the tip of the second fixed portion 2C) is stretched toward the center at the time of expansion, and thus decreases to a thickness t 2 (where t 2 <t 3 ).
Since the diameter transition portion 2a (diameter transition portion 2d) gradually expands in diameter from the tip (base end) toward the central portion 2E, the thickness of the diameter transition portion 2a (diameter transition portion 2d) is gradually decreases from the thickness t 2 from the end) toward the central portion 2E. In the vicinity of the fixed diameter portion 2b (fixed diameter portion 2c), since the rate of change of the outer diameter approaches 0, the rate of change of the thickness also decreases (see points a to b and points f to e).
It has a maximum outer diameter D 0 in the enlarged diameter portion 2B, constant diameter portion 2b, a central portion 2E, in between points b ~ point e corresponding to the constant diameter portion 2c, the thickness of each, minimum thickness t 1 (however, t 1 <t 2) it becomes.
 このようにして製造されたバルーン2は、外チューブ1Aに内チューブ1Bが挿通されて、シャフト1の先端部において、第1固定部2Aが外周面1eに、第2固定部2Cが外周面1aにそれぞれ熱融着などによって固定される。
 シャフト1に固定されたバルーン2は、公知の折り畳み加工などによって折り目等が付くように折り畳まれて、内チューブ1Bに巻き付けられる。このようにして、バルーンカテーテル10が製造される。
 バルーン2は、初期状態では、シャフト1の外径と略同等の外径となるように折り畳まれている。
The inner tube 1B is inserted into the outer tube 1A, and the first fixed portion 2A is on the outer peripheral surface 1e and the second fixed portion 2C is on the outer peripheral surface 1a. It is fixed to each by heat fusion etc.
The balloon 2 fixed to the shaft 1 is folded so as to make a fold or the like by a known folding process or the like, and is wound around the inner tube 1B. Thus, the balloon catheter 10 is manufactured.
In the initial state, the balloon 2 is folded so as to have an outer diameter substantially equal to the outer diameter of the shaft 1.
 次に、バルーンカテーテル10の動作について、バルーン2の拡張時の動作を中心として説明する。
 図3は、本発明の実施形態のバルーンカテーテルの拡径状態における構成の一例を示す模式的な部分断面図である。
Next, the operation of the balloon catheter 10 will be described centering on the operation of the balloon 2 at the time of expansion.
FIG. 3 is a schematic partial cross-sectional view showing an example of the configuration of the balloon catheter according to the embodiment of the present invention in the expanded diameter state.
 バルーンカテーテル10は、例えば、予め患者の体内におけるバルーン2の配置位置まで挿入されたガイドワイヤー(図示略、以下も同様)の基端部をシャフト1の先端側から内チューブ1Bの内周面1fに挿入することで、ガイドワイヤーをたどって患者の体内に挿入される。バルーンカテーテル10は、必要に応じて、例えば、内視鏡(図示略)などの体内に挿入された挿入用の管部材を通して挿入される。
 このとき、バルーンカテーテル10のバルーン2には拡張用流体は導入されておらず、バルーン2は初期状態とされている。このため、バルーンカテーテル10の先端部は、シャフト1の外径と同程度の小径であり、シャフト1と同様、円滑に患者の体内に挿入される。
The balloon catheter 10 is, for example, a proximal end of a guide wire (not shown, the same applies hereinafter) inserted in advance to the placement position of the balloon 2 in the patient's body from the distal end side of the shaft 1 to the inner circumferential surface 1f of the inner tube 1B. By following the guide wire, it is inserted into the patient's body. The balloon catheter 10 is inserted, as necessary, through an insertion tube member inserted into the body, such as an endoscope (not shown).
At this time, the dilation fluid is not introduced into the balloon 2 of the balloon catheter 10, and the balloon 2 is in the initial state. Therefore, the distal end portion of the balloon catheter 10 has a diameter as small as the outer diameter of the shaft 1 and, like the shaft 1, can be smoothly inserted into the patient's body.
 バルーンカテーテル10のバルーン2が管腔を拡張させる部位に挿入されたら、術者はシャフト1の基端側開口部1dに流体供給装置(図示略、以下も同様)を接続する。
 術者は、流体供給装置を操作して、内部流路P内に拡張用流体を導入する。
 内部流路P内に導入された拡張用流体は、外チューブ1Aの先端部における先端側開口部1cからバルーン2の内部空間S内に流入する。拡張用流体が内部空間Sに流入するにつれてバルーン2が拡張する。バルーン2が拡張するにつれて、拡径部2Bが拡径し、拡径部2Bと当接する管腔の内面が押し広げられる。
 拡張用流体の圧力が予め決められた圧力に達すると、術者は拡張用流体の供給、加圧を停止する。これにより、バルーン2が一定の拡張状態に拡張し、管腔も所定の形状に拡張される。以上で、バルーンカテーテル10による管腔の拡張の処置が終了する。
When the balloon 2 of the balloon catheter 10 is inserted at the site where the lumen is to be expanded, the operator connects a fluid supply device (not shown, hereinafter the same) to the proximal opening 1 d of the shaft 1.
The operator operates the fluid supply device to introduce the expansion fluid into the internal flow path P.
The expanding fluid introduced into the internal flow path P flows into the internal space S of the balloon 2 from the distal end opening 1c at the distal end of the outer tube 1A. As the expansion fluid flows into the internal space S, the balloon 2 expands. As the balloon 2 is expanded, the diameter-increased portion 2B is expanded in diameter, and the inner surface of the lumen in contact with the diameter-increased portion 2B is pushed apart.
When the pressure of the expansion fluid reaches a predetermined pressure, the operator stops the supply and pressurization of the expansion fluid. As a result, the balloon 2 is expanded to a certain expanded state, and the lumen is expanded to a predetermined shape. Above, the treatment of the expansion of the lumen by balloon catheter 10 is completed.
 ここで、バルーン2の拡径状態の形状について、自由空間で拡張した場合の例で説明する。
 バルーン2は、自然展開状態の容積に相当する拡張用流体が導入されると、図1に示すような自然展開状態の形状に拡張する。自然展開状態ではバルーン2に張力(応力)が発生しておらず、バルーン2は、外径Dの略円筒状の形状になる。
 内部空間S内にさらに拡張用流体を供給すると、バルーン2の内圧が上昇し、バルーン2が膨張する。バルーン2は、部位によって材料が異なるため、各部位の材料の伸び特性、肉厚によって膨張率が異なる。
 各部位の材料の伸び特性は、100%モジュラスの大きさで表すことができる。同じ肉厚であれば、100%モジュラスが小さい材料ほど伸びやすい。100%モジュラスが同じ場合には、肉厚が薄い部位ほど応力が大きくなるため、より伸びやすい。
 すなわち、バルーン2において膨張率が相対的に大きくなるのは、接合部2eに近い第1端部2Dの部位、および接合部2fに近い第2端部2Fの部位になる。この結果、図3に示すように、接合部2eに近い第1端部2Dの部位および接合部2fに近い第2端部2Fの部位は、それぞれ、外径D2B、D2D(ただし、D2B>D、D2D>D)に膨張する。これに対して、中央部2Eの両端部を除く部位の外径は、外径D2B、D2Dよりも小径のD2E(ただし、D<D2E<D2B、D<D2E<D2D)にとどまる。
 本実施形態では、第1端部2D、第2端部2Fは互いに同材料で形成され、自然展開状態における形状が同形状であるため、D2B=D2Dである。
 中央部2Eにおける先端部2g(基端部2i)は、接合部2e(2f)を介して第1端部2D(第2端部2F)から径方向外側に向かう成分を含む引張応力を受けるため、D2EとD2B(D2D)との間の外径に膨張する。
Here, the shape of the diameter-expanded state of the balloon 2 will be described using an example in which the balloon 2 is expanded in free space.
The balloon 2 expands into the naturally deployed state as shown in FIG. 1 when the expansion fluid corresponding to the volume in the naturally deployed state is introduced. Tension (stress) is not generated in the balloon 2 in the natural expanded state, the balloon 2 will generally cylindrical shape of the outer diameter D 0.
When the expansion fluid is further supplied into the internal space S, the internal pressure of the balloon 2 rises, and the balloon 2 is expanded. The balloon 2 differs in material depending on the part, so the expansion rate differs depending on the elongation property and thickness of the material of each part.
The elongation properties of the material of each part can be represented by the magnitude of 100% modulus. If the thickness is the same, the smaller the 100% modulus, the easier it is to stretch. In the case where the 100% modulus is the same, the thinner the portion, the greater the stress and thus the easier it is to stretch.
That is, in the balloon 2, the expansion rate becomes relatively large at the portion of the first end 2D close to the joint 2e and the portion of the second end 2F close to the joint 2f. As a result, as shown in FIG. 3, the portion of the first end 2D near the joint 2e and the portion of the second end 2F near the joint 2f have outer diameters D 2B and D 2D respectively (where D 2B > D 0 , D 2D > D 0 ). On the other hand, the outer diameter of the portion excluding both ends of the central portion 2E is D 2E smaller than the outer diameters D 2B and D 2D (where D 0 <D 2E <D 2B , D 0 <D 2E < Stay in D 2 D).
In the present embodiment, since the first end 2D and the second end 2F are formed of the same material and have the same shape in the natural state, D 2B = D 2D .
The tip 2g (base end 2i) of the central portion 2E receives tensile stress including a component directed radially outward from the first end 2D (second end 2F) via the joint 2e (2f). , D 2E and D 2B (D 2D ) expand to an outer diameter.
 このようにして、バルーン2の拡径状態では、接合部2eに近い中央部2Eの先端部2gよりも先端側と、接合部2fに近い中央部2Eの基端部2iよりも基端側とに、最大外径D2B、D2Dのドーム状のそれぞれ膨出部2j、2kが形成される。これらの膨出部2j、2kに挟まれた中央部2Eの中間部2hは、外径D2Eの円筒部になる。
 したがって、バルーン2の拡径部2Bの外形は、いわゆるドッグボーン形状になっている。
 膨出部2j、2kの外径D2B、D2Dは、管腔への挿入時にバルーン2の軸方向の位置ずれが抑制できる適宜の大きさが可能である。例えば、中間部2hの外径D2Eの103%以上120%以下とされてもよい。
 バルーン2の位置ずれは、拡径時にバルーン2が管腔の狭窄部から外れない程度に抑制されていればよい。
Thus, in the diameter-expanded state of the balloon 2, the distal end side of the central portion 2E closer to the joint portion 2e than the distal end portion 2g and the proximal end side of the central end 2e near the joint portion 2f Then, dome-shaped bulged portions 2j and 2k of the maximum outer diameter D 2B and D 2D are formed. An intermediate portion 2h of the central portion 2E sandwiched between the bulging portions 2j and 2k becomes a cylindrical portion with an outer diameter D 2E .
Therefore, the outer diameter of the enlarged diameter portion 2B of the balloon 2 has a so-called dog bone shape.
Bulging portions 2j, 2k outer diameter D 2B, D 2D can be appropriately sized to positional deviation in the axial direction of the balloon 2 at the time of insertion into the lumen can be suppressed. For example, it may be 103% or more and 120% or less of the outer diameter D 2E of the intermediate portion 2 h.
The positional deviation of the balloon 2 may be suppressed to such an extent that the balloon 2 does not come out of the narrowed portion of the lumen at the time of diameter expansion.
 以上、自由空間における拡径状態の形状について説明したが、狭窄部を有する管腔内では、管腔の内壁からの反力が均等に分布していれば、外径の絶対値が異なるだけで、ドッグボーン形状になることは同様である。
 このため、管腔内でバルーン2の拡張が開始されると、自然展開状態に対応してバルーン2の外径が一定になる状態となり、さらにバルーン2の両端部の外径が中央部2Eに比べて相対的に増大していく。このため、バルーン2の両端の膨出部2j、2kが中間部2hよりも管腔の内壁に相対的に大きく食い込むため、バルーン2の両端部が中央部2Eよりもより強固に係止された状態で拡径される。この結果、バルーン2は、拡張途中において両端の膨出部2j、2kが軸方向の移動に抗するため、バルーン2の軸方向の移動が抑制される。
As mentioned above, although the shape of the diameter-expanded state in free space was demonstrated, if the reaction force from the inner wall of a lumen is equally distributed in the lumen which has a constriction part, only the absolute value of the outer diameter will differ. The dogbone shape is similar.
Therefore, when the expansion of the balloon 2 is started in the lumen, the outer diameter of the balloon 2 becomes constant corresponding to the natural deployed state, and the outer diameters of both ends of the balloon 2 It will increase relatively. Therefore, since the bulging portions 2j and 2k at both ends of the balloon 2 bite relatively larger in the inner wall of the lumen than the middle portion 2h, both ends of the balloon 2 are more firmly locked than the central portion 2E. It is expanded in the state. As a result, in the balloon 2, since the bulging portions 2 j and 2 k at both ends resist the movement in the axial direction during expansion, the movement of the balloon 2 in the axial direction is suppressed.
 例えば、バルーンにおいて両端の膨出部が形成されず、中央部の中心部が最大外径となり両端部に向かって縮径することで、中心部に向かって中太りして拡張する場合を考える。この場合、狭窄部は、中央部の中心部において凸面の頂部に当接するため、不安定な当接状態が形成される。例えば、バルーンに対して軸方向に外力が作用したり、狭窄部の最小部分と中央部の最大外径部分とが軸方向にずれていたりすると、狭窄部はより安定な当接状態となる軸方向の端部に相対移動しようとする。このように、両端に膨出部を有しないバルーンは、拡径中に軸方向に押し出されてしまうおそれがある。 For example, consider the case where the balloon is not formed with bulges at both ends, and the central part of the central part has a maximum outer diameter and the diameter is reduced toward both ends so that the central part is thickened and expanded. In this case, since the constriction portion abuts on the top of the convex surface at the center of the central portion, an unstable contact state is formed. For example, when an external force acts on the balloon in the axial direction, or when the smallest portion of the narrowed portion and the largest outer diameter portion of the central portion are axially shifted, the narrowed portion is in a stable contact state. Try to move relative to the end of the direction. Thus, the balloon having no bulging portion at both ends may be pushed out in the axial direction during diameter expansion.
 第1端部2Dおよび第2端部2Fの軸方向における長さが、拡径部2Bの軸方向における長さの15%以上25%以下であるとより良好な膨出部2j、2kが形成される。
 第1端部2Dおよび第2端部2Fの軸方向における長さが、拡径部2Bの軸方向における長さの15%未満であると、膨出部2j、2kの軸方向の長さが短くなるため、膨出部2j、2kによる軸方向の移動の抑制効果が低下するおそれがある。
 第1端部2Dおよび第2端部2Fの軸方向における長さが、拡径部2Bの軸方向における長さの25%を超えると、膨出部2j、2kに比べて、より小径の中間部2hの長さが短くなるため、管腔と中央部2Eとの当接量が少なくなりすぎるため、膨出部2j、2kによる軸方向の移動の抑制効果が低下するおそれがある。
Better bulges 2j and 2k are formed when the axial length of the first end 2D and the second end 2F is 15% or more and 25% or less of the axial length of the enlarged diameter portion 2B. Be done.
When the axial length of the first end 2D and the second end 2F is less than 15% of the axial length of the enlarged diameter portion 2B, the axial length of the bulges 2j and 2k is Since it becomes short, there is a possibility that the control effect of the movement of the direction of an axis by bulging part 2j and 2k may fall.
When the axial length of the first end 2D and the second end 2F exceeds 25% of the axial length of the enlarged diameter portion 2B, the diameter of the intermediate portion is smaller than that of the bulges 2j and 2k. Since the length of the portion 2h becomes short, the contact amount between the lumen and the central portion 2E becomes too small, so that the effect of suppressing the axial movement by the bulging portions 2j and 2k may be reduced.
 ここで、図4、5に示す比較例のバルーン200の拡径状態について説明する。
 図4は、比較例のバルーンカテーテルの自然展開状態における模式的な正面図である。
 図5は、比較例のバルーンカテーテルの拡径状態における模式的な正面図である。
Here, the diameter expansion state of the balloon 200 of the comparative example shown to FIG. 4, 5 is demonstrated.
FIG. 4 is a schematic front view of the balloon catheter of the comparative example in a naturally deployed state.
FIG. 5 is a schematic front view of the balloon catheter of the comparative example in the expanded state.
 図4に自然展開状態の外形を示すように、比較例のバルーン200は、先端側から基端側に向かって、自然展開状態の形状が、本実施形態の第1固定部2A、拡径部2B、第2固定部2Cと同様とされた、第1固定部200A、拡径部200B、および第2固定部200Cを備える。拡径部200Bは、先端側から基端側に向かって、本実施形態の径遷移部2aと同様な外形を有する径遷移部200aと、定径部2b、中央部2E、および定径部2cと同様な外形を有する中央部200bと、径遷移部2dと同様な外形を有する径遷移部200cとを備える。また、本実施形態の定径部2b、中央部2E、および定径部2cと同様に、自然展開状態における中央部200bの外径はDである。
 ただし、バルーン200は、1種類の材料で形成されているため、拡径部200Bの材料の100%モジュラスは、部位によらず一定である。
 バルーン200は、例えば、本実施形態のバルーン2を成形する成形型を用いて、単一材料からなるパリソンチューブをブロー成形することによって製造される。バルーン200の肉厚分布は、バルーン2の肉厚分布と同様である。
As the external shape of the natural expansion state is shown in FIG. 4, in the balloon 200 of the comparative example, the shape of the natural expansion state is the first fixing portion 2A of this embodiment and the enlarged diameter portion from the distal end side to the proximal end side. A second fixing portion 200A, an enlarged diameter portion 200B, and a second fixing portion 200C, which are similar to the second fixing portion 2C, are provided. In the enlarged diameter portion 200B, a diameter transition portion 200a having the same outer shape as the diameter transition portion 2a of the present embodiment, a constant diameter portion 2b, a central portion 2E, and a constant diameter portion 2c from the distal end side to the proximal end side. And a diameter transition portion 200c having an outer shape similar to that of the diameter transition portion 2d. The constant diameter portion 2b of the present embodiment, the central portion 2E, and like the constant diameter portion 2c, the outer diameter of the central portion 200b in the natural development state is D 0.
However, since the balloon 200 is formed of one type of material, the 100% modulus of the material of the enlarged diameter portion 200B is constant regardless of the part.
The balloon 200 is manufactured, for example, by blow molding a parison tube made of a single material using a mold for molding the balloon 2 of the present embodiment. The thickness distribution of the balloon 200 is similar to the thickness distribution of the balloon 2.
 このような比較例のバルーン200を自然展開状態から拡径すると、図5に示すように、自由空間においては、全体的に外径が増大する径方向への略一様な膨張が起こる。このため、拡径状態のバルーン200は、中央部200bの略全長にわたって、一定の外径D200B(ただし、D200B>D)を有する略円筒状の形状に膨張する。
 このような略均一な拡径状態は、管腔に狭窄部がない場合に生じる。この場合、バルーン200の管腔への食い込み量が全長にわたって略一定になるため、バルーン200の軸方向のすべり移動が起こりやすくなる。
When the diameter of the balloon 200 of the comparative example is expanded from the natural deployed state, as shown in FIG. 5, in the free space, substantially uniform expansion in the radial direction in which the outer diameter increases as a whole occurs. For this reason, the balloon 200 in the expanded state is expanded in a substantially cylindrical shape having a constant outer diameter D 200B (where D 200B > D 0 ) over substantially the entire length of the central portion 200b.
Such a substantially uniform diameter expansion condition occurs when the lumen does not have a constriction. In this case, since the amount of biting into the lumen of the balloon 200 becomes substantially constant over the entire length, sliding movement of the balloon 200 in the axial direction is likely to occur.
 自由空間で図5に示すように膨張する比較例のバルーン200は、狭窄部と非狭窄部とを有する管腔内で膨張する場合に、非狭窄部に位置するバルーンの部位の方が狭窄部に位置するバルーンの部位よりも膨張抵抗が少ない。このため、狭窄部と非狭窄部とを有する管腔内では、非狭窄部に位置するバルーンから膨張が開始する。このため、狭窄部が正確にバルーン中央に位置しない限り、バルーンの前後いずれか一方の端部から膨張が開始されるので、膨張中のバルーンが狭窄部から受ける抗力により、バルーンが移動しがちである。また、たとえ、狭窄部が正確にバルーンの中央に位置していても、狭窄部の形状によっては、バルーンが移動する抗力を受けることがある。
 このように、比較例のバルーン200は、不均一な膨張の際の狭窄部の抵抗によって移動しやすいため、膨張過程で狭窄部から外れてしまうことがある。完全には外れない場合でも、バルーンが両端部の不均等な膨出部によって係止されるため、シャフトが軽く押し引きされるだけで簡単に狭窄部から外れてしまうことがある。
The balloon 200 of the comparative example, which is inflated as shown in FIG. 5 in free space, is a portion where the balloon located at the non-narrowed portion is the narrow portion when inflated in the lumen having the narrowed portion and the non-narrowed portion. There is less expansion resistance than the part of the balloon located at. For this reason, in a lumen having a constricted part and a non-constricted part, inflation starts from a balloon located in the non-constricted part. For this reason, inflation is started from either the front or back end of the balloon unless the stenosis is accurately located at the center of the balloon, so the balloon tends to move due to the reaction force from the stenosis at the balloon being inflated. is there. Also, even if the constriction is located exactly at the center of the balloon, depending on the shape of the constriction, the balloon may be subjected to a drag to move.
As described above, since the balloon 200 of the comparative example is easily moved due to the resistance of the constriction part during the uneven expansion, it may be separated from the constriction part in the expansion process. Even if the shaft is not completely removed, the balloon may be locked by the uneven bulging portions at both ends, so that the shaft may be easily removed from the narrowed portion only by lightly pushing and pulling the shaft.
 比較例のバルーン200において、自由空間における拡径状態でドッグボーン形状を形成するために、中央部200bの両端部あるいは径遷移部200a、200cの肉厚を、中央部200bの中間部に比べて薄くすることも考えられる。しかし、この場合、肉厚が薄い部位では、破断強度が低下するため、バルーンの耐圧強度が低下してしまう。 In the balloon 200 of the comparative example, in order to form a dog bone shape in a diameter-expanded state in free space, the wall thickness of both ends of the central portion 200b or the diameter transition portions 200a and 200c is compared to the middle portion of the central portion 200b. It is also conceivable to make it thinner. However, in this case, since the breaking strength is reduced at the portion where the thickness is thin, the pressure resistance of the balloon is reduced.
 従来、バルーンの自然展開状態の形状をドッグボーン形状にすることが提案されている。しかしこの場合、バルーンの自然展開状態の形状が複雑な3次元形状になるため、バルーンを収縮させたときに、複数枚の平たい羽根状に折り畳むことができなくなる。これにより、バルーンを折り畳んだ状態でシャフトに巻き付けても一部が盛り上がって凹凸部が生じてしまう。
 これに対して、本実施形態のバルーン2は、自然展開状態で略円筒状であるため、収縮させたときに、折り畳み位置を適宜に設定すれば、複数枚の平たい板状に折り畳むことが可能である。シャフト1に巻き付けたときの外径は略均一となる。このため、管腔に対するバルーンの挿抜が円滑に行える。同様にバルーン2を案内するために挿通する内視鏡などの管部材への挿抜も円滑に行える。
Conventionally, it has been proposed to make the shape of the balloon in a naturally deployed state into a dog bone shape. However, in this case, since the shape of the balloon in a naturally-expanded state becomes a complicated three-dimensional shape, when the balloon is contracted, it can not be folded into a plurality of flat wings. Thereby, even if it winds around a shaft in the state which folded the balloon, a part will rise and an uneven part will arise.
On the other hand, since the balloon 2 of the present embodiment is substantially cylindrical in a naturally deployed state, it can be folded into a plurality of flat plates if the folding position is appropriately set when the balloon 2 is contracted. It is. The outer diameter when wound around the shaft 1 is substantially uniform. Therefore, the balloon can be smoothly inserted into and removed from the lumen. Similarly, insertion and removal to a tube member such as an endoscope which is inserted to guide the balloon 2 can be smoothly performed.
 バルーン2の拡張が終了した後、術者はバルーンカテーテル10の抜去動作を行う。
 術者は、流体供給装置を操作して、拡張用流体を減圧し、拡張用流体を基端側開口部1dから吸引する。
 内部空間S内の拡張用流体は、先端側開口部1cから内部流路P内に漸次排出される。拡張用流体の排出量に応じてバルーン2が収縮する。バルーン2は初期状態と同様、シャフト1に巻き付けられたのと同様の状態となる。
 バルーン2が収縮したら、操作者は、バルーンカテーテル10をガイドワイヤーに沿って、あるいはガイドワイヤーと共に、後退させ、管腔から抜去する。このとき、縮小したバルーン2の外径は、シャフト1の外径と略同じであるため、円滑な抜去が可能である。
After the expansion of the balloon 2 is completed, the operator performs the removal operation of the balloon catheter 10.
The operator operates the fluid supply device to decompress the expansion fluid and aspirate the expansion fluid from the proximal opening 1d.
The expansion fluid in the internal space S is gradually discharged into the internal flow path P from the distal end opening 1 c. The balloon 2 is contracted according to the discharge amount of the expansion fluid. The balloon 2 is in the same state as being wound around the shaft 1 as in the initial state.
When the balloon 2 is contracted, the operator retracts the balloon catheter 10 along the guide wire or with the guide wire, and withdraws from the lumen. At this time, since the outer diameter of the reduced balloon 2 is substantially the same as the outer diameter of the shaft 1, smooth removal is possible.
 以上説明したように、本実施形態のバルーン2を備えるバルーンカテーテル10によれば、バルーン2の耐圧強度および挿抜性能も低下させることなく、管腔への装着時の軸方向の位置ずれを抑制できる。このため、拡径時にバルーン2が管腔の狭窄部から外れることなく、狭窄部に配置される。 As described above, according to the balloon catheter 10 provided with the balloon 2 of the present embodiment, it is possible to suppress axial positional deviation at the time of attachment to the lumen without reducing the pressure resistance and the insertion / extraction performance of the balloon 2. . For this reason, at the time of diameter expansion, the balloon 2 is disposed at the narrowing portion without being separated from the narrowing portion of the lumen.
 なお、上記実施形態の説明では、シャフトが、拡張用流体の流通に用いられる内部流路と、例えば、ガイドワイヤーの挿通、薬液の流通などの他の用途に用いられる貫通孔とを有する場合の例で説明した。しかし、ガイドワイヤーを挿通したり、薬液を流通させたりする必要がない場合には、シャフトは内部流路のみが形成されていてもよい。この場合、内チューブ1Bは先端が封止されたチューブ、または中実棒状の部材に置き換えられてもよい。あるいは、シャフトは先端が封止されたシングルルーメンチューブの側面に先端側開口部が設けられた構成とされてもよい。 In the description of the above embodiment, the shaft has an internal flow passage used for the circulation of the expansion fluid, and a through hole used for other applications such as insertion of a guide wire and circulation of a chemical solution, for example. I explained in the example. However, when it is not necessary to insert a guide wire or to distribute a drug solution, the shaft may be formed with only the internal flow path. In this case, the inner tube 1B may be replaced by a tube whose tip is sealed or a solid rod-like member. Alternatively, the shaft may be configured such that the distal end side opening is provided on the side surface of the single-lumen tube whose distal end is sealed.
 以下では、上記実施形態のバルーンカテーテル10の実施例1~8について、比較例1~4とともに説明する。
 下記[表1]に、実施例1~8、比較例1~4におけるバルーンの構成と、評価結果とについて示す。下記[表1]には、バルーンの構成のうち、バルーンの材料と、バルーンの各部の長さ比率(%)が示されている。バルーンの長さ比率は、拡径部の軸方向の長さに対する各部の軸方向の長さの比率が百分率で表示されている。
 下記[表1]における材料の具体的な材料名は、下記[表2]に示されている。樹脂A、樹脂B、樹脂C、樹脂D、樹脂E、樹脂Fは、この順に、100%モジュラスの値が大きくなっている。
Hereinafter, Examples 1 to 8 of the balloon catheter 10 of the above embodiment will be described together with Comparative Examples 1 to 4.
The structures of the balloons in Examples 1 to 8 and Comparative Examples 1 to 4 and the evaluation results are shown in the following Table 1. In the following [Table 1], the material of the balloon and the length ratio (%) of each part of the balloon are shown among the configurations of the balloon. The ratio of the axial length of each part to the axial length of the enlarged diameter part is displayed as a percentage of the length ratio of the balloon.
Specific material names of the materials in the following [Table 1] are shown in the following [Table 2]. In the resin A, the resin B, the resin C, the resin D, the resin E, and the resin F, the value of 100% modulus increases in this order.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 [表1]に示すように、実施例1におけるバルーン2においては、第1端部2D、第2端部2Fには樹脂Cが使用され、中央部2Eには樹脂Fが使用された。
 [表2]に示すように、樹脂Cは、PEBAX(登録商標)6333(商品名;アルケマ社製)である。樹脂Cの100%モジュラス、引張破断強度は、それぞれ、17MPa、55MPaである。
 樹脂Fは、Grilamid(登録商標)L25(商品名;エムスケミー社製)である。樹脂Fの100%モジュラス、引張破断強度は、それぞれ、28MPa、71MPaである。このため、第1端部2D、第2端部2Fの引張破断強度は、中央部2Eの引張破断強度の77%になっていた。
 本実施例におけるバルーン2において、拡径部2B、第1端部2D、中央部2E、第2端部2Fの軸方向の長さは、それぞれ、100mm、25mm(長さ比率25%)、50mm(長さ比率50%)、25mm(長さ比率25%)とされた。径遷移部2a、定径部2b、定径部2c、径遷移部2dの軸方向の長さは、L2a=L2d=12(mm)、L2b=L2c=13(mm)とされた。
 本実施例におけるバルーン2の自然展開状態における外径Dは、16.5mmであった。中央部2E、定径部2b、2cの肉厚は、いずれも0.04mmであった。肉厚は、バルーン2を折り曲げて測定された2枚分の厚さの半値として求められた。
 実施例1のバルーン2は、上述の材料でパリソンチューブを形成し、ブロー成形によって製造された。
 実施例1のバルーン2は、内チューブ1Bの外径が1.6mm、外チューブ1Aの外径が2.0mmのシャフト1に溶着によって固定された。
 バルーン2に公知の折り畳み加工を施して初期状態としたところ、バルーン2の外径は、軸方向において略均一であり、約2.7mmであった。
 以上で、実施例1のバルーンカテーテル10が形成された。
Example 1
As shown in Table 1, in the balloon 2 in Example 1, the resin C was used for the first end 2D and the second end 2F, and the resin F was used for the central portion 2E.
As shown in [Table 2], Resin C is PEBAX (registered trademark) 6333 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of resin C are 17 MPa and 55 MPa, respectively.
Resin F is Grilamid (registered trademark) L25 (trade name; manufactured by Emskemy). The 100% modulus and tensile strength at break of the resin F are 28 MPa and 71 MPa, respectively. Therefore, the tensile breaking strengths of the first end 2D and the second end 2F are 77% of the tensile breaking strength of the central portion 2E.
In the balloon 2 in the present embodiment, the axial lengths of the enlarged diameter portion 2B, the first end 2D, the central portion 2E, and the second end 2F are 100 mm, 25 mm (length ratio 25%), 50 mm, respectively. (Length ratio 50%), 25 mm (Length ratio 25%). The axial lengths of the diameter transition portion 2a, the constant diameter portion 2b, the constant diameter portion 2c, and the diameter transition portion 2d are L 2a = L 2d = 12 (mm) and L 2 b = L 2c = 13 (mm). The
The outer diameter D 0 of the balloon 2 in the natural deployed state in this example was 16.5 mm. The thickness of each of the central portion 2E and the constant diameter portions 2b and 2c was 0.04 mm. The thickness was determined as half of the thickness of two sheets measured by bending the balloon 2.
The balloon 2 of Example 1 was made by blow molding, forming a parison tube from the above-mentioned materials.
The balloon 2 of Example 1 was fixed by welding to a shaft 1 having an outer diameter of the inner tube 1B of 1.6 mm and an outer diameter of the outer tube 1A of 2.0 mm.
When the balloon 2 was subjected to a known folding process and in an initial state, the outer diameter of the balloon 2 was substantially uniform in the axial direction, and was about 2.7 mm.
Above, the balloon catheter 10 of Example 1 was formed.
[実施例2]
 [表1]に示すように、実施例2におけるバルーン2の構成は、第1端部2D、中央部2E、第2端部2Fの長さ比率がそれぞれ15%、70%、15%とされた以外は、実施例1と同様とされた。本実施例では、径遷移部2a、定径部2b、定径部2c、径遷移部2dの軸方向の長さは、L2a=L2d=12(mm)、L2b=L2c=3(mm)とされた。
Example 2
As shown in [Table 1], in the configuration of the balloon 2 in Example 2, the length ratio of the first end 2D, the center 2E, and the second end 2F is 15%, 70%, and 15%, respectively. The same as in Example 1 except for the above. In this embodiment, the axial lengths of the diameter transition portion 2a, the constant diameter portion 2b, the constant diameter portion 2c, and the diameter transition portion 2d are L 2a = L 2d = 12 (mm), L 2b = L 2c = 3. (Mm) was taken.
[実施例3、4]
 [表1]に示すように、実施例3におけるバルーン2の構成は、中央部2Eの材料として樹脂Eが用いられた以外は、実施例1と同様とされた。実施例4におけるバルーン2は、中央部2Eの材料として樹脂Eが用いられた以外は、実施例2と同様とされた。
 [表2]に示すように、樹脂Eは、PEBAX(登録商標)7233(商品名;アルケマ社製)である。樹脂Eの100%モジュラス、引張破断強度は、それぞれ、22MPa、67MPaである。このため、第1端部2D、第2端部2Fの引張破断強度は、中央部2Eの引張破断強度の82%になっていた。
[Examples 3 and 4]
As shown in Table 1, the configuration of the balloon 2 in Example 3 was the same as Example 1 except that resin E was used as the material of the central portion 2E. The balloon 2 in Example 4 was the same as Example 2 except that resin E was used as the material of the central portion 2E.
As shown in [Table 2], resin E is PEBAX (registered trademark) 7233 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of resin E are 22 MPa and 67 MPa, respectively. For this reason, the tensile breaking strength of the first end 2D and the second end 2F is 82% of the tensile breaking strength of the central portion 2E.
[実施例5、6]
 [表1]に示すように、実施例5におけるバルーン2の構成は、第1端部2D、第2端部2Fの材料として樹脂Dが用いられた以外は、実施例3と同様とされた。実施例6におけるバルーン2の構成は、第1端部2D、第2端部2Fの材料として樹脂Dが用いられた以外は、実施例4と同様とされた。
 [表2]に示すように、樹脂Dは、PEBAX(登録商標)7033(商品名;アルケマ社製)である。樹脂Dの100%モジュラス、引張破断強度は、それぞれ、21MPa、59MPaである。このため、第1端部2D、第2端部2Fの引張破断強度は、中央部2Eの引張破断強度の88%になっていた。
[Examples 5, 6]
As shown in [Table 1], the configuration of the balloon 2 in Example 5 was the same as Example 3 except that resin D was used as the material of the first end 2D and the second end 2F. . The configuration of the balloon 2 in Example 6 was the same as that of Example 4 except that the resin D was used as the material of the first end 2D and the second end 2F.
As shown in [Table 2], resin D is PEBAX (registered trademark) 7033 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of resin D are 21 MPa and 59 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 88% of the tensile breaking strength of the central portion 2E.
[実施例7]
 [表1]に示すように、実施例7におけるバルーン2の構成は、第1端部2D、第2端部2Fの材料として樹脂Bが用いられたことと、第1端部2D、中央部2E、第2端部2Fの長さ比率がそれぞれ20%、60%、20%とされたこととを除くと、実施例1と同様とされた。本実施例では、径遷移部2a、定径部2b、定径部2c、径遷移部2dの軸方向の長さは、L2a=L2d=12(mm)、L2b=L2c=8(mm)とされた。
 [表2]に示すように、樹脂Bは、PEBAX(登録商標)5533(商品名;アルケマ社製)である。樹脂Bの100%モジュラス、引張破断強度は、それぞれ、16MPa、44MPaである。このため、第1端部2D、第2端部2Fの引張破断強度は、中央部2Eの引張破断強度の62%になっていた。
[Example 7]
As shown in [Table 1], in the configuration of the balloon 2 in Example 7, the resin B was used as the material of the first end 2D and the second end 2F, the first end 2D, and the central part Except for the fact that the length ratio of 2E and the second end 2F was set to 20%, 60%, and 20%, respectively, it was assumed that it was the same as Example 1. In this embodiment, the axial lengths of the diameter transition portion 2a, the constant diameter portion 2b, the constant diameter portion 2c, and the diameter transition portion 2d are L 2a = L 2d = 12 (mm), L 2b = L 2c = 8 (Mm) was taken.
As shown in Table 2, the resin B is PEBAX (registered trademark) 5533 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of the resin B are 16 MPa and 44 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 62% of the tensile breaking strength of the central portion 2E.
[実施例8]
 [表1]に示すように、実施例8におけるバルーン2の構成は、第1端部2D、第2端部2Fの材料として樹脂Aが用いられた以外は、実施例7と同様とされた。
 [表2]に示すように、樹脂Aは、PEBAX(登録商標)4033(商品名;アルケマ社製)である。樹脂Aの100%モジュラス、引張破断強度は、それぞれ、13MPa、36MPaである。このため、第1端部2D、第2端部2Fの引張破断強度は、中央部2Eの引張破断強度の51%になっていた。
[Example 8]
As shown in [Table 1], the configuration of the balloon 2 in Example 8 is the same as Example 7 except that resin A was used as the material of the first end 2D and the second end 2F. .
As shown in [Table 2], Resin A is PEBAX (registered trademark) 4033 (trade name; manufactured by Arkema). The 100% modulus and tensile strength at break of the resin A are 13 MPa and 36 MPa, respectively. Therefore, the tensile breaking strength of the first end 2D and the second end 2F is 51% of the tensile breaking strength of the central portion 2E.
[比較例1]
 [表1]に示すように、比較例1におけるバルーンの構成は、中央部の材料として、樹脂Cが用いられ、第1端部、第2端部の材料として樹脂Fが用いられた以外は、実施例7と同様とされた。
 このため、第1端部、第2端部の100%モジュラスは、中央部の100%モジュラスよりも11MPa大きくなっていた。
 第1端部、第2端部の引張破断強度は、中央部の引張破断強度の129%になっていた。
Comparative Example 1
As shown in [Table 1], in the configuration of the balloon in Comparative Example 1, resin C was used as the material of the central portion, and resin F was used as the material of the first end and the second end. , The same as Example 7.
Therefore, the 100% modulus at the first end and the second end is 11 MPa larger than the 100% modulus at the central portion.
The tensile breaking strength of the first end and the second end was 129% of the tensile breaking strength of the central portion.
[比較例2]
 [表1]に示すように、比較例2におけるバルーンの構成は、中央部の材料として、樹脂Dが用いられた以外は、比較例1と同様とされた。
 このため、第1端部、第2端部の100%モジュラスは、中央部の100%モジュラスよりも7MPa大きくなっていた。
 第1端部、第2端部の引張破断強度は、中央部の引張破断強度の120%になっていた。
Comparative Example 2
As shown in Table 1, the configuration of the balloon in Comparative Example 2 was the same as Comparative Example 1 except that resin D was used as the material of the central portion.
Therefore, the 100% modulus at the first end and the second end was 7 MPa larger than the 100% modulus at the central portion.
The tensile breaking strength of the first end and the second end was 120% of the tensile breaking strength of the central part.
[比較例3、4]
 [表1]に示すように、比較例3におけるバルーンの構成は、拡径部全体に樹脂Eが用いられたことと、第1端部、中央部、第2端部の長さ比率が、それぞれ13%、74%、13%とされたこととを除くと、実施例1と同様とされた。本比較例では、先端側の径遷移部、定径部の軸方向の長さは、それぞれ、12mm、1mm、基端側の定径部、径遷移部の軸方向の長さは、それぞれ、1mm、12mmとされた。
 [表1]に示すように、比較例4におけるバルーンの構成は、拡径部全体に樹脂Cが用いられたこと以外は、比較例3と同様とされた。
[Comparative Examples 3 and 4]
As shown in [Table 1], in the configuration of the balloon in Comparative Example 3, the resin E was used for the entire enlarged diameter portion, and the length ratio of the first end, the center, and the second end was Except for 13%, 74%, and 13%, respectively, it was considered to be the same as Example 1. In this comparative example, the axial length of the diameter transition portion on the distal end side and the constant diameter portion is 12 mm and 1 mm, respectively, and the axial length of the diameter transition portion on the base end side is 12 mm and 1 mm, respectively. It was 1 mm and 12 mm.
As shown in [Table 1], the configuration of the balloon in Comparative Example 4 was the same as Comparative Example 3 except that the resin C was used for the entire enlarged diameter portion.
[評価]
 [表1]に示すように、各実施例、各比較例の評価については、位置ずれ、耐圧強度、挿抜性の評価が行われた。
 図6は、位置ずれの評価に用いた狭窄部の形状を示す模式的な断面図である。
[Evaluation]
As shown in [Table 1], for the evaluation of each example and each comparative example, evaluation of positional deviation, pressure resistance strength, and insertion / removal property was performed.
FIG. 6 is a schematic cross-sectional view showing the shape of a narrowed portion used for evaluation of positional deviation.
 位置ずれの評価は、図6に示すように、評価治具100を用いて行われた。 
 評価治具100は、非狭窄部の内径が20mmの管腔の狭窄部を模擬する形状に形成された。評価治具100は、シリコーンからなるブロック材に、テーパ部101a、円孔部101b、およびテーパ部101cが同軸上にこの順に形成された貫通孔101を備える。
 円孔部101bは、狭窄部を模擬する形状部分である。円孔部101bは、直径αが5mm、長さβが10mmとされた。テーパ部101a(101c)は、円孔部101bの先端(基端)からより先端側(基端側)に向かって、管腔の非狭窄部の内径まで拡径されている。テーパ部101a、101cのテーパ角度θは、25°とされた。
The positional deviation was evaluated using an evaluation jig 100 as shown in FIG.
The evaluation jig 100 was formed in a shape that simulates a narrow portion of a lumen whose internal diameter of the non-constriction portion is 20 mm. The evaluation jig 100 is provided with a through hole 101 in which a taper portion 101a, a circular hole portion 101b, and a taper portion 101c are coaxially formed in this order in a block material made of silicone.
The circular hole portion 101 b is a shape portion that simulates a narrowed portion. The circular hole portion 101 b had a diameter α of 5 mm and a length β of 10 mm. The tapered portion 101a (101c) is expanded in diameter from the distal end (proximal end) of the circular hole portion 101b toward the distal end (proximal end) to the inner diameter of the non-constricted portion of the lumen. The taper angle θ of the tapered portions 101a and 101c was 25 °.
 位置ずれの評価においては、各実施例、各比較例のバルーンカテーテルのバルーンが評価治具100の円孔部101bに挿入され、バルーンの内部空間に温水からなる拡張用流体が導入された。これにより、バルーンが拡径状態とされた。拡張用流体の圧力は、自由空間における拡径部の中央部の外径が18mmになる圧力とされた。この圧力は、拡径部の中央部の材質によっても異なるが、実施例1~8では2026.5hPa~4053.0hPa、比較例1~4では2026.5hPa~4053.0hPaであった。
 これにより、各バルーンは、円孔部101bを拡張することができた。
 この状態で、シャフトが軸方向に押し引きされた。このとき、バルーンが狭窄部から外れるかどうかが評価された。バルーンが狭窄部から外れなかった場合、「良い」(good、[表1]では「○」と記載)、バルーンが狭窄部から外れた場合、「不良」(no good、[表1]では「×」と記載)と評価された。
In the evaluation of the positional deviation, the balloon of the balloon catheter of each example and each comparative example was inserted into the circular hole portion 101b of the evaluation jig 100, and the expansion fluid consisting of warm water was introduced into the internal space of the balloon. The balloon was thus expanded. The pressure of the expansion fluid was set to a pressure at which the outer diameter of the central portion of the enlarged diameter portion in the free space became 18 mm. The pressure varies depending on the material of the central portion of the enlarged diameter portion, but was 2026.5 hPa to 4053.0 hPa in Examples 1 to 8 and 2026.5 hPa to 4053.0 hPa in Comparative Examples 1 to 4.
Thereby, each balloon was able to expand the hole portion 101 b.
In this state, the shaft was pushed and pulled in the axial direction. At this time, it was evaluated whether the balloon was removed from the stenosis. If the balloon did not come off the stenosis, "good" (described as "good" in [Table 1]), if the balloon came off the stenosis, "poor" (no good, in [Table 1] Described as “×”).
 耐圧強度の評価は、バルーンに7092.75hPa(7atm)の内圧を加えて破裂するかどうかによって行われた。
 耐圧強度が7092.75hPa(7atm)以上の場合、「良い」(good、[表1]では「○」と記載)、耐圧強度が7092.75hPa(7atm)未満の場合、「不良」(no good、[表1]では「×」と記載)と評価された。
Evaluation of compressive strength was performed depending on whether or not the balloon was ruptured by applying an internal pressure of 7092.75 hPa (7 atm).
When the compressive strength is 7092.75 hPa (7 atm) or more, "good" (good, described as "○" in [Table 1]), and when the compressive strength is less than 7092.75 hPa (7 atm), "defect" (no good) , [Table 1] described as "x").
 挿抜性の評価は、バルーンが収縮された状態のバルーンカテーテルを評価治具100に挿抜する際の力量を測定することによって行われた。
 挿入時の力量が7N以下かつ抜去時の力量が20N以下の場合、「良い」(good、[表1]では「○」と記載)、挿入時の力量が7Nを超えるまたは抜去時の力量が20Nを超える場合、「不良」(no good、[表1]では「×」と記載)と評価された。
The evaluation of the releasability was performed by measuring the amount of force when the balloon catheter in a deflated state was inserted into and removed from the evaluation jig 100.
When the insertion capacity is 7N or less and the extraction capacity is 20N or less, "Good" (described as "o" in [Table 1]), the insertion capacity exceeds 7N, or the extraction capacity is When it exceeded 20 N, it was evaluated as "defect" (denoted as "good" and described as "x" in [Table 1]).
[評価結果]
 [表1]に示すように、実施例1~6は、「位置ずれ」、「耐圧強度」、「挿抜性」のいずれの評価結果も、「良い(○)」であったため、総合評価として、「非常に良い」(very good、[表1]では「◎」と記載)と評価された。
 実施例7、8は、「位置ずれ」、「挿抜性」の評価結果は「良い(○)」であった。「耐圧強度」の評価結果は、「良い(○)」であったが、十分な余裕をもってクリアしていなかった。そこで、総合評価としては、「良い」(good、[表1]では「○」と記載)と評価された。
[Evaluation results]
As shown in [Table 1], in Examples 1 to 6, all of the evaluation results of “displacement”, “pressure resistance strength”, and “removability” were “good (○)”, and therefore, as a comprehensive evaluation , "Very good" (very good, described in Table 1 as "◎") was evaluated.
In Examples 7 and 8, the evaluation results of "displacement" and "removability" were "good (o)". Although the evaluation result of "pressure resistance strength" was "good (o)", it did not clear with a sufficient margin. Therefore, the overall evaluation was evaluated as "good" (good, described as "○" in [Table 1]).
 これに対して、比較例1~3は、「耐圧強度」の評価結果は、「良い(○)」であったが、「位置ずれ」、「挿抜性」は「不良(×)」であったため、総合評価として、「不良」(no good、[表1]では「×」と記載)と評価された。
 「位置ずれ」の評価結果が「不良(×)」であったのは、比較例1、2では、第1端部、第2端部の材料の100%モジュラスが、中央部の材料の100%モジュラスよりも大きいため、拡径時に中央部の外径が最大となって両端部に膨出部が形成されなかったためであると考えられる。
 比較例3において、「位置ずれ」が不良になったのは、比較例3の拡径部が単一材料で形成されているためであると考えられる。すなわち、バルーンが非狭窄部から膨張が開始した際に両端部の膨張が不均一になり、狭窄部の抗力によって、一方に偏って膨張した結果、一方側に押し引きされたときに抜けてしまったためであると考えられる。
 比較例1~3において「挿抜性」が「不良(×)」となったのは、両端部の材料が比較的100%モジュラスが大きい樹脂E、Fで形成されたためであると考えられる。材料の100%モジュラスも挿抜性に影響を与え、100%モジュラスの大きな材料が両端にあると(バルーンを畳んだ状態で)挿抜性が劣ると考えられる。
 一方、比較例4は「耐圧強度」、「挿抜性」が「良い(○)」と評価されたが、「位置ずれ」が「不良(×)」であったため、総合評価として、「不良」(no good、[表1]では「×」と記載)と評価された。
 比較例4において、「位置ずれ」が「不良(×)」であったのは比較例3と同様の理由と考えられる。
 比較例4において、「挿抜性」が「良い(○)」であったのは、比較例の両端部の材料の100%モジュラスが、樹脂E、Fよりも小さい樹脂Cからなるためと考えられる。
On the other hand, in Comparative Examples 1 to 3, the evaluation result of “pressure resistance strength” was “good (○)”, but “positional misalignment” and “removability” are “defect (x)”. Therefore, as a comprehensive evaluation, it was evaluated as "defective" (No good, described as "x" in [Table 1]).
In Comparative Examples 1 and 2, the 100% modulus of the material of the first end portion and the second end portion was 100% of the material of the central portion in the evaluation results of “misalignment” being “defective (×)”. Since it is larger than the% modulus, it is considered that the outer diameter of the central portion is maximized at the time of diameter expansion and the bulging portion is not formed at both ends.
It is considered that the reason why the “displacement” becomes defective in Comparative Example 3 is that the diameter-increased portion of Comparative Example 3 is formed of a single material. That is, when the balloon starts to inflate from the non-constriction part, the expansion of both ends becomes uneven, and as a result of being expanded in one direction by the drag of the constriction part, it is dislodged when it is pushed and pulled to one side. Is considered to be
The reason why the “removability” is “defective (x)” in Comparative Examples 1 to 3 is considered to be that the material at both ends is formed of the resins E and F having a relatively large modulus of 100%. The 100% modulus of the material also affects the removability, and it is considered that the removability is inferior when the material having the large 100% modulus is at both ends (in the state where the balloon is folded).
On the other hand, Comparative Example 4 was evaluated as "good (o)" for "pressure resistance strength" and "removability" but because "displacement" was "defect (x)", "poor" as a comprehensive evaluation. It was evaluated as (no good, described as "x" in [Table 1]).
In Comparative Example 4, the reason why the “displacement” is “defect (x)” is considered to be the same reason as in Comparative Example 3.
The reason why the “removability” was “good (○)” in Comparative Example 4 is considered to be that the 100% modulus of the material at both ends of the Comparative Example is made of the resin C smaller than the resins E and F. .
 以上説明したように、比較例1~4が少なくとも「位置ずれ」の評価が不良であったのに対して、実施例1~8では、いずれも「位置ずれ」および「挿抜性」の評価結果が良好であったことが分かる。 As described above, in Comparative Examples 1 to 4 at least the evaluation of "displacement" was poor, while in Examples 1 to 8, the evaluation results of "displacement" and "insertability" were all obtained. It is understood that was good.
 以上、本発明の好ましい実施形態、各実施例を説明したが、本発明はこれらの実施形態、各実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
Although the preferred embodiments and examples of the present invention have been described above, the present invention is not limited to these embodiments and examples. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
1 シャフト
1A 外チューブ
1B 内チューブ
1a、1e 外周面(外周部)
1c 先端側開口部
1d 基端側開口部
2 バルーン
2A 第1固定部
2B 拡径部
2C 第2固定部
2D 第1端部
2E 中央部
2F 第2端部
2a、2d 径遷移部
2b、2c 定径部
2e、2f 接合部
10 バルーンカテーテル
O 中心軸線
P 内部流路
S 内部空間
1 Shaft 1A Outer tube 1B Inner tube 1a, 1e Outer peripheral surface (outer peripheral part)
1c tip side opening 1d base end side opening 2 balloon 2A first fixed part 2B enlarged diameter part 2C second fixed part 2D first end 2E central part 2F second end 2a, 2d diameter transition part 2b, 2c fixed Diameter 2e, 2f Junction 10 Balloon catheter O Central axis P Internal channel S Internal space

Claims (5)

  1.  先端側開口部を通して拡張用流体を流通するシャフトと、
     前記シャフトの外周部において前記先端側開口部よりも先端側に固定された第1固定部と、前記シャフトの外周部において前記先端側開口部よりも基端側に固定された第2固定部と、前記第1固定部および前記第2固定部との間に形成され前記先端側開口部から供給される前記拡張用流体によって拡径する拡径部と、を有するバルーンと、
    を備え、
     前記拡径部は、前記第1固定部から前記第2固定部に向かって、第1端部、中央部、および第2端部が、この順に隣り合って構成されており、
     前記第1端部および前記第2端部の材料の100%モジュラスが、前記中央部の材料の100%モジュラスよりも低い、
    バルーンカテーテル。
    A shaft for passing the expansion fluid through the distal opening;
    A first fixing portion fixed to the distal end side of the distal end side opening at the outer peripheral portion of the shaft; and a second fixing portion fixed to the proximal end side of the distal end side opening at the outer peripheral portion of the shaft A balloon having an enlarged diameter portion formed between the first fixed portion and the second fixed portion and expanded by the expansion fluid supplied from the distal end side opening portion;
    Equipped with
    The enlarged diameter portion is configured such that a first end, a central portion, and a second end are adjacent to each other in this order from the first fixed portion to the second fixed portion.
    The 100% modulus of the first end and the second end material is lower than the 100% modulus of the central portion material,
    Balloon catheter.
  2.  前記第1端部および前記第2端部の前記シャフトの長手方向における長さは、前記拡径部の前記シャフトの長手方向における長さの15%以上25%以下である、
    請求項1に記載のバルーンカテーテル。
    The length in the longitudinal direction of the shaft of the first end and the second end is 15% or more and 25% or less of the length in the longitudinal direction of the shaft of the enlarged diameter portion.
    The balloon catheter according to claim 1.
  3.  前記第1端部および前記第2端部の材料の破断強度は、前記中央部の材料の破断強度の80%以上である、
    請求項1に記載のバルーンカテーテル。
    The breaking strength of the material of the first end and the second end is 80% or more of the breaking strength of the material of the central portion,
    The balloon catheter according to claim 1.
  4.  応力が発生することなく前記拡径部が拡がった状態である前記拡径部の自然展開状態において、
     前記第1端部、前記中央部、および前記第2端部の最大外径は、互いに等しい、
    請求項1に記載のバルーンカテーテル。
    In the natural expansion state of the enlarged diameter portion, in which the enlarged diameter portion is expanded without generating stress,
    The maximum outer diameters of the first end, the central portion, and the second end are equal to one another,
    The balloon catheter according to claim 1.
  5.  応力が発生することなく前記拡径部が拡がった状態である前記拡径部の自然展開状態において、
     前記第1端部および前記第2端部は、それぞれ前記中央部に向かう方向において外径が増大する径遷移部と、前記径遷移部の最大外径となる部位から径一定で延びる定径部とを有し、
     前記径遷移部の外形状は椀型である、
    請求項1に記載のバルーンカテーテル。
    In the natural expansion state of the enlarged diameter portion, in which the enlarged diameter portion is expanded without generating stress,
    The first end portion and the second end portion each have a diameter transition portion whose outer diameter increases in a direction toward the central portion, and a constant diameter portion extending at a constant diameter from a portion which becomes the maximum outer diameter of the diameter transition portion Have and
    The outer shape of the diameter transition portion is a bowl shape,
    The balloon catheter according to claim 1.
PCT/JP2017/034594 2016-09-29 2017-09-25 Balloon catheter WO2018062116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190533 2016-09-29
JP2016-190533 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062116A1 true WO2018062116A1 (en) 2018-04-05

Family

ID=61759679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034594 WO2018062116A1 (en) 2016-09-29 2017-09-25 Balloon catheter

Country Status (1)

Country Link
WO (1) WO2018062116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323714A (en) * 2004-05-13 2005-11-24 Kaneka Corp Catheter balloon for medical use
JP2008000553A (en) * 2006-06-26 2008-01-10 Asahi Intecc Co Ltd Manufacturing method of balloon catheter and balloon catheter
US20080171977A1 (en) * 2006-10-20 2008-07-17 Boston Scientific Scimed, Inc. Reinforced rewrappable balloon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323714A (en) * 2004-05-13 2005-11-24 Kaneka Corp Catheter balloon for medical use
JP2008000553A (en) * 2006-06-26 2008-01-10 Asahi Intecc Co Ltd Manufacturing method of balloon catheter and balloon catheter
US20080171977A1 (en) * 2006-10-20 2008-07-17 Boston Scientific Scimed, Inc. Reinforced rewrappable balloon

Similar Documents

Publication Publication Date Title
US6547813B2 (en) Stent delivery catheter with folded sleeve and method of making same
US9801619B2 (en) Expandable transluminal sheath
JP4361217B2 (en) Balloon catheter and stent deployment catheter system
US6589274B2 (en) Stent delivery catheter and method of making same
US20060206197A1 (en) Endovascular balloon graft
US8303539B2 (en) Preform and balloon having a non-uniform thickness
KR101364328B1 (en) Cuff-equipped tube
EP3795199A1 (en) Balloon catheter
US20050261723A1 (en) Folded balloon for catheter
US20180153536A1 (en) Treatment instrument for endoscope
WO2018062116A1 (en) Balloon catheter
JP7359853B2 (en) balloon catheter
EP3342446B1 (en) Balloon for catheter, balloon catheter, and molding die
WO2019107206A1 (en) Balloon catheter and method for producing same
RU2814999C2 (en) Balloon catheter
WO2020235352A1 (en) Balloon catheter, method for folding balloon of balloon catheter, and balloon forming device
JP4686711B2 (en) Biological duct dilator and catheter
JP2010035660A (en) Balloon catheter and stent delivery catheter for medical use
US20220305242A1 (en) Balloon dilation device
JP6780328B2 (en) Balloon catheter for stone removal
JP6742885B2 (en) Balloon catheter
JP2024004451A (en) Catheter and balloon actuation method
CN117298421A (en) Working method of catheter and balloon
JP2019063138A (en) Balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP