WO2018062005A1 - Motor and electric power steering device - Google Patents

Motor and electric power steering device Download PDF

Info

Publication number
WO2018062005A1
WO2018062005A1 PCT/JP2017/034193 JP2017034193W WO2018062005A1 WO 2018062005 A1 WO2018062005 A1 WO 2018062005A1 JP 2017034193 W JP2017034193 W JP 2017034193W WO 2018062005 A1 WO2018062005 A1 WO 2018062005A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bearing
shaft
lid
heat sink
Prior art date
Application number
PCT/JP2017/034193
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 山下
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201780057213.XA priority Critical patent/CN109716631B/en
Priority to JP2018542498A priority patent/JP7031595B2/en
Publication of WO2018062005A1 publication Critical patent/WO2018062005A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a motor and an electric power steering apparatus.
  • a motor in which a control unit is mounted on one end side of an output shaft is known (for example, Patent Document 1).
  • a motor has a magnet (sensor magnet) at the end of the output shaft, and detects the rotation angle of the output shaft by means of a magnetic rotation sensor arranged opposite to the magnet.
  • Patent Document 1 describes that a bearing holder serves as a heat sink. That is, the bearing holder is in close contact with the lower surface of the control unit (for example, the substrate) and radiates heat generated by the control unit.
  • the bearing holder is provided with a through hole for arranging the magnet so as to face the control unit.
  • the through hole is a factor that reduces the heat transfer efficiency between the bearing holder and the control unit in order to reduce the area where the bearing holder and the control unit face each other.
  • one aspect of the present invention is to provide a motor that can efficiently dissipate heat generated in a substrate, and an electric power steering device including such a motor. .
  • One aspect of the motor of the present invention includes a shaft that rotates about a central axis extending in the vertical direction, a bearing that supports the upper end of the shaft, and a metal heat sink that directly or indirectly holds the bearing. And a substrate disposed above the heat sink, a sensor magnet fixed to the shaft above the bearing at the upper end of the shaft, and a position overlapping the sensor magnet of the substrate when viewed from the axial direction.
  • a rotation sensor mounted; and a heat dissipating material positioned between the substrate and the heat sink.
  • the heat sink has a through-hole penetrating in a vertical direction and accommodating the bearing and the sensor magnet.
  • the heat sink is attached with a lid that covers at least a part of the upper opening of the through hole. That.
  • a motor capable of efficiently dissipating heat generated in a substrate and an electric power steering apparatus including such a motor are provided.
  • Sectional drawing which shows the motor of embodiment.
  • the expanded sectional view of the motor which expanded a part of FIG.
  • the expanded sectional view of the motor of a modification The schematic diagram which shows the electric power steering apparatus of embodiment.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the X-axis direction is a direction orthogonal to the Z-axis direction and is the left-right direction in FIG.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
  • the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side, the other side) in the Z-axis direction is referred to as “lower side”.
  • the upper side and the lower side are simply names used for explanation, and do not limit the actual positional relationship and direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”
  • a radial direction around the central axis J is simply referred to as a “radial direction”.
  • the circumferential direction centering around, that is, the circumference of the central axis J is simply referred to as “circumferential direction”.
  • FIG. 1 is a cross-sectional view showing a motor 1 of the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view in which a part of FIG. 1 is enlarged.
  • the motor 1 includes a motor housing 11, a substrate housing 12, a rotor 20 having a shaft 21, a stator 30, an upper bearing (bearing) 24, a lower bearing 25, a sensor magnet 63, and a bearing holder (heat sink). 40, a lid 70, a first substrate 66, a second substrate 67, a rotation sensor 61, and heat radiation grease (heat radiation material) G.
  • the motor housing 11 and the substrate housing 12 accommodate each part of the motor 1 inside.
  • the motor housing 11 has a cylindrical shape that opens upward (+ Z side).
  • the substrate housing 12 has a cylindrical shape that opens downward ( ⁇ Z side).
  • the motor housing 11 and the substrate housing 12 are disposed with their openings facing each other. Between the motor housing 11 and the substrate housing 12, a peripheral portion of a bearing holder 40 described later is sandwiched.
  • the motor housing 11 has a first cylindrical portion 14, a first bottom portion 13, and a lower bearing holding portion 18.
  • the first cylindrical portion 14 has a cylindrical shape that surrounds the radially outer side of the stator 30.
  • the 1st cylindrical part 14 is cylindrical, for example.
  • the first cylindrical portion 14 is fitted in a stepped portion 40b provided on the periphery of the bearing holder 40 at the upper end.
  • a stator 30 is fixed to the inner side surface of the first cylindrical portion 14.
  • the first bottom portion 13 is provided at the lower ( ⁇ Z side) end portion of the first cylindrical portion 14.
  • the first bottom portion 13 is provided with an output shaft hole portion 13a penetrating the first bottom portion 13 in the axial direction (Z-axis direction).
  • the lower bearing holding portion 18 is provided on the upper (+ Z side) surface of the first bottom portion 13. The lower bearing holding portion 18 holds the lower bearing 25.
  • the substrate housing 12 is located on the upper side (+ Z side) of the motor housing 11.
  • the substrate housing 12 accommodates the first substrate 66 and the second substrate 67.
  • An electronic component or the like is mounted on at least one of the upper surface and the lower surface of the first substrate 66 and the second substrate 67.
  • the substrate housing 12 has a second cylindrical portion 15 and a second bottom portion 16. Note that the number of substrates used in the motor 1 is not limited to two and may be one or three or more.
  • the second cylindrical portion 15 has a cylindrical shape surrounding the first substrate 66 and the second substrate 67 in the radial direction.
  • the 2nd cylindrical part 15 is cylindrical shape, for example.
  • a flange portion 15 a is provided at the lower end of the second cylindrical portion 15.
  • the second cylindrical portion 15 is connected to the upper surface 40a of the bearing holder 40 at the flange portion 15a.
  • the rotor 20 includes a shaft 21, a rotor core 22, and a rotor magnet 23.
  • the shaft 21 is centered on a central axis J extending in the vertical direction (Z-axis direction).
  • the shaft 21 is supported by the lower bearing 25 and the upper bearing 24 so as to be rotatable around the central axis J.
  • the lower end ( ⁇ Z side) of the shaft 21 protrudes to the outside of the housing 10 through the output shaft hole 13a.
  • a coupler (not shown) for connecting to an output target is press-fitted into the lower end portion of the shaft 21.
  • a hole is provided in the upper end surface 21 a of the shaft 21.
  • An attachment member 62 is fitted into the hole of the shaft 21.
  • the attachment member 62 is a rod-like member extending in the axial direction.
  • the rotor core 22 is fixed to the shaft 21.
  • the rotor core 22 surrounds the shaft 21 in the circumferential direction.
  • the rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface along the circumferential direction of the rotor core 22.
  • the rotor core 22 and the rotor magnet 23 rotate together with the shaft 21.
  • the rotor core 22 may have a through hole or a recess, and the rotor magnet 23 may be accommodated in the through hole or the recess.
  • the stator 30 surrounds the outer side of the rotor 20 in the radial direction.
  • the stator 30 includes a stator core 31, a bobbin 32, and a coil 33.
  • the bobbin 32 is made of an insulating material.
  • the bobbin 32 covers at least a part of the stator core 31.
  • the coil 33 is configured by winding a conductive wire.
  • the coil 33 is provided on the bobbin 32.
  • a connection terminal (not shown) is provided at the end of the conductive wire constituting the coil 33.
  • the connection terminal extends upward from the coil 33.
  • the connection terminal passes through the bearing holder 40 and is connected to the first substrate 66. Note that the end of the conductive wire constituting the coil 33 may be directly connected to the first substrate 66.
  • the upper bearing 24 is a ball bearing.
  • the upper bearing 24 rotatably supports the upper end portion of the shaft 21.
  • the upper bearing 24 is located on the upper side (+ Z side) of the stator 30.
  • the upper bearing 24 is held by a bearing holder 40.
  • the lower bearing 25 is a ball bearing.
  • the lower bearing 25 rotatably supports the lower end portion of the shaft 21.
  • the lower bearing 25 is located on the lower side ( ⁇ Z side) of the stator 30.
  • the lower bearing 25 is held by the lower bearing holding portion 18 of the motor housing 11.
  • the upper bearing 24 and the lower bearing 25 support the shaft 21 of the rotor 20.
  • the types of the upper bearing 24 and the lower bearing 25 are not particularly limited, and other types of bearings may be used.
  • the sensor magnet 63 is located above (+ Z side) the upper bearing 24.
  • the sensor magnet 63 has an annular shape.
  • the sensor magnet 63 is fitted on the outer surface of the mounting member 62 fixed to the shaft 21. Thereby, the sensor magnet 63 is attached to the shaft 21. Further, the sensor magnet 63 is located above the upper bearing 24. That is, the sensor magnet 63 is fixed to the shaft 21 via the mounting member 62 above the upper bearing 24 at the upper end portion of the shaft 21.
  • the shape of the sensor magnet 63 is not limited to an annular shape, and may be another shape such as an annular shape or a disk shape.
  • the sensor magnet 63 may be provided with a recess, and the tip of the mounting member 62 may be fixed to the recess by press-fitting or bonding. Further, the sensor magnet 63 may be directly attached to the tip of the shaft 21.
  • the bearing holder 40 is located on the upper side (+ Z side) of the stator 30. In the present embodiment, the bearing holder 40 directly holds the upper bearing 24.
  • the planar view (XY plane view) shape of the bearing holder 40 is, for example, a circular shape concentric with the central axis J.
  • the bearing holder 40 is made of metal. In the present embodiment, the bearing holder 40 is sandwiched between the motor housing 11 and the substrate housing 12.
  • the planar view (XY plane view) shape of the bearing holder 40 is not limited to a circular shape, and may be another shape such as a polygonal shape.
  • the bearing holder 40 is provided with a through hole 45 penetrating in the vertical direction.
  • the through hole 45 is located at the approximate center of the bearing holder 40.
  • the upper end portion of the shaft 21 is disposed inside the through hole 45.
  • a downward step surface 45a is a step surface facing downward.
  • the downward step surface 45 a is located on the lower side of the through hole 45.
  • the upward step surface 45b is a step surface facing upward.
  • the upward step surface 45 b is located closer to the upper side of the through hole 45.
  • the lower inner peripheral surface 45c is positioned below the downward step surface 45a.
  • the middle inner peripheral surface 45d is located between the downward step surface 45a and the upward step surface 45b.
  • the upper inner peripheral surface 45e is located above the upward step surface 45b.
  • the lower inner peripheral surface 45c, the middle inner peripheral surface 45d, and the upper inner peripheral surface 45e are concentric circular shapes when viewed from the axial direction.
  • the inner diameters of the lower inner peripheral surface 45c and the upper inner peripheral surface 45e are larger than the diameter of the intermediate inner peripheral surface 45d.
  • the through-hole 45 accommodates the upper bearing 24 in a region below the downward step surface 45a (a region surrounded by the lower inner peripheral surface 45c).
  • the through hole 45 accommodates the sensor magnet 63 in a region between the downward step surface 45a and the upward step surface 45b (a region surrounded by the intermediate inner peripheral surface 45d).
  • the through hole 45 accommodates the lid body 70 in a region above the upward step surface 45b (region surrounded by the upper inner peripheral surface 45e).
  • the upper surface of the outer ring of the upper bearing 24 is in contact with the downward stepped surface 45a through the wave washer 46. Further, the lower inner peripheral surface 45 c is fitted with the outer ring of the upper bearing 24.
  • the upper bearing 24 can be easily positioned with respect to the bearing holder 40.
  • a preload can be applied to the upper bearing 24 by interposing the wave washer 46 between the downward stepped surface 45 a and the outer ring of the upper bearing 24.
  • the bearing holder 40 has a flat upper surface 40a on the upper side.
  • the upper surface 40 a faces the lower surface 66 a of the first substrate 66.
  • the upper surface 40a is provided with a housing recess 41 that is recessed downward.
  • the housing recess 41 opens upward.
  • a spacer 80 is inserted into the housing recess 41.
  • the spacer 80 includes a side wall portion 81 along the inner surface of the housing recess 41, a bottom wall portion 82 along the bottom surface of the housing recess 41, and a flange portion 83 positioned at the upper end of the side wall portion 81.
  • the spacer 80 is made of an insulating material.
  • the flange portion 83 is screwed to the flange portion 83 together with the first substrate 66 while being sandwiched between the bearing holder 40 and the first substrate 66.
  • the flange portion 83 determines the vertical position of the first substrate 66 with respect to the bearing holder 40.
  • the heat radiation grease G is located between the upper surface 40 a of the bearing holder 40 and the lower surface 66 a of the first substrate 66.
  • the heat dissipation grease G transfers heat generated in the first substrate 66 and the mounted component mounted on the first substrate 66 to the bearing holder 40.
  • the bearing holder 40 radiates heat transmitted from the heat radiation grease G to the outside.
  • the bearing holder 40 receives the heat generated in the first substrate 66 and the mounted components of the first substrate 66 through the heat dissipation grease G and dissipates the heat to the outside. That is, according to this embodiment, the bearing holder 40 can function as a heat sink.
  • the bearing holder 40 is preferably made of a material having high heat conduction efficiency, and is preferably made of, for example, an aluminum alloy.
  • the bearing holder 40 may be made of a material such as aluminum, copper, a copper alloy, or an iron-based metal such as SUS.
  • the heat radiation grease G has an insulating property. Thereby, the thermal radiation grease can suppress discharge between the first substrate 66 and the bearing holder 40. In addition, when the thermal radiation grease G does not have insulation, an insulation measure such as attaching an insulating sheet to the upper surface 40a of the bearing holder 40 may be performed.
  • the lid 70 is attached to the through hole 45 of the bearing holder 40.
  • the lid 70 covers and closes the upper opening of the through hole 45.
  • the lid 70 has a disk shape.
  • the lid body 70 is fitted to the upper inner peripheral surface 45e of the through hole 45. Therefore, the outer diameter of the lid 70 is the same as or slightly larger than the inner diameter of the upper inner peripheral surface 45e.
  • the cover 70 covers the through hole 45, so that the arrangement region of the heat dissipation grease G in a plan view can be widened.
  • substrate 66 to the bearing holder 40 is improved, and the heat generated in the 1st board
  • the lid 70 closes the opening on the upper side of the through hole 45, when the heat dissipation grease G is adopted as the heat dissipation material, the heat dissipation grease G enters the through hole 45. Can be suppressed. Thereby, it can suppress that the thermal radiation grease G affects the motion of the upper bearing 24 and the function of the stator 30. Note that a gap is allowed between the lid 70 and the bearing holder 40 (that is, the inner peripheral surface of the through-hole 45) so that the heat-dissipating grease G having viscosity does not easily pass therethrough.
  • the lid 70 closes the opening above the through hole 45, the heat in the surface of the first substrate 66 can be moved uniformly toward the bearing holder 40. . That is, the distribution of the heat radiation efficiency of the first substrate 66 can be made uniform. Therefore, it is possible to increase the degree of freedom of mounting the first substrate 66 such as an electronic component. As a result, the mounting components can be mounted on the first substrate 66 with high density, and the motor 1 can be downsized.
  • the lower surface 70 b of the lid 70 is in contact with the upward step surface 45 b of the through hole 45.
  • the thickness of the lid 70 is smaller than the distance between the upper surface 40a of the bearing holder 40 and the upward step surface 45b (that is, the height of the step). Therefore, the upper surface 70 a of the lid 70 is positioned below the upper surface 40 a of the bearing holder 40.
  • the rotation sensor 61 is mounted on the lower surface 66 a of the first substrate 66 and faces the upper surface 70 a of the lid 70.
  • the detection accuracy of the rotation angle of the rotation sensor 61 can be increased. Further, by arranging the upper surface 70 a of the lid 70 below the upper surface 40 a of the bearing holder 40, it is possible to suppress the interference between the lid 70 and the rotation sensor 61. In addition, even when the upper surface 70a of the lid 70 and the upper surface 40a of the bearing holder 40 have the same height, certain similar effects can be obtained.
  • the lid 70 is located between the sensor magnet 63 and the rotation sensor 61 mounted on the first substrate 66.
  • the lid 70 is preferably made of a nonmagnetic material in order to suppress the influence on the magnetic field generated by the sensor magnet 63.
  • the lid 70 and the bearing holder 40 are desirably fitted. Since the lid body 70 and the bearing holder 40 are in contact with each other, heat can be efficiently moved from the lid body 70 toward the bearing holder 40.
  • the lid 70 is preferably made of the same material as the bearing holder 40.
  • the lid body 70 is fixed to the bearing holder 40 by fitting.
  • the thickness of the lid 70 is preferably 0.5 mm or more and 5 mm or less. By setting the thickness of the lid 70 to 0.5 mm or more, handling of the lid 70 in the assembly process becomes easy. Moreover, the raw material cost of the cover body 70 can be lowered
  • the fixing means between the lid 70 and the bearing holder 40 is not limited to fitting.
  • the lid 70 and the bearing holder 40 may be connected by a joining means such as welding, adhesion, or caulking.
  • the lid 70 and the bearing holder 40 may be integrally connected by a molding means such as insert molding or two-color molding. .
  • the first substrate 66 and the second substrate 67 control the motor 1. That is, the motor 1 includes a first substrate 66 and a second substrate 67 and includes a control device 60 that controls the rotation of the shaft 21. Electronic components are mounted on the first substrate 66 and the second substrate 67. Electronic components mounted on the first substrate 66 and the second substrate 67 are a rotation sensor 61, an electrolytic capacitor, a choke coil, and the like.
  • the first substrate 66 is disposed on the upper side (+ Z side) of the bearing holder 40.
  • the second substrate 67 is disposed on the upper side of the first substrate 66.
  • the plate surface directions of the first substrate 66 and the second substrate 67 are both perpendicular to the axial direction.
  • the first substrate 66 and the second substrate 67 are disposed so as to overlap each other when viewed from the axial direction. That is, the first substrate 66 and the second substrate 67 are stacked with a predetermined gap along the axial direction.
  • the first substrate 66 has a lower surface 66a and an upper surface 66b.
  • the second substrate 67 has a lower surface 67a and an upper surface 67b.
  • the upper surface 66b of the first substrate 66 and the lower surface 67a of the second substrate 67 face each other in the vertical direction with a gap therebetween.
  • the lower surface 66a of the first substrate 66 and the upper surface 40a of the bearing holder 40 face each other in the vertical direction with a gap therebetween.
  • a gap between the lower surface 66a of the first substrate 66 and the upper surface 40a of the bearing holder 40 is filled with heat radiation grease G.
  • the first substrate 66 and the second substrate 67 are electrically connected by a plurality of connection pins (wirings) 51.
  • the first substrate 66 and the second substrate 67 are provided with a plurality of holes 66c and 67c penetrating in the vertical direction.
  • the hole 66c of the first substrate 66 and the hole 67c of the second substrate 67 are arranged so as to overlap each other when viewed from the axial direction.
  • the connection pin 51 extends along the axial direction (vertical direction) between the holes 66c and 67c.
  • the connection pin 51 has a first tip portion 51a located on the lower side and a second tip portion 51b located on the upper side.
  • the first tip 51a is press-fitted into the hole 66c of the first substrate 66 from the upper surface 66b side.
  • the second tip 51b is press-fitted into the hole 67c of the second substrate 67 from the lower surface 67a side.
  • a rotation sensor 61 is mounted on the lower surface 66a of the first substrate 66.
  • the rotation sensor 61 is disposed so as to overlap with the sensor magnet 63 of the first substrate 66 when viewed from the axial direction.
  • the rotation sensor 61 detects the rotation of the sensor magnet 63.
  • the rotation sensor 61 is a magnetoresistive element.
  • the rotation sensor 61 may be a Hall element, for example.
  • FIG. 3 shows a sectional view of a bearing holder (heat sink) 140, a lid 170, and a first substrate 166, which are modifications that can be employed in the above-described embodiment.
  • symbol is attached
  • the first substrate 166 is arranged with the lower surface 166a facing the upper side of the bearing holder 140, as in the above-described embodiment.
  • the rotation sensor 161 is mounted on the upper surface 166 b of the first substrate 166.
  • the bearing holder 140 is provided with a through hole 145 as in the above-described embodiment.
  • the lid 170 is fixed to the upper surface 140a of the bearing holder 140 and covers and closes the opening above the through hole 145. Since the lid 170 is fixed to the upper surface 140 a of the bearing holder 140, the upper surface 170 a of the lid 170 is positioned above the upper surface 140 a of the bearing holder 140.
  • the upper surface 140a of the bearing holder 140 and the lower surface 170b of the lid 170 are connected to each other by a joining means such as welding, adhesion, or caulking.
  • the upper surface 170a of the lid 170 is positioned above the upper surface 140a of the bearing holder 140.
  • the distance between the rotation sensor 161 mounted on the upper surface 66b of the first substrate 66 and the sensor magnet 63 can be arranged close to each other.
  • the detection accuracy of the rotation angle of the rotation sensor 161 can be increased.
  • the following configuration may be employed.
  • the case where the heat sink is the bearing holder 40 that directly holds the upper bearing 24 is illustrated.
  • the heat sink (corresponding to the bearing holder 40 of the above-described embodiment) may indirectly hold the upper bearing 24 via a separately prepared bearing holder.
  • the heat sink is preferably fixed to the bearing holder.
  • the lid 70 closes the opening of the through hole 45 of the bearing holder 40 is illustrated.
  • the lid 70 only needs to cover at least a part of the opening above the through hole 45.
  • a lid provided with a hole may be used. Even in such a case, the lid body can exhibit a certain effect of widening the arrangement area of the heat dissipation grease G.
  • the heat dissipation material may be, for example, a gel or solid heat dissipation material.
  • FIG. 4 is a schematic diagram showing the electric power steering apparatus 2 of the present embodiment.
  • the electric power steering device 2 is mounted on a steering mechanism of a vehicle wheel.
  • the electric power steering device 2 is a device that reduces the steering force by hydraulic pressure.
  • the electric power steering apparatus 2 of the present embodiment includes a motor 1, a steering shaft 114, an oil pump 116, and a control valve 117.
  • the steering shaft 114 transmits the input from the steering 111 to the axle 113 having the wheels 112.
  • the oil pump 116 generates hydraulic pressure in the power cylinder 115 that transmits driving force by hydraulic pressure to the axle 113.
  • the control valve 117 controls the oil of the oil pump 116.
  • the motor 1 is mounted as a drive source for the oil pump 116.
  • the electric power steering apparatus 2 of the present embodiment includes the motor 1 of the present embodiment, the heat generated in the first substrate 66 can be efficiently radiated. Thereby, according to this embodiment, the electric power steering device 2 excellent in reliability can be obtained.

Abstract

A motor provided with: a shaft that rotates about a center axis extending in the vertical direction; a bearing for supporting the top end of the shaft; a metal heat sink for directly or indirectly holding the bearing; a substrate disposed on the upper side of the heat sink; a sensor magnet fixed to the shaft at the top end of the shaft above the bearing; a rotation sensor mounted in a position overlapping the sensor magnet of the substrate viewed from the axial direction; and a heat-dissipating material positioned between the substrate and the heat sink, the heat sink being provided with a through hole passing in the vertical direction, the bearing and the sensor magnet being accommodated in the through hole, and a cover covering at least a part of the opening on the upper side of the through hole being attached to the heat sink.

Description

モータ、および電動パワーステアリング装置Motor and electric power steering apparatus
 本発明は、モータ、および電動パワーステアリング装置に関する。 The present invention relates to a motor and an electric power steering apparatus.
 一般的に、出力軸の一方の端部側に制御ユニットを搭載したモータが知られている(例えば特許文献1)。このようなモータは、出力軸の端部に磁石(センサマグネット)を有し、対向して配置された磁気式の回転センサにより出力軸の回転角を検出する。 Generally, a motor in which a control unit is mounted on one end side of an output shaft is known (for example, Patent Document 1). Such a motor has a magnet (sensor magnet) at the end of the output shaft, and detects the rotation angle of the output shaft by means of a magnetic rotation sensor arranged opposite to the magnet.
特許第5414869号公報Japanese Patent No. 5414869
 特許文献1には、軸受ホルダにヒートシンクの役目を担わせることが記載されている。すなわち、軸受ホルダは、制御ユニット(例えば基板)の下面に密着して、制御ユニットで発生した熱を放熱する。軸受ホルダには、磁石を制御ユニットに対向させて配置するために貫通孔が設けられている。貫通孔は、軸受ホルダと制御ユニットとが対向する面積を減少させるため、軸受ホルダと制御ユニットとの伝熱効率を低下させる要因となっていた。 Patent Document 1 describes that a bearing holder serves as a heat sink. That is, the bearing holder is in close contact with the lower surface of the control unit (for example, the substrate) and radiates heat generated by the control unit. The bearing holder is provided with a through hole for arranging the magnet so as to face the control unit. The through hole is a factor that reduces the heat transfer efficiency between the bearing holder and the control unit in order to reduce the area where the bearing holder and the control unit face each other.
 本発明の一つの態様は、上記問題点に鑑みて、基板で生じた熱を効率的に放熱できるモータ、およびそのようなモータを備えた電動パワーステアリング装置を提供することを目的の一つとする。 In view of the above problems, one aspect of the present invention is to provide a motor that can efficiently dissipate heat generated in a substrate, and an electric power steering device including such a motor. .
 本発明のモータの一つの態様は、上下方向に延びる中心軸を中心として回転するシャフトと、前記シャフトの上端部を支持するベアリングと、前記ベアリングを直接的又は間接的に保持する金属製のヒートシンクと、前記ヒートシンクの上側に配置された基板と、前記シャフトの上端部の前記ベアリングより上側で前記シャフトに固定されたセンサマグネットと、軸方向から見て、前記基板の前記センサマグネットと重なる位置に実装された回転センサと、前記基板と前記ヒートシンクとの間に位置する放熱材と、を備え、前記ヒートシンクには、上下方向に貫通し前記ベアリングおよび前記センサマグネットが収容される貫通孔が設けられ、前記ヒートシンクには、前記貫通孔の上側の開口の少なくとも一部を覆う蓋体が取り付けられている。 One aspect of the motor of the present invention includes a shaft that rotates about a central axis extending in the vertical direction, a bearing that supports the upper end of the shaft, and a metal heat sink that directly or indirectly holds the bearing. And a substrate disposed above the heat sink, a sensor magnet fixed to the shaft above the bearing at the upper end of the shaft, and a position overlapping the sensor magnet of the substrate when viewed from the axial direction. A rotation sensor mounted; and a heat dissipating material positioned between the substrate and the heat sink. The heat sink has a through-hole penetrating in a vertical direction and accommodating the bearing and the sensor magnet. The heat sink is attached with a lid that covers at least a part of the upper opening of the through hole. That.
 本発明の一つの態様によれば基板で生じた熱を効率的に放熱できるモータ、およびそのようなモータを備えた電動パワーステアリング装置が提供される。 According to one aspect of the present invention, a motor capable of efficiently dissipating heat generated in a substrate and an electric power steering apparatus including such a motor are provided.
実施形態のモータを示す断面図。Sectional drawing which shows the motor of embodiment. 図1の一部を拡大したモータの拡大断面図。The expanded sectional view of the motor which expanded a part of FIG. 変形例のモータの拡大断面図。The expanded sectional view of the motor of a modification. 実施形態の電動パワーステアリング装置を示す模式図。The schematic diagram which shows the electric power steering apparatus of embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。  Hereinafter, a motor according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale, number, or the like in each structure. *
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。X軸方向は、Z軸方向と直交する方向であって図1の左右方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。 In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG. The X-axis direction is a direction orthogonal to the Z-axis direction and is the left-right direction in FIG. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
 また、以下の説明においては、Z軸方向の正の側(+Z側,一方側)を「上側」と呼び、Z軸方向の負の側(-Z側,他方側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。 In the following description, the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”, and the negative side (−Z side, the other side) in the Z-axis direction is referred to as “lower side”. Call. The upper side and the lower side are simply names used for explanation, and do not limit the actual positional relationship and direction. Unless otherwise specified, a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”, and a radial direction around the central axis J is simply referred to as a “radial direction”. The circumferential direction centering around, that is, the circumference of the central axis J is simply referred to as “circumferential direction”.
<モータ>
 図1は、本実施形態のモータ1を示す断面図である。図2は、図1の一部を拡大した拡大断面図である。 モータ1は、モータハウジング11と、基板ハウジング12と、シャフト21を有するロータ20と、ステータ30と、上側ベアリング(ベアリング)24と、下側ベアリング25と、センサマグネット63と、ベアリングホルダ(ヒートシンク)40と、蓋体70と、第1の基板66と、第2の基板67と、回転センサ61と、放熱グリス(放熱材)Gと、を備える。
<Motor>
FIG. 1 is a cross-sectional view showing a motor 1 of the present embodiment. FIG. 2 is an enlarged cross-sectional view in which a part of FIG. 1 is enlarged. The motor 1 includes a motor housing 11, a substrate housing 12, a rotor 20 having a shaft 21, a stator 30, an upper bearing (bearing) 24, a lower bearing 25, a sensor magnet 63, and a bearing holder (heat sink). 40, a lid 70, a first substrate 66, a second substrate 67, a rotation sensor 61, and heat radiation grease (heat radiation material) G.
[ハウジング]
 モータハウジング11および基板ハウジング12は、モータ1の各部を内部に収容する。モータハウジング11は、上側(+Z側)に開口する筒状である。また、基板ハウジング12は、下側(-Z側)に開口する筒状である。モータハウジング11と基板ハウジング12とは、互いに開口を対向させて配置されている。モータハウジング11と基板ハウジング12との間には、後述するベアリングホルダ40の周縁部が挟み込まれている。
[housing]
The motor housing 11 and the substrate housing 12 accommodate each part of the motor 1 inside. The motor housing 11 has a cylindrical shape that opens upward (+ Z side). The substrate housing 12 has a cylindrical shape that opens downward (−Z side). The motor housing 11 and the substrate housing 12 are disposed with their openings facing each other. Between the motor housing 11 and the substrate housing 12, a peripheral portion of a bearing holder 40 described later is sandwiched.
 モータハウジング11は、第1の筒状部14と、第1の底部13と、下側ベアリング保持部18と、を有する。第1の筒状部14は、ステータ30の径方向外側を囲む筒状である。本実施形態において第1の筒状部14は、例えば、円筒状である。第1の筒状部14は、上端においてベアリングホルダ40の周縁に設けられた段差部40bに嵌め込まれている。第1の筒状部14の内側面には、ステータ30が固定されている。 The motor housing 11 has a first cylindrical portion 14, a first bottom portion 13, and a lower bearing holding portion 18. The first cylindrical portion 14 has a cylindrical shape that surrounds the radially outer side of the stator 30. In this embodiment, the 1st cylindrical part 14 is cylindrical, for example. The first cylindrical portion 14 is fitted in a stepped portion 40b provided on the periphery of the bearing holder 40 at the upper end. A stator 30 is fixed to the inner side surface of the first cylindrical portion 14.
 第1の底部13は、第1の筒状部14の下側(-Z側)の端部に設けられている。第1の底部13には、第1の底部13を軸方向(Z軸方向)に貫通する出力軸孔部13aが設けられている。下側ベアリング保持部18は、第1の底部13の上側(+Z側)の面に設けられている。下側ベアリング保持部18は、下側ベアリング25を保持する。 The first bottom portion 13 is provided at the lower (−Z side) end portion of the first cylindrical portion 14. The first bottom portion 13 is provided with an output shaft hole portion 13a penetrating the first bottom portion 13 in the axial direction (Z-axis direction). The lower bearing holding portion 18 is provided on the upper (+ Z side) surface of the first bottom portion 13. The lower bearing holding portion 18 holds the lower bearing 25.
 基板ハウジング12は、モータハウジング11の上側に(+Z側)に位置する。本実施形態では、基板ハウジング12は、第1の基板66および第2の基板67を収容する。第1の基板66および第2の基板67の上面および下面の少なくともいずれか一方には、電子部品等が実装される。基板ハウジング12は、第2の筒状部15と、第2の底部16と、を有する。なお、モータ1において用いられる基板の枚数は、2枚に限られず、1枚でもよく、3枚以上であってもよい。 The substrate housing 12 is located on the upper side (+ Z side) of the motor housing 11. In the present embodiment, the substrate housing 12 accommodates the first substrate 66 and the second substrate 67. An electronic component or the like is mounted on at least one of the upper surface and the lower surface of the first substrate 66 and the second substrate 67. The substrate housing 12 has a second cylindrical portion 15 and a second bottom portion 16. Note that the number of substrates used in the motor 1 is not limited to two and may be one or three or more.
 第2の筒状部15は、第1の基板66および第2の基板67の径方向外側を囲む筒状である。第2の筒状部15は、例えば、円筒状である。第2の筒状部15の下端にはフランジ部15aが設けられている。第2の筒状部15は、フランジ部15aにおいてベアリングホルダ40の上面40aに接続されている。 The second cylindrical portion 15 has a cylindrical shape surrounding the first substrate 66 and the second substrate 67 in the radial direction. The 2nd cylindrical part 15 is cylindrical shape, for example. A flange portion 15 a is provided at the lower end of the second cylindrical portion 15. The second cylindrical portion 15 is connected to the upper surface 40a of the bearing holder 40 at the flange portion 15a.
[ロータ]
 ロータ20は、シャフト21と、ロータコア22と、ロータマグネット23と、を有する。シャフト21は、上下方向(Z軸方向)に延びる中心軸Jを中心とする。シャフト21は、下側ベアリング25と上側ベアリング24とによって、中心軸Jの軸周りに回転可能に支持されている。シャフト21の下側(-Z側)の端部は、出力軸孔部13aを介してハウジング10の外部に突出している。シャフト21の下側の端部には、例えば、出力対象に接続するためのカプラー(図示略)が圧入される。シャフト21の上端面21aには穴部が設けられている。シャフト21の穴部には、取付部材62が嵌め合わされている。取付部材62は、軸方向に延びる棒状部材である。
[Rotor]
The rotor 20 includes a shaft 21, a rotor core 22, and a rotor magnet 23. The shaft 21 is centered on a central axis J extending in the vertical direction (Z-axis direction). The shaft 21 is supported by the lower bearing 25 and the upper bearing 24 so as to be rotatable around the central axis J. The lower end (−Z side) of the shaft 21 protrudes to the outside of the housing 10 through the output shaft hole 13a. For example, a coupler (not shown) for connecting to an output target is press-fitted into the lower end portion of the shaft 21. A hole is provided in the upper end surface 21 a of the shaft 21. An attachment member 62 is fitted into the hole of the shaft 21. The attachment member 62 is a rod-like member extending in the axial direction.
 ロータコア22は、シャフト21に固定されている。ロータコア22は、シャフト21を周方向に囲んでいる。ロータマグネット23は、ロータコア22に固定されている。より詳細には、ロータマグネット23は、ロータコア22の周方向に沿った外側面に固定されている。ロータコア22およびロータマグネット23は、シャフト21とともに回転する。なお、ロータコア22が貫通孔または凹部を有し、当該貫通孔または凹部の内部にロータマグネット23が収容されてもよい。 The rotor core 22 is fixed to the shaft 21. The rotor core 22 surrounds the shaft 21 in the circumferential direction. The rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface along the circumferential direction of the rotor core 22. The rotor core 22 and the rotor magnet 23 rotate together with the shaft 21. The rotor core 22 may have a through hole or a recess, and the rotor magnet 23 may be accommodated in the through hole or the recess.
[ステータ]
 ステータ30は、ロータ20の径方向外側を囲んでいる。ステータ30は、ステータコア31と、ボビン32と、コイル33と、を有する。ボビン32は、絶縁性を有する材料から構成される。ボビン32は、ステータコア31の少なくとも一部を覆う。モータ1の駆動時において、コイル33は、ステータコア31を励磁する。コイル33は、導電線が巻き回されて構成される。コイル33は、ボビン32に設けられている。コイル33を構成する導電線の端部には、図示略の接続端子が設けられている。接続端子は、コイル33から上側に向かって延びる。接続端子は、ベアリングホルダ40を貫通して第1の基板66に接続されている。なお、コイル33を構成する導電線の端部が直接的に第1の基板66に接続されてもよい。
[Stator]
The stator 30 surrounds the outer side of the rotor 20 in the radial direction. The stator 30 includes a stator core 31, a bobbin 32, and a coil 33. The bobbin 32 is made of an insulating material. The bobbin 32 covers at least a part of the stator core 31. When the motor 1 is driven, the coil 33 excites the stator core 31. The coil 33 is configured by winding a conductive wire. The coil 33 is provided on the bobbin 32. A connection terminal (not shown) is provided at the end of the conductive wire constituting the coil 33. The connection terminal extends upward from the coil 33. The connection terminal passes through the bearing holder 40 and is connected to the first substrate 66. Note that the end of the conductive wire constituting the coil 33 may be directly connected to the first substrate 66.
[上側ベアリングおよび下側ベアリング]
 本実施形態において、上側ベアリング24は、ボールベアリングである。上側ベアリング24は、シャフト21の上端部を回転可能に支持する。上側ベアリング24は、ステータ30の上側(+Z側)に位置する。上側ベアリング24は、ベアリングホルダ40に保持されている。 本実施形態において、下側ベアリング25は、ボールベアリングである。下側ベアリング25は、シャフト21の下端部を回転可能に支持する。下側ベアリング25は、ステータ30の下側(-Z側)に位置する。下側ベアリング25は、モータハウジング11の下側ベアリング保持部18に保持されている。
[Upper bearing and lower bearing]
In the present embodiment, the upper bearing 24 is a ball bearing. The upper bearing 24 rotatably supports the upper end portion of the shaft 21. The upper bearing 24 is located on the upper side (+ Z side) of the stator 30. The upper bearing 24 is held by a bearing holder 40. In the present embodiment, the lower bearing 25 is a ball bearing. The lower bearing 25 rotatably supports the lower end portion of the shaft 21. The lower bearing 25 is located on the lower side (−Z side) of the stator 30. The lower bearing 25 is held by the lower bearing holding portion 18 of the motor housing 11.
 上側ベアリング24と下側ベアリング25とは、ロータ20のシャフト21を支持している。上側ベアリング24および下側ベアリング25の種類は、特に限定されず、他の種類のベアリングを用いてもよい。 The upper bearing 24 and the lower bearing 25 support the shaft 21 of the rotor 20. The types of the upper bearing 24 and the lower bearing 25 are not particularly limited, and other types of bearings may be used.
[センサマグネット]
 センサマグネット63は、図2に示すように、上側ベアリング24よりも上側(+Z側)に位置する。本実施形態において、センサマグネット63は、円環状である。センサマグネット63は、シャフト21に固定された取付部材62の外側面に嵌め合わされている。これにより、センサマグネット63は、シャフト21に取り付けられている。また、センサマグネット63は、上側ベアリング24より上側に位置する。すなわち、センサマグネット63は、シャフト21の上端部の上側ベアリング24の上側で取付部材62を介してシャフト21に固定されている。なお、センサマグネット63の形状は、円環状に限られず、環状や円盤状など他の形状であってもよい。この場合、センサマグネット63には、凹部が設けられ、当該凹部に取付部材62の先端が圧入や接着等によって固定されてもよい。また、センサマグネット63はシャフト21の先端に直接取り付けられてもよい。
[Sensor magnet]
As shown in FIG. 2, the sensor magnet 63 is located above (+ Z side) the upper bearing 24. In the present embodiment, the sensor magnet 63 has an annular shape. The sensor magnet 63 is fitted on the outer surface of the mounting member 62 fixed to the shaft 21. Thereby, the sensor magnet 63 is attached to the shaft 21. Further, the sensor magnet 63 is located above the upper bearing 24. That is, the sensor magnet 63 is fixed to the shaft 21 via the mounting member 62 above the upper bearing 24 at the upper end portion of the shaft 21. The shape of the sensor magnet 63 is not limited to an annular shape, and may be another shape such as an annular shape or a disk shape. In this case, the sensor magnet 63 may be provided with a recess, and the tip of the mounting member 62 may be fixed to the recess by press-fitting or bonding. Further, the sensor magnet 63 may be directly attached to the tip of the shaft 21.
[ベアリングホルダ]
 ベアリングホルダ40は、図1に示すように、ステータ30の上側(+Z側)に位置している。本実施形態では、ベアリングホルダ40は、上側ベアリング24を直接的に保持する。ベアリングホルダ40の平面視(XY面視)形状は、例えば、中心軸Jと同心の円形状である。ベアリングホルダ40は、金属製である。本実施形態においてベアリングホルダ40は、モータハウジング11と基板ハウジング12との間に挟み込まれている。なお、ベアリングホルダ40の平面視(XY面視)形状は、円形状に限られず、多角形状などの他の形状であってもよい。
[Bearing holder]
As shown in FIG. 1, the bearing holder 40 is located on the upper side (+ Z side) of the stator 30. In the present embodiment, the bearing holder 40 directly holds the upper bearing 24. The planar view (XY plane view) shape of the bearing holder 40 is, for example, a circular shape concentric with the central axis J. The bearing holder 40 is made of metal. In the present embodiment, the bearing holder 40 is sandwiched between the motor housing 11 and the substrate housing 12. In addition, the planar view (XY plane view) shape of the bearing holder 40 is not limited to a circular shape, and may be another shape such as a polygonal shape.
 ベアリングホルダ40には、上下方向に貫通する貫通孔45が設けられている。貫通孔45は、ベアリングホルダ40の略中央に位置する。貫通孔45の内側には、シャフト21の上端部が配置される。ベアリングホルダ40に貫通孔45が設けられていることで、ベアリングホルダ40に対するシャフト21の組立工程の自由度を高めることができる。例えば、組み立て時において、シャフト21の上端面21aに圧入の際の力を受ける治具を貫通孔45内に配置できるため、シャフト21をベアリングホルダ40に組み付けた状態で、シャフト21に他の部材を圧入するという組立順序を採用できる。 The bearing holder 40 is provided with a through hole 45 penetrating in the vertical direction. The through hole 45 is located at the approximate center of the bearing holder 40. The upper end portion of the shaft 21 is disposed inside the through hole 45. By providing the through hole 45 in the bearing holder 40, the degree of freedom in the assembly process of the shaft 21 with respect to the bearing holder 40 can be increased. For example, when assembling, a jig that receives a force during press-fitting into the upper end surface 21 a of the shaft 21 can be disposed in the through hole 45, so that another member is attached to the shaft 21 with the shaft 21 assembled to the bearing holder 40. The assembly order of press-fitting can be adopted.
 図2に示すように、貫通孔45の内周面には、下向き段差面45aと、上向き段差面45bと、下側内周面45cと、中程内周面45dと、上側内周面45eと、が設けられている。 下向き段差面45aは、下側を向く段差面である。下向き段差面45aは、貫通孔45の下側寄りに位置する。上向き段差面45bは、上側を向く段差面である。上向き段差面45bは、貫通孔45の上側寄りに位置する。下側内周面45cは、下向き段差面45aより下側に位置する。中程内周面45dは、下向き段差面45aと上向き段差面45bの間に位置する。上側内周面45eは、上向き段差面45bより上側に位置する。下側内周面45c、中程内周面45dおよび上側内周面45eは、軸方向から見て同心の円形状である。また、下側内周面45cおよび上側内周面45eの内径は、中程内周面45dの直径より大きい。 As shown in FIG. 2, on the inner peripheral surface of the through hole 45, a downward step surface 45a, an upward step surface 45b, a lower inner peripheral surface 45c, a middle inner peripheral surface 45d, and an upper inner peripheral surface 45e. And are provided. The downward step surface 45a is a step surface facing downward. The downward step surface 45 a is located on the lower side of the through hole 45. The upward step surface 45b is a step surface facing upward. The upward step surface 45 b is located closer to the upper side of the through hole 45. The lower inner peripheral surface 45c is positioned below the downward step surface 45a. The middle inner peripheral surface 45d is located between the downward step surface 45a and the upward step surface 45b. The upper inner peripheral surface 45e is located above the upward step surface 45b. The lower inner peripheral surface 45c, the middle inner peripheral surface 45d, and the upper inner peripheral surface 45e are concentric circular shapes when viewed from the axial direction. The inner diameters of the lower inner peripheral surface 45c and the upper inner peripheral surface 45e are larger than the diameter of the intermediate inner peripheral surface 45d.
 貫通孔45は、下向き段差面45aより下側の領域(下側内周面45cに囲まれる領域)において上側ベアリング24を収容する。貫通孔45は、下向き段差面45aと上向き段差面45bの間の領域(中程内周面45dに囲まれる領域)において、センサマグネット63を収容する。また、貫通孔45は、上向き段差面45bより上側の領域(上側内周面45eに囲まれる領域)において、蓋体70を収容する。 The through-hole 45 accommodates the upper bearing 24 in a region below the downward step surface 45a (a region surrounded by the lower inner peripheral surface 45c). The through hole 45 accommodates the sensor magnet 63 in a region between the downward step surface 45a and the upward step surface 45b (a region surrounded by the intermediate inner peripheral surface 45d). Further, the through hole 45 accommodates the lid body 70 in a region above the upward step surface 45b (region surrounded by the upper inner peripheral surface 45e).
 下向き段差面45aには、ウェーブワッシャ46を介して上側ベアリング24の外輪の上面が接触する。また、下側内周面45cは、上側ベアリング24の外輪と嵌合する。下向き段差面45aが設けられていることで、ベアリングホルダ40に対して上側ベアリング24を容易に位置決めすることができる。また、下向き段差面45aと上側ベアリング24の外輪との間にウェーブワッシャ46を介在させることで、上側ベアリング24に予圧を付与させることができる。 The upper surface of the outer ring of the upper bearing 24 is in contact with the downward stepped surface 45a through the wave washer 46. Further, the lower inner peripheral surface 45 c is fitted with the outer ring of the upper bearing 24. By providing the downward step surface 45 a, the upper bearing 24 can be easily positioned with respect to the bearing holder 40. In addition, a preload can be applied to the upper bearing 24 by interposing the wave washer 46 between the downward stepped surface 45 a and the outer ring of the upper bearing 24.
 図1に示すように、ベアリングホルダ40は、上側に平坦な上面40aを有する。上面40aは、第1の基板66の下面66aと対向する。上面40aには、下側に凹む収容凹部41が設けられている。収容凹部41は、上側に開口する。収容凹部41には、スペーサ80が挿入されている。 As shown in FIG. 1, the bearing holder 40 has a flat upper surface 40a on the upper side. The upper surface 40 a faces the lower surface 66 a of the first substrate 66. The upper surface 40a is provided with a housing recess 41 that is recessed downward. The housing recess 41 opens upward. A spacer 80 is inserted into the housing recess 41.
 スペーサ80は、収容凹部41の内側面に沿う側壁部81と、収容凹部41の底面に沿う底壁部82と、側壁部81の上端に位置するフランジ部83と、を有する。スペーサ80は、絶縁材料からなる。フランジ部83は、ベアリングホルダ40と第1の基板66との間に挟み込まれた状態で、第1の基板66とともにフランジ部83にネジ止めされる。フランジ部83は、ベアリングホルダ40に対する第1の基板66の上下方向の位置を決める。 The spacer 80 includes a side wall portion 81 along the inner surface of the housing recess 41, a bottom wall portion 82 along the bottom surface of the housing recess 41, and a flange portion 83 positioned at the upper end of the side wall portion 81. The spacer 80 is made of an insulating material. The flange portion 83 is screwed to the flange portion 83 together with the first substrate 66 while being sandwiched between the bearing holder 40 and the first substrate 66. The flange portion 83 determines the vertical position of the first substrate 66 with respect to the bearing holder 40.
[放熱グリス(放熱材)]
 放熱グリスGは、ベアリングホルダ40の上面40aと第1の基板66の下面66aとの間に位置する。放熱グリスGは、第1の基板66および第1の基板66に実装された実装部品において生じた熱を、ベアリングホルダ40に伝える。ベアリングホルダ40は、放熱グリスGから伝わる熱を外部に放熱する。
[Heat dissipation grease (heat dissipation material)]
The heat radiation grease G is located between the upper surface 40 a of the bearing holder 40 and the lower surface 66 a of the first substrate 66. The heat dissipation grease G transfers heat generated in the first substrate 66 and the mounted component mounted on the first substrate 66 to the bearing holder 40. The bearing holder 40 radiates heat transmitted from the heat radiation grease G to the outside.
 本実施形態によれば、ベアリングホルダ40は、第1の基板66および第1の基板66の実装部品で生じた熱を、放熱グリスGを介して受け取り外部に放熱する。すなわち、本実施形態によれば、ベアリングホルダ40をヒートシンクとして機能させることができる。ベアリングホルダ40は、熱伝導効率の高い材料から構成されることが好ましく、例えばアルミニウム合金からなることが好ましい。なお、ベアリングホルダ40は、アルミニウム、銅、銅合金、または、SUSなどの鉄系金属などの材料から構成されてもよい。 According to the present embodiment, the bearing holder 40 receives the heat generated in the first substrate 66 and the mounted components of the first substrate 66 through the heat dissipation grease G and dissipates the heat to the outside. That is, according to this embodiment, the bearing holder 40 can function as a heat sink. The bearing holder 40 is preferably made of a material having high heat conduction efficiency, and is preferably made of, for example, an aluminum alloy. The bearing holder 40 may be made of a material such as aluminum, copper, a copper alloy, or an iron-based metal such as SUS.
 本実施形態において、放熱グリスGは、絶縁性を有する。これにより、放熱グリスは、第1の基板66とベアリングホルダ40との間での放電を抑制することができる。なお、放熱グリスGが、絶縁性を有さない場合には、ベアリングホルダ40の上面40aに絶縁シートを貼付するなどの絶縁対策を行ってもよい。 In this embodiment, the heat radiation grease G has an insulating property. Thereby, the thermal radiation grease can suppress discharge between the first substrate 66 and the bearing holder 40. In addition, when the thermal radiation grease G does not have insulation, an insulation measure such as attaching an insulating sheet to the upper surface 40a of the bearing holder 40 may be performed.
[蓋体]
 蓋体70は、ベアリングホルダ40の貫通孔45に取り付けられている。蓋体70は、貫通孔45の上側の開口を覆い閉塞する。蓋体70は、円盤形状である。蓋体70は、貫通孔45の上側内周面45eに嵌合される。したがって、蓋体70の外径は、上側内周面45eの内径と同じか若干大きい。
[Lid]
The lid 70 is attached to the through hole 45 of the bearing holder 40. The lid 70 covers and closes the upper opening of the through hole 45. The lid 70 has a disk shape. The lid body 70 is fitted to the upper inner peripheral surface 45e of the through hole 45. Therefore, the outer diameter of the lid 70 is the same as or slightly larger than the inner diameter of the upper inner peripheral surface 45e.
 本実施形態によれば、蓋体70が、貫通孔45を覆うことで、平面視における放熱グリスGの配置領域を広くすることができる。これにより、第1の基板66からベアリングホルダ40への伝熱効率を高め、第1の基板66で生じた熱を、ベアリングホルダ40を介してより効率的に放熱できる。 According to the present embodiment, the cover 70 covers the through hole 45, so that the arrangement region of the heat dissipation grease G in a plan view can be widened. Thereby, the heat transfer efficiency from the 1st board | substrate 66 to the bearing holder 40 is improved, and the heat generated in the 1st board | substrate 66 can be thermally radiated more efficiently via the bearing holder 40. FIG.
 また、本実施形態によれば、蓋体70が貫通孔45の上側の開口を閉塞するため、放熱材として放熱グリスGを採用した場合において、放熱グリスGが貫通孔45内に侵入することを抑制できる。これにより、放熱グリスGが上側ベアリング24の運動やステータ30の機能に影響を及ぼすことを抑制できる。なお、蓋体70とベアリングホルダ40(すなわち、貫通孔45の内周面)との間には、粘性を有する放熱グリスGが容易に通過しない程度の隙間が許容される。 Further, according to the present embodiment, since the lid 70 closes the opening on the upper side of the through hole 45, when the heat dissipation grease G is adopted as the heat dissipation material, the heat dissipation grease G enters the through hole 45. Can be suppressed. Thereby, it can suppress that the thermal radiation grease G affects the motion of the upper bearing 24 and the function of the stator 30. Note that a gap is allowed between the lid 70 and the bearing holder 40 (that is, the inner peripheral surface of the through-hole 45) so that the heat-dissipating grease G having viscosity does not easily pass therethrough.
 また、本実施形態によれば、蓋体70が貫通孔45の上側の開口を閉塞するため、第1の基板66の面内の熱を、ベアリングホルダ40に向かって均一に移動させることができる。すなわち、第1の基板66の放熱効率の分布を均一とすることができる。したがって、電子部品等の第1の基板66に対する実装の自由度を高めることができる。これにより、第1の基板66に、実装部品を高密度に実装しモータ1の小型化を図ることができる。 Further, according to the present embodiment, since the lid 70 closes the opening above the through hole 45, the heat in the surface of the first substrate 66 can be moved uniformly toward the bearing holder 40. . That is, the distribution of the heat radiation efficiency of the first substrate 66 can be made uniform. Therefore, it is possible to increase the degree of freedom of mounting the first substrate 66 such as an electronic component. As a result, the mounting components can be mounted on the first substrate 66 with high density, and the motor 1 can be downsized.
 蓋体70の下面70bは、貫通孔45の上向き段差面45bと接触する。蓋体70の厚さは、ベアリングホルダ40の上面40aと上向き段差面45bとの距離(すなわち段差の高さ)より小さい。したがって、蓋体70の上面70aは、ベアリングホルダ40の上面40aより下側に位置する。 回転センサ61は、第1の基板66の下面66aに実装され、蓋体70の上面70aと対向する。蓋体70の上面70aをベアリングホルダ40の上面40aより下側に配置することで、センサマグネット63と回転センサ61とを上下方向に近づけて配置できる。これにより、回転センサ61の回転角の検出精度を高めることができる。また、蓋体70の上面70aをベアリングホルダ40の上面40aより下側に配置することで、蓋体70と回転センサ61とが干渉することを抑制できる。なお、蓋体70の上面70aとベアリングホルダ40の上面40aとが同じ高さである場合においても、一定の同様の効果を奏することができる。 The lower surface 70 b of the lid 70 is in contact with the upward step surface 45 b of the through hole 45. The thickness of the lid 70 is smaller than the distance between the upper surface 40a of the bearing holder 40 and the upward step surface 45b (that is, the height of the step). Therefore, the upper surface 70 a of the lid 70 is positioned below the upper surface 40 a of the bearing holder 40. The rotation sensor 61 is mounted on the lower surface 66 a of the first substrate 66 and faces the upper surface 70 a of the lid 70. By disposing the upper surface 70a of the lid 70 below the upper surface 40a of the bearing holder 40, the sensor magnet 63 and the rotation sensor 61 can be disposed close to each other in the vertical direction. Thereby, the detection accuracy of the rotation angle of the rotation sensor 61 can be increased. Further, by arranging the upper surface 70 a of the lid 70 below the upper surface 40 a of the bearing holder 40, it is possible to suppress the interference between the lid 70 and the rotation sensor 61. In addition, even when the upper surface 70a of the lid 70 and the upper surface 40a of the bearing holder 40 have the same height, certain similar effects can be obtained.
 蓋体70は、センサマグネット63と第1の基板66に実装された回転センサ61とのとの間に位置する。蓋体70は、センサマグネット63が生じる磁場への影響を抑制するため非磁性材料から構成することが好ましい。また、蓋体70は、熱伝導効率の高い金属材料から構成することが好ましい。これにより、放熱グリスGから蓋体70に向かって熱を効率的に移動させることが可能となり、より一層効率的な放熱が可能となる。また、蓋体70とベアリングホルダ40とは嵌合することが望ましい。蓋体70とベアリングホルダ40とが接触していることで、蓋体70からベアリングホルダ40へ向かって熱を効率的に移動させることが可能となる。 The lid 70 is located between the sensor magnet 63 and the rotation sensor 61 mounted on the first substrate 66. The lid 70 is preferably made of a nonmagnetic material in order to suppress the influence on the magnetic field generated by the sensor magnet 63. Moreover, it is preferable to comprise the cover body 70 from a metal material with high heat conduction efficiency. Thereby, it becomes possible to move heat efficiently from the heat radiation grease G toward the lid body 70, and further efficient heat radiation is possible. Further, the lid 70 and the bearing holder 40 are desirably fitted. Since the lid body 70 and the bearing holder 40 are in contact with each other, heat can be efficiently moved from the lid body 70 toward the bearing holder 40.
 蓋体70は、ベアリングホルダ40と同材料から構成されることが好ましい。本実施形態において、蓋体70は、嵌合によりベアリングホルダ40に固定される。蓋体70をベアリングホルダ40と熱膨張率が一致する同材料から構成することで、温度環境の変化に起因して蓋体70がベアリングホルダ40から脱落することを抑制できる。 The lid 70 is preferably made of the same material as the bearing holder 40. In the present embodiment, the lid body 70 is fixed to the bearing holder 40 by fitting. By configuring the lid body 70 from the same material having the same thermal expansion coefficient as that of the bearing holder 40, it is possible to suppress the lid body 70 from falling off the bearing holder 40 due to a change in temperature environment.
 蓋体70の厚さは、0.5mm以上5mm以下とすることが好ましい。蓋体70の厚さを0.5mm以上とすることで、組み立て工程における蓋体70の取り扱いが容易となる。また、蓋体70の厚さを5mm以下とすることで、蓋体70の原料コストを低くすることができる。加えて、蓋体70をプレス加工により成形する場合には、成形によるする加圧力を小さくすることができるため製造コストを低くすることができる。また、蓋体70の圧入によりベアリングホルダ40に固定する場合には、蓋体70に十分な剛性を持たせるために蓋体70の厚さを2mm以上とすることがより好ましい。 The thickness of the lid 70 is preferably 0.5 mm or more and 5 mm or less. By setting the thickness of the lid 70 to 0.5 mm or more, handling of the lid 70 in the assembly process becomes easy. Moreover, the raw material cost of the cover body 70 can be lowered | hung by the thickness of the cover body 70 being 5 mm or less. In addition, when the lid 70 is formed by press working, the pressure applied by the forming can be reduced, so that the manufacturing cost can be reduced. Further, when the lid 70 is fixed to the bearing holder 40 by press-fitting, it is more preferable that the thickness of the lid 70 is 2 mm or more so that the lid 70 has sufficient rigidity.
 なお、蓋体70とベアリングホルダ40との固定手段は、嵌合に限定されない。例えば、溶接、接着、カシメなどの接合手段により、蓋体70とベアリングホルダ40とを接続してもよい。また、蓋体70およびベアリングホルダ40のうち少なくとも一方が樹脂材料である場合には、インサート成形又は2色成形などの成形手段により蓋体70とベアリングホルダ40とを一体的に接続してもよい。 The fixing means between the lid 70 and the bearing holder 40 is not limited to fitting. For example, the lid 70 and the bearing holder 40 may be connected by a joining means such as welding, adhesion, or caulking. When at least one of the lid 70 and the bearing holder 40 is a resin material, the lid 70 and the bearing holder 40 may be integrally connected by a molding means such as insert molding or two-color molding. .
[第1の基板、第2の基板]
 第1の基板66および第2の基板67は、モータ1を制御する。すなわち、モータ1は、第1の基板66および第2の基板67から構成され、シャフト21の回転を制御する制御装置60を備える。第1の基板66および第2の基板67には、電子部品が実装されている。第1の基板66および第2の基板67に実装される電子部品は、回転センサ61、電解コンデンサ、チョークコイル等である。
[First substrate, second substrate]
The first substrate 66 and the second substrate 67 control the motor 1. That is, the motor 1 includes a first substrate 66 and a second substrate 67 and includes a control device 60 that controls the rotation of the shaft 21. Electronic components are mounted on the first substrate 66 and the second substrate 67. Electronic components mounted on the first substrate 66 and the second substrate 67 are a rotation sensor 61, an electrolytic capacitor, a choke coil, and the like.
 第1の基板66は、ベアリングホルダ40の上側(+Z側)に配置されている。第2の基板67は、第1の基板66の上側に配置されている。第1の基板66および第2の基板67の板面方向は、ともに軸方向に対して垂直である。第1の基板66および第2の基板67は、軸方向からみて互いに重なり合って配置されている。すなわち、第1の基板66および第2の基板67は、軸方向に沿って所定の隙間を介し積層されている。 The first substrate 66 is disposed on the upper side (+ Z side) of the bearing holder 40. The second substrate 67 is disposed on the upper side of the first substrate 66. The plate surface directions of the first substrate 66 and the second substrate 67 are both perpendicular to the axial direction. The first substrate 66 and the second substrate 67 are disposed so as to overlap each other when viewed from the axial direction. That is, the first substrate 66 and the second substrate 67 are stacked with a predetermined gap along the axial direction.
 第1の基板66は、下面66aと上面66bとを有する。同様に、第2の基板67は、下面67aと上面67bとを有する。第1の基板66の上面66bと第2の基板67の下面67aは、隙間を介して上下方向に対向している。また、第1の基板66の下面66aとベアリングホルダ40の上面40aは、隙間を介して上下方向に対向する。第1の基板66の下面66aとベアリングホルダ40の上面40aとの間の隙間には、放熱グリスGが充填されている。 The first substrate 66 has a lower surface 66a and an upper surface 66b. Similarly, the second substrate 67 has a lower surface 67a and an upper surface 67b. The upper surface 66b of the first substrate 66 and the lower surface 67a of the second substrate 67 face each other in the vertical direction with a gap therebetween. Further, the lower surface 66a of the first substrate 66 and the upper surface 40a of the bearing holder 40 face each other in the vertical direction with a gap therebetween. A gap between the lower surface 66a of the first substrate 66 and the upper surface 40a of the bearing holder 40 is filled with heat radiation grease G.
 第1の基板66と第2の基板67とは、複数の接続ピン(配線)51により電気的に接続されている。第1の基板66および第2の基板67には、それぞれ上下方向に貫通する複数の孔66c、67cが設けられている。第1の基板66の孔66cと第2の基板67の孔67cとは、軸方向からみて互いに重なりあって配置されている。接続ピン51は、孔66c、67cとの間で軸方向(上下方向)に沿って延びている。接続ピン51は、下側に位置する第1の先端部51aと、上側に位置する第2の先端部51bと、を有する。第1の先端部51aは、上面66b側から第1の基板66の孔66cに圧入されている。また、第2の先端部51bは、下面67a側から第2の基板67の孔67cに圧入されている。 The first substrate 66 and the second substrate 67 are electrically connected by a plurality of connection pins (wirings) 51. The first substrate 66 and the second substrate 67 are provided with a plurality of holes 66c and 67c penetrating in the vertical direction. The hole 66c of the first substrate 66 and the hole 67c of the second substrate 67 are arranged so as to overlap each other when viewed from the axial direction. The connection pin 51 extends along the axial direction (vertical direction) between the holes 66c and 67c. The connection pin 51 has a first tip portion 51a located on the lower side and a second tip portion 51b located on the upper side. The first tip 51a is press-fitted into the hole 66c of the first substrate 66 from the upper surface 66b side. The second tip 51b is press-fitted into the hole 67c of the second substrate 67 from the lower surface 67a side.
 第1の基板66の下面66aには、回転センサ61が実装されている。また、回転センサ61は、軸方向から見て、第1の基板66のセンサマグネット63と重なるように配置されている。回転センサ61は、センサマグネット63の回転を検出する。本実施形態において回転センサ61は、磁気抵抗素子である。回転センサ61は、例えば、ホール素子であってもよい。 A rotation sensor 61 is mounted on the lower surface 66a of the first substrate 66. The rotation sensor 61 is disposed so as to overlap with the sensor magnet 63 of the first substrate 66 when viewed from the axial direction. The rotation sensor 61 detects the rotation of the sensor magnet 63. In the present embodiment, the rotation sensor 61 is a magnetoresistive element. The rotation sensor 61 may be a Hall element, for example.
<変形例>
 図3に、上述の実施形態に採用可能な変形例のベアリングホルダ(ヒートシンク)140、蓋体170、第1の基板166の断面図を示す。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification>
FIG. 3 shows a sectional view of a bearing holder (heat sink) 140, a lid 170, and a first substrate 166, which are modifications that can be employed in the above-described embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 第1の基板166は、上述の実施形態と同様に、ベアリングホルダ140の上側に下面166aを対向させて配置されている。また本変形例において回転センサ161は、第1の基板166の上面166bに実装されている。 The first substrate 166 is arranged with the lower surface 166a facing the upper side of the bearing holder 140, as in the above-described embodiment. In the present modification, the rotation sensor 161 is mounted on the upper surface 166 b of the first substrate 166.
 ベアリングホルダ140には、上述の実施形態と同様に、貫通孔145が設けられている。また本変形例において蓋体170は、ベアリングホルダ140の上面140aに固定され、貫通孔145の上側の開口を覆い閉塞する。蓋体170がベアリングホルダ140の上面140aに固定されているため、蓋体170の上面170aがベアリングホルダ140の上面140aより上側に位置する。ベアリングホルダ140の上面140aと蓋体170の下面170bとは、溶接、接着、カシメなどの接合手段により、互いに接続されている。 The bearing holder 140 is provided with a through hole 145 as in the above-described embodiment. In the present modification, the lid 170 is fixed to the upper surface 140a of the bearing holder 140 and covers and closes the opening above the through hole 145. Since the lid 170 is fixed to the upper surface 140 a of the bearing holder 140, the upper surface 170 a of the lid 170 is positioned above the upper surface 140 a of the bearing holder 140. The upper surface 140a of the bearing holder 140 and the lower surface 170b of the lid 170 are connected to each other by a joining means such as welding, adhesion, or caulking.
 本変形例によれば、蓋体170の上面170aをベアリングホルダ140の上面140aより上側に位置させる。これにより、第1の基板66の上面66bに実装された回転センサ161とセンサマグネット63との距離を近づけて配置できる。これにより、回転センサ161の回転角の検出精度を高めることができる。 According to this modification, the upper surface 170a of the lid 170 is positioned above the upper surface 140a of the bearing holder 140. Thereby, the distance between the rotation sensor 161 mounted on the upper surface 66b of the first substrate 66 and the sensor magnet 63 can be arranged close to each other. Thereby, the detection accuracy of the rotation angle of the rotation sensor 161 can be increased.
<その他の変形例>
 本実施形態においては、下記の構成を採用してもよい。 本実施形態では、ヒートシンクが上側ベアリング24を直接的に保持するベアリングホルダ40である場合を例示した。しかしながら、ヒートシンク(上述の実施形態のベアリングホルダ40に相当)は、別途用意されたベアリングホルダを介して間接的に上側ベアリング24を保持してもよい。この場合ヒートシンクは、ベアリングホルダに固定された構造とすることが好ましい。
<Other variations>
In the present embodiment, the following configuration may be employed. In this embodiment, the case where the heat sink is the bearing holder 40 that directly holds the upper bearing 24 is illustrated. However, the heat sink (corresponding to the bearing holder 40 of the above-described embodiment) may indirectly hold the upper bearing 24 via a separately prepared bearing holder. In this case, the heat sink is preferably fixed to the bearing holder.
 本実施形態では、蓋体70がベアリングホルダ40の貫通孔45の開口を閉塞する場合を例示した。しかしながら、蓋体70は、貫通孔45の上側の開口の少なくとも一部を覆うものであればよい。例えば、孔が設けられた蓋体を用いてもよい。このような場合であっても、蓋体は、放熱グリスGの配置領域を広げるという一定の効果を奏することができる。 In the present embodiment, the case where the lid 70 closes the opening of the through hole 45 of the bearing holder 40 is illustrated. However, the lid 70 only needs to cover at least a part of the opening above the through hole 45. For example, a lid provided with a hole may be used. Even in such a case, the lid body can exhibit a certain effect of widening the arrangement area of the heat dissipation grease G.
 本実施形態では、第1の基板66とベアリングホルダ40との間に位置する放熱材として、流動性のある放熱グリスGを採用した場合を例示した。しかしながら、放熱材は、たとえばゲル状又は固形の放熱材であってもよい。 In the present embodiment, the case where fluidized heat radiation grease G is employed as the heat radiation material positioned between the first substrate 66 and the bearing holder 40 is exemplified. However, the heat dissipation material may be, for example, a gel or solid heat dissipation material.
<電動パワーステアリング装置>
 次に、本実施形態のモータ1を搭載する装置の実施形態について説明する。本実施形態においては、モータ1を電動パワーステアリング装置に搭載した例について説明する。図4は、本実施形態の電動パワーステアリング装置2を示す模式図である。
<Electric power steering device>
Next, an embodiment of an apparatus on which the motor 1 of this embodiment is mounted will be described. In the present embodiment, an example in which the motor 1 is mounted on an electric power steering device will be described. FIG. 4 is a schematic diagram showing the electric power steering apparatus 2 of the present embodiment.
 電動パワーステアリング装置2は、自動車の車輪の操舵機構に搭載される。電動パワーステアリング装置2は、操舵力を油圧により軽減する装置である。図4に示すように、本実施形態の電動パワーステアリング装置2は、モータ1と、操舵軸114と、オイルポンプ116と、コントロールバルブ117と、を備える。 The electric power steering device 2 is mounted on a steering mechanism of a vehicle wheel. The electric power steering device 2 is a device that reduces the steering force by hydraulic pressure. As shown in FIG. 4, the electric power steering apparatus 2 of the present embodiment includes a motor 1, a steering shaft 114, an oil pump 116, and a control valve 117.
 操舵軸114は、ステアリング111からの入力を、車輪112を有する車軸113に伝える。オイルポンプ116は、車軸113に油圧による駆動力を伝えるパワーシリンダ115に油圧を発生させる。コントロールバルブ117は、オイルポンプ116のオイルを制御する。電動パワーステアリング装置2において、モータ1は、オイルポンプ116の駆動源として搭載されている。 The steering shaft 114 transmits the input from the steering 111 to the axle 113 having the wheels 112. The oil pump 116 generates hydraulic pressure in the power cylinder 115 that transmits driving force by hydraulic pressure to the axle 113. The control valve 117 controls the oil of the oil pump 116. In the electric power steering apparatus 2, the motor 1 is mounted as a drive source for the oil pump 116.
 本実施形態の電動パワーステアリング装置2は、本実施形態のモータ1を備えるため、第1の基板66で生じた熱を効率的に放熱できる。これにより、本実施形態によれば、信頼性に優れた電動パワーステアリング装置2が得られる。 Since the electric power steering apparatus 2 of the present embodiment includes the motor 1 of the present embodiment, the heat generated in the first substrate 66 can be efficiently radiated. Thereby, according to this embodiment, the electric power steering device 2 excellent in reliability can be obtained.
 以上に、本発明の実施形態および変形例を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the configurations and combinations thereof in the embodiments are examples, and the addition, omission, replacement, and configuration of the configurations are within the scope that does not depart from the spirit of the present invention. Other changes are possible. Further, the present invention is not limited by the embodiment.
 1…モータ、2…電動パワーステアリング装置、21…シャフト、24…上側ベアリング(ベアリング)、40,140…ベアリングホルダ(ヒートシンク)、45,145…貫通孔、60…制御装置、61,161…回転センサ、63…センサマグネット、70,170…蓋体、111…ステアリング、G…放熱グリス(放熱材)、J…中心軸 DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Electric power steering device, 21 ... Shaft, 24 ... Upper bearing (bearing), 40, 140 ... Bearing holder (heat sink), 45, 145 ... Through-hole, 60 ... Control device, 61, 161 ... Rotation Sensor, 63 ... sensor magnet, 70, 170 ... lid, 111 ... steering, G ... heat radiation grease (heat radiation material), J ... center shaft

Claims (8)

  1.  上下方向に延びる中心軸を中心として回転するシャフトと、
     前記シャフトの上端部を支持するベアリングと、
     前記ベアリングを直接的又は間接的に保持する金属製のヒートシンクと、
     前記ヒートシンクの上側に配置された基板と、
     前記シャフトの上端部の前記ベアリングより上側で前記シャフトに固定されたセンサマグネットと、
     軸方向から見て、前記基板の前記センサマグネットと重なる位置に実装された回転センサと、
     前記基板と前記ヒートシンクとの間に位置する放熱材と、を備え、
     前記ヒートシンクには、上下方向に貫通し前記ベアリングおよび前記センサマグネットが収容される貫通孔が設けられ、
     前記ヒートシンクには、前記貫通孔の上側の開口の少なくとも一部を覆う蓋体が取り付けられている、モータ。
    A shaft that rotates about a central axis extending in the vertical direction;
    A bearing that supports the upper end of the shaft;
    A metal heat sink that directly or indirectly holds the bearing;
    A substrate disposed above the heat sink;
    A sensor magnet fixed to the shaft above the bearing at the upper end of the shaft;
    A rotation sensor mounted at a position overlapping the sensor magnet of the substrate as seen from the axial direction;
    A heat dissipating material located between the substrate and the heat sink,
    The heat sink is provided with a through hole that penetrates in the vertical direction and accommodates the bearing and the sensor magnet.
    The motor, wherein a lid that covers at least a part of the opening above the through hole is attached to the heat sink.
  2.  前記回転センサが、前記基板の下面に実装され、
     前記蓋体の上面が、ヒートシンクの上面と同じ高さ又はヒートシンクよりも下側に位置する、請求項1に記載のモータ。
    The rotation sensor is mounted on the lower surface of the substrate;
    The motor according to claim 1, wherein the upper surface of the lid is located at the same height as the upper surface of the heat sink or below the heat sink.
  3.  前記回転センサが、前記基板の上面に実装され、
     前記蓋体の上面が、前記ヒートシンクの上面より上側に位置する、請求項1に記載のモータ。
    The rotation sensor is mounted on an upper surface of the substrate;
    The motor according to claim 1, wherein an upper surface of the lid is located above an upper surface of the heat sink.
  4.  前記蓋体が、前記貫通孔を閉塞する、請求項1~3の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 3, wherein the lid closes the through hole.
  5.  前記蓋体が、非磁性材料の金属からなる、請求項1~4の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 4, wherein the lid is made of a nonmagnetic metal.
  6.  前記放熱材が、絶縁性を有する、請求項1~5の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 5, wherein the heat dissipation material has an insulating property.
  7.  前記シャフトの回転を制御する制御装置を備える、請求項1~6の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 6, further comprising a control device that controls rotation of the shaft.
  8.  請求項1~7の何れか一項に記載のモータを有する電動パワーステアリング装置。 An electric power steering apparatus having the motor according to any one of claims 1 to 7.
PCT/JP2017/034193 2016-09-30 2017-09-22 Motor and electric power steering device WO2018062005A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780057213.XA CN109716631B (en) 2016-09-30 2017-09-22 Motor and electric power steering apparatus
JP2018542498A JP7031595B2 (en) 2016-09-30 2017-09-22 Motor and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-193882 2016-09-30
JP2016193882 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062005A1 true WO2018062005A1 (en) 2018-04-05

Family

ID=61759654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034193 WO2018062005A1 (en) 2016-09-30 2017-09-22 Motor and electric power steering device

Country Status (3)

Country Link
JP (1) JP7031595B2 (en)
CN (1) CN109716631B (en)
WO (1) WO2018062005A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027685A (en) * 2019-08-05 2021-02-22 日本電産株式会社 Rotor and motor
FR3130092A1 (en) * 2021-12-07 2023-06-09 Valeo Equipements Electriques Moteur Electronic assembly with sensor protection means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183674A (en) * 2013-03-21 2014-09-29 Hitachi Automotive Systems Steering Ltd Rotation angle detection apparatus
WO2015122069A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Control-device-equipped rotating electrical machine, electric power steering device, and production method for control-device-equipped rotating electrical machine
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
JP2016036246A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driving device and electric power steering device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063722B2 (en) * 2010-03-19 2012-10-31 三菱電機株式会社 Electric drive device and electric power steering device equipped with the same
ES2555121T3 (en) * 2013-07-08 2015-12-29 Fagor, S. Coop. Electric drive device
JP6459492B2 (en) * 2014-12-22 2019-01-30 株式会社デンソー DRIVE DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183674A (en) * 2013-03-21 2014-09-29 Hitachi Automotive Systems Steering Ltd Rotation angle detection apparatus
WO2015122069A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Control-device-equipped rotating electrical machine, electric power steering device, and production method for control-device-equipped rotating electrical machine
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
JP2016036246A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driving device and electric power steering device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027685A (en) * 2019-08-05 2021-02-22 日本電産株式会社 Rotor and motor
FR3130092A1 (en) * 2021-12-07 2023-06-09 Valeo Equipements Electriques Moteur Electronic assembly with sensor protection means

Also Published As

Publication number Publication date
CN109716631A (en) 2019-05-03
JP7031595B2 (en) 2022-03-08
JPWO2018062005A1 (en) 2019-07-11
CN109716631B (en) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2018123879A1 (en) Motor and electric power steering device
US10494014B2 (en) Motor including nonmagnetic contamination cover and electric power steering device including same
WO2018123880A1 (en) Motor and electric power steering device
JP6087123B2 (en) Brushless motor
WO2016159035A1 (en) Motor
WO2018143324A1 (en) Motor
US20190210636A1 (en) Electric Drive Device and Electric Power Steering Device
CN209767318U (en) Electric actuator
WO2018143328A1 (en) Motor
WO2018062005A1 (en) Motor and electric power steering device
WO2018143321A1 (en) Motor
CN110771016A (en) Electronic device
WO2018062007A1 (en) Motor and electric power steering device
CN109716632B (en) Motor control device, motor, and electric power steering device
CN209805579U (en) Electric actuator
JP2021057996A (en) Motor unit
JP2021044984A (en) Motor and electric power steering device
CN216290565U (en) Electric actuator
CN115549363A (en) Motor unit
CN115549420A (en) Motor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855959

Country of ref document: EP

Kind code of ref document: A1