WO2018061903A1 - 通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体 - Google Patents

通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体 Download PDF

Info

Publication number
WO2018061903A1
WO2018061903A1 PCT/JP2017/033824 JP2017033824W WO2018061903A1 WO 2018061903 A1 WO2018061903 A1 WO 2018061903A1 JP 2017033824 W JP2017033824 W JP 2017033824W WO 2018061903 A1 WO2018061903 A1 WO 2018061903A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
input
analog
signal
antenna elements
Prior art date
Application number
PCT/JP2017/033824
Other languages
English (en)
French (fr)
Inventor
圭史 小坂
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/336,142 priority Critical patent/US20190229790A1/en
Priority to JP2018542443A priority patent/JPWO2018061903A1/ja
Publication of WO2018061903A1 publication Critical patent/WO2018061903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal

Definitions

  • the present invention relates to a communication device, a communication terminal, a communication method, and a communication program.
  • MIMO Multiple Input Multiple Output
  • beam forming using an array antenna having a plurality of antenna elements arranged at intervals is widely used.
  • MU-MIMO Multi User-MIMO
  • a method for realizing MU-MIMO by separating signals to be transmitted to each user terminal by performing MIMO and beamforming has been studied.
  • Patent Document 1 discloses a wireless transmission system using a MIMO technique or the like that suppresses interference within the same cell in a downlink by applying a whitening filter on the transmission side.
  • FIG. 29 is a block diagram showing a configuration example of a MIMO communication apparatus 900 related to the present invention.
  • MIMO communication apparatus 900 includes an array antenna 910 including n antenna elements 911-1 to 911-n, n communication circuits 930-1 to 930-n, and a calibration network. 940, a calibration communication circuit 950, and a MIMO processing unit 960.
  • the MIMO communication apparatus 900 is a communication apparatus that can communicate with MU-MIMO.
  • MIMO communication apparatus 900 there are n signals between array antenna 910 and communication circuits 930-1 to 930-n and between communication circuits 930-1 to 930-n and MIMO processing section 960, respectively. They are connected to each other via lines 970-1 to 970-n.
  • the calibration network 940 includes signal lines 970-1 to 970-n between the array antenna 910 and the communication circuits 930-1 to 930-n via n couplers 941-1 to 941-n. Connected to each.
  • the calibration network 940 is also connected to the calibration communication circuit 950.
  • the MIMO processing unit 960 is connected to the communication circuits 930-1 to 930-n and the calibration communication circuit 950.
  • each of the communication circuits 930-1 to 930-n is connected to each of the n antenna elements 911-1 to 911-n included in the array antenna 910.
  • the MIMO processing unit 960 performs a later-described MIMO transmission / reception weight process for calculating a weight matrix. Also, the MIMO processing unit 960 performs a calibration process, which will be described later, for calculating a correction coefficient.
  • Each of the communication circuits 930-1 to 930-n inputs a signal to each of the antenna elements 911-1 to 911-n included in the array antenna 910.
  • Each of the antenna elements 911-1 to 911-n converts the signal into a directional electromagnetic wave and radiates it. The electromagnetic waves radiated from each of the antenna elements 911-1 to 911-n are received on the receiving side.
  • signals input from the communication circuits 930-1 to 930-n to the antenna elements 911-1 to 911-n are converted into electromagnetic waves by the antenna elements 911-1 to 911-n, respectively. Converted and emitted. Then, each of the electromagnetic waves overlaps each other, and for each signal directed to each user terminal, the direction in which the intensity becomes the strongest becomes a beam different from each other, and is received at the receiving side.
  • MIMO processing section 960 determines a weight matrix based on reception information that MIMO communication apparatus 900 estimates when receiving a signal. MIMO processing section 960 multiplies each of the signals input to antenna elements 911-1 to 911-n by communication circuits 930-1 to 930-n by the weight matrix. Note that the received information is a matrix composed of the fluctuation amount of the amplitude and phase of the propagation path from the MIMO communication apparatus 900 to the user terminal.
  • the MIMO processing unit 960 performs a calibration process for calculating a correction coefficient to be multiplied by the signal as described above. Specifically, for example, the MIMO processing unit 960 sends a reference signal to the communication circuit 930-i (i is a natural number greater than or equal to 1 and less than or equal to n) to the calibration communication circuit 950 via the calibration network 940. Input x. In addition, the MIMO processing unit 960 causes the calibration communication circuit 950 to input the reference signal x to the communication circuit 930-i (i is a natural number of 1 or more and n or less) via the calibration network 940.
  • the process of receiving a signal and the process of transmitting are performed separately. Therefore, reversibility is not established between the transmission signal and the reception signal in the signal path between the communication circuit 930-i and the antenna element 911-i. Therefore, the MIMO processing unit 960, based on the reference signal x input to the communication circuit 930-i and the calibration communication circuit 950 as described above, signals between the communication circuit 930-i and the antenna element 911-i. A correction coefficient that establishes reversibility between the transmission signal and the reception signal on the road is calculated. Then, the MIMO processing unit 960 multiplies each of the signals multiplied by the weight matrix as described above by the correction coefficient. In addition, each of the communication circuits 930-1 to 930-n inputs the respective signals multiplied by the correction coefficient to the antenna elements 911-1 to 911-n.
  • an error may occur in the calibration process performed by the MIMO processing unit 960.
  • the signals input by the communication circuits 930-1 to 930-n are not appropriate signals, the shape of the beam based on the electromagnetic waves radiated by the antenna elements 911-1 to 911-n is reduced. to degrade. Therefore, since each user terminal receives more beams directed to other user terminals, the performance of communication by MU-MIMO deteriorates.
  • the weight matrix is To be determined. That is, the weight matrix is determined so that the beam transmitted to one user terminal and the beam transmitted to another user terminal do not interfere with each other. That is, in the weight matrix, for each of a plurality of beams transmitted to a plurality of user terminals, for example, in a line-of-sight environment, a null point (a point where the beam intensity becomes 0) is formed in the direction of another user terminal. To be determined.
  • each of the communication circuits 930-1 to 930-n is connected to each of the antenna elements 911-1 to 911-n in the array antenna 910. Therefore, the signals output from the communication circuits 930-1 to 930-n are converted into electromagnetic waves and emitted. Therefore, the communication performance of the MIMO communication apparatus 900 is greatly affected by calibration processing errors. Then, it becomes impossible to accurately form null points for beams based on electromagnetic waves radiated from different antenna elements 911-1 to 911-n.
  • each beam transmitted and received simultaneously with a plurality of user terminals can be appropriately separated so as not to interfere with each other. Is required.
  • Patent Document 1 neither describes nor suggests that the influence of calibration processing errors is particularly mitigated so that beams transmitted and received with a plurality of user terminals do not interfere with each other. .
  • MIMO communication apparatus 900 in the example shown in FIG. 29 particularly mitigates the influence of calibration processing errors so that beams transmitted and received with a plurality of user terminals do not interfere with each other.
  • a communication device distributes a digital signal and an analog signal to each other and a plurality of antenna elements and distributes the input analog transmission signal.
  • a power feeding means for distributing analog received signals received and inputted by the plurality of antenna elements to the plurality of communication means; and a digital signal for transmission to the plurality of communication means based on a MIMO communication system.
  • a MIMO processing means for processing a digital signal based on the analog received signal input by the plurality of communication means, wherein the plurality of communication means outputs the digital signal for transmission input by the MIMO processing means.
  • the analog transmission signal converted into an analog signal is input to the power supply means, and the analog signal distributed and input by the power supply means is input.
  • the log reception signal is converted into a digital signal based on the analog reception signal and input to the MIMO processing means, and the power supply means converts the analog signals based on the analog reception signals as many as the plurality of communication means, Distributing to the plurality of communication means, and distributing the same number of analog transmission signals as the plurality of communication means to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference from each other are radiated.
  • a communication terminal distributes a digital signal and an analog signal to each other and a plurality of communication elements, and an input analog transmission signal to a plurality of antenna elements.
  • a power feeding means for distributing analog received signals received and inputted by the plurality of antenna elements to the plurality of communication means; and a digital signal for transmission to the plurality of communication means based on a MIMO communication system.
  • a MIMO processing means for processing a digital signal based on the analog received signal input by the plurality of communication means, wherein the plurality of communication means outputs the digital signal for transmission input by the MIMO processing means.
  • the analog transmission signal converted into an analog signal is input to the power supply means, and the analog signal distributed and input by the power supply means is input.
  • the log reception signal is converted into a digital signal based on the analog reception signal and input to the MIMO processing means, and the power supply means converts the analog signals based on the analog reception signals as many as the plurality of communication means, Distributing to the plurality of communication means, and distributing the same number of analog transmission signals as the plurality of communication means to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference from each other are radiated. Communicate with the communication device.
  • a communication device control method includes a plurality of communication steps for mutually converting a digital signal and an analog signal, and a plurality of antenna elements that convert an input analog transmission signal.
  • a plurality of communication units based on a MIMO communication system, and a power feeding step for distributing the received analog signals received and input by the plurality of antenna elements to a plurality of communication means for executing the plurality of communication steps;
  • the analog signal obtained by converting the digital signal for transmission into an analog signal after being input to the plurality of communication means The transmission signal is input to the power supply means for executing the power supply step, the analog signal based on the analog reception signal distributed and input by the power supply means is converted into a digital signal based on the analog reception signal, and Input to the MIMO processing means for
  • FIG. 1 is a block diagram illustrating a configuration example of the MIMO communication apparatus 100 according to the present embodiment.
  • the MIMO communication apparatus 100 includes a power supply network 120, n communication circuits 130-1 to 130-n, a calibration network 140, a calibration communication circuit 150, and a MIMO processing unit 160.
  • the array antenna 110 is connected to the power feeding network 120.
  • the array antenna 110 may be installed inside the MIMO communication apparatus 100 or may be installed outside.
  • the MIMO communication apparatus 100 is a communication apparatus that can communicate with MU-MIMO.
  • MIMO communication apparatus 100 between array antenna 110 and power feeding network 120, between power feeding network 120 and communication circuits 130-1 to 130-n, and between communication circuits 130-1 to 130-n and a MIMO processing unit. 160 are connected to each other via n signal lines 170-1 to 170-n.
  • the calibration network 140 includes signal lines 170-1 to 170-n between the power supply network 120 and the communication circuits 130-1 to 130-n via n couplers 141-1 to 141-n. Connected to each.
  • the array antenna 110 includes n antenna elements 111-1 to 111-n.
  • the array antenna 110 may be provided with n antenna ports 112-1 to 112-n as input / output terminals.
  • the case where the antenna ports 112-1 to 112-n are provided in the array antenna 110 will be described as an example. In such a configuration, each of the antenna elements 111-1 to 111-n is connected to each of the antenna ports 112-1 to 112-n.
  • the power supply network 120 includes a network circuit unit 123.
  • n input / output ports 121-1 to 121-n are provided as input / output terminals on the communication circuits 130-1 to 130-n side, and n input / output ports 122 are provided on the array antenna 110 side. -1 to 122-n may be provided.
  • the power supply network 120 is provided with input / output ports 121-1 to 121-n and input / output ports 122-1 to 122-n.
  • each of the input / output ports 121-1 to 121-n and each of the communication circuits 130-1 to 130-n are connected via signal lines 170-1 to 170-n.
  • each of the input / output ports 122-1 to 122-n and each of the antenna ports 112-1 to 112-n in the array antenna 110 are connected via signal lines 170-1 to 170-n. By connecting in this way, various signals can be transmitted and received between the array antenna 110 and the power feeding network 120 and between the power feeding network 120 and the communication circuits 130-1 to 130-n.
  • the antenna elements 111-1 to 111-n are referred to as the antenna element 111. May be collectively referred to.
  • the antenna ports 112-1 to 112-n are assumed to be antennas.
  • port 112 When it is not necessary to distinguish each of the n input / output ports 121-1 to 121-n provided in the power feeding network 120, the input / output ports 121-1 to 121-n are used.
  • the input / output port 121 May be collectively referred to as the input / output port 121.
  • the input / output ports 122-1 to 122-n are used. May be collectively referred to as the input / output port 122.
  • the communication circuits 130-1 to 130-n are collectively referred to as the communication circuit 130. There is.
  • the couplers 141-1 to 141-n may be collectively referred to as a coupler 141.
  • the signal lines 170-1 to 170-n are collectively referred to as the signal line 170. There is.
  • FIG. 2 is a front view showing a configuration example of the array antenna 110.
  • the array antenna 110 includes antenna elements 111-1 to 111-n and a conductor reflector 113.
  • the distance d between the adjacent antenna elements 111 is 1 ⁇ 2 of the wavelength ⁇ of the beam transmitted and received by the array antenna 110.
  • each of the antenna elements 111-1 to 111-n is installed on the conductor reflecting plate 113. With such a configuration, the distance d between the adjacent antenna elements 111 is not so close that electromagnetic field coupling occurs in the antenna elements 111-1 to 111-n. In addition, it is possible to prevent degradation of antenna performance due to electromagnetic coupling.
  • the distance d between the adjacent antenna elements 111 is not so long as the influence of the grating lobe is generated, when the beam forming is performed using the array antenna 110, the influence of the grating lobe can be suppressed.
  • the types of the antenna elements 111-1 to 111-n are not limited as long as they are antenna elements capable of transmitting and receiving electromagnetic waves, such as a dipole antenna, a patch antenna, and a monopole antenna.
  • FIG. 3 is a front view showing another first example of the configuration of the array antenna 110.
  • the method of distributing the signal output from the communication circuit 130 to each of the sub-antenna elements 114-1 to 114-m is not particularly limited, as will be described later.
  • FIG. 4 is a front view showing another second example of the configuration of the array antenna 110.
  • FIG. 4 is a front view showing another second example of the configuration of the array antenna 110.
  • the antenna elements 111-1 to 111-n may be formed in a vertically long shape by arranging the sub antenna elements 114-1 to 114-m in a direction perpendicular to the horizontal plane.
  • the sub antenna elements 114-1 to 114-m may be formed in a horizontally long shape by being juxtaposed in the horizontal direction.
  • FIG. 5 is a configuration diagram showing another third example of the configuration of the array antenna 110.
  • the array antenna 110 may include n ′ antenna elements 115-1 to 115 -n ′ and a sub-feeding network 116.
  • the sub power feeding network 116 may be provided with n antenna ports 117-1 to 117-n through which signals are input from the communication circuits 130-1 to 130-n via the power feeding network 120, respectively.
  • the antenna elements 115-1 to 115-n ′ and the sub-feed network 116 are connected to each other.
  • the sub power feeding network 116 When a signal is input to each of the antenna ports 117-1 to 117-n, the sub power feeding network 116 superimposes the signals and distributes the signals to the antenna elements 115-1 to 115-n ′. .
  • the antenna ports 117-1 to 117-n provided in the sub power feeding network 116 correspond to the antenna ports of the antenna elements 115-1 to 115-n ′.
  • each of the antenna elements 111-1 to 111-n is configured to share the antenna elements 115-1 to 115-n ′ as sub-antenna elements.
  • Each of the communication circuits 130-1 to 130-n converts an input analog signal into a digital signal, or converts an input digital signal into an analog signal.
  • each of the communication circuits 130-1 to 130-n converts a digital signal input from the MIMO processing unit 160 into an analog signal, and the analog signal is converted into a calibration communication circuit 150 via the calibration network 140.
  • each of the communication circuits 130-1 to 130-n converts an analog signal input from the power feeding network 120 into a digital signal, and inputs the digital signal to the MIMO processing unit 160.
  • each of the communication circuits 130-1 to 130-n includes an RF (Radio Frequency) front end, an AD (Analog to Digital) converter, and the like.
  • the RF front end is an electric circuit including, for example, a filter such as a SAW (Surface Acoustic Wave) filter, a switch such as an RF (Radio Frequency) switch, an amplification circuit that amplifies a signal transmitted and received by the MIMO communication apparatus 100, and the like.
  • the calibration network 140 is connected to each of signal lines 170-1 to 170-n between the power feeding network 120 and the communication circuit 130 via n couplers 141-1 to 141-n.
  • the calibration network 140 is also connected to the calibration communication circuit 150. With such a configuration, the calibration network 140 relays transmission / reception of various signals between the communication circuits 130-1 to 130-n and the calibration communication circuit 150, as will be described later.
  • the calibration communication circuit 150 converts an input analog signal into a digital signal, or converts an input digital signal into an analog signal. For example, the calibration communication circuit 150 converts analog signals input from the communication circuits 130-1 to 130 -n via the calibration network 140 into digital signals, and inputs the digital signals to the MIMO processing unit 160. . Further, for example, the calibration communication circuit 150 converts the digital signal input from the MIMO processing unit 160 into an analog signal, and the analog signal is transmitted via the calibration network 140 to the communication circuits 130-1 to 130-n. To enter.
  • the MIMO processing unit 160 is connected to each of the n communication circuits 130-1 to 130-n.
  • the MIMO processing unit 160 is connected to the calibration communication circuit 150. With such a configuration, the MIMO processing unit 160 can transmit / receive digital signals to / from each of the n communication circuits 130-1 to 130-n and the calibration communication circuit 150.
  • the MIMO processing unit 160 transmits / receives the digital signal, and performs a MIMO transmission / reception weight process and a calibration process.
  • the MIMO processing unit 160 includes an FPGA (Field Programmable Gate Array) and the like.
  • the MIMO transmission / reception weight process is a process in which the MIMO processing unit 160 calculates a weight matrix.
  • the weight matrix is a signal input to each of the antenna elements 111-1 to 111-n by the communication circuits 130-1 to 130-n at the time of transmission and the communication circuits 130-1 to 130 by the power feeding network 120 at the time of reception.
  • This is a matrix by which the signal distributed to each of ⁇ n is multiplied.
  • the array antenna 110 receives a plurality of communication electromagnetic waves, and a signal based on the plurality of communication electromagnetic waves is distributed to each of the communication circuits 130-1 to 130-n by the power feeding network 120.
  • the weight matrix is multiplied to each of the distributed signals.
  • MIMO transmission / reception wait processing An example of MIMO transmission / reception wait processing will be described in more detail.
  • MIMO transmission / reception weight processing when the MIMO communication apparatus 100 emits a beam in which a plurality of electromagnetic waves are superimposed will be described.
  • the characters in [] represent vectors.
  • t means “transmit”.
  • r means receive.
  • array antenna 110 receives a predetermined reference signal x i transmitted from each of n user terminals.
  • H d is a downlink channel matrix.
  • H d H represents an adjoint matrix of H d .
  • H d ⁇ 1 represents an inverse matrix of H d .
  • the calibration process is a process for calculating a correction coefficient.
  • the correction coefficient is multiplied by the MIMO processor 160 for each of the signals multiplied by the weight matrix.
  • the MIMO processing unit 160 sends a reference signal to the communication circuit 130-i (i is a natural number not less than 1 and not more than n) to the calibration communication circuit 150 via the calibration network 140.
  • Input x is a natural number not less than 1 and not more than n
  • y (ic) dt (i) ⁇ hdc (i) ⁇ cr ⁇ x
  • (ic) in y (ic) represents a signal input from the communication circuit 130-i to the calibration communication circuit 150.
  • dt (i) is a coefficient indicating a change in signal that occurs in the reference signal x when the reference signal x is output from the communication circuit 130-i.
  • hdc (i) is a coefficient indicating a change in signal that occurs in the signal path between the communication circuit 130-i and the calibration communication circuit 150.
  • cr is a coefficient indicating a change in a signal that occurs when a signal input to the calibration communication circuit 150 is received by the calibration communication circuit 150.
  • the MIMO processing unit 160 sends the communication circuit 150 for calibration to the communication circuit 130-i (i is a natural number of 1 or more and n or less) via the calibration network 140.
  • a reference signal x is input.
  • (ci) in y (ci) represents a signal input from the calibration communication circuit 150 to the communication circuit 130-i.
  • ct is a coefficient indicating a change in signal that occurs in the reference signal x when the reference signal x is output from the calibration communication circuit 150.
  • hcd (i) is a coefficient indicating a change in the signal that occurs in the signal path between the calibration communication circuit 150 and the communication circuit 130-i.
  • dr (i) is a coefficient indicating a change in signal that occurs when a signal input to the communication circuit 130-i is received by the communication circuit 130-i.
  • the MIMO processing unit 160 calculates a correction coefficient based on the above-described equations (1) and (2).
  • MIMO communication apparatus 100 estimates each signal change coefficient in an uplink channel based on a reference signal transmitted in advance from a destination user terminal. To do. Also, assuming that reversibility is established between the uplink channel and the downlink channel, the MIMO communication apparatus 100 obtains each signal change coefficient in the downlink channel from each signal change coefficient in the uplink channel. The MIMO communication apparatus 100 performs the above-described MIMO transmission / reception weight processing based on the obtained signal change coefficients in the downlink channel.
  • the MIMO communication apparatus 100 performs calibration processing to correct signals input to the communication circuits 130-1 to 130-n.
  • one communication circuit 130 referred to from the communication circuits 130-1 to 130-n is determined.
  • the referenced communication circuit 130 is the communication circuit 130-1.
  • the signal y t (i) subjected to the MIMO transmission / reception weight processing by the correction coefficient cal (i)
  • the signal y ′ (i) output from each communication circuit 130 becomes y ′ (i).
  • ) Cal (i) ⁇ y t (i).
  • the calibration is performed so that the signal ratio between the transmission / reception of the communication circuit 130 is matched with the signal ratio between the transmission / reception of the one communication circuit 130 referred to, and the relative deviation between the communication circuits 130 is eliminated. Processing is performed.
  • a signal multiplied by a weight matrix and a correction coefficient may be referred to as a signal after calibration processing.
  • the signals after the wait processing and the calibration processing are sent from the communication circuits 130-1 to 130-n via the input / output ports 121-1 to 121-n provided in the power feeding network 120, respectively. Is input. Further, in the network circuit unit 123, distribution corresponding to performing discrete Fourier transform or inverse transform processing that does not include digital processing is performed on each of the input signals. Then, the network circuit unit 123 is connected to each of the antenna elements 111-1 to 111-n included in the array antenna 110 via each of the input / output ports 122-1 to 122-n provided in the power feeding network 120. The distributed signal is transmitted as described above.
  • the network circuit unit 123 converts a signal input to each of the antenna elements 111-1 to 111-n via the first input / output port 121-1 into a certain phase relationship and The signals are distributed so that they have the same output level. Further, for example, the network circuit unit 123 applies the signal input to each of the antenna elements 111-1 to 111-n via the first input / output port 121-2 to another predetermined phase relationship and the same. Distribute so as to obtain a signal with a proper output level. The network circuit unit 123 also distributes the signals input via the first input / output ports 121-3 to 121-n to the antenna elements 111-1 to 111-n in the same manner.
  • the network circuit unit 123 is a circuit network that implements, for example, a Butler matrix, a Brass matrix, a Rotman lens, or the like.
  • FIG. 6 is a configuration diagram showing a connection example of the array antenna 110, the power feeding network 120, and the communication circuit 130.
  • the array antenna 110 including the four antenna elements 111-1 to 111-4 and the power feeding network 120 connected to the four communication circuits 130-1 to 130-4 are connected to each other. Has been.
  • the network circuit unit 123 inputs the antenna elements 111-1 to 111-4 via the four input / output ports 121-1 to 121-4 provided in the power feeding network 120, respectively.
  • the signals after weight processing and calibration processing are distributed. Specifically, for example, when a signal after wait processing and calibration processing is input from the communication circuit 130-1 via the input / output port 121-1, the network circuit unit 123 inputs the signal. Distribution is performed to each of the antenna elements 111-1 to 111-4 via the output ports 122-1 to 122-4. Further, for example, when the signal after wait processing and calibration processing is input from the communication circuit 130-2 via the input / output port 121-2, the network circuit unit 123 outputs the signal to the input / output port 122.
  • Distribution to antenna elements 111-1 to 111-4 via -1 to 122-4 For example, when a signal after wait processing and calibration processing is input from the communication circuit 130-3 via the input / output port 121-3, the network circuit unit 123 outputs the signal to the input / output port 122. Distribution to antenna elements 111-1 to 111-4 via -1 to 122-4. For example, when a signal after wait processing and calibration processing is input from the communication circuit 130-4 via the input / output port 121-4, the network circuit unit 123 sends the signal to the input / output port 122-1. Distributed to antenna elements 111-1 to 111-4 through 122-4.
  • Each of the signals distributed by the network circuit unit 123 is radiated as a plurality of electromagnetic waves from the antenna elements 111-1 to 111-4.
  • the plurality of electromagnetic waves overlap each other to form a beam.
  • a plurality of beams may be formed by the signal distribution of the network circuit unit 123.
  • each of the beams has a different phase difference of signals between antenna elements due to distribution by the network circuit unit 123 in each of the input / output ports 121-1 to 121-4, it is strongly applied to regions in different predetermined directions. Radiated. Note that the direction in which each of the beams is radiated strongly is constant because the distribution in the network circuit unit 123 is performed at a constant ratio.
  • a beam in which electromagnetic waves radiated from the antenna elements 111-1 to 111-4 are overlapped with each other by signal distribution by the network circuit unit 123 is referred to as a fixed beam.
  • the beam is radiated strongly in each of the directions indicated by the fixed beams 180-1 to 180-4.
  • the fixed beam 180-1 is output from the antenna elements 111-1 to 111-4 based on each of the signals output from the communication circuit 130-1 and distributed to the antenna elements 111-1 to 111-4 by the network circuit unit 123. This is a mixed beam of emitted electromagnetic waves.
  • the fixed beam 180-2 is output from the communication circuit 130-2, and based on the signals distributed to the antenna elements 111-1 to 111-4 by the network circuit unit 123, the antenna elements 111-1 to 111- 4 is a beam in which electromagnetic waves radiated from 4 are mixed.
  • the fixed beam 180-3 is output from the antenna elements 111-1 to 111-4 based on each of the signals output from the communication circuit 130-3 and distributed to the antenna elements 111-1 to 111-4 by the network circuit unit 123.
  • the fixed beam 180-4 is output from the antenna elements 111-1 to 111-4 based on the signals output from the communication circuit 130-4 and distributed to the antenna elements 111-1 to 111-4 by the network circuit unit 123. This is a mixed beam of emitted electromagnetic waves.
  • the fixed beams 180-1 to 180-4 are further overlapped with each other by weight processing in the MIMO processing unit 160, and are described as “combined beams" (hereinafter referred to as “combined beams”) having one directivity corresponding to one signal. And received by one user terminal.
  • the signal intensity in the direction of strong radiation of each of the fixed beams 180-1 to 180-4 is strongest when the antenna elements 111-1 to 111-4 are installed at equal intervals in the array antenna 110. . This is because the electromagnetic waves radiated from the antenna elements 111-1 to 111-4 overlap with the same phase in each of the directions in which the fixed beams 180-1 to 180-4 are radiated strongly.
  • FIG. 7 is an explanatory diagram showing an example of signal intensity in each direction of the fixed beams 180-1 to 180-4.
  • the signal intensity of the fixed beam 180-1 is indicated by a solid line
  • the signal intensity of the fixed beam 180-2 is indicated by a dotted line
  • the signal intensity of the fixed beam 180-3 is indicated by a broken line.
  • the signal intensity of ⁇ 4 is indicated by a dashed line.
  • the radiation angles of the fixed beams 180-1 to 180-4 radiated from the antenna elements 111-1 to 111-4 are appropriately adjusted according to the distance d between the antenna elements 111 of the array antenna 110. In such a case, as shown in FIG. 7, there is no interference from one fixed beam with another fixed beam at a predetermined directivity angle.
  • the directivity angle when the directivity angle is in the vicinity of ⁇ 50 °, there is no interference with the fixed beam 180-1 due to the fixed beams 180-2 to 180-4. Further, for example, in the direction where the directivity angle is near ⁇ 15 °, interference by the fixed beams 180-1 and 180-3 to 180-4 with respect to the fixed beam 180-2 is eliminated. For example, when the directivity angle is in the vicinity of 15 °, there is no interference with the fixed beam 180-3 by the fixed beams 180-1 to 180-2 and 180-4. For example, in the direction where the directivity angle is around 50 °, interference by the fixed beams 180-1 to 180-3 with respect to the fixed beam 180-4 is eliminated.
  • the MIMO communication apparatus 100 when one user terminal is in a direction in which the intensity of the fixed beam 180-1 is increased (direction angle is ⁇ 50 °), the MIMO communication apparatus 100 is directed to the one user terminal.
  • the transmission / reception weight is calculated by the weight process so that the component of the fixed beam 180-1 included in the combined beam corresponding to the signal is larger than the components of the fixed beams 180-2 to 180-4.
  • the MIMO communication apparatus 100 has the signal strength output from the communication circuit 130-1 out of the signals directed to one user terminal from the communication circuits 130-2 to 130-4. It will be stronger than the intensity of the output signal.
  • the direction in which the signal strength is strong matches the direction in which the one user terminal is present in the combined beam corresponding to the signal directed to the one user terminal.
  • the configuration is such that one fixed beam component is included more than the other fixed beam components. That is, the intensity of the signal output from one communication circuit corresponding to the one fixed beam among the signals including errors directed to one user terminal output from each of the communication circuits 130-1 to 130-n. However, it becomes stronger than the intensity of signals output from other communication circuits. Therefore, it is not necessary to superimpose a plurality of fixed beams including relative errors at the same ratio, and communication with one user terminal is performed with almost a single fixed beam. The effect of error between signals is reduced. Therefore, even if an error occurs in the calibration process by the MIMO processing unit 160, the influence can be minimized.
  • the array antenna 110 receives a communication electromagnetic wave from another communication device (not shown)
  • a signal based on the communication electromagnetic wave is provided to the power supply network 120 by the network circuit unit 123. Distribution is made to each of the communication circuits 130-1 to 130-n via 121-1 to 121-n.
  • the above-described operation related to beam transmission / reception in the array antenna 110 and the power feeding network 120 corresponds to the network circuit unit 123 performing passive antenna weight processing in an analog manner.
  • the analog means that digital processing is not performed.
  • Passive means that the network circuit unit 123 does not include an active element such as an analog amplifier.
  • “Fixed” means that when the network circuit unit 123 distributes a signal, antenna weight processing is performed with a constant distribution ratio.
  • the signal synthesis and distribution in the power supply network 120 is for n signals corresponding to the number of communication circuits 130.
  • Digital signal processing equivalent to such synthesis and distribution for n signals is usually performed by the MIMO processing unit 160 and the n communication circuits 130.
  • synthesis and distribution corresponding to the digital signal processing are performed on the analog signal in the power feeding network 120.
  • FIG. 8 is a flowchart showing processing for the MIMO communication apparatus 100 to transmit a combined beam to the user terminal.
  • the MIMO processing unit 160 performs a calibration process and calculates a correction coefficient (step S101). Also, the MIMO processing unit 160 multiplies each of the signals multiplied by the weight matrix as described above by the correction coefficient (step S102). Then, each of the communication circuits 130-1 to 130-n inputs the signal multiplied by the correction coefficient to the network circuit unit 123 included in the power feeding network 120 (step S103).
  • the network circuit unit 123 processing corresponding to antenna weight processing is performed on each of the signals input from the communication circuits 130-1 to 130-n. Then, the network circuit unit 123 distributes each of the signals subjected to the antenna weight processing to each of the antenna elements 111-1 to 111-n included in the array antenna 110 (step S104).
  • each of the antenna elements 111-1 to 111-n emits a fixed beam based on the distributed signal.
  • Each of the fixed beams overlaps each other to form a combined beam and is received by one user terminal.
  • the MIMO processing unit 160 has one fixed signal in which the direction in which the signal strength is strong matches the direction in which the user terminal is present in the combined beam corresponding to the signal directed to one user terminal.
  • the weight is calculated so as to contain the most beam components.
  • MIMO processing section 160 multiplies each of the signals input to antenna elements 111-1 to 111-n by communication circuits 130-1 to 130-n by the weight. Thereby, a signal directed to one user terminal is particularly strongly output from one communication circuit corresponding to one fixed beam among the communication circuits 130-1 to 130-n.
  • FIG. 9 is a block diagram showing another first example of the configuration of the MIMO communication apparatus 100.
  • the MIMO communication apparatus 100 may include a calibration processing unit 161 and a BB (BaseBand) processing unit 162 instead of the MIMO processing unit 160, as in the example illustrated in FIG. .
  • the configuration excluding the BB processing unit 162 in the MIMO communication apparatus 100 is referred to as an antenna apparatus.
  • the calibration processing unit 161 performs a calibration process. That is, the calibration processing unit 161 calculates a correction coefficient to be multiplied by the signal.
  • the BB processing unit 162 performs processes other than the calibration process among the processes performed by the MIMO processing unit 160.
  • the BB processing unit 162 performs MIMO transmission / reception weight processing and the like.
  • the calibration processing unit 161 and the BB processing unit 162 may be connected to each other through an interface such as a CPRI (Common Public Radio Interface) 163, and the BB processing unit 162 may be installed outside the MIMO communication apparatus 100.
  • the MIMO communication apparatus 100 includes a plurality of antenna devices
  • each of the calibration processing units 161 included in each antenna device and the BB processing unit 162 may be connected to each other.
  • various processes in each antenna device are performed by the BB processing unit 162, so that a cooperative operation between the antenna devices can be easily performed.
  • FIG. 10 is a block diagram showing another second example of the configuration of the MIMO communication apparatus 100.
  • the MIMO communication apparatus 100 when the individual differences in performance of the communication circuits 130 are sufficiently small, the MIMO communication apparatus 100 has a calibration network 140 and a calibration communication circuit 150 as in the example illustrated in FIG. And may not be included.
  • one of the communication circuits corresponding to one fixed beam that is strongly radiated in the direction of a certain user terminal among the communication circuits 130-1 to 130-n by the weight processing is used.
  • a signal directed to the user terminal is output with particularly strong intensity, it is possible to suppress a decrease in communication performance of the MIMO communication apparatus 100 due to individual performance differences between the communication circuits 130.
  • FIG. 11 is a block diagram showing another third example of the configuration of the MIMO communication apparatus 100.
  • the calibration network 140 may be connected to each of the signal lines between the array antenna 110 and the power feeding network 120 via a coupler 141 as shown in FIG.
  • FIG. 12 is a block diagram showing another fourth example of the configuration of the MIMO communication apparatus 100.
  • the calibration communication circuit 150 may be connected to each of signal lines between the array antenna 110 and the power feeding network 120 via a coupler 141 as shown in FIG.
  • FIG. 13 is a block diagram illustrating a configuration example of the MIMO communication apparatus 200 in the present embodiment.
  • the MIMO communication apparatus 200 in the second embodiment is different from the MIMO communication apparatus 100 in the first embodiment in that a power supply network 220 is included instead of the power supply network 120. Since the other configuration of the MIMO communication apparatus 200 in the present embodiment is the same as that of the MIMO communication apparatus 100 in the first embodiment shown in FIG. 1, corresponding elements are denoted by the same reference numerals as in FIG. Description is omitted.
  • the MIMO processing unit 160 when one user terminal is in the direction between the fixed beam 180-1 and the fixed beam 180-2, the MIMO processing unit 160 Then, MIMO transmission / reception wait processing is performed as follows. Specifically, the MIMO processing unit 160 is configured so that the same amount of components of the fixed beams 180-1 to 180-2 are included in the combined beam of the signal directed to one user terminal, and the fixed beam included in the combined beam. MIMO transmission / reception weight processing is performed so that the components 180-1 to 180-2 are larger than the components of the fixed beams 180-3 to 180-4.
  • the power supply network 220 in the present embodiment includes a network circuit unit 221 and a network circuit unit 222 as shown in FIG. Note that the network circuit unit 221 and the network circuit unit 222 synthesize and distribute signals so that different antenna weight processes are performed.
  • the power supply network 220 includes n switches 223-1 to 223-n on the communication circuits 130-1 to 130-n side.
  • the power feeding network 220 includes n switches 224-1 to 224-n on the array antenna 110 side.
  • the switches 223-1 to 223-n are switches that can switch the connection destinations of the communication circuits 130-1 to 130-n between the network circuit unit 221 and the network circuit unit 222.
  • the switches 224-1 to 224-n are switches that can switch the connection destination of the antenna elements 111-1 to 111-n between the network circuit unit 221 and the network circuit unit 222.
  • the network circuit unit 221 and the network circuit unit 222 are circuit networks that realize, for example, a Butler matrix, a Brass matrix, a Rotman lens, or the like.
  • the network circuit unit 221 distributes the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n
  • the network circuit unit 222 includes the communication circuit 130-1.
  • the direction in which the signal intensity of the fixed beam radiated from the array antenna 110 becomes stronger differs from the case where the signals input from .about.130-n are distributed to the antenna elements 111-1 to 111-n.
  • the signal intensity of the fixed beam emitted from the array antenna 110 when the network circuit unit 221 distributes the signal is increased, and the array antenna 110 radiates when the network circuit unit 222 distributes the signal. This is different from the direction in which the signal intensity of the fixed beam increases. This is because the signals are distributed so that antenna weight processing with different distribution ratios is performed in each of the network circuit unit 221 and the network circuit unit 222.
  • FIG. 14 shows four fixed radiated by the array antenna 110 when the network circuit unit 221 distributes the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n, respectively.
  • FIG. 6 is an explanatory diagram showing an example of signal intensity in each direction of beams 190-1 to 190-4.
  • FIG. 15 shows that the array antenna 110 radiates when the network circuit unit 222 distributes the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n, respectively.
  • FIG. 6 is an explanatory diagram showing an example of signal intensity for each direction of two fixed beams 190-1 to 190-4.
  • the signal intensity of the fixed beam 190-1 is shown by a solid line
  • the signal intensity of the fixed beam 190-2 is shown by a dotted line
  • the signal intensity of the fixed beam 190-3 is shown. It is indicated by a broken line
  • the signal intensity of the fixed beam 190-4 is indicated by a one-dot chain line.
  • the direction between the direction in which the signal intensity of the fixed beam 190-1 is the strongest and the direction in which the signal intensity of the fixed beam 190-4 is the strongest is a direction around ⁇ 60 °.
  • the direction in which the signal intensity of the fixed beam 190-1 is the strongest is the direction around ⁇ 60 °. Therefore, as can be seen from the examples shown in FIGS. 14 and 15, the network circuit unit 221 sends signals to the antenna elements 111-1 to 111-n in the direction in which the signal intensity of the fixed beam emitted from the array antenna 110 increases. The distribution is different from the case where the network circuit unit 222 distributes the signals to the antenna elements 111-1 to 111-n.
  • the power feeding network 220 controls the conduction direction of the switch 223 and the switch 224 in accordance with the direction in which the user terminal is present, and signals input from the communication circuits 130-1 to 130-n. It is determined which of the network circuit unit 221 and the network circuit unit 222 performs distribution to the antenna elements 111-1 to 111-n.
  • the power feeding network 220 when the user terminal is in the direction of ⁇ 60 °, the power feeding network 220 includes the switches 223-1 to 223-n and the switches 224-1 to 224-n.
  • the network circuit unit 222 distributes the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n. The reason is as follows.
  • the composite beam when the network circuit unit 221 is used, the composite beam includes the same amount of a plurality of fixed beam components (in this example, the fixed beam 190-1 component and the fixed beam 190-2 component). It is. Therefore, when an error occurs in the calibration process by the MIMO processing unit 160, a plurality of fixed beams having errors are overlapped at the same ratio, and thus the combined beam includes a large error. Therefore, the communication performance of the MIMO communication apparatus 200 decreases.
  • the power feeding network 220 causes the network circuit unit 222 to distribute the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n.
  • the MIMO communication apparatus 200 controls the conduction directions of the switches 223-1 to 223-n and the switches 224-1 to 224-n according to the direction in which the user terminal is present. . Then, the MIMO communication apparatus 200 determines whether the network circuit unit 221 or 222 distributes the signals input from the communication circuits 130-1 to 130-n to the antenna elements 111-1 to 111-n. decide. Therefore, according to the present embodiment, in addition to the same effects as those of the first embodiment, it is possible to prevent a decrease in communication performance regardless of the direction of the user terminal.
  • FIG. 16 is a block diagram illustrating a configuration example of the MIMO communication apparatus 300 according to the third embodiment.
  • the MIMO communication apparatus 300 is the first in that an array antenna 310 is included instead of the array antenna 110 and a power supply network 320 is included instead of the power supply network 120. This is different from the MIMO communication apparatus 100 in the embodiment.
  • the other configuration of the MIMO communication apparatus 300 in the present embodiment is the same as the configuration of the MIMO communication apparatus 100 in the first embodiment shown in FIG. 1, and therefore the corresponding elements are denoted by the same reference numerals as in FIG. Description is omitted.
  • FIG. 17 is a front view showing a configuration example of the array antenna 310.
  • the array antenna 310 includes m dual-polarized antennas 311-1 to 311-m and a conductor reflector 314.
  • Each of the two polarization antennas 311-1 to 311-m includes one antenna element 312 and one antenna element 313.
  • the antenna elements 312-1 to 312-m included in the two-polarization antennas 311-1 to 311-m respectively correspond to one polarization.
  • antenna elements 313-1 to 313-m included in the two polarized antennas 311-1 to 311-m respectively correspond to the other polarized wave.
  • the distance d between the two polarized antennas 311 adjacent to each other is equal to the wavelength ⁇ of the beam transmitted and received by the array antenna 310.
  • the two polarized antennas 311-1 to 311-m are installed on the conductor reflector 314 so as to be 1 ⁇ 2.
  • the power feeding network 320 includes a network circuit unit 321-1 and a network circuit unit 321-2.
  • the network circuit unit 321-1 may be provided with m input / output ports 322-1 to 322-m, which are input / output terminals, on the communication circuit 130-1 to 130-n side. Further, the network circuit unit 321-1 may be provided with m input / output ports 323-1 to 323-m as input / output terminals on the array antenna 310 side.
  • m input / output ports 324-1 to 324-m which are input / output terminals, may be provided on the communication circuits 130-1 to 130-n side.
  • the network circuit unit 321-2 may be provided with m input / output ports 325-1 to 325-m as input / output terminals on the array antenna 310 side.
  • the network circuit unit 321-1 is provided with input / output ports 322-1 to 322-m and input / output ports 323-1 to 323-m
  • the network circuit unit 321-2 is provided with input / output ports 324-1 to 324-1.
  • a case where 324-m and input / output ports 325-1 to 325-m are provided will be described as an example.
  • each of the input / output ports 322-1 to 322-m is connected to each of the m communication circuits 130 via the m signal lines.
  • the input / output ports 323-1 to 323-m are connected to the antenna elements 312-1 to 312-m included in the dual-polarized antennas 311-1 to 311-m via m signal lines. Is done.
  • Each of the input / output ports 324-1 to 324-m is connected to each of the other m communication circuits 130 via the other m signal lines.
  • the input / output ports 325-1 to 325-m are connected to the antenna elements 313-1 to 313-m included in the dual-polarized antennas 311-1 to 311-m via the other m signal lines 170, respectively. Connected.
  • the network circuit unit 321-1 When a signal is input from each of the m communication circuits 130 via the input / output ports 322-1 to 322-m, the network circuit unit 321-1 transmits each of the signals to the antenna elements 312-1 to 312-1. Input to each of 312-m. In addition, when a signal is input from each of the other m communication circuits 130 via the input / output ports 324-1 to 324-m, the network circuit unit 321-2 receives each of the signals as an antenna element. Input to each of 313-1 to 313-m.
  • the MIMO communication apparatus 300 can support two polarizations.
  • FIG. 18 is a front view showing another first example of the configuration of the array antenna 310.
  • each of the two polarization antennas 311-1 to 311-m may include an arbitrary number (i) of antenna elements 312 and antenna elements 313 as shown in FIG. Note that i is an arbitrary natural number.
  • FIG. 19 is a front view showing another second example of the configuration of the array antenna 310.
  • the antenna elements 312-1 to 312-m and the antenna elements 313-1 to 313-m may be different types of antenna elements.
  • each of the antenna elements 312-1 to 312-m may be a patch antenna
  • each of the antenna elements 313-1 to 313-m may be a monopole antenna.
  • the array antenna 310 may not include the two polarization antennas 311-1 to 311-m including the one antenna element 312 and the one antenna element 313.
  • the array antenna 310 may include an arbitrary number (j) of antenna elements 312-1 to 312-m and antenna elements 313-1 to 313-m. Note that j is an arbitrary natural number.
  • the array antenna 310 includes the same number of antenna elements 312 and 313, but it is not necessary to include the same number.
  • the array antenna 310 includes, for example, a antenna elements 312 and na antenna elements 313 (where a is an arbitrary natural number such that a ⁇ na). is there).
  • the network circuit section 321-1 is provided with a input / output ports on the communication circuits 130-1 to 130-n side.
  • the network circuit unit 321-1 is provided with a input / output ports on the array antenna 310 side.
  • the network circuit unit 321-2 is provided with na input / output ports on the communication circuits 130-1 to 130-n side.
  • the network circuit unit 321-2 is provided with na input / output ports on the array antenna 310 side.
  • the MIMO communication apparatus 300 can cope with three or more polarized waves. That is, the MIMO communication apparatus 300 can support a plurality of polarizations.
  • FIG. 20 is a block diagram illustrating a configuration example of the MIMO communication apparatus 400 according to the fourth embodiment.
  • the MIMO communication apparatus 400 according to the fourth embodiment includes an array antenna 410 instead of the array antenna 110, and a MIMO communication apparatus according to the first embodiment in that a power supply network 420 is included instead of the power supply network 120. Different from 100.
  • the other configuration of the MIMO communication apparatus 400 in the present embodiment is the same as that of the MIMO communication apparatus 100 in the first embodiment shown in FIG. Description is omitted.
  • FIG. 21 is a front view showing a configuration example of the array antenna 410.
  • the antenna elements 411-1-1 to 411 -kL are arranged in parallel in the vertical and horizontal directions at predetermined intervals in a rectangular region.
  • k antenna elements 411 are arranged in the vertical direction and L antenna elements 411 are arranged in the horizontal direction. It is assumed that the area is longer in the horizontal direction than in the vertical direction.
  • the antenna element 411-1-1 is set so that the vertical distance d 1 and the horizontal distance d 2 between the adjacent antenna elements 411 are 1 ⁇ 2 of the wavelength ⁇ of the beam transmitted and received by the array antenna 410.
  • Each of ⁇ 411-kL is installed on the conductor reflector 412.
  • the power supply network 420 includes k network circuit units 421-1 to 421-k.
  • each of the network circuit units 421-1 to 421-k may be provided with L input / output ports on the side of the communication circuits 130-1-1 to 130-kL as input / output terminals.
  • each of the network circuit units 421-1 to 421-k may be provided with L input / output ports on the array antenna 410 side as input / output terminals.
  • Each of the network circuit units 421-1 to 421-k is a circuit network that realizes, for example, a Butler matrix, a Brass matrix, a Rotman lens, or the like.
  • L input / output ports are provided on the communication circuit 130-1-1 to 130-kL side of the network circuit units 421-1 to 421-k, respectively, and the network circuit units 421-1 to 421-k are provided.
  • An example in which L input / output ports are provided on the array antenna 410 side will be described.
  • the L input / output ports respectively provided on the communication circuit 130-1-1 to 130-kL side of the network circuit units 421-1 to 421-k are connected to the signal line.
  • Each of the communication circuits 130 corresponding to the L input / output ports is connected through 170-1-1 to 170-kL.
  • the network circuit unit 421-1 has a communication circuit 130-1-1, a communication circuit 130-1-2,..., A communication circuit 130-1 via L input / output ports. Connected to each of -L. Therefore, the network circuit unit 421-1 is connected to each of the communication circuits 130-1-p (p is one of natural numbers from 1 to L). Further, for example, the network circuit unit 421-2 includes the communication circuit 130-2-1, the communication circuit 130-2-2,..., And the communication circuit 130-2-L via L input / output ports. Connected to each. Therefore, the network circuit unit 421-2 is connected to each of the communication circuits 130-2-p.
  • the network circuit unit 421-k includes the communication circuit 130-k-1, the communication circuit 130-k-2,..., And the communication circuit 130-kL via L input / output ports. Connected to each. Therefore, the network circuit unit 421-k is connected to each of the communication circuits 130-kp.
  • the network circuit units 421-1 to 421-k are connected to the antenna elements 411 corresponding to the L input / output ports via L input / output ports, respectively.
  • the network circuit unit 421-1 includes the antenna element 411-1-1, antenna element 411-1-2,..., Antenna element 411-1 via L input / output ports. Connected to each of -L. Therefore, the network circuit unit 421-1 is connected to each of the antenna elements 411-1-q (q is a natural number from 1 to L). Further, for example, the network circuit unit 421-2 includes antenna elements 411-2-1, antenna elements 411-2-2,..., Antenna element 411-2-L via L input / output ports. Connected to each. Therefore, the network circuit unit 421-2 is connected to each of the antenna elements 411-2-q.
  • the network circuit unit 421-k includes antenna elements 411-k-1, antenna elements 411-k-2,..., Antenna elements 411-kL via L input / output ports. Connected to each. Therefore, the network circuit unit 421-k is connected to each of the antenna elements 411-kq.
  • a signal distributed by one network circuit unit 421 is input to each of the L antenna elements 411 arranged in parallel in the horizontal direction.
  • a signal distributed by the network circuit unit 421-1 is input to each of the antenna elements 411-1-1 to 411-1-L.
  • a signal distributed by the network circuit unit 421-2 is input to each of the L antenna elements 411-2-1 to 411-2-L.
  • a signal distributed by the network circuit unit 421-k is input to each of the antenna elements 411-k-1 to 411-kL.
  • each of the L antenna elements 411 arranged side by side radiates fixed beams having different radiation angles.
  • the fixed beams have different radiation angles in the horizontal direction, but the radiation angles in the vertical direction are the same.
  • a set of L antenna elements 411 referred to as subarray antennas
  • the fixed beams in the set of k fixed beams are the same if the network circuit units 421-1 to 421-k are the same network circuit unit.
  • each fixed beam in a set of k fixed beams is different if the network circuit units 421-1 to 421-k are different network circuit units.
  • the array antenna 410 has L or more fixed points whose lateral radiation angles are different from each other. Since the beam is emitted, the fixed beam can be emitted in a wider angle in the lateral direction.
  • a set of L antenna elements 411 arranged in parallel in the horizontal direction is arranged in parallel in the vertical direction.
  • signal distribution is performed at different distribution ratios as in the network circuit unit 221 and the network circuit unit 222 in the second embodiment. May be.
  • the vertical length and the horizontal length of the rectangular regions in which the antenna elements 411-1-1 to 411-kL are arranged in parallel on the conductor reflecting plate 412 are the same. May be.
  • FIG. 22 is a front view showing another first example of the configuration of the array antenna 410.
  • FIG. 23 is a front view showing another second example of the configuration of the array antenna 410.
  • each of the antenna elements 411-1-1 to 411 -kL may be configured to include a plurality of arbitrary sub-antenna elements as shown in FIG. 22 and FIG.
  • each of the antenna elements 411-1-1 to 411 -kL is composed of two antenna elements.
  • each of the antenna elements 411-1-1 to 411-kL is constituted by four antenna elements.
  • FIG. 24 is a front view showing another third example of the configuration of the array antenna 410.
  • the array antenna 410 may be configured as in the example shown in FIG. 24 in order to make the MIMO communication apparatus 400 compatible with two polarizations.
  • the power feeding network 420 is provided with L ′ input / output ports on each of the communication circuits 130-1-1 to 130-kL side and the array antenna 410 side.
  • k ′ network circuits corresponding to one polarization are included.
  • the power feeding network 420 is provided with L ′ input / output ports on each of the communication circuits 130-1-1 to 130-kL side and the array antenna 410 side, and corresponds to another polarized wave.
  • K ′ pieces of network circuits are included.
  • FIG. 25 is a block diagram illustrating a configuration example of the MIMO communication apparatus 500 according to the fifth embodiment.
  • the MIMO communication apparatus 500 in the fifth embodiment is different from the MIMO communication apparatus 400 in the fourth embodiment in that a power supply network 520 is included instead of the power supply network 420. Since the other configuration of the MIMO communication apparatus 500 in this embodiment is the same as that of the MIMO communication apparatus 400 in the fourth embodiment shown in FIG. 20, the same reference numerals as those in FIG. Description is omitted.
  • the power supply network 520 further includes L network circuit units 521-1 to 521-L in addition to the configuration of the power supply network 420 in the fourth embodiment.
  • the network circuit units 521-1 to 521-L are arranged between the network circuit units 421-1 to 421-k and the array antenna 410, and are connected to each other.
  • the network circuit unit 521-1 is connected to each of the antenna element 411-1-1, antenna element 411-2-1, ..., antenna element 411-k-1. Therefore, the network circuit unit 521-1 is connected to each of the antenna elements 411-r-1 (r is any natural number from 1 to k). Further, the network circuit unit 521-1 is connected to each of the network circuit units 421-1 to 421-k.
  • the network circuit unit 521-2 is connected to each of the antenna element 411-1-2, the antenna element 411-2-2, ..., and the antenna element 411-k-2. Therefore, the network circuit unit 521-2 is connected to each of the antenna elements 411-r-2. Further, the network circuit unit 521-2 is connected to each of the network circuit units 421-1 to 421-k.
  • the network circuit unit 521-L is connected to each of the antenna element 411-1-L, the antenna element 411-2-L,..., And the antenna element 411-kL. Therefore, the network circuit unit 521-L is connected to each of the antenna elements 411-rL. Further, the network circuit unit 521-L is connected to each of the network circuit units 421-1 to 421-k.
  • each of the signals distributed by the network circuit units 421-1 to 421-k is input to the network circuit units 521-1 to 521-L.
  • the network circuit units 521-1 to 521-L distribute the signals input to the network circuit units 421-1 to 421-k to the antenna elements 411-1-1 to 411-kL, respectively.
  • the network circuit unit 521-1 distributes the signal to each of the antenna elements 411-1-1 to 411-k-1.
  • the network circuit unit 521-2 distributes the signal to each of the antenna elements 411-1-2 to 411-k-2.
  • the network circuit unit 521-L distributes the signal to each of the antenna elements 411-1-1-L to 411-kL.
  • the horizontal radiation angles of the fixed beams radiated from the array antenna 410 become different. Further, the distribution of signals by the network circuit units 521-1 to 521-L makes the vertical radiation angles of the fixed beams radiated from the array antenna 410 different. More specifically, for example, the antenna elements 411-1-1, the antenna elements 411-1-2,... A fixed beam is emitted with different angles for each of the lateral and lateral directions.
  • the MIMO communication apparatus 500 can emit a fixed beam at a wide angle in the vertical direction and the horizontal direction.
  • the MIMO communication apparatus 500 can radiate more fixed beams than the MIMO communication apparatus 100 in the first embodiment. Therefore, it is possible to further prevent a decrease in communication performance.
  • each of the network circuit units 421-1 to 421-k and the network circuit units 521-1 to 521-L is the same as the network circuit unit 221 and the network circuit unit 222 of the second embodiment. , Signal distribution with different distribution ratios may be performed.
  • FIG. 26 is a block diagram illustrating a configuration example of the communication apparatus 600 according to the sixth embodiment.
  • the communication device 600 includes a power supply unit 610, a plurality of communication units 620, and a MIMO processing unit 630.
  • the power supply unit 610 corresponds to, for example, the power supply network 120 in the first embodiment shown in FIG.
  • Each of the plurality of communication units 620 corresponds to, for example, each of the communication circuits 130-1 to 130-n in the first embodiment shown in FIG.
  • the MIMO processing unit 630 corresponds to, for example, the MIMO processing unit 160 in the first embodiment illustrated in FIG.
  • the power feeding unit 610 distributes the input analog transmission signal to a plurality of antenna elements (not shown).
  • the power feeding unit 610 distributes analog received signals received and input by the plurality of antenna elements to the plurality of communication units 620.
  • Each of the plurality of communication units 620 mutually converts a digital signal and an analog signal.
  • the MIMO processing unit 630 inputs digital signals for transmission to the plurality of communication units 620 based on the MIMO communication method. In addition, the MIMO processing unit 630 performs processing on a digital signal based on an analog reception signal input by the plurality of communication units 620.
  • the plurality of communication units 620 input an analog transmission signal obtained by converting the digital signal for transmission input by the MIMO processing unit 630 into an analog signal to the power supply unit 610.
  • the plurality of communication units 620 convert the analog reception signals distributed and input by the power supply unit 610 into digital signals based on the analog reception signals. Then, the plurality of communication units 620 input the digital signal to the MIMO processing unit 630.
  • the power supply unit 610 distributes analog signals based on the same number of analog reception signals as the plurality of communication units 620 to the plurality of communication units 620.
  • the power feeding unit 610 distributes the same number of analog transmission signals as the plurality of communication units 620 to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference from each other are radiated.
  • FIG. 27 is a flowchart illustrating an operation example of the communication apparatus 600.
  • the MIMO processing unit 630 inputs digital signals for transmission to the plurality of communication units 620 based on the MIMO communication method (step S601).
  • the plurality of communication units 620 convert the digital signal for transmission input by the MIMO processing unit 630 into an analog transmission signal. Each of the plurality of communication units 620 inputs the transmission signal to the power feeding unit 610 (step S602).
  • the power feeding unit 610 distributes the same number of analog transmission signals as the plurality of communication units 620 to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference from each other are radiated (step S603).
  • the plurality of antenna elements radiate a beam based on the transmission signal.
  • FIG. 28 is a flowchart showing another operation example of the communication apparatus 600.
  • the power feeding unit 610 distributes the analog reception signals received and input by the plurality of antenna elements to the plurality of communication units 620 (step S701).
  • the plurality of communication units 620 convert the analog reception signals distributed and input by the power supply unit 610 into digital signals based on the analog reception signals. Then, the plurality of communication units 620 input the digital signal to the MIMO processing unit 630 (step S702).
  • the MIMO processing unit 630 performs processing on the digital signals input to the plurality of communication units 620 (step S703).
  • the same number of analog transmission signals as the plurality of communication units 620 are distributed to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference are radiated from each other.
  • the plurality of antenna elements radiate a beam based on the transmission signal. Therefore, for example, even when an error occurs in the calibration process performed by the communication apparatus 600 to emit a beam toward the terminal of the communication partner, the communication performance of the communication apparatus 600 is reduced due to the error. Minimized.
  • a plurality of communication means for mutually converting digital signals and analog signals; Power supply means for distributing an input analog transmission signal to a plurality of antenna elements, and distributing an analog reception signal received and input by the plurality of antenna elements to the plurality of communication means; MIMO processing means for inputting a digital signal for transmission to the plurality of communication means based on a MIMO communication system, and processing the digital signal based on the analog reception signal input by the plurality of communication means,
  • the plurality of communication means include The analog transmission signal obtained by converting the digital signal for transmission input by the MIMO processing means into an analog signal is input to the power supply means, The analog reception signal distributed and input by the power supply means is converted into a digital signal based on the analog reception signal and input to the MIMO processing means,
  • the power supply means is Distributing analog signals based on the same number of analog reception signals as the plurality of communication means to the plurality of communication
  • Appendix 3 The communication apparatus according to appendix 1 or appendix 2, including the plurality of antenna elements.
  • Appendix 4 The communication device according to attachment 3, wherein the plurality of antenna elements are arranged so as to have a predetermined interval therebetween.
  • Appendix 5 The communication device according to attachment 3 or attachment 4, wherein each of the plurality of antenna elements includes a plurality of sub-antenna elements.
  • the plurality of sub-antenna elements correspond to different types of polarized waves, The communication apparatus according to appendix 5, including a plurality of types of the power feeding means corresponding to each of the plurality of types of polarized waves.
  • the plurality of antenna elements are juxtaposed in a horizontal direction and a vertical direction in a rectangular region, The communication device according to any one of appendix 3 to appendix 6, wherein each of the subarray antennas is configured by a series of the plurality of antenna elements arranged in parallel in the horizontal direction or the vertical direction.
  • a plurality of communication means for mutually converting digital signals and analog signals; Power supply means for distributing an input analog transmission signal to a plurality of antenna elements, and distributing an analog reception signal received and input by the plurality of antenna elements to the plurality of communication means; MIMO processing means for inputting a digital signal for transmission to the plurality of communication means based on a MIMO communication system, and processing the digital signal based on the analog reception signal input by the plurality of communication means,
  • the plurality of communication means include The analog transmission signal obtained by converting the digital signal for transmission input by the MIMO processing means into an analog signal is input to the power supply means, The analog reception signal distributed and input by the power supply means is converted into a digital signal based on the analog reception signal and input to the MIMO processing means,
  • the power supply means is Distributing analog signals based on the same number of analog reception signals as the plurality of communication means to the plurality of communication means; A communication terminal that communicates with a communication device, wherein the analog transmission signals are distributed to the plurality of antenna elements in
  • a plurality of communication steps for mutually converting digital and analog signals A power feeding step of distributing an input analog transmission signal to a plurality of antenna elements, and distributing an analog reception signal received and input by the plurality of antenna elements to a plurality of communication means for executing the plurality of communication steps; , A MIMO processing step of inputting a digital signal for transmission to the plurality of communication means based on a MIMO communication method, and processing the digital signal based on the analog reception signal input by the plurality of communication means;
  • An analog signal based on the analog reception signal distributed and inputted by the power supply means is converted into a digital signal based on the analog reception signal and input to the MIMO processing means for executing the MIMO processing step,
  • a plurality of communication processes for mutually converting digital signals and analog signals On the computer, A plurality of communication processes for mutually converting digital signals and analog signals; A MIMO that inputs a digital signal for transmission to a plurality of communication means that executes the plurality of communication processes and processes a digital signal based on an analog received signal that is input by the plurality of communication means based on a MIMO communication system Process and In the plurality of communication processes, The power supply means for distributing the input analog transmission signal to a plurality of antenna elements, and distributing the analog reception signal received and input by the plurality of antenna elements to the plurality of communication means.
  • the power supply means is Distributing analog signals based on the same number of analog reception signals as the plurality of communication means to the plurality of communication means; A communication program for distributing the same number of analog transmission signals as the plurality of communication means to the plurality of antenna elements so that electromagnetic waves having a predetermined phase difference from each other are radiated.
  • MIMO communication apparatus 110 array antenna 111-1 to 111-n antenna element 112-1 to 112-n antenna port 113 conductor reflector 114-1 to 114-n sub antenna element 115-1 to 115-n ′ antenna element 116 Sub-feed network 117-1 to 117-n Antenna port 120 Feed network 121-1 to 121-n Input / output port 122-1 to 122-n Input / output port 123 Network circuit unit 130-1 to 130-n Communication circuit 140 Calibration Network 141-1 to 141-n coupler 150 communication circuit 160 for calibration 160 MIMO processing unit 161 calibration processing unit 162 BB processing units 170-1 to 170-n signal lines 180-1 to 180-4 fixed beam 190-1 ⁇ 190- Fixed beam 200 MIMO communication device 220 Power supply network 221 Network circuit unit 222 Network circuit unit 223-1 to 223-n Switch 224-1 to 224-n Switch 225-1 to 225-n Input / output ports 226-1 to 226-n Input / output ports 227-1 to 227-n

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

[課題] 通信性能の低下を防ぐことができる通信装置、通信端末、および通信装置の制御方法を提供する。 [解決手段] 通信装置600は、給電部610と、複数の通信部620と、MIMO処理部630とを含む。複数の通信部620は、MIMO処理部630が入力した送信用のデジタル信号をアナログ信号に変換したアナログの送信信号を給電部610に入力し、給電部610により分配されて入力されたアナログの受信信号を、アナログの受信信号に基づくデジタル信号に変換してMIMO処理部630に入力する。給電部610は、複数の通信部620と同数のアナログの受信信号に基づくアナログ信号を、複数の通信部620に分配し、互いが所定の位相差である電磁波が放射されるように、複数のアンテナ素子に複数の通信部620と同数のアナログの送信信号を分配する。

Description

通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体
 本発明は、通信装置、通信端末、通信方法、および通信用プログラムに関する。
 通信の高速化のために、同一帯域において複数のアンテナを用いて、基地局と一のユーザ端末との間の通信を確立するMIMO(Multiple Input Multiple Output)が、広く使われている。また、間隔を空けて配列された複数のアンテナ素子を有するアレイアンテナを用いるビームフォーミングが、広く使われている。そして、更なる通信の高速化のために、同一帯域において複数のアンテナを用いて、基地局と複数のユーザ端末との間の通信を確立するMU-MIMO(Multi User-MIMO)の利用が検討されている。なお、モバイル基地局等の通信装置に関しては、MIMOとビームフォーミングとを行うことで各ユーザ端末に送信する信号を互いに分離し、MU-MIMOを実現する方法が検討されている。
 特許文献1には、送信側に白色化フィルタを適用して下り回線における同一セル内の干渉を抑制するMIMO技術等を用いた無線伝送システムが開示されている。
 図29は、本発明に関連するMIMO通信装置900の構成例を示すブロック図である。図29に示すように、MIMO通信装置900は、n個のアンテナ素子911-1~911-nが含まれるアレイアンテナ910と、n個の通信回路930-1~930-nと、キャリブレーションネットワーク940と、キャリブレーション用通信回路950と、MIMO処理部960とを含む。そして、MIMO通信装置900は、MU-MIMOで通信可能な通信装置である。
 なお、MIMO通信装置900において、アレイアンテナ910と通信回路930-1~930-nとの間、および通信回路930-1~930-nとMIMO処理部960との間は、それぞれn本の信号線970-1~970-nを介して互いに接続されている。また、キャリブレーションネットワーク940は、n個のカプラ941-1~941-nを介して、アレイアンテナ910と通信回路930-1~930-nとの間の信号線970-1~970-nのそれぞれに接続されている。そして、キャリブレーションネットワーク940は、キャリブレーション用通信回路950にも接続されている。MIMO処理部960は、通信回路930-1~930-nと、キャリブレーション用通信回路950とに接続されている。また、通信回路930-1~930-nのそれぞれが、アレイアンテナ910に含まれるn個のアンテナ素子911-1~911-nのそれぞれに接続されている。
 MIMO処理部960は、ウェイト行列を算出する後述するMIMO送受信ウェイト処理を行う。また、MIMO処理部960は、補正係数を算出する後述するキャリブレーション処理を行う。通信回路930-1~930-nのそれぞれは、アレイアンテナ910に含まれるアンテナ素子911-1~911-nのそれぞれに信号を入力する。アンテナ素子911-1~911-nのそれぞれは、当該信号を指向性を有する電磁波に変換して、放射する。そして、アンテナ素子911-1~911-nのそれぞれから放射された電磁波は、受信側で受信される。具体的には、例えば、通信回路930-1~930-nからアンテナ素子911-1~911-nに入力された信号のそれぞれは、アンテナ素子911-1~911-nのそれぞれによって、電磁波に変換され放射される。そして、当該電磁波のそれぞれは、互いに重なり合って、各ユーザ端末に向けた信号ごとに、強度が最も強くなる方向が互いに異なるビームとなり、受信側で受信される。
 MIMO処理部960は、MIMO通信装置900が信号受信時に推定する受信情報に基づき、ウェイト行列を決定する。そして、MIMO処理部960は、通信回路930-1~930-nのそれぞれがアンテナ素子911-1~911-nに入力する信号のそれぞれに、当該ウェイト行列を乗算する。なお、受信情報とは、MIMO通信装置900からユーザ端末への伝搬路の振幅および位相の変動量で構成される行列である。
 また、MIMO処理部960は、前述のように信号に乗算される補正係数を算出するキャリブレーション処理を行う。具体的には、例えば、MIMO処理部960は、通信回路930-i(iは、1以上であってn以下の自然数)に、キャリブレーションネットワーク940を介してキャリブレーション用通信回路950へ参照信号xを入力させる。また、MIMO処理部960は、キャリブレーション用通信回路950に、キャリブレーションネットワーク940を介して通信回路930-i(iは、1以上であってn以下の自然数)へ参照信号xを入力させる。ここで、通信回路930-iおよびキャリブレーション用通信回路950では、信号を受信する処理と送信する処理とが別個に行われている。よって、通信回路930-iとアンテナ素子911-iとの間の信号路では、送信信号と受信信号との間に可逆性が成立しない。そこで、MIMO処理部960は、前述のように通信回路930-iおよびキャリブレーション用通信回路950に入力された参照信号xに基づき、通信回路930-iとアンテナ素子911-iとの間の信号路における送信信号と受信信号との間に可逆性を成立させる補正係数を算出する。そして、MIMO処理部960は、前述のようにウェイト行列を乗算した信号のそれぞれに、当該補正係数を乗算する。また、通信回路930-1~930-nのそれぞれは、アンテナ素子911-1~911-nに、補正係数を乗算した信号のそれぞれを入力する。
 ここで、MIMO処理部960が行うキャリブレーション処理に誤差が生じる場合がある。その場合には、通信回路930-1~930-nによって入力される信号のそれぞれが適切な信号ではなくなるので、アンテナ素子911-1~911-nのそれぞれが放射した電磁波に基づくビームの形状が劣化する。したがって、各ユーザ端末が、他のユーザ端末に向けられたビームをより多く受信してしまうので、MU-MIMOによる通信の性能が悪化してしまう。
 なお、MIMO通信装置900が、それぞれが異なる方向にあるユーザ端末にビームにより信号を送信する場合に、MIMO処理部960がZF(Zero Forcing)処理によりウェイト行列を決定するときには、ウェイト行列は次のように決定される。すなわち、ウェイト行列は、一のユーザ端末に送信されるビームと他のユーザ端末に送信されるビームとが互いに干渉しないように決定される。すなわち、ウェイト行列は、複数のユーザ端末に送信する複数のビームのそれぞれについて、例えば、見通し環境においては、他のユーザ端末の方向にヌル点(ビームの強度が0になる点)が形成されるように決定される。
特開2007-74318号公報
 図29に示す例におけるMIMO通信装置900では、通信回路930-1~930-nのそれぞれが、アレイアンテナ910におけるアンテナ素子911-1~911-nのそれぞれに接続されている。よって、通信回路930-1~930-nから出力されたそれぞれの信号がそれぞれ電磁波に変換され放射される。したがって、MIMO通信装置900の通信性能は、キャリブレーション処理の誤差の影響を大きく受ける。すると、互いに異なるアンテナ素子911-1~911-nが放射した電磁波に基づくビームについてのヌル点形成が正確に行えなくなってしまう。
 また、MU-MIMO等を用いたMIMO通信システムでは、通信性能の低下を防ぐために、複数のユーザ端末との間で同時に送受信するビームのそれぞれが、互いに干渉しないように適切に分離可能であることが求められている。
 しかし、特許文献1には、複数のユーザ端末との間で送受信するビームのそれぞれが互いに干渉しないように、特に、キャリブレーション処理の誤差による影響を緩和することについて、記載も示唆もなされていない。また、図29に示す例におけるMIMO通信装置900は、複数のユーザ端末との間で送受信するビームのそれぞれが互いに干渉しないように、特に、キャリブレーション処理の誤差による影響を緩和することが想定されていない。したがって、特許文献1に記載された無線伝送システム、および図29に示す例におけるMIMO通信装置900では、例えば、キャリブレーション処理に誤差が生じた場合に、通信性能が低下してしまう場合がある。
 そこで、本発明は、通信性能の低下を防ぐことができる通信装置、通信端末、および通信装置の制御方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様における通信装置は、デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、前記複数の通信手段は、前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、前記給電手段は、前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配することを特徴とする。
 上記目的を達成するために、本発明の一態様における通信端末は、デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、前記複数の通信手段は、前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、前記給電手段は、前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配することを特徴とする通信装置と通信する。
 上記目的を達成するために、本発明の一態様における通信装置の制御方法は、デジタル信号とアナログ信号とを相互に変換する複数の通信ステップと、入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信ステップを実行する複数の通信手段に分配する給電ステップと、MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理ステップとを含み、前記複数の通信ステップで、前記MIMO処理ステップで前記複数の通信手段に入力して前記送信用のデジタル信号がアナログ信号に変換された前記アナログの送信信号を前記給電ステップを実行する給電手段に入力し、前記給電手段により分配されて入力された前記アナログの受信信号に基づくアナログ信号を前記アナログの受信信号に基づくデジタル信号に変換して前記MIMO処理ステップを実行するMIMO処理手段に入力し、前記給電ステップで、前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配することを特徴とする。
 本発明によれば、通信性能の低下を防ぐことができる。
第1の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第1の実施形態におけるアレイアンテナの構成例を示す正面図である。 第1の実施形態におけるアレイアンテナの構成の他の第1の例を示す正面図である。 第1の実施形態におけるアレイアンテナの構成の他の第2の例を示す正面図である。 第1の実施形態におけるアレイアンテナの構成の他の第3の例を示す構成図である。 第1の実施形態におけるアレイアンテナと、給電ネットワークと、通信回路とのの接続例を示す構成図である。 第1の実施形態における固定ビームの各方向における信号強度の例を示す説明図の一例である。 第1の実施形態におけるMIMO通信装置の動作例を示すフローチャートである。 第1の実施形態におけるMIMO通信装置の構成の他の第1の例を示すブロック図である。 第1の実施形態におけるMIMO通信装置の構成の他の第2の例を示すブロック図である。 第1の実施形態におけるMIMO通信装置の構成の他の第3の例を示すブロック図である。 第1の実施形態におけるMIMO通信装置の構成の他の第4の例を示すブロック図である。 第2の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第2の実施形態における固定ビームの各方向における信号強度の例を示す説明図である。 第2の実施形態における固定ビームの各方向における信号強度の他の例を示す説明図である。 第3の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第3の実施形態におけるアレイアンテナの構成例を示す正面図である。 第3の実施形態におけるアレイアンテナの構成の他の第1の例を示す正面図である。 第3の実施形態におけるアレイアンテナの構成の他の第2の例を示す正面図である。 第4の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第4の実施形態におけるアレイアンテナの構成例を示す正面図である。 第4の実施形態におけるアレイアンテナの構成の他の第1の例を示す正面図である。 第4の実施形態におけるアレイアンテナの構成の他の第2の例を示す正面図である。 第4の実施形態におけるアレイアンテナの構成の他の第3の例を示す正面図である。 第5の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第6の実施形態におけるMIMO通信装置の構成例を示すブロック図である。 第6の実施形態におけるMIMO通信装置の動作例を示すフローチャートである。 第6の実施形態におけるMIMO通信装置の他の動作例を示すフローチャートである。 関連するMIMO通信装置の構成例を示すブロック図である。
 (第1の実施形態)
 第1の実施形態について図面を参照して説明する。
 図1は、本実施形態におけるMIMO通信装置100の構成例を示すブロック図である。図1に示す例では、MIMO通信装置100は、給電ネットワーク120と、n個の通信回路130-1~130-nと、キャリブレーションネットワーク140と、キャリブレーション用通信回路150と、MIMO処理部160とを含む。そして、給電ネットワーク120には、アレイアンテナ110が接続されている。なお、アレイアンテナ110は、MIMO通信装置100の内部に設置されてもよいし、外部に設置されてもよい。
 ここで、MIMO通信装置100は、MU-MIMOで通信可能な通信装置である。なお、MIMO通信装置100において、アレイアンテナ110と給電ネットワーク120との間、給電ネットワーク120と通信回路130-1~130-nとの間、および通信回路130-1~130-nとMIMO処理部160との間は、それぞれn本の信号線170-1~170-nを介して互いに接続されている。
 また、キャリブレーションネットワーク140は、n個のカプラ141-1~141-nを介して、給電ネットワーク120と通信回路130-1~130-nとの間の信号線170-1~170-nのそれぞれに接続されている。
 アレイアンテナ110には、n個のアンテナ素子111-1~111-nが含まれる。なお、アレイアンテナ110には、入出力端子としてn個のアンテナポート112-1~112-nが設けられてもよい。以降の説明では、アレイアンテナ110にアンテナポート112-1~112-nが設けられた場合を例に説明する。そのような構成の場合には、アンテナ素子111-1~111-nのそれぞれは、アンテナポート112-1~112-nのそれぞれに接続される。
 給電ネットワーク120には、ネットワーク回路部123が含まれる。なお、給電ネットワーク120には、入出力端子として通信回路130-1~130-n側にn個の入出力ポート121-1~121-nと、アレイアンテナ110側にn個の入出力ポート122-1~122-nとが設けられてもよい。以降の説明では、給電ネットワーク120に入出力ポート121-1~121-nと、入出力ポート122-1~122-nとが設けられる場合を例に説明する。そのような構成の場合には、入出力ポート121-1~121-nのそれぞれと通信回路130-1~130-nのそれぞれとは、信号線170-1~170-nを介して接続される。また、入出力ポート122-1~122-nのそれぞれとアレイアンテナ110におけるアンテナポート112-1~112-nのそれぞれとは、信号線170-1~170-nを介して接続される。そして、そのように接続されることによって、アレイアンテナ110と給電ネットワーク120との間、および給電ネットワーク120と通信回路130-1~130-nとの間での各種信号の送受信が可能になる。
 以降の説明では、アレイアンテナ110に含まれるn個のアンテナ素子111-1~111-nの各々を区別して説明する必要がない場合には、アンテナ素子111-1~111-nをアンテナ素子111と総称する場合がある。また、以降の説明では、アレイアンテナ110に設けられるn個のアンテナポート112-1~112-nの各々を区別して説明する必要がない場合には、アンテナポート112-1~112-nをアンテナポート112と総称する場合がある。また、以降の説明では、給電ネットワーク120に設けられるn個の入出力ポート121-1~121-nの各々を区別して説明する必要がない場合には、入出力ポート121-1~121-nを入出力ポート121と総称する場合がある。また、以降の説明では、給電ネットワーク120に設けられるn個の入出力ポート122-1~122-nの各々を区別して説明する必要がない場合には、入出力ポート122-1~122-nを入出力ポート122と総称する場合がある。また、以降の説明では、n個の通信回路130-1~130-nの各々を区別して説明する必要がない場合には、通信回路130-1~130-nを通信回路130と総称する場合がある。また、以降の説明では、n個のカプラ141-1~141-nの各々を区別して説明する必要がない場合には、カプラ141-1~141-nをカプラ141と総称する場合がある。また、以降の説明では、n本の信号線170-1~170-nの各々を区別して説明する必要がない場合には、信号線170-1~170-nを信号線170と総称する場合がある。
 図2は、アレイアンテナ110の構成例を示す正面図である。図2に示す例では、アレイアンテナ110には、アンテナ素子111-1~111-nと、導体反射板113とが含まれる。ここで、互いに隣り合うアンテナ素子111の間(例えば、アンテナ素子111-1とアンテナ素子111-2との間)の距離dが、アレイアンテナ110が送受信するビームの波長λの1/2になるように、アンテナ素子111-1~111-nの各々は導体反射板113に設置される。そのような構成により、アンテナ素子111-1~111-nにおいて電磁界結合が生じるほど、互いに隣り合うアンテナ素子111の間の距離dが近くないので、アレイアンテナ110を用いてビームフォーミングを行う場合に、電磁界結合に起因するアンテナの性能の劣化を防ぐことができる。また、グレーティングローブの影響が生じるほど、互いに隣り合うアンテナ素子111の間の距離dが遠くないので、アレイアンテナ110を用いてビームフォーミングを行う場合、グレーティングローブの影響を抑制することができる。なお、アンテナ素子111-1~111-nは、ダイポールアンテナや、パッチアンテナ、モノポールアンテナ等、電磁波を送受信可能なアンテナ素子であればその種類は限定されない。
 図3は、アレイアンテナ110の構成の他の第1の例を示す正面図である。図3に示す例のように、アンテナ素子111-1~111-nには、それぞれに任意の数のサブアンテナ素子114-1~114-mが含まれていてもよい(なお、mは、m=nであってもよいし、m≠nであってもよい)。ここで、図3に示す例において、後述するように通信回路130が出力した信号のサブアンテナ素子114-1~114-mそれぞれへの分配の方法は、同位相同パワー分配等、特に限定されない。図4は、アレイアンテナ110の構成の他の第2の例を示す正面図である。ここで、アンテナ素子111-1~111-nは、図3に示すようにサブアンテナ素子114-1~114-mが水平面に対して垂直方向に並設されて縦長状に形成されてもよいし、図4に示すようにサブアンテナ素子114-1~114-mが水平方向に並設されて横長状に形成されてもよい。
 図5は、アレイアンテナ110の構成の他の第3の例を示す構成図である。図5に示す例のように、アレイアンテナ110には、n´個のアンテナ素子115-1~115-n´と、サブ給電ネットワーク116とが含まれていてもよい。そして、サブ給電ネットワーク116には、通信回路130-1~130-nのそれぞれから給電ネットワーク120を介して信号が入力されるn個のアンテナポート117-1~117―nが設けられてもよい。ここで、アンテナ素子115-1~115-n´とサブ給電ネットワーク116とは互いに接続されている。サブ給電ネットワーク116は、アンテナポート117-1~117―nのそれぞれに信号が入力された場合に、当該信号のそれぞれを互いに重畳してアンテナ素子115-1~115-n´のそれぞれに分配する。なお、図5に示す例では、サブ給電ネットワーク116に設けられるアンテナポート117-1~117-nが、アンテナ素子115-1~115-n´のアンテナポートに相当する。また、図5に示す例では、アンテナ素子111-1~111-nのそれぞれは、アンテナ素子115-1~115-n´をサブアンテナ素子として共有するように構成されている。そして、n´は、n´=nであってもよいし、n´≠nであってもよい。
 通信回路130-1~130-nのそれぞれは、入力されたアナログ信号をデジタル信号に変換したり、入力されたデジタル信号をアナログ信号に変換したりする。例えば、通信回路130-1~130-nのそれぞれは、MIMO処理部160から入力されたデジタル信号をアナログ信号に変換し、当該アナログ信号を、キャリブレーションネットワーク140を介してキャリブレーション用通信回路150に入力する。また、例えば、通信回路130-1~130-nのそれぞれは、給電ネットワーク120から入力されたアナログ信号をデジタル信号に変換し、当該デジタル信号をMIMO処理部160に入力する。
 なお、例えば、通信回路130-1~130-nのそれぞれには、RF(Radio Frequency)フロントエンドや、A-D(Analog to Digital)変換器等が含まれる。RFフロントエンドは、例えば、SAW(Surface Acoustic Wave)フィルタ等のフィルタや、RF(Radio Frequency)スイッチ等のスイッチ、MIMO通信装置100が送受信する信号を増幅する増幅回路等が含まれる電気回路である。
 キャリブレーションネットワーク140は、n個のカプラ141-1~141-nを介して、給電ネットワーク120と通信回路130との間の信号線170-1~170-nのそれぞれに接続される。また、キャリブレーションネットワーク140は、キャリブレーション用通信回路150にも接続される。そのような構成により、キャリブレーションネットワーク140は、後述するように、例えば、通信回路130-1~130-nとキャリブレーション用通信回路150との間の各種信号の送受信を中継する。
 キャリブレーション用通信回路150は、入力されたアナログ信号をデジタル信号に変換したり、入力されたデジタル信号をアナログ信号に変換したりする。例えば、キャリブレーション用通信回路150は、キャリブレーションネットワーク140を介して通信回路130-1~130-nから入力されたアナログ信号をデジタル信号に変換し、当該デジタル信号をMIMO処理部160に入力する。また、例えば、キャリブレーション用通信回路150は、MIMO処理部160から入力されたデジタル信号をアナログ信号に変換し、当該アナログ信号をキャリブレーションネットワーク140を介して、通信回路130-1~130-nに入力する。
 MIMO処理部160は、n個の通信回路130-1~130-nのそれぞれに接続される。また、MIMO処理部160は、キャリブレーション用通信回路150に接続される。そのような構成により、MIMO処理部160は、n個の通信回路130-1~130-nのそれぞれ、およびキャリブレーション用通信回路150との間でデジタル信号を送受信することができる。そして、MIMO処理部160は、当該デジタル信号を送受信して、MIMO送受信ウェイト処理と、キャリブレーション処理とを行う。なお、MIMO処理部160には、FPGA(Field Programmable Gate Array)等が含まれる。
 ここで、MIMO送受信ウェイト処理とは、MIMO処理部160がウェイト行列を算出する処理のことである。ここで、ウェイト行列とは、送信時に通信回路130-1~130-nがアンテナ素子111-1~111-nのそれぞれに入力する信号、および受信時に給電ネットワーク120によって通信回路130-1~130-nのそれぞれに分配された信号に、それぞれ乗算される行列である。具体的には、例えば受信時には、アレイアンテナ110が複数の通信電磁波を受信し、給電ネットワーク120によって通信回路130-1~130-nのそれぞれに当該複数の通信電磁波に基づく信号が分配された場合に、ウェイト行列は、分配後の信号のそれぞれに乗算される。
 MIMO送受信ウェイト処理の例についてより詳細に説明する。以降では、MIMO通信装置100が複数の電磁波を重ね合わせたビームを放射する場合のMIMO送受信ウェイト処理について説明する。また、[]内の文字はベクトルを表す。なお簡単のため、MIMO通信装置100が通信するユーザ端末の数と通信回路130の数とが互いに等しいとする。つまり、MIMO通信装置100が通信するユーザ端末の数と通信回路130-1~130-nの数とはいずれもnであるとする。また、以下の説明では、tは、transmitを意味する。また、rは、receiveを意味する。
 MIMO通信装置100では、アレイアンテナ110が、n個のユーザ端末のそれぞれから送信された予め決められた参照信号xi受信する。ここで、あるユーザ端末iから送信された参照信号xiに基づき、通信回路130-1~130-nのそれぞれに分配され入力される信号をまとめて[y]とすると、[y]=x×[h]と表される。よって、全ての上り方向(ユーザ端末1~nからMIMO通信装置100に向かう方向)の各チャネルに応じたチャネル行列である行列Hは、xが既知であるので、H={[h],[h],・・・,[h]}で求められる。
 なお、ユーザ端末1~nのそれぞれが送信した参照信号x~xの全てをまとめてベクトル[x]と表すと、通信回路130-1~130-nに分配され入力される信号y~yの全てをまとめてベクトル表記した[y]は、[y]=H[x]で表される。ここで、チャネルに可逆性があると仮定すると、全ての下り方向(MIMO通信装置100からユーザ端末1~nに向かう方向)の各チャネルに応じたチャネル行列である行列Hは、H= H (Tが付された行列は、転置行列である。また、Hは、上り方向のチャネル行列である。また、Hは、下り方向のチャネル行列である。)となる。なお、通信回路130-1~130-nのそれぞれから出力される全ての信号をまとめてベクトル[y]と表すと、ユーザ端末1~nのそれぞれが受信する信号がまとめられた[x]は、[x]=H×[y]で表される。
 ここで、ユーザ端末1~nのそれぞれに送信される情報の全てがまとめてベクトル[S]と表現された場合には、ベクトル[S]の要素が混ぜられた(例えば、各ユーザへ送信される信号にそれぞれ係数が乗算された上で加算された)信号が、通信回路130-1~130-nのそれぞれから出力される。ここで、[S]の要素の混ぜ方を表す行列が、ウェイト行列Wである。ビームフォーミングとは、通信回路130-1~130-nのそれぞれから出力される全ての信号[y]を、[y]=W[S]とすることである。そして、Wの各列のベクトル[w]が、ある一の信号si([S]の要素のうちの一つ)の各通信回路への分配および重みづけを表している。
 ここで、MIMO処理部160は、例えばZF処理によってウェイト行列を決定する場合に、次のような計算を行って、Wを算出する。すなわち、MIMO処理部160は、ムーアペンローズの逆行列の考え方に基づき、通信回路130の数がユーザ端末の数よりも多い場合には、W=H (H -1と算出する。また、MIMO処理部160は、通信回路130の数とユーザ端末の数とが同じである場合には、W=H -1と算出する。ここで、H は、Hの随伴行列を表す。また、H -1は、Hの逆行列を表す。
 ユーザ端末1~nのそれぞれにおいて受信される信号がまとめられた信号[x]は、[x]=H×[y]=H×W×[S]=H -1×[S]=[S]となる。よって、ユーザ端末1~nのそれぞれに送信された情報が、ユーザ端末1~nによって分離可能であることがわかる。
 なお、ZF処理以外にもウェイト行列を算出するアルゴリズムはあるが、ZF処理は処理が簡便であるという特徴を有する。
 キャリブレーション処理とは、補正係数を算出する処理をいう。ここで、補正係数は、ウェイト行列が乗算された信号のそれぞれに、MIMO処理部160によって乗算される。
 キャリブレーション処理の例について、より詳細に説明する。キャリブレーション処理では、例えば、MIMO処理部160は、通信回路130-i(iは、1以上であってn以下の自然数)に、キャリブレーションネットワーク140を介してキャリブレーション用通信回路150に参照信号xを入力させる。
 すると、キャリブレーション用通信回路150に入力された信号y(i-c)は、以下のように表される。
 y(i-c)=dt(i)×hdc(i)×cr×x・・・式(1)
 ここで、y(i-c)における(i-c)は、通信回路130-iからキャリブレーション用通信回路150に入力された信号であることを表す。また、dt(i)は、参照信号xが通信回路130-iから出力されたときに当該参照信号xに生じる信号の変化を示す係数である。hdc(i)は、通信回路130-iとキャリブレーション用通信回路150との間の信号路において生じる信号の変化を示す係数である。crは、キャリブレーション用通信回路150に入力された信号が、当該キャリブレーション用通信回路150によって受信されるときに生じる信号の変化を示す係数である。
 また、キャリブレーション処理で、例えば、MIMO処理部160は、キャリブレーション用通信回路150に、キャリブレーションネットワーク140を介して通信回路130-i(iは、1以上であってn以下の自然数)に参照信号xを入力させる。
 すると、通信回路130-iに入力された信号y(c-i)は、以下のように表される。
 y(c-i)=ct×hcd(i)×dr(i)×x・・・式(2)
 ここで、y(c-i)における(c-i)は、キャリブレーション用通信回路150から通信回路130-iに入力された信号であることを表す。ctは、参照信号xがキャリブレーション用通信回路150から出力されたときに当該参照信号xに生じる信号の変化を示す係数である。hcd(i)は、キャリブレーション用通信回路150と通信回路130-iとの間の信号路において生じる信号の変化を示す係数である。dr(i)は、通信回路130-iに入力された信号が、当該通信回路130-iによって受信されるときに生じる信号の変化を示す係数である。
 そして、MIMO処理部160は、前述した式(1)および式(2)に基づいて、補正係数を算出する。
 ここで、通信回路130-iとキャリブレーション用通信回路150との間の信号路では、送信信号と受信信号との間に可逆性が成立するので、hdc(i)=hcd(i)の関係式が成り立つ。しかし、通信回路130-iおよびキャリブレーション用通信回路150では、信号を受信する処理と送信する処理とが別個に行われているので、送信信号と受信信号との間に可逆性が成立しない。よって、dt(i)とdr(i)とは、dt(i)≠dr(i)となる。また、ctとcrとは、ct≠crとなる。
 なお、アレイアンテナ110が用いられて、通信相手と信号を送受信する場合にも、dt(i)≠dr(i)の関係式は成立する。具体的には、MIMO通信装置100は、複数のユーザ端末に信号を送信する場合に、送信先のユーザ端末から事前に送信された参照信号に基づき、上り方向のチャネルにおける各信号変化係数を推定する。また、MIMO通信装置100は、上り方向のチャネルと下り方向のチャネルとの間に可逆性が成り立つとして、上り方向のチャネルにおける各信号変化係数から下り方向のチャネルにおける各信号変化係数を求める。そして、MIMO通信装置100は、求めた下り方向のチャネルにおける各信号変化係数に基づいて、前述したMIMO送受信ウェイト処理を行う。しかし、前述したように、dt(i)≠dr(i)であるので、MIMO通信装置100がユーザ端末と送受信する信号に可逆性が成り立たない。そこで、MIMO通信装置100は、キャリブレーション処理を行って通信回路130-1~130-nに入力される信号を補正する。
 キャリブレーション処理は、前述のy(i-c)およびy(c-i)が用いられて行われる。具体的には、キャリブレーション処理は、y(c-i)に対するy(i-c)の比である、z(i)=y(c-i)/y(i-c)、すなわち、z(i)=(ct×dr(i))/(dt(i)×cr)が用いられて行われる。
 まず、通信回路130-1~130-nから参照される一の通信回路130が決定される。以降では、参照される通信回路130が、通信回路130-1であるとして説明する。次に補正係数cal(i)=z(i)/z(1)、すなわち、cal(i)=(dr(i)×dt(1))/(dt(i)×dr(1))が算出される。そして、MIMO送受信ウェイト処理が施された信号y(i)に当該補正係数cal(i)を乗算することで、各通信回路130から出力される信号y´(i)は、y´(i)=cal(i)×y(i)となる。以上のように、通信回路130の各送受信間の信号比を、参照される一の通信回路130の送受信間の信号比と一致させ、通信回路130間の相対的なズレがなくなるように、キャリブレーション処理が行われる。なお、以降の説明では、ウェイト行列および補正係数が乗算された信号をキャリブレーション処理後の信号という場合がある。
 ウェイト処理及びキャリブレーション処理後の信号は、通信回路130-1~130-nのそれぞれから、給電ネットワーク120に設けられた入出力ポート121-1~121-nのそれぞれを介してネットワーク回路部123に入力される。また、ネットワーク回路部123においては、入力された信号のそれぞれに対して、デジタル処理が含まれない離散フーリエ変換または逆変換処理が行われることに相当する分配がなされる。そして、ネットワーク回路部123は、アレイアンテナ110に含まれるアンテナ素子111-1~111-nのそれぞれに、給電ネットワーク120に設けられた入出力ポート122-1~122-nのそれぞれを介して、前述のように分配された信号を伝達する。具体的には、例えば、ネットワーク回路部123は、アンテナ素子111-1~111-nのそれぞれに、第1の入出力ポート121-1を介して入力された信号を、ある定まった位相関係かつ同様な出力レベルの信号になるように分配する。また、例えば、ネットワーク回路部123は、アンテナ素子111-1~111-nのそれぞれに、第1の入出力ポート121-2を介して入力された信号を、別のある定まった位相関係かつ同様な出力レベルの信号になるように分配する。なお、ネットワーク回路部123は、第1の入出力ポート121-3~121-nを介して入力された信号についても、同様にアンテナ素子111-1~111-nのそれぞれに分配する。ここで、入出力ポート121-aを介して入力された信号が各入出力ポート122-1~122-nに出力された際の、隣り合う各入出力ポート122-1~122-nにおける信号の位相差δaは、入出力ポート121-bを介して入力された信号が各入出力ポート122-1~122-nに出力された際の、隣り合う各入出力ポート122-1~122-nにおける信号の位相差δbと異なる。なお、aおよびbは、互いに異なるn以下の任意の自然数である。なお、ネットワーク回路部123は、例えば、バトラーマトリックスや、ブラスマトリックス、ロットマンレンズ等を実現する回路網である。
 図6は、アレイアンテナ110と、給電ネットワーク120と、通信回路130との接続例を示す構成図である。図6に示す例では、4個のアンテナ素子111-1~111-4が含まれるアレイアンテナ110と、4個の通信回路130-1~130-4が接続された給電ネットワーク120とが互いに接続されている。
 図6に示す例では、ネットワーク回路部123は、アンテナ素子111-1~111-4のそれぞれに、給電ネットワーク120に設けられた4個の入出力ポート121-1~121-4を介して入力されたウェイト処理及びキャリブレーション処理後の信号を分配する。具体的には、例えば、ネットワーク回路部123は、入出力ポート121-1を介して通信回路130-1からウェイト処理及びキャリブレーション処理後の信号が入力された場合には、当該信号を、入出力ポート122-1~122-4を介してアンテナ素子111-1~111-4のそれぞれに分配する。また、例えば、ネットワーク回路部123は、入出力ポート121-2を介して通信回路130-2からウェイト処理及びキャリブレーション処理後の信号が入力された場合には、当該信号を、入出力ポート122-1~122-4を介してアンテナ素子111-1~111-4のそれぞれに分配する。そして、例えば、ネットワーク回路部123は、入出力ポート121-3を介して通信回路130-3からウェイト処理及びキャリブレーション処理後の信号が入力された場合には、当該信号を、入出力ポート122-1~122-4を介してアンテナ素子111-1~111-4のそれぞれに分配する。例えば、ネットワーク回路部123は、入出力ポート121-4を介して通信回路130-4からウェイト処理及びキャリブレーション処理後の信号が入力された場合には、当該信号を、入出力ポート122-1~122-4を介してアンテナ素子111-1~111-4のそれぞれに分配する。
 ネットワーク回路部123によって分配された信号のそれぞれは、アンテナ素子111-1~111-4から複数の電磁波として放射される。そして、当該複数の電磁波は、互いに重なり合ってビームになる。なお、ネットワーク回路部123の信号の分配によって、複数のビームが形成される場合がある。ここで、当該ビームのそれぞれは、ネットワーク回路部123の分配によるアンテナ素子間の信号の位相差が入出力ポート121-1~121-4のそれぞれで異なることから、異なる所定の方向の領域に強く放射される。なお、当該ビームのそれぞれが強く放射される方向は、ネットワーク回路部123における前述の分配が一定の比率で行われるので、一定である。ここで、ネットワーク回路部123による信号の分配によってアンテナ素子111-1~111-4から放射された電磁波が互いに重なり合い形成されたビームを固定ビームと呼称する。図6に示す例では、固定ビーム180-1~180-4に示す方向のそれぞれに、ビームが強く放射される。
 固定ビーム180-1は、通信回路130-1から出力されネットワーク回路部123によってアンテナ素子111-1~111-4に分配された信号のそれぞれに基づいて、アンテナ素子111-1~111-4から放射された電磁波が混合したビームである。また、固定ビーム180-2は、通信回路130-2から出力されネットワーク回路部123によってアンテナ素子111-1~111-4に分配された信号のそれぞれに基づいて、アンテナ素子111-1~111-4から放射された電磁波が混合したビームである。固定ビーム180-3は、通信回路130-3から出力されネットワーク回路部123によってアンテナ素子111-1~111-4に分配された信号のそれぞれに基づいて、アンテナ素子111-1~111-4から放射された電磁波が混合したビームである。固定ビーム180-4は、通信回路130-4から出力されネットワーク回路部123によってアンテナ素子111-1~111-4に分配された信号のそれぞれに基づいて、アンテナ素子111-1~111-4から放射された電磁波が混合したビームである。そして、固定ビーム180-1~180-4は、MIMO処理部160におけるウェイト処理により、さらに互いに重なり合って、一の信号に対応して一の指向性を有する電磁波(以下、「合成ビーム」と記載する。)を形成し、一のユーザ端末によって受信される。
 なお、固定ビーム180-1~180-4それぞれの強く放射される方向における信号強度は、アレイアンテナ110においてアンテナ素子111-1~111-4が等間隔に設置されている場合に、最も強くなる。その理由は、アンテナ素子111-1~111-4から放射される電磁波が、各固定ビーム180-1~180-4の強く放射される方向それぞれにおいて、同様の位相で重なり合うからである。
 図7は、固定ビーム180-1~180-4の各方向における信号強度の例を示す説明図である。図7には、固定ビーム180-1の信号強度が実線で示され、固定ビーム180-2の信号強度が点線で示され、固定ビーム180-3の信号強度が破線で示され、固定ビーム180-4の信号強度が一点鎖線で示されている。なお、アレイアンテナ110におけるアンテナ素子111それぞれの間の距離dに応じて、各アンテナ素子111-1~111-4から放射される固定ビーム180-1~180-4それぞれの放射角度が適切に調整されていた場合には、図7に示すように、所定の指向角度において、一の固定ビームに対して他の固定ビームによる干渉がなくなる。具体的には、例えば、指向角度が-50°付近の方向では、固定ビーム180-1に対して固定ビーム180-2~180-4による干渉がなくなる。また、例えば、指向角度が-15°付近の方向では、固定ビーム180-2に対して固定ビーム180-1および180-3~180-4による干渉がなくなる。そして、例えば、指向角度が15°付近の方向では、固定ビーム180-3に対して固定ビーム180-1~180-2および180-4による干渉がなくなる。例えば、指向角度が50°付近の方向では、固定ビーム180-4に対して固定ビーム180-1~180-3による干渉がなくなる。
 ここで、例えば、一のユーザ端末が固定ビーム180-1の強度が強くなる方向(指向角度が-50°の方向)にある場合には、MIMO通信装置100では、一のユーザ端末に向けた信号に対応する合成ビームに含まれる固定ビーム180-1の成分が固定ビーム180-2~180-4の成分よりも多くなるように、送受信ウェイトがウェイト処理によって算出されることになる。具体的には、本例では、MIMO通信装置100は、一のユーザ端末に向けた信号の内、通信回路130-1から出力される信号の強度が、通信回路130-2~130-4から出力される信号の強度よりも強くなることになる。
 ここで、MIMO処理部160によるキャリブレーション処理に誤差が生じた場合には、通信回路130-1~130-nのそれぞれから出力されるキャリブレーション処理後の信号間に、相対的な誤差が生じる。ここで、図29に示す構成において、MIMO処理部160によるMIMO送受信ウェイト処理が行われた場合、一のユーザ端末に向けた信号のビームには、アンテナ素子910-1~アンテナ素子910-nから出される電磁波の成分が、ほぼ均等に含まれる。つまり、通信回路130-1~130-nのそれぞれから出力されるキャリブレーション処理の誤差による相対的な誤差が生じた複数の信号が、ほぼ同比率で重ね合わされるので、ビームには大きな誤差が生じる。なお、当該複数の信号のそれぞれは、一のユーザ端末に向けて出力された信号である。
 それに対して、本実施形態におけるMIMO通信装置100は、ウェイト処理の結果、一のユーザ端末に向けた信号に対応する合成ビームに、信号強度の強い方向が一のユーザ端末がある方向と合致する一の固定ビームの成分が他の固定ビームの成分よりも多く含まれるように構成されることになる。つまり、通信回路130-1~130-nそれぞれから出力される一のユーザ端末に向けた誤差を含む信号のうち、前述の一の固定ビームに対応する一の通信回路から出力された信号の強度が、他の通信回路から出力された信号の強度に比べて強くなる。よって、相対的な誤差を含む複数の固定ビームを同比率で重ね合わせる必要がなくなり、ほぼ単一の固定ビームにより一のユーザ端末と通信することになるので、キャリブレーション処理の誤差による相対的な信号間の誤差の影響は小さくなる。したがって、MIMO処理部160によるキャリブレーション処理で誤差が生じても、その影響を最小限にすることができる。
 なお、例えば、アレイアンテナ110が他の通信装置(図示せず)から通信電磁波を受信した場合には、当該通信電磁波に基づく信号が、ネットワーク回路部123によって給電ネットワーク120に設けられた入出力ポート121-1~121-nを介して、通信回路130-1~130-nのそれぞれに分配される。
 ここで、アレイアンテナ110および給電ネットワーク120におけるビームの送受信に関する前述の動作は、ネットワーク回路部123がアナログでパッシブに固定のアンテナウェイト処理を行っていることに相当する。ここで、アナログとは、デジタル処理がなされないことを意味する。また、パッシブとは、ネットワーク回路部123にアナログの増幅器等の能動素子が含まれていないことを意味する。固定とは、ネットワーク回路部123が信号の分配を行うときに、一定の分配比のアンテナウェイト処理をしていることを意味している。
 この給電ネットワーク120における信号の合成および分配は、通信回路130の数に相当するn個の信号に対するものである。このようなn個の信号に対する合成および分配と同等のデジタル信号処理は、通常、MIMO処理部160及びn個の通信回路130で行われる。それに対して、本発明においては、当該デジタル信号処理に相当する合成および分配が、給電ネットワーク120においてアナログ信号に対して行われる。そのような構成により、デジタル処理における誤差要因であるキャリブレーション処理における誤差による通信回路130間の相対誤差の影響を、合成ビームに含まれる誤差を含んだ各固定ビームの比率の違いにより少なくすることができる。
 次に、MIMO通信装置100の動作について、図面を参照して説明する。図8は、MIMO通信装置100が合成ビームをユーザ端末に送信するための処理を示すフローチャートである。
 MIMO処理部160は、キャリブレーション処理を行い、補正係数を算出する(ステップS101)。また、MIMO処理部160は、前述のようにウェイト行列を乗算した信号のそれぞれに、当該補正係数を乗算する(ステップS102)。そして、通信回路130-1~130-nのそれぞれは、補正係数を乗算した信号のそれぞれを、給電ネットワーク120に含まれるネットワーク回路部123に入力する(ステップS103)。
 ネットワーク回路部123では、通信回路130-1~130-nから入力された信号のそれぞれに、アンテナウェイト処理に相当する処理が行われる。そして、ネットワーク回路部123は、アンテナウェイト処理を行った信号のそれぞれを、アレイアンテナ110に含まれるアンテナ素子111-1~111-nのそれぞれに分配する(ステップS104)。
 すると、アンテナ素子111-1~111-nのそれぞれが、分配された信号に基づく固定ビームを放射する。当該固定ビームのそれぞれは、互いに重なり合って合成ビームを形成し、一のユーザ端末によって受信される。
 以上のように、本実施形態によれば、MIMO処理部160は、一のユーザ端末に向けた信号に対応する合成ビームに、信号強度の強い方向がユーザ端末がある方向に合致する一の固定ビームの成分が最も多く含まれるようウェイトを算出する。そして、MIMO処理部160は、通信回路130-1~130-nのそれぞれがアンテナ素子111-1~111-nに入力する信号のそれぞれに、当該ウェイトを乗算する。それによって、通信回路130-1~130-nの内、一の固定ビームに対応するある一つの通信回路から、一のユーザ端末に向けた信号が特に強く出力される。そのような構成により、MIMO処理部160によるキャリブレーション処理に誤差が生じた場合に、誤差の生じた複数の固定ビームが同比率で重なり合った合成ビームが形成されない。よって、MIMO処理部160によるキャリブレーション処理に誤差があっても、その影響を最小限にすることができる。
 したがって、本実施形態によれば、通信性能の低下を防ぐことができる。
 ここで、図9は、MIMO通信装置100の構成の他の第1の例を示すブロック図である。本実施形態において、MIMO通信装置100には、図9に示す例のように、MIMO処理部160の代わりに、キャリブレーション処理部161と、BB(BaseBand)処理部162とが含まれてもよい。なお、ここでは、MIMO通信装置100におけるBB処理部162を除く構成をアンテナ装置と呼ぶ。
 キャリブレーション処理部161は、キャリブレーション処理を行う。すなわち、キャリブレーション処理部161は、信号に乗算される補正係数を算出する。
 BB処理部162は、MIMO処理部160が行う処理のうちキャリブレーション処理以外の処理を行う。例えば、BB処理部162は、MIMO送受信ウェイト処理等を行う。
 なお、キャリブレーション処理部161とBB処理部162とがCPRI(Common Public Radio Interface)163等のインタフェースを介して互いに接続されて、BB処理部162がMIMO通信装置100の外部に設置されてもよい。そして、MIMO通信装置100に複数のアンテナ装置が含まれる場合には、各アンテナ装置に含まれるキャリブレーション処理部161のそれぞれと、BB処理部162とが互いに接続されてもよい。そのように構成された場合には、各アンテナ装置における各種処理がBB処理部162で行われるので、各アンテナ装置間の連携動作を容易に行うことができるようになる。
 図10は、MIMO通信装置100の構成の他の第2の例を示すブロック図である。本実施形態において、MIMO通信装置100は、通信回路130のそれぞれの性能の個体差が十分に小さい場合には、図10に示す例のように、キャリブレーションネットワーク140と、キャリブレーション用通信回路150とが含まれていなくてもよい。この場合には、ウェイト処理によって、通信回路130-1~130-nのうち、ある一のユーザ端末の方向に強く放射される一の固定ビームに対応した一の通信回路から、当該ある一のユーザ端末に向けた信号が特に強い強度で出力されることになるという前述の構成により、通信回路130間の性能個体差に起因するMIMO通信装置100の通信性能の低下も抑えることができる。
 図11は、MIMO通信装置100の構成の他の第3の例を示すブロック図である。本実施形態において、キャリブレーションネットワーク140は、図11に示すようにカプラ141を介して、アレイアンテナ110と給電ネットワーク120との間の信号線のそれぞれに接続されてもよい。
 図12は、MIMO通信装置100の構成の他の第4の例を示すブロック図である。本実施形態において、キャリブレーション用通信回路150は、図12に示すように、カプラ141を介して、アレイアンテナ110と給電ネットワーク120との間の信号線のそれぞれに接続されてもよい。
 (第2の実施形態)
 第2の実施形態のMIMO通信装置200について図面を参照して説明する。図13は、本実施形態におけるMIMO通信装置200の構成例を示すブロック図である。
 図13に示すように、第2の実施形態におけるMIMO通信装置200は、給電ネットワーク120の代わりに、給電ネットワーク220が含まれる点で、第1の実施形態におけるMIMO通信装置100と異なる。本実施形態におけるMIMO通信装置200のその他の構成は、図1に示す第1の実施形態におけるMIMO通信装置100の構成と同様であるので、対応する要素には図1と同じ符号を付して説明を省略する。
 ここで、図6に示す第1の実施形態の例において、例えば、一のユーザ端末が固定ビーム180-1と固定ビーム180-2との間の方向にある場合には、MIMO処理部160は、次のようにMIMO送受信ウェイト処理を行う。具体的には、MIMO処理部160は、一のユーザ端末に向けた信号の合成ビームに固定ビーム180-1~180-2の成分が同量含まれるように、且つ合成ビームに含まれる固定ビーム180-1~180-2の成分が固定ビーム180-3~180-4の成分よりも多くなるように、MIMO送受信ウェイト処理を行う。よって、キャリブレーション処理に誤差が生じた場合には、キャリブレーション処理の誤差によって誤差が生じた複数の固定ビーム(本例では、固定ビーム180-1および180-2)が同比率で重ね合わされる。したがって、合成ビームは、キャリブレーション処理の誤差の影響を受けてしまう。
 本実施形態における給電ネットワーク220には、図13に示すように、ネットワーク回路部221とネットワーク回路部222とが含まれる。なお、ネットワーク回路部221とネットワーク回路部222とにおいては、互いに異なるアンテナウェイト処理がなされるように、信号の合成および分配が行われる。また、給電ネットワーク220には、通信回路130-1~130-n側にn個のスイッチ223-1~223-nが含まれる。また、給電ネットワーク220には、アレイアンテナ110側にn個のスイッチ224-1~224-nが含まれる。スイッチ223-1~223-nは、通信回路130-1~130-nの接続先を、ネットワーク回路部221とネットワーク回路部222との間で相互に切り替え可能なスイッチである。スイッチ224-1~224-nは、アンテナ素子111-1~111-nの接続先を、ネットワーク回路部221とネットワーク回路部222との間で相互に切り替え可能なスイッチである。なお、ネットワーク回路部221およびネットワーク回路部222は、例えば、バトラーマトリックスや、ブラスマトリックス、ロットマンレンズ等を実現する回路網である。
 ここで、ネットワーク回路部221が通信回路130-1~130-nから入力された信号をアンテナ素子111-1~111-nのそれぞれに分配する場合と、ネットワーク回路部222が通信回路130-1~130-nから入力された信号をアンテナ素子111-1~111-nのそれぞれに分配する場合とで、アレイアンテナ110が放射する固定ビームの信号強度が強くなる方向が異なる。具体的には、ネットワーク回路部221が信号を分配した場合にアレイアンテナ110が放射する固定ビームの信号強度が強くなる方向と、ネットワーク回路部222が信号を分配した場合にアレイアンテナ110が放射する固定ビームの信号強度が強くなる方向とは異なる。その理由は、ネットワーク回路部221およびネットワーク回路部222のそれぞれにおいて、異なる分配比のアンテナウェイト処理がなされるように、信号が分配されるからである。
 図14は、ネットワーク回路部221が通信回路130-1~130-nから入力された信号をアンテナ素子111-1~111-nのそれぞれに分配した場合に、アレイアンテナ110が放射した4つの固定ビーム190-1~190-4の各方向に対する信号強度の例を示す説明図である。また、図15は、ネットワーク回路部222が通信回路130-1~130-nから入力された信号をアンテナ素子111-1~111-nのそれぞれに分配した場合に、アレイアンテナ110が放射した4つの固定ビーム190-1~190-4の各方向に対する信号強度の例を示す説明図である。ここで、図14および図15の説明図において、固定ビーム190-1の信号強度が実線で示され、固定ビーム190-2の信号強度が点線で示され、固定ビーム190-3の信号強度が破線で示され、固定ビーム190-4の信号強度が一点鎖線で示されている。
 図14に示す例では、固定ビーム190-1の信号強度が最も強い方向と固定ビーム190-4の信号強度が最も強い方向との間の方向が、-60°付近の方向になっている。それに対して、図15に示す例では、固定ビーム190-1の信号強度が最も強い方向が、-60°付近の方向になっている。よって、図14および図15に示す例からも分かるように、アレイアンテナ110が放射した固定ビームの信号強度が強くなる方向は、ネットワーク回路部221が信号をアンテナ素子111-1~111-nに分配した場合と、ネットワーク回路部222が信号をアンテナ素子111-1~111-n分配した場合とで異なる。
 そのような特性を利用して、給電ネットワーク220は、ユーザ端末がある方向に応じて、スイッチ223およびスイッチ224の導通方向を制御して、通信回路130-1~130-nから入力される信号のアンテナ素子111-1~111-nへの分配を、ネットワーク回路部221およびネットワーク回路部222のいずれで行うのかを決定する。
 ここで、図14および図15に示す例において、ユーザ端末が-60°の方向にある場合には、給電ネットワーク220は、スイッチ223-1~223-nおよびスイッチ224-1~224-nの導通方向を制御して、通信回路130-1~130-nから入力された信号のアンテナ素子111-1~111-nのそれぞれへの分配をネットワーク回路部222に行わせる。その理由は、次の通りである。
 本例において、ネットワーク回路部221を用いる場合には、合成ビームには、複数の固定ビームの成分(本例では、固定ビーム190-1の成分および固定ビーム190-2の成分)が同量含まれる。よって、MIMO処理部160によるキャリブレーション処理に誤差が生じた場合には、誤差の生じた複数の固定ビームが同比率で重ね合わされるので、合成ビームに大きな誤差が含まれる。したがって、MIMO通信装置200の通信性能が低下する。
 それに対して、本例において、ネットワーク回路部222を用いる場合には、合成ビームには、信号強度が強くなる方向がユーザ端末がある方向に合致する一の固定ビーム(本例では、固定ビーム190-1)の成分が最も多く含まれる。よって、MIMO処理部160によるキャリブレーション処理に誤差が生じた場合であっても、誤差の生じた複数の固定ビームが同比率で重ね合わされない。よって、キャリブレーション処理の誤差の影響を最小限に抑えることができる。したがって、MIMO通信装置200の通信性能の低下を防ぐことができる。そこで、本例では、給電ネットワーク220は、通信回路130-1~130-nから入力される信号のアンテナ素子111-1~111-nのそれぞれへの分配をネットワーク回路部222に行わせる。
 以上のように、本実施形態によれば、MIMO通信装置200は、ユーザ端末がある方向に応じて、スイッチ223-1~223-nおよびスイッチ224-1~224-nの導通方向を制御する。そして、MIMO通信装置200は、通信回路130-1~130-nから入力される信号のアンテナ素子111-1~111-nへの各分配を、ネットワーク回路部221又は222のいずれで行うかを決定する。よって、本実施形態によれば、第1の実施形態と同様の効果に加え、ユーザ端末の方向に拘らず通信性能の低下を防ぐことができる。
 (第3の実施形態)
 第3の実施形態のMIMO通信装置300について図面を参照して説明する。図16は、第3の実施形態におけるMIMO通信装置300の構成例を示すブロック図である。
 第3の実施形態におけるMIMO通信装置300は、図16に示すように、アレイアンテナ110の代わりにアレイアンテナ310が含まれる点、給電ネットワーク120の代わりに給電ネットワーク320が含まれる点で、第1の実施形態におけるMIMO通信装置100と異なる。本実施形態におけるMIMO通信装置300のその他の構成は、図1に示す第1の実施形態におけるMIMO通信装置100の構成と同様であるので、対応する要素には図1と同じ符号を付して説明を省略する。
 図17は、アレイアンテナ310の構成例を示す正面図である。図17に示すように、アレイアンテナ310には、m個の2偏波アンテナ311-1~311-mと、導体反射板314とが含まれる。そして、2偏波アンテナ311-1~311-mのそれぞれには、一のアンテナ素子312と、一のアンテナ素子313とが含まれる。なお、2偏波アンテナ311-1~311-mのそれぞれに含まれるアンテナ素子312-1~312-mは、それぞれ一の偏波に対応している。また、2偏波アンテナ311-1~311-mのそれぞれに含まれるアンテナ素子313-1~313-mは、それぞれ他の一の偏波に対応している。そして、互いに隣り合う2偏波アンテナ311の間(例えば、2偏波アンテナ311-1と2偏波アンテナ311-2との間)の距離dが、アレイアンテナ310が送受信するビームの波長λの1/2になるように、2偏波アンテナ311-1~311-mは、導体反射板314に設置されている。なお、本実施形態において、mとnとの間には、n=m×2の関係式が成り立つ。
 図16に示すように、給電ネットワーク320には、ネットワーク回路部321-1と、ネットワーク回路部321-2とが含まれる。
 ここで、ネットワーク回路部321-1には、通信回路130-1~130-n側に入出力端子であるm個の入出力ポート322-1~322-mが設けられてもよい。また、ネットワーク回路部321-1には、アレイアンテナ310側に入出力端子であるm個の入出力ポート323-1~323-mが設けられてもよい。
 そして、ネットワーク回路部321-2には、通信回路130-1~130-n側に入出力端子であるm個の入出力ポート324-1~324-mが設けられてもよい。ネットワーク回路部321-2には、アレイアンテナ310側に入出力端子であるm個の入出力ポート325-1~325-mが設けられてもよい。以降では、ネットワーク回路部321-1に入出力ポート322-1~322-mと入出力ポート323-1~323-mとが設けられ、ネットワーク回路部321-2に入出力ポート324-1~324-mと入出力ポート325-1~325-mとが設けられた場合を例に説明する。
 そのように構成された場合には、入出力ポート322-1~322-mのそれぞれは、m個の信号線を介して、m個の通信回路130のそれぞれに接続される。また、入出力ポート323-1~323-mは、m個の信号線を介して、2偏波アンテナ311-1~311-mに含まれるアンテナ素子312-1~312-mのそれぞれに接続される。そして、入出力ポート324-1~324-mのそれぞれは、他のm個の信号線を介して、他のm個の通信回路130のそれぞれに接続される。入出力ポート325-1~325-mは、他のm個の信号線170を介して、2偏波アンテナ311-1~311-mに含まれるアンテナ素子313-1~313-mのそれぞれに接続される。
 ネットワーク回路部321-1は、入出力ポート322-1~322-mを介して、m個の通信回路130のそれぞれから信号が入力された場合に、当該信号のそれぞれをアンテナ素子312-1~312-mのそれぞれに入力する。また、ネットワーク回路部321-2は、入出力ポート324-1~324-mを介して、他のm個の通信回路130のそれぞれから信号が入力された場合に、当該信号のそれぞれをアンテナ素子313-1~313-mのそれぞれに入力する。
 そのような構成により、アンテナ素子312-1~312-mから一の偏波に対応したm個の固定ビームが放射される。また、アンテナ素子313-1~313-mから、他の一の偏波に対応したm個の固定ビームが放射される。すなわち、アレイアンテナ310から、一の偏波に対応したm個の固定ビームと、他の一の偏波に対応したm個の固定ビームとが放射される。よって、MIMO通信装置300は、2偏波に対応できる。
 したがって、本実施形態によれば、第1の実施形態と同様の効果に加え、2偏波に対応できるという効果を奏する。
 ここで、図18は、アレイアンテナ310の構成の他の第1の例を示す正面図である。本実施形態において、2偏波アンテナ311-1~311-mのそれぞれには、図18に示すように、アンテナ素子312とアンテナ素子313とが任意の数(i個)含まれてもよい。なお、iは、任意の自然数である。
 図19は、アレイアンテナ310の構成の他の第2の例を示す正面図である。本実施形態において、アンテナ素子312-1~312-m、およびアンテナ素子313-1~313-mは、それぞれ互いに異なる種類のアンテナ素子であってもよい。具体的には、例えば、アンテナ素子312-1~312-mのそれぞれがパッチアンテナであって、アンテナ素子313-1~313-mのそれぞれがモノポールアンテナであってもよい。また、図19に示すように、アレイアンテナ310には、一のアンテナ素子312と一のアンテナ素子313とが含まれる2偏波アンテナ311-1~311-mが含まれていなくてもよい。そして、図19に示すように。アレイアンテナ310には、アンテナ素子312-1~312-mとアンテナ素子313-1~313-mとが、任意の数(j個)含まれてもよい。なお、jは、任意の自然数である。
 なお、図17~19に示す例において、アレイアンテナ310は、アンテナ素子312とアンテナ素子313とをそれぞれ同数含んだが、必ずしも同数含まなくてもよい。この場合には、アレイアンテナ310には、例えば、a個のアンテナ素子312と、n-a個のアンテナ素子313とが含まれる(なお、aは、a≠n-aとなる任意の自然数である)。
 そして、この場合には、ネットワーク回路部321-1には、通信回路130-1~130-n側にa個の入出力ポートが設けられる。また、ネットワーク回路部321-1には、アレイアンテナ310側にa個の入出力ポートが設けられる。そして、ネットワーク回路部321-2には、通信回路130-1~130-n側にn-a個の入出力ポートが設けられる。また、ネットワーク回路部321-2には、アレイアンテナ310側にn-a個の入出力ポートが設けられる。
 なお、本例では、一の2偏波アンテナ311に一のアンテナ素子312と一のアンテナ素子313とが含まれるとして説明したが、一の2偏波アンテナ311に、アンテナ素子312とアンテナ素子313とは異なる偏波に対応したアンテナ素子が更に含まれていてもよい。そのように構成された場合に、MIMO通信装置300は、3偏波以上に対応することができる。つまり、MIMO通信装置300は、複数の偏波に対応することができる。
 (第4の実施形態)
 第4の実施形態のMIMO通信装置400について図面を参照して説明する。図20は、第4の実施形態におけるMIMO通信装置400の構成例を示すブロック図である。
 第4の実施形態におけるMIMO通信装置400は、アレイアンテナ110の代わりにアレイアンテナ410が含まれる点、給電ネットワーク120の代わりに給電ネットワーク420が含まれる点で、第1の実施形態におけるMIMO通信装置100と異なる。本実施形態におけるMIMO通信装置400のその他の構成は、図1に示す第1の実施形態におけるMIMO通信装置100の構成と同様であるので、対応する要素には図1と同じ符号を付して説明を省略する。
 図21は、アレイアンテナ410の構成例を示す正面図である。図21に示すように、アレイアンテナ410には、n(n=L×k)個のアンテナ素子411-1-1~411-k-Lと、導体反射板412とが含まれる。ここで、図21に示すように、アンテナ素子411-1-1~411-k-Lは、矩形状の領域内に所定の間隔で縦横方向に並設されている。本例では、縦方向にk個、横方向にL個のアンテナ素子411が並設されている。なお、当該領域は、横方向が縦方向よりも長いとする。また、互いに隣り合うアンテナ素子411の間の縦方向の距離d1および横方向の距離d2が、アレイアンテナ410が送受信するビームの波長λの1/2になるように、アンテナ素子411-1-1~411―k-Lのそれぞれは導体反射板412に設置される。なお、本実施形態において、変数kと、Lと、nとの間には、n=L×kという関係が成り立つ。
 給電ネットワーク420には、図20に示すように、k個のネットワーク回路部421-1~421-kが含まれる。ここで、ネットワーク回路部421-1~421-kのそれぞれには、入出力端子として通信回路130-1-1~130-k-L側にL個の入出力ポートが設けられてもよい。また、ネットワーク回路部421-1~421-kのそれぞれには、入出力端子としてアレイアンテナ410側にL個の入出力ポートが設けられてもよい。なお、ネットワーク回路部421-1~421-kのそれぞれは、例えば、バトラーマトリックスや、ブラスマトリックス、ロットマンレンズ等を実現する回路網である。以降では、ネットワーク回路部421-1~421-kの通信回路130-1-1~130-k-L側にそれぞれL個の入出力ポートが設けられ、ネットワーク回路部421-1~421-kのアレイアンテナ410側にそれぞれL個の入出力ポートが設けられた場合を例に説明する。
 このように構成された場合には、ネットワーク回路部421-1~421-kの通信回路130-1-1~130-k-L側にそれぞれ設けられたL個の入出力ポートは、信号線170-1-1~170-k-Lを介して、当該L個の入出力ポートに対応する通信回路130のそれぞれに接続される。
 具体的には、例えば、ネットワーク回路部421-1は、L個の入出力ポートを介して、通信回路130-1-1,通信回路130-1-2,・・・,通信回路130-1-Lのそれぞれに接続される。よって、ネットワーク回路部421-1は、通信回路130-1-p(pは、1~Lの自然数のいずれか)のそれぞれに接続される。また、例えば、ネットワーク回路部421-2は、L個の入出力ポートを介して、通信回路130-2-1,通信回路130-2-2,・・・,通信回路130-2-Lのそれぞれに接続される。よって、ネットワーク回路部421-2は、通信回路130-2-pのそれぞれに接続される。そして、例えば、ネットワーク回路部421-kは、L個の入出力ポートを介して、通信回路130-k-1,通信回路130-k-2,・・・,通信回路130-k-Lのそれぞれに接続される。よって、ネットワーク回路部421-kは、通信回路130-k-pのそれぞれに接続される。
 また、ネットワーク回路部421-1~421-kは、それぞれL個の入出力ポートを介して、当該L個の入出力ポートに対応するアンテナ素子411のそれぞれに接続される。
 具体的には、例えば、ネットワーク回路部421-1は、L個の入出力ポートを介して、アンテナ素子411-1-1,アンテナ素子411-1-2,・・・,アンテナ素子411-1-Lのそれぞれに接続される。よって、ネットワーク回路部421-1は、アンテナ素子411-1-q(qは、1~Lの自然数のいずれか)のそれぞれに接続される。また、例えば、ネットワーク回路部421-2は、L個の入出力ポートを介して、アンテナ素子411-2-1,アンテナ素子411-2-2,・・・,アンテナ素子411-2-Lのそれぞれに接続される。よって、ネットワーク回路部421-2は、アンテナ素子411-2-qのそれぞれに接続される。そして、例えば、ネットワーク回路部421-kは、L個の入出力ポートを介して、アンテナ素子411-k-1,アンテナ素子411-k-2,・・・,アンテナ素子411-k-Lのそれぞれに接続される。よって、ネットワーク回路部421-kは、アンテナ素子411-k-qのそれぞれに接続される。
 そのように接続されることにより、図21に示す例において、横方向に並設されたL個のアンテナ素子411それぞれには、一のネットワーク回路部421によって分配された信号が入力される。具体的には、例えば、アンテナ素子411-1-1~411-1-Lのそれぞれには、ネットワーク回路部421-1によって分配された信号が入力される。また、例えば、L個のアンテナ素子411-2-1~411-2-Lのそれぞれには,ネットワーク回路部421-2によって分配された信号が入力される。そして、例えば、アンテナ素子411-k-1~411-k-Lのそれぞれには、ネットワーク回路部421-kによって分配された信号が入力される。
 そのような構成により、横方向に並設されたL個のアンテナ素子411のそれぞれが、放射角度が異なる固定ビームを放射する。なお、各固定ビームは、横方向の放射角度は互いに異なるが、縦方向の放射角度は同様である。ここで、導体反射板412には、横方向に並設されたL個のアンテナ素子411の集合(サブアレイアンテナという)が、縦方向にk個並設される。よって、アレイアンテナ410から、横方向の放射角度が互いに異なるL個の固定ビームがk組、計n(n=L×k)個の固定ビームが放射される。ここで、k組ある固定ビームの集合における各固定ビームは、ネットワーク回路部421-1~421―kが同一のネットワーク回路部であれば、それぞれ同一になる。それに対して、k組ある固定ビームの集合における各固定ビームは、ネットワーク回路部421-1~421-kが異なるネットワーク回路部であれば、それぞれ異なる。
 そのような構成により、本実施形態では、例えばネットワーク回路部421-1~421-kがそれぞれ異なる信号分配を行う場合に、アレイアンテナ410から、横方向の放射角度が互いに異なるL個以上の固定ビームが放射されるので、横方向により広角に固定ビームを放射することができる。また、本実施形態におけるMIMO通信装置400に含まれるアレイアンテナ410には、横方向に並設されたL個のアンテナ素子411の集合が、縦方向にk個並設される。そのような構成により、アレイアンテナ410から放射された固定ビームは、縦方向においても互いに重なり合い合成ビームを形成する。したがって、MIMO通信装置400は、第1の実施形態におけるMIMO通信装置100よりも多くの数の合成ビームを形成することができる。よって、さらに通信性能を向上させることができる。
 なお、本実施形態において、ネットワーク回路部421-1~421-kのそれぞれにおいて、第2の実施形態におけるネットワーク回路部221およびネットワーク回路部222と同様に、それぞれが異なる分配比で信号分配がなされてもよい。
 また、本実施形態において、導体反射板412においてアンテナ素子411-1-1~411-k-Lが並設される矩形状の領域の縦方向の長さと横方向の長さとは、同様であってもよい。
 図22は、アレイアンテナ410の構成の他の第1の例を示す正面図である。また、図23は、アレイアンテナ410の構成の他の第2の例を示す正面図である。本実施形態において、アンテナ素子411-1-1~411-k-Lのそれぞれは、図22および図23に示すように、任意の複数のサブアンテナ素子を含む形で構成されてもよい。ここで、図22に示す例では、アンテナ素子411-1-1~411-k-Lのそれぞれは、2つのアンテナ素子によって構成されている。また、図23に示す例では、アンテナ素子411-1-1~411-k-Lのそれぞれは、4つのアンテナ素子によって構成されている。
 図24は、アレイアンテナ410の構成の他の第3の例を示す正面図である。本実施形態において、アレイアンテナ410は、MIMO通信装置400を2偏波に対応させるために、図24に示す例のように構成されていてもよい。具体的には、アレイアンテナ410には、アンテナ素子411-1-1~411-k-Lの代わりに、一の偏波に対応したm(m=L´×k´)個のアンテナ素子413と、他の一の偏波に対応したm(m=L´×k´)個アンテナ素子414とが含まれていてもよい。なお、変数mとnとの間には、n=m×2の関係式が成り立つ。そのような構成により、MIMO通信装置400は2偏波に対応することができる。なお、そのように構成された場合には、給電ネットワーク420には、通信回路130-1-1~130-k-L側およびアレイアンテナ410側のそれぞれにL´個の入出力ポートが設けられ、且つ一の偏波に対応したネットワーク回路がk´個含まれる。また、給電ネットワーク420には、通信回路130-1-1~130-k-L側およびアレイアンテナ410側のそれぞれにL´個の入出力ポートが設けられ、且つ他の一の偏波に対応したネットワーク回路がk´個含まれる。
 (第5の実施形態)
 第5の実施形態のMIMO通信装置500について図面を参照して説明する。図25は、第5の実施形態におけるMIMO通信装置500の構成例を示すブロック図である。
 第5の実施形態におけるMIMO通信装置500は、給電ネットワーク420の代わりに給電ネットワーク520が含まれる点で、第4の実施形態におけるMIMO通信装置400と異なる。本実施形態におけるMIMO通信装置500のその他の構成は、図20に示す第4の実施形態におけるMIMO通信装置400の構成と同様であるので、対応する要素には図20と同じ符号を付して説明を省略する。
 給電ネットワーク520には、第4の実施形態における給電ネットワーク420の構成に加えて、L個のネットワーク回路部521-1~521-Lが更に含まれる。ネットワーク回路部521-1~521-Lは、ネットワーク回路部421-1~421-kとアレイアンテナ410との間に配置され、それぞれと互いに接続されている。なお、本実施形態において、変数kと、Lと、nとには、L×k=nという関係式が成り立つ。
 具体的には、例えば、ネットワーク回路部521-1は、アンテナ素子411-1-1,アンテナ素子411-2-1,・・・,アンテナ素子411-k-1のそれぞれに接続される。よって、ネットワーク回路部521-1は、アンテナ素子411-r-1(rは、1~kの自然数のいずれか)のそれぞれに接続される。さらに、ネットワーク回路部521-1は、ネットワーク回路部421-1~421-kのそれぞれに接続される。
 また、例えば、ネットワーク回路部521-2は、アンテナ素子411-1-2,アンテナ素子411-2-2,・・・,アンテナ素子411-k-2のそれぞれに接続される。よって、ネットワーク回路部521-2は、アンテナ素子411-r-2のそれぞれに接続される。さらに、ネットワーク回路部521-2は、ネットワーク回路部421-1~421-kのそれぞれに接続される。
 そして、例えば、ネットワーク回路部521-Lは、アンテナ素子411-1-L,アンテナ素子411-2-L,・・・,アンテナ素子411-k-Lのそれぞれに接続される。よって、ネットワーク回路部521-Lは、アンテナ素子411-r-Lのそれぞれに接続される。さらに、ネットワーク回路部521-Lは、ネットワーク回路部421-1~421-kのそれぞれに接続される。
 そのような構成により、ネットワーク回路部421-1~421-kによって分配された信号のそれぞれが、ネットワーク回路部521-1~521-Lに入力される。そして、ネットワーク回路部521-1~521-Lは、ネットワーク回路部421-1~421-kに入力された信号のそれぞれを、アンテナ素子411-1-1~411-k-Lのそれぞれに分配する。具体的には、例えば、ネットワーク回路部521-1は、アンテナ素子411-1-1~411-k-1のそれぞれに信号を分配する。また、例えば、ネットワーク回路部521-2は、アンテナ素子411-1-2~411-k-2のそれぞれに信号を分配する。そして、例えば、ネットワーク回路部521-Lは、アンテナ素子411-1-L~411-k-Lのそれぞれに信号を分配する。
 ここで、ネットワーク回路部421-1~421-kによる信号の分配により、アレイアンテナ410が放射する固定ビームそれぞれの横方向の放射角度が、異なるようになる。また、ネットワーク回路部521-1~521-Lによる信号の分配により、アレイアンテナ410が放射する固定ビームそれぞれの縦方向の放射角度が、異なるようになる。具体的には、例えば、アンテナ素子411-1-1,アンテナ素子411-1-2,・・・,アンテナ素子411-k-Lのそれぞれが放射する電磁波の各々が重ね合わせられて、縦方向および横方向のそれぞれについて角度が異なる固定ビームが放射される。そして、図21に示す例では、導体反射板412には、横方向に並設されたL個のアンテナ素子411の集合が、縦方向にk個並設される。よって、アレイアンテナ410から、それぞれが縦方向および横方向のそれぞれについて角度が異なるn(n=L×k)個の固定ビームが放射される。すなわち、アレイアンテナ410から、信号強度が最も強くなる方向が互いに異なるn個の固定ビームが放射される。
 そのような構成により、MIMO通信装置500は、縦方向および横方向により広角に固定ビームを放射することができる。MIMO通信装置500は、第1の実施形態におけるMIMO通信装置100よりも多くの固定ビームを放射することができる。よって、さらに通信性能の低下を防ぐことができる。
 したがって、本実施形態によれば、さらに通信性能の低下を防ぐことができる。
 なお、本実施形態において、ネットワーク回路部421-1~421-kおよびネットワーク回路部521-1~521-Lのそれぞれにおいて、第2の実施形態のネットワーク回路部221およびネットワーク回路部222と同様に、それぞれが異なる分配比の信号分配がなされてもよい。
 (第6の実施形態)
 第6の実施形態の通信装置600について図面を参照して説明する。
 図26は、第6の実施形態における通信装置600の構成例を示すブロック図である。図26に示す例では、通信装置600は、給電部610と、複数の通信部620と、MIMO処理部630とを含む。
 ここで、給電部610は、例えば、図1に示す第1の実施形態における給電ネットワーク120に相当する。また、複数の通信部620のそれぞれは、例えば、図1に示す第1の実施形態における通信回路130-1~130-nのそれぞれに相当する。そして、MIMO処理部630は、例えば、図1に示す第1の実施形態におけるMIMO処理部160に相当する。
 給電部610は、入力されたアナログの送信信号を複数のアンテナ素子(図示せず)に分配する。また、給電部610は、複数の通信部620に、複数のアンテナ素子によって受信され入力されたアナログの受信信号を分配する。
 複数の通信部620のそれぞれは、デジタル信号とアナログ信号とを相互に変換する。
 MIMO処理部630は、MIMO通信方式に基づいて、複数の通信部620に送信用のデジタル信号を入力する。また、MIMO処理部630は、複数の通信部620によって入力されたアナログの受信信号に基づくデジタル信号に、処理を施す。
 なお、複数の通信部620は、MIMO処理部630が入力した送信用のデジタル信号をアナログ信号に変換したアナログの送信信号を給電部610に入力する。また、複数の通信部620は、給電部610により分配されて入力されたアナログの受信信号を、当該アナログの受信信号に基づくデジタル信号に変換する。そして、複数の通信部620は、MIMO処理部630に、当該デジタル信号を入力する。
 なお、給電部610は、複数の通信部620と同数のアナログの受信信号に基づくアナログ信号を、複数の通信部620に分配する。また、給電部610は、互いが所定の位相差である電磁波が放射されるように、複数のアンテナ素子に、複数の通信部620と同数のアナログの送信用信号を分配する。
 次に、通信装置600の動作例を図27を参照して説明する。図27は、通信装置600の動作例を示すフローチャートである。
 MIMO処理部630は、MIMO通信方式に基づいて、複数の通信部620に送信用のデジタル信号を入力する(ステップS601)。
 複数の通信部620は、MIMO処理部630によって入力された送信用のデジタル信号をアナログの送信信号に変換する。そして、複数の通信部620のそれぞれは、給電部610に、当該送信用信号を入力する(ステップS602)。
 給電部610は、互いが所定の位相差である電磁波が放射されるように、複数のアンテナ素子に、複数の通信部620と同数のアナログの送信信号を分配する(ステップS603)。
 そして、複数のアンテナ素子は、当該送信用信号に基づくビームを放射する。
 次に、通信装置600の他の動作例を図28を参照して説明する。図28は、通信装置600の他の動作例を示すフローチャートである。
 給電部610は、複数のアンテナ素子によって受信され入力されたアナログの受信信号を、複数の通信部620に分配する(ステップS701)。
 複数の通信部620は、給電部610により分配されて入力されたアナログの受信信号を、アナログの受信信号に基づくデジタル信号に変換する。そして、複数の通信部620は、MIMO処理部630に、当該デジタル信号を入力する(ステップS702)。
 MIMO処理部630は、複数の通信部620に入力されたデジタル信号に、処理を施す(ステップS703)。
 本実施形態によれば、互いが所定の位相差である電磁波が放射されるように、複数のアンテナ素子に、複数の通信部620と同数のアナログの送信信号を分配する。そして、複数のアンテナ素子は、当該送信用信号に基づくビームを放射する。したがって、例えば、通信相手の端末に向けてビームを放射するために通信装置600が行ったキャリブレーション処理に誤差が生じた場合であっても、当該誤差による通信装置600の通信性能の低下は、最小限に抑えられる。
 よって、本実施形態によれば、通信性能の低下を防ぐことができる。
 以上、本発明の各実施形態を説明したが、本発明は、上記した各実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形や、置換、調整を加えることができる。また、各実施形態を適宜組み合わせて実施してもよい。
 なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得る各種変形、修正を含むことは勿論である。
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
 デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、
 入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、
 MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、
 前記複数の通信手段は、
  前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、
  前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、
 前記給電手段は、
  前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
  互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
 ことを特徴とする通信装置。
[付記2]
 前記給電手段は、バトラーマトリックス、ブラスマトリックス、またはロットマンレンズを実現する回路網を含む
 付記1に記載の通信装置。
[付記3]
 前記複数のアンテナ素子を含む
 付記1または付記2に記載の通信装置。
[付記4]
 前記複数のアンテナ素子は、互いが所定の間隔になるように配置されている
 付記3に記載の通信装置。
[付記5]
 前記複数のアンテナ素子は、それぞれ複数のサブアンテナ素子を含む
 付記3または付記4に記載の通信装置。
[付記6]
 前記複数のサブアンテナ素子は、互いに異なる複数種類の偏波に対応し、
 前記複数種類の偏波のそれぞれに応じた複数種類の前記給電手段を含む
 付記5に記載の通信装置。
[付記7]
 前記複数のアンテナ素子は、矩形状の領域においてそれぞれ横方向および縦方向に並設され、
 それぞれ横方向または縦方向に並設された一連の前記複数のアンテナ素子によってサブアレイアンテナがそれぞれ構成される
 付記3から付記6のうちいずれか1項に記載の通信装置。
[付記8]
 前記複数のアンテナ素子のそれぞれに応じた前記給電手段をそれぞれ含む
 付記1から付記7のうちいずれか1項に記載の通信装置。
[付記9]
 デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、
 入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、
 MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、
 前記複数の通信手段は、
  前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、
  前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、
 前記給電手段は、
  前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
  互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
ことを特徴とする通信装置と通信する通信端末。
[付記10]
 デジタル信号とアナログ信号とを相互に変換する複数の通信ステップと、
 入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信ステップを実行する複数の通信手段に分配する給電ステップと、
 MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理ステップとを含み、
 前記複数の通信ステップで、
  前記MIMO処理ステップで前記複数の通信手段に入力して前記送信用のデジタル信号がアナログ信号に変換された前記アナログの送信信号を前記給電ステップを実行する給電手段に入力し、
  前記給電手段により分配されて入力された前記アナログの受信信号に基づくアナログ信号を前記アナログの受信信号に基づくデジタル信号に変換して前記MIMO処理ステップを実行するMIMO処理手段に入力し、
 前記給電ステップで、
  前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
  互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
 ことを特徴とする通信方法。
[付記11]
 コンピュータに、
 デジタル信号とアナログ信号とを相互に変換する複数の通信処理と、
 MIMO通信方式に基づいて、前記複数の通信処理を実行する複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力したアナログの受信信号に基づくデジタル信号に処理を施すMIMO処理とを実行させ、
 前記複数の通信処理で、
  入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力された前記アナログの受信信号を前記複数の通信手段に分配する給電手段に、前記MIMO処理で前記通信手段に入力して前記送信用のデジタル信号がアナログ信号に変換された前記アナログの送信信号を入力し、
  前記給電手段により分配されて入力された前記アナログの受信信号に基づくアナログ信号を前記アナログの受信信号に基づくデジタル信号に変換して前記MIMO処理を実行するMIMO処理手段に入力し、
 前記給電手段は、
  前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
  互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
 通信用プログラム。
 この出願は、2016年9月29日に出願された日本出願特願2016-191299を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 MIMO通信装置
110 アレイアンテナ
111-1~111-n アンテナ素子
112-1~112-n アンテナポート
113 導体反射板
114-1~114-n サブアンテナ素子
115-1~115-n´ アンテナ素子
116 サブ給電ネットワーク
117-1~117-n アンテナポート
120 給電ネットワーク
121-1~121-n 入出力ポート
122-1~122-n 入出力ポート
123 ネットワーク回路部
130-1~130-n 通信回路
140 キャリブレーションネットワーク
141-1~141-n カプラ
150 キャリブレーション用通信回路
160 MIMO処理部
161 キャリブレーション処理部
162 BB処理部
170-1~170-n 信号線
180-1~180-4 固定ビーム
190-1~190-4 固定ビーム
200 MIMO通信装置
220 給電ネットワーク
221 ネットワーク回路部
222 ネットワーク回路部
223-1~223-n スイッチ
224-1~224-n スイッチ
225-1~225-n 入出力ポート
226-1~226-n 入出力ポート
227-1~227-n 入出力ポート
228-1~228-n 入出力ポート
300 MIMO通信装置
310 アレイアンテナ
311-1~311-m 2偏波アンテナ
312-1~312-m アンテナ素子
313-1~313-m アンテナ素子
314 導体反射板
320 給電ネットワーク
321-1,321-2 ネットワーク回路部
322-1~322-m 入出力ポート
323-1~323-m 入出力ポート
324-1~324-m 入出力ポート
325-1~325-m 入出力ポート
400 MIMO通信装置
410 アレイアンテナ
411-1~411-n アンテナ素子
412 導体反射板
413 アンテナ素子
414 アンテナ素子
420 給電ネットワーク
421-1~421-k ネットワーク回路部
500 MIMO通信装置
520 給電ネットワーク
521-1~521-L ネットワーク回路部
600 通信装置
610 給電部
620 通信部
630 MIMO処理部
900 MIMO通信装置
910 アレイアンテナ
911-1~911-n アンテナ素子
930-1~930-n 通信回路
940 キャリブレーションネットワーク
941-1~941-n カプラ
950 キャリブレーション用通信回路
960 MIMO処理部
971-1~971-n 信号線

Claims (11)

  1.  デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、
     入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、
     MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、
     前記複数の通信手段は、
      前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、
      前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、
     前記給電手段は、
      前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
      互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
     ことを特徴とする通信装置。
  2.  前記給電手段は、バトラーマトリックス、ブラスマトリックス、またはロットマンレンズを実現する回路網を含む
     請求項1に記載の通信装置。
  3.  前記複数のアンテナ素子を含む
     請求項1または請求項2に記載の通信装置。
  4.  前記複数のアンテナ素子は、互いが所定の間隔になるように配置されている
     請求項3に記載の通信装置。
  5.  前記複数のアンテナ素子は、それぞれ複数のサブアンテナ素子を含む
     請求項3または請求項4に記載の通信装置。
  6.  前記複数のサブアンテナ素子は、互いに異なる複数種類の偏波に対応し、
     前記複数種類の偏波のそれぞれに応じた複数種類の前記給電手段を含む
     請求項5に記載の通信装置。
  7.  前記複数のアンテナ素子は、矩形状の領域においてそれぞれ横方向および縦方向に並設され、
     それぞれ横方向または縦方向に並設された一連の前記複数のアンテナ素子によってサブアレイアンテナがそれぞれ構成される
     請求項3から請求項6のうちいずれか1項に記載の通信装置。
  8.  前記複数のアンテナ素子のそれぞれに応じた前記給電手段をそれぞれ含む
     請求項1から請求項7のうちいずれか1項に記載の通信装置。
  9.  デジタル信号とアナログ信号とを相互に変換する複数の通信手段と、
     入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配する給電手段と、
     MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施すMIMO処理手段とを備え、
     前記複数の通信手段は、
      前記MIMO処理手段が入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、
      前記給電手段により分配されて入力された前記アナログの受信信号を、前記アナログの受信信号に基づくデジタル信号に変換してMIMO処理手段に入力し、
     前記給電手段は、
      前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
      互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
    ことを特徴とする通信装置と通信する通信端末。
  10.  複数の通信手段でデジタル信号とアナログ信号とを相互に変換し、
     給電手段で、入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力されたアナログの受信信号を前記複数の通信手段に分配し、
     MIMO通信方式に基づいて、前記複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力した前記アナログの受信信号に基づくデジタル信号に処理を施し、
     前記複数の通信手段で、
      MIMO処理手段が前記複数の通信手段に入力した前記送信用のデジタル信号をアナログ信号に変換した前記アナログの送信信号を前記給電手段に入力し、
      前記給電手段により分配されて入力された前記アナログの受信信号に基づくアナログ信号を前記アナログの受信信号に基づくデジタル信号に変換して前記MIMO処理手段に入力し、
     前記給電手段で、
      前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
      互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
     ことを特徴とする通信方法。
  11.  コンピュータに、
     デジタル信号とアナログ信号とを相互に変換する複数の通信処理と、
     MIMO通信方式に基づいて、前記複数の通信処理を実行する複数の通信手段に送信用のデジタル信号を入力し、前記複数の通信手段が入力したアナログの受信信号に基づくデジタル信号に処理を施すMIMO処理とを実行させ、
     前記複数の通信処理で、
      入力されたアナログの送信信号を複数のアンテナ素子に分配し、前記複数のアンテナ素子によって受信され入力された前記アナログの受信信号を前記複数の通信手段に分配する給電手段に、前記MIMO処理で前記通信手段に入力して前記送信用のデジタル信号がアナログ信号に変換された前記アナログの送信信号を入力し、
      前記給電手段により分配されて入力された前記アナログの受信信号に基づくアナログ信号を前記アナログの受信信号に基づくデジタル信号に変換して前記MIMO処理を実行するMIMO処理手段に入力し、
     前記給電手段は、
      前記複数の通信手段と同数の前記アナログの受信信号に基づくアナログ信号を、前記複数の通信手段に分配し、
      互いが所定の位相差である電磁波が放射されるように、前記複数のアンテナ素子に前記複数の通信手段と同数の前記アナログの送信信号を分配する
     通信用プログラムが記録された記録媒体。
PCT/JP2017/033824 2016-09-29 2017-09-20 通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体 WO2018061903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/336,142 US20190229790A1 (en) 2016-09-29 2017-09-20 Communication apparatus, communication terminal, communication method, and recording medium having communication program recorded thereon
JP2018542443A JPWO2018061903A1 (ja) 2016-09-29 2017-09-20 通信装置、通信端末、通信方法、および通信用プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191299 2016-09-29
JP2016-191299 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061903A1 true WO2018061903A1 (ja) 2018-04-05

Family

ID=61760409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033824 WO2018061903A1 (ja) 2016-09-29 2017-09-20 通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体

Country Status (3)

Country Link
US (1) US20190229790A1 (ja)
JP (1) JPWO2018061903A1 (ja)
WO (1) WO2018061903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432737B2 (ja) 2020-01-17 2024-02-16 ケーエムダブリュ・インコーポレーテッド クワッド偏波アンテナモジュールアレイを用いてビームの空間‐偏波分離を具現するfdd方式のアンテナ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211982B1 (en) * 2020-09-25 2021-12-28 Qualcomm Incorporated Communication via a butler matrix and a lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244223A (ja) * 1999-02-24 2000-09-08 Denso Corp アダプティブアンテナ装置
JP2012521695A (ja) * 2009-03-23 2012-09-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アンテナ配置
JP2014527367A (ja) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングに基づく無線通信システムにおけるビームスキャニングによるスケジューリング装置及び方法
JP2014230102A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 無線通信装置、及び複合無線通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244223A (ja) * 1999-02-24 2000-09-08 Denso Corp アダプティブアンテナ装置
JP2012521695A (ja) * 2009-03-23 2012-09-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アンテナ配置
JP2014527367A (ja) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングに基づく無線通信システムにおけるビームスキャニングによるスケジューリング装置及び方法
JP2014230102A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 無線通信装置、及び複合無線通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432737B2 (ja) 2020-01-17 2024-02-16 ケーエムダブリュ・インコーポレーテッド クワッド偏波アンテナモジュールアレイを用いてビームの空間‐偏波分離を具現するfdd方式のアンテナ装置

Also Published As

Publication number Publication date
JPWO2018061903A1 (ja) 2019-07-18
US20190229790A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US10651568B2 (en) Base station antenna system with enhanced array spacing
KR101110510B1 (ko) 빔 형성 및 편파 다이버시티를 위한 무선 송신기, 송수신기 및 방법
US20040077379A1 (en) Wireless transmitter, transceiver and method
US6900775B2 (en) Active antenna array configuration and control for cellular communication systems
US11728879B2 (en) Dual-polarization beamforming
US10205235B2 (en) Wireless communication system node with re-configurable antenna devices
EP2975688B1 (en) Antenna feed and method of configuring an antenna feed
CN107196684B (zh) 一种天线系统、信号处理系统以及信号处理方法
WO2014026739A1 (en) Antenna feed
MXPA06004774A (es) Metodo y aparato para un sistema de antena de multiples haces.
CN106716714B (zh) 体育场天线
US9407008B2 (en) Multi-beam multi-radio antenna
WO2018061903A1 (ja) 通信装置、通信端末、通信方法、および通信用プログラムが記録された記録媒体
US8737275B2 (en) Node in a wireless communication system with different antenna diversity methods for uplink and downlink
JP3559218B2 (ja) 移動通信用基地局アンテナ
US7280084B2 (en) Antenna system for generating and utilizing several small beams from several wide-beam antennas
CN106992802B (zh) 用于用户终端的信号收发装置、用户终端和信号传输方法
WO2024070003A1 (ja) アンテナ装置、受電装置、受信装置、端末装置、無線電力伝送システム及び通信システム
RU2754653C1 (ru) Способ формирования диаграммы направленности и антенная решетка для его осуществления
US20240072434A1 (en) Active antenna system comprising coupling paths between feed networks
EP2819241B1 (en) Adaptive antenna and a method of controlling an adaptive antenna beam
WO2024015663A1 (en) Radios configured to split power for a combined signal,and related methods of operating radios
Wang et al. A" zoom-in" scanning array for wireless communications
WO2015090427A1 (en) Load balancing of dual-polarized antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855858

Country of ref document: EP

Kind code of ref document: A1