WO2018061827A1 - Zeolite and method for producing same - Google Patents

Zeolite and method for producing same Download PDF

Info

Publication number
WO2018061827A1
WO2018061827A1 PCT/JP2017/033474 JP2017033474W WO2018061827A1 WO 2018061827 A1 WO2018061827 A1 WO 2018061827A1 JP 2017033474 W JP2017033474 W JP 2017033474W WO 2018061827 A1 WO2018061827 A1 WO 2018061827A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
zeolite
mixture
membered ring
membered rings
Prior art date
Application number
PCT/JP2017/033474
Other languages
French (fr)
Japanese (ja)
Inventor
窪田 好浩
怜史 稲垣
直人 中澤
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2018542398A priority Critical patent/JP6966087B2/en
Publication of WO2018061827A1 publication Critical patent/WO2018061827A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent

Definitions

  • the present invention relates to a zeolite having a novel framework and a method for producing the same.
  • zeolites having various structures As a material having a catalytic function, zeolites having various structures have been discovered and attracted attention. Variations in the zeolite framework structure have increased from about 100 to about 230 in the last 20 years.
  • Use of an organic template molecule, that is, a structure directing agent (SDA) is effective in creating various zeolite structures.
  • a structure-directing agent having a simpler structure.
  • quaternary ammonium compounds such as tetraalkylammonium, when properly designed, act as templates in the hydrothermal synthesis of zeolites and induce crystallization of various framework structures.
  • dimethyldipropylammonium compounds have a simple structure and are known to serve as templates for MSE, which is a useful skeleton.
  • the present inventor has conducted intensive studies and reduced the ratio of water used as a raw material to a lower level than before and can obtain a zeolite having a new framework by, for example, about 6 to 8 times the silica source used for the raw material. I found.
  • the present invention provides the following features or means.
  • the zeolite according to one aspect of the present invention has an X-ray diffraction pattern including at least a lattice spacing d ( ⁇ ) and a relative intensity shown in Table 1 below as measured by a powder X-ray diffraction method.
  • the intensity indicates the ratio of the intensity of the other peak to the intensity of the maximum peak among the peaks included in the X-ray diffraction pattern.
  • the pore volume estimated by nitrogen adsorption measurement is preferably 0.12 ml / g or more and 0.25 ml / g or less.
  • the zeolite according to any one of [1] and [2] has a plurality of oxygen 8-membered rings and oxygen 12-membered rings independent of each other, and the plurality of oxygen 8-membered rings are in a plurality of groups.
  • the oxygen 8-membered rings are overlapped so as to have a common through-hole in one direction, and the plurality of oxygen 12-membered rings are divided into a plurality of groups,
  • the oxygen 12-membered ring overlaps with a common through hole in a direction parallel to one plane, and the oxygen 8-membered ring overlapping direction and the oxygen 12-membered ring overlapping direction intersect each other. It is preferable.
  • the oxygen 8-membered ring is connected so that a pair and an isolated one form a line in an alternating direction in a direction intersecting the overlapping direction.
  • the rows are connected so that the oxygen 8-membered ring and the isolated oxygen 8-membered ring are adjacent to each other.
  • the oxygen 12-membered ring may be connected side by side at equal intervals in two directions in a plane intersecting the overlapping direction. preferable.
  • the pore diameter of the oxygen 8-membered ring is 0 when the length of two oxygen ionic radii (0.135 nm) is subtracted.
  • the number density of T atoms contained is preferably 15 atoms / nm 3 or more and 18 atoms / nm 3 or less.
  • a method for producing a zeolite according to one aspect of the present invention is the method for producing a zeolite according to any one of [1] to [7], wherein the first silica source, the alkali source, water, And a first preparation step for preparing the mixture of structure directing agents with stirring, a first heating step for heating the prepared mixture with stirring, a cooling step for cooling the heated mixture, and cooling
  • the first preparation step includes, in order, a drying step of filtering and drying, and a third heating step of heating the organic composite obtained through the drying step and removing the organic matter contained therein.
  • Amount of water used in The amount of the first silica source and the amount of the second silica source are 6 to 8 times the total, and colloidal silica is used as the first silica source, and the second silica source and alumina Y-type zeolite is used as the source, and dimethyldipropylammonium compound is used as the structure-directing agent.
  • the zeolite of the present invention is a crystalline aluminosilicate porous body having a novel skeleton, and has a high aluminum content and a large number of ion exchange sites. ing. Moreover, since the zeolite of this invention can introduce
  • the zeolite of the present invention can be applied as a solid catalyst that promotes catalytic decomposition of paraffin.
  • a part of aluminum constituting the zeolite can be replaced with the same type by a transition metal (titanium, tin, etc.).
  • zeolite with the same type substitution with titanium is an excellent catalyst for selective oxidation of olefins, paraffins and aromatic rings using oxygen, hydrogen peroxide, alkyl hydroperoxide or the like as an oxidizing agent.
  • a zeolite having a high aluminum content and a novel skeleton can be obtained.
  • a dimethyldipropylammonium compound is used as a structure-directing agent having a simple structure, and the amount of water used as a raw material is the same as the amount of silica source used in the raw material. About 6 to 8 times.
  • the zeolite can be easily and reliably produced with high purity as compared with the case of using a conventional production method in which the amount of water is about 40 times the amount of silica. It becomes easy to realize production.
  • the synthesis of the structure directing agent is simplified, the energy required for the synthesis process can be reduced, and the manufacturing cost can be greatly reduced.
  • FIGS. 1A and 1B A configuration of the zeolite 100 according to an embodiment of the present invention will be described with reference to FIGS. 1A and 1B.
  • the three-dimensional space is represented by the x-axis, y-axis, and z-axis orthogonal to each other, and directions substantially parallel to the x-axis, y-axis, and z-axis are the x-axis direction, y-axis direction, and z-axis direction, respectively Shall be called.
  • FIG. 1A is a plan view of the structure of zeolite 100 from one direction (z-axis direction).
  • FIG. 1B is a plan view of the structure of zeolite 100 from another direction (x-axis direction).
  • the zeolite (crystalline aluminosilicate porous body) 100 has a plurality of oxygen 8-membered rings 101 (101a, 101b) and a plurality of oxygen 12-membered rings 102, which are independent of each other.
  • the oxygen 8-membered ring 101a is isolated in the y-axis direction, that is, separated from other oxygen 8-membered rings 101a in the y-axis direction.
  • the oxygen 8-membered ring 101b is in contact with another oxygen 8-membered ring 101b in the y-axis direction to form a pair.
  • the pore diameter of the oxygen 8-membered ring 101 is 0.295 nm or more and 0.454 nm or less when the ionic radius of oxygen (0.135 nm) is taken into consideration, that is, when the length of two ionic radii of oxygen is subtracted. Preferably there is.
  • the pore diameter of the oxygen 8-membered ring 101 is 0.565 nm or more and 0.000 when the ionic radius of oxygen (0.135 nm) is not considered, that is, when the length of two ionic radii of oxygen is not subtracted. It is preferable that it is 724 nm or less.
  • the pore diameter of the oxygen 12-membered ring 102 is 0.595 nm or more and 0.710 nm or less when the ionic radius (0.135 nm) of oxygen is taken into account, that is, when the length of two ionic radii of oxygen is subtracted. Preferably there is.
  • the pore diameter of the oxygen 12-membered ring 102 is 0.865 nm or more and 0 when the ionic radius of oxygen (0.135 nm) is not taken into consideration, that is, when the length corresponding to two ionic radii of oxygen is not subtracted. It is preferable that it is 980 nm or less.
  • the pore volume of the entire zeolite 100 estimated by nitrogen adsorption measurement is usually 0.12 ml / g or more and 0.25 ml / g or less, preferably 0.15 ml / g or more and 0.20 ml / g or less, More preferably, it is 0.16 ml / g or more and 0.19 ml / g or less.
  • the skeleton density of the zeolite 100 is usually 15 atoms / nm 3 or more and 18 atoms / nm 3 or less. preferably pieces / nm 3 or more 17 / nm 3 or less, more preferably not more than 16.6 pieces / nm 3 nm.
  • the plurality of oxygen 8-membered rings 101a are divided into a plurality of groups 101A, and in each group 101A, the oxygen 8-membered rings 101a overlap so as to have a common through hole in one direction (z-axis direction).
  • the plurality of oxygen 8-membered rings 101b are divided into a plurality of groups 101B, and in each group 101B, the oxygen 8-membered rings 101b overlap so as to have a common through hole in one direction (z-axis direction). Yes.
  • the plurality of groups 101A and 101B are arranged so that pairs of groups 101A and 101B alternate in the y-axis direction.
  • Each of the plurality of oxygen 8-membered rings 101a constituting each group 101A is connected to each of the plurality of oxygen 8-membered rings 101b constituting the adjacent group 101B via an oxygen 6-membered ring.
  • Each of the plurality of oxygen 8-membered rings 101b constituting each group 101B is connected to each of the plurality of oxygen 8-membered rings 101a constituting one adjacent group 101A via an oxygen 6-membered ring. Yes.
  • each of the plurality of oxygen 8-membered rings 101b constituting each group 101B is directly connected to each of the plurality of oxygen 8-membered rings 101b constituting the other adjacent group 101B.
  • the overlapping direction of the oxygen 8-membered rings 101a and 101b is preferably substantially parallel to the z-axis direction.
  • pairs of oxygen 8-membered rings 101B and groups of isolated oxygen 8-membered rings 101A are alternately arranged.
  • Each of the two groups 101B forming a pair is aligned along the y-axis direction.
  • the separation distance d1 between one of the paired groups 101B and the isolated group 101A is about 0.519 to 0.530 nm.
  • the columns 101C are connected to each other via a plurality of oxygen 5-membered rings so that pairs of the oxygen 8-membered ring 101a and the oxygen 8-membered ring 101b are adjacent to each other.
  • the separation distance d2 between the columns 101C is about 0.27 nm.
  • the plurality of oxygen 12-membered rings 102 are divided into a plurality of groups 102A, and in each group 102A, the oxygen 12-membered ring 102 is in a direction substantially parallel to the xy plane (a direction substantially parallel to one plane), preferably Are overlapped so as to have a common through hole in a direction parallel to the xy plane (a direction parallel to one plane).
  • the plurality of groups 102A are arranged in the y-axis direction.
  • a plurality of oxygen 12-membered rings 102 constituting each group 102A are connected to a plurality of oxygen 12-membered rings 102 constituting adjacent groups 102A via oxygen 4-membered rings and / or oxygen 5-membered rings, respectively. Yes.
  • the overlapping direction of the oxygen 12-membered ring 102 is preferably substantially parallel to the x-axis direction.
  • the group of oxygen 12-membered rings 102A is arranged at equal intervals (d3, d4) in two directions (y-axis direction and z-axis direction) in a plane intersecting the overlapping direction (x-axis direction) of the oxygen 12-membered ring. It is connected. Specifically, the groups 102A are arranged at intervals of about 0.810 to 0.830 nm (d3) in the y-axis direction and at intervals of about 0.240 to 0.260 nm (d4) in the z-axis direction.
  • the overlapping direction of the oxygen 8-membered ring and the overlapping direction of the oxygen 12-membered ring intersect each other. In reality, they intersect at an angle of about 89 degrees or more and 91 degrees or less and tend to be substantially orthogonal (substantially orthogonal), but are preferably orthogonal.
  • the molar ratio of silicon to aluminum is 8.0 or more and 9.1 or less. This molar ratio can be confirmed by, for example, elemental analysis by inductively coupled plasma atomic emission spectrum (ICP-AES), atomic absorption analysis, fluorescent X-ray analysis, and the like.
  • ICP-AES inductively coupled plasma atomic emission spectrum
  • atomic absorption analysis atomic absorption analysis
  • fluorescent X-ray analysis and the like.
  • the structure of zeolite can be uniquely identified from the analysis result by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • X-ray diffraction analysis results for the zeolite 100 are obtained, and those skilled in the art can determine that the zeolite 100 actually has the above-described structure based on the analysis results. it can. Note that the fact that the zeolite 100 has the above-described structure has also been verified by analysis of X-ray diffraction by a specialized institution.
  • the zeolite 100 is a zeolite in which at least the lattice spacing d (d-spacing) ( ⁇ ) shown in Table 2 is detected by powder X-ray diffraction measurement. More specifically, the zeolite 100 is a zeolite having an X-ray diffraction pattern including at least a lattice spacing d ( ⁇ ) and a relative intensity shown in Table 2 as measured by a powder X-ray diffraction method. The relative intensity shows the ratio of the intensity of the other peak to 100, where the intensity of the maximum peak among the peaks included in the X-ray diffraction pattern is 100.
  • the intensity of the peak corresponding to the lattice spacing d ( ⁇ ) of 3.43 ⁇ 0.10 is maximized.
  • the zeolite according to this embodiment preferably has the following chemical composition represented by a molar ratio.
  • X 2 O 3 (n) YO 2
  • the above X is a trivalent element. Although it does not specifically limit as a trivalent element, Usually, boron, aluminum, iron, and gallium are preferable, and boron, aluminum, and gallium are especially preferable from points, such as the ease of producing
  • the trivalent element X may be composed of one type of trivalent element or may be a combination of two or more types of trivalent elements.
  • the zeolite according to the present embodiment preferably contains aluminum as the trivalent element X. In this case, the aluminum content is preferably 50 mol% or more, more preferably 80 mol% or more of the entire X.
  • Y is a tetravalent element.
  • the tetravalent element is not particularly limited, but usually silicon, germanium, tin, titanium, and zirconium are preferable, and silicon, germanium, tin, and titanium are particularly preferable from the viewpoint of easy formation of zeolite crystals.
  • the tetravalent element Y may be composed of one type of tetravalent element or may be a combination of two or more types of tetravalent elements.
  • the zeolite according to the present embodiment preferably contains silicon as the tetravalent element Y. In this case, the silicon content is preferably 50 mol% or more, more preferably 80 mol% or more of the entire Y.
  • n represents the molar ratio of the oxide of the trivalent element X and the oxide of the tetravalent element Y.
  • the value of n / 2 is usually 5 or more and 1000 or less, preferably 6 or more and 100 or less, More preferably, it is 6.5 or more and 30 or less, More preferably, it is 7 or more and 10 or less.
  • the zeolite according to this embodiment may contain a metal element other than the trivalent element X and the tetravalent element Y.
  • a metal element other than the trivalent element X and the tetravalent element Y may be either a case where the metal element is present in the framework of the zeolite or a case where the metal element is present outside the framework, and also includes a case where it is a mixture.
  • the metal elements are not particularly limited, but are usually iron, cobalt, magnesium from the viewpoint of properties in adsorbent applications and catalyst applications.
  • transition metals belonging to Groups 3 to 12 of the periodic table such as zinc, copper, palladium, iridium, platinum, silver, gold, cerium, lanthanum, praseodymium, titanium, and zirconium.
  • the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more and 10 wt% or less.
  • the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more and 10 wt% or less.
  • the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more and 10 wt% or less.
  • the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more and 10 wt% or less.
  • the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more
  • the zeolite according to the present embodiment may contain a metal cation such as sodium, potassium or cesium, or a non-metal cation such as ammonium ion (NH 4 + ) or hydrogen ion (H + ). May be. Moreover, you may contain a metallic cation and a nonmetallic cation simultaneously. The cations in the zeolite crystals can be replaced with other ions by ion exchange.
  • a metal cation such as sodium, potassium or cesium
  • a non-metal cation such as ammonium ion (NH 4 + ) or hydrogen ion (H + ). May be.
  • you may contain a metallic cation and a nonmetallic cation simultaneously.
  • the cations in the zeolite crystals can be replaced with other ions by ion exchange.
  • the zeolite according to this embodiment is characterized by having the X-ray powder diffraction pattern shown in Table 2 and FIG. 2 regardless of the presence or absence of other metal elements or metal cations and the presence or absence of ion exchange.
  • the zeolite according to the present embodiment is not particularly limited with respect to its use, but has a specific crystal structure, and therefore is suitably used as a catalyst, an adsorbent, a separation material, and the like. Moreover, since the zeolite which concerns on this embodiment can introduce
  • the zeolite according to this embodiment can be applied as a solid catalyst that promotes the catalytic decomposition of paraffin.
  • the zeolite of the present invention can be isomorphously substituted with a transition metal (titanium, tin, etc.) for a part of the constituent aluminum.
  • zeolite with the same type substitution with titanium is an excellent catalyst for selective oxidation of olefins, paraffins and aromatic rings using oxygen, hydrogen peroxide, alkyl hydroperoxide or the like as an oxidizing agent.
  • the manufacturing method of the zeolite 100 based on this embodiment is demonstrated.
  • the manufacturing method of the zeolite 100 mainly has a first preparation step, a first heating step, a cooling step, a second preparation step, a second heating step, a drying step, and a third heating step in this order. ing.
  • a mixture (gel) of a first silica source, an aluminum source, an alkali source, water, and a structure directing agent (SDA) is prepared.
  • the first silica source for example, one or more of colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used.
  • colloidal silica ((SiO 2 ) Ludox , LUDOX (registered trademark)) is used.
  • the aluminum source for example, one or more of aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metal aluminum and the like can be used. It is also possible to use zeolite such as Y-type zeolite as the aluminum source.
  • the alkali source is not particularly limited.
  • one or two of sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH), and the like can be used. It is preferable to use the above, and among these, it is more preferable to use sodium hydroxide (NaOH) and potassium hydroxide (KOH).
  • dimethyldipropylammonium salt is preferable, and dimethyldipropylammonium hydroxide (Me 2 Pr 2 NOH) is more preferable.
  • Me and Pr represent a methyl group (CH 3 ) and a propyl group (CH 3 CH 2 CH 2 ), respectively.
  • a method for producing Me 2 Pr 2 NOH will be described later as an example.
  • the mixture heated in the first heating step is cooled to about room temperature using a water bath. Note that the first heating step and the cooling step can be omitted.
  • ⁇ Second preparation step> the mixture cooled in the cooling step is re-prepared by adding a second silica source and an alumina source as necessary.
  • a second silica source and alumina source Y-type zeolite (SiO 2 ) FAU , (Al 2 O 3 ) FAU ) is used.
  • the molar ratio of silicon to aluminum (Si / Al) in the Y-type zeolite is usually from 2.5 to 50, preferably from 3 to 20, more preferably from 3.5 to 10, more preferably from 4 to 6. The following are more preferred, with about 5.3 being most preferred.
  • the content ratio (mol%) of (SiO 2 ) Ludox to the total silica source ((SiO 2 ) Ludox , (SiO 2 ) FAU ) is usually 30 to 90%, preferably Is 50 to 80%, more preferably 60 to 75%, and more preferably about 74%.
  • the content ratio (mol%) of the alkali source (NaOH or the like) to the total silica source in the same mixture is usually 0.05 to 0.6%, preferably 0.1 to 0.5%, more Preferably, the content is 0.2 to 0.4%.
  • the content ratio of NaOH and KOH is preferably about 0.15%.
  • the content ratio of the structure directing agent to the total silica source in the same mixture is usually 0.05 to 0.5%, preferably 0.1 to 0.4%, and more preferably 0.15 to 0.00. 3%, most preferably about 0.17%.
  • the content ratio (molar ratio) of (SiO 2 ) FAU to the total silica source in the same mixture is usually 10 to 70%, preferably 15 to 50%, more preferably 20 to 35%. Most preferably, it is about%.
  • (SiO 2) Ludox, NaOH , KOH, for H 2 O is such that the content ratios mentioned above, to adjust the amount of mixing in the first preparation step.
  • (SiO 2) FAU, the (Al 2 O 3) FAU, as a content ratio described above it is preferable to adjust the amount of mixing in the second preparation step.
  • the content ratio (molar ratio) of water (H 2 O) to the total silica source is usually 4 to 50, preferably 5 to 30, more preferably 5.5 to 12, more preferably 6-8, most preferably about 7.
  • ⁇ Second heating step> The mixture (raw material) re-prepared in the second preparation step is usually heated after stirring at room temperature.
  • the heating here is usually 100 to 200 ° C., preferably 120 to 190 ° C., more preferably 140 to 180 ° C., more preferably 150 to 170 ° C. in a state where the mixture at room temperature is contained in an autoclave. About 160 ° C. is most preferred.
  • In an oven it is usually performed for 12 hours to 10 days, preferably for 1 to 7 days, standing or stirring.
  • the mixture heated in the second heating step is washed and filtered, and further dried.
  • the drying method include a method in which the washed and filtered mixture is allowed to stand overnight in an oven at about 80 ° C. and a method in which the mixture is dried in the sun.
  • ⁇ Third heating step> By further heating (baking) the organic composite obtained through the drying step, the organic matter (Me 2 Pr 2 NOH used as the structure-directing agent) included can be removed.
  • the heating here is performed at a temperature of about 550 ° C. in a state where the obtained crystalline solid is housed in a muffle furnace. Specifically, the temperature is raised from room temperature to about 550 ° C. at about 1.5 ° C./min, this temperature is maintained for about 6 hours, and then it is allowed to cool.
  • a dimethyldipropylammonium compound is used as a structure-directing agent having a simple structure, and the ratio of water used as a raw material is set to about 6 to 8 of the silica source used as the raw material. About twice as much.
  • the zeolite can be easily and reliably produced with high purity compared to the case of using a conventional production method in which the ratio of water is about 40 times that of the silica source, and mass production is realized. It becomes easy. Further, since the synthesis of the structure directing agent is simplified, the energy required for the synthesis process can be reduced, and the manufacturing cost can be greatly reduced.
  • This synthesis was performed by the following procedure. First, 60 mL of dipropylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 350 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed in a 1 L eggplant flask, and potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) is mixed. ) 90 g was added and stirred at room temperature for 10 minutes. To this, 68 mL of iodomethane (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added over 30 minutes, and finally 50 mL of methanol was added.
  • Step 2 Next, as shown by the following formula, Me 2 Pr 2 NI obtained in Step 1 was converted to Me 2 Pr 2 NOH (dimethyldipropylammonium hydroxide).
  • This conversion was performed by the following procedure. First, 75.22 g of dimethyldipropylammonium iodide synthesized in Step 1 was put into a 1 L PP bottle, and then 325.73 g of strongly basic anion exchange resin (SA10A (OH) manufactured by Mitsubishi Chemical Corporation) was added. added. Next, 500 mL of H 2 O (Milli-Q) was added, the container was shaken lightly, and then allowed to stand in a cool and dark place for 120 hours.
  • SA10A strongly basic anion exchange resin manufactured by Mitsubishi Chemical Corporation
  • the solution was suction filtered through a glass filter (G4), the resin on the filter was thoroughly washed with 300 mL of H 2 O (Milli-Q), and the filtrate and the washing solution were combined and concentrated under reduced pressure.
  • the weight of the obtained solution was 133.37 g, and the concentration of Me 2 Pr 2 NOH determined by 0.05 M hydrochloric acid titration was 2.097 mmol / g (ion exchange rate 96%).
  • the conversion of Me 2 Pr 2 NI to Me 2 Pr 2 NOH is just ion exchange, and the NMR spectrum of Me 2 Pr 2 NOH is similar to that for Me 2 Pr 2 NI.
  • Example 1 A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 16.21 g of Me 2 Pr 2 NOH aqueous solution (2.097 mmol / g) obtained in Production Example 1 was taken in a fluororesin (PFA) container having an internal volume of 150 mL, and 9.37 g of NaOH aqueous solution (3.200 mmol). / G), 9.53 g KOH aqueous solution (3.153 mmol / g), 21.39 g Ludox AS-40 (manufactured by Aldrich, containing 41.3 wt% SiO 2 ) were sequentially added (first preparation step) ).
  • PFA fluororesin
  • composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 NOH-0.15NaOH-0.15KOH-7H 2 O, and the total weight of the mixture was 45.64 g. It was.
  • Example 2 A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 46.77 g (68.0 mmol) of the Me 2 Pr 2 NOH aqueous solution (1.454 mmol / g) obtained in Production Example 1 was put in a fluororesin (PFA) container having an internal volume of 150 mL, and 19.81 g of NaOH.
  • PFA fluororesin
  • Aqueous solution (3.029 mmol / g, 60.0 mmol), 20.81 g of KOH aqueous solution (2.883 mmol / g, 60.0 mmol), 42.78 g of Ludox AS-40 (Aldrich 41.3 wt% SiO 2 Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) were sequentially added (first preparation step).
  • composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.28 g.
  • This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder and allowed to stand in an oven at 160 ° C. for 166 hours (second heating step).
  • the obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step).
  • the weight of the obtained white powder was 13.07 g.
  • Example 3 A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 58.97 g (68.0 mmol) of the Me 2 Pr 2 NOH aqueous solution (1.153 mmol / g) obtained in Production Example 1 was taken in a fluororesin (PFA) container having an internal volume of 150 mL, and 19.81 g of NaOH.
  • PFA fluororesin
  • Aqueous solution (3.029 mmol / g, 60.0 mmol), 20.82 g KOH aqueous solution (2.883 mmol / g, 60.0 mmol), 42.78 g Ludox AS-40 (Aldrich 41.3 wt% SiO 2 Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) was sequentially added (first preparation step).
  • composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.28 g.
  • This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder, and allowed to stand for 95 hours in a 160 ° C. oven at a rotation speed of 20 rpm (second heating step).
  • the obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step).
  • the weight of the obtained white powder was 14.10 g.
  • Example 4 A zeolite was synthesized using Sachem Me 2 Pr 2 NOH as a structure-directing agent. This synthesis was performed by the following procedure. First, 25.54 g (68.0 mmol) of Me 2 Pr 2 NOH aqueous solution (2.663 mmol / g) manufactured by Sachem was taken in a fluorine resin (PFA) container having an internal volume of 150 mL, and 21.04 g of NaOH aqueous solution ( 2.852 mmol / g, 60.0 mmol), 18.80 g of KOH aqueous solution (3.191 mmol / g, 60.0 mmol), 42.78 g of Ludox AS-40 (manufactured by Aldrich, including 41.3 wt% SiO 2) Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) was sequentially added (first preparation step).
  • PFA fluorine resin
  • composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.36 g.
  • This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder, and allowed to stand in an oven at 160 ° C. for 67 hours under a rotation condition of 20 rpm (second heating step).
  • the obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step).
  • the weight of the obtained white powder was 13.73 g.
  • FIG. 2 is a graph showing the analysis result by X-ray diffraction (XRD) of the zeolite of Example 1 obtained by the present inventor.
  • the horizontal axis represents the diffraction angle 2 ⁇ [°]
  • the vertical axis represents the diffraction intensity [cps].
  • a diffraction spectrum (XRD pattern) obtained by baking and removing organic substances is shown in the upper part, and a diffraction spectrum obtained by the unfired sample is shown in the lower part. From FIG. 2, the lattice spacing d ( ⁇ ) shown in Table 2 was detected.
  • the diffraction spectra obtained for the samples before and after calcination both have characteristic peaks that are not found in known zeolites. From this result, it can be seen that any sample is a zeolite in which a crystal phase having a novel skeleton structure is formed.
  • the nitrogen adsorption of zeolite was measured under the following conditions. Equipment used: Belsorb max fully automatic adsorption measuring device manufactured by Microtrack Bell Inc. Measurement temperature: -196 ° C Air bath temperature: 40 ° C Equilibrium adsorption time: 300 seconds Sample pretreatment conditions: 400 ° C, 2 hours
  • the nitrogen adsorption measurement results are shown in the graph of FIG.
  • the graph of FIG. 3 shows the adsorption isotherm.
  • the horizontal axis of the graph represents the relative pressure (ratio between the adsorption equilibrium pressure and the saturated vapor pressure), and the vertical axis represents the nitrogen adsorption amount (cm 3 (STP) / g).
  • standard temperature and pressure means that the adsorption amount is a value converted to a volume (cm 3 ) of 0 ° C. and 1 atm.
  • the lower part of the graph shows the adsorption isotherm before H + ion exchange, and the upper part of the graph shows the adsorption isotherm after H + ion exchange.
  • the black circle plot is in the adsorption process, and the white circle plot is in the desorption process.
  • the BET specific surface area calculated from the lower graph was 434 m 2 / g, the outer surface area was 5.1 m 2 / g, and the pore volume was 0.173 ml / g.
  • Si / Al was 9.09. Na / Al and K / Al were 0.12 and 0.52, respectively.
  • the BET specific surface area calculated from the upper graph was 487 m 2 / g, the outer surface area was 6.7 m 2 / g, and the pore volume was 0.194 ml / g.
  • Si / Al was 9.33.
  • Na / Al and K / Al were each less than 0.03.
  • the 27 Al MAS NMR of the zeolite was measured under the following conditions.
  • the 29 Si MAS NMR of the zeolite was measured under the following conditions.
  • the spectra obtained by 27 Al MAS NMR and 29 Si MAS NMR are shown in the graphs of FIGS.
  • the horizontal axis of each graph represents a chemical shift.
  • the spectrum before firing is shown in the lower part, and the spectrum after firing is shown in the upper part.
  • Si / Al in the skeleton was estimated from the area ratio of these peaks, it was about 10.
  • a scanning electron microscope (SEM) photograph of the zeolite of Example 1 was obtained under the following conditions.
  • FIGS. 6A and 6B The obtained SEM photographs are shown in FIGS. 6A and 6B.
  • 6A (a) to 6 (i) are SEM photographs taken at various magnifications (dimensions to be compared are shown in the figure) from various directions for samples crystallized over 165 hours. This sample corresponds to Example 1.
  • FIG. 6B is a SEM photograph (magnification is the same as FIG. 6A (a)) of a sample crystallized in 45 hours shorter than Example 1.
  • the zeolite of the present invention can be used as an adsorbent for moisture and the like in air conditioning equipment and heat pumps, and can also be used as a catalyst for synthesis of chemical products and as a purification catalyst for automobile exhaust gas and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Zeolite according to the present invention has an X-ray diffraction pattern that contains at least lattice spacings d (Å) shown in Table 1 as measured by a powder X-ray diffraction method.

Description

ゼオライトとその製造方法Zeolite and its production method
 本発明は、新規骨格を有するゼオライトとその製造方法に関する。
 本願は、2016年9月29日に、日本に出願された特願2016-191110号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a zeolite having a novel framework and a method for producing the same.
This application claims priority on the basis of Japanese Patent Application No. 2016-191110 filed in Japan on September 29, 2016, the contents of which are incorporated herein by reference.
 触媒機能を有する材料として、様々な構造のゼオライトが発見され、注目されている。ゼオライト骨格構造のバリエーションは、ここ20年で100程度から230程度に増加している。多様なゼオライト構造を作り分ける上で、有機の鋳型分子、すなわち構造規定剤(SDA)の使用が有効とされている。 As a material having a catalytic function, zeolites having various structures have been discovered and attracted attention. Variations in the zeolite framework structure have increased from about 100 to about 230 in the last 20 years. Use of an organic template molecule, that is, a structure directing agent (SDA) is effective in creating various zeolite structures.
 特に、酸素とテトラヘドラル原子(=T原子;ケイ素など)の環構造からなり、酸素で数えて12員環以上の細孔を有する大孔径ゼオライトの合成には、複雑で嵩高い有機分子を、構造規定剤として用いる考え方が主流となっている(非特許文献1)。ただし、嵩高い有機高分子を用いる場合、アルミニウム含有量が少ない高シリカ組成のゼオライトが合成される傾向にあり、そのままではイオン交換サイトが少ないため、イオン交換を鍵とするNOx還元触媒などの開発には適さないとされている。また、従来の考え方で大孔径のゼオライトを製造する場合、精密な設計・合成が必要とされ、その上、成功率が低いのが実状である。 In particular, in order to synthesize a large-pore zeolite having a ring structure of oxygen and a tetrahedral atom (= T atom; silicon, etc.) and having 12-membered or larger pores counted by oxygen, a complex and bulky organic molecule is used. The idea of using it as a regulating agent has become mainstream (Non-Patent Document 1). However, when bulky organic polymers are used, zeolites with high silica composition with low aluminum content tend to be synthesized, and as they are, there are few ion exchange sites. It is said that it is not suitable for. In addition, when producing a large pore zeolite according to the conventional concept, precise design and synthesis are required, and the success rate is low.
 アルミニウム含有量が多い新規骨格のゼオライトを合成するためには、より単純な構造を有する構造規定剤を用いる必要があると考えられている。例えば、テトラアルキルアンモニウムなどの第四級アンモニウム化合物は、適切に設計すれば、ゼオライトの水熱合成において鋳型として働き、様々な骨格構造の結晶化を誘起する。また、ジメチルジプロピルアンモニウム化合物は、単純な構造を有しており、有用な骨格であるMSEの鋳型となることが知られている。 In order to synthesize a new framework zeolite with a high aluminum content, it is considered necessary to use a structure-directing agent having a simpler structure. For example, quaternary ammonium compounds such as tetraalkylammonium, when properly designed, act as templates in the hydrothermal synthesis of zeolites and induce crystallization of various framework structures. In addition, dimethyldipropylammonium compounds have a simple structure and are known to serve as templates for MSE, which is a useful skeleton.
 ところが、原料として、シリカ源、アルミナ源、アルカリ源、上記構造規定剤を用い、さらに、シリカ源の約40倍以上の量の水を用いて水熱合成を行う従来の方法では、アルミニウムを多く含む(例えばSi/Al=7~10)、新規骨格のゼオライトを得ることができない。 However, in the conventional method in which hydrothermal synthesis is performed using a silica source, an alumina source, an alkali source, and the above-mentioned structure-directing agent as raw materials, and using about 40 times more water than the silica source, a large amount of aluminum is used. Including (for example, Si / Al = 7 to 10), a new framework zeolite cannot be obtained.
 本発明は、かかる事情に鑑みてなされたものであり、アルミニウム含有量が多い新規骨格を有するゼオライトを提供することを目的とする。また、本発明は、このゼオライトを、単純な構造を有する構造規定剤を用い、より確実に製造することを可能とする、ゼオライトの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a zeolite having a novel skeleton having a high aluminum content. Another object of the present invention is to provide a method for producing zeolite, which makes it possible to produce the zeolite more reliably by using a structure directing agent having a simple structure.
 本発明者は、鋭意検討を重ね、原料として用いる水の比率を従来よりも低くし、同じく原料に用いるシリカ源の例えば約6~8倍程度とすることによって、新規骨格のゼオライトが得られることを見出した。本発明は、以下の特徴ないし手段を提供する。
[1]本発明の一態様に係るゼオライトは、粉末X線回折法による測定で、少なくとも下記表1に示す格子面間隔d(Å)および相対強度を含むX線回折パターンを有し、前記相対強度は、前記X線回折パターンに含まれるピークのうち、最大のピークの強度に対する他のピークの強度の比率を示している。
[2][1]に記載のゼオライトにおいて、窒素吸着測定で見積もった細孔容積が0.12ml/g以上0.25ml/g以下であることが好ましい。
[3][1]または[2]のいずれかに記載のゼオライトにおいて、互いに独立した複数の酸素8員環および酸素12員環を有し、複数の前記酸素8員環は、複数のグループに分かれて存在し、各グループにおいて、前記酸素8員環が一方向に共通の貫通孔を有するように重なっており、複数の前記酸素12員環は、複数のグループに分かれて存在し、各グループにおいて、前記酸素12員環が一つの平面に平行な方向に共通の貫通孔を有するように重なっており、前記酸素8員環の重なり方向と前記酸素12員環の重なり方向とが、互いに交差していることが好ましい。
[4][3]に記載のゼオライトにおいて、前記酸素8員環は、その重なり方向と交差する一方向において、対をなすものと孤立したものとが、交互に並んで列をなすように連結されており、前記列同士は、対をなす前記酸素8員環と孤立した前記酸素8員環とが隣り合うように、連結されていることが好ましい。
[5][3]または[4]のいずれかに記載のゼオライトにおいて、前記酸素12員環は、その重なり方向と交差する平面内の二方向において、等間隔で並んで連結されていることが好ましい。
[6][3]~[5]のいずれか一つに記載のゼオライトにおいて、前記酸素8員環の細孔径が、酸素のイオン半径(0.135nm)二つ分の長さを差し引く場合0.295nm以上0.454nm以下、差し引かない場合0.565nm以上0.724nm以下、前記酸素12員環の細孔径が酸素のイオン半径(0.135nm)二つ分の長さを差し引く場合0.595nm以上0.710nm以下、差し引かない場合0.865nm以上0.980nm以下であることが好ましい。
[7][1]~[6]のいずれか一つに記載のゼオライトにおいて、含有するT原子の数密度がT原子15個/nm以上18個/nm以下であることが好ましい。
[8]本発明の一態様に係るゼオライトの製造方法は、[1]~[7]のいずれか一つに記載のゼオライトの製造方法であって、第1のシリカ源、アルカリ源、水、および構造規定剤の混合物を攪拌しながら調製する第1の調製工程と、調製した前記混合物を、攪拌しながら加熱する第1の加熱工程と、加熱した前記混合物を冷却する冷却工程と、冷却した前記混合物に、第2のシリカ源およびアルミナ源を加えて攪拌しながら再調製する第2の調製工程と、再調製した混合物を加熱する第2の加熱工程と、加熱した前記混合物を、洗浄およびろ過した上で乾燥させる乾燥工程と、前記乾燥工程を経て得た有機複合体を加熱し、包接されている有機物を取り除く第3の加熱工程と、を順に有し、前記第1の調製工程において用いる水の物質量を、前記第1のシリカ源の物質量と前記第2のシリカ源の物質量との合計の6~8倍とし、前記第1のシリカ源としてコロイダルシリカを用い、前記第2のシリカ源およびアルミナ源としてY型ゼオライトを用い、前記構造規定剤としてジメチルジプロピルアンモニウム化合物を用いる。
The present inventor has conducted intensive studies and reduced the ratio of water used as a raw material to a lower level than before and can obtain a zeolite having a new framework by, for example, about 6 to 8 times the silica source used for the raw material. I found. The present invention provides the following features or means.
[1] The zeolite according to one aspect of the present invention has an X-ray diffraction pattern including at least a lattice spacing d (Å) and a relative intensity shown in Table 1 below as measured by a powder X-ray diffraction method. The intensity indicates the ratio of the intensity of the other peak to the intensity of the maximum peak among the peaks included in the X-ray diffraction pattern.
[2] In the zeolite according to [1], the pore volume estimated by nitrogen adsorption measurement is preferably 0.12 ml / g or more and 0.25 ml / g or less.
[3] In the zeolite according to any one of [1] and [2], the zeolite has a plurality of oxygen 8-membered rings and oxygen 12-membered rings independent of each other, and the plurality of oxygen 8-membered rings are in a plurality of groups. In each group, the oxygen 8-membered rings are overlapped so as to have a common through-hole in one direction, and the plurality of oxygen 12-membered rings are divided into a plurality of groups, The oxygen 12-membered ring overlaps with a common through hole in a direction parallel to one plane, and the oxygen 8-membered ring overlapping direction and the oxygen 12-membered ring overlapping direction intersect each other. It is preferable.
[4] In the zeolite according to [3], the oxygen 8-membered ring is connected so that a pair and an isolated one form a line in an alternating direction in a direction intersecting the overlapping direction. Preferably, the rows are connected so that the oxygen 8-membered ring and the isolated oxygen 8-membered ring are adjacent to each other.
[5] In the zeolite according to any one of [3] and [4], the oxygen 12-membered ring may be connected side by side at equal intervals in two directions in a plane intersecting the overlapping direction. preferable.
[6] In the zeolite according to any one of [3] to [5], the pore diameter of the oxygen 8-membered ring is 0 when the length of two oxygen ionic radii (0.135 nm) is subtracted. 295 nm or more and 0.454 nm or less, 0.565 nm or more and 0.724 nm or less when not subtracted, and the pore diameter of the oxygen 12-membered ring is 0.595 nm when the length of two oxygen radii (0.135 nm) is subtracted If it is not subtracted, it is preferably 0.865 nm or more and 0.980 nm or less.
[7] In the zeolite according to any one of [1] to [6], the number density of T atoms contained is preferably 15 atoms / nm 3 or more and 18 atoms / nm 3 or less.
[8] A method for producing a zeolite according to one aspect of the present invention is the method for producing a zeolite according to any one of [1] to [7], wherein the first silica source, the alkali source, water, And a first preparation step for preparing the mixture of structure directing agents with stirring, a first heating step for heating the prepared mixture with stirring, a cooling step for cooling the heated mixture, and cooling A second preparation step in which a second silica source and an alumina source are added to the mixture and re-adjusted while stirring, a second heating step in which the re-prepared mixture is heated, and the heated mixture is washed and The first preparation step includes, in order, a drying step of filtering and drying, and a third heating step of heating the organic composite obtained through the drying step and removing the organic matter contained therein. Amount of water used in The amount of the first silica source and the amount of the second silica source are 6 to 8 times the total, and colloidal silica is used as the first silica source, and the second silica source and alumina Y-type zeolite is used as the source, and dimethyldipropylammonium compound is used as the structure-directing agent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のゼオライトは、新規骨格を有する結晶性アルミノシリケート多孔体であり、アルミニウム含有量が多く、イオン交換サイトを多く含むため、イオン交換を鍵とする触媒(例えばNOx還元触媒)の開発に適している。また、本発明のゼオライトは、脱アルミニウムを経てヘテロ元素を導入することができるため、各種の基礎化学品製造用触媒として活用できる可能性がある。 The zeolite of the present invention is a crystalline aluminosilicate porous body having a novel skeleton, and has a high aluminum content and a large number of ion exchange sites. ing. Moreover, since the zeolite of this invention can introduce | transduce a hetero element through dealumination, it may be utilized as a catalyst for various basic chemicals manufacture.
 さらに、本発明のゼオライトは、パラフィンの接触分解を促す固体触媒として応用することができる。また、本発明のゼオライトは、ゼオライトを構成するアルミニウムの一部を、遷移金属(チタン、スズなど)で同型置換することができる。例えば、チタンで同型置換したゼオライトは、酸素、過酸化水素、アルキルヒドロペルオキシド等を酸化剤とするオレフィン、パラフィンおよび芳香環の選択酸化に優れた触媒となる。 Furthermore, the zeolite of the present invention can be applied as a solid catalyst that promotes catalytic decomposition of paraffin. In the zeolite of the present invention, a part of aluminum constituting the zeolite can be replaced with the same type by a transition metal (titanium, tin, etc.). For example, zeolite with the same type substitution with titanium is an excellent catalyst for selective oxidation of olefins, paraffins and aromatic rings using oxygen, hydrogen peroxide, alkyl hydroperoxide or the like as an oxidizing agent.
 本発明のゼオライトの製造方法によれば、アルミニウム含有量が多く、新規骨格を有するゼオライトを得ることができる。本発明のゼオライトの製造方法においては、一例として、単純な構造を有する構造規定剤としてジメチルジプロピルアンモニウム化合物を用い、さらに、原料として用いる水の物質量を、同じく原料に用いるシリカ源の物質量の約6~8倍程度としている。これにより、当該ゼオライトを、水の物質量をシリカ源の物質量の約40倍程度とする従来の製造方法を用いる場合に比べて、容易かつ確実に、高純度で製造することができ、大量生産を実現しやすくなる。また、構造規定剤の合成が簡略化される分、合成プロセスに要するエネルギーを低減することができ、製造コストを大幅に下げることができる。 According to the method for producing a zeolite of the present invention, a zeolite having a high aluminum content and a novel skeleton can be obtained. In the method for producing a zeolite of the present invention, as an example, a dimethyldipropylammonium compound is used as a structure-directing agent having a simple structure, and the amount of water used as a raw material is the same as the amount of silica source used in the raw material. About 6 to 8 times. As a result, the zeolite can be easily and reliably produced with high purity as compared with the case of using a conventional production method in which the amount of water is about 40 times the amount of silica. It becomes easy to realize production. Further, since the synthesis of the structure directing agent is simplified, the energy required for the synthesis process can be reduced, and the manufacturing cost can be greatly reduced.
本発明の一実施形態に係るゼオライトの構造を、一方向から平面視した図である。It is the figure which planarly viewed the structure of the zeolite which concerns on one Embodiment of this invention from one direction. 本発明の一実施形態に係るゼオライトの構造を、他の一方向から平面視した図である。It is the figure which planarly viewed the structure of the zeolite which concerns on one Embodiment of this invention from another one direction. 本発明の一実施形態に係るゼオライトについて、X線回折による分析を行った結果を示すグラフである。It is a graph which shows the result of having analyzed by X-ray diffraction about the zeolite concerning one embodiment of the present invention. 本発明の一実施例に係るゼオライトについて、窒素吸着測定を行った結果を示すグラフである。It is a graph which shows the result of having performed nitrogen adsorption measurement about the zeolite concerning one example of the present invention. 本発明の一実施例に係るゼオライトについて、27Al MAS NMR測定を行った結果を示すグラフである。It is a graph which shows the result of having performed the 27 Al MAS NMR measurement about the zeolite which concerns on one Example of this invention. 本発明の一実施例に係るゼオライトについて、29Si MAS NMR測定を行った結果を示すグラフである。It is a graph which shows the result of having performed 29 Si MAS NMR measurement about the zeolite which concerns on one Example of this invention. 本発明の一実施例に係るゼオライトのSEM写真である。It is a SEM photograph of the zeolite concerning one example of the present invention. 本発明の他の実施例に係るゼオライトのSEM写真である。It is a SEM photograph of the zeolite concerning other examples of the present invention.
 以下、本発明を適用した実施形態であるゼオライトとその製造方法について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, a zeolite that is an embodiment to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.
[ゼオライトの構成]
 本発明の一実施形態に係るゼオライト100の構成について、図1A、1Bを用いて説明する。なお、ここでは3次元空間を、互いに直交するx軸、y軸、z軸で表し、x軸、y軸、z軸と略平行な方向を、それぞれx軸方向、y軸方向、z軸方向と呼ぶものとする。図1Aは、ゼオライト100の構造を、一方向(z軸方向)から平面視した図である。図1Bは、ゼオライト100の構造を、他の一方向(x軸方向)から平面視した図である。
[Configuration of zeolite]
A configuration of the zeolite 100 according to an embodiment of the present invention will be described with reference to FIGS. 1A and 1B. Here, the three-dimensional space is represented by the x-axis, y-axis, and z-axis orthogonal to each other, and directions substantially parallel to the x-axis, y-axis, and z-axis are the x-axis direction, y-axis direction, and z-axis direction, respectively Shall be called. FIG. 1A is a plan view of the structure of zeolite 100 from one direction (z-axis direction). FIG. 1B is a plan view of the structure of zeolite 100 from another direction (x-axis direction).
 ゼオライト(結晶性アルミノシリケート多孔体)100は、互いに独立した、複数の酸素8員環101(101a、101b)および複数の酸素12員環102を有している。後でも述べるように、酸素8員環101aは、y軸方向において孤立、すなわち、y軸方向において他の酸素8員環101aから離間している。また、酸素8員環101bは、y軸方向において他の酸素8員環101bと接して対をなしている。 The zeolite (crystalline aluminosilicate porous body) 100 has a plurality of oxygen 8-membered rings 101 (101a, 101b) and a plurality of oxygen 12-membered rings 102, which are independent of each other. As will be described later, the oxygen 8-membered ring 101a is isolated in the y-axis direction, that is, separated from other oxygen 8-membered rings 101a in the y-axis direction. Further, the oxygen 8-membered ring 101b is in contact with another oxygen 8-membered ring 101b in the y-axis direction to form a pair.
 酸素8員環101の細孔径は、酸素のイオン半径(0.135nm)を考慮する場合、すなわち酸素のイオン半径二つ分の長さを差し引く場合には、0.295nm以上0.454nm以下であることが好ましい。また、酸素8員環101の細孔径は、酸素のイオン半径(0.135nm)を考慮しない場合、すなわち酸素のイオン半径二つ分の長さを差し引かない場合には、0.565nm以上0.724nm以下であることが好ましい。 The pore diameter of the oxygen 8-membered ring 101 is 0.295 nm or more and 0.454 nm or less when the ionic radius of oxygen (0.135 nm) is taken into consideration, that is, when the length of two ionic radii of oxygen is subtracted. Preferably there is. The pore diameter of the oxygen 8-membered ring 101 is 0.565 nm or more and 0.000 when the ionic radius of oxygen (0.135 nm) is not considered, that is, when the length of two ionic radii of oxygen is not subtracted. It is preferable that it is 724 nm or less.
 酸素12員環102の細孔径は、酸素のイオン半径(0.135nm)を考慮する場合、すなわち酸素のイオン半径二つ分の長さを差し引く場合には、0.595nm以上0.710nm以下であることが好ましい。また、酸素12員環102の細孔径は、酸素のイオン半径(0.135nm)を考慮しない場合、すなわち、酸素のイオン半径二つ分の長さを差し引かない場合には、0.865nm以上0.980nm以下であることが好ましい。 The pore diameter of the oxygen 12-membered ring 102 is 0.595 nm or more and 0.710 nm or less when the ionic radius (0.135 nm) of oxygen is taken into account, that is, when the length of two ionic radii of oxygen is subtracted. Preferably there is. The pore diameter of the oxygen 12-membered ring 102 is 0.865 nm or more and 0 when the ionic radius of oxygen (0.135 nm) is not taken into consideration, that is, when the length corresponding to two ionic radii of oxygen is not subtracted. It is preferable that it is 980 nm or less.
 窒素吸着測定で見積もったゼオライト100全体における細孔容積は、通常、0.12ml/g以上0.25ml/g以下であり、0.15ml/g以上0.20ml/g以下であることが好ましく、0.16ml/g以上0.19ml/g以下であることがより好ましい。 The pore volume of the entire zeolite 100 estimated by nitrogen adsorption measurement is usually 0.12 ml / g or more and 0.25 ml / g or less, preferably 0.15 ml / g or more and 0.20 ml / g or less, More preferably, it is 0.16 ml / g or more and 0.19 ml / g or less.
 ゼオライト100の骨格密度、すなわち含有するT原子の数密度(1nmあたりのT原子(ケイ素など)の個数)は、通常、T原子15個/nm以上18個/nm以下であり、16個/nm以上17個/nm以下であることが好ましく、16.6個/nm程度であればより好ましい。 The skeleton density of the zeolite 100, that is, the number density of T atoms contained (the number of T atoms (such as silicon) per 1 nm 3 ) is usually 15 atoms / nm 3 or more and 18 atoms / nm 3 or less. preferably pieces / nm 3 or more 17 / nm 3 or less, more preferably not more than 16.6 pieces / nm 3 nm.
 複数の酸素8員環101aは、複数のグループ101Aに分かれて存在し、各グループ101Aにおいて、酸素8員環101aが一方向(z軸方向)に共通の貫通孔を有するように重なっている。また、複数の酸素8員環101bは、複数のグループ101Bに分かれて存在し、各グループ101Bにおいて、酸素8員環101bが一方向(z軸方向)に共通の貫通孔を有するように重なっている。複数のグループ101A、101Bは、y軸方向において、グループ101Aとグループ101Bの対が交互になるように並んでいる。 The plurality of oxygen 8-membered rings 101a are divided into a plurality of groups 101A, and in each group 101A, the oxygen 8-membered rings 101a overlap so as to have a common through hole in one direction (z-axis direction). The plurality of oxygen 8-membered rings 101b are divided into a plurality of groups 101B, and in each group 101B, the oxygen 8-membered rings 101b overlap so as to have a common through hole in one direction (z-axis direction). Yes. The plurality of groups 101A and 101B are arranged so that pairs of groups 101A and 101B alternate in the y-axis direction.
 各グループ101Aを構成する複数の酸素8員環101aの各々は、隣接するグループ101Bを構成する複数の酸素8員環101bの各々と、酸素6員環を介して連結されている。また、各グループ101Bを構成する複数の酸素8員環101bの各々は、隣接する一方のグループ101Aを構成する、複数の酸素8員環101aの各々と、酸素6員環を介して連結されている。また、各グループ101Bを構成する複数の酸素8員環101bの各々は、隣接する他方のグループ101Bを構成する、複数の酸素8員環101bの各々と、直接連結されている。 Each of the plurality of oxygen 8-membered rings 101a constituting each group 101A is connected to each of the plurality of oxygen 8-membered rings 101b constituting the adjacent group 101B via an oxygen 6-membered ring. Each of the plurality of oxygen 8-membered rings 101b constituting each group 101B is connected to each of the plurality of oxygen 8-membered rings 101a constituting one adjacent group 101A via an oxygen 6-membered ring. Yes. Further, each of the plurality of oxygen 8-membered rings 101b constituting each group 101B is directly connected to each of the plurality of oxygen 8-membered rings 101b constituting the other adjacent group 101B.
 酸素8員環101a、101bの重なり方向は、z軸方向と略平行であることが好ましい。酸素8員環の重なり方向(z軸方向)と交差する一方向(y軸方向)において、対をなす酸素8員環のグループ101Bと孤立した酸素8員環のグループ101Aとが、交互に並んで列101Cをなすように連結されている。対をなす2つのグループ101Bは、いずれもy軸方向に沿って並んでいる。対をなすグループ101Bの一方と、孤立したグループ101Aとの離間距離d1は、約0.519~0.530nmである。 The overlapping direction of the oxygen 8- membered rings 101a and 101b is preferably substantially parallel to the z-axis direction. In one direction (y-axis direction) intersecting the overlapping direction (z-axis direction) of the oxygen 8-membered ring, pairs of oxygen 8-membered rings 101B and groups of isolated oxygen 8-membered rings 101A are alternately arranged. Are connected to form a column 101C. Each of the two groups 101B forming a pair is aligned along the y-axis direction. The separation distance d1 between one of the paired groups 101B and the isolated group 101A is about 0.519 to 0.530 nm.
 列101C同士は、酸素8員環101aと酸素8員環101bの対とが隣り合うように、複数の酸素5員環を介して連結されている。列101C同士の離間距離d2は、約0.27nmである。 The columns 101C are connected to each other via a plurality of oxygen 5-membered rings so that pairs of the oxygen 8-membered ring 101a and the oxygen 8-membered ring 101b are adjacent to each other. The separation distance d2 between the columns 101C is about 0.27 nm.
 複数の酸素12員環102は、複数のグループ102Aに分かれて存在し、各グループ102Aにおいて、酸素12員環102が、xy平面と略平行な方向(一つの平面に略平行な方向)、好ましくはxy平面と平行な方向(一つの平面に平行な方向)に共通の貫通孔を有するように重なっている。複数のグループ102Aは、y軸方向に並んでいる。各グループ102Aを構成する複数の酸素12員環102は、隣接するグループ102Aを構成する複数の酸素12員環102と、それぞれ、酸素4員環および/または酸素5員環を介して連結されている。酸素12員環102の重なり方向は、x軸方向と略平行であることが好ましい。 The plurality of oxygen 12-membered rings 102 are divided into a plurality of groups 102A, and in each group 102A, the oxygen 12-membered ring 102 is in a direction substantially parallel to the xy plane (a direction substantially parallel to one plane), preferably Are overlapped so as to have a common through hole in a direction parallel to the xy plane (a direction parallel to one plane). The plurality of groups 102A are arranged in the y-axis direction. A plurality of oxygen 12-membered rings 102 constituting each group 102A are connected to a plurality of oxygen 12-membered rings 102 constituting adjacent groups 102A via oxygen 4-membered rings and / or oxygen 5-membered rings, respectively. Yes. The overlapping direction of the oxygen 12-membered ring 102 is preferably substantially parallel to the x-axis direction.
 酸素12員環のグループ102Aは、酸素12員環の重なり方向(x軸方向)と交差する平面内の二方向(y軸方向、z軸方向)において、等間隔(d3、d4)で並んで連結されている。具体的には、グループ102Aは、y軸方向に約0.810~0.830nm間隔(d3)、z軸方向に約0.240~0.260nm間隔(d4)で並んでいる。 The group of oxygen 12-membered rings 102A is arranged at equal intervals (d3, d4) in two directions (y-axis direction and z-axis direction) in a plane intersecting the overlapping direction (x-axis direction) of the oxygen 12-membered ring. It is connected. Specifically, the groups 102A are arranged at intervals of about 0.810 to 0.830 nm (d3) in the y-axis direction and at intervals of about 0.240 to 0.260 nm (d4) in the z-axis direction.
 酸素8員環の重なり方向と酸素12員環の重なり方向とは、互いに交差している。これらは、実際には、約89度以上91度以下の角度で交差し、略直交(ほぼ直交)する傾向にあるが、直交していることが好ましい。 The overlapping direction of the oxygen 8-membered ring and the overlapping direction of the oxygen 12-membered ring intersect each other. In reality, they intersect at an angle of about 89 degrees or more and 91 degrees or less and tend to be substantially orthogonal (substantially orthogonal), but are preferably orthogonal.
 上述した構造においては、含有されるシリコンとアルミニウムのモル比(Si/Al)が、8.0以上~9.1以下となっている。このモル比については、例えば、誘導結合プラズマ原子発光スペクトル(ICP-AES)による元素分析、原子吸光分析、蛍光X線分析などによって確認することができる。 In the structure described above, the molar ratio of silicon to aluminum (Si / Al) is 8.0 or more and 9.1 or less. This molar ratio can be confirmed by, for example, elemental analysis by inductively coupled plasma atomic emission spectrum (ICP-AES), atomic absorption analysis, fluorescent X-ray analysis, and the like.
 ゼオライトの構造は、X線回折(XRD)による分析結果から、一義的に特定することができる。後述する実施例おいて、ゼオライト100に対するX線回折の分析結果が得られており、当業者であれば、この分析結果に基づいて、実際にゼオライト100が上述した構造を有すると判断することができる。なお、ゼオライト100が上述した構造を有することについては、専門機関のX線回折の分析によっても検証されている。 The structure of zeolite can be uniquely identified from the analysis result by X-ray diffraction (XRD). In the examples described later, X-ray diffraction analysis results for the zeolite 100 are obtained, and those skilled in the art can determine that the zeolite 100 actually has the above-described structure based on the analysis results. it can. Note that the fact that the zeolite 100 has the above-described structure has also been verified by analysis of X-ray diffraction by a specialized institution.
 すなわち、本実施形態に係るゼオライト100は、粉末X線回折法による測定で、少なくとも、表2に示す格子面間隔d(d-spacing)(Å)が検出されるゼオライトである。より具体的には、ゼオライト100は、粉末X線回折法による測定で、少なくとも、表2に示す格子面間隔d(Å)および相対強度を含むX線回折パターンを有するゼオライトである。相対強度は、X線回折パターンに含まれるピークのうち最大のピークの強度を100とし、これに対する他のピークの強度の比率を示している。ここでは、格子面間隔d(Å)が3.43±0.10に対応するピークの強度が最大となっている。 That is, the zeolite 100 according to the present embodiment is a zeolite in which at least the lattice spacing d (d-spacing) (Å) shown in Table 2 is detected by powder X-ray diffraction measurement. More specifically, the zeolite 100 is a zeolite having an X-ray diffraction pattern including at least a lattice spacing d (Å) and a relative intensity shown in Table 2 as measured by a powder X-ray diffraction method. The relative intensity shows the ratio of the intensity of the other peak to 100, where the intensity of the maximum peak among the peaks included in the X-ray diffraction pattern is 100. Here, the intensity of the peak corresponding to the lattice spacing d (Å) of 3.43 ± 0.10 is maximized.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本実施形態に係るゼオライトは、モル比で表される下記の化学組成を有することが好ましい。
  X:(n)YO
The zeolite according to this embodiment preferably has the following chemical composition represented by a molar ratio.
X 2 O 3 : (n) YO 2
 上記Xは三価元素である。三価元素としては特に限定されるものではないが、通常、ホウ素、アルミニウム、鉄、ガリウムが好ましく、ゼオライト結晶の生成しやすさなどの点から、特にホウ素、アルミニウム、ガリウムが好ましい。三価元素Xは、1種類の三価元素からなるものであってもよく、2種類以上の三価元素を組み合わせてなるものであってもよい。中でも、本実施形態に係るゼオライトは、三価元素Xとしてアルミニウムを含むことが好ましい。この場合のアルミニウムの含有率は、好ましくはX全体の50モル%以上であり、より好ましくは80モル%以上である。 The above X is a trivalent element. Although it does not specifically limit as a trivalent element, Usually, boron, aluminum, iron, and gallium are preferable, and boron, aluminum, and gallium are especially preferable from points, such as the ease of producing | generating a zeolite crystal. The trivalent element X may be composed of one type of trivalent element or may be a combination of two or more types of trivalent elements. Among these, the zeolite according to the present embodiment preferably contains aluminum as the trivalent element X. In this case, the aluminum content is preferably 50 mol% or more, more preferably 80 mol% or more of the entire X.
 上記Yは四価元素である。四価元素としては特に限定されるものではないが、通常、シリコン、ゲルマニウム、スズ、チタン、ジルコニウムが好ましく、ゼオライト結晶の生成しやすさなどの点から、特にシリコン、ゲルマニウム、スズ、チタンが好ましい。四価元素Yは、1種類の四価元素からなるものであってもよく、2種類以上の四価元素を組み合わせてなるものであってもよい。中でも、本実施形態に係るゼオライトは、四価元素Yとしてシリコンを含むことが好ましい。この場合のシリコンの含有率は、好ましくはY全体の50モル%以上であり、より好ましくは80モル%以上である。 Y is a tetravalent element. The tetravalent element is not particularly limited, but usually silicon, germanium, tin, titanium, and zirconium are preferable, and silicon, germanium, tin, and titanium are particularly preferable from the viewpoint of easy formation of zeolite crystals. . The tetravalent element Y may be composed of one type of tetravalent element or may be a combination of two or more types of tetravalent elements. Among these, the zeolite according to the present embodiment preferably contains silicon as the tetravalent element Y. In this case, the silicon content is preferably 50 mol% or more, more preferably 80 mol% or more of the entire Y.
 上記nの値は、三価元素Xの酸化物と四価元素Yの酸化物のモル比を表すもので、n/2の値として、通常は5以上1000以下、好ましくは6以上100以下、さらに好ましくは6.5以上30以下、より好ましくは7以上10以下である。 The value of n represents the molar ratio of the oxide of the trivalent element X and the oxide of the tetravalent element Y. The value of n / 2 is usually 5 or more and 1000 or less, preferably 6 or more and 100 or less, More preferably, it is 6.5 or more and 30 or less, More preferably, it is 7 or more and 10 or less.
 本実施形態に係るゼオライトには、三価元素X、四価元素Y以外の金属元素が含まれていてもよい。このような「金属元素を含む」場合とは、該金属元素がゼオライトの骨格内に存在する場合と骨格外に存在する場合のいずれであっても良く、混合物である場合も含まれる。本実施形態に係るゼオライトが他の金属元素を含む場合、その金属元素としては、特に限定されるものではないが、吸着材用途や触媒用途での特性の点から、通常、鉄、コバルト、マグネシウム、亜鉛、銅、パラジウム、イリジウム、白金、銀、金、セリウム、ランタン、プラセオジム、チタン、ジルコニウム等の周期表3~12族の遷移金属が挙げられる。 The zeolite according to this embodiment may contain a metal element other than the trivalent element X and the tetravalent element Y. Such a case of “containing a metal element” may be either a case where the metal element is present in the framework of the zeolite or a case where the metal element is present outside the framework, and also includes a case where it is a mixture. When the zeolite according to the present embodiment contains other metal elements, the metal elements are not particularly limited, but are usually iron, cobalt, magnesium from the viewpoint of properties in adsorbent applications and catalyst applications. And transition metals belonging to Groups 3 to 12 of the periodic table, such as zinc, copper, palladium, iridium, platinum, silver, gold, cerium, lanthanum, praseodymium, titanium, and zirconium.
 本実施形態に係るゼオライトが他の金属元素を含む場合、ゼオライト中の金属元素の含有量は、0.1重量%以上20重量%以下であることが好ましく、0.3重量%以上10重量%以下であればより好ましい。鉄、銅等のその他の金属元素を含むことにより触媒の活性サイトを生じるといった効果が得られる。さらに、その含有量を上記の下限値以上とすることにより、優れた触媒効果が得られ、上記の上限値以下とすることにより、金属元素をゼオライト中に均一に分散させることが容易になり、優れた触媒活性が得られるため好ましい。 When the zeolite according to the present embodiment contains another metal element, the content of the metal element in the zeolite is preferably 0.1 wt% or more and 20 wt% or less, and is 0.3 wt% or more and 10 wt% or less. The following is more preferable. By including other metal elements such as iron and copper, an effect of generating an active site of the catalyst can be obtained. Furthermore, by making the content more than the above lower limit value, an excellent catalytic effect is obtained, and by making the content not more than the above upper limit value, it becomes easy to uniformly disperse the metal element in the zeolite, It is preferable because excellent catalytic activity can be obtained.
 本実施形態に係るゼオライト中には、ナトリウム、カリウム、セシウムなどの金属陽イオンを含有させてもよく、アンモニウムイオン(NH )、水素イオン(H)などの非金属陽イオンを含有させてもよい。また、金属陽イオンと非金属陽イオンとを同時に含有させてもよい。ゼオライト結晶中の陽イオンは、イオン交換によって他のイオンに置き換えることが可能である。 The zeolite according to the present embodiment may contain a metal cation such as sodium, potassium or cesium, or a non-metal cation such as ammonium ion (NH 4 + ) or hydrogen ion (H + ). May be. Moreover, you may contain a metallic cation and a nonmetallic cation simultaneously. The cations in the zeolite crystals can be replaced with other ions by ion exchange.
 本実施形態に係るゼオライトは、他の金属元素や金属陽イオンの含有の有無、イオン交換の有無に関わらず、表2および図2に示されるX線粉末回折パターンを有することを特徴とする。 The zeolite according to this embodiment is characterized by having the X-ray powder diffraction pattern shown in Table 2 and FIG. 2 regardless of the presence or absence of other metal elements or metal cations and the presence or absence of ion exchange.
 本実施形態に係るゼオライトは、新規骨格を有する結晶性アルミノシリケート多孔体であり、アルミニウム含有量が多く(例えばSi/Al=8.0~9.1)、イオン交換サイトを多く含むため、イオン交換を鍵とする触媒(例えばNOx還元触媒)の開発に適している。本実施形態に係るゼオライトは、その用途に関しての制限は特にないが、特有の結晶構造を有することから、触媒、吸着材、分離材料などとして、好適に用いられる。また、本実施形態に係るゼオライトは、脱アルミニウムを経てヘテロ元素を導入することができるため、各種基礎化学品の製造用触媒として活用できる可能性がある。 The zeolite according to the present embodiment is a crystalline aluminosilicate porous body having a novel skeleton, has a high aluminum content (for example, Si / Al = 8.0 to 9.1), and contains many ion exchange sites. It is suitable for the development of a catalyst (for example, NOx reduction catalyst) whose key is replacement. The zeolite according to the present embodiment is not particularly limited with respect to its use, but has a specific crystal structure, and therefore is suitably used as a catalyst, an adsorbent, a separation material, and the like. Moreover, since the zeolite which concerns on this embodiment can introduce | transduce a hetero element through dealumination, it may be utilized as a catalyst for manufacture of various basic chemicals.
 さらに、本実施形態に係るゼオライトは、パラフィンの接触分解を促す固体触媒として応用することができる。また、本発明のゼオライトは、構成するアルミニウムの一部を、遷移金属(チタン、スズなど)で同型置換することができる。例えば、チタンで同型置換したゼオライトは、酸素、過酸化水素、アルキルヒドロペルオキシド等を酸化剤とするオレフィン、パラフィンおよび芳香環の選択酸化に優れた触媒となる。 Furthermore, the zeolite according to this embodiment can be applied as a solid catalyst that promotes the catalytic decomposition of paraffin. Further, the zeolite of the present invention can be isomorphously substituted with a transition metal (titanium, tin, etc.) for a part of the constituent aluminum. For example, zeolite with the same type substitution with titanium is an excellent catalyst for selective oxidation of olefins, paraffins and aromatic rings using oxygen, hydrogen peroxide, alkyl hydroperoxide or the like as an oxidizing agent.
[ゼオライトの製造方法]
 本実施形態に係る、ゼオライト100の製造方法について説明する。ゼオライト100の製造方法は、主に、第1の調製工程、第1の加熱工程、冷却工程、第2の調製工程、第2の加熱工程、乾燥工程、第3の加熱工程を、順に有している。
[Method for producing zeolite]
The manufacturing method of the zeolite 100 based on this embodiment is demonstrated. The manufacturing method of the zeolite 100 mainly has a first preparation step, a first heating step, a cooling step, a second preparation step, a second heating step, a drying step, and a third heating step in this order. ing.
<第1の調製工程>
 まず、第一のシリカ源、アルミニウム源、アルカリ源、水、および構造規定剤(SDA)の混合物(ゲル)を調製する。
<First preparation step>
First, a mixture (gel) of a first silica source, an aluminum source, an alkali source, water, and a structure directing agent (SDA) is prepared.
 第一のシリカ源としては、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲルなどのうち、1種又は2種以上を用いることができる。好ましくは、コロイダルシリカ((SiOLudox、LUDOX(登録商標))を用いる。 As the first silica source, for example, one or more of colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used. Preferably, colloidal silica ((SiO 2 ) Ludox , LUDOX (registered trademark)) is used.
 アルミニウム源としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル、金属アルミニウムなどのうち、1種又は2種以上を用いることができる。また、Y型ゼオライトなどのゼオライトをアルミニウム源として用いることも可能である。 As the aluminum source, for example, one or more of aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metal aluminum and the like can be used. It is also possible to use zeolite such as Y-type zeolite as the aluminum source.
 アルカリ源としては、特に限定は無いが、例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化セシウム(CsOH)などのうち、1種、または2種以上を用いるのが好ましく、この中でも水酸化ナトリウム(NaOH)および水酸化カリウム(KOH)を用いるのがより好ましい。 The alkali source is not particularly limited. For example, one or two of sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH), and the like can be used. It is preferable to use the above, and among these, it is more preferable to use sodium hydroxide (NaOH) and potassium hydroxide (KOH).
 構造規定剤としては、例えば、ジメチルジプロピルアンモニウム塩が好ましく、ジメチルジプロピルアンモニウムヒドロキシド(MePrNOH)がより好ましい。Me、Prは、それぞれメチル基(CH)、プロピル基(CHCHCH)を示している。MePrNOHの製造方法については、実施例として後述する。 As the structure directing agent, for example, dimethyldipropylammonium salt is preferable, and dimethyldipropylammonium hydroxide (Me 2 Pr 2 NOH) is more preferable. Me and Pr represent a methyl group (CH 3 ) and a propyl group (CH 3 CH 2 CH 2 ), respectively. A method for producing Me 2 Pr 2 NOH will be described later as an example.
<第1の加熱工程>
 次に、第1の調製工程で調製した混合物を、攪拌しながら加熱する。具体的には、60℃以上に加熱されたホットプレート上で混合物を攪拌しながら、混合物を所定の量まで濃縮するために水を一部蒸発させる。
<First heating step>
Next, the mixture prepared in the first preparation step is heated with stirring. Specifically, water is partially evaporated to concentrate the mixture to a predetermined amount while stirring the mixture on a hot plate heated to 60 ° C. or higher.
<冷却工程>
 次に、第1の加熱工程で加熱した混合物を、水浴を用いて室温程度まで冷却する。なお、第1の加熱工程、冷却工程は省略することも可能である。
<Cooling process>
Next, the mixture heated in the first heating step is cooled to about room temperature using a water bath. Note that the first heating step and the cooling step can be omitted.
<第2の調製工程>
 次に、冷却工程で冷却した混合物を、必要に応じて、第2のシリカ源およびアルミナ源を加えて再調製する。第2のシリカ源およびアルミナ源としては、Y型ゼオライト(SiOFAU、(AlFAU)を用いる。Y型ゼオライト中のシリコンとアルミニウムのモル比(Si/Al)は、通常、2.5以上50以下であるが、3以上20以下が好ましく、3.5以上10以下がより好ましく、4以上6以下がさらに好ましく、約5.3が最も好ましい。
<Second preparation step>
Next, the mixture cooled in the cooling step is re-prepared by adding a second silica source and an alumina source as necessary. As the second silica source and alumina source, Y-type zeolite (SiO 2 ) FAU , (Al 2 O 3 ) FAU ) is used. The molar ratio of silicon to aluminum (Si / Al) in the Y-type zeolite is usually from 2.5 to 50, preferably from 3 to 20, more preferably from 3.5 to 10, more preferably from 4 to 6. The following are more preferred, with about 5.3 being most preferred.
 なお、再調製した混合物中において、全シリカ源((SiOLudox、(SiOFAU)に対する(SiOLudoxの含有比率(mol%)は、通常、30から90%であり、好ましくは、50から80%であり、より好ましくは60から75%であり、74%程度とすることがより好ましい。また、同じ混合物中の全シリカ源に対するアルカリ源(NaOH等)の含有比率(mol%)は、通常、0.05~0.6%であり、好ましくは0.1~0.5%、より好ましくは0.2~0.4%である。NaOHとKOHを両方用いる場合は、NaOH、KOHの含有比率は、いずれも0.15%程度とすることが好ましい。また、同じ混合物中の全シリカ源に対する構造規定剤の含有比率は、通常、0.05~0.5%、好ましくは0.1~0.4%、さらに好ましくは、0.15~0.3%であり、0.17%程度とすることが最も好ましい。また、同じ混合物中の全シリカ源に対する(SiOFAUの含有比率(モル比)は、通常、10~70%、好ましくは15~50%、より好ましくは、20~35%であり、25%程度とすることが最も好ましい。 In the re-prepared mixture, the content ratio (mol%) of (SiO 2 ) Ludox to the total silica source ((SiO 2 ) Ludox , (SiO 2 ) FAU ) is usually 30 to 90%, preferably Is 50 to 80%, more preferably 60 to 75%, and more preferably about 74%. In addition, the content ratio (mol%) of the alkali source (NaOH or the like) to the total silica source in the same mixture is usually 0.05 to 0.6%, preferably 0.1 to 0.5%, more Preferably, the content is 0.2 to 0.4%. When both NaOH and KOH are used, the content ratio of NaOH and KOH is preferably about 0.15%. In addition, the content ratio of the structure directing agent to the total silica source in the same mixture is usually 0.05 to 0.5%, preferably 0.1 to 0.4%, and more preferably 0.15 to 0.00. 3%, most preferably about 0.17%. The content ratio (molar ratio) of (SiO 2 ) FAU to the total silica source in the same mixture is usually 10 to 70%, preferably 15 to 50%, more preferably 20 to 35%. Most preferably, it is about%.
 上述した組成になるように、(SiOLudox、NaOH、KOH、HOについては、上述した含有比率となるように、第1の調製工程で混合する量を調整する。また、(SiOFAU、(AlFAUについては、上述した含有比率となるように、第2の調製工程で混合する量を調整するのが好ましい。 So that the above-mentioned composition, (SiO 2) Ludox, NaOH , KOH, for H 2 O is such that the content ratios mentioned above, to adjust the amount of mixing in the first preparation step. Further, (SiO 2) FAU, the (Al 2 O 3) FAU, as a content ratio described above, it is preferable to adjust the amount of mixing in the second preparation step.
 さらに、再調製した混合物中において、全シリカ源に対する水(HO)の含有比率(モル比)は、通常、4~50であり、好ましくは5~30、より好ましくは、5.5~12、もっと好ましくは、6~8であり、約7とすることが最も好ましい。混合物中のHOの含有比率をこのように低くすることにより、有機物濃度が高く、細孔容積が大きいゼオライトが得られることになる。 Furthermore, in the re-prepared mixture, the content ratio (molar ratio) of water (H 2 O) to the total silica source is usually 4 to 50, preferably 5 to 30, more preferably 5.5 to 12, more preferably 6-8, most preferably about 7. By reducing the content ratio of H 2 O in the mixture in this way, a zeolite having a high organic matter concentration and a large pore volume can be obtained.
<第2の加熱工程>
 第2の調製工程で再調製した混合物(原料)を、通常、室温で攪拌した上で加熱する。
ここでの加熱は、室温の混合物を、オートクレーブに収容した状態で、通常、100~200℃、好ましくは、120~190℃、より好ましくは、140~180℃、さらに好ましくは、150~170℃であり、約160℃が最も好ましい。オーブン中に通常、12時間から10日間程度、好ましくは1日から7日間程度、静置、あるいは撹拌状態で行う。
<Second heating step>
The mixture (raw material) re-prepared in the second preparation step is usually heated after stirring at room temperature.
The heating here is usually 100 to 200 ° C., preferably 120 to 190 ° C., more preferably 140 to 180 ° C., more preferably 150 to 170 ° C. in a state where the mixture at room temperature is contained in an autoclave. About 160 ° C. is most preferred. In an oven, it is usually performed for 12 hours to 10 days, preferably for 1 to 7 days, standing or stirring.
<乾燥工程>
 次に、第2の加熱工程で加熱した混合物を、洗浄およびろ過した上で、さらに乾燥させる。ここでの乾燥の方法には、例えば、洗浄およびろ過した混合物を、約80℃のオーブン中に一晩静置して行う方法、天日で干して行う方法等がある。
<Drying process>
Next, the mixture heated in the second heating step is washed and filtered, and further dried. Examples of the drying method include a method in which the washed and filtered mixture is allowed to stand overnight in an oven at about 80 ° C. and a method in which the mixture is dried in the sun.
 以上の工程を経て、ゼオライト100の結晶性固体を含有する有機複合体(粉末)を得る。 Through the above steps, an organic composite (powder) containing a crystalline solid of zeolite 100 is obtained.
<第3の加熱工程>
 乾燥工程を経て得た有機複合体に対して、さらに加熱(焼成)を行うことにより、包接されている有機物(構造規定剤として用いたMePrNOH)を除去することができる。ここでの加熱は、得られた結晶性固体を、マッフル炉に収容した状態で約550℃の加熱を行う。具体的には、約1.5℃/minで室温から550℃程度まで昇温し、この温度を約6時間保持し、最後に放冷する。
<Third heating step>
By further heating (baking) the organic composite obtained through the drying step, the organic matter (Me 2 Pr 2 NOH used as the structure-directing agent) included can be removed. The heating here is performed at a temperature of about 550 ° C. in a state where the obtained crystalline solid is housed in a muffle furnace. Specifically, the temperature is raised from room temperature to about 550 ° C. at about 1.5 ° C./min, this temperature is maintained for about 6 hours, and then it is allowed to cool.
 本実施形態に係るゼオライト100の製造方法によれば、アルミニウム含有量が多く(Si/Al=7~10)、新規骨格を有するゼオライトを得ることができる。本実施形態のゼオライト100の製造方法においては、単純な構造を有する構造規定剤としてジメチルジプロピルアンモニウム化合物を用い、さらに、原料として用いる水の比率を、同じく原料に用いるシリカ源の約6~8倍程度としている。これにより、当該ゼオライトを、水の比率をシリカ源の約40倍程度とする従来の製造方法を用いる場合に比べて、容易かつ確実に、高純度で製造することができ、大量生産を実現しやすくなる。また、構造規定剤の合成が簡略化される分、合成プロセスに要するエネルギーを低減することができ、製造コストを大幅に下げることができる。 According to the method for producing zeolite 100 according to the present embodiment, a zeolite having a high aluminum content (Si / Al = 7 to 10) and having a novel skeleton can be obtained. In the method for producing zeolite 100 of the present embodiment, a dimethyldipropylammonium compound is used as a structure-directing agent having a simple structure, and the ratio of water used as a raw material is set to about 6 to 8 of the silica source used as the raw material. About twice as much. As a result, the zeolite can be easily and reliably produced with high purity compared to the case of using a conventional production method in which the ratio of water is about 40 times that of the silica source, and mass production is realized. It becomes easy. Further, since the synthesis of the structure directing agent is simplified, the energy required for the synthesis process can be reduced, and the manufacturing cost can be greatly reduced.
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.
(製造例1)
 本発明のゼオライトの構造規定剤として用いる、ジメチルジプロピルアンモニウムヒドロキシドの製造例1を示す。
(Production Example 1)
Production Example 1 of dimethyldipropylammonium hydroxide used as a structure-directing agent for the zeolite of the present invention is shown.
[ステップ1]
 まず、次式で示すように、ジプロピルジメチルアンモニウムを合成した。
[Step 1]
First, as shown by the following formula, dipropyldimethylammonium was synthesized.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 この合成を、次の手順で行った。まず、ジプロピルアミン(東京化成工業(株)製)60mLと、メタノール(和光純薬工業(株)製)350mLを、1Lナスフラスコ中で混合し、炭酸カリウム(和光純薬工業(株)製)90gを加えて、室温で10分間撹拌した。
ここに、ヨードメタン(和光純薬工業(株)製)68mLを、30分間にわたってゆっくり加え、最後に50mLのメタノールを追加した。
This synthesis was performed by the following procedure. First, 60 mL of dipropylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 350 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed in a 1 L eggplant flask, and potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) is mixed. ) 90 g was added and stirred at room temperature for 10 minutes.
To this, 68 mL of iodomethane (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added over 30 minutes, and finally 50 mL of methanol was added.
 次に、室温で72時間攪拌し、クロロホルム(和光純薬工業(株)製)200mLを加えて、室温でさらに20分間撹拌した。 Next, the mixture was stirred at room temperature for 72 hours, 200 mL of chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at room temperature for 20 minutes.
 次に、グラスフィルター(G4)を用いて吸引濾過し、得られた固形物を150mLのクロロホルムで洗浄した。ろ液と洗浄液を合わせて1Lナスフラスコにとり、エバポレーターを用いて40℃で減圧し、乾固させた。 Next, suction filtration was performed using a glass filter (G4), and the resulting solid was washed with 150 mL of chloroform. The filtrate and the washing solution were combined and placed in a 1 L eggplant flask, and reduced in pressure using an evaporator at 40 ° C. to dryness.
 次に、200mLのクロロホルム(和光純薬工業(株)製)を加えて生成物を抽出し、不溶性の無機塩を吸引ろ過により取り除いた。ろ液は、1Lナスフラスコにとり、再度減圧して乾固させた。200mLのクロロホルムで生成物を抽出し、無機塩を吸引ろ過により取り除いて、透明なろ液を1Lナスフラスコに受けた。ろ液を減圧乾固させ、次いで100mLのベンゼン(和光純薬工業(株)製)を加えて再度乾固させた。 Next, 200 mL of chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) was added to extract the product, and insoluble inorganic salts were removed by suction filtration. The filtrate was taken in a 1 L eggplant flask and again dried under reduced pressure. The product was extracted with 200 mL of chloroform, the inorganic salts were removed by suction filtration, and the clear filtrate was received in a 1 L eggplant flask. The filtrate was dried under reduced pressure, and then 100 mL of benzene (manufactured by Wako Pure Chemical Industries, Ltd.) was added to dry it again.
 次に、150mLの2-プロパノール(和光純薬工業(株)製)を加え、100℃のオイルバス上で加熱し、粗結晶を溶解させた。放冷後、150mLのジエチルエーテル (和光純薬工業(株)製)をゆっくり加え、結晶を再沈殿させた。これをグラスフィルター(G3)を用いて吸引ろ過し、固体を、ジエチルエーテル:2-プロパノール=3:2(体積比)の混合液150mLを用いて洗浄した。得られた結晶を真空乾燥した。生成物MePrNI(ジメチルジプロピルアンモニウムヨージド)の収量は、105.5g(収率90%)であった。 Next, 150 mL of 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated on an oil bath at 100 ° C. to dissolve the crude crystals. After allowing to cool, 150 mL of diethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added to reprecipitate the crystals. This was subjected to suction filtration using a glass filter (G3), and the solid was washed with 150 mL of a mixed solution of diethyl ether: 2-propanol = 3: 2 (volume ratio). The obtained crystals were vacuum dried. The yield of the product Me 2 Pr 2 NI (dimethyldipropylammonium iodide) was 105.5 g (90% yield).
 生成物のNMR分析値として、H NMR(500MHz、CDCl)で測定した場合と、13C NMR(126MHz、CDCl)で測定した場合に、得られた化学シフトδを、以下に示す。 As NMR analysis values of the product, chemical shift δ obtained when measured by 1 H NMR (500 MHz, CDCl 3 ) and measured by 13 C NMR (126 MHz, CDCl 3 ) is shown below.
(i)H NMR(500MHz、CDCl)で測定した場合のδ:
  1.07(6H、t、J=7.4Hz、CH-CH-CH
  1.82(4H、m、CH-CH-CDCl
  3.38(6H、s、N-CH
  3.54(4H、m、N-CH-CH
(ii)13C NMR(126MHz、CDCl)で測定した場合のδ:
  10.58、16.40、51.52、65.80
(I) δ when measured by 1 H NMR (500 MHz, CDCl 3 ):
1.07 (6H, t, J = 7.4 Hz, CH 2 —CH 2 —CH 3 )
1.82 (4H, m, CH 2 —CH 2 —CDCl 3 )
3.38 (6H, s, N + -CH 3 )
3.54 (4H, m, N + —CH 2 —CH 2 )
(Ii) δ when measured by 13 C NMR (126 MHz, CDCl 3 ):
10.58, 16.40, 51.52, 65.80
[ステップ2]
 次に、次式で示すように、ステップ1で得たMePrNIを、MePrNOH(ジメチルジプロピルアンモニウムヒドロキシド)に変換した。
[Step 2]
Next, as shown by the following formula, Me 2 Pr 2 NI obtained in Step 1 was converted to Me 2 Pr 2 NOH (dimethyldipropylammonium hydroxide).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 この変換を、次の手順で行った。まず、ステップ1で合成したジメチルジプロピルアンモニウムヨージド75.22gを、1LのPPボトルに入れ、続いて強塩基性陰イオン交換樹脂(三菱化学(株)製 SA10A(OH))325.73gを加えた。次に、HO(Milli-Q)500mLを加え、容器を軽く振り混ぜたのち、120時間冷暗所に静置した。 This conversion was performed by the following procedure. First, 75.22 g of dimethyldipropylammonium iodide synthesized in Step 1 was put into a 1 L PP bottle, and then 325.73 g of strongly basic anion exchange resin (SA10A (OH) manufactured by Mitsubishi Chemical Corporation) was added. added. Next, 500 mL of H 2 O (Milli-Q) was added, the container was shaken lightly, and then allowed to stand in a cool and dark place for 120 hours.
 次に、グラスフィルター(G4)により吸引濾過し、フィルター上の樹脂をHO(Milli-Q)300mLでよく洗浄し、ろ液と洗浄液を合わせて減圧濃縮した。得られた溶液の重量は133.37gであり、0.05Mの塩酸滴定により求めたMePrNOHの濃度は、2.097mmol/g(イオン交換率96%)であった。MePrNIからMePrNOHへの変換は、単なるイオン交換であり、MePrNOHのNMRスペクトルは、MePrNIに対するものと同様である。 Next, the solution was suction filtered through a glass filter (G4), the resin on the filter was thoroughly washed with 300 mL of H 2 O (Milli-Q), and the filtrate and the washing solution were combined and concentrated under reduced pressure. The weight of the obtained solution was 133.37 g, and the concentration of Me 2 Pr 2 NOH determined by 0.05 M hydrochloric acid titration was 2.097 mmol / g (ion exchange rate 96%). The conversion of Me 2 Pr 2 NI to Me 2 Pr 2 NOH is just ion exchange, and the NMR spectrum of Me 2 Pr 2 NOH is similar to that for Me 2 Pr 2 NI.
 (実施例1)
 製造例1で得たMePrNOHを構造規定剤として用い、ゼオライトの合成を行った。この合成を、次の手順で行った。まず、内容積150mLのフッ素樹脂(PFA)製容器に、製造例1で得たMePrNOH水溶液(2.097mmol/g)を16.21gとり、9.37gのNaOH水溶液(3.200mmol/g)、9.53gのKOH水溶液(3.153mmol/g)、21.39gのLudox AS-40(アルドリッチ社製、41.3wt%SiOを含む)を順次加えた(第1の調製工程)。
(Example 1)
A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 16.21 g of Me 2 Pr 2 NOH aqueous solution (2.097 mmol / g) obtained in Production Example 1 was taken in a fluororesin (PFA) container having an internal volume of 150 mL, and 9.37 g of NaOH aqueous solution (3.200 mmol). / G), 9.53 g KOH aqueous solution (3.153 mmol / g), 21.39 g Ludox AS-40 (manufactured by Aldrich, containing 41.3 wt% SiO 2 ) were sequentially added (first preparation step) ).
 次に、液温が約60℃となるように設定したホットプレート上で約3時間撹拌することにより、20.26gの水(第1の調製工程で洗い込みのために用いた4.41gの水を含む)を蒸発させた(第1の加熱工程)。得られた混合物を、水浴を用いて室温まで冷却したのち(冷却工程)、4.99gのY型ゼオライト(乾燥時の組成H30.5Al30.5Si161.5384、東ソー(株)製、HSZ-350HUA、本実施例において実際には、63.9wt%のSiO2、10.2wt%のAl、25.9wt%のHOを含んでいるもの)を加え(第2の調製工程)、室温で10分間撹拌した。得られた混合物の組成は、1.0SiO-0.025Al-0.17MePrNOH-0.15NaOH-0.15KOH-7HO、混合物の全重量は45.64gとなった。 Next, by stirring for about 3 hours on a hot plate set so that the liquid temperature becomes about 60 ° C., 20.26 g of water (4.41 g of water used for washing in the first preparation step) was obtained. Water) was evaporated (first heating step). After cooling the resulting mixture to room temperature using a water bath (cooling step), 4.99 g of Y-type zeolite (composition H 30.5 Al 30.5 Si 161.5 O 384 , Tosoh Corporation) ), HSZ-350HUA, which actually contains 63.9 wt% SiO 2, 10.2 wt% Al 2 O 3 , 25.9 wt% H 2 O in this example) (2nd preparation process), it stirred for 10 minutes at room temperature. The composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 NOH-0.15NaOH-0.15KOH-7H 2 O, and the total weight of the mixture was 45.64 g. It was.
 この混合物を、内容積125mLのフッ素樹脂(PTFE)製内筒つきオートクレーブに移し、これを160℃のオーブン中に165時間静置した(第2の加熱工程)。得られた固体生成物は、ろ過で回収し、80℃のオーブン中で一晩乾燥させた(乾燥工程)。得られた白色粉末の重量は6.84gであった。 This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder, and left standing in an oven at 160 ° C. for 165 hours (second heating step). The obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step). The weight of the obtained white powder was 6.84 g.
 このうち5.02gをアルミナ製のシャーレにとり、マッフル炉中の空気雰囲気下で室温から毎分1.5℃の速度で昇温し、550℃で6時間保持し、その後放冷した(第3の加熱工程(焼成工程))。こうして白色粉末(焼成後)4.90gを得た。 Of this, 5.02 g was placed in an alumina petri dish, heated from room temperature at a rate of 1.5 ° C. per minute in an air atmosphere in a muffle furnace, held at 550 ° C. for 6 hours, and then allowed to cool (third). Heating step (firing step)). In this way, 4.90 g of white powder (after baking) was obtained.
(実施例2)
 製造例1で得たMePrNOHを構造規定剤として用い、ゼオライトの合成を行った。この合成を、次の手順で行った。まず、内容積150mLのフッ素樹脂(PFA)製容器に、製造例1で得たMePrNOH水溶液(1.454mmol/g)を46.77g(68.0mmol)入れ、19.81gのNaOH水溶液(3.029mmol/g、60.0mmol)、20.81gのKOH水溶液(2.883mmol/g、60.0mmol)、42.78gのLudox AS-40(アルドリッチ社製、41.3wt% SiOを含むため、17.67g-SiO、 293.8mmol-SiO)を順次加えた(第1の調製工程)。
(Example 2)
A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 46.77 g (68.0 mmol) of the Me 2 Pr 2 NOH aqueous solution (1.454 mmol / g) obtained in Production Example 1 was put in a fluororesin (PFA) container having an internal volume of 150 mL, and 19.81 g of NaOH. Aqueous solution (3.029 mmol / g, 60.0 mmol), 20.81 g of KOH aqueous solution (2.883 mmol / g, 60.0 mmol), 42.78 g of Ludox AS-40 (Aldrich 41.3 wt% SiO 2 Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) were sequentially added (first preparation step).
 次に、液温が約60℃となるように設定したホットプレート上で約6時間撹拌することにより、53.40gの水(第1の調製工程で洗い込みのために用いた4.52gの水を含む)を蒸発させた(第1の加熱工程)。得られた混合物を、水浴を用いて室温まで冷却したのち(冷却工程)、9.99gのY型ゼオライト(乾燥時の組成H30.5Al30.5Si161.5384、東ソー(株)製、HSZ-350HUA、#35UA3502、Si/Al=5.3、本実施例において実際には、63.9wt%のSiO、10.2wt%のAl、25.9wt%のHOを含んでいるもの)を加え(第2の調製工程)、室温で10分間撹拌した。得られた混合物の組成は、1.0SiO-0.025Al-0.17MePrOH-0.15NaOH-0.15KOH-7.0HO、混合物の全重量は91.28gとなった。 Next, by stirring for about 6 hours on a hot plate set to a liquid temperature of about 60 ° C., 53.40 g of water (4.52 g of water used for washing in the first preparation step) Water) was evaporated (first heating step). After cooling the obtained mixture to room temperature using a water bath (cooling step), 9.99 g of Y-type zeolite (composition H 30.5 Al 30.5 Si 161.5 O 384 , Tosoh Corporation) ), HSZ-350HUA, # 35UA3502, Si / Al = 5.3, in this example, actually 63.9 wt% SiO 2 , 10.2 wt% Al 2 O 3 , 25.9 wt% H (Containing 2 O) was added (second preparation step), and the mixture was stirred at room temperature for 10 minutes. The composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.28 g.
 この混合物を、内容積125mLのフッ素樹脂(PTFE)製内筒つきオートクレーブに移し、これを160℃のオーブン中に166時間静置した(第2の加熱工程)。得られた固体生成物は、ろ過で回収し、80℃のオーブン中で一晩乾燥させた(乾燥工程)。得られた白色粉末の重量は13.07gであった。 This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder and allowed to stand in an oven at 160 ° C. for 166 hours (second heating step). The obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step). The weight of the obtained white powder was 13.07 g.
 このうち2.60gをアルミナ製のシャーレにとり、マッフル炉中の空気雰囲気下で室温から毎分1.5℃の速度で昇温し、550℃で6時間保持し、その後放冷した(第3の加熱工程(焼成工程))。こうして白色粉末(焼成後)2.51gを得た。 2.60 g of this was placed in an alumina petri dish, heated from room temperature at a rate of 1.5 ° C. per minute in an air atmosphere in a muffle furnace, held at 550 ° C. for 6 hours, and then allowed to cool (third Heating step (firing step)). In this way, 2.51 g of white powder (after baking) was obtained.
(実施例3)
 製造例1で得たMePrNOHを構造規定剤として用い、ゼオライトの合成を行った。この合成を、次の手順で行った。まず、内容積150mLのフッ素樹脂(PFA)製容器に、製造例1で得たMePrNOH水溶液(1.153mmol/g)を58.97g(68.0mmol)とり、19.81gのNaOH水溶液(3.029mmol/g、60.0mmol)、20.82gのKOH水溶液(2.883mmol/g、60.0mmol)、42.78gのLudox AS-40(アルドリッチ社製、41.3wt% SiOを含むため、17.67g-SiO、293.8mmol-SiO)を順次加えた(第1の調製工程)。
(Example 3)
A zeolite was synthesized using Me 2 Pr 2 NOH obtained in Production Example 1 as a structure-directing agent. This synthesis was performed by the following procedure. First, 58.97 g (68.0 mmol) of the Me 2 Pr 2 NOH aqueous solution (1.153 mmol / g) obtained in Production Example 1 was taken in a fluororesin (PFA) container having an internal volume of 150 mL, and 19.81 g of NaOH. Aqueous solution (3.029 mmol / g, 60.0 mmol), 20.82 g KOH aqueous solution (2.883 mmol / g, 60.0 mmol), 42.78 g Ludox AS-40 (Aldrich 41.3 wt% SiO 2 Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) was sequentially added (first preparation step).
 次に、液温が約60℃となるように設定したホットプレート上で約7時間撹拌することにより、65.17gの水(第1の調製工程で洗い込みのために用いた4.10gの水を含む)を蒸発させた(第1の加熱工程)。得られた混合物を、水浴を用いて室温まで冷却したのち(冷却工程)、9.99gのY型ゼオライト(乾燥時の組成H30.5Al30.5Si161.5384、東ソー(株)製、HSZ-350HUA、#35UA3502、Si/Al=5.3、本実施例において実際には、63.9wt%のSiO、10.2wt%のAl、25.9wt%のHOを含んでいるもの)を加え(第2の調製工程)、室温で10分間撹拌した。得られた混合物の組成は、1.0SiO-0.025Al-0.17MePrOH-0.15NaOH-0.15KOH-7.0HO、混合物の全重量は91.28gとなった。 Next, by stirring for about 7 hours on a hot plate set so that the liquid temperature becomes about 60 ° C., 65.17 g of water (4.10 g used for washing in the first preparation step) was obtained. Water) was evaporated (first heating step). After cooling the obtained mixture to room temperature using a water bath (cooling step), 9.99 g of Y-type zeolite (composition H 30.5 Al 30.5 Si 161.5 O 384 , Tosoh Corporation) ), HSZ-350HUA, # 35UA3502, Si / Al = 5.3, in this example, actually 63.9 wt% SiO 2 , 10.2 wt% Al 2 O 3 , 25.9 wt% H (Containing 2 O) was added (second preparation step), and the mixture was stirred at room temperature for 10 minutes. The composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.28 g.
 この混合物を、内容積125mLのフッ素樹脂(PTFE)製内筒つきオートクレーブに移し、これを160℃のオーブン中に20rpmの回転条件で95時間静置した(第2の加熱工程)。得られた固体生成物は、ろ過で回収し、80℃のオーブン中で一晩乾燥させた(乾燥工程)。得られた白色粉末の重量は14.10gであった。 This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder, and allowed to stand for 95 hours in a 160 ° C. oven at a rotation speed of 20 rpm (second heating step). The obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step). The weight of the obtained white powder was 14.10 g.
 このうち3.02gをアルミナ製のシャーレにとり、マッフル炉中の空気雰囲気下で室温から毎分1.5℃の速度で昇温し、550℃で6時間保持し、その後放冷した(第3の加熱工程(焼成工程))。こうして白色粉末(焼成後)2.85gを得た。 3.02 g of this was placed in an alumina petri dish, heated from room temperature at a rate of 1.5 ° C. per minute in an air atmosphere in a muffle furnace, held at 550 ° C. for 6 hours, and then allowed to cool (third Heating step (firing step)). In this way, 2.85 g of white powder (after baking) was obtained.
(実施例4)
 Sachem社製のMePrNOHを構造規定剤として用い、ゼオライトの合成を行った。この合成を、次の手順で行った。まず、内容積150mLのフッ素樹脂(PFA)製容器に、Sachem社製のMePrNOH水溶液(2.663mmol/g)を25.54g(68.0mmol)とり、21.04gのNaOH水溶液(2.852mmol/g、60.0mmol)、18.80gのKOH水溶液(3.191mmol/g、60.0mmol)、42.78gのLudox AS-40(アルドリッチ社製、41.3wt% SiOを含むため、17.67g-SiO、293.8mmol-SiO)を順次加えた(第1の調製工程)。
Example 4
A zeolite was synthesized using Sachem Me 2 Pr 2 NOH as a structure-directing agent. This synthesis was performed by the following procedure. First, 25.54 g (68.0 mmol) of Me 2 Pr 2 NOH aqueous solution (2.663 mmol / g) manufactured by Sachem was taken in a fluorine resin (PFA) container having an internal volume of 150 mL, and 21.04 g of NaOH aqueous solution ( 2.852 mmol / g, 60.0 mmol), 18.80 g of KOH aqueous solution (3.191 mmol / g, 60.0 mmol), 42.78 g of Ludox AS-40 (manufactured by Aldrich, including 41.3 wt% SiO 2) Therefore, 17.67 g-SiO 2 , 293.8 mmol-SiO 2 ) was sequentially added (first preparation step).
 次に、液温が約60℃となるように設定したホットプレート上で約3時間撹拌することにより、29.52gの水(第1の調製工程で洗い込みのために用いた3.01gの水を含む)を蒸発させた(第1の加熱工程)。得られた混合物を、水浴を用いて室温まで冷却したのち(冷却工程)、9.71gのY型ゼオライト(乾燥時の組成H30.5Al30.5Si161.5384、東ソー(株)製、HSZ-350HUA、#35UA35Y2、Si/Al=5.5、本実施例において実際には、68.1wt%のSiO、10.5wt%のAl、21.4wt%のHOを含んでいるもの)を加え(第2の調製工程)、室温で10分間撹拌した。得られた混合物の組成は、1.0SiO-0.025Al-0.17MePrOH-0.15NaOH-0.15KOH-7.0HO、混合物の全重量は91.36gとなった。 Next, by stirring for about 3 hours on a hot plate set so that the liquid temperature is about 60 ° C., 29.52 g of water (3.01 g of water used for washing in the first preparation step) was obtained. Water) was evaporated (first heating step). After cooling the obtained mixture to room temperature using a water bath (cooling step), 9.71 g of Y-type zeolite (composition H 30.5 Al 30.5 Si 161.5 O 384 , Tosoh Corporation) ), HSZ-350HUA, # 35UA35Y2, Si / Al = 5.5, in this example, actually 68.1 wt% SiO 2 , 10.5 wt% Al 2 O 3 , 21.4 wt% H (Containing 2 O) was added (second preparation step), and the mixture was stirred at room temperature for 10 minutes. The composition of the resulting mixture was 1.0SiO 2 -0.025Al 2 O 3 -0.17Me 2 Pr 2 N + OH -- 0.15NaOH-0.15KOH-7.0H 2 O, the total weight of the mixture was It was 91.36 g.
 この混合物を、内容積125mLのフッ素樹脂(PTFE)製内筒つきオートクレーブに移し、これを160℃のオーブン中に20rpmの回転条件で67時間静置した(第2の加熱工程)。得られた固体生成物は、ろ過で回収し、80℃のオーブン中で一晩乾燥させた(乾燥工程)。得られた白色粉末の重量は13.73gであった。 This mixture was transferred to an autoclave with an inner volume of 125 mL of a fluororesin (PTFE) inner cylinder, and allowed to stand in an oven at 160 ° C. for 67 hours under a rotation condition of 20 rpm (second heating step). The obtained solid product was collected by filtration and dried overnight in an oven at 80 ° C. (drying step). The weight of the obtained white powder was 13.73 g.
 このうち3.13gをアルミナ製のシャーレにとり、マッフル炉中の空気雰囲気下で室温から毎分1.5℃の速度で昇温し、550℃で6時間保持し、その後放冷した(第3の加熱工程(焼成工程))。こうして白色粉末(焼成後)3.09gを得た。 Of this, 3.13 g was placed in an alumina petri dish, heated from room temperature at a rate of 1.5 ° C. per minute in an air atmosphere in a muffle furnace, held at 550 ° C. for 6 hours, and then allowed to cool (third). Heating step (firing step)). In this way, 3.09 g of white powder (after baking) was obtained.
 図2は、本発明者が得た実施例1のゼオライトについて、X線回折(XRD)による分析結果を示すグラフである。横軸は回折角2θ[°]を示し、縦軸は回折強度[cps]を示している。焼成して有機物を除いたサンプルによる回折スペクトル(XRDパターン)を上段に示し、未焼成のサンプルによる回折スペクトルを下段に示している。図2からは、表2に示す格子面間隔d(Å)が検出された。 FIG. 2 is a graph showing the analysis result by X-ray diffraction (XRD) of the zeolite of Example 1 obtained by the present inventor. The horizontal axis represents the diffraction angle 2θ [°], and the vertical axis represents the diffraction intensity [cps]. A diffraction spectrum (XRD pattern) obtained by baking and removing organic substances is shown in the upper part, and a diffraction spectrum obtained by the unfired sample is shown in the lower part. From FIG. 2, the lattice spacing d (Å) shown in Table 2 was detected.
 なお、X線回折は以下の条件で測定した。
  使用装置:リガク社製Ultima-IV 粉末X線解析装置
  X線源:CuKα1=1.54057Å、印加電圧:40kV、管電流:20mA
  測定範囲:2θ=2.040~52.000度
  スキャン速度:2.000deg./min、サンプリング間隔:0.040度
  発散スリット:1.00deg、散乱スリット:1.00deg、受光スリット:0.30mm
  縦型ゴニオメータ、モノクロメータ使用
  測定方法:連続法、通常法
 格子面間隔dはオングストローム単位である。
X-ray diffraction was measured under the following conditions.
Apparatus used: Ultimate-IV powder X-ray analyzer manufactured by Rigaku Corporation X-ray source: CuKα1 = 1.54057 mm, applied voltage: 40 kV, tube current: 20 mA
Measurement range: 2θ = 2.040 to 52.000 degrees Scanning speed: 2.000 deg. / Min, sampling interval: 0.040 degrees Divergence slit: 1.00 deg, scattering slit: 1.00 deg, light receiving slit: 0.30 mm
Using vertical goniometer and monochromator Measurement method: continuous method, normal method The lattice spacing d is in angstrom units.
 図2に示すように、焼成前、焼成後のサンプルで得られた回折スペクトルは、いずれも、既知のゼオライトでは見られない特徴的なピークを有している。この結果から、いずれのサンプルも、新規の骨格構造を有する結晶相が形成されたゼオライトであることが分かる。 As shown in FIG. 2, the diffraction spectra obtained for the samples before and after calcination both have characteristic peaks that are not found in known zeolites. From this result, it can be seen that any sample is a zeolite in which a crystal phase having a novel skeleton structure is formed.
 焼成後のSi/Al比は、誘導結合プラズマ原子発光分析計(島津製作所製ICP-9000E)を用いて検量線法(水溶液モード)により決定した。その結果、Si/Al=9.5であった。 The Si / Al ratio after firing was determined by a calibration curve method (aqueous solution mode) using an inductively coupled plasma atomic emission spectrometer (ICP-9000E manufactured by Shimadzu Corporation). As a result, Si / Al = 9.5.
 ゼオライトの窒素吸着について、以下の条件で測定した。
  使用装置:マイクロトラックベル社製Belsorp max 全自動吸着測定装置
  測定温度:-196℃
  空気恒温槽温度:40℃
  平衡吸着時間:300秒
  サンプル前処理条件:400℃、2時間
The nitrogen adsorption of zeolite was measured under the following conditions.
Equipment used: Belsorb max fully automatic adsorption measuring device manufactured by Microtrack Bell Inc. Measurement temperature: -196 ° C
Air bath temperature: 40 ° C
Equilibrium adsorption time: 300 seconds Sample pretreatment conditions: 400 ° C, 2 hours
 窒素吸着測定結果を図3のグラフに示す。図3のグラフは、吸着等温線を示している。
グラフの横軸は相対圧(吸着平衡圧と飽和蒸気圧との比)を示し、縦軸は窒素吸着量(cm(S.T.P.)/g)を示している。S.T.P.とはstandard temperature and pressureのことであり、ここでは吸着量が0℃、1気圧の体積(cm)に換算された
値であることを意味している。グラフの下段にHイオン交換前の吸着等温線を示し、グラフの上段にHイオン交換後の吸着等温線を示している。黒丸のプロットは吸着過程におけるものであり、白丸のプロットは脱着過程におけるものである。
The nitrogen adsorption measurement results are shown in the graph of FIG. The graph of FIG. 3 shows the adsorption isotherm.
The horizontal axis of the graph represents the relative pressure (ratio between the adsorption equilibrium pressure and the saturated vapor pressure), and the vertical axis represents the nitrogen adsorption amount (cm 3 (STP) / g). S. T.A. P. The term “standard temperature and pressure” means that the adsorption amount is a value converted to a volume (cm 3 ) of 0 ° C. and 1 atm. The lower part of the graph shows the adsorption isotherm before H + ion exchange, and the upper part of the graph shows the adsorption isotherm after H + ion exchange. The black circle plot is in the adsorption process, and the white circle plot is in the desorption process.
 下段のグラフから算出されるBET比表面積は434m/gであり、外表面積は5.1m/gであり、細孔容積は0.173ml/gであった。なお、このサンプルのICP-AESによる元素分析によれば、Si/Alは9.09であった。Na/Al、K/Alは、それぞれ0.12、0.52であった。 The BET specific surface area calculated from the lower graph was 434 m 2 / g, the outer surface area was 5.1 m 2 / g, and the pore volume was 0.173 ml / g. In addition, according to the elemental analysis by ICP-AES of this sample, Si / Al was 9.09. Na / Al and K / Al were 0.12 and 0.52, respectively.
 上段のグラフから算出されるBET比表面積は487m/gであり、外表面積は6.7m/gであり、細孔容積は0.194ml/gであった。なお、このサンプルのICP-AESによる元素分析によれば、Si/Alは9.33であった。Na/Al、K/Alは、それぞれ0.03未満であった。 The BET specific surface area calculated from the upper graph was 487 m 2 / g, the outer surface area was 6.7 m 2 / g, and the pore volume was 0.194 ml / g. In addition, according to the elemental analysis by ICP-AES of this sample, Si / Al was 9.33. Na / Al and K / Al were each less than 0.03.
 ゼオライトの27Al MAS NMRについて、以下の条件で測定した。
  使用装置:Bruker社製 AVANCE III 600
  1H共鳴周波数:600MHz
  ローター回転速度:13kHz
  繰り返し時間:0.5sec、積算回数:1024回
The 27 Al MAS NMR of the zeolite was measured under the following conditions.
Equipment used: AVANCE III 600 from Bruker
1H resonance frequency: 600 MHz
Rotor rotation speed: 13 kHz
Repeat time: 0.5 sec, integration count: 1024 times
 ゼオライトの29Si MAS NMRについて、以下の条件で測定した。
  使用装置:Bruker社製 AVANCE III 600
  1H共鳴周波数:600MHz
  ローター回転速度:10kHz
  繰り返し時間:30.0sec、積算回数:1024回
The 29 Si MAS NMR of the zeolite was measured under the following conditions.
Equipment used: AVANCE III 600 from Bruker
1H resonance frequency: 600 MHz
Rotor rotation speed: 10 kHz
Repetition time: 30.0 sec, integration number: 1024 times
 27Al MAS NMR、29Si MAS NMRによって得られたスペクトルを、それぞれ、図4、5のグラフに示す。それぞれのグラフの横軸は、化学シフト(chemical shift)を示している。焼成前のスペクトルを下段に示し、焼成後のスペクトルを上段に示している。 The spectra obtained by 27 Al MAS NMR and 29 Si MAS NMR are shown in the graphs of FIGS. The horizontal axis of each graph represents a chemical shift. The spectrum before firing is shown in the lower part, and the spectrum after firing is shown in the upper part.
 図4の焼成後の27Al-MASNMRスペクトルにおいて、(1)化学シフト56.5±2ppmのメジャーピーク及び(2)0±2ppmに存在するマイナーピークが観測された。(1)のピークは骨格内Alに帰属されるピークであり、一方(2)のピークは、骨格外に脱離したAlに帰属されるピークである。焼成前は、(2)のピークは観測されず、(1)のピークのみが観測された。 In the 27 Al-MAS NMR spectrum after firing in FIG. 4, (1) a major peak with a chemical shift of 56.5 ± 2 ppm and (2) a minor peak existing at 0 ± 2 ppm were observed. The peak (1) is a peak attributed to Al in the skeleton, while the peak (2) is a peak attributed to Al desorbed outside the skeleton. Before firing, the peak of (2) was not observed, and only the peak of (1) was observed.
 図5の29Si-MAS NMRスペクトルに含まれる3つのピークは、左側から順に、Si(2Al)、Si(1Al)、Si(0Al)の配位形態に対応するSiのシグナルである。これらのピークの面積比から骨格内のSi/Alを見積もったところ、約10であった。なお、Si(nAl)とは、(AlO)nSi(OSi)4-n のうち、左から
1番目に記載されるSiのシグナルを意味する(ここではn=0、1、2)。
The three peaks included in the 29 Si-MAS NMR spectrum of FIG. 5 are Si signals corresponding to the coordination forms of Si (2Al), Si (1Al), and Si (0Al) in order from the left side. When Si / Al in the skeleton was estimated from the area ratio of these peaks, it was about 10. Si (nAl) means a Si signal described first from the left in (AlO) n Si (OSi) 4-n (here, n = 0, 1, 2).
 実施例1のゼオライトの走査型電子顕微鏡(SEM)写真を、以下の条件で得た。
  使用装置:JEOL社製 JSM-7001F
  加速電圧:1.00kVまたは3.00kV
A scanning electron microscope (SEM) photograph of the zeolite of Example 1 was obtained under the following conditions.
Equipment used: JSM-7001F manufactured by JEOL
Acceleration voltage: 1.00 kV or 3.00 kV
 得られたSEM写真を図6A、6Bに示す。図6A(a)~(i)は、それぞれ、165時間かけて結晶化させたサンプルについて、様々な方向から倍率(比較する寸法を図中に表示)を変えて撮ったSEM写真である。このサンプルが実施例1に対応するものである。図6Bは、実施例1よりも短い45時間で結晶化させたサンプルのSEM写真(倍率は図6A(a)と同じ)である。 The obtained SEM photographs are shown in FIGS. 6A and 6B. 6A (a) to 6 (i) are SEM photographs taken at various magnifications (dimensions to be compared are shown in the figure) from various directions for samples crystallized over 165 hours. This sample corresponds to Example 1. FIG. 6B is a SEM photograph (magnification is the same as FIG. 6A (a)) of a sample crystallized in 45 hours shorter than Example 1.
 本発明のゼオライトは、水分等の吸着剤として空調機器、ヒートポンプに利用することができ、また、化成品合成に用いられる触媒、自動車の排気ガス等の浄化触媒としても利用することができる。 The zeolite of the present invention can be used as an adsorbent for moisture and the like in air conditioning equipment and heat pumps, and can also be used as a catalyst for synthesis of chemical products and as a purification catalyst for automobile exhaust gas and the like.
100 ゼオライト
101(101a、101b) 酸素8員環
101A、101B、102A グループ
101C 列
102 酸素12員環
100 Zeolite 101 (101a, 101b) Oxygen 8- membered ring 101A, 101B, 102A Group 101C Row 102 Oxygen 12-membered ring

Claims (8)

  1.  粉末X線回折法による測定で、少なくとも下記表1に示す格子面間隔d(Å)および相対強度を含むX線回折パターンを有し、
     前記相対強度は、前記X線回折パターンに含まれるピークのうち、最大のピークの強度に対する他のピークの強度の比率を示していることを特徴とするゼオライト。
    Figure JPOXMLDOC01-appb-T000001
    As measured by the powder X-ray diffraction method, it has an X-ray diffraction pattern including at least the lattice spacing d (Å) and relative intensity shown in Table 1 below,
    The said relative intensity | strength has shown the ratio of the intensity | strength of the other peak with respect to the intensity | strength of the largest peak among the peaks contained in the said X-ray-diffraction pattern, The zeolite characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-T000001
  2.  窒素吸着測定で見積もった細孔容積が0.12ml/g以上0.25ml/g以下であることを特徴とする請求項1に記載のゼオライト。 The zeolite according to claim 1, wherein the pore volume estimated by nitrogen adsorption measurement is 0.12 ml / g or more and 0.25 ml / g or less.
  3.  互いに独立した複数の酸素8員環および酸素12員環を有し、
     複数の前記酸素8員環は、複数のグループに分かれて存在し、各グループにおいて、前記酸素8員環が一方向に共通の貫通孔を有するように重なっており、
     複数の前記酸素12員環は、複数のグループに分かれて存在し、各グループにおいて、前記酸素12員環が一つの平面に平行な方向に共通の貫通孔を有するように重なっており、
     前記酸素8員環の重なり方向と前記酸素12員環の重なり方向とが、互いに交差していることを特徴とする請求項1または2のいずれかに記載のゼオライト。
    A plurality of oxygen 8-membered rings and oxygen 12-membered rings independent of each other;
    The plurality of oxygen 8-membered rings are divided into a plurality of groups, and in each group, the oxygen 8-membered rings overlap so as to have a common through hole in one direction,
    The plurality of oxygen 12-membered rings are divided into a plurality of groups, and in each group, the oxygen 12-membered rings overlap so as to have a common through hole in a direction parallel to one plane,
    3. The zeolite according to claim 1, wherein an overlapping direction of the oxygen 8-membered ring and an overlapping direction of the oxygen 12-membered ring intersect each other.
  4.  前記酸素8員環は、その重なり方向と交差する一方向において、対をなすものと孤立したものとが、交互に並んで列をなすように連結されており、前記列同士は、対をなす前記酸素8員環と孤立した前記酸素8員環とが隣り合うように、連結されていることを特徴とする請求項3に記載のゼオライト。 In the oxygen eight-membered ring, in one direction intersecting with the overlapping direction, a pair and an isolated one are connected so as to form a line in an alternating manner, and the lines form a pair. The zeolite according to claim 3, wherein the oxygen 8-membered ring and the isolated oxygen 8-membered ring are connected so as to be adjacent to each other.
  5.  前記酸素12員環は、その重なり方向と交差する平面内の二方向において、等間隔で並んで連結されていることを特徴とする請求項3または4のいずれかに記載のゼオライト。 The zeolite according to any one of claims 3 and 4, wherein the oxygen 12-membered ring is connected side by side at equal intervals in two directions in a plane intersecting the overlapping direction.
  6.  前記酸素8員環の細孔径が、酸素のイオン半径(0.135nm)二つ分の長さを差し引く場合0.295nm以上0.454nm以下、差し引かない場合0.565nm以上0.724nm以下、前記酸素12員環の細孔径が酸素のイオン半径(0.135nm)二つ分の長さを差し引く場合0.595nm以上0.710nm以下、差し引かない場合0.865nm以上0.980nm以下であることを特徴とする請求項3~5のいずれか一項に記載のゼオライト。 The pore diameter of the oxygen 8-membered ring is 0.295 nm or more and 0.454 nm or less when subtracting the length of two ionic radii (0.135 nm) of oxygen, and 0.565 nm or more and 0.724 nm or less when not subtracting, The pore diameter of the oxygen 12-membered ring is 0.595 nm to 0.710 nm when subtracting the length of two oxygen ionic radii (0.135 nm), and 0.865 nm to 0.980 nm when not subtracting. The zeolite according to any one of claims 3 to 5, which is characterized by the following.
  7.  含有するT原子の数密度が15個/nm以上18個/nm以下であることを特徴とする請求項1~6のいずれか一項に記載のゼオライト。 The zeolite according to any one of claims 1 to 6, wherein the number density of T atoms contained is 15 / nm 3 or more and 18 / nm 3 or less.
  8.  請求項1~7のいずれか一項に記載のゼオライトの製造方法であって、
     第1のシリカ源、アルカリ源、水、および構造規定剤の混合物を攪拌しながら調製する第1の調製工程と、
     調製した前記混合物を、攪拌しながら加熱する第1の加熱工程と、
     加熱した前記混合物を冷却する冷却工程と、
     冷却した前記混合物に、第2のシリカ源およびアルミナ源を加えて攪拌しながら再調製する第2の調製工程と、
     再調製した混合物を加熱する第2の加熱工程と、
     加熱した前記混合物を、洗浄およびろ過した上で乾燥させる乾燥工程と、
     前記乾燥工程を経て得た有機複合体を加熱し、包接されている有機物を取り除く第3の加熱工程と、を順に有し、
     前記第1のシリカ源としてコロイダルシリカを用い、前記第2のシリカ源およびアルミナ源としてY型ゼオライトを用い、前記構造規定剤としてジメチルジプロピルアンモニウム化合物を用いることを特徴とするゼオライトの製造方法。
    A method for producing a zeolite according to any one of claims 1 to 7,
    A first preparation step of preparing a mixture of a first silica source, an alkali source, water, and a structure-directing agent while stirring;
    A first heating step of heating the prepared mixture while stirring;
    A cooling step for cooling the heated mixture;
    A second preparation step of adding a second silica source and an alumina source to the cooled mixture and re-adjusting the mixture while stirring;
    A second heating step for heating the re-prepared mixture;
    A drying step of drying the heated mixture after washing and filtering;
    A third heating step for heating the organic composite obtained through the drying step and removing the organic matter included in the inclusion;
    A method for producing zeolite, wherein colloidal silica is used as the first silica source, Y-type zeolite is used as the second silica source and alumina source, and a dimethyldipropylammonium compound is used as the structure-directing agent.
PCT/JP2017/033474 2016-09-29 2017-09-15 Zeolite and method for producing same WO2018061827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542398A JP6966087B2 (en) 2016-09-29 2017-09-15 Zeolites and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191110 2016-09-29
JP2016-191110 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061827A1 true WO2018061827A1 (en) 2018-04-05

Family

ID=61759608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033474 WO2018061827A1 (en) 2016-09-29 2017-09-15 Zeolite and method for producing same

Country Status (2)

Country Link
JP (1) JP6966087B2 (en)
WO (1) WO2018061827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189765A (en) * 2019-05-21 2020-11-26 国立大学法人横浜国立大学 Titanosilicate and production method thereof
WO2022255383A1 (en) 2021-06-02 2022-12-08 東ソー株式会社 Yfi-type zeolite, production method therefor, hydrocarbon adsorbent, and hydrocarbon adsorption method
WO2023149439A1 (en) * 2022-02-02 2023-08-10 東ソー株式会社 Novel yfi-type zeolite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534896A (en) * 2010-06-21 2013-09-09 ユーオーピー エルエルシー UZM-35 zeolite composition, preparation method and process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534896A (en) * 2010-06-21 2013-09-09 ユーオーピー エルエルシー UZM-35 zeolite composition, preparation method and process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAZAWA, NAOTO ET AL.: "A Microporous Aluminosilicate with 12-, 12-, and 8-Ring Pores and Isolated 8-Ring Channels", J. AM. CHEM. SOC., vol. 139, no. 23, 5 June 2017 (2017-06-05), pages 7989 - 7997, XP055501405, ISSN: 0002-7863 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189765A (en) * 2019-05-21 2020-11-26 国立大学法人横浜国立大学 Titanosilicate and production method thereof
JP7284990B2 (en) 2019-05-21 2023-06-01 国立大学法人横浜国立大学 Titanosilicate and its production method
WO2022255383A1 (en) 2021-06-02 2022-12-08 東ソー株式会社 Yfi-type zeolite, production method therefor, hydrocarbon adsorbent, and hydrocarbon adsorption method
WO2023149439A1 (en) * 2022-02-02 2023-08-10 東ソー株式会社 Novel yfi-type zeolite

Also Published As

Publication number Publication date
JP6966087B2 (en) 2021-11-10
JPWO2018061827A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6430303B2 (en) Manufacturing method of AFX type zeolite
JP6065293B2 (en) EMM-22 molecular sieve material, its synthesis and use
JP4964150B2 (en) Microporous crystalline zeolitic material (zeolite ITQ-32), process for producing the material and use of the material
JP6661615B2 (en) EMM-26, a new synthetic crystalline material, its preparation and its use
JP6835869B2 (en) Synthesis of molecular sieve SSZ-98
WO2018061827A1 (en) Zeolite and method for producing same
KR101598723B1 (en) A manufacturing process of PST-20 zeolites and a selective separation method using PST-20 zeolites as adsorbent
JP7360456B2 (en) Zeolite synthesis and directing agent
TW201446653A (en) Molecular sieve material, its synthesis and use
Tsunoji et al. Synthesis and characteristics of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption behavior
EP3658278B1 (en) Crystalline metallophosphates, their method of preparation, and use
KR20210013692A (en) Method for the synthesis of very high purity AFX-structured zeolites in the presence of organic nitrogen-containing structuring agents
Yamanaka et al. Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution
KR102539264B1 (en) Synthesis of Molecular Sieve SZ-105
KR102181993B1 (en) PST-29 zeolites and manufacturing method thereof, selective separation method as CO2 adsorbents and methylamine synthesis using PST-29 zeolites
Koike et al. Increasing the ion-exchange capacity of MFI zeolites by introducing Zn to aluminosilicate frameworks
US10407312B2 (en) One-step method for the synthesis of high silica content zeolites in organic-free media
Wang et al. LEV-zeotype magnesium aluminophosphates with variable Mg/Al ratios
Littlefield et al. Lightweight nanoporous metal hydroxide-rich zeotypes
Mohamed et al. Synthesis of ZSM-5 zeolite of improved bulk and surface properties via mixed templates
KR102491726B1 (en) Synthesis of zeolite SSZ-31
KR20220062554A (en) Method for producing SSZ-26/33 zeolite
JP2020193135A (en) Zeolite zts-6 and method for producing the same
JP2019137600A (en) Porous complex oxide
KR20200041065A (en) Silicoaluminophosphate molecular sieves, manufacturing method, and selective separation of CO2 using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855783

Country of ref document: EP

Kind code of ref document: A1