WO2018061193A1 - Heat sink and power conversion device - Google Patents

Heat sink and power conversion device Download PDF

Info

Publication number
WO2018061193A1
WO2018061193A1 PCT/JP2016/079087 JP2016079087W WO2018061193A1 WO 2018061193 A1 WO2018061193 A1 WO 2018061193A1 JP 2016079087 W JP2016079087 W JP 2016079087W WO 2018061193 A1 WO2018061193 A1 WO 2018061193A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat sink
fins
connecting portion
axis direction
Prior art date
Application number
PCT/JP2016/079087
Other languages
French (fr)
Japanese (ja)
Inventor
哲 平良
加藤 真
清志 柴田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017518558A priority Critical patent/JPWO2018061193A1/en
Priority to PCT/JP2016/079087 priority patent/WO2018061193A1/en
Publication of WO2018061193A1 publication Critical patent/WO2018061193A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink and a power conversion device including a plurality of fins for radiating heat of a heating element.
  • the heat sink disclosed in Patent Document 1 includes a fin base to which a semiconductor module is attached on the upper surface, and a plurality of first fins and second fins on the lower surface of the fin base. Two first fins are provided so as to sandwich the plurality of second fins, and the thickness of the first fin is larger than the thickness of the second fin. With this configuration, the rigidity of the first fin is greater than the rigidity of the second fin, and the first when the object collides is greater than when the thickness of the first fin and the thickness of the second fin are equal. The deformation of the fins is suppressed.
  • the object includes not only structures such as walls and floors that may be hit by the heat sink during transportation of the heat sink, but also flying objects such as stone and wood.
  • the first fin By the rigidity of the first fin being increased, the first fin is deformed so as to bend toward the second fin when an object collides, thereby forming between the first fin and the second fin. It can suppress that the 1st clearance gap currently performed is narrowed.
  • the second gap formed between the second fins is also prevented from being narrowed by the first fin physically interfering with the second fin and the adjacent second fin being deformed. it can. As a result, a decrease in the flow rate of the refrigerant such as air flowing in the first and second gaps is suppressed, and a decrease in the heat dissipation performance of the heat sink is suppressed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a heat sink that can suppress a decrease in heat dissipation performance while suppressing an increase in manufacturing cost.
  • the heat sink of the present invention includes a fin base, two first fins having roots attached to the lower surface of the fin base, and a root on the lower surface of the fin base.
  • a second fin that is attached and arranged to be sandwiched between the two first fins, the first fin, and a second fin adjacent to the first fin; And a connecting portion that connects the first fin and the second fin.
  • the perspective view of the power converter device which concerns on embodiment of this invention Front view of the heat sink shown in FIG. 1 viewed from the Z-axis direction Configuration diagram of heat sink according to first modification Configuration diagram of heat sink according to second modification Partial enlarged view of a heat sink according to a third modification
  • the perspective view of the power converter device which concerns on a 4th modification The figure which shows the state before attaching a cover to the heat sink shown in FIG.
  • FIG. 1 is a perspective view of a power converter according to an embodiment of the present invention.
  • FIG. 2 is a front view of the heat sink shown in FIG. 1 as viewed from the Z-axis direction.
  • the vertical direction of the heat sink 100 is the Y-axis direction
  • the direction orthogonal to the Y-axis direction is the X-axis direction
  • the direction orthogonal to both the Y-axis direction and the X-axis direction is Z Axial direction.
  • the X-axis direction is equal to the arrangement direction of first and second fins 21 and 22 described later. The same applies to each figure after FIG.
  • the heat sink 100 includes a plate-shaped fin base 1 extending in the Z-axis direction, and a first fin 21 and a second fin 22 provided on the lower surface 1 a of the fin base 1.
  • Examples of the method of attaching the first fin 21 and the second fin 22 to the fin base 1 may include attachment by welding, adhesion, welding, brazing, caulking, or fitting.
  • the first fin 21 and the second fin 22 may be formed integrally with the fin base 1.
  • the first fin 21 and the second fin 22 may be simply referred to as first and second fins 21 and 22.
  • the roots 2 d of the first and second fins 21 and 22 are attached to the lower surface 1 a of the fin base 1.
  • the lower surface 1 a of the fin base 1 is a surface facing the upper surface 1 b of the fin base 1.
  • the first and second fins 21 and 22 are spaced apart from each other and arranged in the X-axis direction.
  • the first fins 21 are provided outside the arrangement direction of the fin group composed of the plurality of second fins 22. That is, the first fins 21 are arranged at both ends of the fin group so that the two first fins 21 sandwich the second fin 22.
  • the tips 2c of the first and second fins 21 and 22 are released to form a comb-shaped heat sink.
  • the first and second fins 21 and 22 attached to the fin base 1 are collectively referred to as a fin group 2A.
  • the first thickness t1 of the first fin 21 in the X-axis direction and the second thickness t2 of the second fin 22 in the X-axis direction are equal to each other.
  • Examples of the first and second thicknesses t1 and t2 include 0.6 mm to 1.2 mm.
  • a first gap 3 a is formed between the adjacent first and second fins 21 and 22.
  • a second gap 3b is formed between the adjacent second fins 22.
  • a connecting portion 23 that connects the first and second fins 21, 22 is provided between the adjacent first and second fins 21, 22.
  • the connecting portion 23 is provided near the tip 2c of the fin group 2A. That is, with reference to the lower surface 1a of the fin base 1, the position of the fin group 2A in the Y-axis direction in which the fin group 2A extends from the fin base 1, that is, the half of the length from the root 2d to the tip 2c of the fin group 2A Further, the connecting portion 23 is provided on the tip 2c side. That is, the connecting portion 23 is provided on the tip 2c side of the intermediate point between the root 2d and the tip 2c of the fin group 2A.
  • the connecting portion 23 has a rod shape extending from one end 2a to the other end 2b of the fin group 2A in the Z-axis direction.
  • the width of the connecting portion 23 in the Y-axis direction is smaller than the width of the fin group 2A in the Y-axis direction.
  • the width of the connecting portion 23 in the Z-axis direction is equal to the width of the fin group 2A in the Z-axis direction.
  • the power converter 200 includes a housing 210 and a semiconductor module 220 that is a power module.
  • the semiconductor module 220 is provided inside the housing 210.
  • the semiconductor module 220 is mounted on a printed circuit board (not shown) that constitutes the power conversion apparatus 200.
  • the semiconductor module 220 mounted on the printed circuit board is disposed on the upper surface 211 a side of the bottom wall 211 of the housing 210, and the upper surface 1 b of the fin base 1 is installed on the lower surface 211 b side of the bottom wall 211 of the housing 210.
  • the semiconductor module 220 may be disposed directly on the upper surface 1b of the fin base 1 without being mounted on the printed circuit board.
  • Examples of the materials of the fin base 1, the fin group 2A, and the casing 210 include aluminum, aluminum alloy, austenitic stainless alloy, copper alloy, cast iron, steel, and iron alloy.
  • the bottom wall 211 of the casing 210 is formed to extend from the box-shaped space in which the semiconductor module 220 is installed to the outside in the Z-axis direction, and the blower unit 300 is fixed to the extended portion. .
  • the air blower 300 is provided to face the other end 2b of the fin group 2A in the Z-axis direction.
  • the air blower 300 includes a fan and a fan drive motor (not shown).
  • the heat generated in the semiconductor module 220 is transmitted to the heat sink 100.
  • a fan (not shown) provided in the air blowing unit 300 rotates, negative pressure is generated in the first and second gaps 3a and 3b, and the first and second gaps 2A cause a pressure difference between the inside and outside of the fin group 2A.
  • air is taken into the second gaps 3a and 3b.
  • high-temperature air near the surface of the fin group 2A and low-temperature air flowing away from the fin group 2A Are mixed.
  • the development of the temperature boundary layer formed on the surface of the fin group 2A is suppressed, the amount of heat exchange between the air and the fin group 2A is improved, the cooling efficiency of the fin group 2A is improved, and the semiconductor module 220 Is effectively cooled.
  • the example in which the air blowing unit 300 is disposed on the downstream side of the fin group 2A has been described.
  • the air blowing unit 300 is disposed on the upstream side, You may comprise so that a refrigerant
  • coolant may be sent into the fin group 2A from the ventilation part 300.
  • the power converter device 200 may omit the ventilation part 300, and may perform natural cooling.
  • the semiconductor module 220 In order to improve the cooling efficiency of the semiconductor module 220, it is effective to increase the surface areas of the first and second fins 21 and 22 that exchange heat with the refrigerant.
  • the surface area of the fin group 2A in order to increase the surface area of the fin group 2A while keeping the volume of the heat sink 100, that is, the width from one end to the other end of each fin group 2A in the X-axis direction, Y-axis direction, and Z-axis direction constant. Is a method of increasing the number of the second fins 22 by reducing the thickness of the fin group 2A in the X-axis direction.
  • the rigidity of the fin group 2A is reduced, and the fin group 2A is easily deformed when an object collides with the fin group 2A.
  • the first fin 21 disposed on the outermost side of the fin group 2A is most susceptible to an object collision, and thus is likely to be deformed.
  • the volume of the heat sink 100 is reduced. If it does not increase, it is necessary to narrow the first gap 3a or the second gap 3b, and the cooling efficiency is lowered.
  • the improvement of the cooling efficiency of the fin group 2A and the improvement of the rigidity of the fin group 2A are in a trade-off relationship.
  • the heat sink 100 is increased in size.
  • the first and second fins 21 and 22 are connected by the connecting portion 23, the first fin 21, the second fin 22, and the connecting portion 23 are integrally formed. And configured as one structure. Compared with the case where the first and second fins 21 and 22 are not connected by the connecting portion 23, the first and second fins 21 and 22 that are connected have a higher rigidity, so that the first and second fins 21 and 22 are less affected when the object collides. The deformation of one fin 21 is suppressed. That is, since the first fin 21 is physically supported by the second fin 22 through the connecting portion 23, the rigidity is improved, and deformation is suppressed when an object collides with the first fin 21. .
  • the deformation of the first fin 21 is suppressed, the deformation of the second fin 22 due to the physical interference of the deformed first fin 21 with the second fin 22 is suppressed. Therefore, the first and second gaps 3a and 3b are not blocked, and a decrease in the flow rate of the air flowing through the first and second gaps 3a and 3b is suppressed.
  • the first thickness t1 of the first fin 21 in the X-axis direction is increased.
  • the rigidity of the first fin 21 can be improved without doing so.
  • the amount of the material used is increased by the amount of the connecting portion 23 compared to the case where the connecting portion 23 is not provided, but the amount of the material used for the connecting portion 23 is the first to obtain the rigidity described above. It is less than the amount of material used when the thickness t1 is increased. Therefore, an increase in manufacturing cost of the heat sink 100 is suppressed.
  • the thickness of the first fin 21 and the second fin 22 may not be completely the same.
  • the thickness of the first fin 21 is increased in order to improve the rigidity of the first fin 21. Can be considered. In order to obtain sufficient rigidity only by increasing the thickness of the first fin 21, it is necessary to increase the thickness of the first fin 21 sufficiently. This leads to narrowing and an increase in the size of the heat sink 100.
  • the heat sink 100 according to the present embodiment uses the connecting portion 23, the effect of improving the rigidity of the fin can be obtained while suppressing the amount of material used compared to the case of improving the rigidity only by the thickness of the fin. Furthermore, it is possible to suppress a decrease in cooling efficiency and an increase in the size of the heat sink.
  • the heat sink 100 since it is not necessary to increase the first thickness t1 of the first fin 21 in the X-axis direction more than necessary, the other end to the other end of the fin group 2A in the X-axis direction.
  • the first gap 3a between the first and second fins 21 and 22 is larger than the case where the first thickness t1 of the first fin 21 is increased with the width up to the portion, that is, the size of the heat sink 100 being constant. Is increased, and a decrease in heat dissipation performance of the heat sink 100 is suppressed.
  • FIG. 3 is a configuration diagram of a heat sink according to the first modification.
  • FIG. 4 is a configuration diagram of a heat sink according to a second modification.
  • the connecting portion 23 is provided near the root 2d of the fin group 2A in the Y-axis direction. That is, with the lower surface 1a of the fin base 1 as a reference, the connecting portion 23 is provided on the root 2d side from a position that is half the length of the fin group 2A in the Y-axis direction in which the fin group 2A extends from the fin base 1. That is, the connecting portion 23 is provided closer to the root 2d than the center point between the root 2d and the tip 2c.
  • the heat sink 100 ⁇ / b> B shown in FIG.
  • the connecting portion 23 is provided at the front end 2 c of the first fin 21 and the second fin 22.
  • the first and second fins 21 and 22 are connected by the connecting portion 23, similarly to the heat sink 100 shown in FIG.
  • the deformation of the first fin 21 at the time of collision is suppressed. Therefore, an increase in the amount of material used for the heat sink 100A and the heat sink 100B is suppressed, and a decrease in the heat dissipation performance of the heat sink 100A and the heat sink 100B is suppressed.
  • FIG. 5 is a partially enlarged view of a heat sink according to a third modification.
  • the fin group 2A is attached to the fin base 1 by welding or bonding.
  • the fin group 2A is fixed to the fin base 1 by a fitting structure. ing.
  • an ant tenon-shaped ant tenon portion 2e is formed on the root 2d of the fin group 2A in the Y-axis direction.
  • the root 2d of the fin group 2A is the end of the fin group 2A on the fin base 1 side.
  • the ant tenon 2e extends from one end 2a of the fin group 2A to the other end 2b in the Z-axis direction.
  • a plurality of slide guides 1 a 1 are formed on the lower surface 1 a of the fin base 1.
  • the slide guide 1a1 has a dovetail shape that extends from one end 1c of the fin base 1 to the other end 1d in the Z-axis direction and into which the dovetail part 2e is fitted.
  • the dovetail part 2e When attaching the fin group 2A to the fin base 1, the dovetail part 2e is inserted into the slide guide 1a1 and guided toward the other end 1d of the fin base 1 in the Z-axis direction. Thereby, the ant tenon portion 2e and the slide guide 1a1 are fitted to each other, and the fin group 2A is fixed to the fin base 1. When removing the fin group 2A from the fin base 1, the fin group 2A may be slid in the Z-axis direction.
  • the fitting structure of the fin base 1 and the fin group 2A is not limited to the dovetail and dovetail groove, and at least one of the first and second fins 21 and 22 is slid in the Z-axis direction on the fin base 1. Any structure that fits into the fin base 1 may be used.
  • the fitting structure even when one first fin 21 is deformed, it is not necessary to replace the remaining plurality of fins. Therefore, compared to the case where the entire heat sink 100C is replaced, the maintainability is improved. Work time associated with fin replacement can be reduced.
  • a caulking method may be used as a method of fixing the fin group 2A to the fin base 1.
  • a fin insertion claw (not shown) is provided in advance in the fin base 1, and the fin group 2A is inserted into the claw and fixed by caulking.
  • the length of the connecting portion 23 in the Z-axis direction is such that the first and second fins 21 and 22 in the Z-axis direction have a sufficient mechanical strength to connect the first and second fins 21 and 22. It may be smaller than the width.
  • the number of connecting portions 23 provided in the first gap 3a may be plural. Specifically, a plurality of connecting portions that are shorter in the Z-axis direction than the connecting portion 23 shown in FIG. 1 may be arranged along the Z-axis direction, or the connecting portions 23 shown in FIG. A plurality may be arranged along the axial direction.
  • FIG. 6 is a perspective view of a power converter according to a fourth modification.
  • FIG. 7 is a view showing a state before the cover is attached to the heat sink shown in FIG.
  • the heat sink 100D according to the fourth modification includes a cover 400 that covers the tip 2c of the fin group 2A.
  • the connecting portion 23 is provided near the tip 2c of the fin group 2A in the Y-axis direction.
  • the connecting portion 23 has a female screw portion (not shown) penetrating in the Y-axis direction, and the cover 400 is fixed to the connecting portion 23 by screwing the fastening member 401 into the female screw portion.
  • the fixing place of the cover 400 is not limited to the connecting portion 23, and the cover 400 may be fixed to the first fin 21 using a fastening member (not shown) screwed into the first fin 21 from the X-axis direction. Good.
  • the cover 400 By providing the cover 400, it is possible to prevent an object from colliding with the tip 2c of the fin group 2A and deforming. Further, since the two first fins 21 sandwiching the second fin 22 on both sides are fixed to the cover 400, the rigidity of the first fin 21 is further improved. As a result, the deformation of the first fin 21 and the second fin 22 is further suppressed.
  • FIG. 8 is a perspective view of a power converter according to a fifth modification.
  • FIG. 9 is a front view of the heat sink shown in FIG. 8 as viewed from the Z-axis direction.
  • the heat sink 100E according to the fifth modification includes a cover 500 that covers the tip 2c of the fin group 2A and covers the outside of the first fin 21 in the X-axis direction.
  • a female screw portion (not shown) is formed on the lower surface 1a of the fin base 1 in the Y-axis direction, and the cover 500 is fixed to the fin base 1 by screwing the fastening member 501 into the female screw portion.
  • cover 500 By providing the cover 500, it is possible to prevent an object from colliding with the fin group 2A, so that the deformation of the first and second fins 21 and 22 is further suppressed.
  • the first thickness t1 of the first fin 21 in the X-axis direction and the second thickness t2 of the second fin 22 in the X-axis direction may not be equal to each other.
  • the thicknesses are equal, the yield of the fins is improved and an increase in the manufacturing cost of the fins can be suppressed as compared with the case of manufacturing two types of fins having different thicknesses.
  • the first fin 21 includes a root 2d attached to the fin base 1, a root 2d of the first fin 21, and a tip 2c. It is supported by the connecting portion 23 provided on the tip 2c side from the center point in between.
  • the first fin 21 is provided on the root 2d side from the root 2d and the center point between the root 2d and the tip 2c of the first fin 21.
  • the connecting portion 23 is supported.
  • the rigidity on the tip 2c side of the first fin 21 is larger than that in the latter, and deformation of the first fin 21 at the time of an object collision is suppressed. That is, the rigidity of the first fins 21 can be effectively improved by the arrangement of the connecting portions 23.
  • the connecting portion 23 is connected to the tip 2c. The closer to the side, the greater the effect, and it is most desirable to provide the connecting portion 23 at the tip 2c.
  • the connecting portion 23 at two points, that is, the tip 2c and an intermediate point between the root 2d and the tip 2c.
  • a plurality of connecting portions 23 may be provided between the root 2d and the tip 2c in the first gap 3a.
  • the connecting portion 23 has an example of a rod shape from the upstream side to the downstream side in the Z-axis direction, that is, from the upstream side through which the refrigerant passes, but has a zigzag shape from the upstream side to the downstream side. Alternatively, it may be wavy or uneven.
  • connection part 23 was provided in the 1st clearance gap 3a in this Embodiment, it cannot be overemphasized that the connection part which connects two adjacent 2nd fins 22 may be provided further. .
  • the heat sink according to the present embodiment is installed in the casing 210 of the power conversion device 200 including the semiconductor module 220, but the installation location of the heat sink according to the present embodiment is not limited to this, and the present embodiment
  • the heat sink according to the embodiment may be installed on the outer peripheral surface of the stator of the rotating electric machine, and may be installed in the housing of the instrument transformer having a built-in current transformer or instrument transformer.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A heat sink (100) is characterized in being provided with the following: a fin base (1); two first fins (21) having bases (2d) that are attached to a bottom surface (1a) of the fin base (1); second fins (22) having bases (2d) that are attached to the bottom surface (1a) of the fin base (1), the second fins being disposed so as to be sandwiched between the two first fins (21); and a linking part (23) that is provided between each of the first fins (21) and a second fin (22) adjacent thereto, the linking part linking the first fin (21) and the second fin (22).

Description

ヒートシンク及び電力変換装置Heat sink and power converter
 本発明は、発熱体の熱を放熱するためのフィンを複数備えるヒートシンク及び電力変換装置に関する。 The present invention relates to a heat sink and a power conversion device including a plurality of fins for radiating heat of a heating element.
 特許文献1に開示されるヒートシンクは、上面に半導体モジュールが取り付けられるフィンベースと、フィンベースの下面に複数の第1のフィン及び第2のフィンを備える。二枚の第1のフィンが、複数の第2のフィンを挟むように設けられ、第1のフィンの厚みは、第2のフィンの厚みよりも大きい。この構成により、第1のフィンの剛性が第2のフィンの剛性よりも大きくなり、第1のフィンの厚み及び第2のフィンの厚みが等しい場合に比べて、物体が衝突したときの第1のフィンの変形が抑制される。ここで、物体には、例えばヒートシンクの運搬中にヒートシンクがぶつかる可能性のある壁及び床といった構造物だけでなく、石及び木材といった飛来物が含まれる。第1のフィンの剛性が大きくなることにより、物体が衝突したときに第1のフィンが第2のフィン側へ降り曲がるように変形することによって第1のフィン及び第2のフィンの間に形成されていた第1の隙間が狭くなることを抑制できる。また、第1のフィンが第2のフィンに物理的に干渉して隣接する第2のフィンが変形することにより第2のフィン同士の間に形成された第2の隙間が狭くなることも抑制できる。その結果、第1及び第2の隙間に流れる空気等の冷媒の流量の低下が抑制され、ヒートシンクの放熱性能の低下が抑制される。 The heat sink disclosed in Patent Document 1 includes a fin base to which a semiconductor module is attached on the upper surface, and a plurality of first fins and second fins on the lower surface of the fin base. Two first fins are provided so as to sandwich the plurality of second fins, and the thickness of the first fin is larger than the thickness of the second fin. With this configuration, the rigidity of the first fin is greater than the rigidity of the second fin, and the first when the object collides is greater than when the thickness of the first fin and the thickness of the second fin are equal. The deformation of the fins is suppressed. Here, the object includes not only structures such as walls and floors that may be hit by the heat sink during transportation of the heat sink, but also flying objects such as stone and wood. By the rigidity of the first fin being increased, the first fin is deformed so as to bend toward the second fin when an object collides, thereby forming between the first fin and the second fin. It can suppress that the 1st clearance gap currently performed is narrowed. In addition, the second gap formed between the second fins is also prevented from being narrowed by the first fin physically interfering with the second fin and the adjacent second fin being deformed. it can. As a result, a decrease in the flow rate of the refrigerant such as air flowing in the first and second gaps is suppressed, and a decrease in the heat dissipation performance of the heat sink is suppressed.
特開2015-27144号公報Japanese Patent Laying-Open No. 2015-27144
 しかしながら特許文献1に開示されるヒートシンクでは、第1のフィンの厚みが大きいため、ヒートシンクの製造に用いられる材料の使用量が増加し、ヒートシンクの製造コストが増加するという課題がある。 However, in the heat sink disclosed in Patent Document 1, since the thickness of the first fin is large, there is a problem that the amount of the material used for manufacturing the heat sink increases and the manufacturing cost of the heat sink increases.
 本発明は、上記に鑑みてなされたものであって、製造コストの増加を抑制しながら放熱性能の低下を抑制できるヒートシンクを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a heat sink that can suppress a decrease in heat dissipation performance while suppressing an increase in manufacturing cost.
 上述した課題を解決し、目的を達成するために、本発明のヒートシンクは、フィンベースと、フィンベースの下面に根元が取り付けられた2枚の第1のフィンと、フィンベースの下面に根元が取り付けられ、2枚の第1のフィンに挟まれるように配置される第2のフィンと、第1のフィンと、第1のフィンに隣接する第2のフィンと、の間に設けられ、第1のフィン及び第2のフィンを連結する連結部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the heat sink of the present invention includes a fin base, two first fins having roots attached to the lower surface of the fin base, and a root on the lower surface of the fin base. A second fin that is attached and arranged to be sandwiched between the two first fins, the first fin, and a second fin adjacent to the first fin; And a connecting portion that connects the first fin and the second fin.
 本発明によれば、製造コストの増加を抑制しながら放熱性能の低下を抑制できるという効果を奏する。 According to the present invention, it is possible to suppress a decrease in heat dissipation performance while suppressing an increase in manufacturing cost.
本発明の実施の形態に係る電力変換装置の斜視図The perspective view of the power converter device which concerns on embodiment of this invention 図1に示すヒートシンクをZ軸方向から見た正面図Front view of the heat sink shown in FIG. 1 viewed from the Z-axis direction 第1の変形例に係るヒートシンクの構成図Configuration diagram of heat sink according to first modification 第2の変形例に係るヒートシンクの構成図Configuration diagram of heat sink according to second modification 第3の変形例に係るヒートシンクの部分拡大図Partial enlarged view of a heat sink according to a third modification 第4の変形例に係る電力変換装置の斜視図The perspective view of the power converter device which concerns on a 4th modification 図6に示すヒートシンクにカバーを取り付ける前の状態を示す図The figure which shows the state before attaching a cover to the heat sink shown in FIG. 第5の変形例に係る電力変換装置の斜視図The perspective view of the power converter device which concerns on a 5th modification 図8に示すヒートシンクをZ軸方向から見た正面図Front view of the heat sink shown in FIG. 8 viewed from the Z-axis direction
 以下に、本発明の実施の形態に係るヒートシンク及び電力変換装置を図面に基づいて詳細に説明する。尚、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a heat sink and a power conversion device according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments.
実施の形態.
 図1は本発明の実施の形態に係る電力変換装置の斜視図である。図2は図1に示すヒートシンクをZ軸方向から見た正面図である。図1では、右手系のXYZ座標において、ヒートシンク100の上下方向をY軸方向とし、Y軸方向と直交する方向をX軸方向とし、Y軸方向とX軸方向の双方に直交する方向をZ軸方向とする。X軸方向は後述する第1及び第2のフィン21,22の配列方向に等しい。図2以降の各図においても同様とする。
Embodiment.
FIG. 1 is a perspective view of a power converter according to an embodiment of the present invention. FIG. 2 is a front view of the heat sink shown in FIG. 1 as viewed from the Z-axis direction. In FIG. 1, in the right-handed XYZ coordinates, the vertical direction of the heat sink 100 is the Y-axis direction, the direction orthogonal to the Y-axis direction is the X-axis direction, and the direction orthogonal to both the Y-axis direction and the X-axis direction is Z Axial direction. The X-axis direction is equal to the arrangement direction of first and second fins 21 and 22 described later. The same applies to each figure after FIG.
 ヒートシンク100は、Z軸方向に伸びる板形状のフィンベース1と、フィンベース1の下面1aに設けられる第1のフィン21及び第2のフィン22を備える。第1のフィン21及び第2のフィン22のフィンベース1への取り付け方法は、溶接、接着、溶着、ろう付け、かしめ、又は、はめ込み等による取り付けを例示できる。また、第1のフィン21及び第2のフィン22は、フィンベース1に一体成型で形成されても良い。以下では第1のフィン21及び第2のフィン22を単に第1及び第2のフィン21,22と称する場合がある。 The heat sink 100 includes a plate-shaped fin base 1 extending in the Z-axis direction, and a first fin 21 and a second fin 22 provided on the lower surface 1 a of the fin base 1. Examples of the method of attaching the first fin 21 and the second fin 22 to the fin base 1 may include attachment by welding, adhesion, welding, brazing, caulking, or fitting. Further, the first fin 21 and the second fin 22 may be formed integrally with the fin base 1. Hereinafter, the first fin 21 and the second fin 22 may be simply referred to as first and second fins 21 and 22.
 第1及び第2のフィン21,22の根元2dがフィンベース1の下面1aに取り付けられる。フィンベース1の下面1aは、フィンベース1の上面1bと対向する面である。第1及び第2のフィン21,22は、互いに離間してX軸方向に配列される。第1のフィン21は、複数の第2のフィン22で構成されるフィン群の配列方向の外側に設けられる。すなわち、2枚の第1のフィン21が第2のフィン22を挟むように、第1のフィン21がフィン群の両端に配置される。 The roots 2 d of the first and second fins 21 and 22 are attached to the lower surface 1 a of the fin base 1. The lower surface 1 a of the fin base 1 is a surface facing the upper surface 1 b of the fin base 1. The first and second fins 21 and 22 are spaced apart from each other and arranged in the X-axis direction. The first fins 21 are provided outside the arrangement direction of the fin group composed of the plurality of second fins 22. That is, the first fins 21 are arranged at both ends of the fin group so that the two first fins 21 sandwich the second fin 22.
 本実施の形態では、図2に示すように第1及び第2のフィン21,22の先端2cは解放され、櫛歯形状のヒートシンクが形成される。尚、フィンベース1に取り付けられる第1及び第2のフィン21,22を合わせてフィン群2Aと呼ぶ。 In the present embodiment, as shown in FIG. 2, the tips 2c of the first and second fins 21 and 22 are released to form a comb-shaped heat sink. The first and second fins 21 and 22 attached to the fin base 1 are collectively referred to as a fin group 2A.
 X軸方向における第1のフィン21の第1の厚みt1とX軸方向における第2のフィン22の第2の厚みt2とが互いに等しい。第1及び第2の厚みt1,t2としては0.6mmから1.2mmを例示できる。隣接する第1及び第2のフィン21,22の間には第1の隙間3aが形成される。隣接する第2のフィン22同士の間には第2の隙間3bが形成される。 The first thickness t1 of the first fin 21 in the X-axis direction and the second thickness t2 of the second fin 22 in the X-axis direction are equal to each other. Examples of the first and second thicknesses t1 and t2 include 0.6 mm to 1.2 mm. A first gap 3 a is formed between the adjacent first and second fins 21 and 22. A second gap 3b is formed between the adjacent second fins 22.
 隣接する第1及び第2のフィン21,22の間には、第1及び第2のフィン21,22を連結する連結部23が設けられる。連結部23は、フィン群2Aの先端2c寄りに設けられる。すなわち、フィンベース1の下面1aを基準として、フィンベース1からフィン群2Aが延びるY軸方向におけるフィン群2Aの長さ、すなわちフィン群2Aの根元2dから先端2cまでの長さの半分の位置よりも先端2c側に連結部23が設けられる。すなわち、連結部23はフィン群2Aの根元2dと先端2cの間の中間点よりも先端2c側に設けられる。 Between the adjacent first and second fins 21, 22, a connecting portion 23 that connects the first and second fins 21, 22 is provided. The connecting portion 23 is provided near the tip 2c of the fin group 2A. That is, with reference to the lower surface 1a of the fin base 1, the position of the fin group 2A in the Y-axis direction in which the fin group 2A extends from the fin base 1, that is, the half of the length from the root 2d to the tip 2c of the fin group 2A Further, the connecting portion 23 is provided on the tip 2c side. That is, the connecting portion 23 is provided on the tip 2c side of the intermediate point between the root 2d and the tip 2c of the fin group 2A.
 連結部23は、Z軸方向におけるフィン群2Aの一端部2aから他端部2bまで伸びる棒形状である。Y軸方向における連結部23の幅は、Y軸方向におけるフィン群2Aの幅よりも小さい。Z軸方向における連結部23の幅は、Z軸方向におけるフィン群2Aの幅に等しい。 The connecting portion 23 has a rod shape extending from one end 2a to the other end 2b of the fin group 2A in the Z-axis direction. The width of the connecting portion 23 in the Y-axis direction is smaller than the width of the fin group 2A in the Y-axis direction. The width of the connecting portion 23 in the Z-axis direction is equal to the width of the fin group 2A in the Z-axis direction.
 図1に示すように電力変換装置200は、筐体210とパワーモジュールである半導体モジュール220とを備える。半導体モジュール220は筐体210の内部に設けられる。半導体モジュール220は、電力変換装置200を構成する不図示のプリント基板に搭載される。プリント基板に搭載された半導体モジュール220は、筐体210の底壁211の上面211a側に配置され、筐体210の底壁211の下面211b側にフィンベース1の上面1bが設置される。尚、半導体モジュール220はプリント基板に搭載されず、直接フィンベース1の上面1bに配置されても良い。 As shown in FIG. 1, the power converter 200 includes a housing 210 and a semiconductor module 220 that is a power module. The semiconductor module 220 is provided inside the housing 210. The semiconductor module 220 is mounted on a printed circuit board (not shown) that constitutes the power conversion apparatus 200. The semiconductor module 220 mounted on the printed circuit board is disposed on the upper surface 211 a side of the bottom wall 211 of the housing 210, and the upper surface 1 b of the fin base 1 is installed on the lower surface 211 b side of the bottom wall 211 of the housing 210. The semiconductor module 220 may be disposed directly on the upper surface 1b of the fin base 1 without being mounted on the printed circuit board.
 フィンベース1、フィン群2A及び筐体210のそれぞれの材料としては、アルミニウム、アルミニウム合金、オーステナイト系ステンレス合金、銅合金、鋳鉄、鋼又は鉄合金を例示できる。 Examples of the materials of the fin base 1, the fin group 2A, and the casing 210 include aluminum, aluminum alloy, austenitic stainless alloy, copper alloy, cast iron, steel, and iron alloy.
 図1に示すように筐体210の底壁211は、半導体モジュール220が設置される箱状の空間からZ軸方向の外部に延長して形成され、当該延長部に送風部300が固定される。送風部300は、Z軸方向におけるフィン群2Aの他端部2bと対向して設けられる。送風部300は不図示のファン及びファン駆動モータを備える。 As shown in FIG. 1, the bottom wall 211 of the casing 210 is formed to extend from the box-shaped space in which the semiconductor module 220 is installed to the outside in the Z-axis direction, and the blower unit 300 is fixed to the extended portion. . The air blower 300 is provided to face the other end 2b of the fin group 2A in the Z-axis direction. The air blower 300 includes a fan and a fan drive motor (not shown).
 半導体モジュール220で発生した熱はヒートシンク100に伝わる。送風部300の内部に設けられる不図示のファンが回転することにより、第1及び第2の隙間3a,3bに負圧が生じて、フィン群2Aの内部と外部との圧力差により、第1及び第2の隙間3a,3bに空気が取り込まれる。第1及び第2の隙間3a,3bに空気が図1中の矢印Aの向きに流れることにより、フィン群2Aの表面付近の高温の空気とフィン群2Aから離れた位置に流れる低温の空気とが混合される。これにより、フィン群2Aの表面に形成される温度境界層の発達が抑制され、空気とフィン群2Aとの間における熱交換量が向上し、フィン群2Aの冷却効率が向上し、半導体モジュール220が効果的に冷却される。 The heat generated in the semiconductor module 220 is transmitted to the heat sink 100. When a fan (not shown) provided in the air blowing unit 300 rotates, negative pressure is generated in the first and second gaps 3a and 3b, and the first and second gaps 2A cause a pressure difference between the inside and outside of the fin group 2A. In addition, air is taken into the second gaps 3a and 3b. When air flows in the first and second gaps 3a and 3b in the direction of arrow A in FIG. 1, high-temperature air near the surface of the fin group 2A and low-temperature air flowing away from the fin group 2A Are mixed. Thereby, the development of the temperature boundary layer formed on the surface of the fin group 2A is suppressed, the amount of heat exchange between the air and the fin group 2A is improved, the cooling efficiency of the fin group 2A is improved, and the semiconductor module 220 Is effectively cooled.
 尚、本実施の形態に係る電力変換装置200では、送風部300がフィン群2Aの下流側に配置される例を説明したが、送風部300が上流側に配置され、電力変換装置200は、送風部300からフィン群2Aへ冷媒が送り込まれるように構成してもよい。また、電力変換装置200は、送風部300を省略し、自然冷却を行っても良いことは言うまでもない。 In the power conversion device 200 according to the present embodiment, the example in which the air blowing unit 300 is disposed on the downstream side of the fin group 2A has been described. However, the air blowing unit 300 is disposed on the upstream side, You may comprise so that a refrigerant | coolant may be sent into the fin group 2A from the ventilation part 300. FIG. Moreover, it cannot be overemphasized that the power converter device 200 may omit the ventilation part 300, and may perform natural cooling.
 半導体モジュール220の冷却効率を向上させるためには、冷媒と熱交換する第1及び第2のフィン21,22の表面積を増加させることが有効である。ここで、ヒートシンク100の容積、すなわちX軸方向、Y軸方向及びZ軸方向のそれぞれのフィン群2Aの一端部から他端部までの幅を一定としながらフィン群2Aの表面積を増加させるためには、X軸方向におけるフィン群2Aの厚みを薄くして第2のフィン22の枚数を増加する方法がある。 In order to improve the cooling efficiency of the semiconductor module 220, it is effective to increase the surface areas of the first and second fins 21 and 22 that exchange heat with the refrigerant. Here, in order to increase the surface area of the fin group 2A while keeping the volume of the heat sink 100, that is, the width from one end to the other end of each fin group 2A in the X-axis direction, Y-axis direction, and Z-axis direction constant. Is a method of increasing the number of the second fins 22 by reducing the thickness of the fin group 2A in the X-axis direction.
 また、第1及び第2のフィン21,22の厚みを薄くして第1及び第2の隙間3a,3bを大きくし、熱交換する冷媒の量を増やすことによって冷却効率を向上する方法がある。 In addition, there is a method of improving the cooling efficiency by reducing the thickness of the first and second fins 21 and 22 to increase the first and second gaps 3a and 3b and increasing the amount of refrigerant for heat exchange. .
 ところが、フィン群2Aの厚みが薄くなるほど、フィン群2Aの剛性が小さくなり、フィン群2Aに物体が衝突したときにフィン群2Aが変形し易くなる。特に、フィン群2Aの最も外側に配置される第1のフィン21は物体の衝突を最も受けやすいため、変形が生じやすい。 However, as the thickness of the fin group 2A is reduced, the rigidity of the fin group 2A is reduced, and the fin group 2A is easily deformed when an object collides with the fin group 2A. In particular, the first fin 21 disposed on the outermost side of the fin group 2A is most susceptible to an object collision, and thus is likely to be deformed.
 一方、フィン群2Aの剛性、特に物体が衝突しやすいために変形が生じやすい第1のフィン21の剛性を向上させるために第1のフィン21の厚みを増加しようとすると、ヒートシンク100の容積を増加しない場合には第1の隙間3aあるいは第2の隙間3bを狭くする必要があり、冷却効率が低下する。 On the other hand, in order to increase the thickness of the first fin 21 in order to improve the rigidity of the fin group 2A, in particular, the rigidity of the first fin 21 that is likely to be deformed because an object easily collides, the volume of the heat sink 100 is reduced. If it does not increase, it is necessary to narrow the first gap 3a or the second gap 3b, and the cooling efficiency is lowered.
 このようにフィン群2Aの冷却効率の向上とフィン群2Aの剛性の向上とはトレードオフの関係にある。 Thus, the improvement of the cooling efficiency of the fin group 2A and the improvement of the rigidity of the fin group 2A are in a trade-off relationship.
 また、冷却効率を維持しながらフィン群2Aの剛性を向上させるため、第1の隙間3a及び第2の隙間3bの狭小化を抑制すると、ヒートシンク100の大型化につながってしまう。 Further, in order to improve the rigidity of the fin group 2A while maintaining the cooling efficiency, if the narrowing of the first gap 3a and the second gap 3b is suppressed, the heat sink 100 is increased in size.
 本実施の形態に係るヒートシンク100では、連結部23により第1及び第2のフィン21,22が連結されるため、第1のフィン21、第2のフィン22及び連結部23が一体的に形成され、1つの構造体として構成される。第1及び第2のフィン21,22が連結部23により連結されていない場合に比べて、連結された第1及び第2のフィン21,22の剛性は大きいため、物体が衝突したときの第1のフィン21の変形が抑制される。すなわち、第1のフィン21は連結部23を通じて第2のフィン22によって物理的に支持されているため剛性が向上しており、第1のフィン21に物体が衝突したときに変形が抑制される。また第1のフィン21の変形が抑制されるため、変形した第1のフィン21が第2のフィン22に物理的に干渉することによる第2のフィン22の変形が抑制される。従って、第1及び第2の隙間3a,3bが塞がれることなく、第1及び第2の隙間3a,3bに流れる空気の流量の低下が抑制される。 In the heat sink 100 according to the present embodiment, since the first and second fins 21 and 22 are connected by the connecting portion 23, the first fin 21, the second fin 22, and the connecting portion 23 are integrally formed. And configured as one structure. Compared with the case where the first and second fins 21 and 22 are not connected by the connecting portion 23, the first and second fins 21 and 22 that are connected have a higher rigidity, so that the first and second fins 21 and 22 are less affected when the object collides. The deformation of one fin 21 is suppressed. That is, since the first fin 21 is physically supported by the second fin 22 through the connecting portion 23, the rigidity is improved, and deformation is suppressed when an object collides with the first fin 21. . Further, since the deformation of the first fin 21 is suppressed, the deformation of the second fin 22 due to the physical interference of the deformed first fin 21 with the second fin 22 is suppressed. Therefore, the first and second gaps 3a and 3b are not blocked, and a decrease in the flow rate of the air flowing through the first and second gaps 3a and 3b is suppressed.
 また本実施の形態に係るヒートシンク100では、連結部23により第1のフィン21が第2のフィン22に連結されているため、X軸方向における第1のフィン21の第1の厚みt1を大きくすることなく第1のフィン21の剛性を向上できる。尚ヒートシンク100では、連結部23がない場合に比べて連結部23の分、上記材料の使用量は増加するが、連結部23の材料の使用量は、上記の剛性を得るために第1の厚みt1の増加させた場合の上記材料の使用量よりも少ない。そのためヒートシンク100の製造コストの増加が抑制される。 Further, in the heat sink 100 according to the present embodiment, since the first fin 21 is connected to the second fin 22 by the connecting portion 23, the first thickness t1 of the first fin 21 in the X-axis direction is increased. The rigidity of the first fin 21 can be improved without doing so. In the heat sink 100, the amount of the material used is increased by the amount of the connecting portion 23 compared to the case where the connecting portion 23 is not provided, but the amount of the material used for the connecting portion 23 is the first to obtain the rigidity described above. It is less than the amount of material used when the thickness t1 is increased. Therefore, an increase in manufacturing cost of the heat sink 100 is suppressed.
 尚、本実施の形態では第1のフィン21は第2のフィン22と同じ厚みを有するとしたが、第1のフィン21及び第2のフィン22の厚みは完全に同じでなくても良い。第1のフィン21と第2のフィン22を連結部23により連結することなく、互いに独立とした場合、第1のフィン21の剛性を向上させるために第1のフィン21の厚みを大きくすることが考えられる。第1のフィン21の厚みの増加のみによって十分な剛性を得るためには第1のフィン21の厚みを十分大きくする必要があり、上述したように材料使用量の増加や、冷媒が通る隙間の狭小化、ヒートシンク100の大型化等につながってしまう。 Although the first fin 21 has the same thickness as the second fin 22 in the present embodiment, the thickness of the first fin 21 and the second fin 22 may not be completely the same. When the first fin 21 and the second fin 22 are independent from each other without being connected by the connecting portion 23, the thickness of the first fin 21 is increased in order to improve the rigidity of the first fin 21. Can be considered. In order to obtain sufficient rigidity only by increasing the thickness of the first fin 21, it is necessary to increase the thickness of the first fin 21 sufficiently. This leads to narrowing and an increase in the size of the heat sink 100.
 本実施の形態に係るヒートシンク100は連結部23を用いたことにより、フィンの厚みのみによって剛性を向上させる場合よりも材料使用量を抑えながら、フィンの剛性を向上させる効果が得られる。さらに、冷却効率の低下やヒートシンクの大型化を抑制できる。 Since the heat sink 100 according to the present embodiment uses the connecting portion 23, the effect of improving the rigidity of the fin can be obtained while suppressing the amount of material used compared to the case of improving the rigidity only by the thickness of the fin. Furthermore, it is possible to suppress a decrease in cooling efficiency and an increase in the size of the heat sink.
 また本実施の形態に係るヒートシンク100では、X軸方向における第1のフィン21の第1の厚みt1を必要以上に大きくする必要がないため、X軸方向におけるフィン群2Aの一端部から他端部までの幅、すなわちヒートシンク100のサイズを一定として第1のフィン21の第1の厚みt1を大きくした場合に比べて、第1及び第2のフィン21,22の間の第1の隙間3aが大きくなり、ヒートシンク100の放熱性能の低下が抑制される。 Further, in the heat sink 100 according to the present embodiment, since it is not necessary to increase the first thickness t1 of the first fin 21 in the X-axis direction more than necessary, the other end to the other end of the fin group 2A in the X-axis direction. The first gap 3a between the first and second fins 21 and 22 is larger than the case where the first thickness t1 of the first fin 21 is increased with the width up to the portion, that is, the size of the heat sink 100 being constant. Is increased, and a decrease in heat dissipation performance of the heat sink 100 is suppressed.
 図3は第1の変形例に係るヒートシンクの構成図である。図4は第2の変形例に係るヒートシンクの構成図である。図3に示すヒートシンク100Aでは、連結部23がY軸方向におけるフィン群2Aの根元2d寄りに設けられる。すなわち、フィンベース1の下面1aを基準として、フィンベース1からフィン群2Aが延びるY軸方向におけるフィン群2Aの長さの半分の位置よりも根元2d側に連結部23が設けられる。すなわち、連結部23は根元2dと先端2cの間における中心点よりも根元2d側に設けられる。図4に示すヒートシンク100Bでは、連結部23が第1のフィン21と第2のフィン22の先端2cに設けられる。ヒートシンク100A及びヒートシンク100Bでは、第1及び第2のフィン21,22が連結部23により連結されるため、図1に示すヒートシンク100と同様に、第1のフィン21の剛性が向上し、物体が衝突したときの第1のフィン21の変形が抑制される。従って、ヒートシンク100A及びヒートシンク100Bの材料使用量の増加が抑制され、ヒートシンク100A及びヒートシンク100Bの放熱性能の低下が抑制される。 FIG. 3 is a configuration diagram of a heat sink according to the first modification. FIG. 4 is a configuration diagram of a heat sink according to a second modification. In the heat sink 100A shown in FIG. 3, the connecting portion 23 is provided near the root 2d of the fin group 2A in the Y-axis direction. That is, with the lower surface 1a of the fin base 1 as a reference, the connecting portion 23 is provided on the root 2d side from a position that is half the length of the fin group 2A in the Y-axis direction in which the fin group 2A extends from the fin base 1. That is, the connecting portion 23 is provided closer to the root 2d than the center point between the root 2d and the tip 2c. In the heat sink 100 </ b> B shown in FIG. 4, the connecting portion 23 is provided at the front end 2 c of the first fin 21 and the second fin 22. In the heat sink 100A and the heat sink 100B, since the first and second fins 21 and 22 are connected by the connecting portion 23, similarly to the heat sink 100 shown in FIG. The deformation of the first fin 21 at the time of collision is suppressed. Therefore, an increase in the amount of material used for the heat sink 100A and the heat sink 100B is suppressed, and a decrease in the heat dissipation performance of the heat sink 100A and the heat sink 100B is suppressed.
 図5は第3の変形例に係るヒートシンクの部分拡大図である。図1及び図2に示すヒートシンク100では、フィン群2Aがフィンベース1に溶接又は接着といった方法で取り付けられるが、図5に示すヒートシンク100Cでは、嵌め込み構造によりフィン群2Aがフィンベース1に固定されている。 FIG. 5 is a partially enlarged view of a heat sink according to a third modification. In the heat sink 100 shown in FIGS. 1 and 2, the fin group 2A is attached to the fin base 1 by welding or bonding. However, in the heat sink 100C shown in FIG. 5, the fin group 2A is fixed to the fin base 1 by a fitting structure. ing.
 図5に示すようにY軸方向におけるフィン群2Aの根元2dには、蟻ほぞ形状の蟻ほぞ部2eが形成されている。フィン群2Aの根元2dは、フィン群2Aのフィンベース1側の端部である。蟻ほぞ部2eは、Z軸方向におけるフィン群2Aの一端部2aから他端部2bまで伸びる。 As shown in FIG. 5, an ant tenon-shaped ant tenon portion 2e is formed on the root 2d of the fin group 2A in the Y-axis direction. The root 2d of the fin group 2A is the end of the fin group 2A on the fin base 1 side. The ant tenon 2e extends from one end 2a of the fin group 2A to the other end 2b in the Z-axis direction.
 フィンベース1の下面1aには、複数のスライドガイド1a1が形成される。スライドガイド1a1は、Z軸方向におけるフィンベース1の一端部1cから他端部1dまで伸び、蟻ほぞ部2eが嵌め込まれる蟻溝形状である。 A plurality of slide guides 1 a 1 are formed on the lower surface 1 a of the fin base 1. The slide guide 1a1 has a dovetail shape that extends from one end 1c of the fin base 1 to the other end 1d in the Z-axis direction and into which the dovetail part 2e is fitted.
 フィンベース1にフィン群2Aを取り付ける場合、蟻ほぞ部2eがスライドガイド1a1に挿入され、Z軸方向におけるフィンベース1の他端部1dに向かって案内される。これにより蟻ほぞ部2e及びスライドガイド1a1が互いに嵌り合い、フィンベース1にフィン群2Aが固定される。フィン群2Aをフィンベース1から取外す場合、フィン群2AをZ軸方向にスライドさせればよい。 When attaching the fin group 2A to the fin base 1, the dovetail part 2e is inserted into the slide guide 1a1 and guided toward the other end 1d of the fin base 1 in the Z-axis direction. Thereby, the ant tenon portion 2e and the slide guide 1a1 are fitted to each other, and the fin group 2A is fixed to the fin base 1. When removing the fin group 2A from the fin base 1, the fin group 2A may be slid in the Z-axis direction.
 尚、フィンベース1及びフィン群2Aの嵌め込み構造は、蟻ほぞ及び蟻溝に限定されず、第1及び第2のフィン21,22の少なくとも一方が、フィンベース1上においてZ軸方向にスライドさせてフィンベース1に嵌め込まれる構造であればよい。嵌め込み構造を用いることにより、1つの第1のフィン21が変形した場合でも残りの複数のフィンを交換する必要がないため、ヒートシンク100C全体を交換する場合に比べて、メンテナンス性が向上すると共に、フィンの交換に伴う作業時間を短縮できる。 The fitting structure of the fin base 1 and the fin group 2A is not limited to the dovetail and dovetail groove, and at least one of the first and second fins 21 and 22 is slid in the Z-axis direction on the fin base 1. Any structure that fits into the fin base 1 may be used. By using the fitting structure, even when one first fin 21 is deformed, it is not necessary to replace the remaining plurality of fins. Therefore, compared to the case where the entire heat sink 100C is replaced, the maintainability is improved. Work time associated with fin replacement can be reduced.
 尚、フィンベース1へのフィン群2Aの固定方法としては、上述したようにかしめ方式を用いても良い。この場合、フィンベース1にフィン挿入用のツメ(不図示)をあらかじめ設けておき、フィン群2Aを当該ツメに挿入して、かしめ固定する方法などが用いられる。 Note that, as described above, a caulking method may be used as a method of fixing the fin group 2A to the fin base 1. In this case, a fin insertion claw (not shown) is provided in advance in the fin base 1, and the fin group 2A is inserted into the claw and fixed by caulking.
 またZ軸方向における連結部23の長さは、第1及び第2のフィン21,22を連結可能な機械的強度を確保できば、Z軸方向における第1及び第2のフィン21,22の幅より小さくてもよい。また第1の隙間3aに設けられる連結部23の数は複数でもよい。具体的には、図1に示す連結部23に比べてZ軸方向における長さが短い連結部を、Z軸方向に沿って複数配列してもよいし、図1に示す連結部23をY軸方向に沿って複数配列してもよい。 In addition, the length of the connecting portion 23 in the Z-axis direction is such that the first and second fins 21 and 22 in the Z-axis direction have a sufficient mechanical strength to connect the first and second fins 21 and 22. It may be smaller than the width. The number of connecting portions 23 provided in the first gap 3a may be plural. Specifically, a plurality of connecting portions that are shorter in the Z-axis direction than the connecting portion 23 shown in FIG. 1 may be arranged along the Z-axis direction, or the connecting portions 23 shown in FIG. A plurality may be arranged along the axial direction.
 図6は第4の変形例に係る電力変換装置の斜視図である。図7は図6に示すヒートシンクにカバーを取り付ける前の状態を示す図である。図6及び図7に示すように第4の変形例に係るヒートシンク100Dは、フィン群2Aの先端2cを覆うカバー400を備える。図7に示すようにヒートシンク100Dでは、連結部23がY軸方向におけるフィン群2Aの先端2c寄りに設けられる。連結部23には、Y軸方向に貫通する不図示の雌ねじ部が形成され、当該雌ねじ部に締結部材401がねじ込まれることにより、カバー400が連結部23に固定される。尚、カバー400の固定場所は連結部23に限定されず、カバー400は、X軸方向から第1のフィン21にねじ込まれる不図示の締結部材を用いて第1のフィン21に固定してもよい。 FIG. 6 is a perspective view of a power converter according to a fourth modification. FIG. 7 is a view showing a state before the cover is attached to the heat sink shown in FIG. As shown in FIGS. 6 and 7, the heat sink 100D according to the fourth modification includes a cover 400 that covers the tip 2c of the fin group 2A. As shown in FIG. 7, in the heat sink 100D, the connecting portion 23 is provided near the tip 2c of the fin group 2A in the Y-axis direction. The connecting portion 23 has a female screw portion (not shown) penetrating in the Y-axis direction, and the cover 400 is fixed to the connecting portion 23 by screwing the fastening member 401 into the female screw portion. The fixing place of the cover 400 is not limited to the connecting portion 23, and the cover 400 may be fixed to the first fin 21 using a fastening member (not shown) screwed into the first fin 21 from the X-axis direction. Good.
 カバー400を設けることにより、フィン群2Aの先端2cに物体が衝突して変形することを防止できる。また、第2のフィン22を両側で挟む2枚の第1のフィン21がカバー400に固定されるため、第1のフィン21の剛性がより向上する。その結果、第1のフィン21及び第2のフィン22の変形がより一層抑制される。 By providing the cover 400, it is possible to prevent an object from colliding with the tip 2c of the fin group 2A and deforming. Further, since the two first fins 21 sandwiching the second fin 22 on both sides are fixed to the cover 400, the rigidity of the first fin 21 is further improved. As a result, the deformation of the first fin 21 and the second fin 22 is further suppressed.
 図8は第5の変形例に係る電力変換装置の斜視図である。図9は図8に示すヒートシンクをZ軸方向から見た正面図である。図8及び図9に示すように第5の変形例に係るヒートシンク100Eは、フィン群2Aの先端2cを覆うと共に、X軸方向における第1のフィン21の外側を覆うカバー500を備える。Y軸方向におけるフィンベース1の下面1aには、不図示の雌ねじ部が形成され、当該雌ねじ部に締結部材501がねじ込まれることにより、カバー500がフィンベース1に固定される。 FIG. 8 is a perspective view of a power converter according to a fifth modification. FIG. 9 is a front view of the heat sink shown in FIG. 8 as viewed from the Z-axis direction. As shown in FIGS. 8 and 9, the heat sink 100E according to the fifth modification includes a cover 500 that covers the tip 2c of the fin group 2A and covers the outside of the first fin 21 in the X-axis direction. A female screw portion (not shown) is formed on the lower surface 1a of the fin base 1 in the Y-axis direction, and the cover 500 is fixed to the fin base 1 by screwing the fastening member 501 into the female screw portion.
 カバー500を設けることにより、フィン群2Aに物体が衝突することを防止できるため、第1及び第2のフィン21,22の変形がより一層抑制される。 By providing the cover 500, it is possible to prevent an object from colliding with the fin group 2A, so that the deformation of the first and second fins 21 and 22 is further suppressed.
 また本実施の形態に係るヒートシンクでは、X軸方向における第1のフィン21の第1の厚みt1とX軸方向における第2のフィン22の第2の厚みt2とが互いに等しくなくても良いが、厚みが等しい場合には、厚みが異なる2種類のフィンを製造する場合に比べて、フィンの歩留まりが向上し、フィンの製造コストの上昇を抑制できる。 In the heat sink according to the present embodiment, the first thickness t1 of the first fin 21 in the X-axis direction and the second thickness t2 of the second fin 22 in the X-axis direction may not be equal to each other. When the thicknesses are equal, the yield of the fins is improved and an increase in the manufacturing cost of the fins can be suppressed as compared with the case of manufacturing two types of fins having different thicknesses.
 また本実施の形態に係る図1や図4等に示すヒートシンク100,100Bでは、第1のフィン21は、フィンベース1に取り付けられる根元2dと、第1のフィン21の根元2dと先端2cの間における中心点より先端2c側に設けられた連結部23とで支持される。本実施の形態の変形例である図3に示すヒートシンク100Aでは、第1のフィン21は根元2dと、第1のフィン21の根元2dと先端2cの間における中心点より根元2d側に設けられた連結部23とで支持される。前者の場合、後者に比べて第1のフィン21の先端2c側の剛性が大きくなり、物体の衝突時における第1のフィン21の変形が抑制される。すなわち、連結部23の配置によって、効果的に第1のフィン21の剛性を向上させることができる。 Further, in the heat sinks 100 and 100B shown in FIGS. 1 and 4 according to the present embodiment, the first fin 21 includes a root 2d attached to the fin base 1, a root 2d of the first fin 21, and a tip 2c. It is supported by the connecting portion 23 provided on the tip 2c side from the center point in between. In the heat sink 100A shown in FIG. 3, which is a modification of the present embodiment, the first fin 21 is provided on the root 2d side from the root 2d and the center point between the root 2d and the tip 2c of the first fin 21. The connecting portion 23 is supported. In the former case, the rigidity on the tip 2c side of the first fin 21 is larger than that in the latter, and deformation of the first fin 21 at the time of an object collision is suppressed. That is, the rigidity of the first fins 21 can be effectively improved by the arrangement of the connecting portions 23.
 第1のフィン21は、根元2dがフィンベース1に取り付けられているため、第1のフィン21の根元2dから先端2cまでの剛性を効果的に向上させるためには、連結部23を先端2c側に近づけるほど効果が大きく、連結部23を先端2cに設けることが最も望ましい。 Since the root 2d of the first fin 21 is attached to the fin base 1, in order to effectively improve the rigidity from the root 2d to the tip 2c of the first fin 21, the connecting portion 23 is connected to the tip 2c. The closer to the side, the greater the effect, and it is most desirable to provide the connecting portion 23 at the tip 2c.
 一方、第1のフィン21の根元2dから先端2cまでの幅が長い場合、連結部23を先端2cと、根元2dと先端2cの中間点と、の2カ所に設けることが好ましい。 On the other hand, when the width from the root 2d to the tip 2c of the first fin 21 is long, it is preferable to provide the connecting portion 23 at two points, that is, the tip 2c and an intermediate point between the root 2d and the tip 2c.
 上述のように、連結部23は第1の隙間3aにおいて、根元2dから先端2cまでの間に複数設けても良い。効果的に第1のフィン21の剛性を向上させるためには、複数の連結部23を根元2dから先端2cまでの第1の隙間3aを等間隔に分断するように配置することが好ましい。又は、連結部23は、特に物体が衝突しやすい箇所に集中的に設けても良い。 As described above, a plurality of connecting portions 23 may be provided between the root 2d and the tip 2c in the first gap 3a. In order to effectively improve the rigidity of the first fin 21, it is preferable to arrange the plurality of connecting portions 23 so that the first gap 3a from the root 2d to the tip 2c is divided at equal intervals. Or you may concentrate the connection part 23 in the location which an object collides easily.
 また、本実施の形態では連結部23は、Z軸方向、すなわち冷媒が通る上流側から下流側に向けて棒形状の例を示したが、上流側から下流側に向けてジグザグ形状であっても良いし、波状であっても良いし、凹凸形状であっても良い。 In the present embodiment, the connecting portion 23 has an example of a rod shape from the upstream side to the downstream side in the Z-axis direction, that is, from the upstream side through which the refrigerant passes, but has a zigzag shape from the upstream side to the downstream side. Alternatively, it may be wavy or uneven.
 また、本実施の形態では連結部23は、第1の隙間3aに設けられたが、さらに、隣接する2枚の第2のフィン22同士を連結する連結部を設けても良いことは言うまでもない。 Moreover, although the connection part 23 was provided in the 1st clearance gap 3a in this Embodiment, it cannot be overemphasized that the connection part which connects two adjacent 2nd fins 22 may be provided further. .
 また本実施の形態に係るヒートシンクは、半導体モジュール220を内蔵した電力変換装置200の筐体210に設置されているが、本実施の形態に係るヒートシンクの設置場所はこれに限定されず、本実施の形態に係るヒートシンクは、回転電機のステータの外周面に設置され、変流器又は計器用変圧器を内蔵した計器用変成器の筐体に設置されてもよい。 In addition, the heat sink according to the present embodiment is installed in the casing 210 of the power conversion device 200 including the semiconductor module 220, but the installation location of the heat sink according to the present embodiment is not limited to this, and the present embodiment The heat sink according to the embodiment may be installed on the outer peripheral surface of the stator of the rotating electric machine, and may be installed in the housing of the instrument transformer having a built-in current transformer or instrument transformer.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 フィンベース、1a,2c,211b 下面、1a1 スライドガイド、1b,211a 上面、1d,2b 他端部、1c,2a 一端部、2d 根元、2A フィン群、2e 蟻ほぞ部、3a 第1の隙間、3b 第2の隙間、21 第1のフィン、22 第2のフィン、23 連結部、100,100A,100B,100C,100D,100E ヒートシンク、200 電力変換装置、210 筐体、211 底壁、220 半導体モジュール、300 送風部、400,500 カバー、401,501 締結部材。 1 fin base, 1a, 2c, 211b bottom surface, 1a1 slide guide, 1b, 211a top surface, 1d, 2b other end, 1c, 2a one end, 2d root, 2A fin group, 2e ant tenon, 3a first gap 3b, 2nd gap, 21 1st fin, 22 2nd fin, 23 connecting part, 100, 100A, 100B, 100C, 100D, 100E heat sink, 200 power converter, 210 housing, 211 bottom wall, 220 Semiconductor module, 300 blower, 400,500 cover, 401,501 fastening member.

Claims (10)

  1.  フィンベースと、
     前記フィンベースの下面に根元が取り付けられた2枚の第1のフィンと、
     前記フィンベースの下面に根元が取り付けられ、2枚の前記第1のフィンに挟まれるように配置される第2のフィンと、
     前記第1のフィンと、前記第1のフィンに隣接する前記第2のフィンと、の間に設けられ、前記第1のフィン及び前記第2のフィンを連結する連結部と、
     を備えたことを特徴とするヒートシンク。
    The fin base,
    Two first fins having roots attached to the lower surface of the fin base;
    A second fin disposed on a lower surface of the fin base and disposed so as to be sandwiched between the two first fins;
    A connecting portion that is provided between the first fin and the second fin adjacent to the first fin and connects the first fin and the second fin;
    A heat sink characterized by comprising:
  2.  前記第1のフィン及び第2のフィンの厚みが互いに等しいことを特徴とする請求項1に記載のヒートシンク。 The heat sink according to claim 1, wherein the thicknesses of the first fin and the second fin are equal to each other.
  3.  前記連結部は、前記第1のフィンの根元と先端の中心点よりも先端側に設けられたことを特徴とする請求項1又は請求項2に記載のヒートシンク。 The heat sink according to claim 1 or 2, wherein the connecting portion is provided on a tip side of a root and a center point of the tip of the first fin.
  4.  前記連結部は、前記第1のフィンの根元から先端までにおいて複数個所に設けられたことを特徴とする請求項1又は2に記載のヒートシンク。 The heat sink according to claim 1 or 2, wherein the connecting portion is provided at a plurality of locations from the base to the tip of the first fin.
  5.  前記連結部は、前記第1のフィンと前記第2のフィンとの間の隙間を等間隔で分断する位置に設けられたことを特徴とする請求項1又は4に記載のヒートシンク。 The heat sink according to claim 1 or 4, wherein the connecting portion is provided at a position that divides a gap between the first fin and the second fin at equal intervals.
  6.  前記第1のフィンが前記フィンベースにスライドして嵌め込まれる嵌め込み構造を有することを特徴とする請求項1から請求項5の何れか一項に記載のヒートシンク。 The heat sink according to any one of claims 1 to 5, wherein the heat sink has a fitting structure in which the first fin is slid and fitted into the fin base.
  7.  前記第1のフィン及び第2のフィンの間の隙間に空気の流れを生じさせる送風部を備えることを特徴とする請求項1から請求項6の何れか一項に記載のヒートシンク。 The heat sink according to any one of claims 1 to 6, further comprising an air blowing unit that generates an air flow in a gap between the first fin and the second fin.
  8.  前記第1のフィン及び第2のフィンの先端を覆うカバーを備えることを特徴とする請求項1から請求項7の何れか一項に記載のヒートシンク。 The heat sink according to any one of claims 1 to 7, further comprising a cover that covers tips of the first fin and the second fin.
  9.  前記カバーは前記連結部に固定されることを特徴とする請求項8に記載のヒートシンク。 The heat sink according to claim 8, wherein the cover is fixed to the connecting portion.
  10.  請求項1から請求項9の何れか一項に記載のヒートシンクと、
     前記フィンベースの上面に設けられたパワーモジュールと、
     を備えたことを特徴とする電力変換装置。
    A heat sink according to any one of claims 1 to 9,
    A power module provided on the upper surface of the fin base;
    A power conversion device comprising:
PCT/JP2016/079087 2016-09-30 2016-09-30 Heat sink and power conversion device WO2018061193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017518558A JPWO2018061193A1 (en) 2016-09-30 2016-09-30 Heat sink and power converter
PCT/JP2016/079087 WO2018061193A1 (en) 2016-09-30 2016-09-30 Heat sink and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079087 WO2018061193A1 (en) 2016-09-30 2016-09-30 Heat sink and power conversion device

Publications (1)

Publication Number Publication Date
WO2018061193A1 true WO2018061193A1 (en) 2018-04-05

Family

ID=61760279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079087 WO2018061193A1 (en) 2016-09-30 2016-09-30 Heat sink and power conversion device

Country Status (2)

Country Link
JP (1) JPWO2018061193A1 (en)
WO (1) WO2018061193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648898A (en) * 2018-07-27 2018-10-12 南通鑫源电器制造有限公司 A kind of heat dissipation protruding type transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750494A (en) * 1993-08-06 1995-02-21 Mitsubishi Electric Corp Cooling device
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2002026200A (en) * 2000-07-07 2002-01-25 Mizutani Denki Kogyo Kk Radiator for electronic component
JP2010123882A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Cold plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960876B2 (en) * 2002-08-01 2007-08-15 古河電気工業株式会社 heatsink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750494A (en) * 1993-08-06 1995-02-21 Mitsubishi Electric Corp Cooling device
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2002026200A (en) * 2000-07-07 2002-01-25 Mizutani Denki Kogyo Kk Radiator for electronic component
JP2010123882A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Cold plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648898A (en) * 2018-07-27 2018-10-12 南通鑫源电器制造有限公司 A kind of heat dissipation protruding type transformer

Also Published As

Publication number Publication date
JPWO2018061193A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP2008140802A (en) Heat sink
WO2017010536A1 (en) Cooling device
EP2065283B1 (en) Cooling device for mobile body
JP5474265B2 (en) Cooling device for vehicle underfloor device
JP6775385B2 (en) Base for power module
JP2008140803A (en) Heat sink
JP5335839B2 (en) Power conversion module heat dissipation device
JP6534873B2 (en) Liquid cooling system
JP4737639B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
WO2016110977A1 (en) Cooling device for railway vehicle
JP2008171987A (en) Fin-type liquid-cooled heat sink
JP5052422B2 (en) Electronic equipment and heat sink
WO2018061193A1 (en) Heat sink and power conversion device
JP5312690B2 (en) Heat sink and manufacturing method thereof
JP2010118497A (en) Heat exchanger equipped with fin with louvers
JP6315081B2 (en) Power converter
JP6432909B2 (en) Power equipment
JP2010093034A (en) Cooling device for electronic component
JP2019110220A (en) Motor control device
CN110087435B (en) System for cooling electronic equipment and assembling method
JP7328213B2 (en) heat sink
JP6222938B2 (en) Heat dissipation device
JP6152708B2 (en) Railway vehicle
CN112739156A (en) Heat dissipation module, radiator and power equipment
JP4496491B2 (en) Electronics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017518558

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917743

Country of ref document: EP

Kind code of ref document: A1