WO2018061094A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018061094A1
WO2018061094A1 PCT/JP2016/078503 JP2016078503W WO2018061094A1 WO 2018061094 A1 WO2018061094 A1 WO 2018061094A1 JP 2016078503 W JP2016078503 W JP 2016078503W WO 2018061094 A1 WO2018061094 A1 WO 2018061094A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate line
signal
switching element
thin film
line
Prior art date
Application number
PCT/JP2016/078503
Other languages
French (fr)
Japanese (ja)
Inventor
松田 成裕
琢也 大石
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2016/078503 priority Critical patent/WO2018061094A1/en
Publication of WO2018061094A1 publication Critical patent/WO2018061094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • This technology relates to a display device that displays video.
  • the liquid crystal display device includes a liquid crystal panel and a backlight disposed on the back side of the liquid crystal panel.
  • the liquid crystal panel includes two substrates on which pixel electrodes and common electrodes are formed, and a liquid crystal layer sealed between the two substrates. A voltage is applied to the pixel electrode and the common electrode to change the orientation of liquid crystal molecules in the liquid crystal layer, thereby controlling the polarization of incident light.
  • liquid crystal panels have narrow viewing angle characteristics.
  • Patent Document 1 In order to realize the viewing angle improvement based on Patent Document 1, it is necessary to additionally route a control wiring for controlling the potential of the subpixel.
  • the display area of the liquid crystal panel In Patent Document 1, the display area of the liquid crystal panel is used. The detailed structure in the non-display area located around is not specified.
  • the present embodiment has been made in view of such circumstances, and an object thereof is to provide a display device capable of smoothly driving the display panel by the configuration of the non-display area of the display panel.
  • a display device includes a display panel having a display area and a non-display area positioned around the display area, and a plurality of subpixel switching elements corresponding to a plurality of subpixels constituting pixels of the display panel
  • a control switching element that is connected to one of the sub-pixel switching elements and controls a potential difference between the sub-pixels, a gate terminal portion located in the non-display area, the gate terminal portion, and a plurality of sub-pixels
  • the auxiliary gate line is not connected to the gate terminal portion, and in the non-display area, in the first direction.
  • a first signal line and a second signal line extending along a second direction, and the non-display area, and the auxiliary gate line and the first signal line are arranged based on a signal from the first signal line.
  • a first switching element that controls connection of the gate line, and a connection between the auxiliary gate line and the second gate line, which is arranged in the non-display region and based on a signal from the second signal line And a second switching element for controlling.
  • the auxiliary gate line is not connected to the gate terminal portion in the non-display area, so that an increase in the number of wirings connected to the gate terminal portion can be suppressed. Further, based on the signals from the first signal line and the second signal line, the driving of the first switching element and the second switching element is controlled, and the gate line is scanned in the forward direction and the reverse direction, thereby smoothing the display panel. It can be driven.
  • FIG. 3 is a front view schematically showing a display panel of the display device according to Embodiment 1.
  • FIG. It is an equivalent circuit diagram of the display panel in the vicinity of the boundary between the display area and the non-display area. It is a table
  • FIG. 6 is a timing diagram schematically showing respective voltages of each gate line, first signal line to third signal line, auxiliary gate line, and drain electrode of each thin film transistor in the first driving method.
  • FIG. 10 is a timing diagram schematically showing voltages of a gate line, a first signal line to a third signal line, an auxiliary gate line, and a drain electrode of each thin film transistor in the second driving method.
  • FIG. 10 is a timing diagram schematically showing voltages of a gate line, first signal line to third signal line, auxiliary gate line, and drain electrode of each thin film transistor in a third driving method when the gate line is scanned in the forward direction.
  • FIG. 10 is a timing diagram schematically showing the voltages of the gate line, the first signal line to the third signal line, the auxiliary gate line, and the drain electrode of each thin film transistor in the third driving method when the gate line is scanned in the reverse direction.
  • 10 is an equivalent circuit diagram of a display panel in the vicinity of a boundary between a display area and a non-display area according to Embodiment 2.
  • FIG. It is an example of the equivalent circuit schematic of the display panel which concerns on a 1st reference display apparatus. It is an example of the equivalent circuit schematic of the display panel which concerns on a 2nd reference display apparatus.
  • FIG. 1 is a front view schematically showing a display panel.
  • the display device includes a horizontally long display panel 1 in which a liquid crystal layer is sealed between two substrates.
  • the central portion of the display panel 1 is a display area 1a for displaying a horizontally long rectangular image.
  • the periphery of the display area 1 a is a horizontally long rectangular frame, and is a non-display area 1 b where no video is displayed.
  • the horizontal direction of the display panel 1 corresponds to the first direction, and the vertical direction corresponds to the second direction.
  • a plurality of gate terminal portions 33, 3,..., 3 are juxtaposed in the vertical direction on each short side (right side or left side in FIG. 1) of the display panel 1.
  • the gate terminal portion 3 is provided in the non-display area 1b.
  • a film such as COF (Chip On Film) is provided outside the non-display area 1b, and the film and the gate terminal 3 are connected to input a driving signal from the outside to the panel.
  • Gate lines extend in the lateral direction from the gate terminal portions 3 and 3 respectively.
  • a plurality of data signal lines 4 extending in the vertical direction are arranged in parallel in the horizontal direction.
  • the data signal lines 4 and the gate lines are orthogonal to each other and arranged on the display panel 1 in a matrix.
  • a thin film transistor and a pixel electrode connected to the thin film transistor are provided near the intersection of the data signal line 4 and the gate line.
  • the thin film transistor is ON / OFF controlled by the gate line, a signal potential is applied from the data signal line 4 to each pixel electrode, the alignment state of the liquid crystal changes, and information is displayed.
  • FIG. 2 is an equivalent circuit diagram of the display panel 1 near the boundary between the display area 1a and the non-display area 1b.
  • A indicates the boundary between the display area 1a and the non-display area 1b
  • the right side of the boundary A is the display area 1a
  • the left side of the boundary A is the non-display area 1b.
  • a plurality of gate lines G n (n is an integer) are juxtaposed in the vertical direction and are connected to the gate terminal portion 3, respectively.
  • a plurality of auxiliary gate lines SG n (n is an integer) corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1.
  • the auxiliary gate line SG n is located between the adjacent gate line G n (third gate line) and the gate line G n + 1 (first gate line).
  • the auxiliary gate line SG n is provided over the display area 1 a and the non-display area 1 b, but is not directly connected to the gate terminal portion 3.
  • the gate line G n-1 constitutes a second gate line.
  • a plurality of first voltage supply lines 21 corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1.
  • a plurality of second voltage supply lines 22 corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1.
  • An arbitrary voltage can be applied to the first voltage supply line 21 and the second voltage supply line 22.
  • a pixel electrode 40 (pixel) is formed in the vicinity of the intersection of each data signal line 4 and each gate line Gn .
  • the pixel electrode 40 includes a first subpixel 41 and a second subpixel 42.
  • the first subpixel 41 includes a thin film transistor T1 (subpixel switching element), a first capacitor C1, and a second capacitor C2.
  • the thin film transistor T1 has a gate electrode connected to the gate line Gn , a source electrode connected to the data signal line 4, and a drain electrode connected to one end of each of the first capacitor C1 and the second capacitor C2.
  • the other end of the first capacitor C 1 is connected to the common electrode, and the other end of the second capacitor C 2 is connected to the first voltage supply line 21.
  • the second subpixel 42 includes a thin film transistor T2 (subpixel switching element), a third capacitor C3, and a fourth capacitor C4.
  • the thin film transistor T2 has a gate electrode connected to the gate line Gn , a source electrode connected to the data signal line 4, and a drain electrode connected to one end of each of the third capacitor C3 and the fourth capacitor C4.
  • the other end of the third capacitor C3 is connected to the common electrode, and the other end of the fourth capacitor C4 is connected to the second voltage supply line 22.
  • a thin film transistor T3 (control switching element) and a fifth capacitor C5 are connected to the second subpixel 42.
  • the gate electrode of the thin film transistor T3 is connected to the auxiliary gate line SG n, the source electrode is connected to the drain electrode of the second TFT T2, the drain electrode is connected to one end of the fifth capacitor C5.
  • the other end of the fifth capacitor C5 is connected to the second voltage supply line 22.
  • the first signal line 11, the second signal line 12, and the third signal line 13 extending in the vertical direction are juxtaposed in the horizontal direction.
  • a signal for controlling forward scanning is input to the first signal line 11.
  • a signal for controlling scanning in the reverse direction is input to the second signal line 12.
  • a signal for setting the presence / absence of a gradation difference between the first sub-pixel 41 and the second sub-pixel 42 is input to the third signal line 13.
  • the forward direction indicates the ascending order of n, that is, the direction of scanning the gate line G n in the order of n ⁇ 1, n, n + 1, and the reverse direction indicates the descending order of n, that is, n + 1, n, n ⁇ .
  • the direction of scanning the gate line G n in the order of 1 is shown.
  • a first switching element S ⁇ b> 1 is provided between the first signal line 11 and the second signal line 12.
  • the first switching element S1 includes a thin film transistor.
  • the gate electrode of the first switching element S1 is connected to the first signal line 11, a source electrode connected to the gate line G n + 1, the drain electrode is connected to the auxiliary gate line SG n.
  • a second switching element S ⁇ b> 2 is provided between the second signal line 12 and the third signal line 13.
  • the second switching element S2 includes a thin film transistor.
  • the gate electrode of the second switching element S2 is connected to the second signal line 12, the source electrode is connected to the gate line G n-1 (second gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected.
  • the third switching element S3 is provided in the non-display area 1b.
  • the third switching element S3 includes a thin film transistor.
  • the gate electrode of the third switching element S3, is connected to the third signal line 13, a source electrode connected to the gate line G n, a drain electrode is connected to the auxiliary gate line SG n.
  • the display device includes a control unit 70 (a first control unit, a second control unit, and a third control unit) having a CPU, a ROM, a RAM, a nonvolatile memory, an input / output interface, and the like.
  • a data signal is input from the control unit 70 to the data signal line 4 via the source substrate 2, and a signal is input to the gate line via the gate terminal unit 3.
  • FIG. 3 is a table for explaining a driving method of the display device by the control unit 70.
  • the first driving method indicates a driving method in which the gate line G n is scanned in the forward direction and a gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42.
  • a driving method in which the gate line G n is scanned in the reverse direction and a gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42 is shown.
  • the third driving method is a gate line G n in the forward direction or the reverse direction. And a driving method in which no gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42.
  • FIG. 4 shows the gate lines G n ⁇ 1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, the auxiliary gate line SG n , and the thin film transistors T1, T2 in the first driving method. It is a timing diagram which shows each voltage of a drain electrode schematically.
  • T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
  • the pull-in (or kickback) phenomenon due to the parasitic capacitance between the gate and drain of each transistor is omitted with respect to the voltages of the drain electrodes of T1 and T2.
  • an “H” signal (High signal) is input to the first signal line 11
  • an “L” signal (Low signal) is input to the second signal line 12 and the third signal line 13.
  • an “H” signal is inputted in the forward direction to the gate line G n ⁇ 1 , the gate line G n and the gate line G n + 1 .
  • an input start time of the "H” signal to the gate lines G n and P 1 an input start of the "H” signal to the input end and the gate line G n + 1 "H” signal to the gate line G n
  • the time point is P 2
  • the input end point of the “H” signal to the gate line G n + 1 is P 3 .
  • the “H” signal When the “H” signal is input to the first signal line 11, the first switching element S1 is turned on, and the gate line G n + 1 and the auxiliary gate line SG n are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing (time point P 2 ) when the “H” signal is input to the gate line G n + 1 .
  • the thin film transistor T1 when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
  • the thin film transistor T3 When the “H” signal is input to the gate line G n + 1 (time point P 2 ), the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4, and the capacitor C5, and the gate line G n + 1.
  • the voltage on the drain electrode side of the thin film transistor T2 slightly drops while the “H” signal is being input to (between P 2 P 3 ).
  • the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on.
  • FIG. 5 shows the gate lines G n ⁇ 1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, the auxiliary gate line SG n , and the thin film transistors T1, T2 in the second driving method. It is a timing diagram which shows each voltage of a drain electrode schematically.
  • T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
  • the “H” signal is input to the second signal line 12
  • the “L” signal is input to the first signal line 11 and the third signal line 13.
  • the “H” signal is inputted in the reverse direction to the gate line G n ⁇ 1 , the gate line G n , and the gate line G n + 1 .
  • an input start time of the "H” signal to the gate lines G n and P 1 an input start of the "H” signal to the input end and the gate lines G n-1 "H” signal to the gate line G n
  • the time point is P 2
  • the input end time point of the “H” signal to the gate line G n ⁇ 1 is P 3 .
  • the second switching element S2 When the “H” signal is input to the second signal line 12, the second switching element S2 is turned on, and the gate line G n ⁇ 1 and the auxiliary gate line SG n are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n ⁇ 1 (time point P 2 ).
  • the thin film transistor T1 when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
  • the thin film transistor T3 When the “H” signal is input to the gate line G n ⁇ 1 (time point P 2 ), the thin film transistor T3 is turned on, and the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the gate line G n ⁇ 1.
  • the voltage on the drain electrode side of the thin film transistor T2 slightly drops while the “H” signal is being input to (between P 2 P 3 ).
  • the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on.
  • FIG. 6A shows the gate lines G n ⁇ 1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, and the auxiliary gate line in the third driving method when the gate line is scanned in the forward direction.
  • FIG. 6 is a timing diagram schematically showing SG n and voltages of drain electrodes of the thin film transistors T1 and T2.
  • T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
  • FIG. 6B shows the gate lines G n ⁇ 1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, and the auxiliary gate line in the third driving method when the gate line is scanned in the reverse direction.
  • FIG. 6 is a timing diagram schematically showing SG n and voltages of drain electrodes of the thin film transistors T1 and T2.
  • T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
  • the third switching element S3 When the “H” signal is input to the third signal line 13, the third switching element S3 is turned on, and the gate line G n and the auxiliary gate line SG n are connected. Therefore, at the timing when the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n .
  • the thin film transistor T1 when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
  • the “H” signal is input to the gate line G n (time point P 1 )
  • the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 includes a capacitor Charging is performed so that charges having the same polarity as C3 and C4 have substantially the same potential.
  • the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
  • the third switching element S3 When the “H” signal is input to the third signal line 13, the third switching element S3 is turned on, and the gate line G n and the auxiliary gate line SG n are connected. Therefore, at the timing when the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n .
  • the thin film transistor T1 when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
  • the “H” signal is input to the gate line G n (time point P 1 )
  • the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 includes a capacitor Charging is performed so that charges having the same polarity as C3 and C4 have substantially the same potential.
  • the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
  • the auxiliary gate lines are not individually connected to the gate terminal portion 3 in the non-display region 1b, an increase in the number of wirings connected to the gate terminal portion 3 is suppressed. can do. Further, the driving of the first switching element S1 and the second switching element S2 can be controlled based on the signals from the first signal line 11 and the second signal line 12, and the gate lines can be scanned in the forward direction and the reverse direction. .
  • the second switching element S2 when the first switching element S1 is turned on, the second switching element S2 is turned off to realize a gradation difference between the first subpixel 41 and the second subpixel 42 in the scanning of the gate line in the forward direction. be able to. Further, when the second switching element S2 is on, the first switching element S1 is turned off, and, for example, in the scanning of the gate line in the reverse direction, a gradation difference between the first subpixel 41 and the second subpixel 42 is realized. can do.
  • the driving of the third switching element S3 can be controlled to change the gradation difference between the sub-pixels.
  • the third switching element S3 when the third switching element S3 is turned on, the first switching element S1 and the second switching element S2 can be turned off so that the gradation difference between the sub-pixels hardly occurs.
  • FIG. 7 is an equivalent circuit diagram of the display panel 1 in the vicinity of the boundary between the display area 1a and the non-display area 1b.
  • A indicates the boundary between the display area 1a and the non-display area 1b.
  • the right side of the boundary A is the display area 1a, and the left side of the boundary A is the non-display area 1b.
  • the gate line G n + 2 constitutes a first gate line
  • the gate line G n-2 constitutes a second gate line
  • the gate line G n constitutes a third gate line.
  • the gate electrode of the first switching element S1 is connected to the first signal line 11, the source electrode is connected to the gate line G n + 2 (first gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected.
  • the gate electrode of the second switching element S2 is connected to the second signal line 12, the source electrode is connected to the gate line G n-2 (second gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected. Even in this case, the above-described first to third driving methods (see FIG. 3) can be executed.
  • an “H” signal is input to the first signal line 11, the first switching element S1 is turned on, and the gate line G n + 2 and the auxiliary gate line SG n are turned on. And are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n + 2 .
  • the thin film transistor T1 When the “H” signal is input to the gate line G n , the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the drain electrode side of the thin film transistor T1 The voltage changes from Low to High. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
  • the thin film transistor T3 When the “H” signal is input to the gate line G n + 2 , the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the “H” signal is applied to the gate line G n + 2. Is inputted, the voltage on the drain electrode side of the thin film transistor T2 slightly drops. Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on.
  • an “H” signal is input to the second signal line 12, the second switching element S2 is turned on, and the gate line G n ⁇ 2 and the auxiliary gate line SG n are connected. . Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n-2 .
  • the thin film transistor T1 When the “H” signal is input to the gate line G n , the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the drain electrode side of the thin film transistor T1 The voltage changes from Low to High. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
  • the thin film transistor T3 When the “H” signal is input to the gate line G n ⁇ 2 , the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the “H” signal is input to the gate line G n ⁇ 2. Is inputted, the voltage on the drain electrode side of the thin film transistor T2 slightly drops. Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on.
  • an “H” signal is input to the gate line G n and the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the voltage on the drain electrode side of the thin film transistor T1 changes from low to high. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
  • the “H” signal When the “H” signal is input to the gate line G n , the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 has the same characteristics as the capacitors C3 and C4. Charging is performed so that polar charges have substantially the same potential. As a result, the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
  • FIG. 8 is an example of an equivalent circuit diagram of the display panel 1 according to the first reference display device.
  • each auxiliary gate line SG n is connected to the gate terminal portion 3, and the auxiliary gate lines SG n and the gate lines G n are densely packed in the non-display region 1b. . Therefore, L / S (Line and Space), that is, the width of the wiring and the gap between the wirings are smaller than those of the display device according to the first or second embodiment, and the yield of the display panel 1 is reduced.
  • FIG. 9 is an example of an equivalent circuit diagram of the display panel 1 according to the second reference display device. As shown in FIG. 9, in the second reference display device, the auxiliary gate line SG n is not connected to the gate terminal portion 3, the auxiliary gate line SG n is connected to the gate line G n + 4.
  • the “H” signal is input to the gate line G n , the thin film transistors T1 and T2 are turned on, and the capacitors C1 and C2 and the capacitors C3 and C4 are charged, respectively. Thereafter, the “L” signal is input to the gate line G n , the “H” signal is input to the auxiliary gate line SG n , the thin film transistor T3 is turned on, and the charge held in the capacitors C3 and C4 is input to the capacitor C5. Dispersed, the potential of the capacitor C3 slightly decreases.
  • the wiring pattern is fixed, and when the “H” signal is input to the gate line G n + 4 , the “H” signal is input to the auxiliary gate line SG n . Therefore, the scanning direction of the gate line is limited to the forward direction (G n ⁇ G n + 1 ⁇ G n + 2 ⁇ G n + 3 ⁇ G n + 4 ⁇ ).
  • the gate line is scanned in the reverse direction (G n + 4 ⁇ G n + 3 ⁇ G n + 2 ⁇ G n + 1 ⁇ G n ⁇ ...), It does not match the circuit structure shown in FIG. Because it does not.
  • the structural it is impossible to keep the auxiliary gate line SG n to Low, it is impossible to perform the third driving method described above.

Abstract

The present invention relates to a display device characterized by being provided with: a display panel having a display area and a non-display area; a plurality of sub-pixel switching elements corresponding to a plurality of sub-pixels of the display panel; a control switching element connected to one of the sub-pixel switching elements, and controlling gray level differences between the sub-pixels; a gate terminal unit located in the non-display area; a plurality of gate lines connected to the gate terminal unit and the plurality of sub-pixel switching elements, and extending in a first direction; an auxiliary gate line which extends in the first direction from between the gate lines, and is connected to a control terminal of the control switching element, and which, in the non-display area, is not connected to the gate terminal unit; a first signal line and a second signal line that extend in a second direction; a first switching element for controlling the connection of the auxiliary gate line and a first gate line on the basis of a signal from the first signal line; and a second switching element for controlling the connection of the auxiliary gate line and a second gate line on the basis of a signal from the second signal line.

Description

表示装置Display device
 本技術は映像を表示する表示装置に関する。 This technology relates to a display device that displays video.
 薄型の表示装置、例えば液晶表示装置は、設置面積に比べて表示面積が大きいことから一般に広く普及している。液晶表示装置は液晶パネル及び該液晶パネルの背面側に配置されたバックライトを備える。液晶パネルは、画素電極及び共通電極等を形成した二枚の基板と、二枚の基板の間に封入された液晶層とを備える。画素電極及び共通電極に電圧を印加し、液晶層における液晶分子の配向を変化させて、入射光の偏光を制御している。 Thin display devices, such as liquid crystal display devices, are generally widespread because they have a larger display area than the installation area. The liquid crystal display device includes a liquid crystal panel and a backlight disposed on the back side of the liquid crystal panel. The liquid crystal panel includes two substrates on which pixel electrodes and common electrodes are formed, and a liquid crystal layer sealed between the two substrates. A voltage is applied to the pixel electrode and the common electrode to change the orientation of liquid crystal molecules in the liquid crystal layer, thereby controlling the polarization of incident light.
 一般的に液晶パネルは狭い視野角特性を有している。この視野角特性を改善させるために、液晶パネルの画素を複数の副画素によって構成することが従来提案されている(例えば特許文献1参照)。 Generally, liquid crystal panels have narrow viewing angle characteristics. In order to improve this viewing angle characteristic, it has been conventionally proposed to configure a pixel of a liquid crystal panel with a plurality of sub-pixels (see, for example, Patent Document 1).
米国特許公開2009-0027578号明細書US Patent Publication No. 2009-0027578
 しかし、特許文献1に基づく視野角改善を実現するためには、副画素の電位を制御するための制御用配線を追加で引き回す必要があるが、該特許文献1においては、液晶パネルの表示領域の周囲に位置する非表示領域における詳細な構造を明示していない。 However, in order to realize the viewing angle improvement based on Patent Document 1, it is necessary to additionally route a control wiring for controlling the potential of the subpixel. In Patent Document 1, the display area of the liquid crystal panel is used. The detailed structure in the non-display area located around is not specified.
 本実施例は斯かる事情に鑑みてなされたものであり、表示パネルの非表示領域の構成によって、表示パネルを円滑に駆動させることができる表示装置を提供することを目的とする。 The present embodiment has been made in view of such circumstances, and an object thereof is to provide a display device capable of smoothly driving the display panel by the configuration of the non-display area of the display panel.
 本実施例に係る表示装置は、表示領域及び該表示領域の周囲に位置する非表示領域を有する表示パネルと、該表示パネルの画素を構成する複数の副画素に対応した複数の副画素スイッチング素子と、一の前記副画素スイッチング素子に接続されており、前記副画素間の電位差を制御する制御スイッチング素子と、前記非表示領域に位置するゲート端子部と、該ゲート端子部及び複数の副画素スイッチング素子に接続されており、第1方向に延びた複数のゲート線と、該複数のゲート線の間にて前記第1方向に延びており、前記制御スイッチング素子の制御端子に接続された補助ゲート線とを備える表示装置において、前記非表示領域にて、前記補助ゲート線は前記ゲート端子部に対して非接続であり、前記非表示領域にて、前記第1方向に交差する第2方向に沿って延びた第1信号線及び第2信号線と、前記非表示領域に配されており、前記第1信号線からの信号に基づいて、前記補助ゲート線及び第1の前記ゲート線の接続を制御する第1スイッチング素子と、前記非表示領域に配されており、前記第2信号線からの信号に基づいて、前記補助ゲート線及び第2の前記ゲート線の接続を制御する第2スイッチング素子とを備えることを特徴とする。 A display device according to the present embodiment includes a display panel having a display area and a non-display area positioned around the display area, and a plurality of subpixel switching elements corresponding to a plurality of subpixels constituting pixels of the display panel A control switching element that is connected to one of the sub-pixel switching elements and controls a potential difference between the sub-pixels, a gate terminal portion located in the non-display area, the gate terminal portion, and a plurality of sub-pixels A plurality of gate lines connected to the switching element and extending in the first direction, and an auxiliary line extending in the first direction between the plurality of gate lines and connected to a control terminal of the control switching element In the display device including a gate line, in the non-display area, the auxiliary gate line is not connected to the gate terminal portion, and in the non-display area, in the first direction. A first signal line and a second signal line extending along a second direction, and the non-display area, and the auxiliary gate line and the first signal line are arranged based on a signal from the first signal line. A first switching element that controls connection of the gate line, and a connection between the auxiliary gate line and the second gate line, which is arranged in the non-display region and based on a signal from the second signal line And a second switching element for controlling.
 本実施例に係る表示装置は、非表示領域にて補助ゲート線をゲート端子部に接続していないので、ゲート端子部に接続される配線数の増加を抑制することができる。また第1信号線及び第2信号線からの信号に基づいて、第1スイッチング素子及び第2スイッチング素子の駆動を制御し、順方向及び逆方向にゲート線を走査させて、表示パネルを円滑に駆動させることができる。 In the display device according to the present embodiment, the auxiliary gate line is not connected to the gate terminal portion in the non-display area, so that an increase in the number of wirings connected to the gate terminal portion can be suppressed. Further, based on the signals from the first signal line and the second signal line, the driving of the first switching element and the second switching element is controlled, and the gate line is scanned in the forward direction and the reverse direction, thereby smoothing the display panel. It can be driven.
実施の形態1に係る表示装置の表示パネルを略示する正面図である。3 is a front view schematically showing a display panel of the display device according to Embodiment 1. FIG. 表示領域及び非表示領域の境界付近における表示パネルの等価回路図である。It is an equivalent circuit diagram of the display panel in the vicinity of the boundary between the display area and the non-display area. 制御部による表示装置の駆動方式を説明する表である。It is a table | surface explaining the drive system of the display apparatus by a control part. 第1駆動方式における各ゲート線、第1信号線~第3信号線、補助ゲート線、及び各薄膜トランジスタのドレイン電極の各電圧を略示するタイミング図である。FIG. 6 is a timing diagram schematically showing respective voltages of each gate line, first signal line to third signal line, auxiliary gate line, and drain electrode of each thin film transistor in the first driving method. 第2駆動方式におけるゲート線、第1信号線~第3信号線、補助ゲート線、及び各薄膜トランジスタのドレイン電極の各電圧を略示するタイミング図である。FIG. 10 is a timing diagram schematically showing voltages of a gate line, a first signal line to a third signal line, an auxiliary gate line, and a drain electrode of each thin film transistor in the second driving method. 順方向にゲート線を走査した場合の第3駆動方式におけるゲート線、第1信号線~第3信号線、補助ゲート線、及び各薄膜トランジスタのドレイン電極の電圧を略示するタイミング図である。FIG. 10 is a timing diagram schematically showing voltages of a gate line, first signal line to third signal line, auxiliary gate line, and drain electrode of each thin film transistor in a third driving method when the gate line is scanned in the forward direction. 逆方向にゲート線を走査した場合の第3駆動方式におけるゲート線、第1信号線~第3信号線、補助ゲート線、及び各薄膜トランジスタのドレイン電極の電圧を略示するタイミング図である。FIG. 10 is a timing diagram schematically showing the voltages of the gate line, the first signal line to the third signal line, the auxiliary gate line, and the drain electrode of each thin film transistor in the third driving method when the gate line is scanned in the reverse direction. 実施の形態2に係る表示領域及び非表示領域の境界付近における表示パネルの等価回路図である。10 is an equivalent circuit diagram of a display panel in the vicinity of a boundary between a display area and a non-display area according to Embodiment 2. FIG. 第1参考表示装置に係る表示パネルの等価回路図の一例である。It is an example of the equivalent circuit schematic of the display panel which concerns on a 1st reference display apparatus. 第2参考表示装置に係る表示パネルの等価回路図の一例である。It is an example of the equivalent circuit schematic of the display panel which concerns on a 2nd reference display apparatus.
 (実施の形態1)
 実施の形態1に係る表示装置を図面に基づいて説明する。図1は、表示パネルを略示する正面図である。図1において、代表的にゲート線Gn及びデータ信号線4を一本ずつ表している。表示装置は、二枚の基板の間に液晶層を封入した横長矩形の表示パネル1を備える。表示パネル1の中央部は、横長矩形の映像を表示する表示領域1aになっている。表示パネル1において、表示領域1aの周囲は、横長矩形の額縁形をなし、映像が表示されない非表示領域1bとなっている。なお表示パネル1の左右方向が第1方向に相当し、上下方向が第2方向に相当する。
(Embodiment 1)
A display device according to Embodiment 1 will be described with reference to the drawings. FIG. 1 is a front view schematically showing a display panel. In FIG. 1, one gate line Gn and one data signal line 4 are representatively shown. The display device includes a horizontally long display panel 1 in which a liquid crystal layer is sealed between two substrates. The central portion of the display panel 1 is a display area 1a for displaying a horizontally long rectangular image. In the display panel 1, the periphery of the display area 1 a is a horizontally long rectangular frame, and is a non-display area 1 b where no video is displayed. The horizontal direction of the display panel 1 corresponds to the first direction, and the vertical direction corresponds to the second direction.
 表示パネル1の短辺夫々(図1における右辺又は左辺)には、複数のゲート端子部33、3、・・・、3が縦向きに並設されている。ゲート端子部3は非表示領域1bに設けられている。非表示領域1bの外側にフィルム、例えばCOF(Chip On Film)を設け、該フィルムとゲート端子部3を接続することで、外部からの駆動信号をパネルに入力するようにしている。ゲート端子部3、3夫々から、ゲート線が横方向に延びている。表示領域1aには、縦方向に延びた複数のデータ信号線4が横方向に並設されている。データ信号線4及びゲート線は直交しており、表示パネル1にマトリクス状に配されている。 A plurality of gate terminal portions 33, 3,..., 3 are juxtaposed in the vertical direction on each short side (right side or left side in FIG. 1) of the display panel 1. The gate terminal portion 3 is provided in the non-display area 1b. A film such as COF (Chip On Film) is provided outside the non-display area 1b, and the film and the gate terminal 3 are connected to input a driving signal from the outside to the panel. Gate lines extend in the lateral direction from the gate terminal portions 3 and 3 respectively. In the display area 1a, a plurality of data signal lines 4 extending in the vertical direction are arranged in parallel in the horizontal direction. The data signal lines 4 and the gate lines are orthogonal to each other and arranged on the display panel 1 in a matrix.
 データ信号線4及びゲート線の交点近傍に薄膜トランジスタと、該薄膜トランジスタにつながる画素電極とが設けられている。ゲート線によって薄膜トランジスタがON/OFF制御され、データ信号線4から各画素電極に信号電位が与えられて、液晶の配向状態が変化し、情報が表示される。 A thin film transistor and a pixel electrode connected to the thin film transistor are provided near the intersection of the data signal line 4 and the gate line. The thin film transistor is ON / OFF controlled by the gate line, a signal potential is applied from the data signal line 4 to each pixel electrode, the alignment state of the liquid crystal changes, and information is displayed.
 図2は、表示領域1a及び非表示領域1bの境界付近における表示パネル1の等価回路図である。図2において、Aは表示領域1a及び非表示領域1bの境界を示し、境界Aよりも右側を表示領域1aとし、境界Aよりも左側を非表示領域1bとしている。 FIG. 2 is an equivalent circuit diagram of the display panel 1 near the boundary between the display area 1a and the non-display area 1b. In FIG. 2, A indicates the boundary between the display area 1a and the non-display area 1b, the right side of the boundary A is the display area 1a, and the left side of the boundary A is the non-display area 1b.
 複数のゲート線G(nは整数)が縦方向に並設されており、ゲート端子部3にそれぞれ接続されている。各ゲート線Gに対応し、長手方向に延びる複数の補助ゲート線SG(nは整数)が表示パネル1に設けられている。補助ゲート線SGは、隣り合うゲート線G(第3のゲート線)及びゲート線Gn+1 (第1のゲート線)との間に位置している。補助ゲート線SGは、表示領域1a及び非表示領域1bに亘って設けられているが、ゲート端子部3には、直接的には接続されていない。なおゲート線Gn-1 は第2のゲート線を構成する。 A plurality of gate lines G n (n is an integer) are juxtaposed in the vertical direction and are connected to the gate terminal portion 3, respectively. A plurality of auxiliary gate lines SG n (n is an integer) corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1. The auxiliary gate line SG n is located between the adjacent gate line G n (third gate line) and the gate line G n + 1 (first gate line). The auxiliary gate line SG n is provided over the display area 1 a and the non-display area 1 b, but is not directly connected to the gate terminal portion 3. The gate line G n-1 constitutes a second gate line.
 各ゲート線Gに対応し、長手方向に延びる複数の第1電圧供給線21が表示パネル1に設けられている。各ゲート線Gに対応し、長手方向に延びる複数の第2電圧供給線22が表示パネル1に設けられている。第1電圧供給線21及び第2電圧供給線22には、任意の電圧を印加することができる。 A plurality of first voltage supply lines 21 corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1. A plurality of second voltage supply lines 22 corresponding to each gate line G n and extending in the longitudinal direction are provided on the display panel 1. An arbitrary voltage can be applied to the first voltage supply line 21 and the second voltage supply line 22.
 各データ信号線4及び各ゲート線Gの交点近傍に画素電極40(画素)が形成されている。画素電極40は第1副画素41及び第2副画素42を備える。 A pixel electrode 40 (pixel) is formed in the vicinity of the intersection of each data signal line 4 and each gate line Gn . The pixel electrode 40 includes a first subpixel 41 and a second subpixel 42.
 第1副画素41は薄膜トランジスタT1(副画素スイッチング素子)と、第1キャパシタC1と、第2キャパシタC2とを備える。薄膜トランジスタT1のゲート電極は、ゲート線Gに接続されており、ソース電極はデータ信号線4に接続され、ドレイン電極は、第1キャパシタC1及び第2キャパシタC2それぞれの一端に接続されている。第1キャパシタC1の他端は共通電極に接続されており、第2キャパシタC2の他端は第1電圧供給線21に接続されている。 The first subpixel 41 includes a thin film transistor T1 (subpixel switching element), a first capacitor C1, and a second capacitor C2. The thin film transistor T1 has a gate electrode connected to the gate line Gn , a source electrode connected to the data signal line 4, and a drain electrode connected to one end of each of the first capacitor C1 and the second capacitor C2. The other end of the first capacitor C 1 is connected to the common electrode, and the other end of the second capacitor C 2 is connected to the first voltage supply line 21.
 第2副画素42は薄膜トランジスタT2(副画素スイッチング素子)と、第3キャパシタC3と、第4キャパシタC4とを備える。薄膜トランジスタT2のゲート電極は、ゲート線Gに接続されており、ソース電極はデータ信号線4に接続され、ドレイン電極は、第3キャパシタC3及び第4キャパシタC4それぞれの一端に接続されている。第3キャパシタC3の他端は共通電極に接続されており、第4キャパシタC4の他端は第2電圧供給線22に接続されている。 The second subpixel 42 includes a thin film transistor T2 (subpixel switching element), a third capacitor C3, and a fourth capacitor C4. The thin film transistor T2 has a gate electrode connected to the gate line Gn , a source electrode connected to the data signal line 4, and a drain electrode connected to one end of each of the third capacitor C3 and the fourth capacitor C4. The other end of the third capacitor C3 is connected to the common electrode, and the other end of the fourth capacitor C4 is connected to the second voltage supply line 22.
 薄膜トランジスタT3(制御スイッチング素子)及び第5キャパシタC5が第2副画素42に接続されている。薄膜トランジスタT3のゲート電極は、補助ゲート線SGに接続されており、ソース電極は、第2薄膜トランジスタT2のドレイン電極に接続され、ドレイン電極は第5キャパシタC5の一端に接続されている。第5キャパシタC5の他端は、第2電圧供給線22に接続されている。 A thin film transistor T3 (control switching element) and a fifth capacitor C5 are connected to the second subpixel 42. The gate electrode of the thin film transistor T3 is connected to the auxiliary gate line SG n, the source electrode is connected to the drain electrode of the second TFT T2, the drain electrode is connected to one end of the fifth capacitor C5. The other end of the fifth capacitor C5 is connected to the second voltage supply line 22.
 非表示領域1bにおいて、縦方向に延びた第1信号線11、第2信号線12及び第3信号線13が横方向に並設されている。第1信号線11には、順方向の走査を制御するための信号が入力される。第2信号線12には、逆方向の走査を制御するための信号が入力される。第3信号線13には、第1副画素41及び第2副画素42の間の階調差の有無を設定するための信号が入力される。 In the non-display area 1b, the first signal line 11, the second signal line 12, and the third signal line 13 extending in the vertical direction are juxtaposed in the horizontal direction. A signal for controlling forward scanning is input to the first signal line 11. A signal for controlling scanning in the reverse direction is input to the second signal line 12. A signal for setting the presence / absence of a gradation difference between the first sub-pixel 41 and the second sub-pixel 42 is input to the third signal line 13.
 なお順方向とは、nの昇順、即ち、n-1、n、n+1、の順にゲート線Gを走査する方向を示し、逆方向とは、nの降順、即ち、n+1、n、n-1の順にゲート線Gを走査する方向を示す。 Note that the forward direction indicates the ascending order of n, that is, the direction of scanning the gate line G n in the order of n−1, n, n + 1, and the reverse direction indicates the descending order of n, that is, n + 1, n, n−. The direction of scanning the gate line G n in the order of 1 is shown.
 第1信号線11及び第2信号線12の間に、第1スイッチング素子S1が設けられている。第1スイッチング素子S1は薄膜トランジスタを備える。第1スイッチング素子S1のゲート電極は、第1信号線11に接続されており、ソース電極はゲート線Gn+1 に接続され、ドレイン電極は補助ゲート線SGに接続されている。 A first switching element S <b> 1 is provided between the first signal line 11 and the second signal line 12. The first switching element S1 includes a thin film transistor. The gate electrode of the first switching element S1 is connected to the first signal line 11, a source electrode connected to the gate line G n + 1, the drain electrode is connected to the auxiliary gate line SG n.
 第2信号線12及び第3信号線13の間に、第2スイッチング素子S2が設けられている。第2スイッチング素子S2は薄膜トランジスタを備える。第2スイッチング素子S2のゲート電極は、第2信号線12に接続されており、ソース電極はゲート線Gn-1 (第2のゲート線)に接続され、ドレイン電極は補助ゲート線SGに接続されている。 A second switching element S <b> 2 is provided between the second signal line 12 and the third signal line 13. The second switching element S2 includes a thin film transistor. The gate electrode of the second switching element S2 is connected to the second signal line 12, the source electrode is connected to the gate line G n-1 (second gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected.
 第3スイッチング素子S3が非表示領域1bに設けられている。第3スイッチング素子S3は薄膜トランジスタを備える。第3スイッチング素子S3のゲート電極は、第3信号線13に接続されており、ソース電極はゲート線Gに接続され、ドレイン電極は補助ゲート線SGに接続されている。 The third switching element S3 is provided in the non-display area 1b. The third switching element S3 includes a thin film transistor. The gate electrode of the third switching element S3, is connected to the third signal line 13, a source electrode connected to the gate line G n, a drain electrode is connected to the auxiliary gate line SG n.
 図1に示すように、表示装置は、CPU、ROM、RAM、不揮発性メモリ及び入出力インタフェース等を有する制御部70(第1制御部、第2制御部、第3制御部)を備える。該制御部70からソース基板2を介してデータ信号線4にデータ信号が入力され、ゲート端子部3を介してゲート線に信号が入力される。 As shown in FIG. 1, the display device includes a control unit 70 (a first control unit, a second control unit, and a third control unit) having a CPU, a ROM, a RAM, a nonvolatile memory, an input / output interface, and the like. A data signal is input from the control unit 70 to the data signal line 4 via the source substrate 2, and a signal is input to the gate line via the gate terminal unit 3.
 図3は、制御部70による表示装置の駆動方式を説明する表である。図3において、第1駆動方式は、順方向にゲート線Gを走査し且つ第1副画素41及び第2副画素42間に階調差を設ける駆動方式を示し、第2駆動方式は、逆方向にゲート線Gを走査し且つ第1副画素41及び第2副画素42間に階調差を設ける駆動方式を示し、第3駆動方式は、順方向又は逆方向にゲート線Gを走査し且つ第1副画素41及び第2副画素42間に階調差を設けない駆動方式を示す。 FIG. 3 is a table for explaining a driving method of the display device by the control unit 70. In FIG. 3, the first driving method indicates a driving method in which the gate line G n is scanned in the forward direction and a gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42. A driving method in which the gate line G n is scanned in the reverse direction and a gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42 is shown. The third driving method is a gate line G n in the forward direction or the reverse direction. And a driving method in which no gradation difference is provided between the first sub-pixel 41 and the second sub-pixel 42.
 図4は、第1駆動方式における各ゲート線Gn-1 、G、Gn+1 、第1信号線11~第3信号線13、補助ゲート線SG、及び各薄膜トランジスタT1、T2のドレイン電極の各電圧を略示するタイミング図である。図4において、T1及びT2は、薄膜トランジスタT1のドレイン電極の電圧及び薄膜トランジスタT2のドレイン電極の電圧をそれぞれ示す。また図4において、T1およびT2のドレイン電極の電圧に関して、各トランジスタのゲート/ドレイン間の寄生容量に起因する引込み(又はキックバック)現象を省略している。 FIG. 4 shows the gate lines G n−1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, the auxiliary gate line SG n , and the thin film transistors T1, T2 in the first driving method. It is a timing diagram which shows each voltage of a drain electrode schematically. In FIG. 4, T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively. In FIG. 4, the pull-in (or kickback) phenomenon due to the parasitic capacitance between the gate and drain of each transistor is omitted with respect to the voltages of the drain electrodes of T1 and T2.
 第1駆動方式において、第1信号線11には「H」信号(High信号)が入力され、第2信号線12及び第3信号線13には、「L」信号(Low信号)が入力される。 In the first driving method, an “H” signal (High signal) is input to the first signal line 11, and an “L” signal (Low signal) is input to the second signal line 12 and the third signal line 13. The
 この場合、図4に示すように、ゲート線Gn-1 、ゲート線G及びゲート線Gn+1 に対し、順方向に「H」信号が入力される。図4において、ゲート線Gに対する「H」信号の入力開始時点をPとし、ゲート線Gに対する「H」信号の入力終了時点及びゲート線Gn+1 に対する「H」信号の入力開始時点をPとし、ゲート線Gn+1 に対する「H」信号の入力終了時点をPとしている。 In this case, as shown in FIG. 4, an “H” signal is inputted in the forward direction to the gate line G n−1 , the gate line G n and the gate line G n + 1 . 4, an input start time of the "H" signal to the gate lines G n and P 1, an input start of the "H" signal to the input end and the gate line G n + 1 "H" signal to the gate line G n The time point is P 2, and the input end point of the “H” signal to the gate line G n + 1 is P 3 .
 第1信号線11に「H」信号が入力されている場合、第1スイッチング素子S1はオンになり、ゲート線Gn+1 と補助ゲート線SGとが接続される。そのため、ゲート線Gn+1 に「H」信号が入力されたタイミング(時点P)で、補助ゲート線SGにも「H」信号が入力される。 When the “H” signal is input to the first signal line 11, the first switching element S1 is turned on, and the gate line G n + 1 and the auxiliary gate line SG n are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing (time point P 2 ) when the “H” signal is input to the gate line G n + 1 .
 図4に示すように、ゲート線Gに「H」信号が入力された時(時点P)、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間(P間)に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 As shown in FIG. 4, when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
 ゲート線Gn+1 に「H」信号が入力された時(時点P)、薄膜トランジスタT3がオンになり、キャパシタC3、C4とキャパシタC5の間で電荷が共有され、ゲート線Gn+1 に「H」信号が入力されている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧が若干降下する。通常、各画素に印加される電圧の極性はフレームごとに反転するため、薄膜トランジスタT3がオンする前にキャパシタC5に残留している電荷は、薄膜トランジスタT2がオンした際にキャパシタC3及びC4に充電された電荷とは逆極性であり、薄膜トランジスタT3がオンすることにより、キャパシタC3、C4の電荷とそれとは逆極性のキャパシタC5の電荷とが相殺する形となり、薄膜トランジスタT2のドレイン電極側の電圧が降下する。その結果、第1副画素41及び第2副画素42間において、電位差が生じ、結果として階調差が生じる。 When the “H” signal is input to the gate line G n + 1 (time point P 2 ), the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4, and the capacitor C5, and the gate line G n + 1. The voltage on the drain electrode side of the thin film transistor T2 slightly drops while the “H” signal is being input to (between P 2 P 3 ). Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on. When the thin film transistor T3 is turned on, the charges of the capacitors C3 and C4 and the charge of the capacitor C5 having the opposite polarity cancel each other, and the voltage on the drain electrode side of the thin film transistor T2 drops. To do. As a result, a potential difference is generated between the first subpixel 41 and the second subpixel 42, resulting in a gradation difference.
 図5は、第2駆動方式における各ゲート線Gn-1 、G、Gn+1 、第1信号線11~第3信号線13、補助ゲート線SG、及び各薄膜トランジスタT1、T2のドレイン電極の各電圧を略示するタイミング図である。図5において、T1及びT2は、薄膜トランジスタT1のドレイン電極の電圧及び薄膜トランジスタT2のドレイン電極の電圧をそれぞれ示す。 FIG. 5 shows the gate lines G n−1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, the auxiliary gate line SG n , and the thin film transistors T1, T2 in the second driving method. It is a timing diagram which shows each voltage of a drain electrode schematically. In FIG. 5, T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
 第2駆動方式において、第2信号線12には「H」信号が入力され、第1信号線11及び第3信号線13には、「L」信号が入力される。 In the second driving method, the “H” signal is input to the second signal line 12, and the “L” signal is input to the first signal line 11 and the third signal line 13.
 この場合、図5に示すように、ゲート線Gn-1 、ゲート線G、ゲート線Gn+1 に対し、逆方向に「H」信号が入力される。図5において、ゲート線Gに対する「H」信号の入力開始時点をPとし、ゲート線Gに対する「H」信号の入力終了時点及びゲート線Gn-1 に対する「H」信号の入力開始時点をPとし、ゲート線Gn-1 に対する「H」信号の入力終了時点をPとしている。 In this case, as shown in FIG. 5, the “H” signal is inputted in the reverse direction to the gate line G n−1 , the gate line G n , and the gate line G n + 1 . 5, an input start time of the "H" signal to the gate lines G n and P 1, an input start of the "H" signal to the input end and the gate lines G n-1 "H" signal to the gate line G n The time point is P 2, and the input end time point of the “H” signal to the gate line G n−1 is P 3 .
 第2信号線12に「H」信号が入力されている場合、第2スイッチング素子S2はオンになり、ゲート線Gn-1 と補助ゲート線SGとが接続される。そのため、ゲート線Gn-1 に「H」信号が入力されたタイミング(時点P)で、補助ゲート線SGにも「H」信号が入力される。 When the “H” signal is input to the second signal line 12, the second switching element S2 is turned on, and the gate line G n−1 and the auxiliary gate line SG n are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n−1 (time point P 2 ).
 図5に示すように、ゲート線Gに「H」信号が入力された時(時点P)、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間(P間)に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 As shown in FIG. 5, when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
 ゲート線Gn-1 に「H」信号が入力された時(時点P)、薄膜トランジスタT3がオンになり、キャパシタC3、C4とキャパシタC5の間で電荷が共有され、ゲート線Gn-1 に「H」信号が入力されている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧が若干降下する。通常、各画素に印加される電圧の極性はフレームごとに反転するため、薄膜トランジスタT3がオンする前にキャパシタC5に残留している電荷は、薄膜トランジスタT2がオンした際にキャパシタC3及びC4に充電された電荷とは逆極性であり、薄膜トランジスタT3がオンすることにより、キャパシタC3、C4の電荷とそれとは逆極性のキャパシタC5の電荷とが相殺する形となり、薄膜トランジスタT2のドレイン電極側の電圧が降下する。その結果、第1副画素41及び第2副画素42間において、電位差が生じ、結果として階調差が生じる。 When the “H” signal is input to the gate line G n−1 (time point P 2 ), the thin film transistor T3 is turned on, and the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the gate line G n−1. The voltage on the drain electrode side of the thin film transistor T2 slightly drops while the “H” signal is being input to (between P 2 P 3 ). Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on. When the thin film transistor T3 is turned on, the charges of the capacitors C3 and C4 and the charge of the capacitor C5 having the opposite polarity cancel each other, and the voltage on the drain electrode side of the thin film transistor T2 drops. To do. As a result, a potential difference is generated between the first subpixel 41 and the second subpixel 42, resulting in a gradation difference.
 図6Aは、順方向にゲート線を走査した場合の第3駆動方式における各ゲート線Gn-1 、G、Gn+1 、第1信号線11~第3信号線13、補助ゲート線SG、及び各薄膜トランジスタT1、T2のドレイン電極の各電圧を略示するタイミング図である。図6Aにおいて、T1及びT2は、薄膜トランジスタT1のドレイン電極の電圧及び薄膜トランジスタT2のドレイン電極の電圧をそれぞれ示す。 FIG. 6A shows the gate lines G n−1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, and the auxiliary gate line in the third driving method when the gate line is scanned in the forward direction. FIG. 6 is a timing diagram schematically showing SG n and voltages of drain electrodes of the thin film transistors T1 and T2. In FIG. 6A, T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
 図6Bは、逆方向にゲート線を走査した場合の第3駆動方式における各ゲート線Gn-1 、G、Gn+1 、第1信号線11~第3信号線13、補助ゲート線SG、及び各薄膜トランジスタT1、T2のドレイン電極の各電圧を略示するタイミング図である。図6Bにおいて、T1及びT2は、薄膜トランジスタT1のドレイン電極の電圧及び薄膜トランジスタT2のドレイン電極の電圧をそれぞれ示す。 FIG. 6B shows the gate lines G n−1 , G n , G n + 1 , the first signal line 11 to the third signal line 13, and the auxiliary gate line in the third driving method when the gate line is scanned in the reverse direction. FIG. 6 is a timing diagram schematically showing SG n and voltages of drain electrodes of the thin film transistors T1 and T2. In FIG. 6B, T1 and T2 indicate the voltage of the drain electrode of the thin film transistor T1 and the voltage of the drain electrode of the thin film transistor T2, respectively.
 図6A及び図6Bに示すように、ゲート線の走査方向が順方向及び逆方向のいずれの場合においても、第3駆動方式にて表示パネル1を駆動させたとき、第3信号線13には「H」信号が入力され、第1信号線11及び第2信号線12には、「L」信号が入力される。 As shown in FIG. 6A and FIG. 6B, when the display panel 1 is driven by the third driving method, regardless of whether the scanning direction of the gate line is the forward direction or the reverse direction, The “H” signal is input, and the “L” signal is input to the first signal line 11 and the second signal line 12.
 ゲート線の走査方向が順方向である場合について説明する。図6Aに示すように、ゲート線Gn-1 、ゲート線G及びゲート線Gn+1 に対し、順方向に「H」信号が入力される場合、ゲート線Gに対する「H」信号の入力開始時点をPとし、ゲート線Gに対する「H」信号の入力終了時点及びゲート線Gn+1 に対する「H」信号の入力開始時点をPとしている。 A case where the scanning direction of the gate line is the forward direction will be described. As shown in FIG. 6A, when an “H” signal is input in the forward direction to the gate line G n−1 , the gate line G n, and the gate line G n + 1 , the “H” signal to the gate line G n an input start time of the P 1, has an input start time of the "H" signal to the input end and the gate line G n + 1 "H" signal to the gate lines G n and P 2.
 第3信号線13に「H」信号が入力されている場合、第3スイッチング素子S3はオンになり、ゲート線Gと補助ゲート線SGとが接続される。そのため、ゲート線Gに「H」信号が入力されたタイミング(時点P)で、補助ゲート線SGにも「H」信号が入力される。 When the “H” signal is input to the third signal line 13, the third switching element S3 is turned on, and the gate line G n and the auxiliary gate line SG n are connected. Therefore, at the timing when the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n .
 図6Aに示すように、ゲート線Gに「H」信号が入力された時(時点P)、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間(P間)に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 As shown in FIG. 6A, when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
 ゲート線Gに「H」信号が入力された時(時点P)、補助ゲート線SGにも「H」信号が入力されるので、薄膜トランジスタT3がオンになり、キャパシタC5には、キャパシタC3及びC4と同極性の電荷がほぼ同電位となるように充電される。その結果、キャパシタC1及びC3の電位は略同じになり、第1副画素41及び第2副画素42間において、階調差がほとんど生じない。 When the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 includes a capacitor Charging is performed so that charges having the same polarity as C3 and C4 have substantially the same potential. As a result, the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
 ゲート線の走査方向が逆方向である場合について説明する。図6Bに示すように、ゲート線Gn-1 、ゲート線G及びゲート線Gn+1 に対し、逆方向に「H」信号が入力される場合、ゲート線Gに対する「H」信号の入力開始時点をPとし、ゲート線Gに対する「H」信号の入力終了時点及びゲート線Gn-1 に対する「H」信号の入力開始時点をPとしている。 A case where the scanning direction of the gate line is the reverse direction will be described. As shown in FIG. 6B, when an “H” signal is input in the reverse direction to the gate line G n−1 , the gate line G n, and the gate line G n + 1 , the “H” signal to the gate line G n Is set to P 1, and the input end time of the “H” signal to the gate line G n and the input start time of the “H” signal to the gate line G n−1 are P 2 .
 第3信号線13に「H」信号が入力されている場合、第3スイッチング素子S3はオンになり、ゲート線Gと補助ゲート線SGとが接続される。そのため、ゲート線Gに「H」信号が入力されたタイミング(時点P)で、補助ゲート線SGにも「H」信号が入力される。 When the “H” signal is input to the third signal line 13, the third switching element S3 is turned on, and the gate line G n and the auxiliary gate line SG n are connected. Therefore, at the timing when the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n .
 図6Bに示すように、ゲート線Gに「H」信号が入力された時(時点P)、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間(P間)に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間(P間)に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 As shown in FIG. 6B, when the “H” signal is input to the gate line G n (time point P 1 ), the thin film transistor T1 is turned on, the data signal is input from the data signal line 4, and the thin film transistor T1 is turned on. During the period (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T1 changes from Low to High. In addition, while the thin film transistor T2 is turned on and a data signal is input from the data signal line 4 and the thin film transistor T2 is turned on (between P 1 and P 2 ), the voltage on the drain electrode side of the thin film transistor T2 changes from low to high. Transition to.
 ゲート線Gに「H」信号が入力された時(時点P)、補助ゲート線SGにも「H」信号が入力されるので、薄膜トランジスタT3がオンになり、キャパシタC5には、キャパシタC3及びC4と同極性の電荷がほぼ同電位となるように充電される。その結果、キャパシタC1及びC3の電位は略同じになり、第1副画素41及び第2副画素42間において、階調差がほとんど生じない。 When the “H” signal is input to the gate line G n (time point P 1 ), the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 includes a capacitor Charging is performed so that charges having the same polarity as C3 and C4 have substantially the same potential. As a result, the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
 実施の形態1に係る表示装置にあっては、非表示領域1bにて補助ゲート線を個別にゲート端子部3に接続していないので、ゲート端子部3に接続される配線数の増加を抑制することができる。また第1信号線11及び第2信号線12からの信号に基づいて、第1スイッチング素子S1及び第2スイッチング素子S2の駆動を制御し、順方向及び逆方向にゲート線を走査することができる。 In the display device according to the first embodiment, since the auxiliary gate lines are not individually connected to the gate terminal portion 3 in the non-display region 1b, an increase in the number of wirings connected to the gate terminal portion 3 is suppressed. can do. Further, the driving of the first switching element S1 and the second switching element S2 can be controlled based on the signals from the first signal line 11 and the second signal line 12, and the gate lines can be scanned in the forward direction and the reverse direction. .
 例えば第1スイッチング素子S1がオンの場合に、第2スイッチング素子S2をオフにして、順方向のゲート線の走査において、第1副画素41及び第2副画素42間の階調差を実現することができる。また第2スイッチング素子S2がオンの場合に、第1スイッチング素子S1をオフにして、例えば逆方向のゲート線の走査において、第1副画素41及び第2副画素42間の階調差を実現することができる。 For example, when the first switching element S1 is turned on, the second switching element S2 is turned off to realize a gradation difference between the first subpixel 41 and the second subpixel 42 in the scanning of the gate line in the forward direction. be able to. Further, when the second switching element S2 is on, the first switching element S1 is turned off, and, for example, in the scanning of the gate line in the reverse direction, a gradation difference between the first subpixel 41 and the second subpixel 42 is realized. can do.
 また第3信号線13からの信号に基づいて、第3スイッチング素子S3の駆動を制御し、副画素間の階調差を変更することができる。また第3スイッチング素子S3がオンになっている場合に、前記第1スイッチング素子S1及び第2スイッチング素子S2をオフにして、副画素間の階調差をほとんど生じないようにすることができる。 Further, based on the signal from the third signal line 13, the driving of the third switching element S3 can be controlled to change the gradation difference between the sub-pixels. In addition, when the third switching element S3 is turned on, the first switching element S1 and the second switching element S2 can be turned off so that the gradation difference between the sub-pixels hardly occurs.
 (実施の形態2)
 以下実施の形態2に係る表示装置を図面に基づいて説明する。実施の形態2に係る表示装置の構成の内、実施の形態1と同様な構成については、説明が必要な場合を除き、同じ符号を付し、その詳細な説明を省略する。図7は、表示領域1a及び非表示領域1bの境界付近における表示パネル1の等価回路図である。図7において、Aは表示領域1a及び非表示領域1bの境界を示し、境界Aよりも右側を表示領域1aとし、境界Aよりも左側を非表示領域1bとしている。
(Embodiment 2)
A display device according to Embodiment 2 will be described below with reference to the drawings. Among the configurations of the display device according to the second embodiment, the same configurations as those of the first embodiment are denoted by the same reference numerals unless detailed description is necessary, and detailed descriptions thereof are omitted. FIG. 7 is an equivalent circuit diagram of the display panel 1 in the vicinity of the boundary between the display area 1a and the non-display area 1b. In FIG. 7, A indicates the boundary between the display area 1a and the non-display area 1b. The right side of the boundary A is the display area 1a, and the left side of the boundary A is the non-display area 1b.
 図7において、ゲート線Gn+2 は第1のゲート線を構成し、ゲート線Gn-2 は第2のゲート線を構成し、ゲート線Gは第3のゲート線を構成する。 In FIG. 7, the gate line G n + 2 constitutes a first gate line, the gate line G n-2 constitutes a second gate line, and the gate line G n constitutes a third gate line.
 第1スイッチング素子S1のゲート電極は、第1信号線11に接続されており、ソース電極はゲート線Gn+2 (第1のゲート線)に接続され、ドレイン電極は補助ゲート線SGに接続されている。第2スイッチング素子S2のゲート電極は、第2信号線12に接続されており、ソース電極はゲート線Gn-2 (第2のゲート線)に接続され、ドレイン電極は補助ゲート線SGに接続されている。この場合においても、上述した第1~第3駆動方式(図3参照)を実行することができる。 The gate electrode of the first switching element S1 is connected to the first signal line 11, the source electrode is connected to the gate line G n + 2 (first gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected. The gate electrode of the second switching element S2 is connected to the second signal line 12, the source electrode is connected to the gate line G n-2 (second gate line), and the drain electrode is connected to the auxiliary gate line SG n . It is connected. Even in this case, the above-described first to third driving methods (see FIG. 3) can be executed.
 具体的には、第1駆動方式を実行する場合、第1信号線11に「H」信号が入力され、第1スイッチング素子S1はオンになり、ゲート線Gn+2 と補助ゲート線SGとが接続される。そのため、ゲート線Gn+2 に「H」信号が入力されたタイミングで、補助ゲート線SGにも「H」信号が入力される。 Specifically, when the first driving method is executed, an “H” signal is input to the first signal line 11, the first switching element S1 is turned on, and the gate line G n + 2 and the auxiliary gate line SG n are turned on. And are connected. Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n + 2 .
 ゲート線Gに「H」信号が入力された時、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 When the “H” signal is input to the gate line G n , the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the drain electrode side of the thin film transistor T1 The voltage changes from Low to High. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
 ゲート線Gn+2 に「H」信号が入力された時、薄膜トランジスタT3がオンになり、キャパシタC3、C4とキャパシタC5の間で電荷が共有され、ゲート線Gn+2 に「H」信号が入力されている間に、薄膜トランジスタT2のドレイン電極側の電圧が若干降下する。通常、各画素に印加される電圧の極性はフレームごとに反転するため、薄膜トランジスタT3がオンする前にキャパシタC5に残留している電荷は、薄膜トランジスタT2がオンした際にキャパシタC3及びC4に充電された電荷とは逆極性であり、薄膜トランジスタT3がオンすることにより、キャパシタC3、C4の電荷とそれとは逆極性のキャパシタC5の電荷とが相殺する形となり、薄膜トランジスタT2のドレイン電極側の電圧が降下する。その結果、第1副画素41及び第2副画素42間において、電位差が生じ、結果として階調差が生じる。 When the “H” signal is input to the gate line G n + 2 , the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the “H” signal is applied to the gate line G n + 2. Is inputted, the voltage on the drain electrode side of the thin film transistor T2 slightly drops. Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on. When the thin film transistor T3 is turned on, the charges of the capacitors C3 and C4 and the charge of the capacitor C5 having the opposite polarity cancel each other, and the voltage on the drain electrode side of the thin film transistor T2 drops. To do. As a result, a potential difference is generated between the first subpixel 41 and the second subpixel 42, resulting in a gradation difference.
 第2駆動方式を実行する場合、第2信号線12に「H」信号が入力され、第2スイッチング素子S2はオンになり、ゲート線Gn-2 と補助ゲート線SGとが接続される。そのため、ゲート線Gn-2 に「H」信号が入力されたタイミングで、補助ゲート線SGにも「H」信号が入力される。 When the second driving method is executed, an “H” signal is input to the second signal line 12, the second switching element S2 is turned on, and the gate line G n−2 and the auxiliary gate line SG n are connected. . Therefore, the “H” signal is also input to the auxiliary gate line SG n at the timing when the “H” signal is input to the gate line G n-2 .
 ゲート線Gに「H」信号が入力された時、薄膜トランジスタT1がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 When the “H” signal is input to the gate line G n , the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the drain electrode side of the thin film transistor T1 The voltage changes from Low to High. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
 ゲート線Gn-2 に「H」信号が入力された時、薄膜トランジスタT3がオンになり、キャパシタC3、C4とキャパシタC5の間で電荷が共有され、ゲート線Gn-2 に「H」信号が入力されている間に、薄膜トランジスタT2のドレイン電極側の電圧が若干降下する。通常、各画素に印加される電圧の極性はフレームごとに反転するため、薄膜トランジスタT3がオンする前にキャパシタC5に残留している電荷は、薄膜トランジスタT2がオンした際にキャパシタC3及びC4に充電された電荷とは逆極性であり、薄膜トランジスタT3がオンすることにより、キャパシタC3、C4の電荷とそれとは逆極性のキャパシタC5の電荷とが相殺する形となり、薄膜トランジスタT2のドレイン電極側の電圧が降下する。その結果、第1副画素41及び第2副画素42間において、電位差が生じ、結果として階調差が生じる。 When the “H” signal is input to the gate line G n−2 , the thin film transistor T3 is turned on, the charge is shared between the capacitors C3 and C4 and the capacitor C5, and the “H” signal is input to the gate line G n−2. Is inputted, the voltage on the drain electrode side of the thin film transistor T2 slightly drops. Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on. When the thin film transistor T3 is turned on, the charges of the capacitors C3 and C4 and the charge of the capacitor C5 having the opposite polarity cancel each other, and the voltage on the drain electrode side of the thin film transistor T2 drops. To do. As a result, a potential difference is generated between the first subpixel 41 and the second subpixel 42, resulting in a gradation difference.
 第3駆動方式を実行する場合、ゲート線Gに「H」信号が入力され、薄膜トランジスタT1がオンになる。データ信号線4からデータ信号が入力され、薄膜トランジスタT1がオンになっている間に、薄膜トランジスタT1のドレイン電極側の電圧がLowからHighに推移する。また薄膜トランジスタT2がオンになり、データ信号線4からデータ信号が入力され、薄膜トランジスタT2がオンになっている間に、薄膜トランジスタT2のドレイン電極側の電圧がLowからHighに推移する。 When the third driving method is executed, an “H” signal is input to the gate line G n and the thin film transistor T1 is turned on. While the data signal is input from the data signal line 4 and the thin film transistor T1 is turned on, the voltage on the drain electrode side of the thin film transistor T1 changes from low to high. Further, while the thin film transistor T2 is turned on, a data signal is input from the data signal line 4, and the thin film transistor T2 is turned on, the voltage on the drain electrode side of the thin film transistor T2 changes from low to high.
 ゲート線Gに「H」信号が入力された時、補助ゲート線SGにも「H」信号が入力されるので、薄膜トランジスタT3がオンになり、キャパシタC5には、キャパシタC3及びC4と同極性の電荷がほぼ同電位となるように充電される。その結果、キャパシタC1及びC3の電位は略同じになり、第1副画素41及び第2副画素42間において、階調差がほとんど生じない。 When the “H” signal is input to the gate line G n , the “H” signal is also input to the auxiliary gate line SG n , so that the thin film transistor T3 is turned on, and the capacitor C5 has the same characteristics as the capacitors C3 and C4. Charging is performed so that polar charges have substantially the same potential. As a result, the potentials of the capacitors C1 and C3 become substantially the same, and there is almost no gradation difference between the first subpixel 41 and the second subpixel 42.
 次に実施の形態1又は2に係る表示装置と、該表示装置と異なる構成を有する第1参考表示装置及び第2参考表示装置との相違点について説明する。図8は、第1参考表示装置に係る表示パネル1の等価回路図の一例である。 Next, differences between the display device according to Embodiment 1 or 2 and the first reference display device and the second reference display device having a different configuration from the display device will be described. FIG. 8 is an example of an equivalent circuit diagram of the display panel 1 according to the first reference display device.
 図8に示すように、第1参考表示装置において、各補助ゲート線SGはゲート端子部3に接続されており、非表示領域1bにおいて、補助ゲート線SG及びゲート線Gが密集する。そのため、L/S(Line and Space)、すなわち配線の幅及び配線間の間隙が実施の形態1又は2に係る表示装置よりも小さくなり、表示パネル1の歩留まりの低下を招来する。 As shown in FIG. 8, in the first reference display device, each auxiliary gate line SG n is connected to the gate terminal portion 3, and the auxiliary gate lines SG n and the gate lines G n are densely packed in the non-display region 1b. . Therefore, L / S (Line and Space), that is, the width of the wiring and the gap between the wirings are smaller than those of the display device according to the first or second embodiment, and the yield of the display panel 1 is reduced.
 図9は、第2参考表示装置に係る表示パネル1の等価回路図の一例である。図9に示すように、第2参考表示装置において、各補助ゲート線SGはゲート端子部3に接続されておらず、補助ゲート線SGはゲート線Gn+4 に接続されている。 FIG. 9 is an example of an equivalent circuit diagram of the display panel 1 according to the second reference display device. As shown in FIG. 9, in the second reference display device, the auxiliary gate line SG n is not connected to the gate terminal portion 3, the auxiliary gate line SG n is connected to the gate line G n + 4.
 ゲート線Gに「H」信号が入力され、薄膜トランジスタT1及びT2がオンになり、キャパシタC1、C2とキャパシタC3、C4にそれぞれ充電が行われる。その後、ゲート線Gに「L」信号が入力され、補助ゲート線SGに「H」信号が入力され、薄膜トランジスタT3がオンになり、キャパシタC3及びC4に保持されていた電荷がキャパシタC5に分散され、キャパシタC3の電位は若干低下する。通常、各画素に印加される電圧の極性はフレームごとに反転するため、薄膜トランジスタT3がオンする前にキャパシタC5に残留している電荷は、薄膜トランジスタT2がオンした際にキャパシタC3及びC4に充電された電荷とは逆極性であり、薄膜トランジスタT3がオンすることにより、キャパシタC3、C4の電荷とそれとは逆極性のキャパシタC5の電荷とが相殺する形となり、薄膜トランジスタT2のドレイン電極側の電圧が降下する。その結果、キャパシタC1及びC3の電位に差が生じ、階調差が生まれる。 The “H” signal is input to the gate line G n , the thin film transistors T1 and T2 are turned on, and the capacitors C1 and C2 and the capacitors C3 and C4 are charged, respectively. Thereafter, the “L” signal is input to the gate line G n , the “H” signal is input to the auxiliary gate line SG n , the thin film transistor T3 is turned on, and the charge held in the capacitors C3 and C4 is input to the capacitor C5. Dispersed, the potential of the capacitor C3 slightly decreases. Usually, since the polarity of the voltage applied to each pixel is inverted every frame, the charge remaining in the capacitor C5 before the thin film transistor T3 is turned on is charged to the capacitors C3 and C4 when the thin film transistor T2 is turned on. When the thin film transistor T3 is turned on, the charges of the capacitors C3 and C4 and the charge of the capacitor C5 having the opposite polarity cancel each other, and the voltage on the drain electrode side of the thin film transistor T2 drops. To do. As a result, a difference occurs between the potentials of the capacitors C1 and C3, resulting in a gradation difference.
 第2参考表示装置において、配線パターンは固定されており、ゲート線Gn+4 に「H」信号が入力された時、補助ゲート線SGに「H」信号が入力される。そのため、ゲート線の走査方向は順方向(G→Gn+1 →Gn+2 →Gn+3 →Gn+4 →・・)に限定される。ゲート線を逆方向(Gn+4 →Gn+3 →Gn+2 →Gn+1 →G→・・)に走査させた場合、図9に示す回路構造と整合せず、機能しないからである。また構造上、補助ゲート線SGをLowに保つことができないので、前述した第3駆動方式を実行することができない。 In the second reference display device, the wiring pattern is fixed, and when the “H” signal is input to the gate line G n + 4 , the “H” signal is input to the auxiliary gate line SG n . Therefore, the scanning direction of the gate line is limited to the forward direction (G n → G n + 1 → G n + 2 → G n + 3 → G n + 4 →...). When the gate line is scanned in the reverse direction (G n + 4 → G n + 3 → G n + 2 → G n + 1 → G n →...), It does not match the circuit structure shown in FIG. Because it does not. The structural, it is impossible to keep the auxiliary gate line SG n to Low, it is impossible to perform the third driving method described above.
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、請求の範囲内での全ての変更及び請求の範囲と均等の範囲が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the claims and the scope equivalent to the scope of the claims. .
 1 表示パネル
 1a 表示領域
 1b 非表示領域
 3 ゲート端子部
 11 第1信号線
 12 第2信号線
 13 第3信号線
 40 画素電極(画素)
 41 第1副画素
 42 第2副画素
 70 制御部(第1制御部、第2制御部、第3制御部)
 T1、T2 薄膜トランジスタ(副画素スイッチング素子)
 T3 薄膜トランジスタ(制御スイッチング素子)
 G ゲート線
 SG 補助ゲート線
 S1 第1スイッチング素子
 S2 第2スイッチング素子
 S3 第3スイッチング素子
DESCRIPTION OF SYMBOLS 1 Display panel 1a Display area 1b Non-display area 3 Gate terminal part 11 1st signal line 12 2nd signal line 13 3rd signal line 40 Pixel electrode (pixel)
41 1st subpixel 42 2nd subpixel 70 Control part (1st control part, 2nd control part, 3rd control part)
T1, T2 Thin film transistor (sub-pixel switching element)
T3 thin film transistor (control switching element)
G n gate lines SG n auxiliary gate line S1 first switching element S2 second switching element S3 third switching element

Claims (5)

  1.  表示領域及び該表示領域の周囲に位置する非表示領域を有する表示パネルと、該表示パネルの画素を構成する複数の副画素に対応した複数の副画素スイッチング素子と、一の前記副画素スイッチング素子に接続されており、前記副画素間の電位差を制御する制御スイッチング素子と、前記非表示領域に位置するゲート端子部と、該ゲート端子部及び複数の副画素スイッチング素子に接続されており、第1方向に延びた複数のゲート線と、該複数のゲート線の間にて前記第1方向に延びており、前記制御スイッチング素子の制御端子に接続された補助ゲート線とを備える表示装置において、
     前記非表示領域にて、前記補助ゲート線は前記ゲート端子部に対して非接続であり、
     前記非表示領域にて、前記第1方向に交差する第2方向に沿って延びた第1信号線及び第2信号線と、
     前記非表示領域に配されており、前記第1信号線からの信号に基づいて、前記補助ゲート線及び第1の前記ゲート線の接続を制御する第1スイッチング素子と、
     前記非表示領域に配されており、前記第2信号線からの信号に基づいて、前記補助ゲート線及び第2の前記ゲート線の接続を制御する第2スイッチング素子と
     を備えることを特徴とする表示装置。
    A display panel having a display area and a non-display area located around the display area, a plurality of subpixel switching elements corresponding to a plurality of subpixels constituting pixels of the display panel, and one subpixel switching element Connected to the control switching element for controlling the potential difference between the sub-pixels, the gate terminal portion located in the non-display region, the gate terminal portion and the plurality of sub-pixel switching elements, In a display device comprising: a plurality of gate lines extending in one direction; and an auxiliary gate line extending in the first direction between the plurality of gate lines and connected to a control terminal of the control switching element.
    In the non-display area, the auxiliary gate line is not connected to the gate terminal portion,
    A first signal line and a second signal line extending along a second direction intersecting the first direction in the non-display area;
    A first switching element that is disposed in the non-display region and controls connection between the auxiliary gate line and the first gate line based on a signal from the first signal line;
    A second switching element that is disposed in the non-display area and controls connection between the auxiliary gate line and the second gate line based on a signal from the second signal line. Display device.
  2.  前記第1スイッチング素子がオンになっている場合に、前記第2スイッチング素子をオフにする第1制御部を備えること
     を特徴とする請求項1に記載の表示装置。
    The display device according to claim 1, further comprising: a first control unit that turns off the second switching element when the first switching element is turned on.
  3.  前記第1スイッチング素子がオフになっている場合に、前記第2スイッチング素子をオンにする第2制御部を備えること
     を特徴とする請求項1又は2に記載の表示装置。
    The display device according to claim 1, further comprising: a second control unit that turns on the second switching element when the first switching element is turned off.
  4.  前記非表示領域にて、前記第2方向に沿って延びた第3信号線と、
     前記非表示領域に配されており、該第3信号線からの信号に基づいて、前記補助ゲート線及び第3の前記ゲート線の接続を制御する第3スイッチング素子と
     を備えることを特徴とする請求項1から3のいずれか一つに記載の表示装置。
    A third signal line extending along the second direction in the non-display area;
    A third switching element that is arranged in the non-display area and controls connection between the auxiliary gate line and the third gate line based on a signal from the third signal line. The display device according to claim 1.
  5.  前記第3スイッチング素子がオンになっている場合に、前記第1スイッチング素子及び第2スイッチング素子をオフにする第3制御部を備えること
     を特徴とする請求項4に記載の表示装置。
    The display device according to claim 4, further comprising: a third control unit that turns off the first switching element and the second switching element when the third switching element is turned on.
PCT/JP2016/078503 2016-09-27 2016-09-27 Display device WO2018061094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078503 WO2018061094A1 (en) 2016-09-27 2016-09-27 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078503 WO2018061094A1 (en) 2016-09-27 2016-09-27 Display device

Publications (1)

Publication Number Publication Date
WO2018061094A1 true WO2018061094A1 (en) 2018-04-05

Family

ID=61760195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078503 WO2018061094A1 (en) 2016-09-27 2016-09-27 Display device

Country Status (1)

Country Link
WO (1) WO2018061094A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111490A1 (en) * 2007-03-15 2008-09-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP2009128900A (en) * 2007-11-26 2009-06-11 Samsung Electronics Co Ltd Liquid crystal display device
WO2012005038A1 (en) * 2010-07-09 2012-01-12 シャープ株式会社 Liquid crystal display device
JP2016527560A (en) * 2013-08-01 2016-09-08 深▲セン▼市華星光電技術有限公司 Array substrate and liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111490A1 (en) * 2007-03-15 2008-09-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP2009128900A (en) * 2007-11-26 2009-06-11 Samsung Electronics Co Ltd Liquid crystal display device
WO2012005038A1 (en) * 2010-07-09 2012-01-12 シャープ株式会社 Liquid crystal display device
JP2016527560A (en) * 2013-08-01 2016-09-08 深▲セン▼市華星光電技術有限公司 Array substrate and liquid crystal display panel

Similar Documents

Publication Publication Date Title
JP4932823B2 (en) Active matrix substrate, display device, and television receiver
US8228287B2 (en) Liquid crystal display device for removing ripple voltage and method of driving the same
US20140218347A1 (en) Liquid crystal display and driving method thereof
US8362995B2 (en) Liquid crystal display
KR101623593B1 (en) Liquid crystal display
TWI397734B (en) Liquid crystal display and driving method thereof
WO2010021210A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
KR101285054B1 (en) Liquid crystal display device
KR20170003185A (en) Built-in gate driver and display device using the same
JP2007213063A (en) Liquid crystal display device
WO2009130919A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
EP2413181A1 (en) Tft substrate and liquid crystal display apparatus using the same
USRE47907E1 (en) Liquid crystal display
KR101243540B1 (en) Liquid crystal display device
WO2018126684A1 (en) Display substrate, display device and driving method
JP2008276160A (en) Liquid crystal display
WO2011013262A1 (en) Liquid crystal display element, liquid crystal display device, and display method employed in liquid crystal display element
JP6906066B2 (en) Liquid crystal display panel and equipment
EP1927975B1 (en) Method of driving liquid crystal display device
US9140942B2 (en) Liquid crystal display device and multi-display system
JP2005189614A (en) Liquid crystal display
JP6602136B2 (en) Display device
US9489910B2 (en) Display device
KR102180914B1 (en) Display device
WO2014192763A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP