WO2018061059A1 - Ship, and method for supplying electric power to onboard electrical grid - Google Patents

Ship, and method for supplying electric power to onboard electrical grid Download PDF

Info

Publication number
WO2018061059A1
WO2018061059A1 PCT/JP2016/004397 JP2016004397W WO2018061059A1 WO 2018061059 A1 WO2018061059 A1 WO 2018061059A1 JP 2016004397 W JP2016004397 W JP 2016004397W WO 2018061059 A1 WO2018061059 A1 WO 2018061059A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
inboard
main
main bus
Prior art date
Application number
PCT/JP2016/004397
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 江崎
浜松 正典
聡一郎 阪東
良介 後藤
大野 達也
洋輔 野中
武憲 檜野
芳輝 原田
泰典 久次米
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2016/004397 priority Critical patent/WO2018061059A1/en
Publication of WO2018061059A1 publication Critical patent/WO2018061059A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to a ship equipped with a main engine capable of using gas fuel and a method of supplying power to the ship's power system.
  • Non-Patent Document 1 describes such a propulsion system.
  • Page 12-14 of Non-Patent Document 1 includes a main engine, a main propulsion unit connected to the main unit by a propulsion shaft, a shaft generator provided on the propulsion shaft, an auxiliary generator, and a bow propulsion unit.
  • Some typical marine propulsion systems and power systems are also shown.
  • the ship's power load increases due to the driving of the bow propulsion machine, etc., which is covered by the power generated by the shaft generator, and the output of the auxiliary generator is the capacity of the bow propulsion machine It is generally shown that auxiliary generators only provide power for basic power loads, such as ship occupancy areas.
  • the main generator is kept at a high load by generating power with a shaft generator driven by the motor, and the main generator is stopped at the time of berthing, and the auxiliary generator is kept at a high load by generating electricity with a smaller auxiliary generator. I came.
  • the gas engine is an engine that is driven by natural gas as fuel. Since natural gas does not generate SOx during combustion, it is not necessary to provide a flue gas desulfurization device, and it is not necessary to keep the engine at a high load factor for SOx countermeasures.
  • conventional gas engine ships have followed the configuration and operation of diesel engine ship propulsion systems, and no ship propulsion system utilizing this feature has been proposed. Therefore, the present invention proposes a ship equipped with a main engine that performs gas operation at least at a low load, such as a gas engine, and a shaft generator that uses the power of the main engine, and tries to reduce the above-described problems.
  • the ship according to one aspect of the present invention is A main engine capable of gas operation using gas fuel, A propulsion unit driven by the rotational force transmitted from the main unit through the propulsion shaft; A generator for supplying power to the main bus onboard, The generator comprises only at least one shaft generator that generates electric power by utilizing rotation of the propulsion shaft.
  • the power supply method to the inboard power system is a power supply method to the inboard power system of a ship equipped with a main engine capable of gas operation using gas fuel, When the main engine is under a low load, the main engine is gas-operated and power is generated by at least one shaft generator using the rotational power of the main engine, and the generated power of the at least one shaft generator is supplied to the inboard power system. It is characterized by being supplied to the included main ship bus.
  • the ship and the power supply method to the ship's power system it is possible to cover the power demand of the ship's power system by generating power with the shaft generator when the main engine is under low load. Therefore, it is not necessary to use the main engine and the auxiliary generator engine separately for economic reasons, and the conventional auxiliary generator and auxiliary generator engine can be used on the ship by generating power using the power of the main engine during navigation and anchoring. Can be omitted.
  • the ship is allowed to transmit power from the main engine to the shaft generator and the propulsion unit during navigation, and is prohibited from transmitting power from the main unit to the propulsion unit during berthing and from the main unit to the shaft generator.
  • a clutch provided on the propulsion shaft that operates to allow transmission of power to the propulsion shaft may be further provided.
  • shaft operation can be performed by operating the main engine when the ship is anchored by the operation of the clutch.
  • the ship is provided between the shaft generator and the inboard main bus, converts the AC frequency of the shaft generator into the frequency of the AC power of the inboard main bus, and converts the AC voltage of the shaft generator. You may further provide the power converter device which converts into the alternating voltage of the said inboard main bus-line.
  • the shaft generator since the shaft generator does not need to control the AC frequency supplied to the power converter to the AC frequency of the inboard main bus, the main engine can be operated at a variable speed. Thereby, the propeller pitch loss of a propulsion machine can be reduced.
  • the ship includes a first power converter having an AC end connected to the inboard main bus, a second power converter having an AC end connected to the shaft generator, and a DC end of the first power converter.
  • a power converter having a DC intermediate section connecting a DC terminal of the second power converter; a frequency detector for detecting a frequency of the inboard main bus; and a first voltage detection for detecting a voltage of the inboard main bus.
  • a second voltage detector for detecting the voltage of the DC intermediate part, and a power generation control device for controlling the output of the power converter.
  • the power generation control device determines that the frequency of the inboard main bus becomes a predetermined frequency target value based on the detection values of the frequency detector and the first voltage detector, and the voltage of the inboard main bus is a predetermined voltage.
  • the output of the first power converter is controlled so as to be a target value, and the first intermediate voltage is set to a predetermined DC intermediate voltage target value based on the detection value of the second voltage detector. Two power converter outputs may be controlled.
  • the power converter since the output of the power converter is controlled so that the system frequency and the system voltage become predetermined target values, the power converter can be operated independently.
  • the power generation control device may control the output of the first power converter based on a predetermined droop characteristic.
  • the inboard main bus can be connected to an onshore power source, and the power generation control device connects the onshore power source and the inboard main bus when the inboard main bus is connected to the onshore power source.
  • the predetermined droop characteristic may be adjusted to synchronize.
  • the power source when the inboard main bus is connected to the onshore power source, the power source can be switched from the shaft generator to the onshore power source without a power failure.
  • the ship may further include a power storage device, and a stored power conversion device having an AC terminal connected to the inboard main bus and a DC terminal connected to the power storage device.
  • the ship may further include a power storage device and a stored power conversion device in which one DC end is connected to the DC intermediate portion and the other DC end is connected to the power storage device.
  • the stored power conversion device charges the power storage device when a predetermined load target value of the main unit exceeds a load of the propulsion unit, and the predetermined load target value of the main unit is lower than a load of the propulsion unit Sometimes the power storage device may be discharged.
  • the stored power conversion device charges the power storage device when the frequency of the inboard main bus exceeds a predetermined frequency target value or when the voltage of the inboard main bus exceeds a predetermined voltage target value.
  • the power storage device may be discharged when the frequency of the inboard main bus is lower than the predetermined frequency target value or when the voltage of the inboard main bus is lower than the predetermined voltage target value.
  • the stored power conversion device is configured so that, based on a predetermined droop characteristic, the frequency of the inboard main bus becomes a predetermined frequency target value, and the voltage of the inboard main bus becomes a predetermined voltage target value.
  • the charging and discharging of the power storage device may be controlled.
  • the present invention it is not necessary to use different engines for power generation during navigation and when anchoring, and a conventional auxiliary generator can be omitted. Therefore, the types of engines for power generation can be reduced.
  • FIG. 1 is a block diagram showing a schematic configuration of a marine vessel propulsion system and a power system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the marine vessel propulsion system and the power system according to the first modification of the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of a marine vessel propulsion system and a power system according to the second embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the control system of the shaft generator.
  • FIG. 5 is a chart showing droop characteristic lines set when controlling the shaft generator.
  • FIG. 6 is a chart showing the relationship between the main engine output and the thrust when the main machine is operated at a fixed speed and at a variable speed.
  • FIG. 1 is a block diagram showing a schematic configuration of a marine vessel propulsion system and a power system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the marine vessel propulsion
  • FIG. 7 is a block diagram illustrating a schematic configuration of a marine vessel propulsion system and a power system according to Modification 1 of the second embodiment.
  • FIG. 8 is a block diagram which shows schematic structure of the ship propulsion system and electric power system which concern on 3rd Embodiment of this invention.
  • FIG. 9 is a chart showing changes with time in loads of the main engine and the propulsion apparatus.
  • FIG. 10 is a chart showing changes with time in loads of the main engine and the propulsion apparatus.
  • FIG. 11 is a block diagram illustrating a flow of processing of the power storage control device.
  • FIG. 12 is a block diagram illustrating a schematic configuration of a marine vessel propulsion system and a power system according to Modification 1 of the third embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a propulsion system 2 and a power system 3 of a ship 10A according to the first embodiment of the present invention
  • FIG. 2 shows the propulsion of the ship 10A according to a modification 1 of the first embodiment
  • 2 is a block diagram illustrating a schematic configuration of a system 2 and a power system 3.
  • FIG. 1 a ship 10 ⁇ / b> A according to the first embodiment includes a propulsion system 2 and a power system 3.
  • the propulsion system 2 of the ship 10A is a mechanical propulsion type, and includes a main machine 21, a propulsion machine 22, a propulsion shaft 23 that mechanically connects the main machine 21 and the propulsion machine 22, and the like.
  • the main engine 21 is a gas engine.
  • the main engine 21 is not limited to a gas engine as long as it is an engine capable of gas operation using a gas fuel such as natural gas.
  • a dual fuel engine that can switch between a diesel operation using a liquid fuel such as heavy oil and a gas operation may be adopted as the main engine 21.
  • the main machine 21 is gas-operated at least when the main machine 21 is under a low load.
  • the propulsion device 22 gives propulsion to the ship 10A such as a propeller.
  • the propulsion device 22 according to the present embodiment is a variable pitch propeller, and can freely change the pitch angle from forward to reverse.
  • the propulsion unit 22 is driven by the rotational force transmitted from the main unit 21 by the propulsion shaft 23.
  • the “propulsion shaft 23” represents a shaft system that transmits shaft output from the main unit 21 to the propulsion unit 22 including a propeller shaft, an intermediate shaft, a reduction gear (not shown), and the like.
  • the power system 3 of the ship 10A is composed of wiring, a generator connected to the wiring, load facilities, and the like.
  • the power system 3 of the ship 10 ⁇ / b> A includes at least a shaft generator 31, an inboard main bus 32, an output line 34 that connects the shaft generator 31 and the inboard main bus 32, and at least the inboard main bus 32.
  • One inboard load 35 and the like are provided.
  • the inboard load 35 includes power consumed in the ship such as inboard lighting, air conditioning, bow thruster (head propulsion machine) and the like.
  • the shaft generator 31 is a generator that generates electric power using the rotation of the propulsion shaft 23, that is, the rotational power of the main unit 21, and is provided on the propulsion shaft 23.
  • the electric power generated by the shaft generator 31 is supplied to the inboard main bus 32 through the output line 34.
  • the shaft generator 31 is not limited to the mode of being provided on the propulsion shaft 23 as shown in FIG. 1 and taking out rotational power directly from the propulsion shaft 23. As shown in FIG.
  • the aspect which takes out rotational power through the provided reduction gear 27 may be sufficient.
  • the main engine 21 is operated both at the time of voyage and at the time of anchoring, and the shaft generator 31 generates power at the time of voyage and at the time of anchorage.
  • the shaft generator 31 that generates power during both voyage and anchoring functions as a generator that generates power to cover the power demand in the ship when the ship 10A sails, and power in the ship when the ship 10A is anchored. It also has a function as a generator that generates electricity to cover demand. That is, the shaft generator 31 has a function as a conventional main generator and auxiliary generator. Therefore, the ship 10A is not equipped with an auxiliary generator and an engine for the auxiliary generator that the conventional ship has.
  • the blade angle of the propulsion unit 22 is changed.
  • a continuously variable transmission device is provided in the power transmission path from the propulsion shaft 23 to the shaft generator 31 so that the rotational power input from the propulsion shaft 23 to the shaft generator 31 can be reduced. It may be adjusted.
  • the marine vessel 10 ⁇ / b> A may include a clutch 26 that can switch between allowing and prohibiting transmission of power from the main engine 21 to the propulsion machine 22.
  • the clutch 26 is provided downstream of the shaft generator 31 of the propulsion shaft 23 in the power transmission path.
  • the clutch 26 is switched by an actuator (not shown) by automatic control or manual control.
  • the clutch 26 connects the propulsion shaft 23 so as to allow transmission of power from the main engine 21 to the propulsion machine 22 and allow transmission of power from the main engine 21 to the shaft generator 31 when the marine vessel 10A navigates. To do. Further, the clutch 26 prohibits transmission of power from the main engine 21 to the propulsion machine 22 when the marine vessel 10A is anchored, and allows transmission of power from the main engine 21 to the shaft generator 31. Disconnect. At the time of berthing, after the clutch 26 is switched as described above, the main generator 21 performs gas operation, whereby the shaft generator 31 generates power.
  • the marine vessel 10A of the present embodiment includes a main engine 21 capable of gas operation using gas fuel, and a propulsion apparatus 22 driven by the rotational force transmitted from the main apparatus 21 via the propulsion shaft 23. And a generator for supplying electric power to the inboard main bus 32.
  • the generator includes at least one shaft generator 31 that generates electric power by utilizing the rotation of the propulsion shaft 23.
  • the main engine 21 is gas-operated when the main engine 21 is under a low load, and power is generated by at least one shaft generator 31 using the rotational power of the main engine 21.
  • the power generated by the at least one shaft generator 31 is supplied to the inboard main bus 32 included in the inboard power system 3.
  • the main engine 21 capable of gas operation for example, a gas engine
  • SOx is hardly generated regardless of the load factor during gas operation. Therefore, the main generator 21 capable of gas operation can be operated by gas operation when the load is low, and the shaft generator 31 can generate power. That is, power can be generated by the shaft generator 31 at the time of berthing in addition to the conventional navigation.
  • the main engine and the auxiliary generator engine it is not necessary to use the main engine and the auxiliary generator engine separately for reasons of environmental regulations and processing costs such as sludge.
  • the conventional auxiliary generator and auxiliary generator engine can be omitted. That is, the generator that supplies power to the inboard main bus 32 may be only one type of shaft generator 31. Therefore, since the conventional auxiliary generator and the auxiliary generator engine can be omitted, labor and cost required for these maintenance can be reduced.
  • the ship 10A of the present embodiment is allowed to transmit power from the main engine 21 to the shaft generator 31 and the propulsion unit 22 during navigation, and is prohibited from transmitting power from the main engine 21 to the propulsion unit 22 when anchored.
  • a clutch 26 is further provided on the propulsion shaft 23 that operates to allow transmission of power from the shaft 21 to the shaft generator 31.
  • FIG. 3 is a block diagram showing a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10B according to the second embodiment of the present invention
  • FIG. 4 is a block diagram showing a configuration of the control system of the shaft generator 31,
  • FIG. 6 is a chart showing a droop characteristic line set when controlling the shaft generator 31.
  • FIG. 6 is a chart showing a relationship between the main engine output and thrust when the main machine 21 is operated at a fixed speed and at a variable speed.
  • the ship 10 ⁇ / b> B according to the present embodiment further includes a power conversion device 25, a main engine control device 41, a power generation control device 42, and the like, in addition to the ship 10 ⁇ / b> A according to the first embodiment described above. It is characterized by providing.
  • the same or similar members as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.
  • the power converter 25 is a device that converts the AC power of the shaft generator 31 into the AC power of the inboard main bus 32.
  • the power conversion device 25 includes a first power converter 25a and a second power converter 25b connected by a DC path 37.
  • the power conversion device 25 is not limited to this configuration, and may have any conversion function as described above.
  • an AC-AC converter may be used as the power conversion device 25.
  • the first power converter 25a is a system-side power converter, and is composed of, for example, an inverter.
  • the AC terminal of the first power converter 25a is connected to the inboard main bus 32 via the electric circuit 36, and the DC terminal is connected to the DC circuit 37 (DC intermediate part).
  • the first power converter 25 a converts the DC power input from the DC path 37 into AC power and outputs the AC power to the inboard main bus 32.
  • the second power converter 25b is a generator-side power converter, and is composed of, for example, a converter.
  • the direct current end of the second power converter 25 b is connected to the direct current path 37 (direct current intermediate part), and the alternating current end is connected to the shaft generator 31 via the electrical path 38.
  • the second power converter 25 b converts the AC power input from the shaft generator 31 into DC power and outputs it to the DC path 37.
  • a capacitor may be connected to the DC path 37 so that fluctuations in the voltage of the DC path 37 may be smoothed.
  • the main machine control device 41 is a device that controls the rotation speed of the main machine 21 and is connected to the main machine 21 and the power generation control device 42 through signal lines.
  • the power generation control device 42 is a device that controls the shaft generator 31, and is connected to the main power control device 41 and the first power converter 25a and the second power converter 25b of the power conversion device 25 through signal lines. Yes. More specifically, the power generation control device 42 includes a first power converter control unit that controls the first power converter 25a and a second power converter control unit that controls the second power converter 25b. These control units may be configured as independent calculation control devices.
  • each control apparatus 41 and 42 may be comprised by one arithmetic control apparatus, and may each be comprised by the separate arithmetic control apparatus. When each of these control devices 41 and 42 is constituted by one arithmetic control device, the function of each control device 41 and 42 is realized by a program stored in the one arithmetic control device.
  • Various detectors such as a system frequency detector 46, a system voltage detector 47, a direct current intermediate voltage detector 48, a power detector 49, and a reactive power detector 50 are electrically connected to the power generation control device 42. Yes. Note that at least two of these detectors 46 to 50 may be combined.
  • the system voltage detector 47 is a detector that detects the voltage of the inboard main bus 32 (that is, the voltage of the power system 3).
  • the voltage of the power system 3 may be referred to as “system voltage”.
  • the system frequency detector 46 is a detector that detects the frequency of the inboard main bus 32 (that is, the frequency of the power system 3).
  • the frequency of the power system 3 may be referred to as “system frequency”.
  • an ammeter for detecting the current value of the electric power output from the power converter 25 to the inboard main bus 32 is provided, and the power generation control device 42 includes an ammeter and a system voltage detector 47. You may be comprised so that a system
  • the DC intermediate voltage detector 48 is a detector that detects the voltage of the DC path 37 (DC intermediate portion).
  • the voltage of the DC path 37 may be referred to as “DC intermediate voltage”.
  • the power detector 49 is a detector that measures the active power output from the power converter 25 to the inboard main bus 32.
  • the reactive power detector 50 is a detector that measures reactive power output from the power converter 25 to the inboard main bus 32.
  • the power exchanged between the shaft generator 31 and the inboard main bus 32 is composed of an active power component and a reactive power component.
  • the active power is power that is consumed as power by the inboard load 35, and the reactive power is power that circulates in the power system 3 without being consumed as power.
  • an ammeter for detecting the current output from the power converter 25 to the inboard main bus 32 is provided, and the power generation control device 42 detects the ammeter and the system voltage.
  • the active power and the reactive power may be obtained based on the detection value of the device 47.
  • the power generation control device 42 controls the first power converter 25a so that the system frequency becomes a predetermined frequency target value and the system voltage becomes a predetermined voltage target value. Further, the power generation control device 42 controls the second power converter 25b so that the DC intermediate voltage is constant.
  • the power generation control device 42 performs the droop control on the first power converter 25a. That is, it is desirable that the power generation control device 42 determines the frequency control target value and the voltage control target value based on given droop characteristics.
  • the droop characteristic line is determined by the standard frequency or standard voltage of the power system 3, the active or reactive power command value for the shaft generator 31, the inclination, and the like, and is set in the power generation control device 42 in advance. However, the droop characteristic line may change in slope according to the active or reactive power command value.
  • FIG. 5 is a chart showing droop characteristic lines set when the frequency of the shaft generator 31 is controlled.
  • the vertical axis indicates the power generation frequency
  • the horizontal axis indicates the generated power (that is, active power).
  • the droop characteristic line shown in this chart has a characteristic that the generated frequency decreases as the generated power increases.
  • the power generation control device 42 obtains a frequency target value based on a point on the droop characteristic line corresponding to the detected value of active power, and uses this as a system frequency target value for control.
  • the power generation control device 42 obtains a voltage target value corresponding to the detected value of reactive power based on the droop characteristic having the characteristic that the voltage of the generated power decreases as the reactive power increases, and obtains this voltage target value. Used as a target value for control. Furthermore, the power generation control device 42 calculates the output voltage and output current of the first power converter 25a from the system frequency target value, the system voltage target value, and the detected system frequency, system voltage, active power, reactive power, and the like. Ask.
  • a power management system may be provided to detect the system frequency and adjust the position of the droop characteristic line in FIG. 5 in the vertical direction. In this example, the power management system detects a decrease in the system frequency, adjusts the position of the droop characteristic line upward, and returns the system frequency to the original value.
  • the ship 10B of the present embodiment is provided between the shaft generator 31 and the inboard main bus 32, and converts the AC frequency of the shaft generator 31 into the AC frequency of the inboard main bus 32.
  • the power converter 25 further converts the AC voltage of the shaft generator 31 into the AC voltage of the inboard main bus 32.
  • FIG. 6 is a chart showing the relationship between the main engine output and the thrust when the main machine 21 is operated at a fixed speed and at a variable speed.
  • the fixed rotation speed operation is performed, even if the thrust is 0, a large loss occurs because the resistance to the operation of the propulsion device 22 (for example, rotation of the propeller) is received. From this chart, it can be seen that if the main engine 21 is operated at a variable speed, a loss corresponding to a difference in thrust at a fixed speed operation can be reduced from a thrust at a variable speed operation.
  • the ship 10B includes a first power converter 25a having an AC end connected to the inboard main bus 32, a second power converter 25b having an AC end connected to the shaft generator 31, and a first power converter 25b.
  • a power converter 25 having a DC path 37 (DC intermediate section) connecting the DC terminal of the first power converter 25a and the DC terminal of the second power converter 25b, and a system frequency detection for detecting the frequency of the inboard main bus 32
  • a power generation control device 42 that controls the output of the power conversion device 25.
  • the power generation control device 42 sets the frequency of the inboard main bus 32 to a predetermined frequency target value based on the detection values of the system frequency detector 46 and the system voltage detector 47, and sets the voltage of the inboard main bus 32 to the predetermined voltage target value.
  • the second power converter 25b is controlled such that the output of the first power converter 25a is controlled so that the voltage of the DC path 37 becomes a predetermined DC intermediate voltage target value based on the detection value of the DC intermediate voltage detector 48. Is configured to control the output.
  • the power conversion device 25 since the output of the power conversion device 25 is controlled so that the system frequency and the system voltage become predetermined target values, the power conversion device 25 can be operated independently. Further, the power quality of the inboard main bus 32 can be ensured.
  • the power generation control device 42 is configured to control the output of the first power converter 25a based on a predetermined droop characteristic.
  • the droop characteristic used in the present embodiment includes a droop characteristic having a characteristic that the frequency of the generated power of the shaft generator 31 decreases with an increase in the generated power (ie, active power) of the shaft generator 31, and the shaft This is a droop characteristic characterized in that the output voltage of the shaft generator 31 decreases with increasing reactive power of the generator 31.
  • the power converter device 25 can perform both a self-sustained operation and a grid-connected operation, and can seamlessly switch between the self-sustained operation and the grid-connected operation. it can. Therefore, for example, as shown in FIG. 7, a plurality of shaft generators 31 can be connected to the inboard main bus 32 and the plurality of shaft generators 31 can be operated in parallel.
  • the inboard main bus 32 can be connected to the onshore power supply via the onshore power plug 80 as shown in FIG.
  • the power source can be switched from the shaft generator 31 to the onshore power source without power failure.
  • the power generation control device 42 is configured to adjust a predetermined droop characteristic so that the land power source and the ship main bus 32 are synchronized when the ship main bus 32 is connected to the land power source.
  • FIG. 8 is a block diagram showing a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10C according to the third embodiment of the present invention.
  • the ship 10 ⁇ / b> C according to the second embodiment controls the power storage device 82, the stored power conversion device 83, and the stored power conversion device 83.
  • the power storage control device 84 is further provided.
  • the same or similar members as those in the first and second embodiments described above are denoted by the same reference numerals in the drawings, and redundant description is omitted.
  • the power storage device 82 is a battery, a capacitor, or the like that can extract DC power.
  • the storage of electricity is sometimes called charging, and the taking out is sometimes called discharging.
  • the stored power conversion device 83 has one DC end connected to the DC path 37 of the power conversion device 25 and the other DC end connected to the power storage device 82.
  • the stored power conversion device 83 is a so-called DC / DC converter, and charges the DC power from the DC path 37 to the power storage device 82 and discharges the DC power stored in the power storage device 82 to the DC path 37. To do.
  • the power stored in the power storage device 82 can be supplied to the main bus 32 in the event of a power failure in the ship. Therefore, recovery from a power failure can be performed promptly.
  • the power storage control device 84 can exchange signals with the main engine control device 41.
  • the power storage control device 84 can cause the stored power conversion device 83 to function so as to discharge or charge the power storage device 82 based on the load acting on the main machine 21.
  • FIG. 9 and FIG. 10 are charts showing changes with time in the loads of the main engine 21 and the propulsion unit 22. 9 and 10, the vertical axis represents the load on the main engine 21 or the propulsion unit 22, and the horizontal axis represents time.
  • the chart of FIG. 9 shows a control operation for improving fuel consumption by keeping the load of the main engine 21 constant regardless of the load fluctuation of the propulsion device.
  • the target value of the load on the main unit 21 is constant
  • the load on the propulsion unit 22 fluctuates due to waves and the like, and is lower than the target value of the load on the main unit 21 from time t1 to time t2. Therefore, the power storage control device 84 causes the stored power conversion device 83 to function so as to charge the power storage device 82 between time t1 and time t2.
  • the chart of FIG. 10 shows a control operation for improving the motion performance of the ship by causing the load of the propulsion device to increase at a rate of change exceeding the load fluctuation tracking performance of the main engine 21.
  • the load of the propulsion device 22 gradually increases from time t3 to time t4 due to the operation of the propeller blade angle, whereas the target load value of the main device 21 is in accordance with the load fluctuation tracking performance of the main device 21. From time t3 to time t5, it is going to increase gradually. Time t4 is a time earlier than time t5.
  • the power storage control device 84 causes the stored power conversion device 83 to function so as to discharge the power storage device 82 between time t3 and time t5.
  • the power storage control device 84 charges the power storage device 82 when the load target value of the main unit 21 exceeds the load of the propulsion unit 22, and lowers the load target value of the main unit 21 below the load of the propulsion unit 22.
  • the stored power conversion device 83 is caused to function so as to discharge the power storage device 82.
  • the power storage control device 84 calculates the load on the main unit 21 calculated based on at least one of the information received from the main unit control unit 41 such as the blade angle command of the propulsion unit 22, the rotational speed of the main unit 21, and the fuel index, or the like.
  • the load of the main unit 21 calculated based on the detection value of the detector that indirectly detects the load of the main unit 21 may be used for control.
  • the power storage control device 84 calculates based on the load of the propulsion unit 22 obtained based on the detected rotation speed of the propulsion unit 22 or the operation position of an operation lever (not shown) that steers the ship 10C.
  • the load of the propulsion unit 22 may be used for control.
  • the power storage device 82 discharges and charges as described above, the output of the first power converter 25a coincides with the load power on the ship, so the power for charging and discharging passes through the second power converter 25b. It becomes a fluctuation component of the generated power of the generator 31, that is, the load fluctuation of the main machine 21 can be compensated.
  • a gas engine has lower load fluctuation tracking performance than a diesel engine, and easily misfires. Therefore, it has been difficult to mount a gas engine, particularly a gas-fired engine as a main engine on a ship type such as a tugboat where the load on the main engine fluctuates relatively greatly.
  • the main engine 21 that is a gas engine can have load fluctuation tracking performance that is not inferior to that of a diesel engine, and a gas engine, in particular, a gas-fired engine can be installed as a main engine of a ship. The problem can be reduced.
  • FIG. 12 is a block diagram illustrating a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10C according to the first modification of the third embodiment.
  • the same or similar members as those in the above-described embodiment may be denoted by the same reference numerals in the drawings, and description thereof may be omitted.
  • the power storage device 82 is connected to the DC path 37 of the power conversion device 25.
  • the power storage device 82 is connected to the inboard main bus 32.
  • the ship 10 ⁇ / b> C according to the modified example 1 includes a power conversion device 25, a stored power conversion device 83 having an AC end connected to the inboard main bus 32 and a DC end connected to the power conversion device 25, And a power storage control device 84 that controls the power conversion device 83.
  • the stored power conversion device 83 is a so-called inverter, converts the AC power of the inboard main bus 32 and charges the power storage device 82, and also stores the DC power stored in the power storage device 82 of the inboard main bus 32. It is converted into AC power and discharged.
  • the power storage control device 84 stores the power storage device 82 so as to be discharged or charged based on the frequency of the inboard main bus 32 (ie, the system frequency) or the voltage of the inboard main bus 32 (ie, the system voltage).
  • the power conversion device 83 may be controlled.
  • the power storage control device 84 is connected to the system frequency detector 46 and the system voltage detector 47, and outputs from these detectors are input.
  • the power storage control device 84 is connected to a detector (not shown) that detects active power and reactive power output from the stored power converter 83, and outputs from these detectors are input. .
  • FIG. 11 is a block diagram showing a processing flow of the power storage control device 84.
  • the stored power conversion device 83 includes a power conversion circuit (not shown) including a switching element and a PWM (Pulse Width Modulation) generator 99 that performs ON / OFF control of the switching element.
  • FIG. 11 shows a flow of generating a PWM signal to be given to the PWM generator 99 by the power storage control device 84.
  • the system frequency measurement value measured by the system frequency detector 46 is subtracted from the system frequency target value by the subtractor 91, and the output of the subtractor 91 passes through the high-pass filter, and the active power command value calculation unit ( PID) 92.
  • a signal representing the active power command value output from the active power command value calculation unit 92 is input to the subtractor 93.
  • the subtracter 93 subtracts the active power detected by the power detector 49 installed between the inboard main bus 32 and the stored power converter 83 from the active power command value.
  • the output of the subtracter 93 is input to a q-axis voltage command calculation unit (PID) 94.
  • a signal representing the q-axis voltage command output from the q-axis voltage command calculation unit 94 is input to the dq inverse converter 90.
  • the system voltage detector measurement value measured by the system voltage detector 47 is subtracted from the system voltage target value by the subtractor 95, and the output of the subtractor 95 passes through a high-pass filter, and the reactive power command value calculation unit (PID) 96. Is input.
  • a signal representing the reactive power command value output from the reactive power command value calculation unit 96 is input to the subtractor 97.
  • the subtractor 97 subtracts the reactive power detected by the reactive power detector 50 installed between the inboard main bus 32 and the stored power converter 83 from the reactive power command value.
  • the output of the subtractor 97 is input to a d-axis voltage command calculation unit (PID) 98.
  • a signal representing the d-axis voltage command output from the d-axis voltage command calculation unit 98 is input to the dq inverse converter 90.
  • the signal representing the q-axis voltage command and the signal representing the d-axis voltage command input to the dq inverse converter 90 are output to the PWM generator 99.
  • the PWM generator 99 generates PWM signals corresponding to these signals.
  • the stored power conversion device 83 charges the power storage device 82 when the system frequency or system voltage exceeds the target value, and turns the power storage device 82 when the system frequency or system voltage falls below the target value. Functions to discharge.
  • the discharging / charging of the power storage device 82 may be performed in particular by the power storage control device 84 performing droop control of the stored power conversion device 83.
  • the droop control method of the stored power conversion device 83 by the power storage control device 84 is the same as the droop control method of the first power converter 25a of the power conversion device 25 by the power generation control device 42 in the above-described second embodiment. is there.
  • the droop characteristic in which the output frequency of the power storage device 82 decreases as the discharge power (active power) of the power storage device 82 increases or the charging power (active power) decreases, and the discharge of the power storage device 82.
  • a system frequency target value and a system voltage target value are determined using a droop characteristic in which the output voltage of the power storage device 82 decreases with an increase in power (reactive power) or a decrease in charging power (reactive power).
  • the droop control similar to that performed by the first power converter 25a of the power conversion device 25 is performed on the stored power conversion device 83 as well.
  • the power demand of 35 can be shared between the power generated by the shaft generator 31 and the power discharged by the power storage device 82.
  • the sharing ratio can be adjusted by changing the setting of the droop characteristic used for the control.
  • the discharge power from the power storage device 82 to the inboard main bus 32 automatically increases, and the abnormality in the main engine 21 is resolved. If it does, it will return to the original state automatically. Thereby, the electric power feeding to ship electric power can be maintained without power failure. Furthermore, since the stored power conversion device 83 does not need to exchange information with other devices, a highly reliable system can be constructed.
  • Propulsion system 3 Inboard power systems 10A, 10B, 10C: Ship 21: Main engine 22: Propulsion machine 23: Propulsion shaft 25: Power converter 25a: First power converter 25b: Second power converter 26: Clutch 27 : Decelerator 31: Shaft generator 32: Inboard main bus 35: Inboard load 37: DC path 41: Main engine controller 42: Power generation controller 46: System frequency detector 47: System voltage detector 48: DC intermediate voltage detector 49: Power detector 50: Reactive power detector 80: Onshore power plug 82: Power storage device 83: Stored power converter 84: Power storage control device 90: dq inverse converters 91, 93, 95, 97: Subtractor 92 : Active power command value calculation unit 94: d-axis voltage command value calculation unit 96: Reactive power command value calculation unit 98: q-axis voltage finger Value calculating unit 99: PWM generator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Provided is a ship in which are mounted a main device capable of operating on gas using a gas fuel, a propulsion device rotationally driven by the main device, and a shaft generator that generates electric power upon receiving motive power from the main device, wherein when a low load is applied to the main device, the main device operates on gas, at least one shaft generator generates electric power using the rotational motive power of the main device, and electric power generated by the at least one shaft generator is supplied to an onboard main busbar included in an onboard electrical grid.

Description

船舶及び船内電力系統への電力供給方法Power supply method to ship and inboard power system
 本発明は、ガス燃料を使用可能な主機を搭載した船舶及びその船内電力系統への電力供給方法に関する。 The present invention relates to a ship equipped with a main engine capable of using gas fuel and a method of supplying power to the ship's power system.
 従来、ディーゼルエンジンを主機として搭載した船舶において、主機の回転動力を利用した軸発電機を備える推進システムが知られている。非特許文献1にはこのような推進システムが記載されている。 Conventionally, in a ship equipped with a diesel engine as a main engine, a propulsion system including a shaft generator that uses the rotational power of the main engine is known. Non-Patent Document 1 describes such a propulsion system.
 非特許文献1の12~14ページには、主機と、主機と推進軸で接続された主推進機と、推進軸に設けられた軸発電機と、補助発電機と、船首推進機とを備えた、ある種の典型的な船舶の推進システム及び電力系統が示されている。この文献には、航海時は船首推進機の駆動などのために船内電力負荷が大きくなり、これを軸発電機で発電した電力で賄うこと、また、補助発電機の出力は船首推進機の容量よりも小さいことなどが示されており、すなわち、補助発電機は船舶の居住区域等の基本的な電力負荷のための電力のみを賄うのが一般的である。 Page 12-14 of Non-Patent Document 1 includes a main engine, a main propulsion unit connected to the main unit by a propulsion shaft, a shaft generator provided on the propulsion shaft, an auxiliary generator, and a bow propulsion unit. Some typical marine propulsion systems and power systems are also shown. In this document, during navigation, the ship's power load increases due to the driving of the bow propulsion machine, etc., which is covered by the power generated by the shaft generator, and the output of the auxiliary generator is the capacity of the bow propulsion machine It is generally shown that auxiliary generators only provide power for basic power loads, such as ship occupancy areas.
 一方、国際海事機関(IMO)によって、段階的に硫黄酸化物(SOx)の排出規制が強化されている。旧来のC重油を燃料とするディーゼルエンジンは、SOxの排出量が多いため、排煙脱硫装置を設けることで規制をクリアしているが、処理に費用を要するスラッジ等の発生をできるだけ少なくするような運用が行われている。具体的には、ディーゼルエンジンを低負荷で運転すると、単位出力当たりのSOxが大幅に増加するので、常に高負荷でエンジンが運転されるように、航行時は補助発電機を停止して、主機によって駆動される軸発電機で発電することで主機を高負荷に保ち、停泊時は主機を停止して、より小さな補助発電機で発電することで補助発電機を高負荷に保つことが行われてきた。 On the other hand, regulations on sulfur oxide (SOx) emissions are being strengthened in stages by the International Maritime Organization (IMO). Diesel engines that use conventional C heavy oil as fuel emit a large amount of SOx, so the regulations have been cleared by installing flue gas desulfurization equipment, but the generation of sludge, etc. that is expensive to process is minimized. Are being operated. Specifically, when a diesel engine is operated at a low load, the SOx per unit output greatly increases, so the auxiliary generator is stopped during navigation so that the engine is always operated at a high load. The main generator is kept at a high load by generating power with a shaft generator driven by the motor, and the main generator is stopped at the time of berthing, and the auxiliary generator is kept at a high load by generating electricity with a smaller auxiliary generator. I came.
 しかし、上記のようなディーゼルエンジンを主機として搭載した従来の船舶では、軸発電機と補助発電機のために2種類のエンジンを備えることとなり、これらのメンテナンスが煩雑であり手間及びコストを要するという課題があった。 However, a conventional ship equipped with a diesel engine as a main engine as described above has two types of engines for a shaft generator and an auxiliary generator, and these maintenances are complicated and require labor and cost. There was a problem.
 ところで、主機にガスエンジンを採用する船舶が建造されつつある。ガスエンジンは、天然ガスを燃料として駆動するエンジンである。天然ガスは燃焼時にSOxを発生しないため、排煙脱硫装置を設ける必要もなく、SOx対策のためにエンジンを高負荷率に保つ必要もない。しかし、従来のガスエンジン船では、ディーゼルエンジン船の推進システム構成と運用を踏襲しており、この特長を活かした船舶の推進システムは提案されてこなかった。そこで、本発明では、例えばガスエンジンなどの、少なくとも低負荷時にガス運転を行う主機と、この主機の動力を利用した軸発電機を備えた船舶を提案し、上記課題を軽減しようとしている。 By the way, ships that use gas engines as main engines are being built. The gas engine is an engine that is driven by natural gas as fuel. Since natural gas does not generate SOx during combustion, it is not necessary to provide a flue gas desulfurization device, and it is not necessary to keep the engine at a high load factor for SOx countermeasures. However, conventional gas engine ships have followed the configuration and operation of diesel engine ship propulsion systems, and no ship propulsion system utilizing this feature has been proposed. Therefore, the present invention proposes a ship equipped with a main engine that performs gas operation at least at a low load, such as a gas engine, and a shaft generator that uses the power of the main engine, and tries to reduce the above-described problems.
 即ち、本発明の一態様に係る船舶は、
ガス燃料を使用するガス運転が可能な主機と、
前記主機から推進軸を介して伝達された回転力により駆動される推進機と、
船内主母線へ電力を供給する発電機とを備え、
前記発電機が、前記推進軸の回転を利用して発電する少なくとも1つの軸発電機のみから成ることを特徴とするものである。
That is, the ship according to one aspect of the present invention is
A main engine capable of gas operation using gas fuel,
A propulsion unit driven by the rotational force transmitted from the main unit through the propulsion shaft;
A generator for supplying power to the main bus onboard,
The generator comprises only at least one shaft generator that generates electric power by utilizing rotation of the propulsion shaft.
 また、本発明の一態様に係る船内電力系統への電力供給方法は、ガス燃料を使用するガス運転が可能な主機を搭載した船舶の船内電力系統への電力供給方法であって、
前記主機の低負荷時に、前記主機をガス運転し、前記主機の回転動力を利用して少なくとも1つの軸発電機で発電を行い、前記少なくとも1つの軸発電機の発電電力を前記船内電力系統に含まれる船内主母線へ供給することを特徴とするものである。
The power supply method to the inboard power system according to one aspect of the present invention is a power supply method to the inboard power system of a ship equipped with a main engine capable of gas operation using gas fuel,
When the main engine is under a low load, the main engine is gas-operated and power is generated by at least one shaft generator using the rotational power of the main engine, and the generated power of the at least one shaft generator is supplied to the inboard power system. It is characterized by being supplied to the included main ship bus.
 上記船舶及びその船内電力系統への電力供給方法によれば、主機の低負荷時に軸発電機で発電をして船内電力系統の電力需要を賄うことができる。よって、経済的理由から主機と補助発電機用エンジンを使い分ける必要がなく、航行時、停泊時とも主機の動力を利用して発電することで、従来の補助発電機及び補助発電機用エンジンを船舶から省くことができる。 According to the above-mentioned ship and the power supply method to the ship's power system, it is possible to cover the power demand of the ship's power system by generating power with the shaft generator when the main engine is under low load. Therefore, it is not necessary to use the main engine and the auxiliary generator engine separately for economic reasons, and the conventional auxiliary generator and auxiliary generator engine can be used on the ship by generating power using the power of the main engine during navigation and anchoring. Can be omitted.
 上記船舶は、航行時に前記主機から前記軸発電機及び前記推進機への動力の伝達が許容され、停泊時に前記主機から前記推進機への動力の伝達が禁止され且つ前記主機から前記軸発電機への動力の伝達が許容されるように動作する、前記推進軸に設けられたクラッチを更に備えてもよい。 The ship is allowed to transmit power from the main engine to the shaft generator and the propulsion unit during navigation, and is prohibited from transmitting power from the main unit to the propulsion unit during berthing and from the main unit to the shaft generator. A clutch provided on the propulsion shaft that operates to allow transmission of power to the propulsion shaft may be further provided.
 上記によれば、クラッチの動作により、船舶の停泊時に主機を運転して軸発電を行うことができる。 According to the above, shaft operation can be performed by operating the main engine when the ship is anchored by the operation of the clutch.
 上記船舶は、前記軸発電機と前記船内主母線との間に設けられ、前記軸発電機の交流周波数を前記船内主母線の交流電力の周波数へ変換するとともに、前記軸発電機の交流電圧を前記船内主母線の交流の電圧へ変換する電力変換装置を更に備えてもよい。 The ship is provided between the shaft generator and the inboard main bus, converts the AC frequency of the shaft generator into the frequency of the AC power of the inboard main bus, and converts the AC voltage of the shaft generator. You may further provide the power converter device which converts into the alternating voltage of the said inboard main bus-line.
 上記によれば、軸発電機は電力変換器に供給する交流周波数を船内主母線の交流周波数に制御する必要がなくなるので、主機を可変速運転することができる。これにより、推進機のプロペラピッチロスを削減できる。 According to the above, since the shaft generator does not need to control the AC frequency supplied to the power converter to the AC frequency of the inboard main bus, the main engine can be operated at a variable speed. Thereby, the propeller pitch loss of a propulsion machine can be reduced.
 上記船舶は、交流端が前記船内主母線に接続された第1電力変換器、交流端が前記軸発電機に接続された第2電力変換器、及び、前記第1電力変換器の直流端と前記第2電力変換器の直流端を接続する直流中間部とを有する電力変換装置と、前記船内主母線の周波数を検出する周波数検出器と、前記船内主母線の電圧を検出する第1電圧検出器と、前記直流中間部の電圧を検出する第2電圧検出器と、前記電力変換装置の出力を制御する発電制御装置とを更に備えてもよい。ここで、前記発電制御装置が、前記周波数検出器及び前記第1電圧検出器の検出値に基づいて前記船内主母線の周波数が所定の周波数目標値となり且つ前記船内主母線の電圧が所定の電圧目標値となるように前記第1電力変換器の出力を制御し、前記第2電圧検出器の検出値に基づいて前記直流中間部の電圧が所定の直流中間電圧目標値となるように前記第2電力変換器の出力を制御してもよい。 The ship includes a first power converter having an AC end connected to the inboard main bus, a second power converter having an AC end connected to the shaft generator, and a DC end of the first power converter. A power converter having a DC intermediate section connecting a DC terminal of the second power converter; a frequency detector for detecting a frequency of the inboard main bus; and a first voltage detection for detecting a voltage of the inboard main bus. And a second voltage detector for detecting the voltage of the DC intermediate part, and a power generation control device for controlling the output of the power converter. Here, the power generation control device determines that the frequency of the inboard main bus becomes a predetermined frequency target value based on the detection values of the frequency detector and the first voltage detector, and the voltage of the inboard main bus is a predetermined voltage. The output of the first power converter is controlled so as to be a target value, and the first intermediate voltage is set to a predetermined DC intermediate voltage target value based on the detection value of the second voltage detector. Two power converter outputs may be controlled.
 上記によれば、系統周波数及び系統電圧が所定の目標値となるように電力変換装置の出力が制御されるので、電力変換装置を自立運転させることができる。 According to the above, since the output of the power converter is controlled so that the system frequency and the system voltage become predetermined target values, the power converter can be operated independently.
 上記船舶において、前記発電制御装置は、所定のドループ特性に基づいて、前記第1電力変換器の出力を制御してもよい。 In the ship, the power generation control device may control the output of the first power converter based on a predetermined droop characteristic.
 上記によれば、電力変換装置の出力がドループ特性を持つので、複数の軸発電機を船内主母船に接続してこれらを並列運転することができる。 According to the above, since the output of the power converter has a droop characteristic, a plurality of shaft generators can be connected to the inboard main mother ship and operated in parallel.
 上記船舶において、前記船内主母線は陸上電源と接続可能であって、前記発電制御装置は、前記船内主母線が前記陸上電源と接続されているときに、前記陸上電源と前記船内主母線とを同期させるように前記所定のドループ特性を調整するように構成されていてよい。 In the ship, the inboard main bus can be connected to an onshore power source, and the power generation control device connects the onshore power source and the inboard main bus when the inboard main bus is connected to the onshore power source. The predetermined droop characteristic may be adjusted to synchronize.
 上記によれば、船内主母線が陸上電源に接続されているときに、停電を伴わずに軸発電機から陸上電源へ電力源の切り替えができる。 According to the above, when the inboard main bus is connected to the onshore power source, the power source can be switched from the shaft generator to the onshore power source without a power failure.
 上記船舶が、電力貯蔵装置と、交流端が前記船内主母線に接続され且つ直流端が前記電力貯蔵装置に接続された貯蔵電力変換装置とを更に備えてもよい。 The ship may further include a power storage device, and a stored power conversion device having an AC terminal connected to the inboard main bus and a DC terminal connected to the power storage device.
 上記によれば、主機の負荷変動による軸発電機の発電電力の変動を電力貯蔵装置から放電される電力で補償することができる。 According to the above, it is possible to compensate for fluctuations in the generated power of the shaft generator due to fluctuations in the load of the main engine with the power discharged from the power storage device.
 或いは、上記船舶が、電力貯蔵装置と、一方の直流端が前記直流中間部に接続され且つ他方の直流端が前記電力貯蔵装置に接続された貯蔵電力変換装置とを更に備えてもよい。 Alternatively, the ship may further include a power storage device and a stored power conversion device in which one DC end is connected to the DC intermediate portion and the other DC end is connected to the power storage device.
 上記によれば、主機の負荷変動による軸発電機の発電電力の変動を電力貯蔵装置から放電される電力で補償することができる。 According to the above, it is possible to compensate for fluctuations in the generated power of the shaft generator due to fluctuations in the load of the main engine with the power discharged from the power storage device.
 前記貯蔵電力変換装置は、前記主機の所定の負荷目標値が前記推進機の負荷を上回るときに前記電力貯蔵装置を充電させ、前記主機の前記所定の負荷目標値が前記推進機の負荷を下回るときには前記電力貯蔵装置を放電させてもよい。 The stored power conversion device charges the power storage device when a predetermined load target value of the main unit exceeds a load of the propulsion unit, and the predetermined load target value of the main unit is lower than a load of the propulsion unit Sometimes the power storage device may be discharged.
 上記によれば、主機の負荷変動による軸発電機の発電電力の変動を電力貯蔵装置から放電される電力で補償することができる。 According to the above, it is possible to compensate for fluctuations in the generated power of the shaft generator due to fluctuations in the load of the main engine with the power discharged from the power storage device.
 上記船舶において、前記貯蔵電力変換装置は、前記船内主母線の周波数が所定の周波数目標値を上回るとき又は前記船内主母線の電圧が所定の電圧目標値を上回るときに前記電力貯蔵装置を充電させ、前記船内主母線の周波数が前記所定の周波数目標値を下回るとき又は前記船内主母線の電圧が前記所定の電圧目標値を下回るときに前記電力貯蔵装置を放電させてもよい。 In the ship, the stored power conversion device charges the power storage device when the frequency of the inboard main bus exceeds a predetermined frequency target value or when the voltage of the inboard main bus exceeds a predetermined voltage target value. The power storage device may be discharged when the frequency of the inboard main bus is lower than the predetermined frequency target value or when the voltage of the inboard main bus is lower than the predetermined voltage target value.
 上記によれば、主機の負荷変動を誘発せずに、船内主母線の周波数又は電圧の変動を抑制することができる。 According to the above, it is possible to suppress fluctuations in the frequency or voltage of the inboard main bus without inducing load fluctuations in the main engine.
 上記船舶において、前記貯蔵電力変換装置は、所定のドループ特性に基づいて、前記船内主母線の周波数が所定の周波数目標値となり且つ前記船内主母線の電圧が所定の電圧目標値となるように前記電力貯蔵装置の充電及び放電を制御してもよい。 In the above-mentioned ship, the stored power conversion device is configured so that, based on a predetermined droop characteristic, the frequency of the inboard main bus becomes a predetermined frequency target value, and the voltage of the inboard main bus becomes a predetermined voltage target value. The charging and discharging of the power storage device may be controlled.
 上記によれば、主機の負荷変動による軸発電機の発電電力の変動が電力貯蔵装置から供給される電力により補償される。また、例え主機が失火しても、電力貯蔵装置が放電して船内母線への給電が自動的に継続される。よって、船内負荷へ安定した電力供給を行うことができる。 According to the above, fluctuations in the power generated by the shaft generator due to fluctuations in the load on the main engine are compensated by the power supplied from the power storage device. In addition, even if the main engine misfires, the power storage device is discharged and the power supply to the inboard bus is automatically continued. Therefore, stable power supply to the ship load can be performed.
 本発明によれば、航行時と停泊時で発電のためのエンジンを使い分ける必要がなく、従来の補助発電機を省くことができる。よって、発電のためのエンジンの種類を減らすことができる。 According to the present invention, it is not necessary to use different engines for power generation during navigation and when anchoring, and a conventional auxiliary generator can be omitted. Therefore, the types of engines for power generation can be reduced.
図1は、本発明の第1実施形態に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a marine vessel propulsion system and a power system according to the first embodiment of the present invention. 図2は、第1実施形態の変形例1に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration of the marine vessel propulsion system and the power system according to the first modification of the first embodiment. 図3は、本発明の第2実施形態に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of a marine vessel propulsion system and a power system according to the second embodiment of the present invention. 図4は、軸発電機の制御系統の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the control system of the shaft generator. 図5は、軸発電機を制御する際に設定されるドループ特性線を示す図表である。FIG. 5 is a chart showing droop characteristic lines set when controlling the shaft generator. 図6は、主機を固定回転数運転した場合と可変速運転した場合の主機出力と推力の関係を示す図表である。FIG. 6 is a chart showing the relationship between the main engine output and the thrust when the main machine is operated at a fixed speed and at a variable speed. 図7は、第2実施形態の変形例1に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 7 is a block diagram illustrating a schematic configuration of a marine vessel propulsion system and a power system according to Modification 1 of the second embodiment. 図8は、本発明の第3実施形態に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 8: is a block diagram which shows schematic structure of the ship propulsion system and electric power system which concern on 3rd Embodiment of this invention. 図9は、主機と推進機の負荷の経時変化を示す図表である。FIG. 9 is a chart showing changes with time in loads of the main engine and the propulsion apparatus. 図10は、主機と推進機の負荷の経時変化を示す図表である。FIG. 10 is a chart showing changes with time in loads of the main engine and the propulsion apparatus. 図11は、電力貯蔵制御装置の処理の流れを示すブロック図である。FIG. 11 is a block diagram illustrating a flow of processing of the power storage control device. 図12は、第3実施形態の変形例1に係る船舶の推進システム及び電力系統の概略構成を示すブロック図である。FIG. 12 is a block diagram illustrating a schematic configuration of a marine vessel propulsion system and a power system according to Modification 1 of the third embodiment.
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
[第1実施形態]
 図1は、本発明の第1実施形態に係る船舶10Aの推進システム2及び電力系統3の概略構成を示すブロック図であり、図2は第1実施形態の変形例1に係る船舶10Aの推進システム2及び電力系統3の概略構成を示すブロック図である。図1に示すように、第1実施形態に係る船舶10Aは、推進システム2と、電力系統3とを備えている。
[First Embodiment]
FIG. 1 is a block diagram showing a schematic configuration of a propulsion system 2 and a power system 3 of a ship 10A according to the first embodiment of the present invention, and FIG. 2 shows the propulsion of the ship 10A according to a modification 1 of the first embodiment. 2 is a block diagram illustrating a schematic configuration of a system 2 and a power system 3. FIG. As shown in FIG. 1, a ship 10 </ b> A according to the first embodiment includes a propulsion system 2 and a power system 3.
(推進システム2)
 船舶10Aの推進システム2は、機械推進式であって、主機21と、推進機22と、主機21と推進機22とを機械的に接続する推進軸23などとを備えている。
(Propulsion system 2)
The propulsion system 2 of the ship 10A is a mechanical propulsion type, and includes a main machine 21, a propulsion machine 22, a propulsion shaft 23 that mechanically connects the main machine 21 and the propulsion machine 22, and the like.
 本実施形態に係る主機21は、ガスエンジンである。但し、主機21は、天然ガスなどのガス燃料を使用するガス運転が可能なエンジンであれば、ガスエンジンに限定されない。例えば、重油などの液体燃料を使用するディーゼル運転とガス運転とを切替可能な二元燃料エンジンを、主機21として採用してもよい。この主機21は、少なくとも主機21の低負荷時にガス運転される。 The main engine 21 according to the present embodiment is a gas engine. However, the main engine 21 is not limited to a gas engine as long as it is an engine capable of gas operation using a gas fuel such as natural gas. For example, a dual fuel engine that can switch between a diesel operation using a liquid fuel such as heavy oil and a gas operation may be adopted as the main engine 21. The main machine 21 is gas-operated at least when the main machine 21 is under a low load.
 推進機22は、プロペラなどの船舶10Aに推進力を与えるものである。本実施形態に係る推進機22は可変ピッチプロペラであって、ピッチ角を前進から後進まで自由に変えることができる。推進機22は、推進軸23によって主機21から伝達された回転力により駆動される。ここで「推進軸23」は、プロペラ軸、中間軸、及び、減速機(図示せず)などを含めた、主機21から推進機22へ軸出力を伝達する軸系を表している。 The propulsion device 22 gives propulsion to the ship 10A such as a propeller. The propulsion device 22 according to the present embodiment is a variable pitch propeller, and can freely change the pitch angle from forward to reverse. The propulsion unit 22 is driven by the rotational force transmitted from the main unit 21 by the propulsion shaft 23. Here, the “propulsion shaft 23” represents a shaft system that transmits shaft output from the main unit 21 to the propulsion unit 22 including a propeller shaft, an intermediate shaft, a reduction gear (not shown), and the like.
(電力系統3)
 船舶10Aの電力系統3は、配線とこれにつながる発電機や負荷設備等から構成されている。本実施形態に係る船舶10Aの電力系統3は、軸発電機31と、船内主母線32と、軸発電機31と船内主母線32を繋ぐ出力線34と、船内主母線32と接続された少なくとも1つの船内負荷35などを備えている。船内負荷35には、船内の照明や空調、バウスラスタ(船首推進機)などの船内で消費される電力が含まれる。
(Power system 3)
The power system 3 of the ship 10A is composed of wiring, a generator connected to the wiring, load facilities, and the like. The power system 3 of the ship 10 </ b> A according to the present embodiment includes at least a shaft generator 31, an inboard main bus 32, an output line 34 that connects the shaft generator 31 and the inboard main bus 32, and at least the inboard main bus 32. One inboard load 35 and the like are provided. The inboard load 35 includes power consumed in the ship such as inboard lighting, air conditioning, bow thruster (head propulsion machine) and the like.
 軸発電機31は、推進軸23の回転、つまり、主機21の回転動力を利用して発電する発電機であって、推進軸23に設けられている。軸発電機31の発電電力は出力線34を通じて船内主母線32へ供給される。軸発電機31は、図1に示すような、推進軸23上に設けられて推進軸23から直接的に回転動力を取り出す態様に限定されず、図2に示すように、推進軸23上に設けられた減速装置27を介して回転動力を取り出す態様であってもよい。 The shaft generator 31 is a generator that generates electric power using the rotation of the propulsion shaft 23, that is, the rotational power of the main unit 21, and is provided on the propulsion shaft 23. The electric power generated by the shaft generator 31 is supplied to the inboard main bus 32 through the output line 34. The shaft generator 31 is not limited to the mode of being provided on the propulsion shaft 23 as shown in FIG. 1 and taking out rotational power directly from the propulsion shaft 23. As shown in FIG. The aspect which takes out rotational power through the provided reduction gear 27 may be sufficient.
 上記構成の船舶10Aにおいて、主機21は航海時と停泊時の両方において運転され、軸発電機31は航海時と停泊時の両方において発電を行う。このように航海時と停泊時の両方において発電を行う軸発電機31は、船舶10Aの航海時に船内の電力需要を賄う電力を発生させる発電機としての機能と、船舶10Aの停泊時に船内の電力需要を賄う電力を発生させる発電機としての機能とを併せ備えている。つまり、軸発電機31は、従来の主発電機且つ補助発電機としての機能を有している。そのため、船舶10Aには、従来の船舶が備えている補助発電機及び補助発電機用エンジンを備えていない。 In the ship 10A having the above-described configuration, the main engine 21 is operated both at the time of voyage and at the time of anchoring, and the shaft generator 31 generates power at the time of voyage and at the time of anchorage. As described above, the shaft generator 31 that generates power during both voyage and anchoring functions as a generator that generates power to cover the power demand in the ship when the ship 10A sails, and power in the ship when the ship 10A is anchored. It also has a function as a generator that generates electricity to cover demand. That is, the shaft generator 31 has a function as a conventional main generator and auxiliary generator. Therefore, the ship 10A is not equipped with an auxiliary generator and an engine for the auxiliary generator that the conventional ship has.
 主機21を固定回転数運転する際に、軸発電機31の発電電力を維持しながら、推進機22が発生させる推力を変化させる場合には、推進機22の翼角が変更される。但し、翼角の変更に代えて又は加えて、推進軸23から軸発電機31への動力伝達経路に無段階変速装置を備えて、推進軸23から軸発電機31へ入力される回転動力が調整されてもよい。 When the thrust generated by the propulsion unit 22 is changed while maintaining the power generated by the shaft generator 31 when the main unit 21 is operated at a fixed speed, the blade angle of the propulsion unit 22 is changed. However, instead of or in addition to the change of the blade angle, a continuously variable transmission device is provided in the power transmission path from the propulsion shaft 23 to the shaft generator 31 so that the rotational power input from the propulsion shaft 23 to the shaft generator 31 can be reduced. It may be adjusted.
 船舶10Aは、主機21から推進機22へ動力の伝達の許容と禁止とを切換可能とするクラッチ26を備えてもよい。クラッチ26は、推進軸23の軸発電機31よりも動力伝達経路の下流側に設けられている。クラッチ26の切換は、自動制御により又は手動制御により、図示されないアクチュエータによって行われる。 The marine vessel 10 </ b> A may include a clutch 26 that can switch between allowing and prohibiting transmission of power from the main engine 21 to the propulsion machine 22. The clutch 26 is provided downstream of the shaft generator 31 of the propulsion shaft 23 in the power transmission path. The clutch 26 is switched by an actuator (not shown) by automatic control or manual control.
 クラッチ26は、船舶10Aの航行時には、主機21から推進機22への動力の伝達を許容し、且つ、主機21から軸発電機31への動力の伝達を許容するように、推進軸23を接続する。また、クラッチ26は、船舶10Aの停泊時には、主機21から推進機22への動力の伝達を禁止し、且つ、主機21から軸発電機31への動力の伝達を許容するように、推進軸23を切断する。停泊時は、上記のようにクラッチ26が切り換えられたうえで、主機21がガス運転を行うことにより、軸発電機31で発電が行われる。 The clutch 26 connects the propulsion shaft 23 so as to allow transmission of power from the main engine 21 to the propulsion machine 22 and allow transmission of power from the main engine 21 to the shaft generator 31 when the marine vessel 10A navigates. To do. Further, the clutch 26 prohibits transmission of power from the main engine 21 to the propulsion machine 22 when the marine vessel 10A is anchored, and allows transmission of power from the main engine 21 to the shaft generator 31. Disconnect. At the time of berthing, after the clutch 26 is switched as described above, the main generator 21 performs gas operation, whereby the shaft generator 31 generates power.
 以上に説明したように、本実施形態の船舶10Aは、ガス燃料を使用するガス運転が可能な主機21と、主機21から推進軸23を介して伝達された回転力により駆動される推進機22と、船内主母線32へ電力を供給する発電機とを備えている。そして、その発電機が、推進軸23の回転を利用して発電する少なくとも1つの軸発電機31から成る。 As described above, the marine vessel 10A of the present embodiment includes a main engine 21 capable of gas operation using gas fuel, and a propulsion apparatus 22 driven by the rotational force transmitted from the main apparatus 21 via the propulsion shaft 23. And a generator for supplying electric power to the inboard main bus 32. The generator includes at least one shaft generator 31 that generates electric power by utilizing the rotation of the propulsion shaft 23.
 また、本実施形態の船内電力系統3の電力供給方法では、主機21の低負荷時に当該主機21をガス運転し、主機21の回転動力を利用して少なくとも1つの軸発電機31で発電を行い、少なくとも1つの軸発電機31の発電電力を船内電力系統3に含まれる船内主母線32へ供給する。 In the power supply method for the inboard power system 3 of the present embodiment, the main engine 21 is gas-operated when the main engine 21 is under a low load, and power is generated by at least one shaft generator 31 using the rotational power of the main engine 21. The power generated by the at least one shaft generator 31 is supplied to the inboard main bus 32 included in the inboard power system 3.
 ガス運転が可能な主機21(例えば、ガスエンジン)では、ガス運転時は負荷率にかかわらずSOxをほとんど発生しない。したがって、ガス運転が可能な主機21を低負荷時にガス運転をさせて、軸発電機31で発電を行うことができる。つまり、従来の航行時に加えて、停泊時にも軸発電機31で発電を行うことができる。 In the main engine 21 capable of gas operation (for example, a gas engine), SOx is hardly generated regardless of the load factor during gas operation. Therefore, the main generator 21 capable of gas operation can be operated by gas operation when the load is low, and the shaft generator 31 can generate power. That is, power can be generated by the shaft generator 31 at the time of berthing in addition to the conventional navigation.
 本実施形態の船舶10A及びその船内電力系統3の電力供給方法によれば、環境規制対応およびスラッジ等の処理コストの理由から主機と補助発電機用エンジンとを使い分ける必要がなく、航行時、停泊時とも主機21の動力を利用して発電することで、従来の補助発電機及び補助発電機用エンジンを省くことができる。つまり、船内主母線32へ電力を供給する発電機は軸発電機31の一種類のみであってよい。よって、従来の補助発電機及び補助発電機用エンジンを省くことができるので、これらのメンテナンスに要する手間及びコストを削減することができる。 According to the power supply method of the ship 10A and the inboard power system 3 of the present embodiment, it is not necessary to use the main engine and the auxiliary generator engine separately for reasons of environmental regulations and processing costs such as sludge. By generating electricity using the power of the main engine 21 at any time, the conventional auxiliary generator and auxiliary generator engine can be omitted. That is, the generator that supplies power to the inboard main bus 32 may be only one type of shaft generator 31. Therefore, since the conventional auxiliary generator and the auxiliary generator engine can be omitted, labor and cost required for these maintenance can be reduced.
 また、本実施形態の船舶10Aは、航行時に主機21から軸発電機31及び推進機22への動力の伝達が許容され、停泊時に主機21から推進機22への動力の伝達が禁止され且つ主機21から軸発電機31への動力の伝達が許容されるように動作する、推進軸23に設けられたクラッチ26を更に備えている。 Further, the ship 10A of the present embodiment is allowed to transmit power from the main engine 21 to the shaft generator 31 and the propulsion unit 22 during navigation, and is prohibited from transmitting power from the main engine 21 to the propulsion unit 22 when anchored. A clutch 26 is further provided on the propulsion shaft 23 that operates to allow transmission of power from the shaft 21 to the shaft generator 31.
 これにより、停泊時に、主機21をガス運転して、推進機22へは動力の伝達を禁止しつつ、軸発電機31で発電を行うことができる。これにより、エネルギーロスを削減することができる。また、航行時及び停泊時の両方において主機21の動力を利用して発電を行うことで、主機と補助発電機用エンジンとを使い分ける必要がなく、従来の補助発電機及び補助発電機用エンジンを船舶10Aから省くことができる。 This makes it possible to generate power with the shaft generator 31 while the main engine 21 is gas-operated and the transmission of power to the propulsion machine 22 is prohibited when the berth is at rest. Thereby, energy loss can be reduced. In addition, by generating power using the power of the main engine 21 both at the time of sailing and at the time of berthing, there is no need to use the main engine and the auxiliary generator engine separately, and the conventional auxiliary generator and auxiliary generator engine can be used. It can be omitted from the ship 10A.
[第2実施形態]
 次に、本発明の第2実施形態を説明する。図3は本発明の第2実施形態に係る船舶10Bの推進システム2及び電力系統3の概略構成を示すブロック図、図4は軸発電機31の制御系統の構成を示すブロック図、図5は軸発電機31を制御する際に設定されるドループ特性線を示す図表、図6は主機21を固定回転数運転した場合と可変速運転した場合の主機出力と推力の関係を示す図表、図7は第2実施形態の変形例1に係る船舶10Bの推進システム2及び電力系統3の概略構成を示すブロック図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10B according to the second embodiment of the present invention, FIG. 4 is a block diagram showing a configuration of the control system of the shaft generator 31, and FIG. FIG. 6 is a chart showing a droop characteristic line set when controlling the shaft generator 31. FIG. 6 is a chart showing a relationship between the main engine output and thrust when the main machine 21 is operated at a fixed speed and at a variable speed. These are block diagrams which show schematic structure of the propulsion system 2 of the ship 10B and the electric power grid | system 3 which concern on the modification 1 of 2nd Embodiment.
 図3及び図4に示すように、本実施形態に係る船舶10Bは、前述の第1実施形態に係る船舶10Aに、電力変換装置25、主機制御装置41、及び、発電制御装置42などを更に備えることを特徴としている。なお、本実施形態の説明においては、前述の第1実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する。 As shown in FIGS. 3 and 4, the ship 10 </ b> B according to the present embodiment further includes a power conversion device 25, a main engine control device 41, a power generation control device 42, and the like, in addition to the ship 10 </ b> A according to the first embodiment described above. It is characterized by providing. In the description of the present embodiment, the same or similar members as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.
 電力変換装置25は、軸発電機31の交流電力を船内主母線32の交流電力へ変換する機器である。 The power converter 25 is a device that converts the AC power of the shaft generator 31 into the AC power of the inboard main bus 32.
 本実施形態に係る電力変換装置25は、直流路37により接続された第1電力変換器25aと第2電力変換器25bとを有している。但し、電力変換装置25はこの構成に限定されず、前述の変換機能を有するものであればよい。例えば、電力変換装置25としてAC-AC変換器が用いられてもよい。 The power conversion device 25 according to the present embodiment includes a first power converter 25a and a second power converter 25b connected by a DC path 37. However, the power conversion device 25 is not limited to this configuration, and may have any conversion function as described above. For example, an AC-AC converter may be used as the power conversion device 25.
 第1電力変換器25aは、系統側電力変換器であって、例えば、インバータで構成されている。第1電力変換器25aの交流端は電路36を介して船内主母線32に接続され、且つ、直流端は直流路37(直流中間部)に接続されている。第1電力変換器25aは、直流路37から入力された直流電力を交流電力に変換して船内主母線32に出力する。 The first power converter 25a is a system-side power converter, and is composed of, for example, an inverter. The AC terminal of the first power converter 25a is connected to the inboard main bus 32 via the electric circuit 36, and the DC terminal is connected to the DC circuit 37 (DC intermediate part). The first power converter 25 a converts the DC power input from the DC path 37 into AC power and outputs the AC power to the inboard main bus 32.
 第2電力変換器25bは、発電機側電力変換器であって、例えば、コンバータで構成されている。第2電力変換器25bの直流端は直流路37(直流中間部)に接続され、且つ、交流端は電路38を介して軸発電機31に接続されている。第2電力変換器25bは、軸発電機31から入力された交流電力を直流電力に変換して直流路37へ出力する。なお、直流路37にキャパシタを接続し、これにより直流路37の電圧の変動を平滑化してもよい。 The second power converter 25b is a generator-side power converter, and is composed of, for example, a converter. The direct current end of the second power converter 25 b is connected to the direct current path 37 (direct current intermediate part), and the alternating current end is connected to the shaft generator 31 via the electrical path 38. The second power converter 25 b converts the AC power input from the shaft generator 31 into DC power and outputs it to the DC path 37. Note that a capacitor may be connected to the DC path 37 so that fluctuations in the voltage of the DC path 37 may be smoothed.
 主機制御装置41は、主機21を回転数制御する装置であって、主機21及び発電制御装置42に信号線により接続されている。発電制御装置42は、軸発電機31を制御する装置であって、主機制御装置41、並びに、電力変換装置25の第1電力変換器25a及び第2電力変換器25bに信号線により接続されている。発電制御装置42は、より詳細には、第1電力変換器25aを制御する第1電力変換器制御部と、第2電力変換器25bを制御する第2電力変換器制御部とを有しており、これらの制御部が独立した演算制御装置として構成されていてもよい。なお、各制御装置41,42は、1つの演算制御装置で構成されていてもよいし、個別の演算制御装置でそれぞれ構成されていてもよい。これら各制御装置41,42が1つの演算制御装置で構成される場合、各制御装置41,42の機能は当該1つの演算制御装置に格納されたプログラムによって実現される。 The main machine control device 41 is a device that controls the rotation speed of the main machine 21 and is connected to the main machine 21 and the power generation control device 42 through signal lines. The power generation control device 42 is a device that controls the shaft generator 31, and is connected to the main power control device 41 and the first power converter 25a and the second power converter 25b of the power conversion device 25 through signal lines. Yes. More specifically, the power generation control device 42 includes a first power converter control unit that controls the first power converter 25a and a second power converter control unit that controls the second power converter 25b. These control units may be configured as independent calculation control devices. In addition, each control apparatus 41 and 42 may be comprised by one arithmetic control apparatus, and may each be comprised by the separate arithmetic control apparatus. When each of these control devices 41 and 42 is constituted by one arithmetic control device, the function of each control device 41 and 42 is realized by a program stored in the one arithmetic control device.
 発電制御装置42には、系統周波数検出器46、系統電圧検出器47、直流中間電圧検出器48、電力検出器49、及び、無効電力検出器50などの各種検出器が電気的に接続されている。なお、これらの検出器46~50のうち少なくとも2つが複合されていてもよい。 Various detectors such as a system frequency detector 46, a system voltage detector 47, a direct current intermediate voltage detector 48, a power detector 49, and a reactive power detector 50 are electrically connected to the power generation control device 42. Yes. Note that at least two of these detectors 46 to 50 may be combined.
 系統電圧検出器47は、船内主母線32の電圧(即ち、電力系統3の電圧)を検出する検出器である。以下では、電力系統3の電圧を「系統電圧」ということがある。 The system voltage detector 47 is a detector that detects the voltage of the inboard main bus 32 (that is, the voltage of the power system 3). Hereinafter, the voltage of the power system 3 may be referred to as “system voltage”.
 系統周波数検出器46は、船内主母線32の周波数(即ち、電力系統3の周波数)を検出する検出器である。以下では、電力系統3の周波数を「系統周波数」ということがある。但し、系統周波数検出器46に代えて、電力変換装置25から船内主母線32へ出力される電力の電流値を検出する電流計を備え、発電制御装置42が電流計と系統電圧検出器47の検出結果を用いて系統周波数を求めるように構成されていてもよい。 The system frequency detector 46 is a detector that detects the frequency of the inboard main bus 32 (that is, the frequency of the power system 3). Hereinafter, the frequency of the power system 3 may be referred to as “system frequency”. However, instead of the system frequency detector 46, an ammeter for detecting the current value of the electric power output from the power converter 25 to the inboard main bus 32 is provided, and the power generation control device 42 includes an ammeter and a system voltage detector 47. You may be comprised so that a system | strain frequency may be calculated | required using a detection result.
 直流中間電圧検出器48は、直流路37(直流中間部)の電圧を検出する検出器である。以下では、直流路37の電圧を「直流中間電圧」ということがある。 The DC intermediate voltage detector 48 is a detector that detects the voltage of the DC path 37 (DC intermediate portion). Hereinafter, the voltage of the DC path 37 may be referred to as “DC intermediate voltage”.
 電力検出器49は、電力変換装置25から船内主母線32へ出力された有効電力を計測する検出器である。また、無効電力検出器50は、電力変換装置25から船内主母線32へ出力された無効電力を計測する検出器である。軸発電機31と船内主母線32との間で授受される電力は、有効電力成分と無効電力成分とから構成される。有効電力は船内負荷35で動力として消費される電力であり、無効電力は動力として消費されずに電力系統3内で循環する電力である。なお、電力検出器49と無効電力検出器50に代えて、電力変換装置25から船内主母線32へ出力された電流を検出する電流計を備えて、発電制御装置42が電流計と系統電圧検出器47の検出値に基づいて有効電力と無効電力を求めるように構成されていてもよい。 The power detector 49 is a detector that measures the active power output from the power converter 25 to the inboard main bus 32. The reactive power detector 50 is a detector that measures reactive power output from the power converter 25 to the inboard main bus 32. The power exchanged between the shaft generator 31 and the inboard main bus 32 is composed of an active power component and a reactive power component. The active power is power that is consumed as power by the inboard load 35, and the reactive power is power that circulates in the power system 3 without being consumed as power. Instead of the power detector 49 and the reactive power detector 50, an ammeter for detecting the current output from the power converter 25 to the inboard main bus 32 is provided, and the power generation control device 42 detects the ammeter and the system voltage. The active power and the reactive power may be obtained based on the detection value of the device 47.
 続いて、発電制御装置42による電力変換装置25(軸発電機31)の制御について詳細に説明する。 Subsequently, the control of the power conversion device 25 (shaft generator 31) by the power generation control device 42 will be described in detail.
 発電制御装置42は、系統周波数が所定の周波数目標値となり且つ系統電圧が所定の電圧目標値になるように第1電力変換器25aを制御する。また、発電制御装置42は、直流中間電圧が一定になるように第2電力変換器25bを制御する。 The power generation control device 42 controls the first power converter 25a so that the system frequency becomes a predetermined frequency target value and the system voltage becomes a predetermined voltage target value. Further, the power generation control device 42 controls the second power converter 25b so that the DC intermediate voltage is constant.
 上記において、発電制御装置42は、第1電力変換器25aをドループ制御することが望ましい。つまり、発電制御装置42が、周波数の制御目標値と電圧の制御目標値とをそれぞれ所与のドループ特性に基づいて決定することが望ましい。なお、ドループ特性線は、電力系統3の標準周波数または標準電圧、軸発電機31に対する有効または無効電力指令値、傾きなどにより定められ、予め発電制御装置42に設定されている。但し、ドループ特性線は、有効または無効電力指令値に応じて傾きが変化するものであってもよい。 In the above, it is desirable that the power generation control device 42 performs the droop control on the first power converter 25a. That is, it is desirable that the power generation control device 42 determines the frequency control target value and the voltage control target value based on given droop characteristics. The droop characteristic line is determined by the standard frequency or standard voltage of the power system 3, the active or reactive power command value for the shaft generator 31, the inclination, and the like, and is set in the power generation control device 42 in advance. However, the droop characteristic line may change in slope according to the active or reactive power command value.
 図5は、軸発電機31の周波数を制御する際に設定されるドループ特性線を示す図表である。図5の図表は、縦軸に発電周波数を示し、横軸に発電電力(即ち、有効電力)を示している。この図表に示されたドループ特性線は、発電電力の増加に伴い発電周波数が低下するという特徴を有する。発電制御装置42は、有効電力の検出値と対応するドループ特性線上の点に基づいて周波数目標値を求め、これを系統周波数目標値として制御に用いる。同様に、発電制御装置42は、無効電力の増加に伴い発電電力の電圧が低下するという特徴を有するドループ特性に基づいて、無効電力の検出値と対応する電圧目標値を求め、これを系統電圧目標値として制御に用いる。更に、発電制御装置42は、系統周波数目標値と、系統電圧目標値と、検出した系統周波数、系統電圧、有効電力及び無効電力などとから、第1電力変換器25aの出力電圧と出力電流を求める。 FIG. 5 is a chart showing droop characteristic lines set when the frequency of the shaft generator 31 is controlled. In the chart of FIG. 5, the vertical axis indicates the power generation frequency, and the horizontal axis indicates the generated power (that is, active power). The droop characteristic line shown in this chart has a characteristic that the generated frequency decreases as the generated power increases. The power generation control device 42 obtains a frequency target value based on a point on the droop characteristic line corresponding to the detected value of active power, and uses this as a system frequency target value for control. Similarly, the power generation control device 42 obtains a voltage target value corresponding to the detected value of reactive power based on the droop characteristic having the characteristic that the voltage of the generated power decreases as the reactive power increases, and obtains this voltage target value. Used as a target value for control. Furthermore, the power generation control device 42 calculates the output voltage and output current of the first power converter 25a from the system frequency target value, the system voltage target value, and the detected system frequency, system voltage, active power, reactive power, and the like. Ask.
 上記の電力系統3では、船内主母線32に接続された軸発電機31が1台であって、船内負荷が増加すると、軸発電機31が発電する有効電力は増加し、ドループ特性にしたがって軸発電機31は、発電周波数がやや低下した状態で安定して運転される。これにより、電力系統3は、やや低下した系統周波数で安定する。あるいは、パワーマネジメントシテムを設け、系統周波数を検出し、図5におけるドループ特性線の位置を上下方向に調整してもよい。この例においては、パワーマネジメントシステムは、系統周波数の低下を検出し、ドループ特性線の位置を上方向に調整して、系統周波数を元の値に復帰させる。 In the electric power system 3 described above, there is one shaft generator 31 connected to the inboard main bus 32. When the inboard load increases, the effective power generated by the shaft generator 31 increases, and the shaft is generated according to the droop characteristic. The generator 31 is stably operated in a state where the power generation frequency is slightly reduced. Thereby, the electric power grid | system 3 is stabilized by the system frequency which fell a little. Alternatively, a power management system may be provided to detect the system frequency and adjust the position of the droop characteristic line in FIG. 5 in the vertical direction. In this example, the power management system detects a decrease in the system frequency, adjusts the position of the droop characteristic line upward, and returns the system frequency to the original value.
 次に、船内主母線32に2台の軸発電機31が接続され、何らかの理由で一方の軸発電機31の負荷が増加し、他方の軸発電機31の負荷が減少したとする。この場合、ドループ特性にしたがって一方の周波数の制御目標値は系統周波数より低く、他方の周波数の制御目標値は系統周波数より高くなる。これにより、一方の負荷は軽減され、他方の負荷は増加するので、その結果両方の軸発電機31の負荷は等しくなり、系統周波数は元の値で安定して運転される。これは船内主母線32に接続される軸発電機31が3台以上の場合も同様である。 Next, it is assumed that two shaft generators 31 are connected to the inboard main bus 32, the load of one shaft generator 31 increases for some reason, and the load of the other shaft generator 31 decreases. In this case, according to the droop characteristic, the control target value of one frequency is lower than the system frequency, and the control target value of the other frequency is higher than the system frequency. As a result, one load is reduced and the other load is increased. As a result, the loads of both shaft generators 31 are equal, and the system frequency is stably operated at the original value. The same applies to the case where there are three or more shaft generators 31 connected to the inboard main bus 32.
 上記では、系統周波数の増減に対応する有効電力の増減について説明したが、系統電圧の増減に対応する無効電圧の増減についても同様である。「ドループ制御」は周知の技術であるので、これについての詳しい説明は省略する。ドループ制御の詳細は、非特許文献2等を参照されたい。 In the above, increase / decrease in active power corresponding to increase / decrease in system frequency has been described, but the same applies to increase / decrease in reactive voltage corresponding to increase / decrease in system voltage. Since “droop control” is a well-known technique, a detailed description thereof will be omitted. For details of the droop control, refer to Non-Patent Document 2 and the like.
 以上に説明したように、本実施形態の船舶10Bは、軸発電機31と船内主母線32との間に設けられ、軸発電機31の交流周波数を船内主母線32の交流周波数へ変換するとともに、軸発電機31の交流電圧を船内主母線32の交流電圧へ変換する電力変換装置25を更に備えている。 As described above, the ship 10B of the present embodiment is provided between the shaft generator 31 and the inboard main bus 32, and converts the AC frequency of the shaft generator 31 into the AC frequency of the inboard main bus 32. The power converter 25 further converts the AC voltage of the shaft generator 31 into the AC voltage of the inboard main bus 32.
 上記によれば、軸発電機31は電力変換装置25へ供給する交流周波数を船内主母線32の交流周波数に制御する必要がなくなるので、主機21を可変速運転することができる。図6は、主機21を固定回転数運転した場合と可変速運転した場合の主機出力と推力の関係を示す図表である。固定回転数運転を行った場合、推力が0であっても、推進機22の動作(例えば、プロペラの回転)に対して抵抗を受けるため、大きな損失が発生する。この図表から、主機21を可変速運転すれば、可変速運転したときの推力から固定回転数運転したときの推力の差分に相当する損失を削減できることがわかる。 According to the above, since it is not necessary for the shaft generator 31 to control the AC frequency supplied to the power converter 25 to the AC frequency of the inboard main bus 32, the main machine 21 can be operated at a variable speed. FIG. 6 is a chart showing the relationship between the main engine output and the thrust when the main machine 21 is operated at a fixed speed and at a variable speed. When the fixed rotation speed operation is performed, even if the thrust is 0, a large loss occurs because the resistance to the operation of the propulsion device 22 (for example, rotation of the propeller) is received. From this chart, it can be seen that if the main engine 21 is operated at a variable speed, a loss corresponding to a difference in thrust at a fixed speed operation can be reduced from a thrust at a variable speed operation.
 また、本実施形態に係る船舶10Bは、交流端が船内主母線32に接続された第1電力変換器25a、交流端が軸発電機31に接続された第2電力変換器25b、及び、第1電力変換器25aの直流端と第2電力変換器25bの直流端を接続する直流路37(直流中間部)とを有する電力変換装置25と、船内主母線32の周波数を検出する系統周波数検出器46と、船内主母線32の電圧を検出する系統電圧検出器47(第1電圧検出器)と、直流路37の電圧を検出する直流中間電圧検出器48(第2電圧検出器)と、電力変換装置25の出力を制御する発電制御装置42とを備えている。発電制御装置42は、系統周波数検出器46及び系統電圧検出器47の検出値に基づいて船内主母線32の周波数が所定の周波数目標値となり且つ船内主母線32の電圧が所定の電圧目標値となるように第1電力変換器25aの出力を制御し、直流中間電圧検出器48の検出値に基づいて直流路37の電圧が所定の直流中間電圧目標値となるように第2電力変換器25bの出力を制御するように構成されている。 Further, the ship 10B according to the present embodiment includes a first power converter 25a having an AC end connected to the inboard main bus 32, a second power converter 25b having an AC end connected to the shaft generator 31, and a first power converter 25b. A power converter 25 having a DC path 37 (DC intermediate section) connecting the DC terminal of the first power converter 25a and the DC terminal of the second power converter 25b, and a system frequency detection for detecting the frequency of the inboard main bus 32 A detector 46, a system voltage detector 47 (first voltage detector) for detecting the voltage of the inboard main bus 32, a DC intermediate voltage detector 48 (second voltage detector) for detecting the voltage of the DC path 37, And a power generation control device 42 that controls the output of the power conversion device 25. The power generation control device 42 sets the frequency of the inboard main bus 32 to a predetermined frequency target value based on the detection values of the system frequency detector 46 and the system voltage detector 47, and sets the voltage of the inboard main bus 32 to the predetermined voltage target value. The second power converter 25b is controlled such that the output of the first power converter 25a is controlled so that the voltage of the DC path 37 becomes a predetermined DC intermediate voltage target value based on the detection value of the DC intermediate voltage detector 48. Is configured to control the output.
 これにより、系統周波数及び系統電圧が所定の目標値となるように電力変換装置25の出力が制御されるので、電力変換装置25を自立運転させることができる。また、船内主母線32の電源品質を確保できる。 Thereby, since the output of the power conversion device 25 is controlled so that the system frequency and the system voltage become predetermined target values, the power conversion device 25 can be operated independently. Further, the power quality of the inboard main bus 32 can be ensured.
 更に、本実施形態に係る発電制御装置42は、所定のドループ特性に基づいて、第1電力変換器25aの出力を制御するように構成されている。本実施形態で使用されるドループ特性は、軸発電機31の発電電力(即ち、有効電力)の増加に対して軸発電機31の発電電力の周波数が低下するという特徴を有するドループ特性と、軸発電機31の無効電力の増加に対して軸発電機31の出力電圧が低下するという特徴を有するドループ特性である。 Furthermore, the power generation control device 42 according to the present embodiment is configured to control the output of the first power converter 25a based on a predetermined droop characteristic. The droop characteristic used in the present embodiment includes a droop characteristic having a characteristic that the frequency of the generated power of the shaft generator 31 decreases with an increase in the generated power (ie, active power) of the shaft generator 31, and the shaft This is a droop characteristic characterized in that the output voltage of the shaft generator 31 decreases with increasing reactive power of the generator 31.
 これにより、電力変換装置25の出力がドループ特性を持つので、電力変換装置25は自立運転と系統連系運転の両方が可能であり、また自立運転と系統連系運転とをシームレスに切り替えることができる。よって、例えば図7に示すように、船内主母線32に複数の軸発電機31を接続して、これら複数の軸発電機31を並列運転することが可能となる。 Thereby, since the output of the power converter device 25 has a droop characteristic, the power converter device 25 can perform both a self-sustained operation and a grid-connected operation, and can seamlessly switch between the self-sustained operation and the grid-connected operation. it can. Therefore, for example, as shown in FIG. 7, a plurality of shaft generators 31 can be connected to the inboard main bus 32 and the plurality of shaft generators 31 can be operated in parallel.
 また、上記のように電力変換装置25の出力がドループ特性を持つので、図7に示すように、船内主母線32を陸上電源プラグ80を介して陸上電源と接続することが可能である。船内主母線32が陸上電源に接続されると、停電を伴わずに軸発電機31から陸上電源へ電力源の切り替えができる。なお、発電制御装置42は、船内主母線32が陸上電源と接続されているときには、陸上電源と船内主母線32とを同期させるように所定のドループ特性を調整するように構成されている。 In addition, since the output of the power conversion device 25 has a droop characteristic as described above, the inboard main bus 32 can be connected to the onshore power supply via the onshore power plug 80 as shown in FIG. When the inboard main bus 32 is connected to the onshore power source, the power source can be switched from the shaft generator 31 to the onshore power source without power failure. The power generation control device 42 is configured to adjust a predetermined droop characteristic so that the land power source and the ship main bus 32 are synchronized when the ship main bus 32 is connected to the land power source.
[第3実施形態]
 次に、本発明の第3実施形態を説明する。図8は、本発明の第3実施形態に係る船舶10Cの推進システム2及び電力系統3の概略構成を示すブロック図である。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 8 is a block diagram showing a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10C according to the third embodiment of the present invention.
 図8に示すように、第3実施形態に係る船舶10Cは、前述の第2実施形態に係る船舶10Cが、電力貯蔵装置82と、貯蔵電力変換装置83と、貯蔵電力変換装置83を制御する電力貯蔵制御装置84とを更に備えたものである。なお、本実施形態の説明においては、前述の第1及び第2実施形態と同一又は類似の部材には図面に同一の符号を付し、重複する説明を省略する。 As shown in FIG. 8, in the ship 10 </ b> C according to the third embodiment, the ship 10 </ b> C according to the second embodiment controls the power storage device 82, the stored power conversion device 83, and the stored power conversion device 83. The power storage control device 84 is further provided. In the description of the present embodiment, the same or similar members as those in the first and second embodiments described above are denoted by the same reference numerals in the drawings, and redundant description is omitted.
 電力貯蔵装置82は、電池やキャパシタなどであって、直流電力の取出しが可能なものをいう。電気の貯蔵を充電、取り出しを放電と称することもある。 The power storage device 82 is a battery, a capacitor, or the like that can extract DC power. The storage of electricity is sometimes called charging, and the taking out is sometimes called discharging.
 また、貯蔵電力変換装置83は、一方の直流端が電力変換装置25の直流路37に接続され、且つ、他方の直流端が電力貯蔵装置82に接続されている。貯蔵電力変換装置83は、いわゆるDC/DCコンバータであって、直流路37からの直流電力を電力貯蔵装置82に充電し、また、電力貯蔵装置82に貯えられた直流電力を直流路37に放電する。 Further, the stored power conversion device 83 has one DC end connected to the DC path 37 of the power conversion device 25 and the other DC end connected to the power storage device 82. The stored power conversion device 83 is a so-called DC / DC converter, and charges the DC power from the DC path 37 to the power storage device 82 and discharges the DC power stored in the power storage device 82 to the DC path 37. To do.
 電力系統3に電力貯蔵装置82を備えることで、万が一、船内が停電した場合に、船内主母線32へ電力貯蔵装置82が放電した電力を供給することができる。よって、停電からの復旧を速やかに行うことができる。 By providing the power storage device 82 in the power system 3, the power stored in the power storage device 82 can be supplied to the main bus 32 in the event of a power failure in the ship. Therefore, recovery from a power failure can be performed promptly.
 電力貯蔵制御装置84は、主機制御装置41と信号をやり取りすることができる。電力貯蔵制御装置84は、主機21に作用する負荷に基づいて、電力貯蔵装置82を放電又は充電させるように貯蔵電力変換装置83を機能させることができる。図9と図10は、主機21と推進機22の負荷の経時変化を示す図表である。図9及び図10の図表において縦軸は主機21又は推進機22の負荷を表し横軸は時間を表している。 The power storage control device 84 can exchange signals with the main engine control device 41. The power storage control device 84 can cause the stored power conversion device 83 to function so as to discharge or charge the power storage device 82 based on the load acting on the main machine 21. FIG. 9 and FIG. 10 are charts showing changes with time in the loads of the main engine 21 and the propulsion unit 22. 9 and 10, the vertical axis represents the load on the main engine 21 or the propulsion unit 22, and the horizontal axis represents time.
 図9の図表は、推進機の負荷変動に関わらず主機21の負荷を一定に保つことで、燃費を改善する制御の動作を示している。図9において、主機21の負荷の目標値は一定であり、推進機22の負荷は波浪などにより変動して時刻t1から時刻t2の間は主機21の負荷の目標値に対して低い。そこで、電力貯蔵制御装置84は、時刻t1から時刻t2の間に、電力貯蔵装置82を充電させるように貯蔵電力変換装置83を機能させる。 The chart of FIG. 9 shows a control operation for improving fuel consumption by keeping the load of the main engine 21 constant regardless of the load fluctuation of the propulsion device. In FIG. 9, the target value of the load on the main unit 21 is constant, the load on the propulsion unit 22 fluctuates due to waves and the like, and is lower than the target value of the load on the main unit 21 from time t1 to time t2. Therefore, the power storage control device 84 causes the stored power conversion device 83 to function so as to charge the power storage device 82 between time t1 and time t2.
 また、図10の図表は、主機21の負荷変動追従性能を上回る変化率で推進機の負荷上昇を行わせることで、船舶の運動性能を向上する制御の動作を示している。図10において、推進機22の負荷は、プロペラ翼角の操作によって時刻t3から時刻t4にかけて漸次増加しているのに対し、主機21の負荷の目標値は、主機21の負荷変動追従性能にしたがって、時刻t3から時刻t5にかけて漸次増加させようとしている。時刻t4は時刻t5よりも先の時刻である。このケースでは、推進機22の負荷の増加に対し、主機21の負荷の増加が追い付かず、時刻t3から時刻t5の間は推進機22の負荷に対し主機21の負荷が低い。そこで、電力貯蔵制御装置84は、時刻t3から時刻t5の間に、電力貯蔵装置82を放電させるように貯蔵電力変換装置83を機能させる。 Further, the chart of FIG. 10 shows a control operation for improving the motion performance of the ship by causing the load of the propulsion device to increase at a rate of change exceeding the load fluctuation tracking performance of the main engine 21. In FIG. 10, the load of the propulsion device 22 gradually increases from time t3 to time t4 due to the operation of the propeller blade angle, whereas the target load value of the main device 21 is in accordance with the load fluctuation tracking performance of the main device 21. From time t3 to time t5, it is going to increase gradually. Time t4 is a time earlier than time t5. In this case, the increase in the load on the main unit 21 does not catch up with the increase in the load on the propulsion unit 22, and the load on the main unit 21 is lower than the load on the propulsion unit 22 from time t3 to time t5. Therefore, the power storage control device 84 causes the stored power conversion device 83 to function so as to discharge the power storage device 82 between time t3 and time t5.
 上記の通り、電力貯蔵制御装置84は、主機21の負荷目標値を推進機22の負荷より上回らせるときは電力貯蔵装置82を充電させ、主機21の負荷目標値を推進機22の負荷より下回らせるときは電力貯蔵装置82を放電させるように貯蔵電力変換装置83を機能させる。なお、電力貯蔵制御装置84は、推進機22の翼角指令、主機21の回転数、フューエルインデックスなどの主機制御装置41から受けた情報の少なくとも1つに基づいて算出した主機21の負荷、又は、主機21の負荷を間接的に検出する検出器の検出値に基づいて算出した主機21の負荷を制御に用いてよい。また、電力貯蔵制御装置84は、検出した推進機22の回転数に基づいて求めた推進機22の負荷、又は、船舶10Cを操縦する操作レバー(図示せず)の操作位置などに基づいて算出した推進機22の負荷などを制御に用いてよい。 As described above, the power storage control device 84 charges the power storage device 82 when the load target value of the main unit 21 exceeds the load of the propulsion unit 22, and lowers the load target value of the main unit 21 below the load of the propulsion unit 22. When the power storage device 82 is used, the stored power conversion device 83 is caused to function so as to discharge the power storage device 82. The power storage control device 84 calculates the load on the main unit 21 calculated based on at least one of the information received from the main unit control unit 41 such as the blade angle command of the propulsion unit 22, the rotational speed of the main unit 21, and the fuel index, or the like. The load of the main unit 21 calculated based on the detection value of the detector that indirectly detects the load of the main unit 21 may be used for control. In addition, the power storage control device 84 calculates based on the load of the propulsion unit 22 obtained based on the detected rotation speed of the propulsion unit 22 or the operation position of an operation lever (not shown) that steers the ship 10C. The load of the propulsion unit 22 may be used for control.
 上記のように電力貯蔵装置82が放電・充電を行う一方、第1電力変換器25aの出力は船内負荷電力と一致するため、充放電分の電力は第2電力変換器25bを経由して軸発電機31の発電電力の変動成分となり、すなわち主機21の負荷変動を補償することができる。一般に、ガスエンジンはディーゼルエンジンと比較して負荷変動追従性能が低く、失火しやすい。そのため、タグボートのような主機の負荷が比較的大きく変動する船種には、ガスエンジン、特にガス専焼エンジンを主機として搭載するのは困難であった。これに対し、上記船舶10Cでは、ディーゼルエンジンと比較して劣らない負荷変動追従性能をガスエンジンである主機21に備えることができ、ガスエンジン、特にガス専焼エンジンを船舶の主機として搭載するための課題を軽減することができる。 While the power storage device 82 discharges and charges as described above, the output of the first power converter 25a coincides with the load power on the ship, so the power for charging and discharging passes through the second power converter 25b. It becomes a fluctuation component of the generated power of the generator 31, that is, the load fluctuation of the main machine 21 can be compensated. In general, a gas engine has lower load fluctuation tracking performance than a diesel engine, and easily misfires. Therefore, it has been difficult to mount a gas engine, particularly a gas-fired engine as a main engine on a ship type such as a tugboat where the load on the main engine fluctuates relatively greatly. On the other hand, in the ship 10C, the main engine 21 that is a gas engine can have load fluctuation tracking performance that is not inferior to that of a diesel engine, and a gas engine, in particular, a gas-fired engine can be installed as a main engine of a ship. The problem can be reduced.
(第3実施形態の変形例1)
 次に、上記第3実施形態の変形例1を説明する。図12は、第3実施形態の変形例1に係る船舶10Cの推進システム2及び電力系統3の概略構成を示すブロック図である。なお、本変形例の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
(Modification 1 of 3rd Embodiment)
Next, Modification 1 of the third embodiment will be described. FIG. 12 is a block diagram illustrating a schematic configuration of the propulsion system 2 and the power system 3 of the ship 10C according to the first modification of the third embodiment. In the description of this modification, the same or similar members as those in the above-described embodiment may be denoted by the same reference numerals in the drawings, and description thereof may be omitted.
 前述の第3実施形態に係る船舶10Cでは、電力貯蔵装置82が電力変換装置25の直流路37に接続されていたが、図12に示すように、第3実施形態の変形例1に係る船舶10Cでは、電力貯蔵装置82は船内主母線32に接続されている。より詳細には、変形例1に係る船舶10Cは、電力変換装置25と、交流端が船内主母線32に接続され且つ直流端が電力変換装置25に接続された貯蔵電力変換装置83と、貯蔵電力変換装置83を制御する電力貯蔵制御装置84とを備えている。 In the ship 10C according to the above-described third embodiment, the power storage device 82 is connected to the DC path 37 of the power conversion device 25. However, as shown in FIG. 12, the ship according to the first modification of the third embodiment. In 10C, the power storage device 82 is connected to the inboard main bus 32. More specifically, the ship 10 </ b> C according to the modified example 1 includes a power conversion device 25, a stored power conversion device 83 having an AC end connected to the inboard main bus 32 and a DC end connected to the power conversion device 25, And a power storage control device 84 that controls the power conversion device 83.
 貯蔵電力変換装置83は、いわゆるインバータであって、船内主母線32の交流電力を変換して電力貯蔵装置82に充電し、また、電力貯蔵装置82に貯えられた直流電力を船内主母線32の交流電力へ変換して放電する。 The stored power conversion device 83 is a so-called inverter, converts the AC power of the inboard main bus 32 and charges the power storage device 82, and also stores the DC power stored in the power storage device 82 of the inboard main bus 32. It is converted into AC power and discharged.
 また、電力貯蔵制御装置84は、船内主母線32の周波数(即ち、系統周波数)又は船内主母線32の電圧(即ち、系統電圧)に基づいて、電力貯蔵装置82を放電又は充電させるように貯蔵電力変換装置83を制御してもよい。この場合、電力貯蔵制御装置84は、系統周波数検出器46及び系統電圧検出器47と接続されており、これらの検出器からの出力が入力される。また、電力貯蔵制御装置84は、貯蔵電力変換装置83から出力された有効電力及び無効電力を検出する検出器(図示せず)と接続されており、これらの検出器からの出力が入力される。 Further, the power storage control device 84 stores the power storage device 82 so as to be discharged or charged based on the frequency of the inboard main bus 32 (ie, the system frequency) or the voltage of the inboard main bus 32 (ie, the system voltage). The power conversion device 83 may be controlled. In this case, the power storage control device 84 is connected to the system frequency detector 46 and the system voltage detector 47, and outputs from these detectors are input. The power storage control device 84 is connected to a detector (not shown) that detects active power and reactive power output from the stored power converter 83, and outputs from these detectors are input. .
 図11は、電力貯蔵制御装置84の処理の流れを示すブロック図である。貯蔵電力変換装置83は、スイッチング素子からなる電力変換回路(図示せず)とスイッチング素子をON/OFF制御するPWM(Pulse Width Modulation)発生器99とから構成される。図11では、電力貯蔵制御装置84によるPWM発生器99へ与えるPWM信号の生成の流れが示されている。 FIG. 11 is a block diagram showing a processing flow of the power storage control device 84. The stored power conversion device 83 includes a power conversion circuit (not shown) including a switching element and a PWM (Pulse Width Modulation) generator 99 that performs ON / OFF control of the switching element. FIG. 11 shows a flow of generating a PWM signal to be given to the PWM generator 99 by the power storage control device 84.
 図11に示すように、減算器91で系統周波数目標値から系統周波数検出器46で計測された系統周波数計測値が減算され、減算器91の出力はハイパスフィルタを経て有効電力指令値算出部(PID)92へ入力される。有効電力指令値算出部92から出力された有効電力指令値を表す信号は、減算器93へ入力される。減算器93では、有効電力指令値から船内主母線32と貯蔵電力変換装置83との間に設置された電力検出器49で検出された有効電力が減算される。減算器93の出力はq軸電圧指令算出部(PID)94へ入力される。q軸電圧指令算出部94から出力されたq軸電圧指令を表す信号はdq逆変換器90へ入力される。 As shown in FIG. 11, the system frequency measurement value measured by the system frequency detector 46 is subtracted from the system frequency target value by the subtractor 91, and the output of the subtractor 91 passes through the high-pass filter, and the active power command value calculation unit ( PID) 92. A signal representing the active power command value output from the active power command value calculation unit 92 is input to the subtractor 93. The subtracter 93 subtracts the active power detected by the power detector 49 installed between the inboard main bus 32 and the stored power converter 83 from the active power command value. The output of the subtracter 93 is input to a q-axis voltage command calculation unit (PID) 94. A signal representing the q-axis voltage command output from the q-axis voltage command calculation unit 94 is input to the dq inverse converter 90.
 一方、減算器95で系統電圧目標値から系統電圧検出器47で計測された系統電圧検出器計測値が減算され、減算器95の出力はハイパスフィルタを経て無効電力指令値算出部(PID)96へ入力される。無効電力指令値算出部96から出力された無効電力指令値を表す信号は、減算器97へ入力される。減算器97では、無効電力指令値から船内主母線32と貯蔵電力変換装置83との間に設置された無効電力検出器50で検出された無効電力が減算される。減算器97の出力はd軸電圧指令算出部(PID)98へ入力される。d軸電圧指令算出部98から出力されたd軸電圧指令を表す信号はdq逆変換器90へ入力される。 On the other hand, the system voltage detector measurement value measured by the system voltage detector 47 is subtracted from the system voltage target value by the subtractor 95, and the output of the subtractor 95 passes through a high-pass filter, and the reactive power command value calculation unit (PID) 96. Is input. A signal representing the reactive power command value output from the reactive power command value calculation unit 96 is input to the subtractor 97. The subtractor 97 subtracts the reactive power detected by the reactive power detector 50 installed between the inboard main bus 32 and the stored power converter 83 from the reactive power command value. The output of the subtractor 97 is input to a d-axis voltage command calculation unit (PID) 98. A signal representing the d-axis voltage command output from the d-axis voltage command calculation unit 98 is input to the dq inverse converter 90.
 dq逆変換器90へ入力されたq軸電圧指令を表す信号とd軸電圧指令を表す信号は、PWM発生器99へ出力される。PWM発生器99では、これらの信号と対応するPWM信号を発生する。このPWM信号が発生する結果、貯蔵電力変換装置83は、系統周波数又は系統電圧が目標値を上回るときには電力貯蔵装置82を充電させ、系統周波数又は系統電圧が目標値を下回るときには電力貯蔵装置82を放電させるように機能する。 The signal representing the q-axis voltage command and the signal representing the d-axis voltage command input to the dq inverse converter 90 are output to the PWM generator 99. The PWM generator 99 generates PWM signals corresponding to these signals. As a result of the generation of the PWM signal, the stored power conversion device 83 charges the power storage device 82 when the system frequency or system voltage exceeds the target value, and turns the power storage device 82 when the system frequency or system voltage falls below the target value. Functions to discharge.
 上記のように電力貯蔵装置82が放電・充電を行うことにより、主機21の負荷変動を誘発せずに、系統周波数又は系統電圧の変動を抑制することができる。 As described above, when the power storage device 82 performs discharging and charging, fluctuations in system frequency or system voltage can be suppressed without inducing load fluctuations in the main engine 21.
 あるいは、電力貯蔵装置82の放電・充電は、特に、電力貯蔵制御装置84が貯蔵電力変換装置83をドループ制御することで行ってもよい。 Alternatively, the discharging / charging of the power storage device 82 may be performed in particular by the power storage control device 84 performing droop control of the stored power conversion device 83.
 電力貯蔵制御装置84による貯蔵電力変換装置83のドループ制御の手法は、前述の第2実施形態における、発電制御装置42による電力変換装置25の第1電力変換器25aのドループ制御の手法と同様である。このドループ制御では、電力貯蔵装置82の放電電力(有効電力)の増加又は充電電力(有効電力)の減少に対して電力貯蔵装置82の出力周波数が低下するドループ特性と、電力貯蔵装置82の放電電力(無効電力)の増加又は充電電力(無効電力)の減少に対して電力貯蔵装置82の出力電圧が低下するドループ特性とを用いて、系統周波数目標値と系統電圧目標値が定められる。 The droop control method of the stored power conversion device 83 by the power storage control device 84 is the same as the droop control method of the first power converter 25a of the power conversion device 25 by the power generation control device 42 in the above-described second embodiment. is there. In this droop control, the droop characteristic in which the output frequency of the power storage device 82 decreases as the discharge power (active power) of the power storage device 82 increases or the charging power (active power) decreases, and the discharge of the power storage device 82. A system frequency target value and a system voltage target value are determined using a droop characteristic in which the output voltage of the power storage device 82 decreases with an increase in power (reactive power) or a decrease in charging power (reactive power).
 上記の通り、第3実施形態の変形例1に係る船舶10Cでは、貯蔵電力変換装置83についても、電力変換装置25の第1電力変換器25aと同様のドループ制御が行われることによって、船内負荷35の電力需要を軸発電機31で発電した電力と電力貯蔵装置82が放電した電力とに分担させることができる。分担の比率は、制御に使用されるドループ特性の設定を変化させることにより、調整することができる。 As described above, in the ship 10C according to the first modification of the third embodiment, the droop control similar to that performed by the first power converter 25a of the power conversion device 25 is performed on the stored power conversion device 83 as well. The power demand of 35 can be shared between the power generated by the shaft generator 31 and the power discharged by the power storage device 82. The sharing ratio can be adjusted by changing the setting of the droop characteristic used for the control.
 また、仮に主機21の異常により軸発電機31の発電電力が低下又は喪失した場合には、電力貯蔵装置82から船内主母線32への放電電力が自動的に大きくなり、主機21の異常が解消すれば自動的に元の状態へ戻る。これにより、停電することなく船内電力への給電を維持することができる。更に、貯蔵電力変換装置83は他の機器と情報の遣り取りをする必要がないため、信頼性の高いシステムを構築できる。 Further, if the power generated by the shaft generator 31 is reduced or lost due to an abnormality in the main engine 21, the discharge power from the power storage device 82 to the inboard main bus 32 automatically increases, and the abnormality in the main engine 21 is resolved. If it does, it will return to the original state automatically. Thereby, the electric power feeding to ship electric power can be maintained without power failure. Furthermore, since the stored power conversion device 83 does not need to exchange information with other devices, a highly reliable system can be constructed.
 以上に本発明の好適な実施の形態(及び変形例)を説明した。上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 The preferred embodiments (and modifications) of the present invention have been described above. From the foregoing description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
2    :推進システム
3    :船内電力系統
10A,10B,10C   :船舶
21   :主機
22   :推進機
23   :推進軸
25   :電力変換装置
25a  :第1電力変換器
25b  :第2電力変換器
26   :クラッチ
27   :減速装置
31   :軸発電機
32   :船内主母線
35   :船内負荷
37   :直流路
41   :主機制御装置
42   :発電制御装置
46   :系統周波数検出器
47   :系統電圧検出器
48   :直流中間電圧検出器
49   :電力検出器
50   :無効電力検出器
80   :陸上電源プラグ
82   :電力貯蔵装置
83   :貯蔵電力変換装置
84   :電力貯蔵制御装置
90   :dq逆変換器
91,93,95,97   :減算器
92   :有効電力指令値算出部
94   :d軸電圧指令値算出部
96   :無効電力指令値算出部
98   :q軸電圧指令値算出部
99   :PWM発生器
2: Propulsion system 3: Inboard power systems 10A, 10B, 10C: Ship 21: Main engine 22: Propulsion machine 23: Propulsion shaft 25: Power converter 25a: First power converter 25b: Second power converter 26: Clutch 27 : Decelerator 31: Shaft generator 32: Inboard main bus 35: Inboard load 37: DC path 41: Main engine controller 42: Power generation controller 46: System frequency detector 47: System voltage detector 48: DC intermediate voltage detector 49: Power detector 50: Reactive power detector 80: Onshore power plug 82: Power storage device 83: Stored power converter 84: Power storage control device 90: dq inverse converters 91, 93, 95, 97: Subtractor 92 : Active power command value calculation unit 94: d-axis voltage command value calculation unit 96: Reactive power command value calculation unit 98: q-axis voltage finger Value calculating unit 99: PWM generator

Claims (12)

  1.  ガス燃料を使用するガス運転が可能な主機と、
     前記主機から推進軸を介して伝達された回転力により駆動される推進機と、
     船内主母線へ電力を供給する発電機とを備え、
     前記発電機が、前記推進軸の回転を利用して発電する少なくとも1つの軸発電機のみから成る、
     船舶。
    A main engine capable of gas operation using gas fuel,
    A propulsion unit driven by the rotational force transmitted from the main unit through the propulsion shaft;
    A generator for supplying power to the main bus onboard,
    The generator consists of only at least one shaft generator that generates electricity using the rotation of the propulsion shaft.
    Ship.
  2.  航行時に前記主機から前記軸発電機及び前記推進機への動力の伝達が許容され、停泊時に前記主機から前記推進機への動力の伝達が禁止され且つ前記主機から前記軸発電機への動力の伝達が許容されるように動作する、前記推進軸に設けられたクラッチを更に備える、
    請求項1に記載の船舶。
    Transmission of power from the main engine to the shaft generator and the propulsion unit is permitted during navigation, transmission of power from the main unit to the propulsion unit is prohibited during berthing, and transmission of power from the main unit to the shaft generator is prohibited. A clutch provided on the propulsion shaft that operates to allow transmission;
    The ship according to claim 1.
  3.  前記軸発電機と前記船内主母線との間に設けられ、前記軸発電機の交流周波数を前記船内主母線の交流周波数へ変換するとともに、前記軸発電機の交流電圧を前記船内主母線の交流電圧へ変換する電力変換装置を更に備える、
    請求項1又は2に記載の船舶。
    Provided between the shaft generator and the inboard main bus, and converts the AC frequency of the shaft generator into the AC frequency of the inboard main bus, and converts the AC voltage of the shaft generator into the AC of the inboard main bus. A power converter for converting the voltage into a voltage;
    The ship according to claim 1 or 2.
  4.  交流端が前記船内主母線に接続された第1電力変換器、交流端が前記軸発電機に接続された第2電力変換器、及び、前記第1電力変換器の直流端と前記第2電力変換器の直流端を接続する直流中間部とを有する電力変換装置と、
     前記船内主母線の周波数を検出する周波数検出器と、
     前記船内主母線の電圧を検出する第1電圧検出器と、
     前記直流中間部の電圧を検出する第2電圧検出器と、
     前記電力変換装置の出力を制御する発電制御装置とを更に備え、
     前記発電制御装置は、前記周波数検出器及び前記第1電圧検出器の検出値に基づいて前記船内主母線の周波数が所定の周波数目標値となり且つ前記船内主母線の電圧が所定の電圧目標値となるように前記第1電力変換器の出力を制御し、前記第2電圧検出器の検出値に基づいて前記直流中間部の電圧が所定の直流中間電圧目標値となるように前記第2電力変換器の出力を制御する、
    請求項1又は2に記載の船舶。
    A first power converter with an AC terminal connected to the inboard main bus, a second power converter with an AC terminal connected to the shaft generator, and a DC terminal of the first power converter and the second power A power conversion device having a DC intermediate portion connecting the DC ends of the converter;
    A frequency detector for detecting the frequency of the inboard main bus;
    A first voltage detector for detecting the voltage of the inboard main bus;
    A second voltage detector for detecting the voltage of the DC intermediate part;
    A power generation control device for controlling the output of the power converter,
    The power generation control device is configured such that the frequency of the inboard main bus becomes a predetermined frequency target value based on detection values of the frequency detector and the first voltage detector, and the voltage of the inboard main bus is set to a predetermined voltage target value. And controlling the output of the first power converter so that the voltage of the DC intermediate portion becomes a predetermined DC intermediate voltage target value based on the detection value of the second voltage detector. Control the output of the instrument,
    The ship according to claim 1 or 2.
  5.  前記発電制御装置は、所定のドループ特性に基づいて、前記第1電力変換器の出力を制御する、
    請求項4に記載の船舶。
    The power generation control device controls the output of the first power converter based on a predetermined droop characteristic.
    The ship according to claim 4.
  6.  前記船内主母線は陸上電源と接続可能であって、
     前記発電制御装置は、前記船内主母線が前記陸上電源と接続されているときに、前記陸上電源と前記船内主母線とを同期させるように前記所定のドループ特性を調整する、
    請求項5に記載の船舶。
    The inboard main bus can be connected to a land power source,
    The power generation control device adjusts the predetermined droop characteristic so as to synchronize the land power source and the ship main bus when the ship main bus is connected to the land power.
    The ship according to claim 5.
  7.  電力貯蔵装置と、
     交流端が前記船内主母線に接続され且つ直流端が前記電力貯蔵装置に接続された貯蔵電力変換装置とを更に備える、
    請求項1~6のいずれか一項に記載の船舶。
    A power storage device;
    A stored power conversion device having an AC terminal connected to the inboard main bus and a DC terminal connected to the power storage device;
    The ship according to any one of claims 1 to 6.
  8.  電力貯蔵装置と、
     一方の直流端が前記直流中間部に接続され且つ他方の直流端が前記電力貯蔵装置に接続された貯蔵電力変換装置とを更に備える、
    請求項4~6のいずれか一項に記載の船舶。
    A power storage device;
    A storage power conversion device in which one DC terminal is connected to the DC intermediate part and the other DC terminal is connected to the power storage device;
    The ship according to any one of claims 4 to 6.
  9.  前記貯蔵電力変換装置は、前記主機の所定の負荷目標値が前記推進機の負荷を上回るときに前記電力貯蔵装置を充電させ、前記主機の前記所定の負荷目標値が前記推進機の負荷を下回るときには前記電力貯蔵装置を放電させる、
    請求項7又は8に記載の船舶。
    The stored power conversion device charges the power storage device when a predetermined load target value of the main unit exceeds a load of the propulsion unit, and the predetermined load target value of the main unit is lower than a load of the propulsion unit Sometimes discharging the power storage device,
    The ship according to claim 7 or 8.
  10.  前記貯蔵電力変換装置は、前記船内主母線の周波数が所定の周波数目標値を上回るとき又は前記船内主母線の電圧が所定の電圧目標値を上回るときに前記電力貯蔵装置を充電させ、前記船内主母線の周波数が前記所定の周波数目標値を下回るとき又は前記船内主母線の電圧が前記所定の電圧目標値を下回るときに前記電力貯蔵装置を放電させる、
    請求項7又は8に記載の船舶。
    The stored power conversion device charges the power storage device when the frequency of the inboard main bus exceeds a predetermined frequency target value or when the voltage of the inboard main bus exceeds a predetermined voltage target value. Discharging the power storage device when a bus frequency is lower than the predetermined frequency target value or when a voltage of the inboard main bus is lower than the predetermined voltage target value;
    The ship according to claim 7 or 8.
  11.  前記貯蔵電力変換装置は、所定のドループ特性に基づいて、前記船内主母線の周波数が所定の周波数目標値となり且つ前記船内主母線の電圧が所定の電圧目標値となるように前記電力貯蔵装置の充電及び放電を制御する、
    請求項7に記載の船舶。
    The stored power conversion device is configured so that, based on a predetermined droop characteristic, the frequency of the inboard main bus is a predetermined frequency target value and the voltage of the inboard main bus is a predetermined voltage target value. Control charging and discharging,
    The ship according to claim 7.
  12.  ガス燃料を使用するガス運転が可能な主機を搭載した船舶の船内電力系統への電力供給方法であって、
     前記主機の低負荷時に、前記該主機をガス運転し、前記主機の回転動力を利用して少なくとも1つの軸発電機で発電を行い、前記少なくとも1つの軸発電機の発電電力を前記船内電力系統に含まれる船内主母線へ供給することを特徴とする、
     船内電力系統への電力供給方法。
    A power supply method to an inboard power system of a ship equipped with a main engine capable of gas operation using gas fuel,
    When the main engine is under a low load, the main engine is gas-operated, and power is generated by at least one shaft generator using the rotational power of the main engine. Is supplied to the main bus inboard included in the
    Power supply method to the inboard power system.
PCT/JP2016/004397 2016-09-29 2016-09-29 Ship, and method for supplying electric power to onboard electrical grid WO2018061059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004397 WO2018061059A1 (en) 2016-09-29 2016-09-29 Ship, and method for supplying electric power to onboard electrical grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004397 WO2018061059A1 (en) 2016-09-29 2016-09-29 Ship, and method for supplying electric power to onboard electrical grid

Publications (1)

Publication Number Publication Date
WO2018061059A1 true WO2018061059A1 (en) 2018-04-05

Family

ID=61762610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004397 WO2018061059A1 (en) 2016-09-29 2016-09-29 Ship, and method for supplying electric power to onboard electrical grid

Country Status (1)

Country Link
WO (1) WO2018061059A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227599A (en) * 2001-11-27 2003-08-15 Alstom Methane tanker
JP2008283822A (en) * 2007-05-11 2008-11-20 Uzushio Electric Co Ltd Power supply system for vessel and power supply method
JP2015227110A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Ship propulsion system
JP2016055850A (en) * 2014-09-12 2016-04-21 川崎重工業株式会社 Propulsion system control method for movable body
JP2016078565A (en) * 2014-10-15 2016-05-16 川崎重工業株式会社 Hybrid ship control method and hybrid ship control system
JP2016088476A (en) * 2014-11-11 2016-05-23 川崎重工業株式会社 Ship propulsion system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227599A (en) * 2001-11-27 2003-08-15 Alstom Methane tanker
JP2008283822A (en) * 2007-05-11 2008-11-20 Uzushio Electric Co Ltd Power supply system for vessel and power supply method
JP2015227110A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Ship propulsion system
JP2016055850A (en) * 2014-09-12 2016-04-21 川崎重工業株式会社 Propulsion system control method for movable body
JP2016078565A (en) * 2014-10-15 2016-05-16 川崎重工業株式会社 Hybrid ship control method and hybrid ship control system
JP2016088476A (en) * 2014-11-11 2016-05-23 川崎重工業株式会社 Ship propulsion system

Similar Documents

Publication Publication Date Title
US10822067B2 (en) Power system of ship
Geertsma et al. Design and control of hybrid power and propulsion systems for smart ships: A review of developments
KR101089905B1 (en) Method for operation of a marine-vessel propulsion system with waste-heat recovery, as well as a marine-vessel propulsion system with waste-heat recovery
JP2016222149A (en) Ship and power supply method for in-ship power supply system
KR101572766B1 (en) Power system for vessels
US10974802B2 (en) Vessel energy management system
US9318894B2 (en) Methods of operating dual fed systems
JP5164042B2 (en) Ship energy system
JP5004117B2 (en) Marine electric propulsion system
JP4626878B2 (en) Inboard power system
US20120190554A1 (en) Electric drive shaft and vehicle comprising such an electric drive shaft
JP6263089B2 (en) Ship propulsion system
KR20090061649A (en) Mixed propulsion system
JPH05219654A (en) Power system for ship
JP2010116070A (en) Marine vessel energy system
KR102334879B1 (en) Electrical power distribution system, method for powering a corresponding task, propulsion system and method for a ship
KR20220083813A (en) power supply system
JP6697218B2 (en) Ship propulsion system
WO2016038900A1 (en) Control method for moving body propulsion system
Bordianu et al. Electric and hybrid propulsion in the naval industry
WO2018061059A1 (en) Ship, and method for supplying electric power to onboard electrical grid
Roa Application of classification rules to hybrid marine electrical propulsion plants
WO2024190232A1 (en) Propulsion system, control program, and control method
JP2016094193A (en) Control device of marine propulsion apparatus
WO2021175695A1 (en) Vessel energy management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP