WO2018059442A1 - 一种单板注册的方法、单板及转发设备 - Google Patents

一种单板注册的方法、单板及转发设备 Download PDF

Info

Publication number
WO2018059442A1
WO2018059442A1 PCT/CN2017/103680 CN2017103680W WO2018059442A1 WO 2018059442 A1 WO2018059442 A1 WO 2018059442A1 CN 2017103680 W CN2017103680 W CN 2017103680W WO 2018059442 A1 WO2018059442 A1 WO 2018059442A1
Authority
WO
WIPO (PCT)
Prior art keywords
line card
switching network
network board
board
optical
Prior art date
Application number
PCT/CN2017/103680
Other languages
English (en)
French (fr)
Inventor
徐小飞
刘庆智
张小俊
王临春
喻径舟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854892.1A priority Critical patent/EP3506562B1/en
Publication of WO2018059442A1 publication Critical patent/WO2018059442A1/zh
Priority to US16/365,863 priority patent/US10805107B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0697Synchronisation in a packet node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • H04L12/2885Arrangements interfacing with optical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/40Constructional details, e.g. power supply, mechanical construction or backplane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0004Initialisation of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/005Arbitration and scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a board, and a forwarding device for registering a board.
  • a central switch chassis is provided for multiple line card chassis, wherein at least one local switching network board and line card are in the line card box, and at least one central switching network board, central switch box and local switching network are in the central switch box.
  • the board is optically interconnected, and the local switching network board is electrically interconnected with the line cards in the local chassis.
  • the multi-chassis cluster occupies a large area, although the remotely deployed line card chassis can be realized through optical interconnection, it is necessary to separately provide each line card machine.
  • the optical module is equipped with an optical module, which reduces the integration of the line cards deployed in the line card chassis. After the optical module is installed, the weight of the line card chassis is also large. It can be seen that although the current multi-chassis cluster can meet the high throughput requirements, the deployment of the line card cannot break the limitation of the line card chassis and the local switching network board frame, and cannot break the limitation of the deployment position. Poor scalability.
  • the invention provides a method for registering a single board, a single board and a forwarding device, which can solve the problem of poor scalability of the deployment of the line card and the switching network board in the prior art.
  • the present invention provides a board registration method for the deployment, which can be specifically classified into a line card registration and a switching network board registration.
  • the board registration method in the present invention is mainly used for a forwarding device, and the forwarding device in the present invention includes at least one line card.
  • the forwarding device can simultaneously deploy at least one of a router line card, a switch line card, an OTN line card, a PTN line card, and a programmable white box line card.
  • the switching network interface chip in the line card can be optically interconnected with the switching network layer in the at least one switching network board, and the switching network board is used to forward the line card sending Data, and forwarding the data of the line card to the line card, the line card acquiring line card information of the line card, and then transmitting the information to the at least one switching network board through an optical interconnection path
  • the line card information is such that the at least one switching network board registers the line card according to the line card information.
  • the line card information includes a line card type, an operating status, and a capability parameter of the line card.
  • the line card can also register the stencil information of the switching network board.
  • the second registration message records the network board information of the first switching network board and the network board identifier of the first switching network board to complete registration of the first switching network board.
  • the switching network layer in the first switching network board is optically interconnected with the switching network chip of the at least one line card.
  • the first switching network board acquires the network board information of the first switching network board, and then sends the network board information to the at least one line card through an optical interconnection path, so that the at least the A line card registers the first switching network board according to the network board information.
  • the line card sends the line card information to the at least one switching network board through an optical interconnection path, and the first switching network board in the at least one switching network board transmits the line card through the optical interconnection path. After the line card information of the line card, the line card may be registered according to the line card information.
  • the present invention does not need to limit the line card or the switching network board to the chassis or the cabinet, and can avoid the integration of the chassis frame or the cabinet, the heat dissipation is poor, and the power supply demand is large.
  • the problem is that the line card and the switching network board in the present invention are more flexible and are not subject to geographical restrictions. Moreover, it is not necessary to separately configure a local switching network board, and optically interconnect the switching network interface chip in the line card with the switching network network in the switching network board to realize long-distance light of the line card and the switching network board. Interconnection, through the structure deployment mode of the present invention, the throughput of the forwarding device can be effectively improved.
  • At least one chip may be deployed in the line card, and the switching network interface chip and the chip, and the chips may be electrically interconnected. It is also possible to directly realize optical interconnection between chips through optical fibers, thereby further increasing the signal transmission rate.
  • the switching network interface chip in the line card of the present invention includes at least one first silicon optical chip, and the switching network mesh in the switching network board includes at least one second silicon optical chip, so that the optical fiber can be directly used.
  • the first silicon optical chip and the second silicon optical chip are connected to realize optical interconnection between the line card and the switching network board.
  • the connection mode may refer to the manner in which the switching network interface chip is optically interconnected through the optical fiber and the switching network. The similarities are not described herein.
  • the line card or the switching network board needs to be added, or the existing optical interconnection path needs to be changed due to service changes, etc., since the present invention mainly uses the optical fiber directly.
  • the switching network interface chip in the online card, and the optical fiber directly connected to the switching network network in the switching network board, an optical cross device may be added between the online card and the switching network board, or the line card may be directly used by the optical fiber. Switch the stencil connection.
  • Mechanism A directly using fiber optic cable and switching network board
  • the switching network interface chip in the line card is optically interconnected with the switching network layer in at least one of the switching network boards, and then interfaces with the switching network in the line card.
  • the line card information of the line card is registered in at least one of the switching network boards of the chip optical interconnection.
  • the switching network network in the first switching network board and the switching network interface chip in each line card in the forwarding device are optically interconnected through the optical fiber.
  • the existing optical interconnection path can also be changed.
  • changing the path of the optical network interface chip in the line card and the optical network of the switching network in the switching network board can be connected to the online card 1.
  • the optical fiber on the switching network interface chip is connected to the switching network interface chip in the other line card 2, and the optical fiber connected to the switching network interface chip in the online card 1 can also be directly unplugged; or it will be connected in the switching network board 1.
  • the optical fiber on the switching network network is connected to the switching network network in the other switching network board 2.
  • the optical fiber connected to the switching network network in the switching network board 1 can also be directly unplugged.
  • the line card information of the line card needs to be registered in the changed switching network board 2.
  • the switching network board connected to the optical fiber also needs to delete the line card information of the line card stored locally.
  • the line card information of the line card 2 needs to be registered in the switching board of the fiber connection.
  • the new line card or the new switching network board can be deployed at any time and flexibly, or the existing optical interconnection path can be flexibly changed.
  • the optical port mapping relationship is not required in the scenario where the optical fiber cable is directly connected to the switch.
  • Mechanism B using optical cross-devices and fiber optic cable and switching stencils
  • the optical interconnection between the line card and the switching network board is specifically embodied as: optically interconnecting the switching network interface chip in the line card with the optical cross device through the optical fiber, and The optical cross device is optically interconnected with the switching network mesh in at least one of the switching network boards, and then, in the optical cross device, optical port mapping between the line card and at least one of the switching network boards is configured relationship.
  • the switching network interface chip in the line card is optically interconnected with the optical cross device by using an optical fiber, and then the line card is configured in the optical cross device to at least one of the switching networks.
  • the optical port mapping relationship between the line card and the switching network board is changed by changing the optical port mapping relationship of the line card to each switching network board in the forwarding device.
  • the path is even more. It can be seen that the optical interconnecting device can be used to change the optical interconnection of the line card to the switching network board without changing the existing optical fiber connection. It is highly efficient, and it does not need to go to the position where the line card or the switching network board is located to insert and remove the optical fiber, and also save manpower.
  • the architecture of the present invention can be expanded at any time after the architecture of the forwarding device is deployed.
  • the deployment location and the number of boards (line cards or switching network boards) are not limited.
  • the present invention can break through the chassis and the area. Restricted, the throughput can be increased without changing the original architecture, and the deployment is flexible. To a certain extent, it can be avoided that the integration of the chassis or the cabinet is low, the heat dissipation is poor, and the power supply demand is large. And a large area of land and other issues.
  • the forwarding device further includes a controller
  • the optical cross-device includes a control interface and at least two data interfaces
  • the controller is communicatively coupled to the control interface of the optical cross-device and the first data interface.
  • the controller may be a device other than a line card, a switching network board, and an optical cross device, or may be a functional unit in the switching network board.
  • the controller is configured to configure each optical port mapping relationship in the forwarding device and manage the execution logic of the line card, the switching network board, and the optical cross device through the control interface.
  • the method further includes at least one of the following:
  • the optical cross device may pass the first data interface mapped to the second data interface in the optical cross device. Transmitting the first registration message sent by the line card to the controller, where the first registration message is used to request registration of line card information of the line card and configuring a first optical port mapping relationship.
  • the optical cross-device may pass the first mapping with the third data interface.
  • Data interface, the first switching network The second registration message sent by the board is forwarded to the controller, and the second registration message is used to request to register the network board information of the first switching network board and configure the second optical port mapping relationship.
  • the controller configures the line card according to the line card type and the line card identifier of the line card.
  • the first optical port mapping relationship is then sent to the optical cross-device through the control interface connected to the optical interface, so that the optical cross-device can locally configure the optical interface after receiving the first optical mapping relationship.
  • the first optical port mapping relationship is correspondingly updated with the local optical port mapping relationship, thereby realizing real-time control of the optical cross-device and management of the optical interconnection path.
  • the fourth data port can complete the entire registration process, and the controller also needs to map the idle fourth data interface in the optical cross device to the first data interface, so as to access the fourth line in the new line card.
  • the data interface is configured to register the line card information with the controller and configure the optical port mapping relationship, or map the idle fourth data interface in the optical cross device to the first data interface.
  • the transmission delay of the same line card to different switching network boards may be different due to the transmission delay of the optical fiber itself.
  • the degree of out-of-order is more serious.
  • the problem of delay will eventually increase the reordering cache, resulting in a heavier load on the forwarding device.
  • the delay mechanism can be defined in advance so that the sender can delay the data to be transmitted on the path according to the transmission delay of the path, thereby shortening the reach between the destination and the other path. The delay difference can reduce the degree of out-of-order and thus reduce the reordering cache.
  • the line card may further calculate a path delay of the line card to the destination line card, and then the data packet according to the path delay. Send to the destination line card.
  • the calculating a path delay of the line card to the destination line card includes one of the following items:
  • the line card in the forwarding device sends a measurement packet to the destination line card through a specified path, and then receives a measurement packet returned by the destination line card from the specified path, where the measurement packet carries the line card
  • the current timestamp of the system when the measurement message is sent; and the time delay of the specified path is calculated according to the current time of the system and the timestamp, where the specified path refers to the line card to the destination exchange a path of the stencil and a path of the destination switching network board to the destination line card;
  • the path delay is calculated.
  • the line card can calculate the path delay of the primary switching network, and can also calculate the path delay of the multi-level switching network, the path delay of the primary switching network, and the path delay of the multi-level switching network. the same.
  • the new line card in the present invention can directly use the deployed optical interconnect path to implement the process of applying for board identification and registering boards.
  • Other control devices are used to transfer or process the request for the board identification and registration of the board. Therefore, the present invention can further improve the efficiency of applying for the board identification and the process of registering the board, and can realize that each board is newly added to the forwarding device when compared with the existing mechanism. They can communicate with each other.
  • the forwarding device includes a primary switching network board, and the board identifiers of the boards are all allocated by the primary switching network board or allocated by the controller. The following describes the details of deploying the above line card and the above first switching network board:
  • the line card can obtain the line card identifier of the line card through an optical interconnection path.
  • the line card can be optically interconnected.
  • the path sends a first request message to the primary switching network board, where the first request message is used to request to obtain a line card identifier of the line card.
  • the primary switching network board allocates a line card identifier to the line card according to the first request message, and returns the allocated line card identifier to the line card through an optical interconnection path.
  • the first switching network board may obtain the network of the first switching network board by using an optical interconnection path.
  • a board identifier specifically, the first switching network board sends a second request message to the primary switching network board by using an optical interconnection path, where the second request message is used to request to allocate the first switching network board
  • the primary switching network board allocates a network board identifier to the first switching network board, and returns the allocated network board identifier to the office through the optical interconnection path.
  • the first switching network board is configured to enable the first switching network board to locally record the network board identifier assigned to itself.
  • the mechanism for obtaining the board identifier by using the foregoing first request message or the second request message is applicable to directly connecting the line card and the switching network board with the optical fiber, and implementing the optical interconnection scenario through the optical cross device.
  • the board may be disconnected from the node inside the forwarding device because the board is damaged, the fiber is damaged, or the power supply of the board is disconnected.
  • the connection status of other boards connected to the optical interface is detected. If the connection status of the other boards is disconnected, all the information of the disconnected board recorded locally (including the registered order) is deleted. Board information, board identification, etc.). For example, when the line card detects that the switching network board that is optically interconnected is disconnected, all the information of the disconnected switching network board recorded locally is deleted, and the information of the disconnected switching network board is notified to the line card. All the switching network boards interconnected by the line cards. After receiving the notification, the switching network boards determine whether the disconnected switching network board is the main switching network board. If yes, reselect an exchange in the normal switching network board. The stencil acts as a new primary switching stencil.
  • the switching network board detects that the line card whose optical interconnection is disconnected, all the information of the disconnected line card recorded locally is deleted, and if the switching network board is the main switching network board, then the release is released. After the board ID is assigned to the board, the information about the disconnected line card needs to be notified to all the line cards that are optically interconnected with the main switching network board, and also includes the multi-level switching network. Connect all line cards or switch boards.
  • the local device may be released. Recording the line card identifier assigned to the new line card to assign the line card identifier to the subsequent new line card for reuse.
  • the line card After the line card receives the line card identifier allocated by the main switch network board, the line card sends the line card information of the line card and the first registration message of the line card identifier of the line card. And a working switching network board that is optically interconnected with the line card, wherein the first registration message may further carry a timestamp of the current system when the new line card sends the first registration message.
  • the working switching network board After receiving the first registration message, the working switching network board records the line card information of the line card and the line card identifier of the line card according to the first registration message, and adds the first registration message.
  • the stencil of the working exchange network board Identifying, then forwarding the first registration message that adds the stencil identification of the working switching stencil to a line card optically interconnected with the working switching stencil.
  • the generated first registration confirmation response may also be returned to the line card through the optical interconnection path.
  • the first registration confirmation response carries a timestamp of the current system when the line card sends the first registration message, and after receiving the first registration response sent by the working switching network board, the line card may calculate according to the timestamp. The delay of the transmission path.
  • the first switching network board After the first switching network board receives the network board identifier allocated by the primary switching network board, the first switching network board sends a second registration message to the first switching network board for optical interconnection.
  • the working line card, the second registration message carries the network board information of the first switching network board and the network board identifier of the first switching network board, and may also be sent when the first switching network board is in the multi-level switching network.
  • the switching network board of the first switching network board optically interconnected.
  • the working line card After the working line card records the stencil information of the first switching network board, forwarding the second registration message to a switching network board optically interconnected with the working line card;
  • the generated second registration confirmation response may also pass the optical mutual
  • the connection path is returned to the first switching network board, and the second registration response may carry the network board information of each switching network board in the optical interconnection path where the first switching network board is located.
  • the switching network board can also change the working status of the line card in real time. For example, when the first switching network board in the forwarding device receives the notification message of the working type, the first switching in the forwarding device The stencil may update the working status of the locally recorded line card according to the notification message, and may forward the notification message to the line card optically interconnected with the first switching network board to participate in forwarding the first message of the notification message.
  • the switching network board may include a primary switching network board and/or a secondary switching network board. If the first switching network board is the working switching network board described in the foregoing content, since the working switching network board can include the optical interconnection path where the new line card is located, directly or indirectly interconnect all the optical lines of the new line card.
  • the switching network board, the optical interconnection path where the new line card is located may be a primary switching network, or a multi-level switching network, and the notification message is sent to one of the switching network boards (for example, the first switching When the stencil is forwarded to the line card with which it is optically interconnected, the switching stencil may also forward the notification message to the switching stencil to which it is optically interconnected.
  • a second aspect of the present invention provides a line card having a function of realizing a method corresponding to the line card registration provided by the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the line card includes a processor and a switching network interface chip, and the switching network interface chip and the switching network mesh in the at least one switching network board are optically interconnected by optical fibers;
  • the switching network interface chip is configured to acquire line card information of the line card, and send the line card information to the at least one switching network board through an optical interconnection path, so that the at least one switching network board is configured according to the The line card information registers the line card.
  • the switch network interface chip is further configured to: obtain the line card identifier of the line card by using an optical interconnection path before acquiring the line card information of the line card. If the at least one switching network board includes a primary switching network board, the switching network interface chip is specifically configured to: first send a first request message to the primary switching network board by using an optical interconnection path, where the first request is sent The message is used to request to obtain a line card identifier of the line card;
  • the optical interconnection path And receiving, by the optical interconnection path, the first request response returned by the primary switching network board, where the first request response carries a line card identifier that is allocated by the primary switching network board to the line card according to the first request message.
  • the switching network interface chip is specifically configured to: after receiving the line card identifier allocated by the main switching network board, send the first registration message to the optical interconnect with the line card a working switching network board, the first registration message carrying line card information of the line card and a line card identifier of the line card, so that the working switching network board records the line according to the first registration message
  • the switching network interface chip may further receive a first registration confirmation response sent by the working switching network board, where the first The registration confirmation response is generated by a line card optically interconnected with the working switching network board, and the first registration confirmation response carries line card information of each line card in the optical interconnection path in which the line card is located.
  • the first registration message further carries a timestamp of the current system when the line card sends the first registration message, and the first registration confirmation response carries the timestamp.
  • the line card can also register the first switching network board, specifically:
  • the switching network interface chip receives a second registration message sent by the first switching network board that is optically interconnected with the line card, where the second registration message carries the network board information of the first switching network board and the The stencil identification of a switching network board;
  • the processor records the network board information of the first switching network board and the network board identifier of the first switching network board according to the second registration message.
  • the switching network interface chip may further forward the second registration message to the line And a switching network board interconnected by the optical card to record the network board information of the first switching network board and the network board identifier of the first switching network board.
  • the switching network interface chip may further receive the first registration sent by the working switching network board after the line card forwards the second registration message to the switching network board optically interconnected with the line card.
  • the first registration response is generated by a line card optically interconnected with the working switching network board, and the second registration response carries line card information of each line card in the optical interconnection path where the line card is located.
  • the processor may further calculate a path delay of the line card to the destination line card, and send the data packet to the path according to the path delay.
  • the calculation path delay mainly passes one of the following:
  • the switching network interface chip sends a measurement packet to the destination line card through a specified path, and receives a measurement packet returned by the destination line card from the specified path, where the measurement packet carries the line card sending station
  • the current timestamp of the system when the message is measured the processor then calculates the delay of the specified path according to the current time of the system and the timestamp, where the specified path refers to the line card to the destination exchange a path of the stencil and a path of the destination switching network board to the destination line card;
  • the processor calculates the path according to the speed at which the optical signal propagates in the optical fiber, the length of the optical fiber of the line card to the destination switching network board, and the length of the optical fiber of the destination switching network board to the destination line card. Delay.
  • the processor may also release the locally recorded stencil identification assigned to the disconnected switching network board.
  • an optical cross-device can be introduced in the forwarding device, and when the switching network chip is optically interconnected with the optical cross-device, the switching network interface chip sends a first registration message to the optical cross a device, wherein the optical cross-device forwards the first registration message to a controller, where the first registration message is used to request registration of the first
  • the first card mapping relationship is the optical port mapping relationship between the first line card and the at least one of the switching network boards.
  • the second aspect of the present invention further provides a first switching network board having a function of implementing a method corresponding to the switching network board registration provided by the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the first switching network board includes a processor and a switching network network, and the switching network network is optically interconnected with the switching network chip of the at least one line card;
  • the switching network mesh is configured to receive line card information of the line card sent by the line card through an optical interconnection path;
  • the processor is configured to register the line card according to the line card information.
  • the first registration message sent by the line card optically interconnected with the first switching network board is received by the switching network, and the first registration message carries the line card information of the line card and the line Line card identification of the card;
  • the line card information of the line card and the line card identifier of the line card are then recorded by the processor according to the first registration message.
  • the processor may also be in the first registration. Adding the stencil identifier of the first switching stencil to the message, and then forwarding, by the switching network, the first registration message that adds the stencil identifier of the first switching stencil to the first exchange
  • the line card of the stencil optical interconnection enables the line card optically interconnected with the first switching network board to record the line card information.
  • the switching network network Also used for:
  • the first registration confirmation response After receiving the first registration confirmation response, forwarding the first registration confirmation response to the line card, where the first registration confirmation response is generated by a line card optically interconnected with the first switching network board,
  • the first registration confirmation response carries line card information of each line card in the optical interconnection path where the line card is located.
  • the switching network network is further configured to obtain the network information of the first switching network board, and Transmitting, by the optical interconnection path, the network board information of the first switching network board to the at least one line card, so that the at least one line card registers the first switching network board according to the network board information.
  • the network of the switching network may be configured to obtain the network board identifier of the first switching network board by using an optical interconnection path.
  • the switching network network is specifically configured to:
  • the optical interconnection path And receiving, by the optical interconnection path, the second request response, where the second request response carries the network board identifier allocated by the primary switching network board to the first switching network board according to the second request message.
  • the switching network mesh is specifically configured to: send the second registration message to a working line card optically interconnected with the first switching network board, where the second registration message carries the a network board information of the switching network board and a network board identifier of the first switching network board, so that the working line card records the network board information of the first switching network board and the network of the first switching network board A board identifier, the work line card being a line card in the at least one line card.
  • the switching network mesh may also be used to:
  • the second registration confirmation response is generated by a switching network board optically interconnected with the working line card, and the second registration response carries the first switching network The stencil information of each switching network board in the optical interconnection path where the board is located.
  • the processor may also release the locally recorded line card identification assigned to the disconnected line card when it is detected that the line card optically interconnected with the first switching network board is disconnected.
  • the processor updates the working state of the locally recorded line card according to the notification message, and passes the exchange.
  • the network mesh forwards the notification message to a line card optically interconnected with the first switching network board.
  • the switching network mesh may be further configured to: send a second registration message to the light Crossing the device, so that the optical cross-device forwards the second registration message to a controller communicatively coupled to the optical cross-device, and the second registration message is used to request registration of the network of the first switching network board
  • the second optical interface mapping relationship is the optical interface mapping relationship between the at least one line card and the first switching network board.
  • the third aspect further provides a forwarding device, where the forwarding device includes at least one line card and at least one switching network board, the line card includes a switching network interface chip, and the switching network board includes a switching network network;
  • the switching network interface chip in the line card and the switching network layer in the at least one switching network board are optically interconnected by optical fibers, the switching network board is configured to forward data sent by the line card, and the destination end Data for the line card is forwarded to the line card.
  • the at least one line card includes at least one of a router line card, a switch line card, an optical transport network OTN line card, a packet transport network PTN line card, and a programmable white box line card.
  • the line card further includes at least one chip, the switching network interface chip being in series with the at least one chip by electrical interconnection and/or optical interconnection.
  • the switching network interface chip in the line card includes at least one first silicon optical chip, and the switching network mesh in the switching network board includes at least one second silicon optical chip;
  • the first silicon optical chip and the second silicon optical chip are optically interconnected by a fiber.
  • the switching network interface chip in the line card and the optical cross device are optically interconnected by optical fibers, and the optical cross device is exchanged with at least one of the switching network boards.
  • the mesh sheets are interconnected by optical fibers.
  • the line cards and the switching network boards can be mutually exchanged without using other auxiliary devices. Rapid registration of each other, under the premise of breaking through the limitations of the chassis or cabinet, deployment location, and correspondingly improve deployment efficiency.
  • FIG. 1 is a schematic diagram of two architectures of a forwarding device in this embodiment
  • FIG. 2 is a schematic flowchart of a method for deploying a forwarding device architecture in the embodiment
  • 2-1 is a schematic structural diagram of optical interconnection between a line card and a switching network board in the embodiment
  • 2-3 is a schematic diagram of another connection manner between chips in the line card in the embodiment.
  • 3-1 is another schematic structural diagram of a forwarding device in this embodiment.
  • 3-3 is a schematic structural diagram of registering an ACK message in this embodiment
  • 3-4 is a schematic structural diagram of a registration message in this embodiment.
  • 3-5 is a schematic structural diagram of an ID grant message in this embodiment.
  • 3-6 is a schematic structural diagram of a notification message in this embodiment
  • 3-7 is another schematic structural diagram of a forwarding device in this embodiment.
  • 3-8 is a schematic diagram of a recording mode of the stencil information in the embodiment.
  • 3-9 is another schematic structural diagram of a notification message in this embodiment.
  • FIG. 4 is another schematic structural diagram of a forwarding device in this embodiment.
  • FIG. 5 is a schematic diagram of mapping between interfaces in a forwarding device according to the embodiment.
  • 5-1 is a schematic diagram of a transmission path of a line card sending end to a line card receiving end of the forwarding device in the embodiment
  • FIG. 5-2 is a schematic diagram of delay processing of a data packet in a forwarding device according to the embodiment.
  • FIG. 6 is a schematic diagram of mapping between interfaces in a multi-level switching network according to the embodiment.
  • FIG. 7 is a schematic diagram of a registration process in a multi-stage switching network according to the embodiment.
  • FIG. 8 is a schematic structural diagram of a line card in the embodiment.
  • FIG. 9 is a schematic structural diagram of a first switching network board in the embodiment.
  • FIG. 10 is a schematic structural diagram of a forwarding device in this embodiment.
  • FIG. 10-1 is another schematic structural diagram of a forwarding device in the embodiment.
  • the terms “comprises” and “comprises” and “the” and “the” are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or modules is not necessarily limited to Those steps or modules, but may include other steps or modules not explicitly listed or inherent to such processes, methods, products or devices, the division of the modules presented herein is merely a logical division. There may be additional divisions in the implementation of the actual application, for example, multiple modules may be combined or integrated into another system, or some features may be ignored, or not executed, and the displayed or discussed mutual coupling.
  • the direct coupling or the communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited herein.
  • the modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs.
  • the modules are used to achieve the objectives of the embodiments of the present invention.
  • the embodiment of the invention provides an architecture deployment method and a forwarding device of a forwarding device, which are used in the technical field of communications. The details are described below.
  • the present invention can be applied to a primary switching network, a multi-level switching network, where the multi-level switching network refers to a topology structure after the optical interconnection path deployed by the present invention, such as the architecture shown in (a) of FIG. 1, or The structure shown in (b) of FIG. 1 , the line card 1 can be directly connected to the at least one switching network board through the optical fiber, and the switching network board optically interconnected with the line card 1 can be directly connected to the at least one line card through the optical fiber. It can also be directly connected to the at least one switching network board through the optical fiber.
  • optical port mapping relationship in this document refers to the logical mapping relationship between physical interfaces connected through optical fibers.
  • the optical network interface chip in the line card is connected to the switching network network in the switching network board by using the optical fiber, and then the line card information of the line card and the network board information of the switching network board are respectively registered.
  • the switching network interface chip in the new line card is also connected to the switching network layer in the switching network board by using the optical fiber, or when the new switching network board is deployed, the optical line is used in the line card.
  • the switching network interface chip is connected to the switching network network in the new switching network board.
  • the new line card and the new switching network board can also be deployed at the same time. The number and location of the deployment are not limited in the present invention.
  • the existing optical interconnection path can also be changed.
  • the board registration method in the present invention is mainly divided into a line card registration and a switching network board registration.
  • the board registration method in the present invention is mainly used for a forwarding device, and the forwarding device mainly includes at least one line card and at least one switching network board.
  • the switching network board is configured to forward data sent by the line card, and forward data destined for the line card to the line card.
  • the line card includes at least a switching network interface chip, and the switching network interface chip in the line card may include a switching network interface chip (English name: Fabric Interface Chip, English abbreviation: FIC) or a switching network network (English full name) : Switch Fabric Chip, English abbreviation: SW), the switching network board includes SW.
  • the embodiment of the present invention includes:
  • the board obtains its own board ID and uses the board ID to obtain the board information of the board.
  • the switching network interface chip in the line card can be optically interconnected with the switching network layer in at least one of the switching network boards. After the connection is successful, the line card can obtain its own line first. Card information. If the first switching network board is newly deployed, the switching network network in the first switching network board can be optically interconnected with the switching network chip of the at least one line card. After the connection is successful, the first switching network board can obtain the switching first. The stencil information of the stencil.
  • the FIC in the line card may include at least one first silicon optical chip and one FIC die, wherein each of the first silicon optical chips may be used to receive and transmit signals.
  • the SW in the switching network board includes at least one second silicon optical chip and one SW bare die, wherein each of the second silicon optical chips is operable to receive and transmit optical signals.
  • the first silicon optical chip and the second silicon optical chip are optically interconnected by a fiber.
  • the FIC in the line card can have a structure as shown in (a) of FIG. 2-1. As can be seen from (a) of FIG. 2-1, the FIC in the line card includes four silicon optical chips and one FIC die. The four silicon optical chips and one FIC die are arranged on the same substrate, and after sealing, they form an FIC, and the silicon optical chip (1-4) is used for receiving and transmitting optical signals or electrical signals.
  • the SW in the switching network board may have a structure as shown in (b) of FIG. 2-1.
  • the SW in the switching network board includes four silicon optical chips and one SW. Die, the four silicon optical chips and one SW die are deployed on the same substrate, and after sealing, they form a SW.
  • the four silicon optical chips (5-8) are used to receive the optical signals emitted by the FIC, and will come from The optical signal of the FIC is forwarded to the next hop, and the received optical signal can also be sent to the FIC.
  • the board After the board obtains its own board information, it initiates the process of registering the board.
  • the line card If the line card is deployed, it needs to be registered in at least one switching network board that is optically interconnected with the line card under the current forwarding device, and the line card can send the line to the at least one switching network board through the optical interconnection path.
  • Card information such that the at least one of the switching network boards registers the line card.
  • the network card information of the switching network board may also be registered in the line card. If the line card receives the second registration message of the network board information of the first switching network board sent by the first switching network board, according to the The second registration message records the network board information of the first switching network board and the network board identifier of the first switching network board to complete registration of the first switching network board.
  • the line card information includes a line card type, an operating status, and a capability parameter of the line card.
  • the line card type refers to the function type of the line card.
  • the line card can be divided into a router line card, a switch line card, and an optical transmission network (English full name: Optical Transport Network, English abbreviation: OTN) line card.
  • packet transport network English full name: Packet Transport Network, English abbreviation: PTN
  • one forwarding device may include at least one of a router line card, a switch line card, an OTN line card, a PTN line card, and a programmable white box line card.
  • the working status refers to the current state of the line card, and can be Ready, Reboot, Error, Down, Dump, and the like.
  • the capability parameter refers to the attributes and capabilities of the line card, such as the number of ports and port rate of the switch line card, the Layer 3 forwarding capability of the router line card, and the bitmap of the forwarding characteristics supported by the router line card (forwarding characteristics)
  • Each bit in the bitmap represents a feature, the bit is 1 for the router line card to support this feature), and the southbound interface protocol supported by the programmable white box line card, and the available entry space for the white box line card. , command space and other capabilities (such as the number of line card ports, rate, etc.).
  • the line card may further include at least one chip (the chip may be a media access control interface chip, a network processor or a process management chip), and the switch network interface chip and each chip are electrically interconnected and/or Or optical interconnects are connected in series.
  • the connection mode may refer to the manner in which the switching network interface chip is optically interconnected through the optical fiber and the switching network. The similarities are not described herein.
  • the connection mode of each chip in the specific online card can be determined according to actual product design or business requirements and the like, and the chips of each function in the line card can be combined as needed, and the specific connection mode, specific chip type and quantity are not used in the present invention. limited. For specific connection methods, refer to the inter-chip optical interconnection shown in Figure 2-2, and the inter-chip optical interconnection and electrical interconnection shown in Figure 2-3.
  • the first switching network board If the first switching network board is deployed, it needs to be registered in at least one line card that is optically interconnected with the first switching network board under the current forwarding device, and the first switching network board can reach the at least one through the optical interconnection path.
  • the line card transmits its own stencil information, so that the at least one line card registers the first switching stencil.
  • the first switching network board can also register the line card. If the first switching network board receives the line card information sent by other line cards, the line card is registered.
  • the present invention does not need to limit the line card or the switching network board to the chassis or the cabinet, and can avoid the integration of the chassis frame or the cabinet, the heat dissipation is poor, and the power supply demand is large.
  • the problem is that the line card and the switching network board in the present invention are more flexible and are not subject to geographical restrictions. Moreover, it is not necessary to separately configure a local switching network board, and optically interconnect the switching network interface chip in the line card with the switching network network in the switching network board to realize long-distance light of the line card and the switching network board. Interconnection, through the structure deployment mode of the present invention, the throughput of the forwarding device can be effectively improved.
  • the line card in the present invention can directly use the deployed optical interconnect path to implement the process of applying for the board identification and registering the board without using other lines. Controls the device to transfer or process the request for the board identification and registration of the board. Therefore, the present invention can further improve the efficiency of applying for the board identification and the process of registering the board, and can realize that each board is newly added to the forwarding device when compared with the existing mechanism. They can communicate with each other.
  • the forwarding device includes a primary switching network board, and the board identifiers of the boards are all allocated by the primary switching network board or allocated by the controller. The following describes the details of deploying the above line card and the first switching network board:
  • the line card can obtain the line card identifier of the line card through the optical interconnection path. Specifically, the line card can pass the optical interconnection path. Sending a first request message to the primary switching network board, where the second request message is used to request to allocate a line card identifier for the line card. After receiving the first request message, the primary switching network board allocates a line card identifier to the line card according to the first request message, and returns the allocated line card identifier to the optical interconnect path. The line card enables the line card to record the board identifier assigned to itself in the local record.
  • the first switching network board may obtain the network of the first switching network board by using an optical interconnection path.
  • a board identifier specifically, the first switching network board sends a second request message to the primary switching network board by using an optical interconnection path, where the second request message is used to request to allocate the first switching network board
  • the stencil identifier and then, after receiving the second request message, the primary switching network board allocates a stencil identifier to the first switching network board, and returns the allocated stencil identifier to the optical interconnect path.
  • the first switching network board enables the first switching network board to locally record the stencil identifier assigned to itself.
  • the mechanism for obtaining the board identifier by using the foregoing first request message or the second request message is applicable to directly connecting the line card and the switching network board with optical fibers, and implementing the optical interconnection by the optical cross device. .
  • the board may be disconnected from the node inside the forwarding device because the board is damaged, the fiber is damaged, or the power supply of the board is disconnected.
  • the connection status of other boards connected to the optical interface is detected. If the connection status of the other boards is disconnected, all the information of the disconnected board recorded locally (including the registered order) is deleted. Board information, board identification, etc.). For example, when the line card detects that the switching network board that is optically interconnected is disconnected, all the information of the disconnected switching network board recorded locally is deleted, and the information of the disconnected switching network board is notified to the line card. All the switching network boards interconnected by the line cards. After receiving the notification, the switching network boards determine whether the disconnected switching network board is the main switching network board. If yes, reselect an exchange in the normal switching network board. The stencil acts as a new primary switching stencil.
  • the switching network board detects that the line card whose optical interconnection is disconnected, all the information of the disconnected line card recorded locally is deleted, and if the switching network board is the main switching network board, then the release is released. After the board ID is assigned to the board, the information about the disconnected line card needs to be notified to all the line cards that are optically interconnected with the main switching network board, and also includes the multi-level switching network. Connect all line cards or switch boards.
  • the switching network board optically interconnected with the line card detects that the line card is disconnected, the local record allocated to the line card may be released.
  • Line card identification to assign the line card ID to subsequent new line cards for reuse.
  • the line card optically interconnected with the first switching network board detects that the first switching network board is disconnected, the locally recorded network board identifier allocated to the first switching network board is released.
  • the line card After the line card receives the line card identifier allocated by the main switch network board, the line card sends the line card information carrying the line card and the first registration message of the line card identifier of the line card to the line card.
  • a working switching network board optically interconnected with the line card, wherein the first registration message may further carry a timestamp of the current system when the line card sends the first registration message.
  • the work switching network board After the work switching network board records the line card information of the line card and the line card identifier of the line card according to the first registration message, the network board of the working switching network board is added to the first registration message. Identifying, then forwarding the first registration message that adds the stencil identification of the working switching stencil to a line card optically interconnected with the working switching stencil.
  • the generated first registration confirmation response optical interconnection path may also be returned to the line card.
  • the first registration confirmation response may carry line card information of each line card in the optical interconnection path where the line card is located, and a timestamp of the current system when the line card sends the first registration message, and the timestamp is available. Calculate the delay of the transmission path on the line card.
  • the first switching network board After the first switching network board receives the network board identifier allocated by the primary switching network board, the first switching network board carries the network board information of the first switching network board and the first switching network.
  • the second registration message of the stencil identifier of the board is sent to the working line card optically interconnected with the first switching network board, and if the first switching network board is in the multi-level switching network, A switching network board that optically interconnects the switching network boards.
  • the working line card After the working line card records the network board information of the first switching network board and the network board identifier of the first switching network board, the second registration message is forwarded to the switching network optically interconnected with the working line card. board.
  • the switching network board After receiving the second registration message, the switching network board that is optically interconnected with the working line card records the network board information of the first switching network board and the network board identifier of the first switching network board according to the second registration message.
  • the generated second registration confirmation response may be returned to the first switching network board through an optical interconnection path, where the second registration response may carry each exchange in the optical interconnection path where the first switching network board is located.
  • the stencil information of the stencil is
  • the switching network board can also update the working status of the locally recorded line card in real time. For example, when the first switching network board receives the notification message whose message type is working status, the switching network board according to the notification message Updating the working status of the locally recorded line card, the notification message may be forwarded to the line card optically interconnected with the first switching network board, and the first switching network board participating in the forwarding notification message may include the main switching network board And / or from the switching network board. If the first switching network board is the working switching network board optically interconnected with the line card described in the foregoing content, the working switching network board may include the optical interconnection path where the line card is located, directly or indirectly with the line card.
  • the optical interconnection path of the line card may be a primary switching network or a multi-level switching network, and the notification message is sent to one of the switching network boards ( For example, when the first switching network board is forwarded, the switching network board forwards the notification message to the switching network board with which it is optically interconnected when forwarding the notification message to the line card with which it is optically interconnected.
  • the present invention mainly uses a switching network interface chip in which an optical fiber is directly connected to a line card, and directly connects the optical fiber to the switching network mesh in the switching network board, an optical crossover device may be additionally added between the online card and the switching network board. It is also possible to connect the line card and the switching network board directly with optical fibers.
  • the architecture deployment mechanism of the present invention it is possible to break through the limitation of the chassis or the cabinet or the line card board, and quickly complete the newly deployed line card or the switching network board.
  • the following describes the mechanism A and mechanism B provided by the present invention for expanding and changing the optical interconnection path.
  • Mechanism A The switching network interface chip in the line card and the switching network network in the switching network board are connected through the optical fiber.
  • the switching network interface chip in the line card can be optically interconnected with the switching network layer in at least one of the switching network boards through the optical fiber, and then in the switching network with the line card.
  • the line card information of the line card is registered in at least one of the switching network boards of the interface chip optical interconnection.
  • other switching network boards can also be registered.
  • the mechanism for registering the line card information of an accessed line card is mainly divided into a pre-agreed line card identifier (English name: Identity, English abbreviation: ID) and the line card ID is dynamically allocated by the main switching network board:
  • the architecture shown in FIG. 3-1 includes a line card 3, a line card 4, a switching network board 1, a switching network board 2, and a switching network board 3, wherein the line card 3 represents a line card with a line card ID of 3, and the like.
  • the line card 4 is optically interconnected with the switching network board 1 and the switching network board 2.
  • the switching network board 1 with the smallest ID can be defined as the primary switching network board, and the switching network board 2 and the switching network board 3 are the secondary switching network boards. It should be noted that, regarding the ID of the line card and the ID of the switching network board, a type field may be added to distinguish the line card and the switching network board, and the line card with the ID 2 and the ID 2 are avoided.
  • the switching network board is confusing, and the ID of the line card and the ID of the switching network board can be numbered according to a predefined rule with a large number of newly deployed line cards or switching network boards.
  • the specific method is not limited by the present invention.
  • the ID number of the card and the ID number of the switching stencil have no upper limit and can be numbered indefinitely.
  • the line card 4 can continue the subsequent line card registration process.
  • the line card 4 sends a registration message to all switching network boards (including the switching network board 1 and the switching network board 2) that are optically interconnected.
  • the registration message includes "message type", "line card type”. ", line card ID”, “capability parameter”, "timestamp” field; the message type is "registration”, the line card type is PTN line card, the line card ID is 4, the capability parameter is the attribute of the PTN line card and The description of the capability, the timestamp carries the current system time when the PTN line card sends the registration message.
  • Each switching network board forwards the received registration message to other line cards that are optically interconnected with itself when receiving the registration message whose message type is "registered" (such as line card 3 in Figure 3-1). ), and record the contents of the registration message, line card type, line card ID, and capability parameters locally.
  • the line card 3 After receiving the above registration message, the line card 3 will generate a registration confirmation (English full name: Acknowledge, English abbreviation: ACK) message, and return the registration ACK message to the PTN line card with ID 4 according to the original path, and register.
  • the content of the message, line card type, line card ID, attribute capability, etc. are recorded locally.
  • the format of the registration ACK message is shown in Figure 3-3. It can be seen that each line card adds its own line card ID, its own line card type, and its own in the registration ACK message when generating the registration ACK message.
  • the capability parameter also adds the line card ID of the line card 4 and the timestamp carried in the registration message to the registration ACK message, and then each line card generates a corresponding registration ACK message, and then returns according to the path of receiving the registration message.
  • the line card 4 is given, and details are not described herein.
  • the message category is the registration ACK message.
  • the existing line card type is the line card type of the line card board 3.
  • the existing line card ID is the ID of the line card 3, and the new line card ID is the ID of the line card 4, and the time.
  • the stamp is the timestamp carried in the registration message, and the existing line card attribute capability is the capability parameter of the line card board 3.
  • the switching network board receives the registration ACK message sent by the line card 3, and sends the registration ACK message to the line card 4 according to the new line card ID field in the registration ACK message.
  • the line card 4 After receiving the registration ACK message, the line card 4 records the existing line card type in the registered ACK message, and the existing line card ID and existing line card attribute capabilities are recorded locally, and then the system current time is subtracted from the registration ACK message. The time stamp of the round-trip transmission delay from the line card 4 to the line card 3 is saved, and the round-trip transmission delay is saved, so that when the data packet is subsequently sent to the switching network board, the delay is required. Time data packets are sent delayed.
  • the main switch network board dynamic allocation line card identification
  • a request message for requesting an ID is sent to the switching network board 1 and the switching network board 2, and the request message is sent.
  • the structure of the request message is as shown in Figure 3-4.
  • the switching network board After receiving the request message of the application ID from the switching network board (for example, the switching network board 2 in FIG. 3-1), there is no operation, and the request message can be directly discarded.
  • the primary switching network board When the primary switching network board receives the request message of the application ID, it assigns an ID 4 to the new line card, and the ID4 does not overlap with the network board ID of the other switching network board and the line card ID of the line card. Then the main switch stencil will carry the ID of the new line card ID. The information is returned to the new line card.
  • the structure of the ID grant message is shown in Figure 3-5.
  • the line card ID is the line card ID of the new line card granted to the main switch network board.
  • the new line card After receiving the ID grant message, the new line card records its own line card ID. Record the stencil information of the main switch stencil.
  • the subsequent process of registering the new line card is the same as the registration process when the line card ID is agreed in advance in the foregoing content, and details are not described herein again.
  • the line card ID may also be allocated by a software custom network (English name: Software Defined Network, SDN) controller. This application preferentially selects the line card ID of the master switch.
  • SDN Software Defined Network
  • each switching network board optically interconnected with the line card monitors the line card interconnected with the optical network in real time. If the switching network board 1 detects that the line card 1 is disconnected according to the connection condition of the actual interface, the switching network board 1 deletes the line card information of the locally stored line card 1. If the switching network board 1 is the main switching network board, the switching network board 1 also needs to notify the other line cards optically interconnected with the switching network board 1 that the line card 1 is disconnected, and in the notification message. Identify the line card ID of line card 1. The structure of the notification message is shown in Figure 3-6.
  • the switching network network in the first switching network board and the switching network interface chip in each line card in the forwarding device are optically interconnected through the optical fiber, and are in the first Registered in the line card of the switched network board optical interconnect. After the first switching network board is deployed successfully, other line cards can also be registered.
  • the new line card or the new switching network board can be deployed at any time and flexibly, or the existing optical interconnection path can be flexibly changed without configuring the light. Port mapping relationship. Therefore, compared with the existing mechanism, the present invention can break through the limitations of the chassis and the geographical area, and can improve the throughput of the forwarding device without changing the original architecture.
  • the process of changing the deployment of the architecture to change the optical interconnection path of the line card to the switching network board is specifically: changing the switching network interface chip in the line card and the switching network in the switching network board
  • the path of the connection For example, the line card 1 and the switching network board 1 are optically interconnected, and the line card 2 is optically interconnected with the switching network board 2 and the switching network board 3.
  • the optical fiber connection interface can be changed by hot plugging.
  • the line card 1 is optically interconnected with the switching network board 1 and the switching network board 2, and now the line card 1 and the switching network board 3 are optically interconnected, then the switching network is required.
  • the line card information of the line card 1 is also registered in the board 3, and does not affect the path transmission of the line card 1 to the switching network board 1 and the switching network board 2; or the optical interconnection path with the switching network board 2 is cut off, nor is the same. It will affect the path transmission of line card 1 to switching network board 1.
  • the first switching network board After the first switching network board is newly accessed, the first switching network board needs to be registered.
  • the registration process may pre-agreed the network board ID or may not be pre-agreed. If not agreed in advance, after the first switching network board is connected to the optical fiber, it is necessary to select a line card interconnected with the optical, and send a request message for the application ID to the selected line card, and the format of the request message is as shown in Figure 3- 2 is the same.
  • the line card After receiving the request message, the line card forwards the request message to the primary switching network board corresponding to the line card.
  • the primary switching network board After receiving the request message of the application ID, the primary switching network board allocates the network board ID to the first switching network board to generate one. The ID of the stencil ID carrying the first switching stencil is granted, and then the ID grant message is returned to the new switching stencil by the original optical interconnect path.
  • the first switching network board After receiving the ID grant message, the first switching network board records the stencil ID assigned to itself, and simultaneously sends the registration message of the switching network board to all the line cards interconnected with the optical network, and the line card records interconnected with the optical network Line card information of a switching network board Then, the registration message of the switching network board is forwarded to all other switching network boards.
  • the other switching network boards are also recorded locally after receiving the registration message of the switching network board.
  • the recording mode can be as shown in Figure 3-8.
  • each line card optically interconnected with the switching network board monitors the switching network board interconnected with the optical network in real time, and the line card can be based on the actual interface. Whether the connection condition monitoring is disconnected from the switching network board.
  • the switching network board that is optically interconnected with the line card may be disconnected due to factors such as network delay, weather, and artificially pulling out fiber or fiber damage.
  • the line card 1 detects that the switching network board 1 is disconnected according to the connection condition of the actual interface, the line card 1 deletes the network board information of the locally stored switching network board 1, and then disconnects the switching network board 1.
  • the connection is notified to all the switching network boards that are optically interconnected with the line card 1.
  • the stencil ID of the switching network board 1 is identified in the notification message, and the structure of the notification message is as shown in FIG. 3-9. If the switching network board 1 is the main switching network board, the line card 1 needs to reselect a switching network board with the largest or smallest ID as the primary switching network board according to the size of the network board ID.
  • the other switching network board determines whether the switching network board 1 is the main switching network board according to the network board ID of the disconnected switching network board 1 carried in the notification message. If yes, re-select a switching network board with the largest or smallest ID as the primary switching network board according to the size of the stencil ID.
  • Mechanism B The switching network interface chip in the optical cross-connect device and the optical fiber connection line card and the switching network mesh in the switching network board.
  • An optical cross-connect device may be introduced in the forwarding device.
  • the switching network interface chip in the line card may be optically interconnected with the optical cross-device through optical fibers, and then the optical The optical cross-connecting device is optically interconnected with the switching network of the at least one of the switching network boards, and finally, the optical port mapping relationship between the line card and the at least one of the switching network boards is configured in the optical cross-connecting device.
  • the mapping relationship between the port of the line card and the interface of the optical cross-connect device and the mapping between the interface of the optical cross-connect device and the port in the switching network board are not mentioned here.
  • the optical cross-device includes a control interface and at least two data interfaces, where the data interface includes multiple uplink interfaces and multiple downlink interfaces corresponding to the multiple uplink interfaces.
  • the forwarding device further includes a controller communicatively coupled to the first data interface and the control interface of the optical cross device.
  • the controller may be a device other than a line card, a switching network board, and an optical cross device, or may be a functional unit in the switching network board.
  • the controller is configured to configure each optical port mapping relationship in the forwarding device and the execution logic of the management line card, the switching network board, and the optical cross device.
  • the optical cross device may pass through a first data interface that is connected to the controller and is mapped to the second data interface. Transmitting the first request message sent by the line card to the controller, where the first request message is used to request registration of line card information of the new line card and configuring a first optical port mapping relationship, and then The control interface connected to the controller receives various control information, such as the first optical port mapping relationship, sent by the controller.
  • the optical cross-device may pass the first data interface mapped with the third data interface.
  • the second request message sent by the first switching network board is forwarded to the controller, and the second request message is used to request to register the network board information of the first switching network board and configure the second optical port mapping relationship.
  • the controller configures the corresponding line according to the line card type and the line card identifier of the line card.
  • the first optical port mapping relationship is then sent to the optical cross-connect device through the control interface to implement real-time control and optical interconnection path management of the optical cross-device.
  • the optical interworking device After the optical interworking device receives the first optical port mapping relationship sent by the controller through the control interface, the optical interworking device locally configures the optical port mapping relationship.
  • the process of registering the first switching network board is the same, and will not be described again.
  • the switching network interface chip in the line card when a new line card is deployed, can be optically interconnected with the optical cross device through optical fibers, and then in the optical cross device,
  • the first optical port mapping relationship between the line card and the at least one of the switching network boards is configured.
  • the first optical port mapping relationship may refer to the foregoing part, and details are not described herein.
  • the switching network interface chip in the line card is optically interconnected with the second data interface in the optical cross device. For example, as shown in FIG.
  • the FIC chip of the line card is connected to the dynamic optical cross device by using the optical fiber, and the SW chip of the switching network board is connected with the dynamic optical cross device by using the optical fiber, and then the optical cross device is configured, and the line card is realized by the optical cross device.
  • the optical interconnect of the FIC chip and the switching network board SW chip is
  • the line card sends a first request message to the optical cross-device through the first data interface, and after receiving the first request message, the optical cross-device passes the first data interface mapped with the second data interface. Transmitting the first request message to the controller to register the line card information of the line card in the controller, and then the controller configures the first according to the line card type of the line card and the line card identifier
  • the optical port mapping relationship is performed, and the first optical port mapping relationship is sent to the optical cross-connecting device by using a control interface connected thereto, and the optical cross-connecting device further configures the first optical port mapping relationship locally.
  • the forwarding device currently includes the line card 1 and the switching network board 1.
  • the optical port mapping relationship in the optical cross-device is mapped to port 5 on the port 1 and port 6 on port 2.
  • the optical port mapping relationship may further include: port 14 is mapped to port 3, current port 3 has no fiber access, port 14 is a data interface connected to the controller, and port 13 is a control port, and the control is performed. The port is connected to the controller.
  • the new line card 2 is connected to the port 3 of the optical cross-connect device through the optical fiber, and the new line card 2 sends a request message for applying for the line card ID from the port 3 to the optical cross-device, and then sends the message to the controller through port 14
  • the registration message is sent through the No. 3 port, and then sent to the controller through the No. 14 port, and the controller changes the line card type according to the registration message, and then changes the optical port in the optical cross device.
  • the configuration of the mapping relationship is as follows: Port 3 is mapped to port 7, and port 4 is mapped to port 8.
  • the port mapping is then sent to the optical cross-device through port 13. At the same time, you can also map port 14 to another idle port 9, so that when the subsequent switching network board accesses port 9, you can register the stencil through port 9 and port 14.
  • the new switching network board 2 is connected to the No. 9 port through the optical fiber, and then the switching network board 2 sends a message from the No. 9 port, and sends the message to the controller through the No. 14 port, and then the controller configures a new optical port mapping relationship, and then controls The new optical port mapping relationship is sent to the optical cross device through port 13. If there is still a free port on the optical cross device, you can also map the free port to port 14.
  • the initial optical port mapping relationship is as shown in Table 1: 5 6 7 8 9 10 11 12 1 ⁇ 2 ⁇ 3 4
  • the initial state of the forwarding device is: a line card and a switching network board.
  • the line card is connected to the port 1 and port 2 of the optical cross-connecting device through two optical fibers, and the four optical fibers of the switching network board are connected to
  • the configuration of the optical port is as follows: port 1 corresponds to port 5, and port 2 corresponds to port 6.
  • the new line card is connected to the port 3 and port 4 of the optical cross-connect device through two optical fibers.
  • the port corresponds to port 7 and the port 4 corresponds to port 8.
  • the optical cross-device updates the local optical port mapping relationship. After the optical port mapping relationship is updated, the latest information in the optical cross-device is updated.
  • the mapping of optical interfaces is as follows in Table 2:
  • the optical cross device When the first switching network board is deployed, the optical cross device can be optically interconnected with the switching network network of the first switching network board, and then each line card is configured in the optical cross device.
  • the optical port mapping relationship between the new switching network boards is defined by the optical cross device.
  • the architecture deployed by the mechanism B can be expanded at any time after the architecture of the forwarding device is deployed.
  • the deployment location and the number of boards (line cards or switching network boards) are not limited.
  • the invention can break through the limitation of the chassis and the area, and can increase the throughput without being changed, and the deployment is flexible. To a certain extent, the integration of the chassis or the cabinet can be avoided. Low, poor heat dissipation, large power supply requirements, and large footprint.
  • the line card and the switching network board are deployed.
  • the optical port mapping relationship shown in Table 2 is obtained.
  • the four optical fibers of the new switching network board are connected to ports 9-12 of the dynamic optical cross-connecting device.
  • the optical port mapping relationship configured in the optical cross-connecting device needs to be updated to: port 1 corresponds to port 5
  • the No. 2 port corresponds to the No. 9 port
  • the No. 3 port corresponds to the No. 6 port
  • the No. 4 port corresponds to the No. 10 port.
  • the updated optical port mapping relationship is as shown in Table 3 below:
  • the controller In the mechanism B, the line card and the first switching network board are newly added, and after updating the optical port mapping relationship of each line card in the forwarding device to each switching network board, the controller also needs to idle the optical cross device.
  • the third data interface is mapped to the first data interface, so that when the new line card accesses the third data interface, the line card information and the configuration optical port can be registered with the controller through the first data interface. Mapping the relationship, or connecting the fourth data that is idle in the optical cross device
  • the port is mapped to the first data interface, so that when the new switching network board accesses the fourth data interface, the network information and the optical port mapping relationship can be registered with the controller through the first data interface.
  • a multi-stage switching network can also be configured.
  • the multi-level switching network, the first-level switching network board and the second-level switching network board are also the same expansion mechanism; Equipped with an optical cross device.
  • the configuration of the switching network of each level refer to the configuration of the switching network of other levels, and details are not described here.
  • the optical port mapping relationship between the target line card and the switching network board is changed by changing the optical port mapping relationship of the target line card to each switching network board in the forwarding device.
  • Path change the target line card being the line card and/or the new line card.
  • the optical interconnecting device can be used to change the optical interconnection of the line card to the switching network board without changing the existing optical fiber connection. It is highly efficient, and it does not need to go to the position where the line card or the switching network board is located to insert and remove the optical fiber, and also save manpower.
  • the switching network interface chip in the online card is optically interconnected with the switching network mesh in at least one of the switching network boards
  • the transmission delay is about 500 nanoseconds per 100 meters, and the length of the fiber connected to each switching network board of the same line card may be different. Therefore, the transmission delay of the same line card to different switching network boards is different.
  • the number of packets that are in the same flow, or the number of times that the other ones of the same packet are loaded to the downstream destination through different paths, is more serious. To ensure the accuracy of the data, it needs to be rearranged. The problem of transmission delay will eventually increase the reordering cache, resulting in a heavier load on the forwarding device.
  • the delay mechanism can be defined in advance so that the sender can delay the data to be transmitted on the path according to the transmission delay of the path, thereby shortening the reach between the destination and the other path.
  • the delay difference can reduce the degree of out-of-order and thus reduce the reordering cache.
  • the line card can calculate the path delay of the line card to the destination line card, wherein the path delay of the line card to the destination line card includes: line card to destination a path delay of the switching network board, and a path delay of the destination switching network board to the destination line card, where the destination switching network board is at least one of the switching network boards optically interconnected with the line card, forwarding the The switching network board of the data packets currently sent by the line card.
  • the line card After calculating the delay of each path, the line card performs delay processing on the data packet that needs to be delayed processed according to the calculated path delay, and then sends the data packet to the destination line card.
  • the path delay can be calculated.
  • the line card is optically interconnected with two or more switching network boards to form a multi-path, and each path needs to be calculated. Delay.
  • the line card is optically interconnected with a switching network board 1.
  • the switching network board 1 can also be optically interconnected with more than two switching network boards, and finally optically interconnected with the destination line card, since after the switching network board 1 Load balancing is also performed, and multipath is also formed: line card->switching network board 1->switching network board interconnected with switching network board 1->destination line card, then calculating the path delay of each path .
  • the router line card sending end is optically interconnected with the switching network board 1 and the switching network board 2, and the destination end of the router line card is optically interconnected with the switching network board 1 and the switching network board 2,
  • path 1 is a transmitting end-switching network board 1 - destination end
  • path 2 is a transmitting end - switching network board 2 - destination end.
  • the functional structure of the specific forwarding device for delay may refer to FIG. 5-2, and the specific structure is not limited to FIG. 5-2.
  • calculating the path delay of the line card to the destination line card mainly includes the following two methods:
  • Method 1 The line card sends a measurement message to the destination line card through a specified path, where the measurement message carries a current timestamp of the system when the line card sends the measurement message, and then the destination line card
  • the specified path is used to return a measurement packet to the line card, where the specified path refers to a path of the line card to the destination switching network board, and a path of the destination switching network board to the destination line card.
  • the line card After receiving the measurement packet returned by the destination line card, the line card can calculate the delay of the specified path according to the current time of the system and the timestamp in the measurement message.
  • Method 2 Calculate the speed of the line card according to the speed at which the optical signal propagates in the optical fiber, the length of the optical fiber of the line card to the destination switching network board, and the length of the optical fiber of the destination switching network board to the destination line card. The path delay.
  • the line card can calculate the path delay of the primary switching network, and can also calculate the path delay of the multi-level switching network, and the path delay of the primary switching network.
  • the path delay of the multi-level switching network (the topology shown in Figure 6) is calculated in the same way.
  • the line card 7 transmitting end
  • the line card 10 receiveiving end
  • the path ID can be used to identify each path.
  • Each path can be identified by the node ID of the node on the path.
  • the switching network board corresponding to the path 1 is: 1-5-3
  • the switching network board corresponding to the path 2 is: 2-6-4, and so on.
  • the transmission delay of path 1 is 1 millisecond
  • the path 2 is 10 milliseconds.
  • load-sharing is performed on path 1 and path 2
  • the data on path 1 needs to be delayed by 9 milliseconds before being sent out.
  • the measurement process when the line card 7 is registered is as follows:
  • the new line card 7 After the new line card 7 goes online and applies for the line card ID, it sends a registration message to all connected switching network boards 1, 2, and the registration message includes the timestamp and line card ID 7.
  • the message type of the registration message is identified as "registration”. .
  • the process of the switching network board 2 after receiving the registration message is the same as that of the switching network board 1, and will not be described again.
  • the line card 10 After receiving the registration message 3, the line card 10 generates a registration ACK message, and carries the timestamp carried in the registration message sent by the line card 7 and the stencil ID added by each switching network board (or The end-to-end path ID) is finally returned to the line card 7 along the transmission path of the registration message.
  • the line card 7 After receiving the registration ACK message, the line card 7 can obtain the corresponding path information from the registration ACK message, and then calculate the one-way delay of each path according to the path information.
  • the method for registering a single board in the present invention is described above.
  • the following describes the line card and the switching network board for performing the board registration.
  • the line card 80 includes:
  • the line card 80 includes a processor 801 and a switching network interface chip 802.
  • the switching network interface chip 802 is optically interconnected with the switching network layer in at least one switching network board by optical fibers.
  • the switching network interface chip 802 is configured to acquire line card information of the line card, and send the line card information to the at least one switching network board through an optical interconnection path, so that the at least one switching network board is configured according to the The line card information registers the line card 80.
  • the switch network interface chip 802 is further configured to: obtain the line card identifier of the line card by using an optical interconnection path before acquiring the line card information of the line card. If the at least one switching network board includes a primary switching network board, the switching network interface chip 802 is specifically configured to: first send a first request message to the primary switching network board by using an optical interconnection path, where the first The request message is used to request to obtain a line card identifier of the line card;
  • the optical interconnection path And receiving, by the optical interconnection path, the first request response returned by the primary switching network board, where the first request response carries a line card identifier that is allocated by the primary switching network board to the line card according to the first request message.
  • the switching network interface chip 802 is specifically configured to: after receiving the line card identifier allocated by the main switching network board, send a first registration message to the optical interconnect with the line card.
  • the working switching network board the first registration message carries the line card information of the line card and the line card identifier of the line card, so that the working switching network board records according to the first registration message.
  • the switching network interface chip 802 may further receive a first registration confirmation response sent by the working switching network board, where the A registration confirmation response is generated by a line card optically interconnected with the working switching network board, and the first registration confirmation response carries line card information of each line card in the optical interconnection path in which the line card is located.
  • the first registration message further carries a timestamp of the current system when the line card sends the first registration message, and the first registration confirmation response carries the timestamp.
  • the line card can also register the first switching network board, specifically:
  • the switching network interface chip 802 receives a second registration message sent by the first switching network board that is optically interconnected with the line card, where the second registration message carries the network board information of the first switching network board and the The stencil identifier of the first switching network board;
  • the processor 801 records the network board information of the first switching network board and the network board identifier of the first switching network board according to the second registration message.
  • the switching network interface chip may further forward the second registration message to the The switching network board of the line card optically interconnects, so that the switching network board optically interconnected with the line card records the network board information of the first switching network board and the network board identifier of the first switching network board.
  • the switching network interface chip 802 may further receive the first sent by the working switching network board after the line card forwards the second registration message to the switching network board optically interconnected with the line card. Registering a response, the first registration response is generated by a line card optically interconnected with the working switching network board, and the second registration response carries a line card of each line card in an optical interconnection path in which the line card is located information.
  • the processor may further calculate a path delay of the line card to the destination line card, and send the data packet to the path according to the path delay.
  • the calculation path delay mainly passes one of the following:
  • the switching network interface chip 802 sends a measurement packet to the destination line card through a specified path, and receives a measurement packet returned by the destination line card from the specified path, where the measurement packet carries the line card to send
  • the timestamp of the system is measured when the message is measured;
  • the processor 801 calculates the time delay of the specified path according to the current time of the system and the timestamp, where the specified path refers to the line card to the a path of the destination switching network board and a path of the destination switching network board to the destination line card;
  • the processor 801 calculates the path according to the speed at which the optical signal propagates in the optical fiber, the length of the optical fiber of the line card to the destination switching network board, and the length of the optical fiber of the destination switching network board to the destination line card. Delay.
  • the processor 801 can also release the locally recorded network board identifier assigned to the disconnected switching network board to reduce redundant data, and The released stencil logo can be recycled.
  • an optical cross-device can also be introduced in the forwarding device.
  • the switching network interface chip 802 sends a first registration message to the optical Crossing the device, so that the optical cross-device forwards the first registration message to the controller, where the first registration message is used to request to register the line card information of the first line card and configure the first optical port mapping relationship
  • the first optical port mapping relationship is an optical port mapping relationship between the first line card and at least one of the switching network boards.
  • the first switching network board 90 is described with reference to FIG. 9.
  • the first switching network board 90 includes: a processor 901 and a switching network network 902, and a switching network of the switching network network 902 and at least one line card. Chip optical interconnection;
  • the switching network mesh 902 is configured to receive line card information of the line card sent by the line card through an optical interconnection path;
  • the processor 901 is configured to register the line card according to the line card information.
  • the first registration message sent by the line card optically interconnected with the first switching network board 90 is received by the switching network network 902, where the first registration message carries the line card information and the line card of the line card.
  • the line card information of the line card and the line card identifier of the line card are then recorded by the processor 901 according to the first registration message.
  • the processor 901 may further add the first registration message.
  • the network board identifier of the first switching network board 90 is then forwarded by the switching network network 902 to the first switching network that adds the network board identifier of the first switching network board to the first switching network.
  • the line card interconnected by the board optically enables the line card optically interconnected with the first switching network board 90 to record the line card information.
  • the switching network Slice 902 is also used to:
  • the first registration confirmation response After receiving the first registration confirmation response, forwarding the first registration confirmation response to the line card, where the first registration confirmation response is generated by a line card optically interconnected with the first switching network board,
  • the first registration confirmation response carries line card information of each line card in the optical interconnection path where the line card is located.
  • the first switching network board 90 can not only register the line card interconnected with the optical switch, but also after the first switching network board 90 is online, the line card is required to register the first switching network board 90.
  • the The switching network network 902 obtains the network board information of the first switching network board, and sends the first switching network board to the at least one line card by using an optical interconnection path.
  • the stencil information of 90 is such that the at least one line card that receives the stencil information registers the first switching network board according to the stencil information.
  • the switching network network 902 may be configured to obtain the network board identifier of the first switching network board by using an optical interconnection path.
  • the switching network network is specifically configured to:
  • the optical interconnection path And receiving, by the optical interconnection path, the second request response, where the second request response carries the network board identifier allocated by the primary switching network board to the first switching network board 90 according to the second request message.
  • the specific process of registering the first switching network board 90 is: the switching network network 902 sends a second registration message to the working line card optically interconnected with the first switching network board 90, the second registration
  • the message carries the network board information of the first switching network board 90 and the network board identifier of the first switching network board 90, so that the working line card records the network board information and the information of the first switching network board 90.
  • the stencil identifier of the first switching stencil 90 is the line card in the at least one line card.
  • the switching network fragment 902 can also be used to:
  • the second registration confirmation response is generated by a switching network board optically interconnected with the working line card, and the second registration response carries the first switching network The stencil information of each switching network board in the optical interconnection path where the board 90 is located.
  • the first switching network board 90 can also detect the line cards on the optical interconnection path in real time. In the connected state, when it is detected that the line card optically interconnected with the first switching network board 90 is disconnected, the processor 901 can also release the locally recorded line card identifier assigned to the disconnected line card.
  • the processor 901 updates the working state of the locally recorded line card according to the notification message, and passes the The switching network mesh 902 forwards the notification message to a line card optically interconnected with the first switching network board 90.
  • the switching network mesh 902 can be further configured to: send the second registration message to the Determining the optical cross-device to cause the optical cross-device to forward the second registration message to a controller communicatively coupled to the optical cross-device, the second registration message being used to request registration of the first switching network board
  • the mapping between the stencils of the stencils and the mapping of the second optical interfaces is the optical mapping relationship between the at least one line card and the first switching network board 90.
  • the present invention further provides a forwarding device 1 comprising at least one line card 11 and at least one switching network board 12, the line card 11 comprising at least one switching network interface chip 111, the switching network board 12 comprising At least one switching network mesh 121.
  • Each of the switch network interface cards 111 of the line card 11 can be optically interconnected with the switch network chip 121 of the at least one switch network board 12, and the switch network board 12 is configured to forward the line card 11 for transmission. Data, and data destined for the line card 11 at the destination end are forwarded to the line card 11.
  • the at least one line card 11 includes at least one of a router line card, a switch line card, an optical transport network OTN line card, a packet transport network PTN line card, and a programmable white box line card.
  • the line card 11 further includes at least one chip 112.
  • the switch network interface chip 111 and the at least one chip 112 are connected in series by electrical interconnection and/or optical interconnection.
  • electrical interconnection and/or optical interconnection For a specific connection diagram, refer to FIG. 2 2 and Figure 2-3.
  • the switching network interface chip 111 includes at least one first silicon optical chip 1111, and the switching network mesh 121 in the switching network board includes at least one second silicon optical chip 1211;
  • the first silicon optical chip 1111 and the second silicon optical chip 1211 are optically interconnected by optical fibers.
  • the switching network interface chip 111 in the line card 11 and the optical cross-device are optically interconnected by optical fibers, and the optical cross-device and at least one of the switching network boards
  • the switching network mesh 121 in 12 is optically interconnected by optical fibers.
  • the frame or the cabinet is not required, and the deployment position is not limited, and the distributed deployment in a long distance can be realized. Improve deployment efficiency and not affect existing optical interconnect paths when new line cards and/or switch fabrics are deployed.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English full name: Read-Only Memory, English abbreviation: ROM), a random access memory (English full name: Random Access Memory, English abbreviation: RAM), magnetic A variety of media that can store program code, such as a disc or a disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

一种单板注册的方法、单板及转发设备,所述单板包括线卡和交换网板,线卡包括交换网接口芯片,所述交换网接口芯片与至少一个交换网板中的交换网网片通过光纤光互连,也可以在交换网接口芯片和交换网网片之间加上光交叉设备,三者都采用光纤光互连。其中,线卡注册的方法包括:所述线卡获取所述线卡的线卡信息,并通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡进行注册。通过应用本方法,能够突破机框或机柜、部署位置的限制,快速的完成部署。

Description

一种单板注册的方法、单板及转发设备 技术领域
本发明涉及通信技术领域,尤其涉及一种单板注册的方法、单板及转发设备。
背景技术
目前对路由器的吞吐量需求越来越大,由于每个线卡的吞吐量有线,为了满足吞吐量的需求,一般将多个线卡放在一个线卡机框内,并建立多机框集群,为多个线卡机框配备一个中央交换机框,其中线卡机框中有至少一个本地交换网板和线卡,中央交换机框中有至少一个中央交换网板,中央交换机框与本地交换网板光互连,本地交换网板与本地机框内的线卡电互连。
由于一个线卡机框所能部署的线卡数量有限,且多机框集群占地较大,虽然可以通过光互连来实现远距部署线卡机框,但需要另外为每个线卡机框配备光模块,配备光模块则会降低线卡机框内部署线卡的集成度,并且配备光模块后,线卡机框的重量也很大。由此可见,目前的多机框集群,虽然可以满足较高的吞吐量需求,但线卡的部署无法突破线卡机框和本地交换网板机框的限制,也无法突破部署位置的限制,可扩展性较差。
发明内容
本发明提供了一种单板注册的方法、单板及转发设备,能够解决现有技术中线卡和交换网板的部署的可扩展性较差的问题。
本发明提供了针对部署的单板注册方法,具体可分为线卡注册和交换网板注册,本发明中的单板注册方法主要用于转发设备,本发明中的转发设备包括至少一个线卡和至少一个交换网板,所述线卡包括交换网接口芯片,所述交换网板包括交换网网片,线卡可以是路由器线卡、交换机线卡、OTN线卡、PTN线卡以及可编程白盒线卡中的任一种,转发设备可以同时部署路由器线卡、交换机线卡、OTN线卡、PTN线卡以及可编程白盒线卡中的至少一种。下面分别针对线卡注册和交换网板注册进行描述:
在线卡注册的方法中,所述线卡中的交换网接口芯片可与至少一个交换网板中的交换网网片通过光纤光互连,所述交换网板用于转发所述线卡发送的数据,以及将目的端为所述线卡的数据转发给所述线卡,所述线卡获取所述线卡的线卡信息,然后通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡进行注册。其中,所述线卡信息包括线卡类型、工作状态和线卡的能力参数。当然,该线卡中也可以注册交换网板的网板信息,若该线卡接收到第一交换网板发送的携带第一交换网板的网板信息的第二注册消息,则会根据根据所述第二注册消息记录所述第一交换网板的网板信息和所述第一交换网板的网板标识,以完成对所述第一交换网板的注册。
在交换网板注册的方法中,第一交换网板中的交换网网片与至少一个线卡的交换网芯片光互连。对于交换网板的注册:第一交换网板获取所述第一交换网板的网板信息,然后通过光互连路径向所述至少一个线卡发送所述网板信息,以使所述至少一个线卡根据所述网板信息对所述第一交换网板进行注册。
对线卡进行注册:线卡通过光互连路径向所述至少一个交换网板发送所述线卡信息,至少一个交换网板中的第一交换网板通过光互连路径接收线卡发送的所述线卡的线卡信息后,可以根据所述线卡信息对所述线卡进行注册。
与现有机制相比,本发明不需要将线卡或交换网板局限在机框或机柜,能够避免局限于机框或机柜带来的集成度较低、散热较差、供电需求大、占地大等问题,且本发明中的线卡和交换网板的部署方式更加灵活,也不受制于地域限制。并且不需要另外配置一个本地交换网板,直接用光纤将线卡中的交换网接口芯片与交换网板中的交换网网片光互连,即可实现线卡与交换网板远距离的光互连,通过本发明的这种结构部署方式,可以有效提高转发设备的吞吐量。
另外,除了在转发设备中的线卡中部署上述交换网接口芯片外,还可以在线卡内部署至少一个芯片,且交换网接口芯片与芯片之间,以及芯片之间既可以通过电互连,也可以通过光纤直接实现芯片间的光互连,从而进一步提高信号的传输速率。
具体来说,本发明中的线卡中的交换网接口芯片包括至少一个第一硅光芯片,交换网板中的交换网网片包括至少一个第二硅光芯片,所以,可以直接使用光纤将所述第一硅光芯片和所述第二硅光芯片连接起来,以实现线卡与交换网板之间的光互连。线卡内部的各芯片之间通过光纤连接时,连接的方式可参考交换网接口芯片通过光纤与交换网网片光互连的方式,类似之处不作赘述。
在一些可能的设计中,由于吞吐量需求不断提高等原因,需要增加线卡或交换网板,或者由于业务变化等原因需要更改已有的光互连路径,由于本发明主要采用将光纤直接连在线卡中的交换网接口芯片,以及将光纤直接连在交换网板中的交换网网片上,在线卡和交换网板之间可以另增加一个光交叉设备,也可以直接用光纤将线卡和交换网板连接。通过采用本发明的架构部署机制,可以突破机框或机柜或线卡板的限制,快速的完成新部署线卡或交换网板。下面分别对采用这两种架构时增加线卡或交换网板或更改光互连路径的场景进行说明:
机制A、直接采用光纤连接线卡和交换网板
1、在新部署线卡时,通过光纤将线卡中的交换网接口芯片与至少一个所述交换网板中的交换网网片光互连,然后在与所述线卡中的交换网接口芯片光互连的至少一个所述交换网板中注册所述线卡的线卡信息。
2、在新部署第一交换网板时,通过光纤将第一交换网板中的交换网网片与转发设备中的各线卡中的交换网接口芯片光互连。
此外,还可以更改已有的光互连路径,例如,更改所述线卡中的交换网接口芯片与交换网板中的交换网网片光互连的路径,可以将连接在线卡1中的交换网接口芯片上的光纤连接到其他线卡2中的交换网接口芯片上,也可以直接拔掉连在线卡1中的交换网接口芯片上的光纤;或者将连接在交换网板1中的交换网网片上的光纤连接到其他交换网板2中的交换网网片上,也可以直接拔掉连在交换网板1中的交换网网片上的光纤。
若将原来连接在交换网板1上的光纤连接到交换网板2上,那么,还需要在更改后的交换网板2中注册该线卡的线卡信息。
若将原来连接在交换网板1上的光纤拔出,或者连接在线卡上的光纤拔出,那么,与这根光纤连接的交换网板还需要删除本地存储的该线卡的线卡信息。
若将原来连接在线卡1上的光纤连接到线卡2上,那么,还需要在这根光纤连接的交换网板中注册该线卡2的线卡信息。
由此可见,通过机制A,可以随时、灵活的部署新线卡或新交换网板,或者灵活的更改已有的光互连路径。另外,本机制中,直接用光纤连接线卡和交换网板的场景下,无需配置光口映射关系。
机制B、采用光交叉设备和光纤连接线卡和交换网板
在采用机制B时,线卡与交换网板之间的光互连方式具体体现为:通过光纤将所述线卡中的交换网接口芯片与所述光交叉设备光互连,通过光纤将所述光交叉设备与至少一个所述交换网板中的交换网网片光互连,然后在所述光交叉设备中,配置所述线卡到至少一个所述交换网板之间的光口映射关系。
1、在部署线卡时,通过光纤将线卡中的交换网接口芯片与所述光交叉设备光互连,然后在所述光交叉设备中,配置所述线卡到至少一个所述交换网板之间的第一光口映射关系。
2、部署第一交换网板时,通过光纤将所述光交叉设备与第一交换网板的交换网网片光互连,然后在所述光交叉设备中,配置各线卡到所述第一交换网板之间的第二光口映射关系,该光口映射关系是指线卡的端口到光交叉设备中接口的映射关系,以及光交叉设备上接口到第一交换网板中端口的映射关系。
此外,还可以在所述光交叉设备中,通过更改所述线卡到所述转发设备中各交换网板的光口映射关系,从而使得所述线卡与交换网板之间的光互连路径更。可见,通过采用光交叉设备,便可以实现无需更改已有的光纤连线,只需要更改本地配置的光口映射关系,即可实现更改线卡到交换网板的光互连路径的目的,操作起来效率高,更无须去线卡或交换网板所在的位置通过插拔光纤,也节省人力。
本机制中,在部署新的线卡或新的交换网板时,只需要更新光交叉设备所配置的光口映射关系即可,无需更改已有的光纤连接。通过本发明的架构部署机制,可以在部署完转发设备的架构后,随时进行扩容,部署位置和单板(线卡或交换网板)部署数量都没有限制,本发明能够突破机框和地域的限制,在不更改原有架构的前提下,就能实现增加吞吐量,并且部署灵活,一定程度上,能够避免局限于机框或机柜带来的集成度较低、散热较差、供电需求大、占地大等问题。
在机制B下,所述转发设备还包括控制器,所述光交叉设备包括控制接口和至少两个数据接口,控制器与所述光交叉设备的控制接口和第一数据接口通信连接。该控制器可以是独立于线卡、交换网板和光交叉设备之外的设备,也可以是交换网板中的一个功能单元。控制器用于配置转发设备中的各光口映射关系以及通过控制接口管理线卡、交换网板和光交叉设备的执行逻辑。所述方法至少还包括以下之一:
当线卡中的交换网接口芯片与所述光交叉设备的第二数据接口光互连时,所述光交叉设备会通过光交叉设备中与所述第二数据接口映射的第一数据接口,将所述线卡发送的第一注册消息转发至所述控制器,所述第一注册消息用于请求注册所述线卡的线卡信息和配置第一光口映射关系。
或者,当第一交换网板中的交换网网片与所述光交叉设备的第三数据接口光互连时,所述光交叉设备会通过与所述第三数据接口映射的所述第一数据接口,将所述第一交换网 板发送的第二注册消息转发至所述控制器,所述第二注册消息用于请求注册所述第一交换网板的网板信息和配置所述第二光口映射关系。
此外,在所述光交叉设备通过第一数据接口向所述控制器注册所述线卡的线卡信息后,控制器根据所述线卡的线卡类型和线卡标识,为该线卡配置第一光口映射关系,然后通过与之连接的控制接口将第一光口映射关系下发给光交叉设备,使得光交叉设备在接收到第一光口映射关系后,就可以在本地配置该第一光口映射关系,相应的更新本地的光口映射关系,从而实现对光交叉设备的实时控制和光互连路径的管理。
在部署完所述线卡或第一交换网板后,若光交叉设备上还存在空闲的第四数据接口,那么,为了后续还有新的线卡或新的交换网板连在该空闲的第四数据口时,可以完成整个注册流程,控制器还需要将所述光交叉设备中空闲的第四数据接口映射到所述第一数据接口,以便在新的线卡接入所述第四数据接口时,通过所述第一数据接口向所述控制器注册线卡信息以及配置光口映射关系,或者将所述光交叉设备中空闲的第四数据接口映射到所述第一数据接口,以便在新的交换网板接入所述第四数据接口时,通过所述第一数据接口向所述控制器注册网板信息以及配置光口映射关系,最后光交叉设备可通过控制接口获取控制器下发的光口映射关系。
在实际数据传输中,采用上述光互连路径传输数据报文时,由于光纤自身会存在一定的传输时延,所以可能会导致同一线卡到不同的交换网板的传输时延不同,从而导致同一个流的多个报文,或同一个报文的多个Cell经过不同路径负载分担到下行目的端时的乱序程度较为严重,为保证数据的准确度,需要重排,所以因为传输时延的问题最终会增加重排序的缓存,导致转发设备的负荷较重。为减少重排序缓存的问题,可以预先定义延时机制,使得发送端可以根据路径的传输时延,为即将在该路径传输的数据进行延时处理,从而缩短到达目的端和到达其他路径之间的时延差,从而可以减少乱序程度,进而减少重排序缓存。具体过程如下:
在部署完线卡到交换网板的光互连的路径后,所述线卡还可计算所述线卡到目的线卡的路径时延,然后根据所述路径时延将所述数据报文发送至所述目的线卡。
其中,所述计算所述线卡到目的线卡的路径时延,包括以下项之一:
所述转发设备中的所述线卡通过指定路径发送测量报文至所述目的线卡,然后从所述指定路径接收目的线卡返回的测量报文,所述测量报文携带所述线卡发送所述测量报文时系统当前的时间戳;并根据系统当前的时间和所述时间戳,计算出所述指定路径的时延,所述指定路径是指所述线卡到所述目的交换网板的路径以及所述目的交换网板到所述目的线卡的路径;
或者,所述转发设备中的所述线卡根据光信号在光纤中传播的速度,所述线卡到目的交换网板的光纤长度,以及所述目的交换网板到所述目的线卡的光纤长度,计算出所述路径时延。
另外,线卡既可以针对一级交换网的路径时延进行计算,还可以计算多级交换网的路径时延,一级交换网的路径时延和多级交换网的路径时延的计算方式相同。
在部署单板(包括新线卡或新交换网板)时,本发明中的新线卡可以直接采用部署好的光互连路径便可实现申请单板标识以及注册单板的流程,无需使用其他控制设备来中转或处理申请单板标识以及注册单板的请求。因此,相较于现有机制,本发明能够进一步提高申请单板标识以及注册单板的流程的效率,并且能够实现各单板在新加入转发设备时, 彼此之间可以实现互相通信。本发明中,所述转发设备包括主交换网板,单板的单板标识均由主交换网板分配,或者由控制器分配。下面分别针对部署上述线卡和上述第一交换网板的细节进行描述:
当所述线卡与所述转发设备中的交换网板光互连时,线卡可通过光互连路径获取所述线卡的线卡标识,具体来说,该线卡可通过光互连路径向所述主交换网板发送第一请求消息,该第一请求消息用于请求获取所述线卡的线卡标识。然后,所述主交换网板根据所述第一请求消息为所述线卡分配线卡标识,并通过光互连路径将分配的线卡标识返回至所述线卡。
或者,当所述第一交换网板与转发设备中的工作线卡或交换网板光互连时,所述第一交换网板可通过光互连路径获取所述第一交换网板的网板标识,具体来说,所述第一交换网板通过光互连路径向所述主交换网板发送第二请求消息,所述第二请求消息用于请求为所述第一交换网板分配网板标识,然后所述主交换网板在接收到该第二请求消息后,会为所述第一交换网板分配网板标识,并通过光互连路径将分配的网板标识返回至所述第一交换网板,使得所述第一交换网板在本地记录分配给自身的网板标识。
需要说明的是,通过上述第一请求消息或第二请求消息获取单板标识的机制,均适用于直接将线卡和交换网板用光纤连接起来,以及通过光交叉设备实现光互联的场景。
另外,在工作一段时间后,可能会因为单板损坏、光纤损坏或单板的供电断开等原因,会导致已部署的单板与转发设备内部的节点通信断连,由于单板在部署成功后,都会检测与其光互连的其他单板的连接状态,若检测到其他单板的连接状态处于断连,那么会删除本地所记录的那个断连的单板的所有信息(包括注册的单板信息、单板标识等)。例如,当线卡检测到与其光互连的交换网板处于断连时,会删除本地记录的该断连的交换网板的所有信息,并将断连的交换网板的信息通知给与该线卡光互连的所有交换网板,这些交换网板接收到通知后,判断该断连的交换网板是否为主交换网板,若是,那么在连接正常的交换网板中重新选择一个交换网板作为新的主交换网板。
又例如,当交换网板检测到与其光互连的线卡处于断连时,会删除本地记录的该断连的线卡的所有信息,如果该交换网板为主交换网板,那么在释放分配给所述单板的单板标识后,还需要将断连的线卡的信息通知给与该主交换网板光互连的所有线卡板,也包括多级交换网中与之光互连的所有线卡板或者交换网板。
具体来说,在使用光交叉设备实现光互联的场景中,当与所述新线卡光互连的交换网板检测到所述新线卡与所述光交叉设备断连时,可以释放本地记录的分配给所述新线卡的线卡标识,以便将该线卡标识分配给后续新的线卡,实现重复利用。
或者,当与所述新交换网板光互连的线卡检测到所述新交换网板与所述光交叉设备断连时,释放本地记录的分配给所述新交换网板的网板标识。
下面分别针对新的线卡上线以及新的交换网板上线时的注册流程进行说明:
一、当所述线卡接收到所述主交换网板分配的线卡标识后,所述线卡便将携带所述线卡的线卡信息和线卡的线卡标识的第一注册消息发送给与所述线卡光互连的工作交换网板,其中第一注册消息还可携带所述新线卡发送第一注册消息时当前系统的时间戳。
所述工作交换网板接收到该第一注册消息后,则根据所述第一注册消息记录所述线卡的线卡信息和线卡的线卡标识,以及在所述第一注册消息中添加所述工作交换网板的网板 标识,然后将添加了所述工作交换网板的网板标识的所述第一注册消息转发至与所述工作交换网板光互连的线卡。
所述工作交换网板光互连的线卡记录所述新线卡的线卡信息后,还可以将生成的第一注册确认响应通过光互连路径返回给所述线卡。所述第一注册确认响应中携带所述线卡发送第一注册消息时当前系统的时间戳,所述线卡接收所述工作交换网板发送的第一注册响应后,可根据该时间戳计算传输路径的时延。
二、当所述第一交换网板接收到所述主交换网板分配的网板标识后,所述第一交换网板将第二注册消息发送给与所述第一交换网板光互连的工作线卡,第二注册消息携带所述第一交换网板的网板信息和第一交换网板的网板标识,在第一交换网板处于多级交换网时,还可以发送给与所述第一交换网板光互连的交换网板。
上述工作线卡记录所述第一交换网板的网板信息后,将所述第二注册消息转发至与所述工作线卡光互连的交换网板;
与所述工作线卡光互连的交换网板记录所述第一交换网板的网板信息和第一交换网板的网板标识后,还可以将生成的第二注册确认响应通过光互连路径返回给所述第一交换网板,所述第二注册响应可携带所述第一交换网板所在的光互连路径中的各交换网板的网板信息。
此外,交换网板还可以实时更改线卡的工作状态,例如,当所述转发设备中的第一交换网板接收到消息类型为工作状态的通知消息时,所述转发设备中的第一交换网板则会根据所述通知消息更新本地记录的线卡的工作状态,还可以将所述通知消息转发给与所述第一交换网板光互连的线卡,参与转发通知消息的第一交换网板可包括主交换网板和/或从交换网板。若该第一交换网板为前述内容中描述的工作交换网板,由于该工作交换网板可以包括新线卡所在的光互连路径上,直接或间接与该新线卡光互连的所有交换网板,那么,该新线卡所在的光互连路径可以为一级交换网,也可以是多级交换网,那么该通知消息在发给其中的某一个交换网板(例如第一交换网板)时,该交换网板在将通知消息转发给与其光互连的线卡时,也可以将通知消息转发给与其光互连的交换网板。
本发明第二方面提供一种线卡,具有实现对应于上述第一方面提供的线卡注册的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
在一些设计中,所述线卡包括处理器和交换网接口芯片,所述交换网接口芯片与至少一个交换网板中的交换网网片通过光纤光互连;
所述交换网接口芯片用于获取所述线卡的线卡信息,以及通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡进行注册。
所述交换网接口芯片在获取所述线卡的线卡信息之前还用于:通过光互连路径获取所述线卡的线卡标识。若所述至少一个交换网板包括主交换网板,那么,所述交换网接口芯片具体用于:先通过光互连路径向所述主交换网板发送第一请求消息,所述第一请求消息用于请求获取所述线卡的线卡标识;
然后通过光互连路径接收所述主交换网板返回的第一请求响应,所述第一请求响应携带所述主交换网板根据所述第一请求消息为所述线卡分配的线卡标识。
在一些可能的设计中,所述交换网接口芯片具体用于:当接收到所述主交换网板分配的线卡标识后,将第一注册消息发送给与所述线卡光互连的所述工作交换网板,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识,以使所述工作交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识,所述工作交换网板为所述至少一个交换网板中的交换网板。
所述交换网接口芯片在将第一注册消息发送给与所述线卡光互连的工作交换网板后,还可以接收所述工作交换网板发送的第一注册确认响应,所述第一注册确认响应由与所述工作交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
其中,所述第一注册消息还携带所述线卡发送第一注册消息时当前系统的时间戳,所述第一注册确认响应中携带所述时间戳。
在一些设计中,线卡还可以对第一交换网板进行注册,具体为:
所述交换网接口芯片接收与所述线卡光互连的第一交换网板发送的第二注册消息,所述第二注册消息携带所述第一交换网板的网板信息和所述第一交换网板的网板标识;
然后,处理器根据所述第二注册消息记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
在处理器记录所述第一交换网板的网板信息和所述第一交换网板的网板标识后,所述交换网接口芯片还可以将所述第二注册消息转发至与所述线卡光互连的交换网板,以使与所述线卡光互连的交换网板记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
另外,所述交换网接口芯片在所述线卡将所述第二注册消息转发至与所述线卡光互连的交换网板之后,还可以接收所述工作交换网板发送的第一注册响应,所述第一注册响应由与所述工作交换网板光互连的线卡生成,所述第二注册响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
为减少由于负载分担路径导致的数据排序问题,在注册完成后,处理器还可以计算所述线卡到目的线卡的路径时延,并根据所述路径时延将数据报文发送至所述目的线卡。计算路径时延主要通过以下之一:
所述交换网接口芯片通过指定路径发送测量报文至所述目的线卡,并从所述指定路径接收所述目的线卡返回的测量报文,所述测量报文携带所述线卡发送所述测量报文时系统当前的时间戳;然后处理器根据系统当前的时间和所述时间戳,计算出所述指定路径的时延,所述指定路径是指所述线卡到所述目的交换网板的路径以及所述目的交换网板到所述目的线卡的路径;
或者,处理器根据光信号在光纤中传播的速度,所述线卡到目的交换网板的光纤长度,以及所述目的交换网板到所述目的线卡的光纤长度,计算出所述路径时延。
在一些可能的设计中,当检测到与所述线卡光互连的交换网板断连时,处理器还可以释放本地记录的分配给断连的交换网板的网板标识。
在一些可能的设计中,可在转发设备中引入光交叉设备,在所述交换网芯片与光交叉设备的光互连时,所述交换网接口芯片将第一注册消息发送给所述光交叉设备,以使所述光交叉设备将所述第一注册消息转发给控制器,所述第一注册消息用于请求注册所述第一 线卡的线卡信息和配置第一光口映射关系,所述第一光口映射关系为所述第一线卡到至少一个所述交换网板之间的光口映射关系。
本发明第二方面还提供一种第一交换网板,具有实现对应于上述第一方面提供的交换网板注册的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
所述第一交换网板包括处理器和交换网网片,所述交换网网片与至少一个线卡的交换网芯片光互连;
所述交换网网片,用于通过光互连路径接收线卡发送的所述线卡的线卡信息;
所述处理器,用于根据所述线卡信息对所述线卡进行注册。
具体来说,由交换网网片接收与所述第一交换网板光互连的线卡发送的第一注册消息,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识;
然后由处理器根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识。
在一些设计中,在所述第一交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识之后,处理器还可以在所述第一注册消息中添加所述第一交换网板的网板标识,然后由交换网网片将添加了所述第一交换网板的网板标识的所述第一注册消息转发至与所述第一交换网板光互连的线卡,使得与所述第一交换网板光互连的线卡记录所述线卡信息。
在交换网网片将添加了所述第一交换网板的网板标识的所述第一注册消息转发至与所述第一交换网板光互连的线卡后,所述交换网网片还用于:
在接收到第一注册确认响应后,将所述第一注册确认响应转发给所述线卡,所述第一注册确认响应由与所述第一交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
在一些设计中,第一交换网板上线后,还需要对第一交换网板进行注册,相应的,所述交换网网片还用于获取所述第一交换网板的网板信息,以及通过光互连路径向所述至少一个线卡发送所述第一交换网板的网板信息,以使所述至少一个线卡根据所述网板信息对所述第一交换网板进行注册。
所述交换网网片在获取所述第一交换网板的网板信息之前,还可以用于:通过光互连路径获取所述第一交换网板的网板标识。
若所述至少一个第二交换网板包括主交换网板,所述交换网网片具体用于:
通过光互连路径向所述主交换网板发送第二请求消息,所述第二请求消息用于请求获取所述第一交换网板的网板标识;
并通过光互连路径接收第二请求响应,所述第二请求响应携带所述主交换网板根据所述第二请求消息为所述第一交换网板分配的网板标识。
在一些设计中,所述交换网网片具体用于:将所述第二注册消息发送给与所述第一交换网板光互连的工作线卡,所述第二注册消息携带所述第一交换网板的网板信息和所述第一交换网板的网板标识,以使所述工作线卡记录所述第一交换网板的网板信息和所述第一交换网板的网板标识,所述工作线卡为所述至少一个线卡中的线卡。
所述交换网网片在将所述第二注册消息发送给与所述第一交换网板光互连的工作线卡之后,还可用于:
接收所述工作线卡发送的第二注册确认响应,所述第二注册确认响应由与所述工作线卡光互连的交换网板生成,所述第二注册响应携带所述第一交换网板所在的光互连路径中的各交换网板的网板信息。
在一些设计中,当检测到与所述第一交换网板光互连的线卡断连时,所述处理器还可以释放本地记录的分配给断连的线卡的线卡标识。
在一些设计中,当所述第一交换网板接收到消息类型为工作状态的通知消息时,所述处理器则根据所述通知消息更新本地记录的线卡的工作状态,并通过所述交换网网片将所述通知消息转发给与所述第一交换网板光互连的线卡。
在一些设计中,若在转发设备中引入光交叉设备,所述交换网网片与光交叉设备光互连时,所述交换网网片还可用于:将第二注册消息发送至所述光交叉设备,以使所述光交叉设备将所述第二注册消息转发给与所述光交叉设备通信连接的控制器,所述第二注册消息用于请求注册所述第一交换网板的网板信息和配置第二光口映射关系,所述第二光口映射关系为至少一个所述线卡到所述第一交换网板之间的光口映射关系。
第三方面还提供一种转发设备,所述转发设备包括至少一个线卡和至少一个交换网板,所述线卡包括交换网接口芯片,所述交换网板包括交换网网片;
所述线卡中的交换网接口芯片与至少一个所述交换网板中的交换网网片通过光纤光互连,所述交换网板用于转发所述线卡发送的数据,以及将目的端为所述线卡的数据转发给所述线卡。
其中,所述至少一个线卡至少包括路由器线卡、交换机线卡、光传送网OTN线卡、分组传送网PTN线卡以及可编程白盒线卡中的一种。
所述线卡还包括至少一个芯片,所述交换网接口芯片、与所述至少一个芯片之间通过电互连和/或光互连串联。
具体来说,所述线卡中的交换网接口芯片包括至少一个第一硅光芯片,所述交换网板中的交换网网片包括至少一个第二硅光芯片;
所述第一硅光芯片和所述第二硅光芯片通过光纤光互连。
若所述转发设备还引入光交叉设备,那么所述线卡中的交换网接口芯片与所述光交叉设备通过光纤光互连,所述光交叉设备与至少一个所述交换网板中的交换网网片通过光纤光互连。
相较于现有技术,本发明提供的方案中,在交换网接口芯片与交换网网片通过光纤光互连的前提下,使得线卡和交换网板不需要通过其他辅助设备,就可以互相对彼此进行快速的注册,在突破了机框或机柜、部署位置的限制前提下,相应提高部署效率。
附图说明
图1为本实施例中转发设备的两种架构示意图;
图2为本实施例中转发设备架构部署的方法的一种流程示意图;
图2-1为本实施例中线卡和交换网板光互连的架构示意图;
图2-2为本实施例中线卡内部的各芯片之间的一种连接方式示意图;
图2-3为本实施例中线卡内部的各芯片之间的另一种连接方式示意图;
图3-1为本实施例中转发设备的另一种架构示意图;
图3-2为本实施例中第一注册消息的结构示意图;
图3-3为本实施例中注册ACK消息的一种结构示意图;
图3-4为本实施例中注册消息的一种结构示意图;
图3-5为本实施例中ID授予消息的一种结构示意图;
图3-6为本实施例中通知消息的一种结构示意图;
图3-7为本实施例中转发设备的另一种架构示意图;
图3-8为本实施例中对网板信息的一种记录方式示意图;
图3-9为本实施例中通知消息的另一种结构示意图;
图4为本实施例中转发设备的另一种架构示意图;
图5为本实施例中转发设备内部各接口之间的映射示意图;
图5-1为本实施例中转发设备内线卡发送端到线卡接收端的传输路径示意图;
图5-2为本实施例中转发设备内对数据包进行延时处理的一种示意图;
图6为本实施例中多级交换网下各接口之间的映射示意图;
图7为本实施例中多级交换网下的注册流程示意图;
图8为本实施例中线卡的一种结构示意图;
图9为本实施例中第一交换网板的一种结构示意图;
图10为本实施例中转发设备的一种结构示意图;
图10-1为本实施例中转发设备的另一种结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本发明实施例方案的目的。
本发明实施例提供了一种转发设备的架构部署方法及转发设备,用于通信技术领域。以下进行详细说明。
本发明可应用于一级交换网、多级交换网,其中,多级交换网是指本发明所部署的光互连路径后的拓扑架构,例如图1中(a)所示的架构,或者可以是图1中(b)所示的架构,线卡1可以与至少一个交换网板通过光纤直连,与线卡1光互连的交换网板可以与至少一个线卡通过光纤直连,也可以与至少一个交换网板通过光纤直连。
本文中的光口映射关系是指通过光纤连接的物理接口之间的逻辑映射关系。
本发明实施例主要提供以下技术方案解决上述技术问题:
用光纤将线卡中的交换网接口芯片和交换网板中的交换网网片连接,然后分别注册线卡的线卡信息和交换网板的网板信息。在后续需要部署新线卡时,同样用光纤将新线卡中的交换网接口芯片和交换网板中的交换网网片连接,或者在部署新交换网板时,用光纤将线卡中的交换网接口芯片和新交换网板中的交换网网片连接,当然,也可以同时部署新线卡和新交换网板,部署的数量和位置本发明不作限定。另外,在有多个线卡和多个交换网板的场景下,或者部署了新线卡或新交换网板的前提下,还可以更改原来已有的光互连路径。
通过以上技术方案,能够突破机框或机柜、部署位置的限制,快速的完成部署,并且在部署时,也不会影响到已有的光互连路径。
本发明中的单板注册的方法主要分为线卡注册和交换网板注册,本发明中的单板注册方法主要用于转发设备,转发设备主要包括至少一个线卡和至少一个交换网板,所述交换网板用于转发所述线卡发送的数据,以及将目的端为所述线卡的数据转发给所述线卡。其中,所述线卡至少包括交换网接口芯片,所述线卡中的交换网接口芯片可包括交换网接口芯片(英文全称:Fabric Interface Chip,英文简称:FIC)或者交换网网片(英文全称:Switch Fabric Chip,英文简称:SW),所述交换网板包括SW。如图2所示,下面分别针对线卡注册和交换网板注册进行描述:本发明实施例包括:
首先、单板获取自身的单板标识,并利用单板标识去获取单板的单板信息。
若新部署线卡,所述线卡中的交换网接口芯片可与至少一个所述交换网板中的交换网网片通过光纤光互连,在连接成功后,线卡可先获取自身的线卡信息。若新部署第一交换网板,第一交换网板中的交换网网片可与至少一个线卡的交换网芯片通过光纤光互连,在连接成功后,第一交换网板可先获取交换网板的网板信息。
本发明中,线卡中的FIC可包括至少一个第一硅光芯片和一个FIC裸(die),其中每个第一硅光芯片都可用于接收和发送信号。所述交换网板中的SW包括至少一个第二硅光芯片和一个SW裸(die),其中每个第二硅光芯片都可用于接收和发送光信号。所述第一硅光芯片和所述第二硅光芯片通过光纤光互连。线卡中的FIC可以据具有如图2-1中(a)所示的结构,由图2-1中(a)可知,线卡中的FIC包括4个硅光芯片和1个FIC die,这4个硅光芯片和1个FIC die部署在同一个基板上,合封后则构成FIC,硅光芯片(1-4)用于接收、发送光信号或者电信号。
交换网板中的SW可以据具有如图2-1中(b)所示的结构,由图2-1中(b)可知,交换网板中的SW包括4个硅光芯片和1个SW die,这4个硅光芯片和1个SW die部署在同一个基板上,合封后则构成SW,这4个硅光芯片(5-8)用于接收FIC发出的光信号,以及将来自FIC的光信号转发至下一跳,也可以将将接收到的光信号发送至FIC。
其次,单板在获取到自身的单板信息后,发起注册单板的流程。
若部署线卡,那么需要在当前转发设备下辖的与该线卡光互连的至少一个交换网板中注册,线卡可通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个所述交换网板对所述线卡进行注册。该线卡中也可以注册交换网板的网板信息,若该线卡接收到第一交换网板发送的携带第一交换网板的网板信息的第二注册消息,则会根据根据所述第二注册消息记录所述第一交换网板的网板信息和所述第一交换网板的网板标识,以完成对所述第一交换网板的注册。
其中,所述线卡信息包括线卡类型、工作状态和线卡的能力参数。线卡类型是指线卡的功能类型,根据线卡类型来分,线卡可以分为路由器线卡、交换机线卡、光传送网(英文全称:Opt ical Transport Network,英文简称:OTN)线卡、分组传送网(英文全称:Packet Transport Network,英文简称:PTN)线卡以及可编程白盒线卡。那么,一个转发设备可以包括路由器线卡、交换机线卡、OTN线卡、PTN线卡以及可编程白盒线卡中的至少一种线卡。
工作状态是指线卡当前的状态,可以为Ready、Reboot、Error、Down、Dump等状态。
能力参数是指线卡所具备的属性、能力,例如交换机线卡的端口个数和端口速率,路由器线卡的三层转发能力,路由器线卡支持的转发特性的位图(bitmap)(转发特性的bitmap中的每一个bit代表一个特性,该bit为1代表该路由器线卡支持该特性),以及可编程白盒线卡所支持的南向接口协议,以及白盒线卡的可用表项空间、指令空间等能力(例如线卡端口的个数,速率等)等。
另外,所述线卡还可包括至少一个芯片(该芯片可以为媒体访问控制接口芯片、网络处理器或流程管理芯片),所述交换网接口芯片、和各芯片之间通过电互连和/或光互连实现串联。线卡内部的各数字芯片之间通过光纤连接时,连接的方式可参考交换网接口芯片通过光纤与交换网网片光互连的方式,类似之处不作赘述。具体在线卡内各芯片的连接方式可根据实际产品设计或业务需求等因素确定,以及线卡内各功能的芯片可按需进行组合,具体的连接方式、具体的芯片种类和数量本发明均不作限定。具体的连接方式可参考图2-2所示的芯片间光互连,和图2-3中所示的芯片间光互连和电互连组合。
若部署第一交换网板,那么需要在当前转发设备下辖的与第一交换网板光互连的至少一个线卡中注册,第一交换网板可通过光互连路径向所述至少一个线卡发送自身的网板信息,以使所述至少一个线卡对第一交换网板进行注册。第一交换网板还可以对线卡进行注册,若第一交换网板接收到其他线卡发送的线卡信息,则会对该线卡进行注册。
与现有机制相比,本发明不需要将线卡或交换网板局限在机框或机柜,能够避免局限于机框或机柜带来的集成度较低、散热较差、供电需求大、占地大等问题,且本发明中的线卡和交换网板的部署方式更加灵活,也不受制于地域限制。并且不需要另外配置一个本地交换网板,直接用光纤将线卡中的交换网接口芯片与交换网板中的交换网网片光互连,即可实现线卡与交换网板远距离的光互连,通过本发明的这种结构部署方式,可以有效提高转发设备的吞吐量。
此外,在部署单板(包括线卡或交换网板)时,本发明中的线卡可以直接采用部署好的光互连路径便可实现申请单板标识以及注册单板的流程,无需使用其他控制设备来中转或处理申请单板标识以及注册单板的请求。因此,相较于现有机制,本发明能够进一步提高申请单板标识以及注册单板的流程的效率,并且能够实现各单板在新加入转发设备时, 彼此之间可以实现互相通信。本发明中,所述转发设备包括主交换网板,单板的单板标识均由主交换网板分配,或者由控制器分配。下面分别针对部署上述线卡和第一交换网板的细节进行描述:
当线卡与所述转发设备中的交换网板光互连时,线卡可通过光互连路径获取所述线卡的线卡标识,具体来说,所述线卡可通过光互连路径向所述主交换网板发送第一请求消息,所述第二请求消息用于请求为所述线卡分配线卡标识。然后,所述主交换网板在接收到该第一请求消息后,会根据所述第一请求消息为所述线卡分配线卡标识,并通过光互连路径将分配的线卡标识返回至所述线卡,使得线卡在本地记录分配给自身的单板标识。
或者,当所述第一交换网板与转发设备中的工作线卡或交换网板光互连时,所述第一交换网板可通过光互连路径获取所述第一交换网板的网板标识,具体来说,所述第一交换网板通过光互连路径向所述主交换网板发送第二请求消息,所述第二请求消息用于请求为所述第一交换网板分配网板标识,然后,所述主交换网板在接收到该第二请求消息后,便为所述第一交换网板分配网板标识,并通过光互连路径将分配的网板标识返回至所述第一交换网板,使得所述第一交换网板在本地记录分配给自身的网板标识。
需要说明的是,通过上述第一请求消息或第二请求消息获取单板标识的机制,均适用于直接将线卡和交换网板用光纤连接起来,以及通过光交叉设备实现光互连的场景。
另外,在工作一段时间后,可能会因为单板损坏、光纤损坏或单板的供电断开等原因,会导致已部署的单板与转发设备内部的节点通信断连,由于单板在部署成功后,都会检测与其光互连的其他单板的连接状态,若检测到其他单板的连接状态处于断连,那么会删除本地所记录的那个断连的单板的所有信息(包括注册的单板信息、单板标识等)。例如,当线卡检测到与其光互连的交换网板处于断连时,会删除本地记录的该断连的交换网板的所有信息,并将断连的交换网板的信息通知给与该线卡光互连的所有交换网板,这些交换网板接收到通知后,判断该断连的交换网板是否为主交换网板,若是,那么在连接正常的交换网板中重新选择一个交换网板作为新的主交换网板。
又例如,当交换网板检测到与其光互连的线卡处于断连时,会删除本地记录的该断连的线卡的所有信息,如果该交换网板为主交换网板,那么在释放分配给所述单板的单板标识后,还需要将断连的线卡的信息通知给与该主交换网板光互连的所有线卡板,也包括多级交换网中与之光互连的所有线卡板或者交换网板。
具体来说,在使用光交叉设备实现光互联的场景中,当与所述线卡光互连的交换网板检测到所述线卡断连时,可以释放本地记录的分配给所述线卡的线卡标识,以便将该线卡标识分配给后续新的线卡,实现重复利用。
或者,当与所述第一交换网板光互连的线卡检测到所述第一交换网板断连时,释放本地记录的分配给所述第一交换网板的网板标识。
下面分别针对新线卡上线以及新交换网板上线时的注册流程进行说明:
一、当所述线卡接收到所述主交换网板分配的线卡标识后,所述线卡将携带所述线卡的线卡信息和线卡的线卡标识的第一注册消息发送给与所述线卡光互连的工作交换网板,其中第一注册消息还可携带所述线卡发送第一注册消息时当前系统的时间戳。
所述工作交换网板根据所述第一注册消息记录所述线卡的线卡信息和线卡的线卡标识后,先在所述第一注册消息中添加所述工作交换网板的网板标识,然后将添加了所述工作交换网板的网板标识的所述第一注册消息转发至与所述工作交换网板光互连的线卡。
与所述工作交换网板光互连的线卡记录所述线卡的线卡信息和线卡的线卡标识后,还可以将生成的第一注册确认响应光互连路径返回给所述线卡。所述第一注册确认响应中可携带所述线卡所在的光互连路径中的各线卡的线卡信息,以及携带线卡发送第一注册消息时当前系统的时间戳,该时间戳可用于线卡计算传输路径的时延。
二、当所述第一交换网板接收到所述主交换网板分配的网板标识后,所述第一交换网板将携带所述第一交换网板的网板信息和第一交换网板的网板标识的第二注册消息发送给与所述第一交换网板光互连的工作线卡,若该第一交换网板处于多级交换网,那么还可以发送给与所述第一交换网板光互连的交换网板。
上述工作线卡记录所述第一交换网板的网板信息和第一交换网板的网板标识后,会将所述第二注册消息转发至与所述工作线卡光互连的交换网板。
与所述工作线卡光互连的交换网板接收到第二注册消息,则根据第二注册消息记录所述第一交换网板的网板信息和第一交换网板的网板标识后,还可以将生成的第二注册确认响应通过光互连路径返回给所述第一交换网板,所述第二注册响应可携带所述第一交换网板所在的光互连路径中的各交换网板的网板信息。
此外,交换网板还可以实时更新本地记录的线卡的工作状态,例如,当第一交换网板接收到消息类型为工作状态的通知消息时,所述交换网板则会根据所述通知消息更新本地记录的线卡的工作状态,还可以将所述通知消息转发给与所述第一交换网板光互连的线卡,参与转发通知消息的第一交换网板可包括主交换网板和/或从交换网板。若该第一交换网板为前述内容中描述的与线卡光互连的工作交换网板,由于该工作交换网板可以包括线卡所在的光互连路径上,直接或间接与该线卡光互连的所有交换网板,那么,该线卡所在的光互连路径可以为一级交换网,也可以是多级交换网,那么该通知消息在发给其中的某一个交换网板(例如第一交换网板)时,该交换网板在将通知消息转发给与其光互连的线卡时,也会将通知消息转发给与其光互连的交换网板。
在实际应用时,可能会因为业务需求等原因需要提升转发设备的吞吐量或转发效率等,或者提升转发设备的稳定性,需要增加备份机制等情况,都需要通过增加线卡或交换网板对转发设备进行扩容,一般可以通过部署新线卡和/或新交换网板来实现扩容的目的,或者由于业务变化等原因需要更改已有的光互连路径。由于本发明主要采用将光纤直接连在线卡中的交换网接口芯片,以及将光纤直接连在交换网板中的交换网网片上,在线卡和交换网板之间可以另增加一个光交叉设备,也可以直接用光纤将线卡和交换网板连接。所以,通过采用本发明的架构部署机制,可以突破机框或机柜或线卡板的限制,快速的完成新部署线卡或交换网板。下面针对本发明提供的机制A和机制B实现扩容和更改光互连路径进行说明。
机制A:通过光纤连接线卡中的交换网接口芯片和交换网板中的交换网网片。
一、在新部署线卡时,可通过光纤将线卡中的交换网接口芯片与至少一个所述交换网板中的交换网网片光互连,然后在与所述线卡中的交换网接口芯片光互连的至少一个所述交换网板中注册所述线卡的线卡信息。当然,该线卡在部署成功后,还可以对其他交换网板进行注册。
注册一个接入的线卡的线卡信息的机制主要分为预先约定线卡标识(英文全称:Identity,英文简称:ID)以及由主交换网板动态分配线卡ID:
(1)、预先约定线卡标识
例如图3-1所示的架构,包括线卡3、线卡4、交换网板1、交换网板2和交换网板3,其中,线卡3表示线卡ID为3的线卡,其他同理,线卡4与交换网板1和交换网板2光互连。另外,还可以定义ID最小的交换网板1作为主交换网板,交换网板2和交换网板3为从交换网板。需要说明的是,关于线卡的ID和交换网板的ID的命名,可分别加上一个类型字段,用于区分线卡和交换网板,避免出现ID为2的线卡与ID为2的交换网板混淆,并且,随着大数量的新部署线卡或交换网板,线卡的ID和交换网板的ID可按照预定义的规则进行编号,具体方式,本发明不作限定,关于线卡的ID的编号,以及交换网板的ID的编号没有上限,可以无限编号。
在线卡4获取到分配给自己的线卡ID后,线卡4可以继续后续的线卡注册流程。如图3-2所示,线卡4给所有与其光互连的交换网板(包括交换网板1和交换网板2)发送注册消息,该注册消息包括“消息类型”,“线卡类型”,“线卡ID”,“能力参数”,“时间戳”字段;其中消息类型为“注册”,线卡类型为PTN线卡,线卡ID为4,能力参数为PTN线卡的属性及能力的描述,时间戳携带该PTN线卡发送注册消息时当前的系统时间。
每个交换网板在收到“消息类型”为“注册”的注册消息时,都将收到的注册消息转发给其他与自己光互连的线卡(如图3-1中的线卡3),并将注册消息中的内容,线卡类型,线卡ID,能力参数记录在本地。
线卡3收到上述注册消息后,会相应生成一个注册确认(英文全称:Acknowledge,英文简称:ACK)消息,并按照原路径将注册ACK消息返回至ID为4的PTN线卡,并将注册消息中的内容,线卡类型,线卡ID,属性能力等记录在本地。其中,注册ACK消息的格式如图3-3所示,可知,每个线卡在生成注册ACK消息时,都会在该注册ACK消息中添加自身的线卡ID、自身的线卡类型以及自身的能力参数,同时也将线卡4的线卡ID以及注册消息中携带的时间戳添加入注册ACK消息,然后每个线卡生成相应的注册ACK消息后,都会按照接收注册消息的路径原路返回给线卡4,具体不再赘述。图3-3中,消息类别为注册ACK消息,已有线卡类型为线卡板3的线卡类型,已有线卡ID为线卡3的ID,新线卡ID为线卡4的ID,时间戳为注册消息中携带的时间戳,已有线卡属性能力为线卡板3的能力参数。
交换网板收到线卡3发来的注册ACK消息,根据注册ACK消息中的新线卡ID字段,将注册ACK消息发往线卡4。
线卡4收到注册ACK消息后,便将注册ACK消息中的已有线卡类型,已有线卡ID、已有线卡属性能力均记录在本地,然后用系统当前时间,减去注册ACK消息中携带的时间戳,即可得到从线卡4通过该交换网板转发到线卡3的往返传输时延,保存该往返传输时延,以便在后续发送数据报文至交换网板时,对需要延时的数据报文进行延迟发送。
、主交换网板动态分配线卡标识
以图3-1所示的架构为例,新线卡与交换网板1和交换网板2光互连后,向交换网板1和交换网板2发送申请ID的请求消息,该请求消息包括“消息类型”,“线卡类型”,其中“消息类型”为“申请ID”,该请求消息的结构如图3-4所示。
从交换网板(例如图3-1中的从交换网板2)收到申请ID的请求消息后,无操作,可直接丢弃该请求消息。
主交换网板收到申请ID的请求消息时,会为新线卡分配一个ID 4,该ID4不与其他交换网板的网板ID、线卡的线卡ID重复。然后主交换网板将携带新线卡ID的ID授予消 息返回给新线卡。该ID授予消息的结构如图3-5所示,线卡ID为主交换网板授予该新线卡的线卡ID,新线卡收到ID授予消息后,记录自己的线卡ID,同时记录主交换网板的网板信息。后续的新线卡注册的流程与前述内容中提前约定线卡ID时的注册流程相同,此处不再赘述。
另外,也可以由软件自定义网络(英文全称:Software Defined Network,英文简称:SDN)控制器来分配线卡ID,本申请优先选择主交换机分配线卡ID。
此外,在上述两种注册机制下,线卡的线卡信息在交换网板中注册成功后,每个与线卡光互连的交换网板会实时对与之光互连的线卡进行监测,若交换网板1根据实际接口的连接情况监测到线卡1断连,那么,该交换网板1会将本地存储的线卡1的线卡信息删除。若该交换网板1为主交换网板,那么交换网板1还需要将该线卡1断连的情况通知给其他与该交换网板1光互连的所有线卡,并在通知消息中标识线卡1的线卡ID,通知消息的结构如图3-6所示。
二、在部署第一交换网板时,可通过光纤将第一交换网板中的交换网网片,与转发设备中的各线卡中的交换网接口芯片光互连,并在与第一交换网板光互连的线卡中注册。第一交换网板部署成功后,也可以对其他线卡进行注册。
通过本发明的架构部署机制A,可以在部署完转发设备的架构后,可以随时、灵活的部署新线卡或新交换网板,或者灵活的更改已有的光互连路径,且无需配置光口映射关系。因此,相较于现有机制,本发明能够突破机框和地域的限制,在不更改原有架构的前提下,就能提高转发设备的吞吐量。
举例来说,更改架构的部署来更改线卡到交换网板的光互连路径的过程具体为:通过更改所述线卡中的交换网接口芯片与交换网板中的交换网网片光互连的路径。例如线卡1与交换网板1光互连,线卡2与交换网板2和交换网板3光互连,可以通过热插拔的方式更改光纤的连接接口,若将线卡1端的光纤移除并连接至线卡2,那么需要在更改后的与所述线卡2光互连的交换网板1中注册该线卡2的线卡信息;若将交换网板1端的光纤移除并连接至交换网板2,那么需要在线卡1中注册交换网板2的网板信息;若将线卡2端的光纤移除,那么交换网板2和交换网板3会删除本地存储的线卡2的线卡信息……其他例子类似,不作赘述。
由机制A可知,例如图3-7所示,线卡1与交换网板1和交换网板2光互连,现在将线卡1与交换网板3光互连,那么就需要在交换网板3中也注册线卡1的线卡信息,并不会影响线卡1到交换网板1和交换网板2的路径传输;或者切断与交换网板2的光互连路径,同样也不会影响线卡1到交换网板1的路径传输。
在新接入第一交换网板后,还需要对第一交换网板进行注册,注册过程可以预先约定网板ID,也可以不预先约定。若未预先约定,那么在第一交换网板连上光纤后,需要选择一个与之光互连的线卡,并向选择的线卡发送申请ID的请求消息,请求消息的格式与图3-2相同。线卡收到该请求消息后,将请求消息转发给该线卡对应的主交换网板,主交换网板收到申请ID的请求消息后,为第一交换网板分配网板ID,生成一个携带第一交换网板的网板ID的ID授予消息,然后由原光互连路径将ID授予消息返回给新交换网板。
第一交换网板收到ID授予消息后,记录分配给自己的网板ID,同时发送交换网板的注册消息到所有与其光互连的线卡,与之光互连的各线卡记录第一交换网板的线卡信息 后,将交换网板的注册消息转发到所有其他的交换网板,其他交换网板收到该交换网板的注册消息后同样记录在本地,记录方式可以如图3-8所示。
此外,交换网板的网板信息在线卡中注册成功后,每个与交换网板光互连的线卡会实时对与之光互连的交换网板进行监测,线卡可以根据实际接口的连接情况监测是否与交换网板断连。在转发设备实际工作过程中,可能会因为网络延迟、天气、人为拔出光纤或光纤损坏等因素,会导致与线卡光互连的交换网板断连。
例如,若线卡1根据实际接口的连接情况监测到交换网板1断连,那么,该线卡1会将本地存储的交换网板1的网板信息删除,然后将该交换网板1断连的情况通知给其他与该线卡1光互连的所有交换网板,并在通知消息中标识交换网板1的网板ID,通知消息的结构如图3-9所示。若该交换网板1为主交换网板,那么线卡1还需要按照网板ID的大小重新选择一个ID最大或最小的交换网板作为主交换网板。当然,其他交换网板收到“交换网板1断连”的通知消息后,根据通知消息中携带的断连的交换网板1的网板ID确定交换网板1是否为主交换网板,如果是,则按照网板ID的大小重新选择一个ID最大或最小的交换网板作为主交换网板。
机制B:通过光交叉设备和光纤连接线卡中的交换网接口芯片和交换网板中的交换网网片。
可在转发设备中引入一个光交叉设备,在部署转发设备的架构时,可先通过光纤将所述线卡中的交换网接口芯片与所述光交叉设备光互连,然后通过光纤将所述光交叉设备与至少一个所述交换网板中的交换网网片光互连,最后在所述光交叉设备中,配置所述线卡到至少一个所述交换网板之间的光口映射关系,该光口映射关系是指线卡的端口到光交叉设备中接口的映射关系,以及光交叉设备上接口到交换网板中端口的映射关系,类似之处不再赘述。
其中,所述光交叉设备包括控制接口和至少两个数据接口,所述数据接口包括多个上行接口和与所述多个上行接口对应的多个下行接口。所述转发设备还包括控制器,所述控制器与所述光交叉设备的第一数据接口和控制接口通信连接。该控制器可以是独立于线卡、交换网板和光交叉设备之外的设备,也可以是交换网板中的一个功能单元。控制器用于配置转发设备中的各光口映射关系以及管理线卡、交换网板和光交叉设备的执行逻辑。
当线卡中的交换网接口芯片与所述光交叉设备的第二数据接口光互连时,所述光交叉设备会通过与控制器连接的与所述第二数据接口映射的第一数据接口,将所述线卡发送的第一请求消息转发至所述控制器,所述第一请求消息用于请求注册所述新线卡的线卡信息和配置第一光口映射关系,然后通过与控制器连接的控制接口接收控制器下发的各种控制信息,例如第一光口映射关系等。
当第一交换网板中的交换网网片与所述光交叉设备的第三数据接口光互连时,所述光交叉设备会通过与第三数据接口映射的第一数据接口,将所述第一交换网板发送的第二请求消息转发至所述控制器,所述第二请求消息用于请求注册所述第一交换网板的网板信息和配置第二光口映射关系。
此外,在所述光交叉设备通过第一数据接口向所述控制器注册所述线卡的线卡信息后,控制器会根据所述线卡的线卡类型和线卡标识,配置好相应的第一光口映射关系,然后通过控制接口将第一光口映射关系下发给光交叉设备,以实现对光交叉设备的实时控制和光互连路径的管理。
在光交叉设备通过控制接口接收到控制器下发的第一光口映射关系后,光交叉设备则在本地配置该光口映射关系。注册第一交换网板的流程同理,不再赘述。
一、在引入了光交叉设备的机制下,部署新的线卡时,可通过光纤将线卡中的交换网接口芯片与所述光交叉设备光互连,然后在所述光交叉设备中,配置所述线卡到至少一个所述交换网板之间的第一光口映射关系,该第一光口映射关系可参考前述部分,不再赘述。所述线卡中的交换网接口芯片与所述光交叉设备中的第二数据接口光互连。例如图4所示,用光纤将线卡的FIC芯片与动态光交叉设备连接,用光纤将交换网板的SW芯片与动态光交叉设备连接,然后配置光交叉设备,通过光交叉设备实现线卡的FIC芯片与交换网板SW芯片的光互连。
其中,配置该第一光口映射关系的具体过程为:
所述线卡通过所述第一数据接口向所述光交叉设备发送第一请求消息,所述光交叉设备接收到第一请求消息后,通过与所述第二数据接口映射的第一数据接口,将第一请求消息转发至所述控制器,以在控制器中注册所述线卡的线卡信息,然后控制器根据所述线卡的线卡类型和线卡标识,配置所述第一光口映射关系,并通过与之连接的控制接口将第一光口映射关系下发至所述光交叉设备,所述光交叉设备再在本地配置所述第一光口映射关系。
举例来说,如图5所示,转发设备当前包含线卡1和交换网板1,光交叉设备中的光口映射关系为1号口映射到5号口,2号口映射到6号口,另外该光口映射关系还可包括:14号口映射到3号口,当前3号口无光纤接入,14号口为与控制器连接的数据接口,13号口为控制口,该控制口与控制器连接。通过光纤将新线卡2接入光交叉设备的3号口,且新线卡2从3号口发送用于申请线卡ID的请求消息给光交叉设备,然后通过14号口发送给控制器;在获得控制器分配的线卡ID后,再通过3号口发送注册消息,然后通过14号口发送给控制器,控制器根据注册消息获取线卡类型后,更改光交叉设备中针对光口映射关系的配置:3号口映射到7号口,4号口映射到8号口,然后将该光口映射关系通过13号口下发给光交叉设备。同时还可以将14号口映射到另一个空闲的9号口,以便后续交换网板接入9号口时,可以通过9号口、以及14号口实现网板注册。
通过光纤将新交换网板2接入9号口,然后交换网板2从9号口发送消息,并经由14号口发往控制器,然后由控制器配置新的光口映射关系,然后控制器通过13号口将新的光口映射关系下发给光交叉设备。若光交叉设备上还有空闲的端口,还可以将空闲的端口映射到14号口。
由此可见,在部署新线卡时,只需要更新光交叉设备所配置的光口映射关系即可,无需更改已有的光纤连接。举例来说,按照图5中所示的架构,初始的光口映射关系如下表1所示:
  5 6 7 8 9 10 11 12
1              
2              
3                
4                
表1
由表1可知,转发设备的初始状态为:一个线卡和一个交换网板,线卡通过2个光纤连到光交叉设备的1号口和2号口,交换网板的4个光纤连到光交叉设备的5-8号口,光交叉设备针对光口映射关系的配置为:1号口对应5号口,2号口对应6号口。
若添加一个新线卡,例如,新线卡通过2个光纤连到光交叉设备的3号口和4号口,相应的,需要增加光交叉设备最光口映射关系的配置,即新增3号口对应7号口,4号口对应8号口。在光交叉设备通过13号口接收到控制器下发的新增的光口映射关系后,光交叉设备会更新本地光口映射关系,更新光口映射关系的配置后,光交叉设备中最新的光口映射关系如下表2所示:
  5 6 7 8 9 10 11 12
1              
2              
3              
4              
表2
二、在部署第一交换网板时,可通过光纤将所述光交叉设备与第一交换网板的交换网网片光互连,然后在所述光交叉设备中,配置各线卡到所述新交换网板之间的光口映射关系。
当然,在机制B下,若后期需要更改传输路径,可以在所述光交叉设备中,更新线卡到所述转发设备中各交换网板的光口映射关系,就能使得所述线卡与交换网板之间的光互连路径更改。由此可见,与现有机制相比,通过机制B部署的架构,可以在部署完转发设备的架构后,随时进行扩容,部署位置和单板(线卡或交换网板)部署数量都没有限制,本发明能够突破机框和地域的限制,在不更改原有架构的前提下,就能实现增加吞吐量,并且部署灵活,一定程度上,能够避免局限于机框或机柜带来的集成度较低、散热较差、供电需求大、占地大等问题。
举例来说,按照图5所示的架构部署线卡和交换网板,在增加了一个新线卡后,会得到表2所示的光口映射关系,在表2的基础上,若再添加一个新交换网板,新交换网板的4个光纤连到动态光交叉设备的9-12号口,就需要将光交叉设备中配置的光口映射关系更新为:1号口对应5号口,2号口对应9号口,3号口对应6号口,4号口对应10号口,更新后的光口映射关系如下表3所示:
  5 6 7 8 9 10 11 12
1              
2              
3              
4              
表3
在机制B中,新增加了线卡和第一交换网板,更新了转发设备中各线卡到各交换网板的光口映射关系后,控制器还需要将所述光交叉设备中空闲的第三数据接口映射到所述第一数据接口,以便在新的线卡接入所述第三数据接口时,可通过所述第一数据接口向所述控制器注册线卡信息以及配置光口映射关系,或者将所述光交叉设备中空闲的第四数据接 口映射到所述第一数据接口,以便在新的交换网板接入第四数据接口时,可以通过所述第一数据接口向所述控制器注册网板信息以及配置光口映射关系。
当然,还可以配置多级交换网,如图6所示的多级交换网,第一级交换网板与第二级交换网板之间,也是同样的扩容机制;每一级交换网中都会配备一个光交叉设备。每一级交换网的配置都可参考其他级的交换网的配置,具体不再赘述。
此外,还可以在所述光交叉设备中,通过更改目标线卡到所述转发设备中各交换网板的光口映射关系,从而使得所述目标线卡与交换网板之间的光互连路径更改,所述目标线卡为所述线卡和/或所述新线卡。可见,通过采用光交叉设备,便可以实现无需更改已有的光纤连线,只需要更改本地配置的光口映射关系,即可实现更改线卡到交换网板的光互连路径的目的,操作起来效率高,更无须去线卡或交换网板所在的位置通过插拔光纤,也节省人力。
在实际应用场景下,在线卡中的交换网接口芯片与至少一个以上的所述交换网板中的交换网网片光互连时,由于光纤每隔一段长度就会存在一定的传输时延(大约每100米,传输时延为500纳秒),而同一个线卡连接各个交换网板的光纤长度可能不一样,所以会导致同一线卡到不同的交换网板的传输时延不同,从而导致同一个流的多个报文,或同一个报文的多个Cel l经过不同路径负载分担到下行目的端时的乱序程度较为严重,为保证数据的准确度,需要重排,所以因为传输时延的问题最终会增加重排序的缓存,导致转发设备的负荷较重。为减少重排序缓存的问题,可以预先定义延时机制,使得发送端可以根据路径的传输时延,为即将在该路径传输的数据进行延时处理,从而缩短到达目的端和到达其他路径之间的时延差,从而可以减少乱序程度,进而减少重排序缓存。具体过程如下:
在部署完线卡到交换网板的光互连的路径后,线卡可以计算线卡到目的线卡的路径时延,其中,线卡到目的线卡的路径时延包括:线卡到目的交换网板的路径时延,以及目的交换网板到目的线卡的路径时延,所述目的交换网板为与所述线卡光互连的至少一个所述交换网板中,转发所述线卡当前发送的数据报文的交换网板。
所述线卡在计算出各路径时延后,根据计算出的路径时延对需要进行延时处理的数据报文进行延时处理,然后将所述数据报文发送至所述目的线卡。
需要说明的是,对于一级交换网和多级交换网而言,都可计算路径时延,例如线卡与2个以上的交换网板光互连,形成了多路径,需要计算各路径时延。又例如,线卡与一个交换网板1光互连,该交换网板1还可以与2个以上的交换网板光互连,最终与目的线卡光互连,由于在交换网板1之后进行了负载分担,也形成了多路径:线卡->交换网板1->与交换网板1光互连的各交换网板->目的线卡,那么同样需要计算各路径的路径时延。
举例来说,如图5-1所示,路由器线卡发送端与交换网板1和交换网板2光互连,路由器线卡目的端与交换网板1和交换网板2光互连,从而形成两条传输的路径:路径1为发送端-交换网板1-目的端,路径2为发送端-交换网板2-目的端。发送端在发送数据给目的端时,通过路径1和路径2负载分担发送数据给目的端,由于路径1和路径2中光纤长度相差较大,所以发送端通过这两条路径发送数据给目的端时,通过路径1和通过路径2传输的数据达到目的端的时间也会存在较大差异。由于当初在部署路由器线卡时,已经根据计算过路径1的传输时延的1微秒,路径2的传输时延为10微秒。所以,可以将分担到路径1的数据经过延时模块,以延时9微秒后再发送,分担到路径2的数据延时0微秒,或不经过延时模块,最终可以使得通过路径1和路径2发送的数据达到目的端的时间 基本相同,具体的转发设备内部针对延时的功能结构可参考图5-2,具体的结构不限于图5-2。
具体来说,计算所述线卡到目的线卡的路径时延,主要包括以下两种方法:
方法一:所述线卡通过指定路径发送测量报文至所述目的线卡,所述测量报文携带所述线卡发送所述测量报文时系统当前的时间戳,然后由目的线卡从所述指定路径原路将测量报文返回至所述线卡,其中,所述指定路径是指线卡到目的交换网板的路径,以及目的交换网板到所述目的线卡的路径。
线卡接收到目的线卡返回的测量报文后,则根据系统当前的时间和所述测量报文中的时间戳,即可计算出所述指定路径的时延。
方法二:所述线卡根据光信号在光纤中传播的速度,所述线卡到目的交换网板的光纤长度,以及所述目的交换网板到所述目的线卡的光纤长度,计算出所述路径时延。
需要说明的是,在上述方法一和方法二中,线卡既可以针对一级交换网的路径时延进行计算,还可以计算多级交换网的路径时延,一级交换网的路径时延和多级交换网(如图6所示的拓扑结构)的路径时延的计算方式相同。
下面以多级交换网为例进行延时补偿,如图7所示,线卡7(发送端)到线卡10(接收端)有多条路径,可以用路径ID来标识每条路径,也可以用路径上节点的节点ID来标识每条路径。图7中,路径1对应的作为节点的交换网板为:1-5-3,路径2对应的为节点的交换网板为:2-6-4,依此类推。经过测量,路径1的传输时延是1毫秒,路径2为10毫秒,则在路径1和路径2上做负载分担发送数据时,需要将路径1上的数据延时9毫秒后再发送出去。
此外,在多级交换网场景下,线卡7注册时的测量过程如下:
新线卡7上线并申请到线卡ID后,发送注册消息给所有连接到的交换网板1、2,注册消息中包含时间戳和线卡ID 7,注册消息的消息类型标识为“注册”。
之后,交换网板1收到注册消息后,在注册消息中添加自己的网板ID(添加ID=1),然后将添加了ID=7的注册消息1转发给与其连接的所有其他线卡8,以及转发给所有与其连接的下一级交换网板5、6。交换网板2收到该注册消息后的流程与交换网板1同理,不再赘述。
在交换网板5收到交换网板1发送的注册消息1后,会将自己的网板ID添加至该注册消息1中,然后将添加了ID=5的注册消息2转发给其他所有与其连接的交换网板2、3、4。交换网板6收到该注册消息2后的流程与交换网板5同理,不再赘述。
之后,交换网板3收到交换网板5发送的注册消息2后,将自己的网板ID依次填在该注册消息2中,然后将添加了ID=3的注册消息3转发给与其连接的线卡9、10。交换网板3、4在收到该注册消息后的流程与交换网板3同理,不再赘述。
线卡10收到该注册消息3后,便生成注册ACK消息,同时在该注册ACK消息中携带线卡7发送的注册消息中携带的时间戳,以及各交换网板添加的网板ID(或端到端路径ID),最后沿注册消息的传输路径原路返回至线卡7。
线卡7在收到注册ACK消息后,可以从该注册ACK消息中获取相应的路径信息,然后根据这些路径信息就可以计算出各路径的单程时延。
以上对本发明中一种单板注册的方法进行说明,以下对执行上述单板注册的线卡及交换网板分别进行描述。
一、参照图8,对线卡80进行说明,线卡80包括:
所述线卡80包括处理器801和交换网接口芯片802,所述交换网接口芯片802与至少一个交换网板中的交换网网片通过光纤光互连;
所述交换网接口芯片802用于获取所述线卡的线卡信息,以及通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡80进行注册。
所述交换网接口芯片802在获取所述线卡的线卡信息之前还用于:通过光互连路径获取所述线卡的线卡标识。若所述至少一个交换网板包括主交换网板,那么,所述交换网接口芯片802具体用于:先通过光互连路径向所述主交换网板发送第一请求消息,所述第一请求消息用于请求获取所述线卡的线卡标识;
然后通过光互连路径接收所述主交换网板返回的第一请求响应,所述第一请求响应携带所述主交换网板根据所述第一请求消息为所述线卡分配的线卡标识。
在一些可能的设计中,所述交换网接口芯片802具体用于:当接收到所述主交换网板分配的线卡标识后,将第一注册消息发送给与所述线卡光互连的所述工作交换网板,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识,以使所述工作交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识,所述工作交换网板为所述至少一个交换网板中的交换网板。
所述交换网接口芯片802在将第一注册消息发送给与所述线卡光互连的工作交换网板后,还可以接收所述工作交换网板发送的第一注册确认响应,所述第一注册确认响应由与所述工作交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
其中,所述第一注册消息还携带所述线卡发送第一注册消息时当前系统的时间戳,所述第一注册确认响应中携带所述时间戳。
在一些设计中,线卡还可以对第一交换网板进行注册,具体为:
所述交换网接口芯片802接收与所述线卡光互连的第一交换网板发送的第二注册消息,所述第二注册消息携带所述第一交换网板的网板信息和所述第一交换网板的网板标识;
然后,处理器801根据所述第二注册消息记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
在处理器801记录所述第一交换网板的网板信息和所述第一交换网板的网板标识后,所述交换网接口芯片还可以将所述第二注册消息转发至与所述线卡光互连的交换网板,以使与所述线卡光互连的交换网板记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
另外,所述交换网接口芯片802在所述线卡将所述第二注册消息转发至与所述线卡光互连的交换网板之后,还可以接收所述工作交换网板发送的第一注册响应,所述第一注册响应由与所述工作交换网板光互连的线卡生成,所述第二注册响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
为减少由于负载分担路径导致的数据排序问题,在注册完成后,处理器还可以计算所述线卡到目的线卡的路径时延,并根据所述路径时延将数据报文发送至所述目的线卡。计算路径时延主要通过以下之一:
所述交换网接口芯片802通过指定路径发送测量报文至所述目的线卡,并从所述指定路径接收所述目的线卡返回的测量报文,所述测量报文携带所述线卡发送所述测量报文时系统当前的时间戳;然后处理器801根据系统当前的时间和所述时间戳,计算出所述指定路径的时延,所述指定路径是指所述线卡到所述目的交换网板的路径以及所述目的交换网板到所述目的线卡的路径;
或者,处理器801根据光信号在光纤中传播的速度,所述线卡到目的交换网板的光纤长度,以及所述目的交换网板到所述目的线卡的光纤长度,计算出所述路径时延。
此外,当检测到与所述线卡光互连的交换网板断连时,处理器801还可以释放本地记录的分配给断连的交换网板的网板标识,以减少冗余数据,且释放的网板标识可以回收利用。
在有些场景中,还可在转发设备中引入光交叉设备,在所述交换网芯片802与光交叉设备的光互连时,所述交换网接口芯片802将第一注册消息发送给所述光交叉设备,以使所述光交叉设备将所述第一注册消息转发给控制器,所述第一注册消息用于请求注册所述第一线卡的线卡信息和配置第一光口映射关系,所述第一光口映射关系为所述第一线卡到至少一个所述交换网板之间的光口映射关系。
二、参照图9,对第一交换网板90进行说明,第一交换网板90包括:包括处理器901和交换网网片902,所述交换网网片902与至少一个线卡的交换网芯片光互连;
所述交换网网片902,用于通过光互连路径接收线卡发送的所述线卡的线卡信息;
所述处理器901,用于根据所述线卡信息对所述线卡进行注册。
具体来说,由交换网网片902接收与所述第一交换网板90光互连的线卡发送的第一注册消息,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识;
然后由处理器901根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识。
在所述第一交换网板90根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识之后,处理器901还可以在所述第一注册消息中添加所述第一交换网板90的网板标识,然后由交换网网片902将添加了所述第一交换网板的网板标识的所述第一注册消息转发至与所述第一交换网板光互连的线卡,使得与所述第一交换网板90光互连的线卡记录所述线卡信息。
在处理器901将添加了所述第一交换网板90的网板标识的所述第一注册消息转发至与所述第一交换网板90光互连的线卡后,所述交换网网片902还用于:
在接收到第一注册确认响应后,将所述第一注册确认响应转发给所述线卡,所述第一注册确认响应由与所述第一交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
第一交换网板90不仅可以对与之光互连的线卡进行注册,并且在第一交换网板90上线后,还需要线卡对第一交换网板90进行注册,具体的,所述交换网网片902获取所述第一交换网板的网板信息,并通过光互连路径向所述至少一个线卡发送所述第一交换网板 90的网板信息,使得收到网板信息的所述至少一个线卡根据所述网板信息对所述第一交换网板进行注册。
所述交换网网片902在获取所述第一交换网板90的网板信息之前,还可以用于:通过光互连路径获取所述第一交换网板的网板标识。
若所述至少一个第二交换网板包括主交换网板,所述交换网网片具体用于:
通过光互连路径向所述主交换网板发送第二请求消息,所述第二请求消息用于请求获取所述第一交换网板90的网板标识;
并通过光互连路径接收第二请求响应,所述第二请求响应携带所述主交换网板根据所述第二请求消息为所述第一交换网板90分配的网板标识。
对第一交换网板90进行注册的具体过程为:所述交换网网片902将第二注册消息发送给与所述第一交换网板90光互连的工作线卡,所述第二注册消息携带所述第一交换网板90的网板信息和所述第一交换网板90的网板标识,以使所述工作线卡记录所述第一交换网板90的网板信息和所述第一交换网板90的网板标识,所述工作线卡为所述至少一个线卡中的线卡。
所述交换网网片902在将所述第二注册消息发送给与所述第一交换网板90光互连的工作线卡之后,还可用于:
接收所述工作线卡发送的第二注册确认响应,所述第二注册确认响应由与所述工作线卡光互连的交换网板生成,所述第二注册响应携带所述第一交换网板90所在的光互连路径中的各交换网板的网板信息。
实际使用转发设备过程中,很可能会出现误拔出光纤、接触不良或者光纤损坏导致的线卡断连文艺,那么第一交换网板90还可以实时检测光互连路径上的各线卡的连接状态,当检测到与所述第一交换网板90光互连的线卡断连时,所述处理器901还可以释放本地记录的分配给断连的线卡的线卡标识。
在一些设计中,当所述第一交换网板90接收到消息类型为工作状态的通知消息时,所述处理器901则根据所述通知消息更新本地记录的线卡的工作状态,并通过所述交换网网片902将所述通知消息转发给与所述第一交换网板90光互连的线卡。
在一些设计中,若在转发设备中引入光交叉设备,所述交换网网片902与光交叉设备光互连时,所述交换网网片902还可用于:将第二注册消息发送至所述光交叉设备,以使所述光交叉设备将所述第二注册消息转发给与所述光交叉设备通信连接的控制器,所述第二注册消息用于请求注册所述第一交换网板90的网板信息和配置第二光口映射关系,所述第二光口映射关系为至少一个所述线卡到所述第一交换网板90之间的光口映射关系。
本发明还提供一种转发设备1,所述转发设备1包括至少一个线卡11和至少一个交换网板12,所述线卡11包括至少一个交换网接口芯片111,所述交换网板12包括至少一个交换网网片121。
线卡11中的每个交换网接口芯片111都可与至少一个交换网板12中的交换网网片121通过光纤光互连,所述交换网板12用于转发所述线卡11发送的数据,以及将目的端为所述线卡11的数据转发给所述线卡11。
其中,所述至少一个线卡11至少包括路由器线卡、交换机线卡、光传送网OTN线卡、分组传送网PTN线卡以及可编程白盒线卡中的一种。
所述线卡11还包括至少一个芯片112,所述交换网接口芯片111、与所述至少一个芯片112之间通过电互连和/或光互连串联,具体的连接图可参考图2-2和图2-3。
具体来说,所述交换网接口芯片111包括至少一个第一硅光芯片1111,交换网板中的交换网网片121包括至少一个第二硅光芯片1211;
所述第一硅光芯片1111和所述第二硅光芯片1211通过光纤光互连,具体的连接图可参考图10-1。
若所述转发设备1还引入光交叉设备,那么所述线卡11中的交换网接口芯片111与所述光交叉设备通过光纤光互连,所述光交叉设备与至少一个所述交换网板12中的交换网网片121通过光纤光互连。具体的连接图可参考图4。
与现有机制相比,本发明中在部署转发设备下辖的线卡和/或交换网板时,无需机框或机柜、也不局限于部署位置,能够实现远距离的分布式部署,能够提高部署效率,并且在新部署线卡和/或交换网板时,也不会影响到已有的光互连路径。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文全称:Read-Only Memory,英文简称:ROM)、随机存取存储器(英文全称:Random Access Memory,英文简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范
围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种线卡注册的方法,应用于线卡,所述线卡包括交换网接口芯片,其特征在于,所述交换网接口芯片与至少一个交换网板中的交换网网片通过光纤光互连,所述方法包括:
    所述线卡获取所述线卡的线卡信息;
    所述线卡通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡进行注册。
  2. 根据权利要求1所述的方法,其特征在于,在获取所述线卡的线卡信息之前,所述方法还包括:
    所述线卡通过光互连路径获取所述线卡的线卡标识。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个交换网板包括主交换网板,所述线卡通过光互连路径获取所述线卡的线卡标识,包括:
    所述线卡通过光互连路径向所述主交换网板发送第一请求消息,所述第一请求消息用于请求获取所述线卡的线卡标识;
    所述线卡通过光互连路径接收第一请求响应,所述第一请求响应携带所述主交换网板根据所述第一请求消息为所述线卡分配的线卡标识。
  4. 根据权利要求2或3所述的方法,其特征在于,所述通过光互连路径向所述至少一个交换网板发送所述线卡信息,包括:
    当所述线卡接收到所述主交换网板分配的线卡标识后,所述线卡将第一注册消息发送给与所述线卡光互连的工作交换网板,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识,以使所述工作交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识,所述工作交换网板为所述至少一个交换网板中的交换网板。
  5. 根据权利要求4所述的方法,其特征在于,在所述线卡将第一注册消息发送给与所述线卡光互连的工作交换网板后,所述方法还包括:
    所述线卡接收所述工作交换网板发送的第一注册确认响应,所述第一注册确认响应由与所述工作交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一注册消息还携带所述线卡发送第一注册消息时当前系统的时间戳,所述第一注册确认响应中携带所述时间戳。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    所述线卡接收与所述线卡光互连的第一交换网板发送的第二注册消息,所述第二注册消息携带所述第一交换网板的网板信息和所述第一交换网板的网板标识;
    所述线卡根据所述第二注册消息记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
  8. 根据权利要求7所述的方法,其特征在于,在记录所述第一交换网板的网板信息和所述第一交换网板的网板标识后,所述方法还包括:
    所述线卡将所述第二注册消息转发至与所述线卡光互连的交换网板,以使与所述线卡光互连的交换网板记录所述第一交换网板的网板信息和所述第一交换网板的网板标识。
  9. 根据权利要求8所述的方法,其特征在于,在所述线卡将所述第二注册消息转发至与所述线卡光互连的交换网板之后,所述方法还包括:
    所述线卡接收所述工作交换网板发送的第一注册响应,所述第一注册响应由与所述工作交换网板光互连的线卡生成,所述第二注册响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
  10. 根据权利要求1-9任一所述的方法,其特征在于,所述方法还包括:
    所述线卡计算所述线卡到目的线卡的路径时延,并根据所述路径时延将数据报文发送至所述目的线卡。
  11. 根据权利要求10所述的方法,其特征在于,所述线卡计算所述线卡到目的线卡的路径时延,包括以下项之一:
    所述线卡通过指定路径发送测量报文至所述目的线卡,并从所述指定路径接收所述目的线卡返回的测量报文,所述测量报文携带所述线卡发送所述测量报文时系统当前的时间戳;并根据系统当前的时间和所述时间戳,计算出所述指定路径的时延,所述指定路径是指所述线卡到所述目的交换网板的路径以及所述目的交换网板到所述目的线卡的路径;
    或者,所述线卡根据光信号在光纤中传播的速度,所述线卡到目的交换网板的光纤长度,以及所述目的交换网板到所述目的线卡的光纤长度,计算出所述路径时延。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述线卡检测到与所述线卡光互连的交换网板断连时,释放本地记录的分配给断连的交换网板的网板标识。
  13. 根据权利要求4-12任一所述的方法,其特征在于,所述交换网芯片与光交叉设备的光互连时,所述方法还包括:
    所述线卡将第一注册消息发送给所述光交叉设备,以使所述光交叉设备将所述第一注册消息转发给控制器,所述第一注册消息用于请求注册所述第一线卡的线卡信息和配置第一光口映射关系,所述第一光口映射关系为所述第一线卡到至少一个所述交换网板之间的光口映射关系。
  14. 一种交换网板注册的方法,用于第一交换网板,所述第一交换网板包括交换网网片,其特征在于,所述交换网网片与至少一个线卡的交换网芯片光互连,所述方法包括:
    所述第一交换网板通过光互连路径接收线卡发送的所述线卡的线卡信息;
    所述第一交换网板根据所述线卡信息对所述线卡进行注册。
  15. 根据权利要求14所述的方法,其特征在于,所述第一交换网板通过光互连路径接收线卡发送的所述线卡的线卡信息;所述第一交换网板根据所述线卡信息对所述线卡进行注册,包括:
    所述第一交换网板接收与所述第一交换网板光互连的线卡发送的第一注册消息,所述第一注册消息携带所述线卡的线卡信息和所述线卡的线卡标识;
    所述第一交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识。
  16. 根据权利要求15所述的方法,其特征在于,在所述第一交换网板根据所述第一注册消息记录所述线卡的线卡信息和所述线卡的线卡标识之后,所述方法还包括:
    所述第一交换网板在所述第一注册消息中添加所述第一交换网板的网板标识,并将添加了所述第一交换网板的网板标识的所述第一注册消息转发至与所述第一交换网板光互连的线卡,使得与所述第一交换网板光互连的线卡记录所述线卡信息。
  17. 根据权利要求16所述的方法,其特征在于,在将添加了所述第一交换网板的网板标识的所述第一注册消息转发至与所述第一交换网板光互连的线卡后,所述方法还包括:
    所述第一交换网板接收到第一注册确认响应后,将所述第一注册确认响应转发给所述线卡,所述第一注册确认响应由与所述第一交换网板光互连的线卡生成,所述第一注册确认响应携带所述线卡所在的光互连路径中的各线卡的线卡信息。
  18. 根据权利要求14-17任一所述的方法,其特征在于,所述方法还包括:
    所述第一交换网板获取所述第一交换网板的网板信息;
    所述第一交换网板通过光互连路径向所述至少一个线卡发送所述网板信息,以使所述至少一个线卡根据所述网板信息对所述第一交换网板进行注册。
  19. 根据权利要求18所述的方法,其特征在于,在获取所述第一交换网板的网板信息之前,所述方法还包括:
    所述第一交换网板通过光互连路径获取所述第一交换网板的网板标识。
  20. 根据权利要求19所述的方法,其特征在于,所述至少一个第二交换网板包括主交换网板,所述第一交换网板通过光互连路径获取所述第一交换网板的网板标识,包括:
    所述第一交换网板通过光互连路径向所述主交换网板发送第二请求消息,所述第二请求消息用于请求获取所述第一交换网板的网板标识;
    所述第一交换网板通过光互连路径接收第二请求响应,所述第二请求响应携带所述主交换网板根据所述第二请求消息为所述第一交换网板分配的网板标识。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一交换网板通过光互连路径向所述至少一个线卡发送所述网板信息,包括:
    所述第一交换网板将所述第二注册消息发送给与所述第一交换网板光互连的工作线卡,所述第二注册消息携带所述第一交换网板的网板信息和所述第一交换网板的网板标识,以使所述工作线卡记录所述第一交换网板的网板信息和所述第一交换网板的网板标识,所述工作线卡为所述至少一个线卡中的线卡。
  22. 根据权利要求21所述的方法,其特征在于,在将所述第二注册消息发送给与所述第一交换网板光互连的工作线卡之后,所述方法还包括:
    所述第一交换网板接收所述工作线卡发送的第二注册确认响应,所述第二注册确认响应由与所述工作线卡光互连的交换网板生成,所述第二注册响应携带所述第一交换网板所在的光互连路径中的各交换网板的网板信息。
  23. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    当所述第一交换网板检测到与所述第一交换网板光互连的线卡断连时,释放本地记录的分配给断连的线卡的线卡标识。
  24. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    当所述第一交换网板接收到消息类型为工作状态的通知消息时,所述第一交换网板根据所述通知消息更新本地记录的线卡的工作状态,并将所述通知消息转发给与所述第一交换网板光互连的线卡。
  25. 根据权利要求14-24任一所述的方法,其特征在于,所述交换网网片与光交叉设备光互连时,所述方法还包括:
    所述第一交换网板将第二注册消息发送至所述光交叉设备,以使所述光交叉设备将所述第二注册消息转发给与所述光交叉设备通信连接的控制器,所述第二注册消息用于请求注册所述第一交换网板的网板信息和配置第二光口映射关系,所述第二光口映射关系为至少一个所述线卡到所述第一交换网板之间的光口映射关系。
  26. 一种线卡,所述线卡包括交换网接口芯片,其特征在于,所述交换网接口芯片与至少一个交换网板中的交换网网片通过光纤光互连;
    所述交换网接口芯片用于获取所述线卡的线卡信息,以及通过光互连路径向所述至少一个交换网板发送所述线卡信息,以使所述至少一个交换网板根据所述线卡信息对所述线卡进行注册。
  27. 一种第一交换网板,所述第一交换网板包括处理器和交换网网片,其特征在于,所述交换网网片与至少一个线卡的交换网芯片光互连;
    所述交换网网片,用于通过光互连路径接收线卡发送的所述线卡的线卡信息;
    所述处理器,用于根据所述线卡信息对所述线卡进行注册。
  28. 一种转发设备,其特征在于,所述转发设备包括至少一个线卡和至少一个交换网板,所述线卡包括交换网接口芯片,所述交换网板包括交换网网片;
    所述线卡中的交换网接口芯片与至少一个所述交换网板中的交换网网片通过光纤光互连,所述交换网板用于转发所述线卡发送的数据,以及将目的端为所述线卡的数据转发给所述线卡。
  29. 根据权利要求28所述的转发设备,其特征在于,所述至少一个线卡至少包括路由器线卡、交换机线卡、光传送网OTN线卡、分组传送网PTN线卡以及可编程白盒线卡中的一种。
  30. 根据权利要求28或29所述的转发设备,其特征在于,所述线卡还包括至少一个芯片,所述交换网接口芯片、与所述至少一个芯片之间通过电互连和/或光互连串联。
  31. 根据权利要求28-30所述的转发设备,其特征在于,所述线卡中的交换网接口芯片包括至少一个第一硅光芯片,所述交换网板中的交换网网片包括至少一个第二硅光芯片;
    所述第一硅光芯片和所述第二硅光芯片通过光纤光互连。
  32. 根据权利要求31所述的转发设备,其特征在于,所述转发设备还包括光交叉设备,所述线卡中的交换网接口芯片与所述光交叉设备通过光纤光互连;所述光交叉设备与至少一个所述交换网板中的交换网网片通过光纤光互连。
PCT/CN2017/103680 2016-09-27 2017-09-27 一种单板注册的方法、单板及转发设备 WO2018059442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854892.1A EP3506562B1 (en) 2016-09-27 2017-09-27 Method for registering single board, single board, and forwarding device
US16/365,863 US10805107B2 (en) 2016-09-27 2019-03-27 Board registration method, board, and forwarding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610855282.2 2016-09-27
CN201610855282.2A CN107872340B (zh) 2016-09-27 2016-09-27 一种单板注册的方法、单板及转发设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,863 Continuation US10805107B2 (en) 2016-09-27 2019-03-27 Board registration method, board, and forwarding device

Publications (1)

Publication Number Publication Date
WO2018059442A1 true WO2018059442A1 (zh) 2018-04-05

Family

ID=61751341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103680 WO2018059442A1 (zh) 2016-09-27 2017-09-27 一种单板注册的方法、单板及转发设备

Country Status (4)

Country Link
US (1) US10805107B2 (zh)
EP (1) EP3506562B1 (zh)
CN (1) CN107872340B (zh)
WO (1) WO2018059442A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842445B (zh) * 2017-11-29 2021-02-05 华为技术有限公司 光背板系统、交换系统及其升级方法
CN111294228B (zh) * 2018-12-07 2022-10-18 迈普通信技术股份有限公司 线卡编号检测法、装置及其存储介质
CN109831326B (zh) * 2019-01-25 2021-08-06 新华三技术有限公司 网络设备控制方法及网络设备
CN113259781A (zh) * 2020-02-10 2021-08-13 华为技术有限公司 连接结构及设备安装方法
CN111355658B (zh) * 2020-02-28 2021-07-13 电子科技大学 基于分布式服务框架的sdn跨域协作方法
CN113542935A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 一种信号帧的处理方法及相关设备
US11245619B1 (en) * 2020-12-03 2022-02-08 Eci Telecom Ltd. Dynamic fabric system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631081A (zh) * 2009-08-12 2010-01-20 华为技术有限公司 一种多级交换网
CN101895398A (zh) * 2010-07-15 2010-11-24 华为技术有限公司 数据通信方法和装置
CN102356598A (zh) * 2011-08-23 2012-02-15 华为技术有限公司 一种多框级联装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675735A (en) * 1994-06-29 1997-10-07 Digital Equipment Corporation Method and apparatus for interconnecting network devices in a networking hub
US7218640B2 (en) * 2002-08-30 2007-05-15 Intel Corporation Multi-port high-speed serial fabric interconnect chip in a meshed configuration
US6809258B1 (en) * 2003-02-24 2004-10-26 Cisco Technology, Inc. Apparatus for cable routing management
US8478099B2 (en) * 2009-11-13 2013-07-02 Reflex Photonics Inc. Optical backplane rack assembly with external optical connectors
WO2013180287A1 (ja) * 2012-06-01 2013-12-05 日本電気株式会社 スイッチングシステム、ラインカード、スイッチカード、fdb学習方法、fdb学習調停方法及びプログラム
US9747183B2 (en) * 2013-12-31 2017-08-29 Ciena Corporation Method and system for intelligent distributed health monitoring in switching system equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631081A (zh) * 2009-08-12 2010-01-20 华为技术有限公司 一种多级交换网
CN101895398A (zh) * 2010-07-15 2010-11-24 华为技术有限公司 数据通信方法和装置
US20120014391A1 (en) * 2010-07-15 2012-01-19 Huawei Technologies Co., Ltd. Data communication method and data communication apparatus
CN102356598A (zh) * 2011-08-23 2012-02-15 华为技术有限公司 一种多框级联装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506562A4 *

Also Published As

Publication number Publication date
US10805107B2 (en) 2020-10-13
CN107872340B (zh) 2021-09-07
EP3506562A1 (en) 2019-07-03
EP3506562A4 (en) 2019-07-31
CN107872340A (zh) 2018-04-03
US20190222436A1 (en) 2019-07-18
EP3506562B1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2018059442A1 (zh) 一种单板注册的方法、单板及转发设备
CN101820358B (zh) 高利用率以及多路的以太网光纤通道
US8738802B2 (en) Forwarding traffic flow in intelligent resilient framework system
CN102447624B (zh) 在服务器集群上实现负载均衡的方法、节点服务器及集群
US10404571B2 (en) Communication among network controllers
US10404773B2 (en) Distributed cluster processing system and packet processing method thereof
CN112910773B (zh) 下发oam配置信息的方法及控制节点
CN107615721B (zh) 传输软件定义网络-逻辑链路聚合成员信令的系统和方法
WO2016165142A1 (zh) 一种虚拟网络的保护方法和装置
US20160315879A1 (en) Virtual node having separate control and data planes
CN107615722B (zh) 传输软件定义网络(sdn)——经由分组窥探的零配置邻接
JPWO2021130804A1 (ja) 光通信装置およびリソース管理方法
Samadi et al. Virtual machine migration over optical circuit switching network in a converged inter/intra data center architecture
US10257118B2 (en) Implementation method and device for VLAN to access VF network, and FCF
CN104753707A (zh) 一种系统维护方法及网络交换设备
US20120051364A1 (en) Distributed routing according to longest match principle
CN109788018A (zh) 跨域的业务互通方法、网络设备及存储介质
CN102647338A (zh) 网络通信方法和设备
US9832041B2 (en) Switch device and control method of switch device
CN112751768B (zh) 业务报文转发方法、装置及计算机存储介质
CN105227334A (zh) 一种Fabric网络拓扑发现方法和装置
CN112751766A (zh) 报文转发方法、装置及计算机存储介质
WO2022142932A1 (zh) 一种路由处理方法、相关装置以及网络系统
JPWO2019240158A1 (ja) 通信システム及び通信方法
KR20240022456A (ko) 메시지 처리 방법, 디바이스, 네트워크 기기 및 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854892

Country of ref document: EP

Effective date: 20190329