WO2018059290A1 - 参数的通告方法、获取方法及装置、存储介质 - Google Patents
参数的通告方法、获取方法及装置、存储介质 Download PDFInfo
- Publication number
- WO2018059290A1 WO2018059290A1 PCT/CN2017/102525 CN2017102525W WO2018059290A1 WO 2018059290 A1 WO2018059290 A1 WO 2018059290A1 CN 2017102525 W CN2017102525 W CN 2017102525W WO 2018059290 A1 WO2018059290 A1 WO 2018059290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mrt
- node
- profile
- blue
- red
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/16—Multipoint routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
- H04L45/484—Routing tree calculation using multiple routing trees
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/74—Address processing for routing
- H04L45/745—Address table lookup; Address filtering
- H04L45/748—Address table lookup; Address filtering using longest matching prefix
Definitions
- the present application relates to the field of communications, and in particular, to a method, a method, a device, and a storage medium for notifying a parameter.
- MRT Maximum Redundant Trees
- FRR Fast Re-Route
- the MRT architecture defines two forwarding mechanisms, namely, the Label Distribution Protocol (LDP) forwarding mechanism and the network protocol-tunnel (IP-tunnel) forwarding mechanism.
- LDP Label Distribution Protocol
- IP-tunnel network protocol-tunnel
- the LDP forwarding mechanism distinguishes between the default topology forwarding behavior and the MRT forwarding behavior through different labels, so that the forwarding plane can support MRT-FRR without any upgrade.
- the IP-tunnel forwarding mechanism needs to waste the dedicated MRT loopback (local loopback interface) address to support forwarding. It also enables the forwarding plane to support MRT-FRR without any upgrade.
- MRT architecture (RFC7812) defines the default maximum redundancy tree configuration file (default MRT Profile), which uses the LDP forwarding mechanism.
- default MRT Profile the default maximum redundancy tree configuration file
- other MRT profiles are not defined.
- OSPF Internet Engineering Task Force
- the embodiment of the present application provides a method, a method, and a device for notifying a parameter, so as to solve at least the problem of not being able to implement the notification of the capability information of a part of the MRT.
- a method for notifying a parameter including: determining, by a first node, a parameter included in a default default redundancy tree configuration information default MRT Profile; the first node adopts an internal gateway protocol (Internal Gateway) The protocol, IGP) extension advertises the parameters included in the non-default MRT Profile to the second node.
- IGP Internal Gateway
- a method for obtaining a parameter includes: acquiring, by a second node, a non-default maximum redundancy tree configuration information that is advertised by the first node by using an internal gateway protocol IGP, and a default MRT profile. parameter.
- a parameter notification device is further provided, where the device is applied to the first node, and includes: a determining module, configured to determine a non-default maximum redundancy tree configuration information that is included in the default MRT Profile. And a notification module, configured to advertise the parameters included in the non-default MRT Profile to the second node by using an internal gateway protocol IGP extension.
- a storage medium is also provided.
- the storage medium is configured to store computer executable instructions, such as program code, which, after being executed, are capable of implementing the method of notifying the parameters provided by one or more of the above technical solutions.
- the IGP extension is used to advertise the parameters included in the non-default MRT profile, and the parameters included in the non-default MRT Profile are used to describe the capabilities of the MRT. Therefore, the capability information of the related technologies that cannot implement part of the MRT can be solved. Question of the notice The effect of reaching the notification of the capability information of the partial MRT.
- FIG. 1 is a flowchart of a method for announcing parameters according to an embodiment of the present application
- FIG. 2 is a flowchart of a method for announcing parameters according to an embodiment of the present application
- FIG. 3 is a flow chart of MRT capability transfer in a specific embodiment of the present application.
- FIG. 4 is a schematic diagram of an MRT Profile TLV format for supporting IRT and OSPF extension support MRT capability notification according to an embodiment of the present application
- FIG. 5 is a schematic diagram of a MRT scoped information sub-TLV format according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of a network topology according to an alternative embodiment of the present application.
- FIG. 7 is a structural block diagram of a device for notifying a parameter according to an embodiment of the present application.
- FIG. 8 is a structural block diagram of an apparatus for acquiring parameters according to an embodiment of the present application.
- FIG. 9 is a block diagram showing a preferred configuration of an apparatus for acquiring parameters according to an embodiment of the present application.
- FIG. 1 is an embodiment according to the present application.
- a flowchart of a method for announcing parameters, as shown in FIG. 1, the process includes the following steps:
- Step S102 the first node determines a parameter included in the default MRT profile of the non-default maximum redundancy tree configuration information
- Step S104 The first node advertises the parameters included in the non-default MRT Profile to the second node by using an internal gateway protocol IGP extension.
- the non-default MRT Profile contains parameters for describing the capabilities of the MRT, and therefore, the capability information of the MRT that cannot be implemented in the related art can be solved.
- the problem of the announcement reaches the effect of the notification of the capability information of the partial MRT.
- the first node determines a parameter included in the non-default MRT Profile. These parameters are sent to the second node based on the extended message of the IGP.
- the non-default MRT profile is an MRT file other than the default MRT profile, which may be called For the second type of MRT file.
- the step S104 may include: sending the second type of MRT file to the second node, and when the second type of MRT file is sent, the parameter in the second type of MRT file may be carried.
- the second node is sent to the second node in the extended field of the extended IGP. In this way, the second node can easily parse and identify the parameters in the second type of MRT file sent by the first node by using the IGP protocol.
- the parameters included in the second type of MRT file may include: MRT capability information, and may further include other communication-related information in addition to the MRT capability information.
- the parameters included in the non-default MRT Profile described above may also be referred to as MRT capability information.
- the above notification may include one or more packages encapsulated in a Type Length Value (TLV) package format, or other forms that may be used for the above parameter identification.
- TLV Type Length Value
- the Type is a type field, and the type field may be used to carry a parameter type of a parameter included in a non-default MRT Profile.
- the length corresponds to the length of the packet, which may be The total number of bytes of the packet carrying the parameters included in the non-default MRT Profile.
- the Value field may be a content field that carries parameters included in the non-default MRT Profile.
- the parameter included in the non-default MRT profile may be based on a packet formed by using a TLV encapsulation format, and then the packet is transmitted between the first node and the second node, and the first node and the second node are in the When the message is encoded and decoded, it can be performed based on the IGP.
- the step S104 may include:
- the second node is an IGP neighbor node that is in the same area or level as the first node. That is to say, the first node advertises the parameters included in the non-default MRT Profile to the IGP neighbors in the same area or level as the first node through the IGP extension.
- the neighbor here may be a node adjacent to the first node, for example, a node directly connected with the first node, thereby realizing the notification of the capability information of the MRT between the adjacent nodes.
- the second node is not limited to the neighboring node of the first node.
- the non-default MRT profile generally has more parameters than the default MRT profile.
- the MRT profile using the IP-tunnel forwarding mechanism will additionally define the MRT-Blue or MRT-Red topology-specific MRT loopback address. There is no mechanism in the draft to describe how to advertise these dedicated MRT loopback addresses.
- the MRT profile using the segment routing forwarding mechanism additionally defines a segment routing global block (Segment Routing Global Block, SRGB for short) or MRT-Red topology.
- the prefix segment ID prefix segment-ID, referred to as prefix-sid
- the parameters included in the following non-default MRT Profile are exemplified.
- the parameters included in the non-default MRT Profile include the following at least one:
- the first node supports a specific MRT Profile identifier (MRT Profile ID);
- the first node When the first node supports a specific MRT Profile, it participates in the election of the Generalized Almost Directed Acyclic Graph root (GADAG root) priority (GADAG Priority); according to the MRT Island, the GADAG is drawn, the GADAG Each point in the figure represents a node in the MRT Island, and then the GADAG root is selected according to the priority of each node.
- the priority can be pre-configured by the management device.
- a loopback address (MRT-Blue loopback address) dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile
- the loopback address (MRT-Red loopback address) dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT profile
- the first node supports a specific MRT Profile specifically for the corresponding MRT-Blue topology (SRGB MRT-Blue SRGB);
- the first node supports a specific MRT Profile specifically for the corresponding MRT-Red topology (SRGB MRT-Red SRGB);
- the first node supports a specific MRT Profile when the node-level (prefix-sid MRT-Blue prefix-sid) is used for the corresponding MRT-Blue topology;
- the first node When the first node supports a specific MRT Profile, it is dedicated to the prefix-sid MRT-Red prefix-sid of the corresponding MRT-Red topology.
- the parameters included in the non-default MRT Profile may also include other extensible parameters than the above parameters.
- MRT-Blue loopback address, MRT-Blue SRGB, MRT-Blue prefix-sid can be MRT-Blue topology-specific information
- the first node above expands the non-default by IGP extension.
- the parameters included in the MRT Profile are advertised to the second node including:
- the first node advertises the parameters included in the non-default MRT Profile to the second node by using one or more types of length value TLV packages.
- different MRT profiles may selectively include a part of the above parameters (ie, MRT capability information).
- the above parameters may be included in the same TLV package or included in multiple TLV packages.
- FIG. 2 is a flowchart of a method for notifying a parameter according to an embodiment of the present application. As shown in FIG. 2, the process includes the following steps:
- Step S202 The second node acquires parameters included in the default MRT profile of the non-default maximum redundancy tree configuration information advertised by the first node by using the internal gateway protocol IGP.
- the parameters included in the non-default MRT profile may include: capability information describing the MRT capability, and therefore, the unreachable part of the MRT existing in the related art may be solved.
- the parameters included in the non-default MRT Profile described above may also be referred to as MRT capability information.
- the above IGP extension may be in the form of TLV (Type, Length, Value), or other forms that can be used for the above parameter identification.
- the second node is an IGP neighbor node that is in the same domain area or level level as the first node. That is to say, the first node advertises the parameters included in the non-default MRT Profile to the IGP neighbors in the same area or in the same level as the first node through the IGP extension.
- the parameter included in the non-default MRT profile includes at least one of the following: the first node supports the identifier MRT Profile ID of the specific MRT profile; and the first node supports the election of the GADAG root when supporting the specific MRT profile.
- Priority GADAG Priority dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile Loopback address MRT-Blue loopback address; the first node supports the MRT-Red loopback address of the corresponding MRT-Red topology when the specific MRT Profile is supported; the first node supports the specific MRT-Blue topology when it supports a specific MRT Profile.
- SRGB MRT-Blue SRGB SRGB MRT-Red SRGB dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT Profile
- the parameters included in the non-default MRT Profile may also include other extensible parameters than the above parameters.
- MRT-Blue loopback address, MRT-Blue SRGB, MRT-Blue prefix-sid can be MRT-Blue topology-specific information
- the acquiring, by the second node, the parameter included in the non-default MRT profile advertised by the first node by the IGP extension includes: obtaining, by the second node, the first node by using one or more types of length value TLVs.
- the parameters included in the above non-default MRT Profile may selectively include a part of the above parameters (ie, MRT capability information).
- the above parameters may be included in the same TLV or included in multiple TLVs.
- the method further includes: the second node creates an MRT Island according to parameters included in the non-default MRT Profile, and calculates an MRT fast reroute FRR forwarding information.
- the foregoing second node creates an MRT Island according to parameters included in the non-default MRT Profile and the calculated MRT FRR forwarding information includes:
- the second node determines that the second node is in the same domain area or level level and supports the same MRT Profile as the second node. a collection of nodes that recognize the ID;
- the second node creates an MRT Island corresponding to the same MRT Profile ID supported above, and MRT FRR forwarding information calculated based on the MRT Island to the destination prefix prefix.
- the MRT Island may include: a set of nodes supporting the same MRT Profile ID, and the nodes in the set may be directly connected or connected through other nodes in the set.
- the nodes in the MRT Island may be interconnected by a bidirectional link supporting MRT capabilities.
- each node (including the first node, the second node, and other nodes) will perceive a node set in the area or level with which it supports the same MRT profile ID, and establish a corresponding MRT profile ID.
- the MRT Island each node in the MRT Island can calculate the MRT FRR forwarding information to the destination prefix based on the MRT Island, and the MRT FRR forwarding information can be generated by using the MRT-Blue topology and the proprietary information in the MRT-Red topology. .
- the foregoing embodiments of the present application can implement MRT capability related information transmission through the IGP extension in the network, and flexible support notifications use multiple different forwarding mechanisms to include MRT Profiles of different types of parameters, so as to establish different forwarding using different types of parameters.
- the MRT Island of the mechanism generates the corresponding MRT FRR forwarding information.
- FIG. 3 is a flowchart of MRT capability delivery according to a specific embodiment of the present application. As shown in FIG. 3, the process includes the following steps:
- the node (corresponding to the foregoing first node) sends MRT capability related information (corresponding to the parameter included in the non-default MRT Profile) to the IGP neighbor node in the same area or level through the IGP extension, in particular, sends the MRT-Blue. Topology and MRT-Red topology-specific information.
- the IGP extension field may be in the form of TLV (Type, Length, Value), or other forms that can be used for MRT capability information identification.
- one of the IGP extension fields may correspond to a TLV package in which the type of the extension field, the length of the package, and parameter values of parameters are encapsulated.
- the foregoing MRT capability related information includes at least one of the following:
- MRT Profile ID The node supports the identity of a specific MRT Profile
- GADAG Priority The priority of participating in the election of GADAG root when a node supports a specific MRT Profile
- MRT-Blue loopback address The loopback address dedicated to the corresponding MRT-Blue topology when the node supports a specific MRT Profile
- MRT-Red loopback address The loopback address dedicated to the corresponding MRT-Red topology when the node supports a specific MRT Profile.
- MRT-Blue SRGB SRGB dedicated to the corresponding MRT-Blue topology when the node supports a specific MRT Profile
- MRT-Red SRGB SRGB dedicated to the corresponding MRT-Red topology when the node supports a specific MRT Profile
- MRT-Blue prefix-sid Node-level prefix-sid dedicated to the corresponding MRT-Blue topology when the node supports a specific MRT Profile;
- MRT-Red prefix-sid Node-level prefix-sid dedicated to the corresponding MRT-Red topology when the node supports a specific MRT profile;
- MRT-Blue loopback address, MRT-Blue SRGB, MRT-Blue prefix-sid can be used as MRT-Blue topology-specific information
- MRT-Red loopback address, MRT-Red SRGB, MRT-Red prefix-sid can be used as MRT-Red topology-specific information
- Different MRT profiles may optionally include some of the above MRT capability information. These MRT capability related information can be included in the same TLV or included in multiple TLVs.
- the IGP neighbor node (corresponding to the foregoing second node) receives the MRT capability related information sent by the IGP extension, and in particular, receives the information exclusive to the MRT-Blue topology and the MRT-Red topology.
- the received MRT capability related information includes: MRT Profile ID, GADAG Priority, MRT-Blue loopback address, MRT-Red loopback address, MRT-Blue SRGB, MRT-Red SRGB, MRT-Blue prefix-sid, MRT-Red Prefix-sid, and other extensible parameters.
- Each node will perceive the set of nodes in the area or level with which it supports the same MRT Profile ID, and establish the MRT Island corresponding to the MRT Profile ID.
- the nodes in the MRT Island may be through the bidirectional link supporting the MRT capability. interconnection.
- Each node calculates the MRT FRR forwarding information to the destination prefix based on the MRT Island.
- MRT FRR forwarding information is generated by using proprietary information within the MRT-Blue topology and the MRT-Red topology.
- FIG. 4 is a schematic diagram of an MRT Profile TLV format that supports IRT and OSPF extension support MRT capability notification according to an embodiment of the present application.
- the format shown in FIG. 4 can flexibly support multiple different types of MRT capability information advertisements, including one or more
- Scoped Flag When this flag is valid, it indicates that the corresponding MRT Profile ID also contains the parameters given in the MRT scoped information sub-TLV.
- the MRT Profile TLV is advertised with the IS-IS Router CAPABILITY TLV; in OSPF, the MRT Profile TLV is advertised with the OSPF router information LSA.
- FIG. 5 is a schematic diagram of an MRT scoped information sub-TLV format according to an embodiment of the present application. The figure is included in the above MRT Profile TLV.
- MRT scoped information sub-TLV describes the exclusive information in the MRT-Blue topology and the MRT-Red topology.
- the MRT-Blue scoped information or the MRT-Red scoped information has different values and meanings depending on the type value. for:
- Type indicates that both MRT-Blue scoped information and MRT-Red scoped information occupy 4 bytes of IPv4 address.
- Type 2 Indicates that both MRT-Blue scoped information and MRT-Red scoped information occupy 16 bytes of IPv6 address.
- Type 3 Indicates that both MRT-Blue scoped information and MRT-Red scoped information occupy 8 bytes of SRGB information. The first 4 bytes are Range and the last 4 bytes are the start label.
- Type 4 Indicates that the MRT-Blue scoped information together with the MRT-Red scoped information is a 12-byte prefix-sid information. The first 4 bytes are Router-id, then the 4-byte MRT-Blue prefix-sid, and finally the 4-byte MRT-Red prefix-sid.
- This embodiment describes the establishment of a corresponding (MRT Island) by extending the OSPF advertisement by using the MRT Profile of the IP tunnel forwarding mechanism.
- OSPF is running on the network, and all nodes are in the same area.
- Each node is configured with the same MRT profile ID that uses the IP tunnel forwarding mechanism, such as 1, and other MRT capability parameters, especially related.
- the MRT-Blue topology and the proprietary loopback address within the MRT-Red topology such as:
- each node advertises an OSPF router information LSA including the MRT Profile TLV in the area, and the MRT profile TLV includes the MRT capability parameters configured in the MRT Profile TLV, in particular, the MRT scoped information sub-TLV is included in the MRT Profile TLV, and the type is 1, give the MRT-Blue loopback address and MRT-Red loopback address of the above configuration.
- MRT FRR forwarding information is generated by using the MRT-Blue topology and the proprietary loopback address in the MRT-Red topology.
- the MRT-Blue backup path from S to D is an IP tunnel with a destination address of 4.4.4.9; S to D
- the MRT-Red backup path is an IP tunnel with a destination address of 4.4.4.10.
- This embodiment describes establishing an MRT Island by extending the OSPF advertisement by using the MRT Profile of the segmentation route forwarding mechanism.
- OSPF is running on the network, and all nodes are in the same area.
- Each node is configured with the same MRT profile ID that uses the segmented route forwarding mechanism, for example, 2, and other MRT capability parameters, especially The associated MRT-Blue topology and proprietary SRGB within the MRT-Red topology, such as:
- each node advertises an OSPF router information LSA including the MRT Profile TLV in the area, and the MRT profile TLV includes the MRT capability parameters configured in the MRT Profile TLV, in particular, the MRT scoped information sub-TLV is included in the MRT Profile TLV, and the type is 3.
- the MRT-Blue SRGB and MRT-Red SRGB are examples of the MRT-Blue SRGB and MRT-Red SRGB.
- the nodes in the MRT Island must be mutually supported by the MRT-capable bidirectional link. even.
- Each node calculates MRT FRR forwarding information to each destination prefix based on the MRT Island.
- the MRT FRR forwarding information is generated by using the MRT-Blue topology and the proprietary SRGB in the MRT-Red topology.
- the MRT-Blue backup path of S to D can be an SR-LSP, and the corresponding SR outgoing label is based on the MRT-
- the MRT-Blue SRGB of Blue nexthop is calculated with the node-sid of the destination node D;
- the MRT-Red backup path of S to D can be an SR-LSP, and the corresponding SR outgoing label is MRT-Red SRGB according to MRT-Red nexthop Calculated with the node-sid of the destination node D.
- This embodiment describes establishing an MRT Island by extending the OSPF advertisement by using the MRT Profile of the segmentation route forwarding mechanism.
- OSPF is running on the network, all nodes are in the same area, and each node is configured to support the same segmented route forwarding mechanism.
- MRT Profile ID for example, 3, and configuration of other MRT capability parameters, especially the related MRT-Blue topology and the proprietary node-level prefix-sid in the MRT-Red topology.
- the node-level prefix-sid can also be called node-sid. ,such as:
- each node advertises the OSPF router information LSA including the MRT Profile TLV in the area, and includes the MRT capabilities of the respective configurations in the MRT Profile TLV.
- the parameters in particular, the MRT scoped information sub-TLV, type 4 in the MRT Profile TLV, gives the MRT-Blue node-sid and MRT-Red node-sid of the respective configurations described above.
- the nodes in the MRT Island must be through the bidirectional link supporting MRT capability. even.
- Each node calculates MRT FRR forwarding information to each destination prefix based on the MRT Island.
- MRT FRR forwarding information is generated by using the MRT-Blue topology and the proprietary node-sid in the MRT-Red topology.
- the MRT-Blue backup path of S to D can be an SR-LSP, and the corresponding SR outgoing label is based on The MRT-Blue node-sid of the MRT-Blue nexthop and the MRT-Blue node-sid of the destination node D are calculated;
- the MRT-Red backup path of S to D can be an SR-LSP, and the corresponding SR outgoing label is based on the SRGB of the MRT-Red nexthop.
- the MRT-Red node-sid of the destination node D is calculated.
- the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
- the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
- the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
- a parameter notification device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
- the term “module” may implement a combination of software and/or hardware of a predetermined function.
- the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
- FIG. 7 is a structural block diagram of a parameter notification device according to an embodiment of the present application.
- the device may be applied to a first node. As shown in FIG. 7, the device includes a determination module 72 and an announcement module 74. Description:
- the determining module 72 is configured to determine a parameter included in the non-default maximum redundancy tree configuration information default MRT Profile, and the notification module 74 is connected to the determining module 72, configured to notify the parameter included in the non-default MRT Profile by using the internal gateway protocol IGP extension. Give the second node.
- the second node is an IGP neighbor node that is in the same domain area or level level as the first node.
- the parameter included in the non-default MRT profile includes at least one of the following: the first node supports the identifier MRT Profile ID of the specific MRT profile; and the first node supports the election of the GADAG root when supporting the specific MRT profile.
- Priority GADAG Priority the loopback address MRT-Blue loopback address dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile; the loopback address MRT dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT Profile -Red loopback address; SRGB MRT-Blue SRGB dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile; SRGB MRT-Red SRGB dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT Profile
- the foregoing advertising module 74 includes: an advertising unit configured to advertise the parameters included in the non-default MRT Profile to the second node by using one or more types of length value TLVs.
- FIG. 8 is a structural block diagram of an apparatus for acquiring parameters according to an embodiment of the present application.
- the apparatus may be applied to a second node.
- the apparatus includes an acquisition module 82. Be explained:
- the obtaining module 82 is configured to obtain parameters included in the default MRT profile of the non-default maximum redundancy tree configuration information advertised by the first node through the internal gateway protocol IGP.
- the second node is an IGP neighbor node that is in the same domain area or level level as the first node.
- the parameter included in the non-default MRT profile includes at least one of the following: the first node supports the identifier MRT Profile ID of the specific MRT profile; and the first node supports the election of the GADAG root when supporting the specific MRT profile.
- Priority GADAG Priority the loopback address MRT-Blue loopback address dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile; the loopback address MRT dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT Profile -Red loopback address; SRGB MRT-Blue SRGB dedicated to the corresponding MRT-Blue topology when the first node supports a specific MRT Profile; SRGB MRT-Red SRGB dedicated to the corresponding MRT-Red topology when the first node supports a specific MRT Profile
- the obtaining module 82 includes: an obtaining unit configured to acquire parameters included in the non-default MRT Profile advertised by the first node by one or more types of length value TLVs.
- FIG. 9 is a block diagram showing a preferred structure of a parameter acquisition apparatus according to an embodiment of the present application. As shown in FIG. 9, the apparatus includes a creation module 92 in addition to the module shown in FIG. 8, and the apparatus is described below:
- the creating module 92 is connected to the obtaining module 82, configured to create an MRT Island according to parameters included in the non-default MRT Profile, and calculate an MRT fast reroute FRR forwarding signal. interest.
- the creating module 92 includes: a determining unit, configured to determine, according to parameters included in the non-default MRT Profile, that the second node is in the same domain area or level level and is in the second node a set of nodes supporting the same MRT Profile ID; a creating unit for creating an MRT Island corresponding to the same MRT Profile ID as described above, and the MRT FRR forwarding information calculated to the destination prefix prefix based on the MRT Island described above.
- each of the above modules may be implemented by software or hardware.
- the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
- the forms are located in different processors.
- Embodiments of the present application also provide a computer storage medium.
- the storage medium may be configured to store computer executable code such as program code for performing the above steps, the computer executable instructions being used for the notification method of the one or more parameters.
- the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
- ROM Read-Only Memory
- RAM Random Access Memory
- the computer storage medium can be a non-transitory storage medium.
- the non-transitory storage medium herein may also be referred to as a non-volatile storage medium.
- the processor performs the above steps according to the stored program code in the storage medium.
- the IGP extension is advertised in the area or level, thereby realizing the transmission of MRT capability related information in the network, and flexible support notification. Contains multiple different forwarding mechanisms MRT Profiles of different types of parameters to establish MRT Island using different forwarding mechanisms and generate corresponding MRT FRR forwarding information.
- modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
- the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
- the application is not limited to any particular combination of hardware and software.
- the IGP is extended, and the IGP extension field is added in the IGP protocol.
- the IGP extension field is used to carry the parameters included in the non-default MRT Profile, and then these parameters are advertised to other nodes, and the non-default MRT is conveniently implemented.
- the interaction of the parameters contained in the profile while being compatible with the prior art, also ensures the smooth progress of the parameters contained in the non-default MRT Profile, thereby having a positive industrial effect, and at the same time, is easy to implement and industrially Achievable features.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请提供了一种参数的通告方法、获取方法及装置,其中,该参数的通过方法包括:第一节点确定非默认最大冗余树配置信息default MRT Profile包含的参数;上述第一节点通过内部网关协议IGP扩展将上述非default MRT Profile包含的参数通告给第二节点。本申请实施例还提供一种计算机存储介质。
Description
本申请基于申请号为201610866890.3、申请日为2016年09月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及通信领域,具体而言,涉及一种参数的通告方法、获取方法及装置、存储介质。
最大冗余树(Maximally Redundant Trees,简称为MRT)快速重路由(Fast Re-Route,简称为FRR)是一种较新的FRR技术,使用两个最大限度不同的转发拓扑,对单点的链路或节点故障能提供100%的保护。
MRT架构定义了两种转发机制,即标签分发协议(Label Distribution Protocol,简称为LDP)转发机制和网络协议-隧道(IP-tunnel)转发机制。
LDP转发机制通过不同的标签来区分是默认拓扑转发行为还是MRT转发行为,使得转发平面不作任何升级即可支持MRT-FRR。
IP-tunnel转发机制则需要浪费专用的MRT loopback(本地环回接口)地址来支持转发,同样也使得转发平面不作任何升级即可支持MRT-FRR。
目前MRT架构(RFC7812)定义了默认最大冗余树配置文件(default MRT Profile),其中采用的是LDP转发机制,目前尚未定义其它MRT Profiles。
目前互联网工程任务组(Internet Engineering Task Force,简称为IETF)已经有草案描述如何扩展中间系统到中间系统(Intermediate system to intermediate system,简称为ISIS)与开放最短路径优先(Open shortest Path
First,简称为OSPF)协议去通告MRT能力,但是其中并没有有效的支持那些非default MRT Profile的通告。针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。且如何通过这些非default MRT Profile,会直接影响后续的通信是否可以进行及通信质量。
发明内容
本申请实施例提供了一种参数的通告方法、获取方法及装置,以至少解决相关技术中存在的无法实现部分MRT的能力信息的通告的问题。
根据本申请的一个实施例,提供了一种参数的通告方法,包括:第一节点确定非默认最大冗余树配置信息default MRT Profile包含的参数;所述第一节点通过内部网关协议(Internal Gateway Protocol,IGP)扩展将所述非default MRT Profile包含的参数通告给第二节点。
根据本申请的另一个实施例,提供了一种参数的获取方法,其中,包括:第二节点获取第一节点通过内部网关协议IGP扩展通告的非默认最大冗余树配置信息default MRT Profile包含的参数。
根据本申请的另一个实施例,还提供了一种参数的通告装置,所述装置应用于第一节点中,包括:确定模块,用于确定非默认最大冗余树配置信息default MRT Profile包含的参数;通告模块,用于通过内部网关协议IGP扩展将所述非default MRT Profile包含的参数通告给第二节点。
根据本申请的又一个实施例,还提供了一种存储介质。该存储介质设置为存储程序代码等计算机可执行指令,所述计算机可执行指令被执行后,能够实现上述一个或多个技术方案提供的参数的通告方法。
通过本申请,由于采用IGP扩展进行非default MRT Profile包含的参数的通告,其中非default MRT Profile包含的参数用于描述MRT的能力,因此,可以解决相关技术中存在的无法实现部分MRT的能力信息的通告的问
题,达到实现部分MRT的能力信息的通告的效果。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的参数的通告方法的流程图;
图2是根据本申请实施例的参数的通告方法的流程图;
图3是本申请具体实施例的MRT能力传递的流程图;
图4是根据本申请实施例的ISIS和OSPF扩展支持MRT能力通告的MRT Profile TLV格式示意图;
图5是根据本申请实施例的MRT scoped information sub-TLV格式示意图;
图6是根据本申请可选实施例的网络拓扑示意图;
图7是根据本申请实施例的参数的通告装置的结构框图;
图8是根据本申请实施例的参数的获取装置的结构框图;
图9是根据本申请实施例的参数的获取装置的优选结构框图。
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,应当理解,以下所说明的优选实施例仅用于说明和解释本申请,并不用于限定本申请。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种参数的通告方法,图1是根据本申请实施例
的参数的通告方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一节点确定非默认最大冗余树配置信息default MRT Profile包含的参数;
步骤S104,上述第一节点通过内部网关协议IGP扩展将上述非default MRT Profile包含的参数通告给第二节点。
通过上述步骤,由于采用IGP扩展进行非default MRT Profile包含的参数的通告,非default MRT Profile包含的参数用于描述MRT的能力,因此,可以解决相关技术中存在的无法实现部分MRT的能力信息的通告的问题,达到实现部分MRT的能力信息的通告的效果。
即在本申请实施例中,所述第一节点或确定出非default MRT Profile包含的参数。将这些参数基于IGP的扩展报文等,发送给第二节点。
在本申请实施例中,若所述default MRT Profile,即默认最大冗余树配置文件,为第一类MRT文件,则所述非default MRT Profile为所述default MRT Profile以外的MRT文件,可以称为第二类MRT文件。
在本实施例中,所述步骤S104实质上可包括:向第二节点发送所述第二类MRT文件,发送所述第二类MRT文件时,可以将第二类MRT文件中的参数,承载在扩展的IGP中的扩展字段中发送给第二节点,这样的话,第二节点就可以采用IGP协议简便的解析和识别第一节点发送的第二类MRT文件中的参数。所述第二类MRT文件包含的参数,可包括:MRT能力信息,此外,还可包括除了MRT能力信息以外,其他与通信相关的信息。
其中,上述的非default MRT Profile包含的参数也可称为MRT能力信息。上述通告可包括一个或多个采用类型长度取值(Type Length Value,TLV)封装格式封装的封装体,或者其他可用于上述参数识别的形式。在本申请实施例中,所述Type为类型字段,该类型字段可以用于携带非default MRT Profile所包含参数的参数类型。所述length对应为报文的长度,可为
携带有所述非default MRT Profile包含的参数的报文的字节总数等。所述Value字段可为承载所述非default MRT Profile包含的参数的内容字段。
非default MRT Profile包含的参数可以基于采用TLV封装格式封装后形成的报文,再将该报文在第一节点和第二节点之间的报文传输,第一节点和第二节点在对该报文进行编码和解码时,可以基于所述IGP进行。
在一些实施例中,所述步骤S104,可包括:
将所述非default MRT Profile包含的参数,承载在所述IGP的扩展字段中;
向第二节点发送携带有所述IGP的扩展字段的报文。
在一个可选的实施例中,上述第二节点为与第一节点处于相同域(area)或层次level内的IGP邻居节点。也就是说,第一节点会通过IGP扩展将上述非default MRT Profile包含的参数通告给与第一节点同area或同层级(level)内的IGP邻居。这里的邻居可为与第一节点相邻的节点,例如,与第一节点建立有直接连接的节点,从而实现了相邻节点之间MRT的能力信息的通告。在具体实现时,第二节点不局限是所述第一节点的相邻节点。
非default MRT Profile包含的参数一般要比default MRT Profile多,比如采用IP-tunnel转发机制的MRT Profile相比default MRT Profile,会额外定义MRT-Blue或MRT-Red拓扑专用的MRT loopback地址,而现有草案中并没有机制描述如何通告这些专用的MRT loopback地址。再比如采用分段路由(Segment Routing)转发机制的MRT Profile相比default MRT Profile,会额外定义MRT-Blue或MRT-Red拓扑专用的分段路由全局块(Segment Routing Global Block,简称为SRGB)或前缀段标识ID(Prefix Segment-ID,简称为prefix-sid),而现有草案中也并没有机制描述如何通告这些专用的SRGB与prefix-sid。在以下实施例中,举例说明以下上述非default MRT Profile包含的参数,例如,非default MRT Profile包含的参数包括以下至少
之一:
第一节点支持特定的MRT Profile的标识(MRT Profile ID);
第一节点支持特定MRT Profile时参与选举整体几乎有相无环图的根(Generalized Almost Directed Acyclic Graph root,简称为GADAG root)的优先级(GADAG Priority);根据MRT Island绘制出GADAG,所述GADAG图中每一点代表所述MRT Island中的一个节点,然后根据每一个节点的优先级,选择出所述GADAG root。优先级可以是管理设备预先配置的。
第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的回路(loopback)地址(MRT-Blue loopback address);
所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址(MRT-Red loopback address);
第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的(SRGB MRT-Blue SRGB);
第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的(SRGB MRT-Red SRGB);
第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级(prefix-sid MRT-Blue prefix-sid);
第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级(prefix-sid MRT-Red prefix-sid)。
在本实施例中,上述非default MRT Profile包含的参数也可以包含除上述参数之外的其他可扩展的参数。
在上述参数中,MRT-Blue loopback address、MRT-Blue SRGB、MRT-Blue prefix-sid可以是MRT-Blue拓扑专有的信息,MRT-Red loopback address、MRT-Red SRGB、MRT-Red prefix-sid可以是MRT-Red拓扑专有的信息。
在一个可选的实施例中,上述第一节点通过IGP扩展将上述非default
MRT Profile包含的参数通告给第二节点包括:
上述第一节点利用一个或多个类型长度值TLV封装体,将上述非default MRT Profile包含的参数通告给第二节点。
在本实施例中,不同的MRT Profile可以有选择的包含上述参数(即,MRT能力信息)中的一部分。上述参数可以包含于同一个TLV封装体中,或者包含于多个TLV封装体中。
在本实施例中还提供了一种参数的通告方法,图2是根据本申请实施例的参数的通告方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第二节点获取第一节点通过内部网关协议IGP扩展通告的非默认最大冗余树配置信息default MRT Profile包含的参数。
通过上述步骤,由于采用IGP扩展进行非default MRT Profile包含的参数的通告,其中非default MRT Profile包含的参数可包括:描述MRT能力的能力信息,因此,可以解决相关技术中存在的无法实现部分MRT的能力信息的通告的问题,达到实现部分MRT的能力信息的通告的效果。
其中,上述的非default MRT Profile包含的参数也可称为MRT能力信息。上述的IGP扩展可以是TLV(Type,Length,Value)形式,或者其他可用于上述参数识别的形式。
在一个可选的实施例中,上述第二节点为与所述第一节点处于相同域area或等级level内的IGP邻居节点。也就是说,第一节点会通过IGP扩展将上述非default MRT Profile包含的参数通告给与第一节点同area或同level内的IGP邻居。
在一个可选的实施例中,上述非default MRT Profile包含的参数包括以下至少之一:第一节点支持特定的MRT Profile的标识MRT Profile ID;第一节点支持特定MRT Profile时参与选举GADAG root的优先级GADAG Priority;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的
loopback地址MRT-Blue loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。在本实施例中,上述非default MRT Profile包含的参数也可以包含除上述参数之外的其他可扩展的参数。在上述参数中,MRT-Blue loopback address、MRT-Blue SRGB、MRT-Blue prefix-sid可以是MRT-Blue拓扑专有的信息,MRT-Red loopback address、MRT-Red SRGB、MRT-Red prefix-sid可以是MRT-Red拓扑专有的信息。
在一个可选的实施例中,上述第二节点获取第一节点通过IGP扩展通告的非default MRT Profile包含的参数包括:上述第二节点获取第一节点通过一个或多个类型长度值TLV通告的上述非default MRT Profile包含的参数。在本实施例中,不同的MRT Profile可以有选择的包含上述参数(即,MRT能力信息)中的一部分。上述参数可以包含于同一个TLV中,或者包含于多个TLV中。
在一个可选的实施例中,上述方法还包括:第二节点根据非default MRT Profile包含的参数创建MRT Island以及计算MRT快速重路由FRR转发信息。
在一个可选的实施例中,上述第二节点根据非default MRT Profile包含的参数创建MRT Island以及所计算MRT FRR转发信息包括:
根据非default MRT Profile包含的参数,上述第二节点确定与第二节点处于相同域area或层次level内的且与该第二节点支持相同MRT Profile标
识ID的节点的集合;
根据该集合,第二节点创建与上述支持的相同MRT Profile ID对应的MRT Island,以及基于该MRT Island计算至目的前缀prefix的MRT FRR转发信息。该MRT Island可包括:支持相同的MRT Profile ID的节点的集合,且集合中的节点可以直接相连,或者,通过该集合内的其他节点相连。
在本实施例中,MRT Island内的节点间可以是通过支持MRT能力的双向链路互连。
在本申请实施例中,各节点(包括上述的第一节点、第二节点及其他节点)将感知其所处area或level内与它支持相同MRT Profile ID的节点集合,建立该MRT Profile ID对应的MRT Island,MRT Island内的各节点都可以基于MRT Island计算至目的prefix的MRT FRR转发信息,MRT FRR转发信息可以是通过使用MRT-Blue拓扑和MRT-Red拓扑内专有的信息而生成的。
由此本申请上述的实施例,可以实现MRT能力相关信息通过IGP扩展在网络中的传递,灵活的支持通告采用多种不同转发机制时含有多种不同类型参数的MRT Profiles,以便建立使用不同转发机制的MRT Island并生成相应的MRT FRR转发信息。
下面结合具体实施例对本申请进行说明:
实施例一
图3是本申请具体实施例的MRT能力传递的流程图,如图3所示,该流程包括如下步骤:
S301,节点(对应于上述的第一节点)通过IGP扩展发送MRT能力相关信息(对应于上述的非default MRT Profile包含的参数)到相同area或level内的IGP邻居节点,特别是发送MRT-Blue拓扑与MRT-Red拓扑专有的信息。
其中,IGP扩展字段可以是TLV(Type,Length,Value)形式,或者其他可用于MRT能力信息识别的形式。在一些实施例中,一个所述IGP拓展字段,可以对应于一个TLV封装体,在该封装体内封装有该拓展字段的类型、该封装体的长度以及参数的参数值。
可选地,上述MRT能力相关信息包括以下至少之一:
MRT Profile ID:节点支持特定MRT Profile的标识;
GADAG Priority:节点支持特定MRT Profile时参与选举GADAG root的优先级;
MRT-Blue loopback address:节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址;
MRT-Red loopback address:节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址;
MRT-Blue SRGB:节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB;
MRT-Red SRGB:节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB;
MRT-Blue prefix-sid:节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid;
MRT-Red prefix-sid:节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid;
以及其它可扩展的参数。
其中,MRT-Blue loopback address、MRT-Blue SRGB、MRT-Blue prefix-sid可以作为MRT-Blue拓扑专有的信息,而MRT-Red loopback address、MRT-Red SRGB、MRT-Red prefix-sid可以作为MRT-Red拓扑专有的信息。
不同的MRT Profile可以有选择的包含上述MRT能力信息中的一部分。
这些MRT能力相关的信息可以包含于同一个TLV中,或者包含于多个TLV中。
S302,IGP邻居节点(对应于上述的第二节点)收到IGP扩展发送的MRT能力相关信息,特别是接收MRT-Blue拓扑与MRT-Red拓扑专有的信息。
其中,收到的MRT能力相关信息包括:MRT Profile ID,GADAG Priority,MRT-Blue loopback address,MRT-Red loopback address,MRT-Blue SRGB,MRT-Red SRGB,MRT-Blue prefix-sid,MRT-Red prefix-sid,以及其它可扩展的参数。
S303,根据MRT能力相关信息,进行MRT Island的创建以及MRT FRR转发信息的生成。
其中,各节点将感知其所处area或level内与它支持相同MRT Profile ID的节点集合,建立该MRT Profile ID对应的MRT Island,MRT Island内的节点间可以是通过支持MRT能力的双向链路互连。各节点基于MRT Island计算至目的prefix的MRT FRR转发信息。MRT FRR转发信息是通过使用MRT-Blue拓扑和MRT-Red拓扑内专有的信息而生成。
图4是根据本申请实施例的ISIS和OSPF扩展支持MRT能力通告的MRT Profile TLV格式示意图,图4所示的格式能灵活的支持多种不同类型的MRT能力信息通告,其中包含了一个或多个MRT Profile ID的具体参数,每个MRT Profile ID的参数中包括Flag,Flag中定义如下标志位:
Scoped Flag:该标志位有效则表明相应的MRT Profile ID还包含MRT scoped information sub-TLV中给出的参数。
其中,在ISIS中,MRT Profile TLV随IS-IS Router CAPABILITY TLV通告;在OSPF中,MRT Profile TLV随OSPF router information LSA通告。
图5是根据本申请实施例的MRT scoped information sub-TLV格式示意
图,包含于上述MRT Profile TLV中。MRT scoped information sub-TLV描述了MRT-Blue拓扑和MRT-Red拓扑内专有的信息,其中根据type取值不同,MRT-Blue scoped information或MRT-Red scoped information有不同的取值和含义,具体为:
type为1:表明为MRT-Blue scoped information与MRT-Red scoped information均为占用4个字节的IPv4地址。
type为2:表明为MRT-Blue scoped information与MRT-Red scoped information均为占用16个字节的IPv6地址。
type为3:表明为MRT-Blue scoped information与MRT-Red scoped information均为占用8个字节的SRGB信息。其中,前4个字节为Range,后4个字节为起始标签。
type为4:表明为MRT-Blue scoped information与MRT-Red scoped information一起为占用12个字节的prefix-sid信息。其中,前4个字节为Router-id,然后是4个字节的MRT-Blue prefix-sid,最后是4个字节的MRT-Red prefix-sid。
需要说明的是,在实际应用中也可以定义其它type取值以表示其它含义的MRT-Blue拓扑和MRT-Red拓扑内专有的信息。
实施例二
本实施例描述通过扩展OSPF通告采用IP tunnel转发机制的MRT Profile来建立相应的(MRT Island)。如图6所示,网络中运行OSPF,所有节点均处于同一area内,各节点上配置支持相同的采用IP tunnel转发机制的MRT Profile ID,比如为1,以及配置其它MRT能力参数,特别是相关的MRT-Blue拓扑和MRT-Red拓扑内专有的loopback地址,比如:
S节点上:
MRT Profile ID:1
GADAG Priority:100
MRT-Blue loopback address:1.1.1.9
MRT-Red loopback address:1.1.1.10
A节点上:
MRT Profile ID:1
GADAG Priority:100
MRT-Blue loopback address:2.2.2.9
MRT-Red loopback address:2.2.2.10
B节点上:
MRT Profile ID:1
GADAG Priority:100
MRT-Blue loopback address:3.3.3.9
MRT-Red loopback address:3.3.3.10
D节点上:
MRT Profile ID:1
GADAG Priority:100
MRT-Blue loopback address:4.4.4.9
MRT-Red loopback address:4.4.4.10
然后各节点在area内通告包含有MRT Profile TLV的OSPF router information LSA,在MRT Profile TLV中,包含上述各自配置的MRT能力参数,特别是在MRT Profile TLV中包含MRT scoped information sub-TLV,type为1,给出上述各自配置的MRT-Blue loopback address与MRT-Red loopback address。
各节点将感知其所处area内与它支持相同MRT Profile ID=1的节点集合,建立MRT Profile ID=1对应的MRT Island,MRT Island内的节点间必
须是通过支持MRT能力的双向链路互连。各节点基于该MRT Island计算至各个目的prefix的MRT FRR转发信息。
MRT FRR转发信息是通过使用MRT-Blue拓扑和MRT-Red拓扑内专有的loopback地址而生成,比如S至D的MRT-Blue备份路径是目的地址为4.4.4.9的IP tunnel;S至D的MRT-Red备份路径是目的地址为4.4.4.10的IP tunnel。
实施例三
本实施例描述通过扩展OSPF通告采用分段路由转发机制的MRT Profile来建立相应的MRT Island。如图6所示,网络中运行OSPF,所有节点均处于同一area内,各节点上配置支持相同的采用分段路由转发机制的MRT Profile ID,比如为2,以及配置其它MRT能力参数,特别是相关的MRT-Blue拓扑和MRT-Red拓扑内专有的SRGB,比如:
S节点上:
MRT Profile ID:2
GADAG Priority:100
MRT-Blue SRGB:[1000~1999]
MRT-Red SRGB:[2000~2999]
A节点上:
MRT Profile ID:2
GADAG Priority:100
MRT-Blue SRGB:[1000~1999]
MRT-Red SRGB:[2000~2999]
B节点上:
MRT Profile ID:2
GADAG Priority:100
MRT-Blue SRGB:[1000~1999]
MRT-Red SRGB:[2000~2999]
D节点上:
MRT Profile ID:2
GADAG Priority:100
MRT-Blue SRGB:[1000~1999]
MRT-Red SRGB:[2000~2999]
然后各节点在area内通告包含有MRT Profile TLV的OSPF router information LSA,在MRT Profile TLV中,包含上述各自配置的MRT能力参数,特别是在MRT Profile TLV中包含MRT scoped information sub-TLV,type为3,给出上述各自配置的MRT-Blue SRGB与MRT-Red SRGB。
各节点将感知其所处area内与它支持相同MRT Profile ID=2的节点集合,建立MRT Profile ID=2对应的MRT Island,MRT Island内的节点间必须是通过支持MRT能力的双向链路互连。各节点基于该MRT Island计算至各个目的prefix的MRT FRR转发信息。
MRT FRR转发信息是通过使用MRT-Blue拓扑和MRT-Red拓扑内专有的SRGB而生成,比如S至D的MRT-Blue备份路径可以是一条SR-LSP,相应的SR出标签是根据MRT-Blue nexthop的MRT-Blue SRGB与目的节点D的node-sid计算得到;S至D的MRT-Red备份路径可以是一条SR-LSP,相应的SR出标签是根据MRT-Red nexthop的MRT-Red SRGB与目的节点D的node-sid计算得到。
实施例四
本实施例描述通过扩展OSPF通告采用分段路由转发机制的MRT Profile来建立相应的MRT Island。如图6所示,网络中运行OSPF,所有节点均处于同一area内,各节点上配置支持相同的采用分段路由转发机制的
MRT Profile ID,比如为3,以及配置其它MRT能力参数,特别是相关的MRT-Blue拓扑和MRT-Red拓扑内专有的节点级prefix-sid,节点级prefix-sid也可称为node-sid,比如:
S节点上:
MRT Profile ID:3
GADAG Priority:100
MRT-Blue node-sid:100
MRT-Red node-sid:101
A节点上:
MRT Profile ID:3
GADAG Priority:100
MRT-Blue node-sid:102
MRT-Red node-sid:103
B节点上:
MRT Profile ID:3
GADAG Priority:100
MRT-Blue node-sid:104
MRT-Red node-sid:105
D节点上:
MRT Profile ID:3
GADAG Priority:100
MRT-Blue node-sid:106
MRT-Red node-sid:107
然后各节点在area内通告包含有MRT Profile TLV的OSPF router information LSA,在MRT Profile TLV中,包含上述各自配置的MRT能力
参数,特别是在MRT Profile TLV中包含MRT scoped information sub-TLV,type为4,给出上述各自配置的MRT-Blue node-sid与MRT-Red node-sid。
各节点将感知其所处area内与它支持相同MRT Profile ID=3的节点集合,建立MRT Profile ID=3对应的MRT Island,MRT Island内的节点间必须是通过支持MRT能力的双向链路互连。各节点基于该MRT Island计算至各个目的prefix的MRT FRR转发信息。
MRT FRR转发信息是通过使用MRT-Blue拓扑和MRT-Red拓扑内专有的node-sid而生成,比如S至D的MRT-Blue备份路径可以是一条SR-LSP,相应的SR出标签是根据MRT-Blue nexthop的SRGB与目的节点D的MRT-Blue node-sid计算得到;S至D的MRT-Red备份路径可以是一条SR-LSP,相应的SR出标签是根据MRT-Red nexthop的SRGB与目的节点D的MRT-Red node-sid计算得到。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种参数的通告装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本申请实施例的参数的通告装置的结构框图,该装置可以应用于第一节点中,如图7所示,该装置包括确定模块72和通告模块74,下面对该装置进行说明:
确定模块72,配置为确定非默认最大冗余树配置信息default MRT Profile包含的参数;通告模块74,连接至上述确定模块72,配置为通过内部网关协议IGP扩展将非default MRT Profile包含的参数通告给第二节点。
在一个可选的实施例中,上述第二节点为与第一节点处于相同域area或层次level内的IGP邻居节点。
在一个可选的实施例中,上述非default MRT Profile包含的参数包括以下至少之一:第一节点支持特定的MRT Profile的标识MRT Profile ID;第一节点支持特定MRT Profile时参与选举GADAG root的优先级GADAG Priority;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
在一个可选的实施例中,上述通告模块74包括:通告单元,配置为利用一个或多个类型长度值TLV将上述非default MRT Profile包含的参数通告给第二节点。
图8是根据本申请实施例的参数的获取装置的结构框图,该装置可以应用于第二节点中,如图8所示,该装置包括获取模块82,下面对该装置
进行说明:
获取模块82,配置为获取第一节点通过内部网关协议IGP扩展通告的非默认最大冗余树配置信息default MRT Profile包含的参数。
在一个可选的实施例中,上述第二节点为与第一节点处于相同域area或等级level内的IGP邻居节点。
在一个可选的实施例中,上述非default MRT Profile包含的参数包括以下至少之一:第一节点支持特定的MRT Profile的标识MRT Profile ID;第一节点支持特定MRT Profile时参与选举GADAG root的优先级GADAG Priority;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
在一个可选的实施例中,上述获取模块82包括:获取单元,配置为获取所述第一节点通过一个或多个类型长度值TLV通告的所述非default MRT Profile包含的参数。
图9是根据本申请实施例的参数的获取装置的优选结构框图,如图9所示,该装置除包括图8所示的模块外,还包括创建模块92,下面对该装置进行说明:
创建模块92,连接至上述获取模块82,配置为根据上述非default MRT Profile包含的参数创建MRT Island以及计算MRT快速重路由FRR转发信
息。
在一个可选的实施例中,上述创建模块92包括:确定单元,配置为根据所述非default MRT Profile包含的参数确定与第二节点处于相同域area或层次level内的且与该第二节点支持相同MRT Profile标识ID的节点的集合;创建单元,用于创建与上述相同MRT Profile ID对应的MRT Island,以及基于上述MRT Island计算至目的前缀prefix的所述MRT FRR转发信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。本申请的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述步骤的程序代码等计算机可执行代码,所述计算机可执行指令用于前述一个或多个参数的通告方法。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。可选为,所述计算机存储介质可为非瞬间存储介质。这里的非瞬间存储介质又可以称为非易失性存储介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
通过上述各个实施例可知,在各实施例所描述的MRT能力信息的传递方法及装置中通过IGP扩展在area或level内通告,由此实现MRT能力相关信息在网络中的传递,灵活的支持通告采用多种不同转发机制时含有多
种不同类型参数的MRT Profiles,以便建立使用不同转发机制的MRT Island并生成相应的MRT FRR转发信息。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本申请实施例中对IGP进行拓展,在IGP协议中增加IGP拓展字段,由这些IGP拓展字段来承载非default MRT Profile包含的参数,然后将这些参数通告给其他节点,简便的实现了非default MRT Profile包含的参数的交互,与现有技术兼容性强的同时,还可以保证基于非default MRT Profile包含的参数的顺利进行,从而具有积极的工业效果,与此同时,具有实现简便且在工业上可实现性强的特点。
Claims (21)
- 一种参数的通告方法,包括:第一节点确定非默认最大冗余树配置信息default MRT Profile包含的参数;所述第一节点通过内部网关协议IGP扩展将所述非default MRT Profile包含的参数通告给第二节点。
- 根据权利要求1所述的方法,其中,所述第二节点为与所述第一节点处于相同域area或层次level内的IGP邻居节点。
- 根据权利要求1或2所述的方法,其中,所述非default MRT Profile包含的参数包括以下至少之一:所述第一节点支持特定的MRT Profile的标识MRT Profile ID;所述第一节点支持特定MRT Profile时参与选举整体几乎有相无环图的根GADAG root的优先级GADAG Priority;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
- 根据权利要求1所述的方法,其中,所述第一节点通过所述IGP扩展将所述非default MRT Profile包含的参数通告给所述第二节点包括:所述第一节点利用一个或多个类型长度值TLV将所述非default MRT Profile包含的参数通告给所述第二节点。
- 一种参数的获取方法,包括:第二节点获取第一节点通过内部网关协议IGP扩展通告的非默认最大冗余树配置信息default MRT Profile包含的参数。
- 根据权利要求5所述的方法,其中,所述第二节点为与所述第一节点处于相同域area或等级level内的IGP邻居节点。
- 根据权利要求5或6所述的方法,其中,所述非default MRT Profile包含的参数包括以下至少之一:所述第一节点支持特定的MRT Profile的标识MRT Profile ID;所述第一节点支持特定MRT Profile时参与选举整体几乎有相无环图的根GADAG root的优先级GADAG Priority;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
- 根据权利要求5所述的方法,其中,所述第二节点获取所述第一节点通过所述IGP扩展通告的所述非default MRT Profile包含的参数包括:所述第二节点获取所述第一节点通过一个或多个类型长度值TLV通告的所述非default MRT Profile包含的参数。
- 根据权利要求5所述的方法,其中,所述方法还包括:所述第二节点根据所述非default MRT Profile包含的参数创建MRT Island以及计算MRT快速重路由FRR转发信息。
- 根据权利要求9所述的方法,其中,所述第二节点根据所述非default MRT Profile包含的参数创建所述MRT Island以及所计算所述MRT FRR转发信息包括:所述第二节点根据所述非default MRT Profile包含的参数确定与所述第二节点处于相同域area或层次level内的且与所述第二节点支持相同MRT Profile标识ID的节点的集合;所述第二节点创建与所述相同MRT Profile ID对应的所述MRT Island,以及基于所述MRT Island计算至目的前缀prefix的所述MRT FRR转发信息。
- 一种参数的通告装置,应用于第一节点中,包括:确定模块,配置为于确定非默认最大冗余树配置信息default MRT Profile包含的参数;通告模块,配置为通过内部网关协议IGP扩展将所述非default MRT Profile包含的参数通告给第二节点。
- 根据权利要求11所述的装置,其中,所述第二节点为与所述 第一节点处于相同域area或层次level内的IGP邻居节点。
- 根据权利要求11或12所述的装置,其中,所述非default MRT Profile包含的参数包括以下至少之一:所述第一节点支持特定的MRT Profile的标识MRT Profile ID;所述第一节点支持特定MRT Profile时参与选举整体几乎有相无环图的根GADAG root的优先级GADAG Priority;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
- 根据权利要求11所述的装置,其中,所述通告模块包括:通告单元,配置为利用一个或多个类型长度值TLV将所述非default MRT Profile包含的参数通告给所述第二节点。
- 一种参数的获取装置,应用于第二节点中,包括:获取模块,配置为获取第一节点通过内部网关协议IGP扩展通告的非默认最大冗余树配置信息default MRT Profile包含的参数。
- 根据权利要求15所述的装置,其中,所述第二节点为与所述 第一节点处于相同域area或等级level内的IGP邻居节点。
- 根据权利要求15或16所述的装置,其中,所述非default MRT Profile包含的参数包括以下至少之一:所述第一节点支持特定的MRT Profile的标识MRT Profile ID;所述第一节点支持特定MRT Profile时参与选举整体几乎有相无环图的根GADAG root的优先级GADAG Priority;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的loopback地址MRT-Blue loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的loopback地址MRT-Red loopback address;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的SRGB MRT-Blue SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的SRGB MRT-Red SRGB;所述第一节点支持特定MRT Profile时专门用于相应MRT-Blue拓扑的节点级prefix-sid MRT-Blue prefix-sid;所述第一节点支持特定MRT Profile时专门用于相应MRT-Red拓扑的节点级prefix-sid MRT-Red prefix-sid。
- 根据权利要求15所述的装置,其中,所述获取模块包括:获取单元,配置为获取所述第一节点通过一个或多个类型长度值TLV通告的所述非default MRT Profile包含的参数。
- 根据权利要求15所述的装置,其中,所述装置还包括:创建模块,配置为根据所述非default MRT Profile包含的参数创建MRT Island以及计算MRT快速重路由FRR转发信息。
- 根据权利要求19所述的装置,其中,所述创建模块包括:确定单元,配置为根据所述非default MRT Profile包含的参数确定与所述第二节点处于相同域area或层次level内的且与所述第二节点支持相同MRT Profile标识ID的节点的集合;创建单元,配置为创建与所述相同MRT Profile ID对应的所述MRT Island,以及基于所述MRT Island计算至目的前缀prefix的所述MRT FRR转发信息。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至10任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/321,598 US20210281507A1 (en) | 2016-09-28 | 2017-09-20 | Parameter notification and obtaining methods and devices, and storage medium |
EP17854740.2A EP3484107B1 (en) | 2016-09-28 | 2017-09-20 | Parameter notification and obtaining methods and devices, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610866890.3A CN107872383B (zh) | 2016-09-28 | 2016-09-28 | 参数的通告方法、获取方法及装置 |
CN201610866890.3 | 2016-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018059290A1 true WO2018059290A1 (zh) | 2018-04-05 |
Family
ID=61761403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/102525 WO2018059290A1 (zh) | 2016-09-28 | 2017-09-20 | 参数的通告方法、获取方法及装置、存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210281507A1 (zh) |
EP (1) | EP3484107B1 (zh) |
CN (1) | CN107872383B (zh) |
WO (1) | WO2018059290A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110557330B (zh) * | 2018-05-30 | 2022-03-25 | 中兴通讯股份有限公司 | 一种备份路径计算方法、装置及计算机存储介质 |
FR3081645A1 (fr) * | 2018-06-28 | 2019-11-29 | Orange | Procede de communication mis en œuvre par un premier routeur d'un systeme autonome utilisant un protocole de routage interne |
US11277334B2 (en) * | 2019-07-24 | 2022-03-15 | Juniper Networks, Inc. | Using and processing per slice segment identifiers in a network employing segment routing |
CN116827855A (zh) * | 2020-11-23 | 2023-09-29 | 华为技术有限公司 | 一种通告网络设备处理能力的方法、设备和系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120039164A1 (en) * | 2008-11-17 | 2012-02-16 | Gabor Enyedi | System And Method Of Implementing Lightweight Not-Via IP Fast Reroutes In A Telecommunications Network |
WO2013045083A1 (en) * | 2011-09-27 | 2013-04-04 | Telefonaktiebolaget L M Ericsson (Publ) | Optimizing endpoint selection of mrt-frr detour paths |
US8861340B1 (en) * | 2012-03-12 | 2014-10-14 | Juniper Networks, Inc. | Fast reroute using maximally redundant trees |
US20150207671A1 (en) * | 2014-01-21 | 2015-07-23 | Telefonaktiebolaget L M Ericsson (Pub) | Method and system for deploying maximally redundant trees in a data network |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8958286B1 (en) * | 2012-03-12 | 2015-02-17 | Juniper Networks, Inc. | Fast reroute for multicast using maximally redundant trees |
US8638659B2 (en) * | 2012-06-01 | 2014-01-28 | Telefonaktiebolaget L M Ericsson (Publ) | Enhancements to PIM fast re-route with downstream notification packets |
WO2015059123A1 (en) * | 2013-10-21 | 2015-04-30 | Telefonaktiebolaget L M Ericsson (Publ) | Packet rerouting techniques in a packet-switched communication network |
-
2016
- 2016-09-28 CN CN201610866890.3A patent/CN107872383B/zh not_active Expired - Fee Related
-
2017
- 2017-09-20 EP EP17854740.2A patent/EP3484107B1/en active Active
- 2017-09-20 US US16/321,598 patent/US20210281507A1/en not_active Abandoned
- 2017-09-20 WO PCT/CN2017/102525 patent/WO2018059290A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120039164A1 (en) * | 2008-11-17 | 2012-02-16 | Gabor Enyedi | System And Method Of Implementing Lightweight Not-Via IP Fast Reroutes In A Telecommunications Network |
WO2013045083A1 (en) * | 2011-09-27 | 2013-04-04 | Telefonaktiebolaget L M Ericsson (Publ) | Optimizing endpoint selection of mrt-frr detour paths |
US8861340B1 (en) * | 2012-03-12 | 2014-10-14 | Juniper Networks, Inc. | Fast reroute using maximally redundant trees |
US20150207671A1 (en) * | 2014-01-21 | 2015-07-23 | Telefonaktiebolaget L M Ericsson (Pub) | Method and system for deploying maximally redundant trees in a data network |
Non-Patent Citations (1)
Title |
---|
See also references of EP3484107A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20210281507A1 (en) | 2021-09-09 |
EP3484107B1 (en) | 2021-03-24 |
CN107872383B (zh) | 2021-02-12 |
EP3484107A4 (en) | 2019-06-12 |
CN107872383A (zh) | 2018-04-03 |
EP3484107A1 (en) | 2019-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10700891B2 (en) | Method for implementing service chain, device, and system | |
CN106572017B (zh) | Bier信息的发送方法、接收方法及装置 | |
WO2018188464A1 (zh) | 一种实现ioam的方法、装置及存储介质 | |
EP2996290B1 (en) | Packet forwarding method, apparatus, and system | |
EP2761827B1 (en) | Incremental deployment of mrt based ipfrr | |
US7668971B2 (en) | Dynamic path computation element load balancing with backup path computation elements | |
CN102724117B (zh) | 多协议标签交换流量工程隧道建立方法及设备 | |
CN108023815B (zh) | 信息传输方法、装置及系统 | |
EP3148131B1 (en) | Address information publishing method and apparatus | |
US9912586B2 (en) | Method, system, and device for establishing pseudo wire | |
WO2018059290A1 (zh) | 参数的通告方法、获取方法及装置、存储介质 | |
WO2020135395A1 (zh) | 一种跨内部网关协议的前缀标识通告方法和装置 | |
WO2018103099A1 (zh) | 发送和接收消息的方法、设备和系统 | |
CN110896379B (zh) | 报文的发送方法、绑定关系的通告方法、装置及存储介质 | |
US11240063B2 (en) | Methods, nodes and computer readable media for tunnel establishment per slice | |
US10291522B1 (en) | Applications-aware targeted LDP sessions | |
US20140376562A1 (en) | Routing generation for implementation of fiber channel over ethernet | |
EP3890262B1 (en) | Routing distributing method, device and system | |
US20240235994A1 (en) | Packet processing method, network device, and network system | |
WO2023274083A1 (zh) | 路由发布和转发报文的方法、装置、设备和存储介质 | |
WO2011015102A1 (zh) | 关联通道能力协商方法和网络设备 | |
CN107786442B (zh) | 一种元数据的传输方法及装置 | |
EP2991288B1 (en) | Method and device for determining next hop and distributing routing information | |
WO2017190675A1 (zh) | 链路信息的处理方法、装置及系统 | |
WO2023016550A1 (zh) | 一种路由发送方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17854740 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017854740 Country of ref document: EP Effective date: 20190208 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |