WO2018059243A1 - 一种太阳能收集、传输装置及其方法 - Google Patents
一种太阳能收集、传输装置及其方法 Download PDFInfo
- Publication number
- WO2018059243A1 WO2018059243A1 PCT/CN2017/101708 CN2017101708W WO2018059243A1 WO 2018059243 A1 WO2018059243 A1 WO 2018059243A1 CN 2017101708 W CN2017101708 W CN 2017101708W WO 2018059243 A1 WO2018059243 A1 WO 2018059243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- solar energy
- arc
- collection
- collecting
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000005540 biological transmission Effects 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 3
- 210000004899 c-terminal region Anatomy 0.000 claims 1
- 230000002776 aggregation Effects 0.000 abstract description 6
- 238000004220 aggregation Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/12—Light guides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/82—Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0543—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
- H01L31/208—Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/20—Optical components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/83—Other shapes
- F24S2023/832—Other shapes curved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/87—Reflectors layout
- F24S2023/878—Assemblies of spaced reflective elements in the form of grids, e.g. vertical or inclined reflective elements extending over heat absorbing elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the invention relates to a solar energy collecting and conveying device and a method thereof, which have large collection range, can be directly utilized or transformed after collection, have high aggregation degree, small transmission loss, unrestricted shape and wide application range. It belongs to solar energy collection and transmission technology and application fields.
- the solar energy utilization mainly includes solar illumination, and the optical fiber is collected.
- the diameter of the collected light is small, and it is not suitable for large-area collection; the lens is collected, the volume is large, the shape is limited, the collection area is restricted, the diffused light cannot be used, and the transmission is difficult; Array; requires accurate sun tracking and positioning device, complicated mechanical structure, high cost, moving parts, repair problems, etc., can not use diffused light.
- the efficiency of solar power generation and solar cells is low.
- the operating efficiency of monocrystalline silicon cells is less than 30%, the working efficiency of commercial use is not even 20%, the working range is limited by frequency bands, other parts are converted into heat energy, and cooling is caused. Problems, aging problems, high cost issues, etc.
- the invention provides a solar energy collection and transmission device and a method thereof, which have large collection range, can be directly utilized or transformed after collection, have high aggregation degree, small transmission loss, unrestricted shape and wide application range.
- the invention solves the problems of collection of solar energy utilization technologies existing in the prior art, and utilization of low efficiency and the like.
- the technical solution of the present invention is:
- a solar energy collecting and conveying device comprises a light transmitting body, a conveying layer and a plurality of reflecting bodies, wherein the reflecting body is fixed by the light transmitting body, and a light collecting port is arranged in the conveying layer; the reflecting body comprises an arc a 0 a X, the straight line a 0 B, line BC enclosed acquisition and transmission plate; arc a 0 a X a 0 end in order, C is connected to the end of the straight line BC is in the straight line a 0 a 0 B side.
- the arc A 0 A X corresponds to a central angle of 0 to 90°, and the angle between the straight line A 0 B and the straight line BC ranges from 0 to 180°.
- the arc A 0 A X corresponds to a central angle of 20 to 75°.
- the reflector and the light transmissive body may be an integrally formed structure, and the inside of the reflector may be provided with a filling substance.
- the inside of the reflector can be filled with any substance, and when the reflector and the light-transmitting body are produced, the material of the reflector can be reduced, and other inexpensive materials can be used instead of the material, thereby reducing the cost.
- the interior of the reflector may be provided with a filling substance, which is a solid, a gas or a vacuum.
- a filling substance which is a solid, a gas or a vacuum.
- the light incident interface of the light transmissive body may be disposed in an inclined manner with an inclination angle of 0-90°.
- the light incident on the obliquely disposed light-transmitting body can change the oblique light into vertical light.
- a first transmissive film may be disposed at a top end of the transparent body, a second transmissive film is disposed on an upper end surface of the transmissive layer; a first reflective film is coated around the reflective body, and an upper end surface and a bottom end surface of the upper end surface of the transport layer Provided with a second reflective film; the arc A 0 A X film extends into the upper end surface of the transport layer and is provided with a second reflective film, and the lower end surface is provided with a third transmissive film, which avoids back and forth reflection of light in the transport layer , resulting in an increase in the loss rate.
- the arcs A 0 A X of all the reflectors are sequentially arranged in one direction on the light-transmitting body.
- the arcs A 0 A X of the plurality of reflectors are arranged in a direction on the light-transmitting body to form a first collection group, and the arcs A 0 A X of the plurality of reflectors are sequentially arranged in one direction on the light-transmitting body to form a second collection. group; a 0 a X arcs toward the opposite first and second collection set toward the collecting group arcs of a 0 a X.
- a method for collecting and transmitting a solar energy device comprising the steps of:
- ⁇ AOAn (2n+1) ⁇ , where n is the number of times the light is reflected on the inner surface of the arc, and its value is 1, 2, 3...n;
- the invention relates to a solar energy collection and transmission device and a method thereof.
- the collection range is large, and the collection point can be directly utilized or converted, or can be used or converted after long-distance transmission, and can collect diffused light, which can be applied to solar illumination, or The use of light and heat can also generate electricity from solar cells.
- High degree of aggregation, small transmission loss, unrestricted shape, wide application range, can be used for solar energy utilization, can also be used for shading, outside the structure, wall and so on.
- the method for collecting and transmitting solar energy is directed to a solar energy collection and transmission device, which solves the problem of size setting of a reflector.
- the material of the reflector is cheaper than the material of the light-transmitting body, which can reduce the cost of the solar energy collection and transmission device and increase the economy. benefit.
- FIG. 1 is a schematic structural view of a solar energy collection and transmission device and a method thereof according to the present invention
- FIG. 2 is a schematic structural view of a light-reflecting body in a solar energy collecting and transmitting device and a method thereof according to the present invention
- FIG. 3 is a schematic view 1 of a method for collecting and transporting a solar energy and a method thereof according to the present invention
- FIG. 4 is a schematic diagram 2 of a method for collecting and transporting a solar energy and a method thereof according to the present invention
- Figure 5 is a schematic diagram 3 of a method for collecting and transporting solar energy and a method thereof according to the present invention
- FIG. 6 is a schematic diagram showing a unidirectional structure of a solar energy collection and transmission device and a method thereof according to the present invention
- FIG. 7 is a schematic view showing a multi-directional structure of a solar energy collecting and transmitting device and a method thereof according to the present invention.
- FIG. 8 is a schematic view showing the structure of a surface auxiliary film of a light-transmitting body according to a solar energy collecting and conveying device and a method thereof;
- FIG. 9 is a schematic view showing a tilted structure of a surface of a light-transmitting body of a solar energy collecting and transmitting device and a method thereof according to the present invention.
- FIG. 10 is a unidirectional ray refraction diagram of a solar energy collection and transmission device and method thereof according to the present invention.
- FIG. 11 is a multi-directional light refraction diagram of a solar energy collection and transmission device and method thereof according to the present invention.
- FIG. 12 is a light refraction diagram of a surface of a light-transmitting body of a solar energy collecting and conveying device and a method thereof according to the present invention
- Figure 13 is a perspective view showing the oblique light refracting of the surface of a light-transmitting body of a solar energy collecting and transmitting device and a method thereof.
- a solar energy collecting and conveying device comprises a light-transmitting body 1, a transport layer 3 and a plurality of light-reflecting bodies 2 connected to each other, wherein the light-transmitting port 4 is disposed in the transport layer 3; the light-reflecting body 2 includes an arc A 0 A X, the straight line a 0 B, line BC enclosed acquisition and transmission plate; arc a 0 a X a 0 end in order, C is connected to the end of the straight line BC is in the straight line a 0 a 0 B side.
- the arc A 0 A X corresponds to a central angle of 0 to 90°, and the angle between the straight line A 0 B and the straight line BC ranges from 0 to 180°.
- the arc A 0 A X corresponds to a central angle of 20 to 75°.
- the reflector 2 and the light-transmitting body 1 may be an integrally formed structure, and the inside of the reflector 2 may be provided with a filling substance.
- the inside of the reflector 2 can be filled with any substance.
- the material of the reflector 2 can be reduced, and other inexpensive materials can be used instead of the material, thereby reducing the cost.
- the filling material is a solid, a gas or a vacuum
- the light transmitting body 1 may be a solid, a liquid, a gas or a vacuum.
- the reflector 2 When the light-transmitting body 1 is a solid, the reflector 2 is fixed to the light-transmitting body 1; when the light-transmitting body 1 is a liquid, a gas or a vacuum, the reflector 2 is fixed by a separate fixing device.
- FIG. 6 and FIG. 10 a schematic diagram of a unidirectional structure of a solar energy collection and transmission device and a method thereof, and a ray refraction diagram of a unidirectional reflector; the arcs A 0 A X of all the reflectors 2 are sequentially arranged in one direction On the light-transmitting body 1.
- the arc A 0 of the plurality of reflectors 2 A X is arranged in a direction on the light-transmitting body 1 to form a first collection group, and the arcs A 0 A X of the plurality of reflectors 2 are sequentially arranged in one direction on the light-transmitting body 1 to form a second collection group; a 0 a X opposite the arc toward the arc toward the second collection set a 0 a X of the group.
- the settings of the second collection group and the first collection group provide light collection efficiency.
- the reflective body 2 is surrounded by a first reflective film 7 , and the transfer layer 3 is a second reflective film 8 is disposed on the bottom surface and the bottom end surface of the upper end surface; the second reflective film 8 is disposed on the upper end surface of the arc layer A 0 A X film, and the third transmissive film 9 is disposed on the lower end surface.
- the arrangement of the first transmissive film 5 and the second transmissive film 6 reduces the transmission loss rate when the light enters the translucent body 2, and the arrangement of the first reflective film 7 and the second reflective film 8 avoids the back and forth of the light in the transport layer 3. Reflection causes an increase in the rate of light loss.
- the light injection interface of 2 can be set to be inclined, and the inclination angle is 0-90°.
- the light incident on the obliquely disposed light-transmitting body 2 can change the oblique light into vertical light.
- FIG. 3 a schematic diagram of a method of solar energy collection and transmission device and method thereof.
- a method for collecting and transmitting a solar energy device comprising the steps of:
- ⁇ AOAn (2n+1) ⁇ , where n is the number of times the light is reflected on the inner surface of the arc, and its value is 1, 2, 3...n;
- the invention relates to a solar energy collecting and conveying device and a method thereof, which have a large collection range, can be directly utilized or converted, can also be used or converted after long-distance transmission, can collect diffused light, can be applied to solar lighting, or can be light Heat utilization can also generate electricity from solar cells.
- High degree of aggregation, low transmission loss, unrestricted shape, wide application range, can be used for solar energy utilization, and can also be used for visors, structural external surfaces, walls and so on.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
一种太阳能收集、传输装置,包括相互连接的透光体(1)、传输层(3)和多个反光体(2),传输层(3)内设置有光线收集口(4),反光体(2)包括弧A 0A X、直线A 0B、直线BC围成的采集传输板,弧A 0A X中A 0端依次与直线A 0B中A 0端、直线BC的C端连接。该太阳能收集、传输装置收集范围大,可收集后直接利用或转化,聚集度高,传输损失小,形状不受限制,适用范围广。还公开了一种太阳能收集、传输装置的方法。
Description
本发明涉及一种收集范围大,可收集后直接利用或转化,聚集度高,传输损失小,形状不受限制,适用范围广的太阳能收集、传输装置及其方法。属于太阳能收集传输技术及应用领域。
太阳能利用技术的发展,使太阳能发电技术,太阳能照明技术逐渐走进人们的视野。昼夜差别大,太阳能密度低,收集困难等造成太阳能利用成本居高不下,是阻碍太阳大面积普及的主要因素。
目前太阳能利用主要有太阳能照明,光导纤维收集,收集光的口径小,不适合大面积收集;透镜收集,体积庞大,受形状限制,收集面积收到制约,不能利用漫射光,传输困难;太阳能反光阵列;需要精确的太阳跟踪定位装置,机械结构复杂,成本高,有运动部件,存在修理问题等,不能利用漫射光。
太阳能热利用,真空管能量密度不高,温度无法进一步提高,只适合小范围供热使用;透镜收集,体积庞大,受形状限制,收集面积收到制约,传输困难,不能利用漫射光;太阳能反光阵列;需要精确的太阳跟踪定位装置,机械结构复杂,成本高,有运动部件,存在修理问题等,不能利用漫射光。
太阳能发电、太阳能电池的工作效率低,单晶硅电池工作效率最高不到30%,商用的工作效率连20%都不到,工作范围有频带限制,其他部分转化为热能浪费掉,而且造成降温问题,老化问题,高成本问题等。
综上所述,为了解决现有技术存在的太阳能利用技术收集困难,利用效率低下等问题,目前亟需发明一种收集范围大,可收集后直接利用或转化,聚集度高,传输损失小,形状不受限制,适用范围广的太阳能收集、传输装置及其方法。
发明内容
本发明提出一种收集范围大,可收集后直接利用或转化,聚集度高,传输损失小,形状不受限制,适用范围广的太阳能收集、传输装置及其方法。解决现有技术存在的太阳能利用技术收集困难,利用效率低下等问题。
为了解决上述技术问题,本发明的技术方案为:
一种太阳能收集、传输装置,包括透光体、传输层、多个反光体,所述反光体通过所述透光体固定,所述传输层内设置有光线收集口;所述反光体包括弧A0AX、直线A0B、直线BC围成的采集传输板;弧A0AX中A0端依次与直线A0B中A0端、直线BC的C端连接。
所述弧A0AX对应的圆心角为0~90°,所述直线A0B、直线BC之间夹角的范围是0~180°。
优选地,所述弧A0AX对应的圆心角为20~75°。
所述反光体和透光体可为一体成型结构,所述反光体的内部可设置有填充物质。所述反光体的内部可填充任何物质,在制作反光体和透光体时,可减少反光体的物质原料,可用其他廉价材料代替物质原料,减少了成本。
所述反光体的内部可设置有填充物质,所述填充物质为固体、气体或真空。所述透光体为固体时,所述反光体固定在所述透光体上;所述透光体为液体、气体或真空时,所述反光体通过单独固定装置固定。
所述透光体的光线射入界面可设置为倾斜式,倾斜角度为0-90°。倾斜设置的透光体的光线射入界面可将倾斜光变成垂直光。
所述透光体的顶端可设置第一透射膜,所述传输层上端面设置第二透射膜;所述反光体四周包覆有第一反射膜,所述传输层的上端面底层和底端面设置有第二反射膜;所述弧A0AX膜伸入所述传输层的上端面设置有第二反射膜,下端面设置有第三透射膜,避免了光线在传输层中的来回反射,导致损失率的提高。
所有反光体中弧A0AX均朝一个方向依次排列在透光体上。
多个反光体中弧A0AX朝一个方向依次排列在透光体上组成第一收集组,多个反光体中弧A0AX朝一个方向依次排列在透光体上组成第二收集组;第一收集组中弧A0AX的朝向与第二收集组中弧A0AX的朝向相反。
一种太阳能收集、传输装置的方法,包括以下步骤:
1)构建光垂直入射模型,定义光a进透光体的光线射入界面后,垂直入圆O内,A为圆O上的点,OA为水平直线,垂直入射光a与圆O内表面交点为A0,∠AOA0=α,则:一次反射线A0A1与圆弧的交点A1,∠AOA1=3α,二次反射线A1A2与圆弧的交点A2,∠AOA2=5α;
可得出:∠AOAn=(2n+1)α,其中n为光在圆弧内表面反射次数,其取值为1、2、3…n;
2)定义垂直光a+进入圆O内,入射光a+与OA的交点与圆O圆心之间的距离为X,入射光a与a+的一次反射光相交于B点,区域OBA中弧AB距离圆O圆弧的距离随着X的增大而减小;
可得出:在以圆心O为原点的坐标系中,B点用X表达式为:B=-2X2(1-X2)1/2;
可得出:反射光都经过区域OBA与圆OA区域内的点;
3)定义入射光a+与OA的交点为Xx,Xx与X0区间垂直入射光的一次反射光均经过A0AxCB围成区域内的点;Xx中的x取值均为1、2、3…x。
本发明具有以下的特点和有益效果:
本发明涉及的一种太阳能收集、传输装置及其方法方法收集范围大,可收集点直接利用或转化,也可远距离传输后利用或转化,可收集漫射光,可应用于太阳能照明,也可光热利用,也可太阳能电池发电。聚集度高,传输损失小,形状不受限制,适用范围广,可专门用于太阳能利用,也可以用于遮光作用的场合,结构体外面、墙体等。一种太阳能收集、传输装置的方法针对太阳能收集、传输装置,解决了反光体的大小设置问题,反光体的材质较于透光体的材质便宜,可减少太阳能收集、传输装置的成本,增加经济效益。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种太阳能收集、传输装置及其方法的结构示意图;
图2为本发明一种太阳能收集、传输装置及其方法中反光体的结构示意图;
图3为本发明一种太阳能收集、传输装置及其方法的方法示意图1;
图4为本发明一种太阳能收集、传输装置及其方法的方法示意图2;
图5为本发明一种太阳能收集、传输装置及其方法的方法示意图3;
图6为本发明一种太阳能收集、传输装置及其方法的单方向结构示意图;
图7为本发明一种太阳能收集、传输装置及其方法的多方向结构示意图;
图8为本发明一种太阳能收集、传输装置及其方法的透光体表面辅膜结构示意图;
图9为本发明一种太阳能收集、传输装置及其方法的透光体表面倾斜结构示意图;
图10为本发明一种太阳能收集、传输装置及其方法的单方向光线折射图;
图11为本发明一种太阳能收集、传输装置及其方法的多方向光线折射图;
图12为本发明一种太阳能收集、传输装置及其方法的透光体表面覆膜光线折射图;
图13为本发明一种太阳能收集、传输装置及其方法的透光体表面倾斜光线折射图。
图中,1-透光体;2-反光体;3-传输层;4-光线收集口;5-第一透射膜;6-第二透射膜;7-第一反射膜;8-第二反射膜;9-第三透射膜。
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图1和图2所示的一种太阳能收集、传输装置及其方法的结构示意图和反光体的结构示意图。一种太阳能收集、传输装置,包括相互连接的透光体
1、传输层3和多个反光体2,所述传输层3内设置有光线收集口4;所述反光体2包括弧A0AX、直线A0B、直线BC围成的采集传输板;弧A0AX中A0端依次与直线A0B中A0端、直线BC的C端连接。所述弧A0AX对应的圆心角为0~90°,所述直线A0B、直线BC之间夹角的范围是0~180°。优选地,所述弧A0AX对应的圆心角为20~75°。
所述反光体2和透光体1可为一体成型结构,所述反光体2的内部可设置有填充物质。所述反光体2的内部可填充任何物质,在制作反光体2和透光体1时,可减少反光体2的物质原料,可用其他廉价材料代替物质原料,减少了成本。所述填充物质为固体、气体或真空,所述透光体1可为固体、液体、气体或真空。所述透光体1为固体时,所述反光体2固定在所述透光体1上;所述透光体1为液体、气体或真空时,所述反光体2通过单独固定装置固定。
参照图6和图10所示的一种太阳能收集、传输装置及其方法的单方向结构示意图和单方向反光体的光线折射图;所有反光体2中弧A0AX均朝一个方向依次排列在透光体1上。
在其他的实施例中,参照图7和图11所示的一种太阳能收集、传输装置及其方法的双方向结构示意图和双方向反光体的光线折射图;多个反光体2中弧A0AX朝一个方向依次排列在透光体1上组成第一收集组,多个反光体2中弧A0AX朝一个方向依次排列在透光体1上组成第二收集组;第一收集组中弧A0AX的朝向与第二收集组中弧A0AX的朝向相反。第二收集组和第一收集组的设置可提供光线的收集效率。
在其他的实施例中,参照图8和图12所示的一种太阳能收集、传输装置及其方法的透光体表面覆膜结构示意图和透光体表面覆膜反光体的光线折射图;所述透光体1的顶端可设置第一透射膜5,所述传输层3上端面设置第二透射膜6;所述反光体2四周包覆有第一反射膜7,所述传输层3的上端面底层和底端面设置有第二反射膜8;所述弧A0AX膜伸入所述传输层3的上端面设置有第二反射膜8,下端面设置有第三透射膜9,第一透射膜5和第二透射膜6的设置降低了光线进入透光体2时传输损失率,第一反射膜7和第二反射膜8的设置,避免了光线在传输层3中的来回反射,导致光线损失率的提高。
在其他的实施例中,参照图9和图13所示的一种太阳能收集、传输装置及其方法的透光体表面倾斜结构示意图和透光体表面倾斜的光线折射图;所述透光体2的光线射入界面可设置为倾斜式,倾斜角度为0-90°。倾斜设置的透光体2的光线射入界面可将倾斜光变成垂直光。
参照图3、图4和图5所示的一种太阳能收集、传输装置及其方法的方法示意图。一种太阳能收集、传输装置的方法,包括以下步骤:
1)构建光垂直入射模型,定义光a进透光体2的光线射入界面后,垂直入圆O内,A为圆O上的点,OA为水平直线,垂直入射光a与圆O内表面交点为A0,∠AOA0=α,则:一次反射线A0A1与圆弧的交点A1,∠AOA1=3α,二次反射线A1A2与圆弧的交点A2,∠AOA2=5α;
可得出:∠AOAn=(2n+1)α,其中n为光在圆弧内表面反射次数,其取值为1、2、3…n;
3)定义垂直光a+进入圆O内,入射光a+与OA的交点与圆O圆心之间的距离为X,入射光a与a+的一次反射光相交于B点,区域OBA中弧AB距离圆O圆弧的距离随着X的增大而减小;
可得出:在以圆心O为原点的坐标系中,B点用X表达式为:B=-2X2(1-X2)1/2;
可得出:反射光都经过区域OBA与圆OA区域内的点;
3)定义入射光a+与OA的交点为Xx,Xx与X0区间垂直入射光的一次反射光均经过A0AxCB围成区域内的点;Xx中的x取值均为1、2、3…x。
本发明涉及的一种太阳能收集、传输装置及其方法收集范围大,可收集点直接利用或转化,也可远距离传输后利用或转化,可收集漫射光,可应用于太阳能照明,也可光热利用,也可太阳能电池发电。聚集度高,传输损失小,形状不受限制,适用范围广,可专门用于太阳能利用,也可以用于遮光板,结构体外表面,墙体等。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况
下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。
Claims (10)
- 一种太阳能收集、传输装置,其特征在于:包括相互连接的透光体、传输层和多个反光体,所述传输层内设置有光线收集口,所述反光体包括弧A0AX、直线A0B、直线BC围成的采集传输板,弧A0AX中A0端依次与直线A0B中A0端、直线BC的C端连接。
- 根据权利要求1所述的一种太阳能收集、传输装置,其特征在于:所述弧A0AX对应的圆心角为0~90°,所述直线A0B、直线BC之间夹角的范围是0~180°。
- 根据权利要求2所述的一种太阳能收集、传输装置,其特征在于:所述弧A0AX对应的圆心角为20~75°。
- 根据权利要求1所述的一种太阳能收集、传输装置,其特征在于:所述反光体和透光体可为一体成型结构,所述反光体的内部可设置有填充物质,所述填充物质为固体、气体或真空,所述透光体可为固体、液体、气体或真空。
- 根据权利要求4所述的一种太阳能收集、传输装置,其特征在于:所述透光体为固体时,所述反光体固定在所述透光体上;所述透光体为液体、气体或真空时,所述反光体通过固定装置单独固定。
- 根据权利要求1或2或3或4所述的一种太阳能收集、传输装置,其特征在于:所述透光体的光线射入界面可设置为倾斜式,倾斜角度为0-90°。
- 根据权利要求1或2或3或4所述的一种太阳能收集、传输装置,其特征在于:所述透光体的顶端可设置第一透射膜,所述传输层上端面设置第二透射膜;所述反光体四周包覆有第一反射膜,所述传输层的上端面底层和底端面设置有第二反射膜;所述弧A0AX膜伸入所述传输层的上端面设置有第二反射膜,下端面设置有第三透射膜。
- 根据权利要求1或2或3或4所述的一种太阳能收集、传输装置,其特征在于:所有反光体中弧A0AX均朝一个方向依次排列在透光体上。
- 根据权利要求1或2或3或4所述的一种太阳能收集、传输装置,其特征在于:多个反光体中弧A0AX朝一个方向依次排列在透光体上组成第一收集 组,多个反光体中弧A0AX朝一个方向依次排列在透光体上组成第二收集组;第一收集组中弧A0AX的朝向与第二收集组中弧A0AX的朝向相反。
- 一种根据权利要求1-9中任一所述的太阳能收集、传输装置的方法,其特征在于:包括以下步骤:1)构建光垂直入射模型,定义光a进所述透光体的光线射入界面后,垂直入圆O内,A为圆O上的点,OA为水平直线,垂直入射光a与圆O内表面交点为A0,∠AOA0=α,则:一次反射线A0A1与圆弧的交点A1,∠AOA1=3α,二次反射线A1A2与圆弧的交点A2,∠AOA2=5α;可得出:∠AOAn=(2n+1)α,其中n为光在圆弧内表面反射次数,其取值为1、2、3…n;2)定义垂直光a+进入圆O内,入射光a+与OA的交点与圆O圆心之间的距离为X,入射光a与a+的一次反射光相交于B点,区域OBA中弧AB距离圆O圆弧的距离随着X的增大而减小;可得出:在以圆心O为原点的坐标系中,B点用X表达式为:B=-2X2(1-X2)1/2;可得出:反射光都经过区域OBA与圆OA区域内的点;3)定义入射光a+与OA的交点为Xx,Xx与X0区间垂直入射光的一次反射光均经过A0AxCB围成区域内的点;Xx中的x取值均为1、2、3…x。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17854693.3A EP3522370A4 (en) | 2016-09-30 | 2017-09-14 | DEVICE FOR OBTAINING AND TRANSMITTING SOLAR ENERGY AND METHOD FOR THIS |
US16/294,901 US20190207048A1 (en) | 2016-09-30 | 2019-03-06 | Solar energy collection and transmission device and methods of using thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610871699.8A CN106482360B (zh) | 2016-09-30 | 2016-09-30 | 一种太阳能收集、传输装置及其原理 |
CN201610871699.8 | 2016-09-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/294,901 Continuation US20190207048A1 (en) | 2016-09-30 | 2019-03-06 | Solar energy collection and transmission device and methods of using thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018059243A1 true WO2018059243A1 (zh) | 2018-04-05 |
Family
ID=58268333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/101708 WO2018059243A1 (zh) | 2016-09-30 | 2017-09-14 | 一种太阳能收集、传输装置及其方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190207048A1 (zh) |
EP (1) | EP3522370A4 (zh) |
CN (1) | CN106482360B (zh) |
WO (1) | WO2018059243A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106482360B (zh) * | 2016-09-30 | 2020-09-29 | 杭州凌萤科技有限公司 | 一种太阳能收集、传输装置及其原理 |
CN107026609A (zh) * | 2017-05-03 | 2017-08-08 | 杭州凌萤科技有限公司 | 曲面反射聚光太阳能光电光热分光谱利用装置 |
CN107166764A (zh) * | 2017-04-19 | 2017-09-15 | 杭州凌萤科技有限公司 | 曲面反射聚光平板太阳能集热器 |
CN106996649A (zh) * | 2017-05-07 | 2017-08-01 | 杭州凌萤科技有限公司 | 高温曲面反射聚光太阳能集热器 |
CN106972825A (zh) * | 2017-05-03 | 2017-07-21 | 杭州凌萤科技有限公司 | 曲面反射聚光太阳能光伏发电装置 |
CN106989529A (zh) * | 2017-04-28 | 2017-07-28 | 杭州凌萤科技有限公司 | 可调集热量曲面反射聚光太阳能集热器 |
US20200186081A1 (en) * | 2017-08-04 | 2020-06-11 | Bolymedia Holdings Co. Ltd. | Vertical solar apparatus |
CN117824169A (zh) * | 2023-01-28 | 2024-04-05 | 梁鑫元 | 太阳能聚光板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201656845U (zh) * | 2010-04-07 | 2010-11-24 | 福州万升电器有限公司 | 太阳光集光模板 |
CN103022170A (zh) * | 2012-12-29 | 2013-04-03 | 常州大学 | 一种光伏组件反光带及其使用方法 |
JP2015128895A (ja) * | 2013-12-04 | 2015-07-16 | 大同特殊鋼株式会社 | フレネルレンズおよびフレネルレンズの製造方法 |
CN205160460U (zh) * | 2015-12-01 | 2016-04-13 | 云南师范大学 | 一种基于cpc设计的三平面复合平面聚光器 |
CN106482360A (zh) * | 2016-09-30 | 2017-03-08 | 杭州凌萤科技有限公司 | 一种太阳能收集、传输装置及其原理 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005315329B2 (en) * | 2004-12-17 | 2011-07-28 | Sopogy, Inc | Electromagnetic radiation collector |
US9040808B2 (en) * | 2007-05-01 | 2015-05-26 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
WO2010124028A2 (en) * | 2009-04-21 | 2010-10-28 | Vasylyev Sergiy V | Light collection and illumination systems employing planar waveguide |
US20110162712A1 (en) * | 2010-01-07 | 2011-07-07 | Martin David Tillin | Non-tracked low concentration solar apparatus |
KR20120137363A (ko) * | 2010-02-10 | 2012-12-20 | 피에르 로렌즈 | 반사기, 수용기 구성체 및, 태양열 집열기를 위한 센서 |
CN201903038U (zh) * | 2010-12-28 | 2011-07-20 | 梁长宁 | 一种太阳能蒸汽发生器 |
CN201992851U (zh) * | 2011-04-07 | 2011-09-28 | 江苏辉煌太阳能股份有限公司 | 聚光”h”形管平板集热器 |
US8328403B1 (en) * | 2012-03-21 | 2012-12-11 | Morgan Solar Inc. | Light guide illumination devices |
CN203671946U (zh) * | 2014-01-08 | 2014-06-25 | 张曹 | 聚光型真空平板集热器 |
CN203771739U (zh) * | 2014-03-11 | 2014-08-13 | 浙江煜腾新能源股份有限公司 | 线性聚焦式中高温平板集热器 |
CN204345966U (zh) * | 2014-12-04 | 2015-05-20 | 云南师范大学 | 一种基于cpc聚光器的金属翅片管式吸附集热床 |
-
2016
- 2016-09-30 CN CN201610871699.8A patent/CN106482360B/zh not_active Expired - Fee Related
-
2017
- 2017-09-14 WO PCT/CN2017/101708 patent/WO2018059243A1/zh unknown
- 2017-09-14 EP EP17854693.3A patent/EP3522370A4/en not_active Withdrawn
-
2019
- 2019-03-06 US US16/294,901 patent/US20190207048A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201656845U (zh) * | 2010-04-07 | 2010-11-24 | 福州万升电器有限公司 | 太阳光集光模板 |
CN103022170A (zh) * | 2012-12-29 | 2013-04-03 | 常州大学 | 一种光伏组件反光带及其使用方法 |
JP2015128895A (ja) * | 2013-12-04 | 2015-07-16 | 大同特殊鋼株式会社 | フレネルレンズおよびフレネルレンズの製造方法 |
CN205160460U (zh) * | 2015-12-01 | 2016-04-13 | 云南师范大学 | 一种基于cpc设计的三平面复合平面聚光器 |
CN106482360A (zh) * | 2016-09-30 | 2017-03-08 | 杭州凌萤科技有限公司 | 一种太阳能收集、传输装置及其原理 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3522370A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3522370A4 (en) | 2020-04-29 |
EP3522370A1 (en) | 2019-08-07 |
US20190207048A1 (en) | 2019-07-04 |
CN106482360B (zh) | 2020-09-29 |
CN106482360A (zh) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018059243A1 (zh) | 一种太阳能收集、传输装置及其方法 | |
Tian et al. | A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications | |
US20160043259A1 (en) | Non-Imaging Light Concentrator | |
CN102208473B (zh) | 一种太阳能发电低倍聚光发电组件 | |
IL47516A (en) | Collects radiated energy | |
CN101655287A (zh) | 多段圆弧聚光器 | |
CN104990286A (zh) | 复合抛物面集热器 | |
US20140048117A1 (en) | Solar energy systems using external reflectors | |
CN104300893A (zh) | 多边结构双面发电太阳能电池组件 | |
CN101604936A (zh) | 反射型集光器 | |
CN204334457U (zh) | 一种大容差空间太阳能电站光路聚集传输系统 | |
US20190312544A1 (en) | Sun tracking solar system | |
CN204119146U (zh) | 多边双面单晶硅电池组件 | |
CN203232897U (zh) | 一种聚光式太阳能转换系统 | |
CN201852991U (zh) | 四重抛物柱面聚光器 | |
CN109981044A (zh) | 一种飞艇用太阳能转换装置 | |
US20130128370A1 (en) | Device for the capture of solar energy with high angular efficiency | |
Jing et al. | Design of compound Fresnel-R lenses for new high-efficient concentrator | |
CN203082799U (zh) | 光纤照明系统和光纤照明的聚光装置 | |
CN118041223B (zh) | 广角高倍聚光系统 | |
CN201846284U (zh) | 一种高聚光倍率太阳能聚光器 | |
CN107979338B (zh) | 太阳能聚光器、太阳能聚光器的制备方法及布局确定方法 | |
CN201561585U (zh) | 一种太阳能真空集热管反光折板 | |
CN202995062U (zh) | 一种凸透镜 | |
CN202393966U (zh) | 一种阵列式单元聚焦反射镜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17854693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017854693 Country of ref document: EP Effective date: 20190430 |