WO2018059152A1 - 同步处理方法、装置和设备 - Google Patents

同步处理方法、装置和设备 Download PDF

Info

Publication number
WO2018059152A1
WO2018059152A1 PCT/CN2017/097641 CN2017097641W WO2018059152A1 WO 2018059152 A1 WO2018059152 A1 WO 2018059152A1 CN 2017097641 W CN2017097641 W CN 2017097641W WO 2018059152 A1 WO2018059152 A1 WO 2018059152A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
synchronization
terminal device
frequency
sequence
Prior art date
Application number
PCT/CN2017/097641
Other languages
English (en)
French (fr)
Inventor
刘瑾
罗俊
杜颖钢
施弘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854604.0A priority Critical patent/EP3499763B1/en
Publication of WO2018059152A1 publication Critical patent/WO2018059152A1/zh
Priority to US16/359,601 priority patent/US10887855B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • H04J3/0611PN codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0617Systems characterised by the synchronising information used the synchronising signal being characterised by the frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a synchronization processing method, apparatus, and device.
  • LTE-A Long Term Evolution Advanced
  • 4G Long Term Evolution Advanced
  • UE User Equipment
  • the main purpose is to establish a time-frequency synchronization between the UE and the cell in the cell, so that the UE obtains the cell identifier.
  • the synchronization signal (Synchronization Signal, SS for short) generally includes a primary synchronization signal (English: Primary Synchronization Signal, PSS for short) and a secondary synchronization signal (English: Secondary Synchronization Signal, Abbreviation: SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS is generally used to enable the UE to obtain symbol synchronization and intra-cell ID.
  • the SSS is generally used to obtain signal frame synchronization and cell group ID.
  • MIMO multiple-input multiple-output
  • the base station When the base station provides cell search and synchronization for the coverage UE, it will cause huge system resource overhead.
  • a user access scheme that uses multiple narrow beams for polling is proposed.
  • the base station divides the coverage into six sectors, each fan. It is divided into four slices, which correspond to one base station signal transmission beam direction. For each slice, the base station sends the SS separately for polling. The SS of each slice occupies one symbol.
  • Beam the direction of the receive beam (Beam) is switched every other subframe (1 ms).
  • the base station inserts a synchronization channel (Synchronization Channel, SCH: abbreviation) signal similar to a cyclic prefix in each receiving beam time (1 ms) of the user. For each subframe, the initial beam direction transmitted by the base station changes sequentially.
  • the UE performs correlation detection with the preset PSS sequence according to the PSS sequence sent by the base station to implement symbol synchronization.
  • An embodiment of the present application provides a synchronization processing method, apparatus, and device, which are used to solve a problem in a user access process.
  • a large number of SS sequences need to be introduced, which causes a problem of high detection complexity in cell search and synchronization.
  • the first aspect of the present application provides a synchronization processing method, including:
  • the network device sends the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, so that the terminal device determines, according to the first synchronization signal and the second synchronization signal, that the network device is for the terminal device Optimal transmit beam and timing
  • the frequency of the first synchronization signal in each beam is the same; the frequency offset corresponding to each beam is different; the frequency offset is the frequency of the first synchronization signal in the beam and the The difference between the frequencies of the second synchronization signals in the beam.
  • the network device may be a device on the network side, for example, a base station, etc.
  • the first synchronization signal and the second synchronization signal in each beam are simultaneously transmitted in the time domain, and are multiplexed in the frequency domain, that is, the same
  • the beam carries both the first synchronization signal and the second synchronization signal, and the terminal device at the receiving end can distinguish different beams according to the frequency offset of the two synchronization signals in the same beam.
  • the sequence of the beams in the synchronization signal may be the same or different, and is not limited.
  • the scheme has different frequency offsets of two synchronization signals in the beam, and the terminal device at the receiving end only needs to detect two synchronization signals to determine the optimal transmission beam and timing of the network equipment for the terminal device, and reduce the terminal device and The interaction between the network devices for determining the optimal transmit beam effectively reduces the complexity of the terminal device synchronization detection.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the network device uses the same sequence in all the transmitted first synchronization signals, and the second synchronization signal may all adopt the same sequence.
  • the sequence in the first synchronization signal is different from the sequence in the second synchronization signal.
  • the method further includes:
  • the network device sends the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit, so that the terminal device determines, according to the third synchronization signal and the fourth synchronization signal, that the network device is for the terminal device Optimal transmit beam and timing
  • the transmission frequency of the third synchronization signal in each beam is the same, and the difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different. .
  • the network device may further send the third synchronization signal and the fourth synchronization signal in a second time unit after transmitting the first synchronization signal and the second synchronization signal, so as to enable the terminal device to enable the terminal device to Correlation detection is continuously performed according to the beam of the synchronization signal, and the optimal transmission beam and timing of the network device for the terminal device are determined more quickly, which effectively reduces the complexity of the synchronization detection of the terminal device and shortens the detection time.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • the sequence in the third synchronization signal is different from the sequence in the fourth synchronization signal.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each beam in the first synchronization signal adopts the same sequence and each wave in the third synchronization signal
  • the sequences in the first synchronization signal and the sequences in the third synchronization signal are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the sequence in the first synchronization signal may be the same as the sequence in the third synchronization signal.
  • the beam of the other location can be determined, and then the uplink access channel and the downlink can be made.
  • the access channel timings are one-to-one correspondence, which reduces the information interaction between the terminal device and the network device regarding the beam.
  • the method further includes: the network device receiving the signal sent by the terminal device at a timing at which the optimal transmit beam is located.
  • the timing position of the best transmit beam is also the optimal location for the terminal device to send the uplink beam, so the terminal device can be at the optimal transmit beam.
  • the timing in which it is sent sends an upstream signal to the network device.
  • the second aspect of the present application provides a synchronization processing method, including:
  • the terminal device receives the first synchronization signal and the second synchronization signal that are sent by the network device in the first time unit; the transmission frequency of the first synchronization signal in each beam is the same, and the frequency offset corresponding to each beam is different;
  • the frequency offset is a difference between a frequency of the first synchronization signal in the beam and a frequency of the second synchronization signal in the beam;
  • the terminal device receives the first synchronization signal and the second synchronization signal sent by the network device, and the frequency offset between the two synchronization signals in each beam is different, and the terminal device stores the received beam sequence and pre-stores.
  • the synchronization sequence performs correlation detection, and determines the timing position of the most relevant beam according to the time frequency, that is, determines the optimal transmission beam and the timing, does not require multiple synchronization signals, and only needs to detect two synchronization signals to obtain
  • the optimal transmit beam reduces the synchronization signal interaction between the terminal device and the network device and reduces the detection complexity of the synchronization process.
  • the terminal device performs correlation detection on each of the first synchronization signals and a pre-stored first synchronization sequence, and performs pre-advancement on each of the second synchronization signals.
  • the stored second synchronization sequence performs correlation detection to obtain an optimal beam in the first synchronization signal and an optimal beam in the second synchronization signal; wherein the optimal beam is a beam whose correlation is greater than a preset threshold and has the highest correlation ;
  • the network device for the terminal device Obtaining, by the terminal device, the network device for the terminal device according to a frequency difference between a frequency of an optimal beam in the first synchronization signal and a frequency of an optimal beam in the second synchronization signal Describe the optimal transmit beam and timing.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the sequence in the first synchronization signal is different from the sequence in the second synchronization signal.
  • the method further includes:
  • a third synchronization signal in each beam has the same transmission frequency, and the The difference between the frequency of the third synchronization signal and the frequency of the fourth synchronization signal in the beam is different;
  • the method further includes:
  • the network device may further send the third synchronization signal and the fourth synchronization signal in a second time unit after transmitting the first synchronization signal and the second synchronization signal, so as to enable the terminal device to enable the terminal device to Correlation detection is performed according to the beam of the synchronization signal, that is, the terminal device can determine the network device for the terminal device more quickly according to the first synchronization signal and the second synchronization signal, or according to the third synchronization signal and the fourth synchronization signal.
  • the optimal transmit beam and the timing are effective to reduce the complexity of the synchronous detection of the terminal device and shorten the detection time.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the method further includes: the terminal device initiates random access according to a timing correspondence between the optimal transmit beam and the random access channel.
  • the method further includes: the terminal device sends a signal to the network device at a timing at which the optimal transmit beam is located.
  • the timing position of the best transmit beam is also the optimal location for the terminal device to send the uplink beam, so the terminal device can be at the optimal transmit beam.
  • the timing in which it is sent sends an upstream signal to the network device.
  • a third aspect of the present application provides a synchronization processing apparatus, including:
  • a storage module configured to store a correspondence between a beam and a frequency offset, and store a corresponding program
  • a processing module configured to generate a first synchronization signal and a second synchronization signal
  • a sending module configured to send the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, so that the terminal device determines, according to the first synchronization signal and the second synchronization signal, that the synchronization processing device is The optimal transmit beam of the terminal device and the timing of the terminal device;
  • the frequency of the first synchronization signal in each beam is the same; the frequency offset corresponding to each beam is different; the frequency offset is the frequency of the first synchronization signal in the beam and the The difference between the frequencies of the second synchronization signals in the beam.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the sending module is further configured to send the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit, so that the terminal device determines, according to the third synchronization signal and the fourth synchronization signal, The optimal transmission beam of the synchronization processing device for the terminal device and the timing thereof;
  • the transmission frequency of the third synchronization signal in each beam is the same, and the difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different. .
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the device further includes:
  • a receiving module configured to receive a signal that is sent by the terminal device at a timing at which the optimal transmit beam is located.
  • a fourth aspect of the present application provides a synchronization processing apparatus, including:
  • a storage module configured to store a correspondence between a beam and a frequency offset and store a corresponding program
  • a receiving module configured to receive a first synchronization signal and a second synchronization signal that are sent by the network device in the first time unit; the first synchronization signal in each beam has the same transmission frequency, and the frequency offset corresponding to each beam is not The same; the frequency offset is a difference between a frequency of the first synchronization signal in the beam and a frequency of the second synchronization signal in the beam;
  • a processing module configured to determine, according to the first synchronization signal and the second synchronization signal, an optimal transmit beam of the network device for the synchronization processing device and a timing thereof.
  • processing module is specifically configured to:
  • the optimal beam is a beam having a correlation greater than a preset threshold and having the highest correlation
  • the network device is for the synchronization processing device according to a frequency difference between a frequency of an optimal beam in the first synchronization signal and a frequency of an optimal beam in the second synchronization signal Transmit beam and timing.
  • the first synchronization sequence and the second synchronization sequence are stored in the storage module or generated by a processing module.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the receiving module is further configured to receive a third synchronization message sent by the network device in a second time unit. And a fourth synchronization signal; wherein a transmission frequency of the third synchronization signal in each beam is the same, a frequency of the third synchronization signal in each beam, and a frequency of the fourth synchronization signal in the beam The difference between the two is different;
  • the processing module is further configured to determine, according to the third synchronization signal and the fourth synchronization signal, an optimal transmit beam of the network device for the synchronization processing device and a timing thereof.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the processing module is further configured to initiate random access according to a timing correspondence between the optimal transmit beam and the random access channel.
  • the device further includes:
  • a sending module configured to send a signal to the network device at a timing at which the optimal transmit beam is located.
  • a fifth aspect of the present application provides a network device, including:
  • a memory for storing a correspondence between a beam and a frequency offset, and storing a corresponding program
  • a processor configured to generate a first synchronization signal and a second synchronization signal
  • a transmitter configured to send the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, so that the terminal device determines, according to the first synchronization signal and the second synchronization signal, that the network device is targeted by Describe the optimal transmit beam of the terminal device and the timing of the location;
  • the frequency of the first synchronization signal in each beam is the same; the frequency offset corresponding to each beam is different; the frequency offset is the frequency of the first synchronization signal in the beam and the The difference between the frequencies of the second synchronization signals in the beam.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the transmitter is further configured to send the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit, so that the terminal device determines, according to the third synchronization signal and the fourth synchronization signal, An optimal transmit beam of the network device for the terminal device and a timing thereof;
  • the transmission frequency of the third synchronization signal in each beam is the same, and the difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different. .
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the network device further includes:
  • a receiver configured to receive a signal sent by the terminal device at a timing at which the optimal transmit beam is located.
  • the sixth aspect of the present application provides a terminal device, including:
  • a memory for storing a correspondence between a beam and a frequency offset and storing a corresponding program
  • a receiver configured to receive a first synchronization signal and a second synchronization signal that are sent by the network device in the first time unit; the first synchronization signal in each beam has the same transmission frequency, and the frequency offset corresponding to each beam is not The same; the frequency offset is a difference between a frequency of the first synchronization signal in the beam and a frequency of the second synchronization signal in the beam;
  • a processor configured to determine, according to the first synchronization signal and the second synchronization signal, an optimal transmit beam of the network device for the terminal device and a timing thereof.
  • the processor is specifically configured to:
  • the optimal beam is a beam having a correlation greater than a preset threshold and having the highest correlation
  • the first synchronization sequence and the second synchronization sequence are stored in the storage module or generated by a processing module.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the receiver is further configured to receive a third synchronization signal and a fourth synchronization signal that are sent by the network device in the second time unit; wherein, the third synchronization signal in each beam is sent at the same frequency, The difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different;
  • the processor is further configured to determine, according to the third synchronization signal and the fourth synchronization signal, an optimal transmit beam of the network device for the user equipment and a timing thereof.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the processor is further configured to initiate random access according to a timing correspondence between the optimal transmit beam and the random access channel.
  • the user equipment further includes:
  • a transmitter configured to send a signal to the network device at a timing at which the optimal transmit beam is located.
  • a seventh aspect of the present application provides a storage medium comprising: a readable storage medium and a computer program for implementing the synchronization processing method provided by the foregoing first aspect.
  • An eighth aspect of the present application provides a storage medium comprising: a readable storage medium and a computer program, the computer program being used to implement the synchronization processing method provided by the foregoing second aspect.
  • a ninth aspect of the present application provides a program product, comprising: a computer program stored in a readable storage medium; at least one processor of the network device reads the computer program from the readable storage medium, and executes The computer program causes the network device to implement the synchronization processing method provided by any of the first aspects.
  • a tenth aspect of the present application provides a program product, comprising: a computer program stored in a readable storage medium; at least one processor of the terminal device reads the computer program from the readable storage medium, and executes The computer program causes the terminal device to implement the synchronization processing method provided by any of the second aspects.
  • the network device sends a first synchronization signal and a second synchronization signal to the terminal device in a first time unit, and the first synchronization signal in each beam has the same transmission frequency, each beam
  • the difference between the frequency of the first synchronization signal and the frequency of the second synchronization signal is different, and the terminal device determines, according to the first synchronization signal and the second synchronization signal, an optimal transmission beam of the network device for the terminal device and where Timing, by transmitting two different synchronization signals with different frequency offsets, the terminal device at the receiving end only needs to detect two synchronization signals to determine the optimal transmission beam and timing of the network device for the terminal device, and reduce the terminal.
  • the interaction between the device and the network device for determining the optimal transmit beam effectively reduces the complexity of the terminal device synchronization detection.
  • Embodiment 1a is a flowchart of Embodiment 1 of a synchronization processing method of the present application
  • FIG. 1b is a flowchart of Embodiment 2 of a synchronization processing method of the present application
  • Embodiment 3 is a flowchart of Embodiment 3 of a synchronization processing method of the present application
  • FIG. 3a is a schematic diagram of a synchronization signal frame design provided by the present application.
  • FIG. 3b is a schematic diagram of another synchronization signal frame design provided by the present application.
  • FIG. 4 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • FIG. 5 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • FIG. 6 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a synchronization processing apparatus according to the present application.
  • Embodiment 8 is a schematic structural diagram of Embodiment 2 of a synchronization processing apparatus according to the present application.
  • Embodiment 9 is a schematic structural diagram of Embodiment 3 of a synchronization processing apparatus according to the present application.
  • Embodiment 4 of a synchronization processing apparatus according to the present application.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a network device according to the present application.
  • Embodiment 12 is a schematic structural diagram of Embodiment 2 of a network device according to the present application.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present application.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a terminal device according to the present application.
  • the terminal device determines the optimal transmit beam timing of the network device for the terminal device, the signal to be detected in multiple subframes during the synchronization process, the signaling interaction is more, and the detection complexity is high.
  • the network device only needs to send two synchronization signals with certain regularity, and the user-side terminal device can determine the optimal beam according to the two synchronization signals, so as to reduce the user in the process of cell search and synchronization. Detection complexity.
  • FIG. 1 is a flowchart of Embodiment 1 of a synchronization processing method of the present application. As shown in FIG. 1a, the specific implementation steps of the synchronization processing method are as follows:
  • the network device sends the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, where the first synchronization signal in each beam has the same transmission frequency; the frequency offset corresponding to each beam is different.
  • the frequency offset is the difference between the frequency of the first synchronization signal in the beam and the frequency of the second synchronization signal in the beam.
  • the network device is a base station on the network side or another device capable of providing a base station function;
  • the terminal device is a device that needs to perform uplink and downlink data interaction on the user side, for example, a mobile phone, a tablet computer, or the like.
  • the network device may also be a terminal that assumes the function of the base station.
  • the network device needs to generate two synchronization signals, and the frequency offsets of the two synchronization signals in each beam are different.
  • the timings in the first synchronization signal and the second synchronization signal in the first beam are in the same position, and the frequency is The domain is multiplexed, that is, the frequency of the first synchronization signal and the second synchronization signal in the first beam is offset by f1, and the timings of the first synchronization signal and the second synchronization signal in the second beam are the same, in the frequency domain.
  • the offset is f2, the first synchronization signal and the second synchronization signal in the third beam have the same position on the timing, and the offset in the frequency domain is f3, etc., where f1, f2, and f3 are not between the two. the same.
  • the network device sends the first synchronization signal and the second synchronization signal to the terminal device, the network device can transmit at different frequency positions in the same signal frame.
  • each of the optional first synchronization signals has the same carrier frequency, that is, each beam in the first synchronization signal is transmitted on the same frequency.
  • the terminal device determines, according to the first synchronization signal and the second synchronization signal, an optimal transmit beam of the network device for the terminal device and a timing thereof.
  • the terminal device receives the first synchronization signal and the second synchronization signal that are sent by the network device in the first time unit, and the frequency offset corresponding to each beam is different, and the terminal device is in each synchronization signal.
  • the beam reference is generated online or the pre-stored synchronization sequence is used for correlation detection.
  • different beams can be time-series and combined with correlation detection.
  • the correlation value of the optimal beam must also be greater than a threshold.
  • the terminal device initiates random access according to the timing correspondence between the optimal transmit beam and the random access channel, and implements access and synchronization of the terminal device.
  • the timing at which the optimal transmit beam is located is also the best transmit beam for the terminal device to send the uplink signal. According to this, the terminal device can send a signal to the network device at the timing at which the optimal transmission beam is located.
  • the network device offsets two synchronization signals with different frequency offsets, so that the terminal device at the receiving end only needs to detect two synchronization signals to determine the most network device for the terminal device.
  • the good transmission beam and the timing are reduced, and the interaction between the terminal device and the network device for determining the optimal transmission beam is reduced, which effectively reduces the complexity of the terminal device synchronization detection.
  • Figure 1b is a flowchart of a second embodiment of the synchronization processing method of the present application.
  • the terminal device according to the first synchronization signal and the second synchronization signal in step S102
  • the specific implementation steps for determining the optimal transmit beam and timing of the network device for the terminal device are as follows:
  • the terminal device performs correlation detection on each beam sequence in the first synchronization signal with the first synchronization sequence generated or pre-stored in the first synchronization signal, and generates or pre-forms each beam sequence in the second synchronization signal.
  • the stored second synchronization sequence performs correlation detection to acquire an optimal beam in the first synchronization signal and an optimal beam in the second synchronization signal.
  • the best beam is a beam whose correlation is greater than a preset threshold and has the highest correlation.
  • the terminal device sequentially performs correlation detection between the sequence corresponding to different beams in each synchronization signal and the corresponding synchronization sequence, and finds that the correlation of the beam sequence in the synchronization signal is optimal and A beam larger than a predetermined threshold, that is, the optimal beam described above.
  • the terminal device acquires an optimal transmit beam and a timing of the network device for the terminal device according to a frequency difference between a frequency of the best beam in the first synchronization signal and a frequency of the best beam in the second synchronization signal.
  • the terminal device determines a frequency difference between the best beam in the first synchronization signal and the best beam in the second synchronization signal, that is, the frequency difference between the two synchronization signals of the terminal device according to each beam.
  • the timing position of the optimal transmit beam of the network device for the terminal device is determined, and the identifier of the optimal transmit beam can be acquired at the same time to implement symbol positioning.
  • each beam in the first synchronization signal adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the meaning is that in the above two embodiments, in order to further reduce the detection complexity of the terminal device in the cell search and synchronization process, all the first synchronization signals transmitted by the network device adopt the same sequence, and the second synchronization signal also The same sequence can all be used. That is, each beam in the first synchronization signal adopts the same sequence, and each beam in the second synchronization signal adopts the same sequence.
  • Embodiment 3 is a flowchart of Embodiment 3 of the synchronization processing method of the present application.
  • the network device may send the first Synchronization signal After the second synchronization signal, the third synchronization signal and the fourth synchronization are performed in the second time unit, so that the terminal device can perform the positioning of the optimal beam, and the implementation of the synchronization processing method provided by the specific embodiment is implemented.
  • the steps are:
  • the network device sends the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, where the first synchronization signal in each beam has the same transmission frequency; the frequency offset corresponding to each beam is different.
  • the frequency offset is the difference between the frequency of the first synchronization signal in the beam and the frequency of the second synchronization signal in the beam.
  • This step is the same as the implementation of step S101 of the previous embodiment.
  • the network device sends the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit; the transmission frequency of the third synchronization signal in each beam is the same, the frequency of the third synchronization signal in each beam, and the The difference between the frequencies of the fourth synchronization signal in the beam is different.
  • the third synchronization signal and the fourth synchronization signal transmitted by the network device in the second time unit are also multiplexed in the frequency domain.
  • the third synchronization signal and the fourth synchronization signal are simultaneously transmitted in time series.
  • all beams carrying the third synchronization signal may be selected to be transmitted on the same frequency, carrying the fourth.
  • the transmission frequency of each beam of the synchronization signal is different, ensuring that the frequency offset of each beam in the third synchronization signal and the fourth synchronization signal is different.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • the terminal device determines, according to the first synchronization signal and the second synchronization signal, or according to the third synchronization signal and the fourth synchronization signal, an optimal transmit beam of the network device for the terminal device and a timing thereof.
  • the terminal device In the process of receiving each synchronization signal, the terminal device sequentially performs correlation detection on the sequence corresponding to different beams in each synchronization signal and the corresponding synchronization sequence, and finds the beam with the best correlation of the beam sequence in the synchronization signal. That is, the best beam described above.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence and the location in the second synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the terminal device initiates random according to the timing relationship between the optimal transmit beam and the random access channel. Access to achieve access and synchronization of the terminal device.
  • the timing at which the optimal transmit beam is located is also the best transmit beam for the terminal device to send the uplink signal. According to this, the terminal device can send a signal to the network device at the timing at which the optimal transmission beam is located.
  • the synchronization processing method proposed in the present application is described in detail below by taking the network device as the base station, the first synchronization signal as the PSS, and the second synchronization signal as the SSS.
  • the scheme proposes a user access scheme for a high frequency system.
  • the base station transmits PSS and SSS in the same time unit in a downlink signal frame (10 ms), and the PSS and SSS are multiplexed in the frequency domain.
  • the sequence of each beam of the PSS is the same.
  • the sequence of each beam of the SSS is also the same, which can reduce the detection complexity of the UE in the cell search and synchronization process.
  • the UE may perform symbol timing according to the deviation of the PSS and the SSS in the received frequency in the frequency domain, that is, the frequency difference, to obtain the timing position of the optimal transmission beam. In this way, the uplink access channel and the downlink access channel timing are in one-to-one correspondence, and the information interaction between the UE and the base station regarding beam synchronization is reduced.
  • FIG. 3a is a schematic diagram of a synchronization signal frame design provided by the present application.
  • the network device sends PSS and SSS 1 in a first time unit, where each beam sequence in the PSS is the same (ie, PSS).
  • Each beam in SSS 1 uses the same sequence (SSS 1 ), beam 1 (B 1 ), beam 2 (B 2 ), beam 3 (B 3 ), beam 4 (B 4 ), beam 5 ( B 5 ) respectively represent the identification of different beams
  • PSS represents the first synchronization signal and the sequence in the beam
  • SSS 1 represents the sequence of the beam in the second synchronization signal, as can be seen in the sequence in the first synchronization signal.
  • ⁇ f1 represents the frequency offset of beam 1 (B 1 ) between the first synchronization signal and the second synchronization signal
  • ⁇ f5 represents the frequency offset of beam 5 (B 5 ) between the first synchronization signal and the second synchronization signal.
  • each sub-frame signal For different slices of each sub-frame signal (that is, different beams as described above), different sequences are used in the two synchronization signals transmitted by the base station, and each beam has a frequency offset in the PSS and the SSS 1 , and the receiving end
  • the terminal device may perform receiving processing according to the base station transmitting the PSS and the SSS 1 in the same signal frame (first time unit), and each UE detects the synchronization signal by switching the receiving beam.
  • the time of UE access is unlimited, because within a time interval of one receive beam, the UE can receive all the beams transmitted by the base station in one signal frame.
  • the UE For different beams in each subframe, the UE performs correlation detection on the received sequence with the online generated or pre-stored synchronization sequence, and finds a beam corresponding to the best result of the sequence correlation detection in the subframe.
  • the UE determines the timing position corresponding to the best transmit beam of the base station according to the frequency difference of the beams found in the two synchronization signals, and acquires the identifier of the best transmitted beam of the base station, that is, implements symbol timing.
  • the UE can obtain the optimal transmit beam direction of the base station by receiving the downlink synchronization signal.
  • the UE can send the uplink beam in the optimal transmit beam direction of the base station.
  • the UE may perform detection by using multiple downlink synchronization signal frames, switch the UE receiving beam direction for each signal frame, compare the sequence correlation detection result on each signal frame, and receive the UE corresponding to the optimal detection result.
  • the beam direction is the best receive beam direction of the UE.
  • the first beam that different UEs may start to receive is not the same, but as long as all the beams of one synchronization signal are received, the above processing is performed to obtain the best transmission beam.
  • sequences in the same synchronization signal are the same.
  • sequences in the synchronization signal are not limited to the same or different.
  • the terminal device can complete the frame timing by using the PSS and the SSS in the above one time unit, for example, in a frame structure similar to LTE-A, that is, 10 ms timing. Without loss of generality, this application takes the 10 ms frame length as an example.
  • FIG. 3b is a schematic diagram of another synchronization signal frame design provided by the present application.
  • the second time unit may be The two synchronization signals, that is, the third synchronization signal and the fourth synchronization signal described above, are transmitted again, usually the first time unit is in the first half frame and the second time unit is in the second half frame.
  • the same PSS and SSS 2 as in the first subframe are transmitted in the second subframe, in which each beam sequence in the SSS 2 is the same, and the base station is in the second a different sequence used in the two synchronization signals sent by the time unit, and each beam has a frequency offset in the PSS and the SSS 2 , and the terminal device at the receiving end can transmit the above according to the base station in the same signal frame (first time unit)
  • the PSS and SSS 2 perform reception processing, and each UE detects the synchronization signal by switching the reception beam.
  • the time of UE access is unlimited, because within a time interval of one receive beam, the UE can receive all the beams transmitted by the base station in one signal frame.
  • one set of PSSs is transmitted on one subframe, and another set of PSSs is transmitted on another subframe.
  • the two sets of PSSs on the two subframes are the same, and the half frame timing (ie, 5 ms timing) is acquired through the PSS.
  • the carrier offset or frequency offset ⁇ fl is used to determine different symbols, where l is the symbol number and also corresponds to the beam number.
  • Time-frequency synchronization, field-frame timing, frame timing, and symbol timing can be obtained through a set of PSS/SSS detections to achieve fast access. Since the subcarriers spaced between the PSS and the SSS can be used for the transmission of other data or control information, there is no additional resource overhead.
  • the PSS sequences used in the two subframes may be all the same, and the SSS sequences used in each beam may be the same, partially the same, or all different. Or, the SSS sequences may all be the same, and the PSS sequences used in each beam may be the same, may be partially the same, or may be different.
  • FIG. 4 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • one set of PSS 1 and one set of SSS are transmitted on one subframe, and another set of PSS 2 is sent on another subframe.
  • the PSS transmitted in the first time unit of the base station and the PSS transmitted in the second time unit adopt different sequences
  • the SSS sent by the base station in the first time unit and the SSS sent in the second time unit use the same sequence.
  • the terminal device at the receiving end performs correlation detection on the sequence of the received beam and the synchronization sequence generated in advance or stored in advance, and obtains an optimal transmission beam of the base station to the terminal device, and obtains the best according to the subcarrier offset.
  • the timing position at which the beam is located is determined to obtain the best transmit beam and the timing.
  • FIG. 5 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • each of the beams in the SSS adopts different sequences, and sends a set of PSS and one in a certain subframe.
  • the group SSS transmits another group of PSSs and another group of SSSs on another subframe.
  • the two sets of PSSs on the two subframes are the same, and the half frame timing (ie, 5 ms timing) is acquired through the PSS; the two groups sent on the two subframes
  • the SSS sequences are all different. In this way, frame timing (ie, 10 ms timing), symbol timing, and cell identification can be obtained.
  • SSS 0 to SSS 4 and SSS 5 to SSS 9 all correspond to the same cell identifier
  • SSS 0 to SSS 4 correspond to five symbols of the first subframe
  • SSS 5 to SSS 9 correspond to five symbols of the second subframe.
  • FIG. 6 is a schematic diagram of another synchronization signal frame design provided by the present application.
  • one group of PSSs is sent on one subframe, and another group of PSSs is sent on another subframe.
  • the PSS sequences of the two groups are different, and the half frame timing (ie, 5 ms timing) and the frame timing (ie, 10 ms timing) are simultaneously acquired by the PSS; the symbol timing and the cell identifier are acquired by transmitting the same two sets of SSS sequences on the two subframes.
  • SSS 1 to SSS 5 correspond to the same cell identifier
  • SSS 1 to SSS 5 correspond to 5 symbols of each subframe that carries the synchronization signal.
  • This embodiment obtains symbol timing and cell identification completely through different sequences of the SSS. Compared with the prior art, the resource overhead is not increased, and the detection complexity is not increased. Compared to the method shown in FIG. 5, the number of SSS sequences for identifying different symbols is halved, and the number of sequences of SSSs that can be used to identify the cells is increased.
  • the scheme of transmitting the PSS and the SSS in both time units is taken as an example.
  • the terminal device only needs to receive the frequency according to the received in one time unit.
  • the domain-multiplexed PSS and SSS can perform time-domain positioning on the symbols according to the frequency offset or sequence of PSS and SSS in each beam, that is, the frame timing can be implemented in the above scheme, and does not need to be in multiple Multiple sets of synchronization signals are transmitted/received on the time unit.
  • the advantage of transmitting the synchronization signal on multiple time units of the same frame is that it facilitates fast access.
  • the specific implementation needs to be clearly distinguished between groups when transmitting multiple sets of synchronization signals-- -- For example, different frequency offsets or different combinations of sequences -- you can't limit them here. Further, it is also possible to transmit more synchronization information in a different frequency offset manner in different time units to transmit more system information, which is also not limited herein.
  • the synchronization processing method provided by the present application identifies the symbol timing information of the multi-beam access signal by the offset or sequence of the synchronization signal in the frequency domain, thereby avoiding introducing a new synchronization signal or increasing the signaling overhead of the broadcast channel, thereby effectively saving Resource overhead and simplify detection complexity.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a synchronization processing apparatus according to the present application.
  • the synchronization processing apparatus 10 includes:
  • the storage module 11 is configured to store a correspondence between a beam and a frequency offset, and store a corresponding program
  • the processing module 12 is configured to generate a first synchronization signal and a second synchronization signal
  • the sending module 13 is configured to send the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, so that the terminal device determines the synchronization processing device according to the first synchronization signal and the second synchronization signal 10 an optimal transmit beam for the terminal device and a timing thereof;
  • the frequency of the first synchronization signal in each beam is the same; the frequency offset corresponding to each beam is different; the frequency offset is the frequency of the first synchronization signal in the beam and the The difference between the frequencies of the second synchronization signals in the beam.
  • the synchronization processing device provided in this embodiment is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the sending module 13 is further configured to send the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit, so that the terminal device is configured according to the first synchronization signal, the second synchronization Signal, said The third synchronization signal and the fourth synchronization signal determine an optimal transmit beam of the synchronization processing device for the terminal device and a timing thereof;
  • the transmission frequency of the third synchronization signal in each beam is the same, and the difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different. .
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the synchronization processing device provided by the foregoing solution is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of the synchronization processing apparatus of the present application. As shown in FIG. 8, the synchronization processing apparatus 10 further includes:
  • the receiving module 14 is configured to receive a signal that is sent by the terminal device at a timing at which the optimal transmit beam is located.
  • the synchronization processing device provided in this embodiment is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of Embodiment 3 of a synchronization processing apparatus according to the present application.
  • the synchronization processing apparatus 20 includes:
  • a storage module 21 configured to store a correspondence between a beam and a frequency offset, and store a corresponding program
  • the receiving module 22 is configured to receive a first synchronization signal and a second synchronization signal that are sent by the network device in the first time unit; the first synchronization signal in each beam has the same transmission frequency, and the frequency offset corresponding to each beam is Not different; the frequency offset is a difference between a frequency of the first synchronization signal in the beam and a frequency of the second synchronization signal in the beam;
  • the processing module 23 is configured to determine, according to the first synchronization signal and the second synchronization signal, an optimal transmit beam of the network device for the synchronization processing device and a timing thereof.
  • the synchronization processing device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the processing module 23 is specifically configured to:
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the receiving module 22 is further configured to receive a third synchronization signal and a fourth synchronization signal that are sent by the network device in the second time unit, where the third synchronization signal in each beam is sent at the same frequency. a difference between a frequency of the third synchronization signal in each beam and a frequency of the fourth synchronization signal in the beam is different;
  • the processing module 23 is specifically configured to determine, according to the first synchronization signal and the second synchronization signal, the network device, according to the third synchronization signal and the fourth synchronization signal, to the synchronization processing device. The best transmit beam and the timing.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the processing module 23 is further configured to initiate random access according to a timing correspondence between the optimal transmit beam and a random access channel.
  • the synchronization processing device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 4 of a synchronization processing apparatus according to the present application.
  • the synchronization processing apparatus 20 further includes:
  • the sending module 24 is configured to send a signal to the network device at a timing at which the optimal transmit beam is located.
  • the synchronization processing device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a network device according to the present application. As shown in FIG. 11, the network device 30 includes:
  • a memory 31 configured to store a correspondence between a beam and a frequency offset, and store a corresponding program
  • the processor 32 is configured to generate a first synchronization signal and a second synchronization signal
  • the transmitter 33 is configured to send the first synchronization signal and the second synchronization signal to the terminal device in the first time unit, so that the terminal device determines, according to the first synchronization signal and the second synchronization signal, that the network device is targeted The optimal transmit beam of the terminal device and the timing of the terminal device;
  • the frequency of the first synchronization signal in each beam is the same; the frequency offset corresponding to each beam is different; the frequency offset is the frequency of the first synchronization signal in the beam and the The difference between the frequencies of the second synchronization signals in the beam.
  • the network device provided in this embodiment is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • each of the first synchronization signals adopts the same sequence
  • each of the second synchronization signals adopts the same sequence
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the transmitter 33 is further configured to send the third synchronization signal and the fourth synchronization signal to the terminal device in the second time unit, so that the terminal device is configured according to the first synchronization signal and the second synchronization signal. Or determining, according to the third synchronization signal and the fourth synchronization signal, an optimal transmit beam of the network device for the terminal device and a timing thereof;
  • the transmission frequency of the third synchronization signal in each beam is the same, and the difference between the frequency of the third synchronization signal in each beam and the frequency of the fourth synchronization signal in the beam is different. .
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a network device according to the present application. As shown in FIG. 12, the network device 30 further includes:
  • the receiver 34 is configured to receive a signal that is sent by the terminal device at a timing at which the optimal transmit beam is located.
  • the network device provided in this embodiment is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present application. As shown in FIG. 13, the terminal device 40 includes:
  • a memory 41 configured to store a correspondence between a beam and a frequency offset and store a corresponding program
  • the receiver 42 is configured to receive a first synchronization signal and a second synchronization signal that are sent by the network device in the first time unit; the first synchronization signal in each beam has the same transmission frequency, and the frequency offset corresponding to each beam is Not different; the frequency offset is a difference between a frequency of the first synchronization signal in the beam and a frequency of the second synchronization signal in the beam;
  • the processor 43 is configured to determine, according to the first synchronization signal and the second synchronization signal, an optimal transmit beam of the network device for the terminal device and a timing thereof.
  • the terminal device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the processor 43 is specifically configured to:
  • Performing correlation detection on each of the first synchronization signals with a first synchronization sequence stored in the memory 41 or generated in-line, and for each of the second synchronization signals and the The second synchronization sequence stored in the memory 41 or generated on the line performs correlation detection, and acquires an optimal beam in the first synchronization signal and the second synchronization signal; wherein the optimal beam is greater than a preset threshold And the most relevant beam;
  • each of the first synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence.
  • the receiver 42 is further configured to receive a third synchronization signal and a fourth synchronization signal that are sent by the network device in the second time unit, where the third synchronization signal in each beam is sent at the same frequency. a difference between a frequency of the third synchronization signal in each beam and a frequency of the fourth synchronization signal in the beam is different;
  • the processor 43 is specifically configured to determine, according to the first synchronization signal and the second synchronization signal, or according to the third synchronization signal and the fourth synchronization signal, that the network device is for the user equipment. The best transmit beam and the timing.
  • each of the third synchronization signals adopts the same sequence.
  • each of the fourth synchronization signals adopts the same sequence.
  • each of the second synchronization signals adopts the same sequence and each of the fourth synchronization signals adopts the same sequence
  • the sequence in the second synchronization signal and the fourth synchronization signal are orthogonal to each other.
  • the sequence in the second synchronization signal and the sequence in the fourth synchronization signal are conjugate to each other.
  • each of the first synchronization signals adopts the same sequence
  • each of the third synchronization signals adopts the same sequence
  • the sequence in the first synchronization signal and the third synchronization are orthogonal to each other.
  • sequence in the first synchronization signal and the sequence in the third synchronization signal are conjugate to each other.
  • each beam of the first synchronization signal adopts a sequence similar to that used by each beam of the third synchronization signal
  • each beam of the second synchronization signal adopts a sequence and each beam of the fourth synchronization signal is adopted.
  • the sequence is the same.
  • the processor 43 is further configured to initiate random access according to a timing correspondence between the optimal transmit beam and a random access channel.
  • the terminal device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of the terminal device of the present application. As shown in FIG. 14, the terminal device 40 further includes:
  • the transmitter 44 is configured to send a signal to the network device at a timing at which the optimal transmit beam is located.
  • the terminal device provided in this embodiment is used to perform the technical solution on the terminal device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the present application further provides a storage medium, comprising: a readable storage medium and a computer program, which is used to implement the technical solution of the network device in the synchronization processing method provided by any of the foregoing implementation manners.
  • the present application further provides a storage medium, comprising: a readable storage medium and a computer program, which is used to implement the technical solution of the terminal device in the synchronization processing method provided by any of the foregoing implementation manners.
  • the application also provides a program product comprising: a computer program stored in a readable storage medium; at least one processor of the network device reads the computer program from the readable storage medium, performing the The computer program causes the network device to provide a technical solution of the synchronization processing method provided by any of the foregoing schemes.
  • the application also provides a program product comprising: a computer program stored in a readable storage medium; at least one processor of the terminal device reads the computer program from the readable storage medium, performing the The computer program causes the terminal device to adopt the technical solution of the synchronization processing method provided by any of the foregoing embodiments.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (English: Digital) Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the aforementioned program can be stored in a computer readable memory.
  • the steps including the foregoing method embodiments are performed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Abstract

本申请实施例提供一种同步处理方法、装置和设备,该方法包括:网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,每个波束中的第一同步信号的发送频率相同;每个波束中的第一同步信号的频率和第二同步信号的频率间的差值均不相同,终端设备根据第一同步信号和第二同步信号确定网络设备针对该终端设备的最佳发送波束以及所处时序,通过发送波束的频率偏移不同的两个同步信号,使得接收端的终端设备只需要检测两个同步信号就可以确定出网络设备针对该终端设备的最佳发送波束以及所处时序,减少终端设备和网络设备间关于用于确定最佳发送波束的交互,有效降低了终端设备同步检测的复杂度。

Description

同步处理方法、装置和设备
本申请要求于2016年09月30日提交中国专利局、申请号为201610873206.4、申请名称为“同步处理方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种同步处理方法、装置和设备。
背景技术
长期演进技术升级(Long Term Evolution Advanced,简称:LTE-A),也称为4G,已经广泛进行了部署和使用,相对于3G通信系统,用户获得了更高的通信速率,更好的通信体验。小区搜索与同步是移动通信系统中用户设备(英文:User Equipment,简称:UE)与通信网络建立连接的关键步骤,主要是为了建立UE与所在小区基站取得时频同步,使得UE获得小区标识(英文:identity,简称:ID),系统传输参数,及其他小区广播信息。
在现有的小区搜索与同步方案中,同步信号(英文:Synchronization Signal,简称:SS)一般包括主同步信号(英文:Primary Synchronization Signal,简称:PSS)和辅同步信号(英文:Secondary Synchronization Signal,简称:SSS)。PSS一般用于使UE获得符号同步和小区组内ID,SSS一般用于获得信号帧同步和小区组ID。随着5G通信系统的研发,大规模多输入多输出(英文:Multiple-Input Multiple-Output,简称:MIMO)技术由于能有效地提升系统吞吐率,而大规模MIMO技术与毫米波结合使用时,基站为覆盖范围的UE提供小区搜索与同步时,会造成巨大的系统资源开销,目前提出利用多个窄波束进行轮询的用户接入方案,基站将覆盖范围分成6个扇区,每个扇区分为4个片(Slice),分别对应一个基站信号发送波束方向。对于每个片,基站分别发送SS,进行轮询,每个片的SS占用一个符号,对于基站覆盖范围内的用户,每隔一个子帧(1ms)切换其接收波束(Beam)方向。为了保证接收到基站发送的所有波束,基站在用户的每一个接收波束时间(1ms)内插入类似循环前缀的同步信道(英文:Synchronization Channel,简称:SCH)信号。对于每一个子帧,基站发送的初始波束方向依次序改变。UE根据基站发送的PSS序列,与预设的PSS序列进行相关性检测,实现符号同步。
然而,在用户接入过程中,为了使UE区分不同的波束,需要引入大量的SS序列,从而造成在小区搜索与同步中检测复杂度较高。
发明内容
本申请实施例提供一种同步处理方法、装置和设备,用于解决在用户接入过程中,为 了使UE区分不同的波束,需要引入大量的SS序列,从而造成在小区搜索与同步中检测复杂度较高的问题。
本申请第一方面提供一种同步处理方法,包括:
网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
在本方案中,网络设备可以是网络侧的设备,例如:基站等,每个波束中的第一同步信号和第二同步信号在时域上同时发送,频域上进行复用,即同一个波束既承载第一同步信号,也承载第二同步信号,接收端的终端设备可以根据同一个波束中的两个同步信号的频率偏移去区分不同的波束即可。上述同步信号中的波束的序列可以相同也可以不同,具体不做限制。该方案通过波束中的两个同步信号频率偏移不同,接收端的终端设备只需要检测两个同步信号就可以确定出网络设备针对该终端设备的最佳发送波束以及所处时序,减少终端设备和网络设备间关于用于确定最佳发送波束的交互,有效降低了终端设备同步检测的复杂度。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
为了进一步降低终端设备在小区搜索与同步过程的检测复杂度,网络设备在发送的第一同步信号中波束的全部采用同样的序列,第二同步信号中也可以全部采用相同的序列。
可选的,第一同步信号中的序列不同于第二同步信号中的序列。
进一步地,所述方法还包括:
网络设备在第二时间单元内向终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
为了进一步提高终端设备的接入速度,网络设备还可以在发送完第一同步信号和第二同步信号之后的第二时间单元内再次发送第三同步信号和第四同步信号,以使终端设备能够持续的根据同步信号的波束进行相关性检测,更快速的确定出网络设备针对该终端设备的最佳发送波束以及所处时序,有效降低了终端设备同步检测的复杂度,并缩短检测时间。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,第三同步信号中的序列不同于第四同步信号中的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波 束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,在上述任一方案的基础上,第一同步信号中的序列可以和第三同步信号中的序列可以全部相同。
根据对上述的第一同步信号、第二同步信号、第三同步信号和第四同步信号确定出其中最佳波束的时序位置,即可确定其他位置的波束,进而可以使上行接入信道和下行接入信道时序一一对应,减少了终端设备和网络设备之间关于波束的信息交互。
在上述任一方案的基础上,方法还包括:网络设备接收终端设备在最佳发送波束所处的时序发送的信号。
在确定了网络设备针对终端设备的最佳发送波束,根据上下行互异性,这个最佳发送波束的时序位置也是该终端设备发送上行波束的最佳位置,因此终端设备可以在该最佳发送波束所处的时序向网络设备发送上行的信号。
本申请第二方面提供一种同步处理方法,包括:
终端设备接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
该方案中,终端设备接收到网络设备发送的第一同步信号和第二同步信号,每个波束中的两个同步信号之间的频率偏移不同,终端设备对接收到的波束序列与预先存储的同步序列进行相关性检测,根据时间频率确定出最相关的波束的时序位置,即确定上述最佳发送波束以及所处时序,不需要多个同步信号,只需要检测两个同步信号就可以得到最佳发送波束,减少了终端设备和网络设备之间关于同步信号交互,并降低同步过程的检测复杂度。
可选的,所述终端设备对所述第一同步信号中的每个波束序列与预先存储的第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与预先存储的第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
所述终端设备根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述终端设备的所述最佳发送波束和所处时序。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,第一同步信号中的序列不同于第二同步信号中的序列。
在上述任一方案的基础上,所述方法还包括:
所述终端设备接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
则所述方法还包括:
所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
为了进一步提高终端设备的接入速度,网络设备还可以在发送完第一同步信号和第二同步信号之后的第二时间单元内再次发送第三同步信号和第四同步信号,以使终端设备能够持续的根据同步信号的波束进行相关性检测,即终端设备可根据第一同步信号和第二同步信号,或者根据第三同步信号和第四同步信号更快速的确定出网络设备针对该终端设备的最佳发送波束以及所处时序,有效降低了终端设备同步检测的复杂度,并缩短检测时间。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
在上述任一方案的基础上,该方法还包括:终端设备根据最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
可选的,方法还包括:终端设备在最佳发送波束所处时序向网络设备发送信号。
在确定了网络设备针对终端设备的最佳发送波束,根据上下行互异性,这个最佳发送波束的时序位置也是该终端设备发送上行波束的最佳位置,因此终端设备可以在该最佳发送波束所处的时序向网络设备发送上行的信号。
本申请第三方面提供一种同步处理装置,包括:
存储模块,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
处理模块,用于生成第一同步信号和第二同步信号;
发送模块,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述同步处理装置针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述发送模块还用于在第二时间单元内向终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述同步处理装置针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述装置还包括:
接收模块,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
本申请第四方面提供一种同步处理装置,包括:
存储模块,用于存储波束与频率偏移的对应关系以及存储相应的程序;
接收模块,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
处理模块,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
可选的,所述处理模块具体用于:
对所述第一同步信号中的每个波束序列与第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述同步处理装置的所述最佳发送波束和所处时序。
可选的,所述第一同步序列和所述第二同步序列存储于所述存储模块或者由处理模块生成。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述接收模块还用于接收所述网络设备在第二时间单元内发送的第三同步信 号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
则所述处理模块还用于根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述处理模块还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
可选的,所述装置还包括:
发送模块,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
本申请第五方面提供一种网络设备,包括:
存储器,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
处理器,用于生成第一同步信号和第二同步信号;
发送器,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述发送器还用于在第二时间单元内向终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述网络设备还包括:
接收器,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
本申请第六方面提供一种终端设备,包括:
存储器,用于存储波束与频率偏移的对应关系以及存储相应的程序;
接收器,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
处理器,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
可选的,处理器具体用于:
对所述第一同步信号中的每个波束序列与第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述用户设备的所述最佳发送波束和所处时序。
可选的,所述第一同步序列和所述第二同步序列存储于所述存储模块或者由处理模块生成。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述接收器还用于接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
则所述处理器还用于根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述用户设备的最佳发送波束以及所处时序。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述处理器还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
可选的,所述用户设备还包括:
发送器,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
本申请第七方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述第一方面提供的的同步处理方法。
本申请第八方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述第二方面提供的同步处理方法。
本申请第九方面提供一种程序产品,包括:计算机程序,所述计算机程序存储在可读存储介质中;网络设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得网络设备实施第一方面任一项提供的同步处理方法。
本申请第十方面提供一种程序产品,包括:计算机程序,所述计算机程序存储在可读存储介质中;终端设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得终端设备实施第二方面任一项提供的同步处理方法。
本申请提供的同步处理方法、装置和设备,网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,每个波束中的第一同步信号的发送频率相同,每个波束中的第一同步信号的频率和第二同步信号的频率间的差值均不相同,终端设备根据第一同步信号和第二同步信号确定网络设备针对该终端设备的最佳发送波束以及所处时序,通过发送波束的频率偏移不同的两个同步信号,使得接收端的终端设备只需要检测两个同步信号就可以确定出网络设备针对该终端设备的最佳发送波束以及所处时序,减少终端设备和网络设备间关于用于确定最佳发送波束的交互,有效降低了终端设备同步检测的复杂度。
附图说明
图1a为本申请同步处理方法实施例一的流程图;
图1b为本申请同步处理方法实施例二的流程图;
图2为本申请同步处理方法实施例三的流程图;
图3a为本申请提供的一种同步信号帧设计示意图;
图3b为本申请提供的另一种同步信号帧设计示意图;
图4为本申请提供的又一种同步信号帧设计示意图;
图5为本申请提供的又一种同步信号帧设计示意图;
图6为本申请提供的再一种同步信号帧设计示意图;
图7为本申请同步处理装置实施例一的结构示意图;
图8为本申请同步处理装置实施例二的结构示意图;
图9为本申请同步处理装置实施例三的结构示意图;
图10为本申请同步处理装置实施例四的结构示意图;
图11为本申请网络设备实施例一的结构示意图;
图12为本申请网络设备实施例二的结构示意图;
图13为本申请终端设备实施例一的结构示意图;
图14为本申请终端设备实施例二的结构示意图。
具体实施方式
为了克服终端设备确定网络设备针对该终端设备的最佳发送波束的时序,进行同步处理过程中要检测多个子帧的信号,信令交互较多,且检测复杂度高的问题,本申请提出一种新的用户接入方案,网络设备只需要发送两个具有一定规律的同步信号,用户侧终端设备就可以根据该两个同步信号确定出最佳波束,以降低用户在小区搜索和同步过程中的检测复杂度。
图1a为本申请同步处理方法实施例一的流程图,如图1a所示,该同步处理方法的具体实现步骤为:
S101:网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;频率偏移为波束中的第一同步信号的频率和该波束中的第二同步信号的频率间的差值。
在本步骤中,该网络设备为网络侧的基站或者其他能够提供基站功能的设备;终端设备为用户侧需要进行上下行数据交互的设备,例如:手机、平板电脑等。特别地,在设备间(英文:Device-to-Device;简称:D2D)通信中,网络设备还可以是承担基站功能的终端。
网络设备需要生成两个同步信号,且各波束中的两个同步信号频率偏移均不相同,例如:第一波束中的第一同步信号和第二同步信号中的时序处于同一个位置,频域进行复用,即该第一波束中的第一同步信号和第二同步信号中频率存在偏移f1,第二波束中的第一同步信号和第二同步信号时序位置相同,在频域上的偏移为f2,第三波束中的第一同步信号和第二同步信号的时序上位置相同,在频域上的偏移为f3等,这里的f1、f2、f3两两之间均不相同。网络设备向终端设备发送第一同步信号和第二同步信号时,可以在同一个信号帧中的不同频率位置上进行发送。为了降低接收端的终端设备的检测复杂度,可选的第一同步信号中的每个波束的承载频率相同,即在相同的频率上发送第一同步信号中的每个波束。
S102:终端设备根据第一同步信号和第二同步信号确定网络设备针对终端设备的最佳发送波束以及所处时序。
在本步骤中,终端设备接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号,由于每个波束对应的频率偏移均不相同,终端设备对每个同步信号中的波束参考在线生成或者预先存储的同步序列进行相关性检测,根据每个波束在第一同步信号和第二同步信号中的频率偏移,能够对不同的波束进行时序上的定位,结合相关性检测 的结果,确定出最相关的也就是上述的该网络设备针对该终端设备的最优发送波束,以及所处的时序。当然,该最优波束的相关值也必须大于一个阈值。特别地,还可以进行这样的设定,只要相关值大于一个预设的最优门限,那么也不需要遍历所有的波束也可认为是已经找到最优波束了,显然,这个最优门限必然是高于前述的阈值。这里仅仅是举两个确认最优波束的例子,具体的确认最优波束的算法这里不做限定。
进一步地,终端设备根据最佳发送波束与随机接入信道的时序对应关系,发起随机接入,实现该终端设备的接入和同步。
可选的,终端设备确定出了该网络设备针对自身的最佳发送波束之后,根据上下行互异性,可以确定该最佳发送波束所处的时序也是终端设备发送上行信号的最佳发送波束,据此终端设备可以在该最佳发送波束所处时序向网络设备发送信号。
本实施例提供的同步处理方法,网络设备通过发送波束的频率偏移不同的两个同步信号,以使接收端的终端设备只需要检测两个同步信号就可以确定出网络设备针对该终端设备的最佳发送波束以及所处时序,减少终端设备和网络设备间关于用于确定最佳发送波束的交互,有效降低了终端设备同步检测的复杂度。
图1b为本申请同步处理方法实施例二的流程图,如图1b所示,在上述图1a所示的实施例的具体实现中,步骤S102中终端设备根据第一同步信号和第二同步信号确定网络设备针对终端设备的最佳发送波束以及所处时序的具体实现步骤为:
S1021:终端设备对第一同步信号中的每个波束序列与在线生成或者预先存储的第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与在线生成或者预先存储的第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束。
在本步骤中,其中,最佳波束为相关性大于预设阈值且相关性最高的波束。终端设备在接收每个同步信号的过程中,依次对每个同步信号中的不同波束对应的序列与对应的同步序列之间进行相关性检测,找到该同步信号中波束序列的相关性最佳且大于预定的阈值的波束,即上述的最佳波束。
S1022:终端设备根据第一同步信号中的最佳波束所在频率与第二同步信号中的最佳波束所在频率之间的频率差,获取网络设备针对终端设备的最佳发送波束和所处时序。
在本步骤中,终端设备确定第一同步信号中的最佳波束和第二同步信号中的最佳波束之间的频率差,即终端设备根据每个波束在两个同步信号中的频率差,来确定网络设备针对终端设备的最佳发送波束的时序位置,并且可以同时获取该最佳发送波束的标识,实现符号定位。
可选的,第一同步信号中每个波束采用相同的序列。
进一步地,第二同步信号中每个波束采用相同的序列。
其含义是在上述两个实施例中,为了进一步降低终端设备在小区搜索与同步过程的检测复杂度,网络设备在发送的第一同步信号中的全部采用同样的序列,第二同步信号中也可以全部采用相同的序列。即第一同步信号中每个波束采用相同的序列,且第二同步信号中每个波束采用相同的序列。
图2为本申请同步处理方法实施例三的流程图,如图2所示,在上述实施例一的基础上,为了进一步缩短接收端终端设备的接入时间,网络设备可以在发送完第一同步信号 和第二同步信号之后,紧接着在第二时间单元内发送第三同步信号和第四同步进行,以使终端设备能够进行最佳波束的定位,具体的本实施例提供的同步处理方法的实现步骤为:
S201:网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;频率偏移为波束中的第一同步信号的频率和该波束中的第二同步信号的频率间的差值。
该步骤与前述实施例一种的步骤S101实现方式相同。
S202:网络设备在第二时间单元内向终端设备发送第三同步信号和第四同步信号;每个波束中的第三同步信号的发送频率相同,每个波束中的第三同步信号的频率和该波束中的第四同步信号的频率间的差值均不相同。
与前述实施例中的第一同步信号和第二同步信号类似,网络设备在第二时间单元中发送的第三同步信号和第四同步信号也是在频域上进行复用。
第三同步信号和第四同步信号在时序上是同时进行发送的,为了降低接收端终端设备的检测复杂度,承载第三同步信号的所有波束可选在相同的频率上进行发送,承载第四同步信号的每个波束的发送频率均不相同,保证每个波束在第三同步信号和第四同步信号中的频率偏移不同。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
S203:终端设备根据第一同步信号和第二同步信号,或者根据第三同步信号和第四同步信号确定网络设备针对终端设备的最佳发送波束以及所处时序。
终端设备在接收每个同步信号的过程中,依次对每个同步信号中的不同波束对应的序列与对应的同步序列进行相关性检测,找到该同步信号中波束序列的相关性最佳的波束,即上述的最佳波束。
并根据每个波束在第一同步信号和第二同步信号中的频率偏移,或者根据每个波束在第三同步信号和第四同步信号中的频率偏移对最佳波束进行时序定位,得到最佳发送波束以及所处时序。
在本方案中,可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
进一步地,终端设备根据最佳发送波束与随机接入信道的时序对应关系,发起随机 接入,实现该终端设备的接入和同步。
可选的,终端设备确定出了该网络设备针对自身的最佳发送波束之后,根据上下行互异性,可以确定该最佳发送波束所处的时序也是终端设备发送上行信号的最佳发送波束,据此终端设备可以在该最佳发送波束所处时序向网络设备发送信号。
结合上述任一实施例,下面以网络设备为基站,第一同步信号为PSS,第二同步信号为SSS为例对本申请提出的同步处理方法进行详细说明。
该方案提出一种用于高频系统的用户接入方案,基站在一个下行信号帧(10ms)中,在同一个时间单元内发送PSS和SSS,该PSS和SSS在频域上进行复用。PSS的每个波束采用的序列均相同,可选的,SSS的每个波束采用的序列也全部相同,可降低了UE在小区搜索与同步过程中的检测复杂度。UE可以根据接收到波束中的PSS和SSS在频域上的偏差,即频率差进行符号定时(symbol timing),得到最佳发送波束的时序位置。进而使得上行接入信道与下行接入信道时序一一对应,减少了UE与基站关于波束同步的信息交互。
图3a为本申请提供的一种同步信号帧设计示意图,如图3a所示,网络设备在第一时间单元内发送PSS和SSS1,其中,PSS中的每个波束序列相同(即PSS),SSS1中的每个波束采用的序列相同(SSS1),图中的波束1(B1)、波束2(B2)、波束3(B3)、波束4(B4)、波束5(B5)的分别表示不同的波束的标识,PSS表示第一同步信号和波束中的序列,SSS1表示第二同步信号中的波束的序列,如图可以看出在第一同步信号中的序列全部相同,第二同步信号中的序列全部相同。Δf1表示波束1(B1)在第一同步信号和第二同步信号之间的频率偏移,Δf5表示波束5(B5)在第一同步信号和第二同步信号之间的频率偏移。
对于每一个子帧信号的不同分片(也就是上述的不同波束),基站发送的两个同步信号中采用的不同的序列,且每个波束在PSS和SSS1中存在频率偏移,接收端的终端设备可以根据基站在同一个信号帧(第一时间单元)发送上述的PSS和SSS1进行接收处理,每个UE通过切换接收波束来检测同步信号。UE接入的时间无限制,因为在一个接收波束的时间间隔内,UE可以接收到基站在一个信号帧中发送的所有波束。对于每一个子帧内的不同波束,UE对接收到的序列与在线生成或者预先存储的同步序列进行相关性检测,找到该子帧内序列相关性检测的最佳结果对应的波束。UE根据两个同步信号中找到的波束的频率差,来确定基站最佳发送波束对应的时序位置,同时获取基站最佳发送的波束的标识,即实现符号定时。
如上所述,UE可以通过接收下行同步信号获取了基站最佳发送波束方向,根据上下行互异性,UE可以在基站最佳发送波束方向上发送上行波束。在图3a所述例子中,UE可以通过多个下行同步信号帧进行检测,对于每个信号帧切换UE接收波束方向,比较每个信号帧上序列相关检测结果,最佳检测结果对应的UE接收波束方向为UE最佳接收波束方向。
不同的UE可能开始接收到的第一个波束并不相同,但是只要接收完一个同步信号的全部波束即可,进行上述的处理得到最佳发送波束。
上述示出的是同一个同步信号中的序列全部相同的情况,具体实现中不只限于同步信号中的序列全部相同,也可以不同。
在该实现方案中,终端设备通过上述一个时间单元内的PSS和SSS就可以完成帧定时,例如,在类似于LTE-A的帧结构中,即为10ms定时。不失一般性,本申请均以10ms帧长为例。
图3b为本申请提供的另一种同步信号帧设计示意图,如图3b所示,在上述图3a所示的第一时间单元内发送了两个同步信号之后,还可以在第二时间单元内再次发送两个同步信号,即上述的第三同步信号和第四同步信号,通常第一时间单元在前半帧,第二时间单元在后半帧。如图所示,在第二时间单元内,在第二个子帧中发送与第一子帧中相同的PSS和SSS2,在该方案中SSS2中的每个波束序列相同,基站在第二时间单元发送的两个同步信号中采用的不同的序列,且每个波束在PSS和SSS2中存在频率偏移,接收端的终端设备可以根据基站在同一个信号帧(第一时间单元)发送上述的PSS和SSS2进行接收处理,每个UE通过切换接收波束来检测同步信号。UE接入的时间无限制,因为在一个接收波束的时间间隔内,UE可以接收到基站在一个信号帧中发送的所有波束。
如图3b所示,在某一子帧上发送一组PSS,在另一子帧上发送另一组PSS,两个子帧上的两组PSS相同,通过PSS获取半帧定时(即5ms定时);通过两个子帧上发送不同的两组SSS(即SSS1和SSS2)获取帧定时(即10ms定时)和小区标识;通过SSS(i),i=1,2与PSS之间不同的子载波偏移量或频率偏移量(frequency offset)Δfl来确定不同的符号,其中l为符号序号,也对应波束序号。
通过一组PSS/SSS的检测即可获得时频同步、半帧定时、帧定时以及符号定时,实现快速接入的目标。由于PSS与SSS之间间隔的子载波可用于其他数据或控制信息的发送,因此不存在额外的资源开销。
在上述方案的具体实现中,前后两个子帧中采用的PSS序列可以全部相同,每个波束采用的SSS序列可以都相同,也可以部分相同,也可以全部不相同。或者,SSS序列可以全部相同,每个波束采用的PSS序列可以都相同,也可以部分相同,也可以全部不相同
图4为本申请提供的又一种同步信号帧设计示意图,如图4所示,在某一子帧上发送一组PSS1和一组SSS,在另一子帧上发送另一组PSS2和一组SSS,两个子帧上的两组PSS不同,通过PSS同时获取半帧定时(即5ms定时)和帧定时(即10ms定时);通过两个子帧上发送两组相同的SSS获取小区标识;通过SSS与PSS(i),i=1,2之间不同的子载波偏移量或频率偏移量(frequency offset)Δfl来确定不同的符号,其中l为符号序号。
在本实例中,基站第一时间单元中发送的PSS和在第二时间单元发送的PSS采用不同的序列,而基站在第一时间单元发送的SSS和第二时间单元发送的SSS采用相同的序列,接收端的终端设备通过对接收到的波束的序列与在线生成或者预先存储的同步序列进行相关性检测,得到基站对该终端设备的最佳发送波束,并根据子载波偏移量对该最佳波束所在的时序位置进行确定,得到最佳发送波束以及所处时序。
图5为本申请提供的又一种同步信号帧设计示意图,如图5所示,该方案中,SSS中每个波束采用的序列均不相同,在某一子帧上发送一组PSS和一组SSS,在另一子帧上发送另一组PSS和另一组SSS,两个子帧上的两组PSS相同,通过PSS获取半帧定时(即5ms定时);两个子帧上发送的两组SSS序列均不相同,通过该方式可获取帧定时(即10ms定 时)、符号定时和小区标识。例如:SSS0~SSS4和SSS5~SSS9均对应同一小区标识,SSS0~SSS4对应第一子帧的5个符号,SSS5~SSS9对应第二子帧的5个符号。
本方案中,通过SSS的不同序列区分帧定时、符号定时和小区识别,相比现有技术,没有增加资源开销,也没有增加检测复杂度。
图6为本申请提供的再一种同步信号帧设计示意图,如图6所示,在某一子帧上发送一组PSS,在另一子帧上发送另一组PSS,两个子帧上的两组PSS序列不同,通过PSS同时获取半帧定时(即5ms定时)和帧定时(即10ms定时);通过两个子帧上发送相同的两组SSS序列获取符号定时和小区标识。例如:SSS1~SSS5对应同一小区标识,SSS1~SSS5对应每一个承载同步信号的子帧的5个符号。
该实施例完全通过SSS的不同序列获取符号定时和小区识别,相比现有技术,没有增加资源开销,也没有增加检测复杂度。相比图5所示的方法,用于识别不同符号的SSS序列个数减半,那么可支持的用于识别小区的SSS的序列数就会增加。
在上述图3b至图6所示的具体实现方式中,均是以两个时间单元均发送PSS和SSS的方案为例,在具体实现中,终端设备只需要根据在一个时间单元内接收的频域复用的PSS和SSS,即可根据每个波束中的PSS和SSS的频率偏移或者序列对符号进行时域上的定位,即在上述方案可实现帧定时,并不需要必须在多个时间单元上发送/接收多组同步信号。当然,在同一帧的多个时间单元上发送同步信号的好处是利于快速接入,因此具体实现中需视不同需求而定,发送多组同步信号时只要各组之间有明确的区分----比如不同的频率偏移方式或者不同的序列组合----即可,这里不做限制。进一步的,还可以结合这种在不同的时间单元以不同的频率偏移方式发送同步信号来传送更多的系统信息,这里同样不做限定。
本申请提供的同步处理方法,通过同步信号在频域上的偏移或者序列来识别多波束接入信号的符号定时信息,避免引入新的同步信号或增加广播信道的信令开销,从而有效节省资源开销,并简化检测复杂度。
图7为本申请同步处理装置实施例一的结构示意图,该同步处理装置10包括:
存储模块11,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
处理模块12,用于生成第一同步信号和第二同步信号;
发送模块13,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述同步处理装置10针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
本实施例提供的同步处理装置用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述实施例的基础上,可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述发送模块13还用于在第二时间单元内向终端设备发送第三同步信号和第四同步信号,以使所述终端设备根据所述第一同步信号、所述第二同步信号、所述第 三同步信号和所述第四同步信号确定所述同步处理装置针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
前述方案提供的同步处理装置用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图8为本申请同步处理装置实施例二的结构示意图,如图8所示,在上述实施例的基础上,该同步处理装置10还包括:
接收模块14,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
本实施例提供的同步处理装置用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图9为本申请同步处理装置实施例三的结构示意图,如图9所示,该同步处理装置20包括:
存储模块21,用于存储波束与频率偏移的对应关系以及存储相应的程序;
接收模块22,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
处理模块23,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
本实施例提供的同步处理装置用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述实施例三的基础上,所述处理模块23具体用于:
对所述第一同步信号中的每个波束序列与所述存储模块21中存储或者在线生成的第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与所述存储模块21中存储或者在线生成的第二同步序列进行相关性检测,获取第一同步信号中的最佳波 束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述同步处理装置20的所述最佳发送波束和所处时序。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述接收模块22还用于接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
则所述处理模块23具体用于根据所述第一同步信号和所述第二同步信号,或者根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述处理模块23还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
本实施例提供的同步处理装置用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图10为本申请同步处理装置实施例四的结构示意图,该同步处理装置20还包括:
发送模块24,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
本实施例提供的同步处理装置用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图11为本申请网络设备实施例一的结构示意图,如图11所示,该网络设备30包括:
存储器31,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
处理器32,用于生成第一同步信号和第二同步信号;
发送器33,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
本实施例提供的网络设备用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述网络设备的实施例一的基础上,所述第一同步信号中每个波束采用相同的序列,且所述第二同步信号中每个波束采用相同的序列。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述发送器33还用于在第二时间单元内向终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号,或者根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
图12为本申请网络设备实施例二的结构示意图,如图12所示,该网络设备30还包括:
接收器34,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
本实施例提供的网络设备用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图13为本申请终端设备实施例一的结构示意图,如图13所示,该终端设备40包括:
存储器41,用于存储波束与频率偏移的对应关系以及存储相应的程序;
接收器42,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
处理器43,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
本实施例提供的终端设备用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述终端设备实施例一的基础上,处理器43具体用于:
对所述第一同步信号中的每个波束序列与所述存储器41中存储或者在线生成的第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与所述存储器41中存储或者在线生成的第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述用户设备的所述最佳发送波束和所处时序。
可选的,所述第一同步信号中每个波束采用相同的序列。
可选的,所述第二同步信号中每个波束采用相同的序列。
可选的,所述接收器42还用于接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
则所述处理器43具体用于根据所述第一同步信号和所述第二同步信号,或者根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述用户设备的最佳发送波束以及所处时序。
可选的,所述第三同步信号中每个波束采用相同的序列。
可选的,所述第四同步信号中每个波束采用相同的序列。
可选的,当所述第二同步信号中每个波束采用相同的序列且第四同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
可选的,第二同步信号中的序列和第四同步信号中的序列互为共轭。
可选的,当所述第一同步信号中每个波束采用相同的序列时且第三同步信号中每个波束采用相同的序列时,所述第一同步信号中的序列和所述第三同步信号中的序列互为正交。
进一步可选的,第一同步信号中的序列和第三同步信号中的序列互为共轭。
可选的,第一同步信号的每个波束采用的序列和第三同步信号的每个波束采用的序列一样,第二同步信号的每个波束采用的序列和第四同步信号的每个波束采用的序列一样。
可选的,所述处理器43还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
本实施例提供的终端设备用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图14为本申请终端设备实施例二的结构示意图,如图14所示,在前述实施例的基础上,该终端设备40还包括:
发送器44,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
本实施例提供的终端设备用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实现方式提供的同步处理方法中网络设备的技术方案。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实现方式提供的同步处理方法中终端设备的技术方案。
本申请还提供一种程序产品,包括:计算机程序,所述计算机程序存储在可读存储介质中;网络设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得网络设备前述任一方案提供的同步处理方法的技术方案。
本申请还提供一种程序产品,包括:计算机程序,所述计算机程序存储在可读存储介质中;终端设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得终端设备前述任一实施例提供的同步处理方法的技术方案。
在上述网络设备和终端设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (58)

  1. 一种同步处理方法,其特征在于,包括:
    网络设备在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第二时间单元内向所述终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
  5. 根据权利要求4所述的方法,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  7. 根据权利要求6所述的方法,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
  9. 一种同步处理方法,其特征在于,包括:
    终端设备接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
    所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序,包括:
    所述终端设备对所述第一同步信号中的每个波束序列与第一同步序列进行相关性检 测,并对所述第二同步信号中的每个波束序列与第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
    所述终端设备根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述终端设备的所述最佳发送波束和所处时序。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
    则所述方法还包括:
    所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
  14. 根据权利要求13所述的方法,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  16. 根据权利要求15所述的方法,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  17. 根据权利要求9至16任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
  18. 根据权利要求9至17任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述最佳发送波束所处时序向所述网络设备发送信号。
  19. 一种同步处理装置,其特征在于,包括:
    存储模块,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
    处理模块,用于生成第一同步信号和第二同步信号;
    发送模块,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述同步处理装置针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
  20. 根据权利要求19所述的装置,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  22. 根据权利要求19至21任一项所述的装置,其特征在于,所述发送模块还用于在第二时间单元内向终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述同步处理装置针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
  23. 根据权利要求22所述的装置,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  25. 根据权利要求24所述的装置,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  26. 根据权利要求19至25任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
  27. 一种同步处理装置,其特征在于,包括:
    存储模块,用于存储频率偏移与波束的对应关系以及存储相应的程序;
    接收模块,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
    处理模块,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块还用于:
    对所述第一同步信号中的每个波束序列与第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
    根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述同步处理装置的所述最佳发送波束和所处时序。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  30. 根据权利要求27至29任一项所述的装置,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  31. 根据权利要求27至30任一项所述的装置,其特征在于,所述接收模块还用于接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波 束中的所述第四同步信号的频率间的差值均不相同;
    则所述处理模块还用于根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述同步处理装置的最佳发送波束以及所处时序。
  32. 根据权利要求31所述的装置,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  33. 根据权利要求31或32所述的装置,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  34. 根据权利要求33所述的装置,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  35. 根据权利要求27至34任一项所述的装置,其特征在于,所述处理模块还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
  36. 根据权利要求27至35任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
  37. 一种网络设备,其特征在于,包括:
    存储器,用于存储波束与频率偏移的对应关系,以及存储相应的程序;
    处理器,用于生成第一同步信号和第二同步信号;
    发送器,用于在第一时间单元内向终端设备发送第一同步信号和第二同步信号,使得所述终端设备根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第一同步信号的发送频率相同;每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值。
  38. 根据权利要求37所述的网络设备,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  39. 根据权利要求37或38所述的网络设备,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  40. 根据权利要求37至39任一项所述的网络设备,其特征在于,所述发送器还用于在第二时间单元内向所述终端设备发送第三同步信号和第四同步信号,使得所述终端设备根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序;
    其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同。
  41. 根据权利要求40所述的网络设备,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  42. 根据权利要求40或41所述的网络设备,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  43. 根据权利要求42所述的网络设备,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  44. 根据权利要求37至43任一项所述的网络设备,其特征在于,所述网络设备还包括:
    接收器,用于接收所述终端设备在所述最佳发送波束所处的时序发送的信号。
  45. 一种终端设备,其特征在于,包括:
    存储器,用于存储频率偏移与波束的对应关系以及相应的程序;
    接收器,用于接收网络设备在第一时间单元内发送的第一同步信号和第二同步信号;每个波束中的第一同步信号的发送频率相同,每个波束对应的频率偏移均不相同;所述频率偏移为所述波束中的所述第一同步信号的频率和所述波束中的所述第二同步信号的频率间的差值;
    处理器,用于根据所述第一同步信号和所述第二同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
  46. 根据权利要求45所述的终端设备,其特征在于,所述处理器具体用于:
    对所述第一同步信号中的每个波束序列与第一同步序列进行相关性检测,并对所述第二同步信号中的每个波束序列与第二同步序列进行相关性检测,获取第一同步信号中的最佳波束和第二同步信号中的最佳波束;其中,最佳波束为相关性大于预设阈值且相关性最高的波束;
    根据所述第一同步信号中的最佳波束所在频率与所述第二同步信号中的最佳波束所在频率之间的频率差,获取所述网络设备针对所述终端设备的所述最佳发送波束和所处时序。
  47. 根据权利要求45或46所述的终端设备,其特征在于,所述第一同步信号中每个波束采用相同的序列。
  48. 根据权利要求45至47任一项所述的终端设备,其特征在于,所述第二同步信号中每个波束采用相同的序列。
  49. 根据权利要求45至48任一项所述的终端设备,其特征在于,所述接收器还用于接收所述网络设备在第二时间单元内发送的第三同步信号和第四同步信号;其中,每个波束中的第三同步信号的发送频率相同,每个波束中的所述第三同步信号的频率和所述波束中的所述第四同步信号的频率间的差值均不相同;
    则所述处理器还用于:
    根据所述第三同步信号和所述第四同步信号确定所述网络设备针对所述终端设备的最佳发送波束以及所处时序。
  50. 根据权利要求49所述的终端设备,其特征在于,所述第三同步信号中每个波束采用相同的序列。
  51. 根据权利要求49或50所述的终端设备,其特征在于,所述第四同步信号中每个波束采用相同的序列。
  52. 根据权利要求51所述的终端设备,其特征在于,当所述第二同步信号中每个波束采用相同的序列时,所述第二同步信号中的序列和所述第四同步信号中的序列互为正交。
  53. 根据权利要求45至52任一项所述的终端设备,其特征在于,所述处理器还用于根据所述最佳发送波束与随机接入信道的时序对应关系,发起随机接入。
  54. 根据权利要求45至53任一项所述的终端设备,其特征在于,所述终端设备还包括:
    发送器,用于在所述最佳发送波束所处时序向所述网络设备发送信号。
  55. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求1至8任一项所述的同步处理方法。
  56. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求9至18任一项所述的同步处理方法。
  57. 一种程序产品,其特征在于,包括:计算机程序,所述计算机程序存储在可读存储介质中;网络设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得网络设备实施权利要求1至8任一项所述的同步处理方法。
  58. 一种程序产品,其特征在于,包括:计算机程序,所述计算机程序存储在可读存储介质中;终端设备的至少一个处理器从所述可读存储介质读取所述计算机程序,执行所述计算机程序使得终端设备实施权利要求9至18任一项所述的同步处理方法。
PCT/CN2017/097641 2016-09-30 2017-08-16 同步处理方法、装置和设备 WO2018059152A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854604.0A EP3499763B1 (en) 2016-09-30 2017-08-16 Synchronous processing method, apparatus and device
US16/359,601 US10887855B2 (en) 2016-09-30 2019-03-20 Synchronization processing method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610873206.4A CN107888311B (zh) 2016-09-30 2016-09-30 同步处理方法、装置和设备
CN201610873206.4 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/359,601 Continuation US10887855B2 (en) 2016-09-30 2019-03-20 Synchronization processing method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2018059152A1 true WO2018059152A1 (zh) 2018-04-05

Family

ID=61763295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097641 WO2018059152A1 (zh) 2016-09-30 2017-08-16 同步处理方法、装置和设备

Country Status (4)

Country Link
US (1) US10887855B2 (zh)
EP (1) EP3499763B1 (zh)
CN (1) CN107888311B (zh)
WO (1) WO2018059152A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3029535C (en) 2016-07-01 2023-03-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for signal transmission, network device, and terminal device
KR102352364B1 (ko) 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
ES2822985T3 (es) * 2017-11-07 2021-05-05 Siemens Ag Procedimiento para establecer una conexión duplex en un sistema de comunicaciones
KR102516804B1 (ko) * 2018-03-07 2023-03-31 삼성전자주식회사 무선 통신 시스템에서 동기를 추적하기 위한 장치 및 방법
CN110418307B (zh) * 2018-04-26 2022-06-28 华为技术有限公司 一种用于无线通信的方法、装置
US11627542B2 (en) * 2020-07-14 2023-04-11 Qualcomm Incorporated Beam reselection for narrowband non-terrestrial networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888644A (zh) * 2009-05-14 2010-11-17 中兴通讯股份有限公司 一种实现单用户波束成形的系统及方法
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
EP2897305A1 (en) * 2014-01-21 2015-07-22 Alcatel Lucent Apparatuses, Methods and Computer Programs for a Base Station Transceiver and a Mobile Transceiver
WO2015195375A1 (en) * 2014-06-16 2015-12-23 Qualcomm Incorporated Beamform scheduling based on the directionality of ues
WO2016055102A1 (en) * 2014-10-08 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Mobility synchronization measurements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948208B2 (en) * 2008-11-07 2015-02-03 Qualcomm Incorporated Conveying information through phase offset on PSS relative to DL-RS
US9414371B2 (en) * 2012-04-16 2016-08-09 Samsung Electronics Co., Ltd. Hierarchical channel sounding and channel state information feedback in massive MIMO systems
PT3462648T (pt) * 2013-11-27 2020-06-29 Ericsson Telefon Ab L M Nó de rede, dispositivo sem fios, métodos associados, para envio e deteção, respetivamente, de um sinal de sincronização e uma informação associada
KR102036210B1 (ko) * 2013-12-20 2019-10-24 삼성전자주식회사 빔포밍 시스템에서 단말의 셀 탐색을 위한 방법 및 장치
WO2015119350A1 (ko) * 2014-02-05 2015-08-13 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 동기화 신호 전송 방법 및 이를 위한 장치
US9936469B2 (en) * 2014-11-03 2018-04-03 Qualcomm Incorporated User equipment-centric medium access control layer-based signaling between a base station and UE
US10034253B2 (en) * 2014-11-17 2018-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Cell search procedure frame format
CN105897322B (zh) * 2015-02-17 2019-02-22 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备
KR101996160B1 (ko) * 2015-03-17 2019-07-03 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 통신 네트워크에서의 동기화
US11089579B2 (en) * 2016-01-13 2021-08-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in advanced MIMO communication systems
US10455547B2 (en) * 2017-01-09 2019-10-22 Qualcomm Incorporated Provision of a paging response between transmissions of a paging indication and paging information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888644A (zh) * 2009-05-14 2010-11-17 中兴通讯股份有限公司 一种实现单用户波束成形的系统及方法
EP2897305A1 (en) * 2014-01-21 2015-07-22 Alcatel Lucent Apparatuses, Methods and Computer Programs for a Base Station Transceiver and a Mobile Transceiver
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
WO2015195375A1 (en) * 2014-06-16 2015-12-23 Qualcomm Incorporated Beamform scheduling based on the directionality of ues
WO2016055102A1 (en) * 2014-10-08 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Mobility synchronization measurements

Also Published As

Publication number Publication date
EP3499763B1 (en) 2020-08-05
CN107888311A (zh) 2018-04-06
US10887855B2 (en) 2021-01-05
EP3499763A4 (en) 2019-08-14
CN107888311B (zh) 2019-09-20
US20190223126A1 (en) 2019-07-18
EP3499763A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2018059152A1 (zh) 同步处理方法、装置和设备
US11677607B2 (en) Method for transmitting information in communication system, base station and user equipment
US11089559B2 (en) Synchronization processing method and apparatus, and device
RU2638030C1 (ru) Способ и устройство для синхронизации связи усройство-устройство
EP3783998B1 (en) Providing secondary coverage in a mobile communication system
CN105515741B (zh) 一种在非授权频段上的数据传输方法及装置
US10034253B2 (en) Cell search procedure frame format
US10756802B2 (en) Communication method and terminal device
CN106161317B (zh) 一种同步方法及装置
WO2014106498A1 (zh) 一种前导序列的传输方法、装置及系统
CN110166393B (zh) 同步信号块的发送、接收方法及装置
KR20170056527A (ko) 비면허 스펙트럼 상에서의 셀 검출, 동기화 및 측정
CN113692000B (zh) 接收公共控制消息的方法、终端及存储介质
US10484151B2 (en) Controlling random-access channel (RACH) retransmissions for wireless communication
EP3002980A1 (en) Method and device for sending synchronization signal and achieving synchronization among base stations
US20130242974A1 (en) Method and Apparatus for Synchronization Mechanisms in Wireless Communication Systems
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
WO2016078601A1 (zh) 一种设备间通信同步方法及装置
WO2020063471A1 (zh) 波束扫描方法、波束配置方法、终端及网络设备
US10764845B2 (en) Radio (NR) random access response (RAR) synchronization sequence selection
CN107113752B (zh) 一种指示同步信号周期的方法及装置
WO2009082953A1 (fr) Procédé, système et dispositif de transmission par un canal synchrone
KR20130082062A (ko) 동기 채널 송신 방법 및 장치, 그리고 동기 채널 수신 방법 및 장치
CN107079489A (zh) 信号传输方法和网络设备
KR102301121B1 (ko) 탐색 정보의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017854604

Country of ref document: EP

Effective date: 20190312

NENP Non-entry into the national phase

Ref country code: DE