WO2018058999A1 - 一种过流点配置方法、装置和过流保护装置 - Google Patents

一种过流点配置方法、装置和过流保护装置 Download PDF

Info

Publication number
WO2018058999A1
WO2018058999A1 PCT/CN2017/087155 CN2017087155W WO2018058999A1 WO 2018058999 A1 WO2018058999 A1 WO 2018058999A1 CN 2017087155 W CN2017087155 W CN 2017087155W WO 2018058999 A1 WO2018058999 A1 WO 2018058999A1
Authority
WO
WIPO (PCT)
Prior art keywords
overcurrent
protection circuit
overcurrent protection
component
point
Prior art date
Application number
PCT/CN2017/087155
Other languages
English (en)
French (fr)
Inventor
韦晓成
张汉林
胡俊伟
黄炎培
杨磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018058999A1 publication Critical patent/WO2018058999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations

Definitions

  • the present invention relates to the field of computer technologies, and in particular, to a method and device for configuring an overcurrent point and an overcurrent protection device.
  • FRU field replaceable unit
  • the types of FRUs include, but are not limited to, network cards, video cards, sound cards, and the like.
  • the optional components such as the FRU can be configured on the computer device to make the configuration of the computer device flexible and meet the different needs of the user.
  • an overcurrent protection device is disposed in the computer device, and the overcurrent protection device configures its own overcurrent point according to the sum of the rated currents of the various components in the computer device, and the actual current flowing in the computer device is greater than the overcurrent point configured by itself.
  • the system is powered off (powering down the computer equipment), the actual current flowing through the computer equipment is prevented from being excessively burned, and the components in the equipment are burned out.
  • the overcurrent protection device configures its own overcurrent point according to the rated power of all components in the computer device, when only some of the optional components are in place (ie, at When the power is running, the overcurrent point of the overcurrent protection device is too large to protect the device from overcurrent detection.
  • the embodiment of the invention provides a method, a device and an overcurrent protection device for overcurrent point, which are used to solve the problem that the overcurrent point configuration existing in the existing overcurrent protection device is inaccurate and cannot protect against overcurrent of the device.
  • the problem of function is a problem that the overcurrent point configuration existing in the existing overcurrent protection device is inaccurate and cannot protect against overcurrent of the device.
  • an embodiment of the present invention provides a method for configuring an overcurrent point in an overcurrent protection circuit, the method comprising: determining a component in a device to be protected; obtaining a rated power of each component in the location, and according to The rated power of each component of the bit is calculated as an overcurrent point; the overcurrent point of the first overcurrent protection circuit for overcurrent detection protection of the device to be protected is configured according to the calculated overcurrent point.
  • the overcurrent point is calculated according to the rated power of the component in position, and the overcurrent point of the first overcurrent protection circuit for performing overcurrent detection protection on the device to be protected is configured according to the calculated overcurrent point.
  • the overcurrent point is calculated according to the rated power of all components in the device to be protected, the overcurrent point is not adjustable, and the overcurrent point configuration is inaccurate and cannot be used to protect the device.
  • the problem of overcurrent detection protection is that since the overcurrent point configured in the first overcurrent protection circuit is calculated according to the rated power of the in-position component in the device to be protected, the overcurrent point configured in the first overcurrent protection circuit Applicable to the various in-position conditions of the components in the device to be protected. In each case, the first overcurrent protection circuit can be configured with an accurate overcurrent point, which can better protect the device from overcurrent detection. effect.
  • the device to be protected includes a mandatory component and an optional component
  • the determined component in place includes a mandatory component and/or an optional component in place.
  • the way to calculate the overcurrent point may be to obtain the rated power of each optional component in place and/or the rated power of each mandatory component in place, and according to each optional component in place The overcurrent point is calculated from the rated power and/or the rated power of each of the required components in place.
  • the number of optional components may be one or more, and the number of required components may also be one or more.
  • each of the optional components in the device to be protected is provided with a second overcurrent protection circuit.
  • the second overcurrent protection circuit is provided for overcurrent detection protection of the optional components, wherein the overcurrent point of the second overcurrent protection circuit can be configured according to the rated power of the optional components.
  • the overcurrent detection protection is performed on each optional component through the second overcurrent protection circuit, so that each optional component can be more accurately Overcurrent detection protection further enhances the effect of overcurrent detection protection for optional components.
  • an embodiment of the present invention provides a device for configuring an overcurrent point in an overcurrent protection circuit, the device comprising: a determining unit, configured to determine a component in a device to be protected; and a calculating unit, configured to determine, determine, determine The rated power of each component in the in-position component, and the overcurrent point is calculated according to the rated power of each component in the position; the configuration unit is configured to configure the first overcurrent protection according to the overcurrent point calculated by the calculating unit The overcurrent point of the circuit, wherein the first overcurrent protection circuit is used for overcurrent detection protection of the device to be protected.
  • the calculation unit calculates the overcurrent point according to the rated power of the in-position component, and the configuration unit configures the overcurrent point of the first overcurrent protection circuit for the overcurrent detection protection of the device to be protected according to the calculated overcurrent point calculated by the calculation unit. point.
  • the overcurrent point is calculated according to the rated power of all components in the device to be protected, the overcurrent point is not adjustable, and the overcurrent point configuration is inaccurate and cannot be used to protect the device.
  • the problem of overcurrent detection protection is that, in the overcurrent protection device in the overcurrent protection circuit provided by the second aspect, the overcurrent point configured by the configuration unit is calculated by the calculation unit according to the rated power of the in-position component in the device to be protected. Therefore, the overcurrent point configured by the configuration unit is applicable to various in-position conditions of components in the device to be protected, and in each case, an accurate overcurrent point can be configured for the first overcurrent protection circuit, which can better Protection against overcurrent detection of devices to be protected.
  • the device to be protected includes a mandatory component and an optional component
  • the component determined by the determining unit includes a mandatory component and/or an optional component in place.
  • the calculation unit may calculate the overcurrent point by: obtaining the rated power of each optional component in place and/or the rated power of each mandatory component in place, and selecting each of the in-positions according to The overcurrent point is calculated by the rated power of the component and/or the rated power of each of the required components in place.
  • each of the optional components in the device to be protected is provided with a second overcurrent protection circuit.
  • the second overcurrent protection circuit is provided for overcurrent detection protection of the optional components, wherein the overcurrent point of the second overcurrent protection circuit can be configured according to the rated power of the optional components.
  • the overcurrent detection protection is performed on each optional component through the second overcurrent protection circuit, so that each optional component can be more accurately Overcurrent detection protection further enhances the effect of overcurrent detection protection for optional components.
  • an embodiment of the present invention provides an overcurrent protection device, where the device includes a plurality of first overcurrent protection circuits.
  • the plurality of first overcurrent protection circuits are in one-to-one correspondence with the plurality of components included in the device to be protected, and each of the first overcurrent protection circuits is configured to perform overcurrent detection and protection on the corresponding components.
  • the overcurrent protection device can realize overcurrent detection protection for each component without considering the presence of multiple components.
  • the plurality of components corresponding to the plurality of first overcurrent protection circuits in the overcurrent protection device provided in the third aspect may be a plurality of optional components, or may be multiple mandatory components, or may be at least one Optional parts and at least one A required component.
  • each of the first overcurrent protection circuits is configured to perform overcurrent detection protection on the corresponding components corresponding thereto.
  • the overcurrent protection device may further include a second overcurrent protection circuit, wherein The two overcurrent protection circuit is used for overcurrent detection and protection of the required components included in the protection device.
  • the plurality of first overcurrent protection circuits are only used for overcurrent protection of the plurality of optional components.
  • a second overcurrent protection circuit is further disposed in the overcurrent protection device to perform overcurrent detection and protection on all required components, so that overcurrent detection and protection can be implemented for all components in the device to be protected, and, in addition, for all necessary components only A second overcurrent protection circuit is required to reduce the component cost of the overcurrent protection device.
  • the overcurrent protection device further includes: a third overcurrent protection circuit for performing overcurrent detection protection on the device to be protected.
  • a third overcurrent protection circuit can be further provided for the entire device to be protected, thereby achieving double protection for each component in the device to be protected.
  • the overcurrent point of the third overcurrent protection circuit may be configured by using an overcurrent point configuration method in the prior art, or may be configured by using an overcurrent point configuration method in the overcurrent protection circuit provided in the above first aspect.
  • an embodiment of the present invention provides a computer readable storage medium.
  • the computer readable storage medium stores computer execution instructions.
  • the computing node executes the first Aspects or methods of the first aspect of the various possible designs.
  • an embodiment of the present invention provides a computer program product, the computer program product comprising computer execution instructions, the computer execution instructions being stored in a computer readable storage medium.
  • At least one processor of the computing node can read the computer-executable instructions from a computer-readable storage medium, the at least one processor executing the computer-executing instructions, such that the computing node implements the first aspect or the methods provided by the various possible designs of the first aspect .
  • FIG. 1 is a schematic structural diagram of an overcurrent protection circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for configuring an overcurrent point in an overcurrent protection circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first first overcurrent protection circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second first overcurrent protection circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a third first overcurrent protection circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an overcurrent point configuration apparatus in an overcurrent protection circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another apparatus for configuring a current distribution point in an overcurrent protection circuit according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an overcurrent protection device according to an embodiment of the present invention.
  • Embodiments of the present invention relate to overcurrent detection and protection of a computer waiting for protection device by an overcurrent protection circuit.
  • the overcurrent detection protection means that the overcurrent protection circuit detects whether the actual current flowing through the device to be protected is greater than the overcurrent point. When it is detected that the actual current flowing through the device to be protected is greater than the overcurrent point, the overcurrent of the device to be protected is triggered. Protection, powering off the device to be protected, thereby avoiding excessive current flowing through the device to be protected and burning out some components in the device to be protected.
  • the following describes how to perform overcurrent detection protection on the device to be protected by the overcurrent protection circuit.
  • the overcurrent protection circuit shown in FIG. 1 includes a sampling resistor R, a constant voltage source U, an operational amplifier A, and a comparison controller.
  • One end of the sampling resistor R is input to the current Ia in the actual operation of the device to be protected, and the other end is connected to the constant voltage source U.
  • the negative terminal is connected;
  • the non-inverting input terminal of the operational amplifier A is input Ia, and the inverting input terminal is connected to the positive terminal of the constant voltage source, wherein the voltage value corresponding to the non-inverting input terminal of the operational amplifier A is Vcc;
  • the output terminal is connected to the comparison controller, and the comparison controller determines, according to the output of the operational amplifier, whether overcurrent detection protection of the device to be protected needs to be triggered.
  • the comparison controller includes, but is not limited to, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the principle of overcurrent detection and protection of the device to be protected by the overcurrent protection circuit is: when the current Ia in the actual operation of the device to be protected is greater than the overcurrent point configured by the overcurrent protection circuit, the overcurrent protection of the device to be protected is triggered.
  • the comparison of the Ia and the overcurrent point is achieved by comparing the input voltages across the operational amplifier.
  • the voltage value of the non-inverting input terminal of the operational amplifier A is Vcc;
  • the voltage value of the inverting input terminal of the operational amplifier A is Vcc-Ia*R+V;
  • the operational amplifier when the voltage value of the non-inverting input terminal is greater than the voltage value of the inverting input terminal, the operational amplifier outputs a high level, that is, when Vcc>Vcc-Ia*R+V, the operational amplifier outputs a high level.
  • V and R are the known parameter values in the overcurrent protection circuit, and it can be concluded that when Ia>V/R, the operational amplifier outputs a high level.
  • V/R is the overcurrent point configured in the overcurrent protection circuit.
  • Ia is greater than the configured overcurrent point, the overcurrent detection protection of the device to be protected is triggered.
  • different overcurrent points can be configured by setting specific values of V and/or R in the overcurrent protection circuit.
  • the device to be protected may be a personal computer (PC), a single board computer, a server, a handheld computer, a personal digital assistant, a workstation, or the like, or may be a smart phone, a tablet computer, or a virtual reality device.
  • PC personal computer
  • a single board computer a server
  • a handheld computer a personal digital assistant
  • workstation or the like
  • smart phone a tablet computer
  • virtual reality device a virtual reality device.
  • VR Virtual Reality
  • AR Augmented Reality
  • the optional component and the mandatory component are for the device to be protected.
  • the device to be protected contains Optional and mandatory components, optional components and mandatory components are electronic components.
  • the required component refers to the component that must be equipped in the device to be protected.
  • the required component must be in place during the normal operation of the device to be protected, that is, the required component is in the running state.
  • the optional component refers to the component that can be selected for the device to be protected.
  • the optional component is not in place or only some optional components are in place to ensure the normal operation of the device to be protected.
  • the optional component includes the FRU. .
  • the required components may include a processor, a motherboard, a memory module, a graphics card, a sound card, a network card, a keyboard, etc.
  • the optional components may be a camera, a microphone, or the like. At this point, the optional components are not in place to ensure the normal operation of the device to be protected.
  • the user can select one or several of the multiple NICs according to the usage requirements.
  • the FRU is also referred to as an optional component. At this time, only some of the optional components are in place to ensure the normal operation of the device to be protected.
  • Embodiments of the present invention provide a method for configuring an overcurrent point in an overcurrent protection circuit, which is applied to a device to be protected. As shown in Figure 2, the method includes:
  • the number of components in the device to be protected may be one or more.
  • the number of components in the device to be protected in the embodiment of the present invention is not limited.
  • S202 Acquire a rated power of each component in the in-position component, and calculate an overcurrent point according to the rated power of each component in the bit.
  • the calculation of the overcurrent point in S202 can be implemented by the following two methods:
  • the rated current of each component in place When the rated current of each component in place is a known amount, the rated current of each component in the position can be added to obtain the sum of the rated currents of each component in place, and the obtained sum is calculated. Overcurrent point.
  • S203 Configure an overcurrent point of the first overcurrent protection circuit according to the calculated overcurrent point.
  • the first overcurrent protection circuit is configured to perform overcurrent detection protection on the device to be protected.
  • the overcurrent point is calculated according to the rated power of the in-position component, and the overcurrent detection and protection of the device to be protected is configured according to the calculated overcurrent point.
  • An overcurrent point of an overcurrent protection circuit Compared with the overcurrent point in the overcurrent protection circuit in the prior art, the overcurrent point is calculated according to the rated power of all components in the device to be protected, the overcurrent point is not adjustable, and the overcurrent point configuration is inaccurate and cannot be used to protect the device.
  • the problem of overcurrent detection protection is that, since the overcurrent point configured in the first overcurrent protection circuit in this embodiment is calculated according to the rated power of the in-position component in the device to be protected, the first overcurrent protection circuit is configured.
  • the overcurrent point is applicable to the various in-position conditions of the components in the device to be protected, and in each case, the first overcurrent protection circuit can be configured with an accurate overcurrent point, which can better serve the device to be protected.
  • Overcurrent detection protection since the overcurrent point configured in the first overcurrent protection circuit in this embodiment is calculated according to the rated power of the in-position component in the device to be protected, the first overcurrent protection circuit is configured.
  • the overcurrent point is applicable to the various in-position conditions of the components in the device to be protected, and in each case, the first overcurrent protection circuit can be configured with an accurate overcurrent point, which can better serve the device to be protected.
  • the device to be protected comprises a mandatory component and an optional component
  • the determined component in place comprises a mandatory component and/or an optional component in place.
  • the way of calculating the flow point in S202 may be to obtain each optional component in place.
  • the mandatory component is a component that must be equipped in the device to be protected, the mandatory component must be in place during the normal operation of the device to be protected; since the optional component is a component that can be selected for the device to be protected, the device to be protected is normal. Optional parts may or may not be in place during work. Therefore, after the execution of S201, the determined in-position components are all mandatory components and optional components in place.
  • the number of the optional components may be one or more, and the number of the optional components may be one or more.
  • the number of the optional components and the required components is not limited in the embodiment of the present invention.
  • the number of optional components in place can be zero, one or more.
  • the rated power of the optional component is considered in the process of calculating the overcurrent point
  • the overcurrent point of the first overcurrent protection circuit that protects the device from overcurrent detection is also configured according to the calculated overcurrent point. Therefore, the method of configuring the overcurrent point of the first overcurrent protection circuit should also be regarded as It falls within the scope of protection of the present invention.
  • each optional component in the device to be protected may also be provided with a second overcurrent protection circuit.
  • a second overcurrent protection circuit provided thereto can provide overcurrent detection protection for the optional component, and the overcurrent point of the second overcurrent protection circuit can be rated according to the optional component Power configuration.
  • the overcurrent detection protection is performed on each optional component through the second overcurrent protection circuit, so that each optional component can be more accurately Overcurrent detection protection further enhances the effect of overcurrent detection protection for optional components.
  • the rated current of the optional component can be calculated according to the rated power and the rated voltage of the optional component, and the second overcurrent protection circuit is configured according to the rated current of the optional component. Overcurrent point.
  • a second overcurrent protection circuit can be provided for two or more of the optional components.
  • two optional components are usually used together, that is, when one of the optional components is in place, the other optional component is usually in place.
  • Providing a second overcurrent protection circuit for the two optional components not only further enhances the overcurrent detection protection of the two optional components, but also sets a second overcurrent for each optional component. Compared with the scheme of protecting the circuit, the component cost of the circuit can be reduced.
  • a mandatory component in the device to be protected may also be provided with a third overcurrent protection circuit.
  • the third overcurrent protection circuit can provide overcurrent detection protection for all necessary components, and the overcurrent point of the third overcurrent protection circuit can be configured according to the rated power of the required components.
  • the third overcurrent protection circuit performs overcurrent detection and protection on all required components, thereby further enhancing overcurrent detection on the required components. The effect of protection.
  • the overcurrent point of the first overcurrent protection circuit needs to be configured according to the calculated overcurrent point. Since the calculated value of the overcurrent point is related to the condition of the component of the device to be protected, and the component is in various situations, the first overcurrent protection circuit needs to be configured differently in different situations. The overcurrent point. Obviously, the overcurrent protection circuit shown in FIG. 1 cannot meet such requirements. Therefore, the embodiment of the present invention further provides a specific implementation form of the first overcurrent protection circuit.
  • first overcurrent protection circuit includes but are not limited to the following three types:
  • the value of the configured overcurrent point is equal to V/R, so in the first overcurrent protection circuit, the configuration of the first overcurrent protection circuit can be changed by setting a plurality of sampling resistors.
  • the overcurrent point Taking the number of sampling resistors set in the first overcurrent protection circuit as four as an example, the implementation form of the first overcurrent protection circuit can be as shown in FIG. In Fig.
  • each of four parallel resistors R1, R2, R3 and R4 is connected in series with one switch, and the other end is connected to the negative terminal of the constant voltage source U; one end of each switch is first The input end of the overcurrent protection circuit is connected, the non-inverting input terminal of the operational amplifier A is connected to the input end of the first overcurrent protection circuit, the inverting input terminal is connected to the positive terminal of the constant voltage source U, and the output end of the operational amplifier A is The comparator controller is connected, and the comparison controller is used to trigger overcurrent detection protection of the device to be protected when the output of the operational amplifier A is high.
  • whether the resistance of the switch connection is connected to the first overcurrent protection circuit can be achieved by adjusting the open or closed state of the four switches, thereby implementing the first configuration.
  • the overcurrent point in the flow protection circuit is achieved by adjusting the open or closed state of the four switches, thereby implementing the first configuration.
  • the output voltage of the constant voltage source is 50mV
  • the resistance values of R1, R2, R3, and R4 are 10m ⁇ , 20m ⁇ , 30m ⁇ , and 40m ⁇ , respectively.
  • the number of closed switches may be one or plural.
  • the value of the output voltage of the overcurrent point and the constant voltage source calculated according to the method shown in FIG. 2 is calculated as the resistance value of the sampling resistor should be R1*R2/(R1+R2), the switch connected with R1 and The switches connected to R2 should be closed.
  • the number of sampling resistors in the first overcurrent protection circuit is not limited.
  • the number of sampling resistors and the resistance value can be referred to the parameters of the components to be protected and the rated power.
  • the value of the configured overcurrent point is equal to V/R, and thus the first overcurrent protection circuit can be configured by setting a plurality of constant voltage sources having different output voltage values.
  • Overcurrent point in the overcurrent protection circuit Taking the number of constant voltage sources set in the first overcurrent protection circuit as four as an example, the implementation form of the first overcurrent protection circuit can be as shown in FIG. In FIG. 4, one end of the sampling resistor R is connected to the input end of the first overcurrent protection circuit, and the other end is connected to four parallel switches, and the four parallel switches are respectively connected to the negative terminals of the constant voltage sources U1, U2, U3 and U4.
  • each constant voltage source is connected in series with a switch; the inverting input terminal of the operational amplifier A is connected to the positive ends of U1, U2, U3 and U4, respectively, and the non-inverting input terminal is connected to the input end of the first overcurrent protection circuit.
  • the output of the operational amplifier A is connected to the comparison controller, and the comparison controller is used to trigger the overcurrent detection protection of the device to be protected when the output of the operational amplifier A is high.
  • the output voltage values of U1, U2, U3, and U4 are 20mV, 30mV, 40mV, and 50mV, respectively.
  • the resistance is 10m ⁇ .
  • the output voltage values of different constant voltage sources can be configured by controlling the on and off of the switches, thereby implementing the configuration of the overcurrent points of the first overcurrent protection circuit.
  • the number of constant voltage sources in the first overcurrent protection circuit shown in FIG. 4 is not limited. In the specific implementation, when selecting the number of constant voltage sources and the output voltage value, refer to the parameters such as the number of components and the rated power in the equipment to be protected.
  • the third implementation form is similar to the second implementation form, and is also configured to change the overcurrent point configured in the first overcurrent protection circuit by setting a plurality of constant voltage sources having different output voltage values.
  • the third implementation form is different from the second implementation manner in that the first overcurrent protection circuit shown in FIG. Four operational amplifiers A1, A2, A3 and A4.
  • the constant voltage source of the switch connection is connected to the first overcurrent protection circuit by controlling the closing or opening of the switch, thereby implementing the overcurrent point of the first overcurrent protection circuit.
  • Each constant voltage source is connected to the first overcurrent protection circuit.
  • the voltage value of each constant voltage source is different. Since the resistance of the sampling resistor is a fixed value in the first overcurrent protection circuit shown in FIG. 5, the value of the configured overcurrent point is equal to the quotient of the output voltage value of the constant voltage source and the resistance of the sampling resistor, and thus The output voltage value of each constant voltage source corresponds to a configured overcurrent point.
  • the comparison controller may select one of the plurality of comparison results according to the output voltage value of the constant voltage source that should be selected.
  • the output voltage values of U1, U2, U3, and U4 are 20mV, 30mV, 40mV, and 50mV, respectively, and the resistance of the sampling resistor is 10m ⁇ .
  • the comparison controller can determine that the comparison result of the operational amplifier A2 connected to the constant voltage source having an output voltage value of 30 mV can be used as a basis for triggering overcurrent detection protection of the device to be protected, since the output of the operational amplifier A2 is at a high level. Then, the comparison controller triggers the overcurrent detection protection of the device to be protected.
  • the number of comparison results outputted to the comparison controller in the first overcurrent protection circuit shown in FIG. 5 is not limited.
  • the embodiment of the invention provides an overcurrent point configuration device in an overcurrent protection circuit, which can be used to execute the overcurrent point configuration method in the overcurrent protection circuit shown in FIG.
  • the overcurrent protection device 600 in the overcurrent protection circuit include:
  • a determining unit 601 configured to determine a component in the device to be protected
  • the calculating unit 602 is configured to acquire the rated power of each component in the in-position component determined by the determining unit 601, and calculate an overcurrent point according to the rated power of each component in the bit;
  • the configuration unit 603 is configured to configure an overcurrent point of the first overcurrent protection circuit according to the overcurrent point calculated by the calculation unit 602, where the first overcurrent protection circuit is configured to perform overcurrent detection protection on the device to be protected.
  • the device to be protected includes a mandatory component and an optional component
  • the component determined by the determining unit 601 includes a mandatory component and/or an optional component in place.
  • each optional component in the device to be protected is provided with a second overcurrent protection circuit, and the second overcurrent protection circuit is configured to perform overcurrent detection protection on the optional component, and the second overcurrent protection circuit
  • the overcurrent point is configured according to the rated power of the optional components.
  • the functions of the apparatus 600 may be implemented by executing a software program, such as by executing a software program stored in a Baseboard Management Controller (BMC).
  • BMC Baseboard Management Controller
  • the BMC is a chip for managing various components in the device, and it does not depend on the processor or operating system of the device.
  • the BMC hardware implementation can be a stand-alone board installed on the motherboard of the device or integrated on the motherboard.
  • BMC is mainly used for management and monitoring of substrates, such as fault query, fault reporting, fault isolation, Firmwaire loading, component configuration information query and maintenance.
  • the BMC is not restricted by the management mode of the operating system. For example, if the user operating system does not respond or is not loaded, the BMC can still extract relevant information of each component in the device, such as the rated power and rated voltage of each component.
  • the overcurrent point configuration device 600 in the overcurrent protection circuit provided by the embodiment of the present invention can be used to execute the overcurrent point configuration method in the overcurrent protection circuit shown in FIG. 2, and the overcurrent point configuration device 600 in the overcurrent protection circuit is not explained in detail.
  • the implementation of the description refer to the related description in the overcurrent point configuration method in the overcurrent protection circuit shown in FIG. 2.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the embodiment of the present invention further provides an overcurrent point configuration device in an overcurrent protection circuit, where the overcurrent point configuration device can perform the method provided by the embodiment corresponding to FIG. 2, which can be
  • the overcurrent protection device 600 shown in Fig. 6 has the same overcurrent point arrangement device 600.
  • the apparatus 700 includes at least one processor 701, a memory 702, and a communication interface 703; the at least one processor 701, the memory 702, and the communication interface 703 are all connected by a bus 704;
  • the memory 702 is configured to store a computer execution instruction
  • the at least one processor 701 is configured to execute the computer-executed instructions stored in the memory 702, so that the device 700 performs data interaction with other devices through the communication interface 703 to execute the over-current protection circuit provided in the foregoing embodiment.
  • Overcurrent point configuration method is configured to execute the computer-executed instructions stored in the memory 702, so that the device 700 performs data interaction with other devices through the communication interface 703 to execute the over-current protection circuit provided in the foregoing embodiment.
  • Overcurrent point configuration method is configured to execute the computer-executed instructions stored in the memory 702, so that the device 700 performs data interaction with other devices through the communication interface 703 to execute the over-current protection circuit provided in the foregoing embodiment.
  • the at least one processor 701 may include different types of processors 701, or include the same type of processor 701; the processor 701 may be any one of the following: a central processing unit (CPU), an ARM processor. Field Programmable Gate Array (FPGA), A device with computational processing power such as a dedicated processor. In an optional implementation manner, the at least one processor 701 may also be integrated into a many-core processor.
  • processors 701 may be any one of the following: a central processing unit (CPU), an ARM processor. Field Programmable Gate Array (FPGA), A device with computational processing power such as a dedicated processor.
  • the at least one processor 701 may also be integrated into a many-core processor.
  • the memory 702 may be any one or any combination of the following: a random access memory (RAM), a read only memory (ROM), and a non-volatile memory (Non-volatile memory). (NVM), Solid State Drives (SSD), mechanical hard disks, disks, disk arrays and other storage media.
  • RAM random access memory
  • ROM read only memory
  • NVM non-volatile memory
  • SSD Solid State Drives
  • Communication interface 703 is used for data interaction between device 700 and other devices, such as devices that store the power rating of each component in place.
  • the communication interface 703 may be any one or any combination of the following: a network interface (such as an Ethernet interface), a wireless network card, or the like having a network access function.
  • the bus 704 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 7 shows the bus with a thick line.
  • the bus 704 can be any one or any combination of the following: an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, and an extended industry standard structure ( Extended Industry Standard Architecture (EISA) bus and other devices for wired data transmission.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the embodiment of the invention further provides an overcurrent protection device, the device to be protected applied by the device comprises a plurality of components.
  • the overcurrent protection device 800 includes a plurality of first overcurrent protection circuits 801.
  • the plurality of first overcurrent protection circuits 801 are in one-to-one correspondence with the plurality of components included in the device to be protected, and each of the first overcurrent protection circuits 801 is configured to perform overcurrent detection and protection on the corresponding components.
  • the overcurrent protection device 800 shown in Fig. 8 since the first overcurrent protection circuit is provided for each component, it is possible to separately protect different components. Since each component is protected by overcurrent detection by a first overcurrent protection circuit, the device 800 can achieve overcurrent detection protection for each component without considering the presence of multiple components.
  • first overcurrent protection circuits 801 and n are shown in order to facilitate the relationship between the plurality of components and the plurality of first overcurrent protection circuits 801. Parts.
  • the number of the plurality of first overcurrent protection circuits 801 may be two or more, and the number of the plurality of components is the same as the number of the plurality of first overcurrent protection circuits 801.
  • the device to be protected includes optional components and mandatory components.
  • the plurality of components corresponding to the plurality of first overcurrent protection circuits 801 included in the apparatus 800 shown in FIG. 8 may be a plurality of optional components, or may be multiple mandatory components, or may be at least one optional component.
  • each of the first overcurrent protection circuits 801 is configured to perform overcurrent detection and protection on the corresponding components corresponding to the first overcurrent protection circuit 801;
  • each of the first overcurrent protection circuits 801 is configured to perform overcurrent detection and protection on the corresponding required components;
  • each of the first overcurrent protection circuits 801 is used for an optional component corresponding to itself. Or required components for overcurrent detection protection.
  • the device 800 may further include a second overcurrent protection circuit, and the second overcurrent protection circuit is used for Over-current detection protection is required for the required components included in the protection device.
  • the second overcurrent protection circuit can be used for overcurrent detection and protection of all required components.
  • the second overcurrent protection circuit refer to the overcurrent protection circuit shown in FIG. 1.
  • the device 800 When the plurality of components that are in one-to-one correspondence with the plurality of first overcurrent protection circuits 801 are a plurality of optional components, the device 800 only performs overcurrent protection on the optional components.
  • a second overcurrent protection circuit is further disposed in the device 800 to perform overcurrent detection and protection on all required components, thereby performing overcurrent detection and protection on all components in the device to be protected, and further, only setting for all required components
  • a second overcurrent protection circuit can also reduce component cost of device 800.
  • the overcurrent protection device 800 may further include a third overcurrent protection circuit for performing overcurrent detection protection on the device to be protected.
  • a third overcurrent protection circuit can be further provided for the entire device to be protected, thereby achieving double protection for each component in the device to be protected.
  • the overcurrent point of the third overcurrent protection circuit may be configured by using an overcurrent point configuration method in the prior art, or may be configured by using an overcurrent point configuration method in the overcurrent protection circuit shown in FIG. 2.
  • the specific implementation form of the third overcurrent protection circuit can be referred to the overcurrent protection circuit shown in FIG. 1;
  • the specific implementation form of the third overcurrent protection circuit can be referred to any of FIG. 3, FIG. 4 or FIG. A first overcurrent protection circuit.
  • the overcurrent point configuration method in the overcurrent protection circuit calculates the overcurrent point according to the rated power of the in-position component, and configures the overcurrent point to perform overcurrent detection protection according to the calculated overcurrent point.
  • the overcurrent point of the first overcurrent protection circuit Compared with the overcurrent point in the overcurrent protection circuit in the prior art, the overcurrent point is calculated according to the rated power of all components in the device to be protected, the overcurrent point is not adjustable, and the overcurrent point configuration is inaccurate and cannot be used to protect the device.
  • the problem of overcurrent detection protection is that, since the overcurrent point configured in the first overcurrent protection circuit in the embodiment of the present invention is calculated according to the rated power of the in-position component in the device to be protected, the first overcurrent protection circuit is The configured overcurrent point is applicable to multiple in-positions of components in the device to be protected. In each case, an accurate overcurrent point can be configured for the first overcurrent protection circuit, which can better serve the device to be protected. Overcurrent detection protection.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory include instructions.
  • An article of manufacture of a device that implements the functions specified in a block or blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种过流点配置方法、装置和过流保护装置,用以解决现有的过流保护装置中存在的过流点配置不准确、无法起到对设备的过流检测保护作用的问题。方法包括:确定待保护设备中在位的部件;获取在位的部件中每个部件的额定功率,并根据在位的每个部件的额定功率计算得到过流点;根据计算得到的过流点配置第一过流保护电路的过流点,第一过流保护电路用于对待保护设备进行过流检测保护。

Description

一种过流点配置方法、装置和过流保护装置 技术领域
本发明涉及计算机技术领域,尤其涉及一种过流点配置方法、装置和过流保护装置。
背景技术
随着计算机技术的发展,计算机设备中除了配置有常规的必选部件,如中央处理器(CPU)、显示器等,还配置有一些可选部件,比如现场可更换单元(Field Replace Unit,FRU),其中,FRU的种类包括但不限于网卡、显卡、声卡等。在计算机设备上配置FRU等可选部件可使得计算机设备的配置灵活多变,满足用户的不同需求。
通常,计算机设备中设置有过流保护装置,过流保护装置根据计算机设备中各个部件的额定电流的总和配置自身的过流点,并在计算机设备中流过的实际电流大于自身配置的过流点时,触发系统下电(将计算机设备断电),从而避免计算机设备中流过的实际电流过大,烧坏设备中的部件。当计算机设备中配置有FRU等可选部件时,由于过流保护装置是根据计算机设备中全部部件的额定功率的配置自身过流点的,因此,当仅有部分可选部件在位(即处于通电运行状态)时,过流保护装置配置的过流点会偏大,无法起到对设备的过流检测保护作用。
综上,现有的过流保护装置在计算机设备中配置有FRU等可选部件的情况下,存在过流点配置不准确、无法起到对设备的过流检测保护作用的问题。
发明内容
本发明实施例提供一种过流点配置方法、装置和过流保护装置,用以解决现有的过流保护装置中存在的过流点配置不准确、无法起到对设备的过流检测保护作用的问题。
第一方面,本发明实施例提供一种过流保护电路中过流点配置方法,该方法包括:确定待保护设备中在位的部件;获取在位的每个部件的额定功率,并根据在位的每个部件的额定功率计算得到过流点;根据计算得到的过流点配置用于对待保护设备进行过流检测保护的第一过流保护电路的过流点。
采用上述方案,根据在位的部件的额定功率计算得到过流点,并根据计算得到的过流点配置对待保护设备进行过流检测保护的第一过流保护电路的过流点。相比于现有技术中过流保护电路中过流点是根据待保护设备中所有部件的额定功率计算的,过流点不可调节,存在过流点配置不准确、无法起到对待保护设备的过流检测保护作用的问题,由于第一过流保护电路中配置的过流点是根据待保护设备中的在位部件的额定功率计算的,因而第一过流保护电路中配置的过流点适用于待保护设备中的部件的多种在位情况,在每种情况下均可以为第一过流保护电路配置准确的过流点,能更好地起到对待保护设备的过流检测保护作用。
在一种可能的设计中,待保护设备包括必选部件和可选部件,确定的在位的部件包括必选部件和/或在位的可选部件。此时,计算过流点的方式可以是:获取在位的每个可选部件的额定功率和/或在位的每个必选部件的额定功率,并根据在位的每个可选部件的额定功率和/或在位的每个必选部件的额定功率,计算得到过流点。
其中,可选部件的数量可以为一个或多个,必选部件的数量也可以为一个或多个。
在一种可能的设计中,待保护设备中的每个可选部件设置有一个第二过流保护电路。设置的第二过流保护电路可用于对可选部件进行过流检测保护,其中,第二过流保护电路的过流点可根据可选部件的额定功率配置。
在通过第一过流保护电路对待保护设备进行过流检测保护的情况下,再通过第二过流保护电路对每个可选部件进行过流检测保护,可以更准确地对每个可选部件进行过流检测保护,进一步增强了对可选部件的过流检测保护的效果。
第二方面,本发明实施例提供一种过流保护电路中过流点配置装置,该装置包括:确定单元,用于确定待保护设备中在位的部件;计算单元,用于获取确定单元确定的在位的部件中每个部件的额定功率,并根据在位的每个部件的额定功率计算得到过流点;配置单元,用于根据计算单元计算得到的过流点配置第一过流保护电路的过流点,其中,第一过流保护电路用于对待保护设备进行过流检测保护。
采用上述方案,计算单元根据在位的部件的额定功率计算得到过流点,配置单元根据计算单元计算得到的过流点配置对待保护设备进行过流检测保护的第一过流保护电路的过流点。相比于现有技术中过流保护电路中过流点是根据待保护设备中所有部件的额定功率计算的,过流点不可调节,存在过流点配置不准确、无法起到对待保护设备的过流检测保护作用的问题,由于第二方面提供的过流保护电路中过流点配置装置中,配置单元配置的过流点是计算单元根据待保护设备中的在位部件的额定功率计算的,因而配置单元配置的过流点适用于待保护设备中的部件的多种在位情况,在每种情况下均可以为第一过流保护电路配置准确的过流点,能更好地起到对待保护设备的过流检测保护作用。
在一种可能的设计中,待保护设备包括必选部件和可选部件,确定单元确定的在位的部件包括必选部件和/或在位的可选部件。此时,计算单元计算过流点的方式可以是:获取在位的每个可选部件的额定功率和/或在位的每个必选部件的额定功率,并根据在位的每个可选部件的额定功率和/或在位的每个必选部件的额定功率,计算得到过流点。
在一种可能的设计中,待保护设备中的每个可选部件设置有一个第二过流保护电路。设置的第二过流保护电路可用于对可选部件进行过流检测保护,其中,第二过流保护电路的过流点可根据可选部件的额定功率配置。
在通过第一过流保护电路对待保护设备进行过流检测保护的情况下,再通过第二过流保护电路对每个可选部件进行过流检测保护,可以更准确地对每个可选部件进行过流检测保护,进一步增强了对可选部件的过流检测保护的效果。
第三方面,本发明实施例提供一种过流保护装置,该装置包括多个第一过流保护电路。其中,多个第一过流保护电路与待保护设备包括的多个部件一一对应,每个第一过流保护电路用于对自身对应的部件进行过流检测保护。
采用上述方案,由于针对每个部件均设置有第一过流保护电路,因而可以实现对不同部件分别保护。由于每个部件均由一个第一过流保护电路进行过流检测保护,因而过流保护装置无需考虑多个部件的在位情况,即可实现对每个部件的过流检测保护。
与上述第三方面提供的过流保护装置中的多个第一过流保护电路一一对应的多个部件可以是多个可选部件,也可以是多个必选部件,还可以是至少一个可选部件和至少一 个必选部件。当与多个第一过流保护电路一一对应的多个部件是多个可选部件时,每个第一过流保护电路用于对自身对应的可选部件进行过流检测保护。
在一种可能的设计中,当与多个第一过流保护电路一一对应的多个部件是多个可选部件时,过流保护装置还可以包括第二过流保护电路,其中,第二过流保护电路用于对待保护设备包括的必选部件进行过流检测保护。
当与多个第一过流保护电路一一对应的多个部件是多个可选部件时,多个第一过流保护电路仅用于对多个可选部件进行过流保护。在过流保护装置中再设置一个第二过流保护电路对全部必选部件进行过流检测保护,可以实现对待保护设备中的全部部件进行过流检测保护,此外,由于针对全部必选部件仅需设置一个第二过流保护电路,因而还可以降低过流保护装置的元器件成本。
在一种可能的设计中,过流保护装置还包括:第三过流保护电路,该第三过流保护电路用于对待保护设备进行过流检测保护。
过流保护装置中,在针对每个部件均设置第一过流保护电路后,可再针对整个待保护设备设置一个第三过流保护电路,实现对待保护设备中每个部件的双重保护。
其中,第三过流保护电路的过流点可采用现有技术中的过流点配置方法配置,也可采用上述第一方面提供的过流保护电路中过流点配置方法配置。
第四方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算节点的至少一个处理器执行该计算机执行指令时,计算节点执行上述第一方面或者第一方面的各种可能设计提供的方法。
第五方面,本发明实施例提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。计算节点的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得计算节点实施上述第一方面或者第一方面的各种可能设计提供的方法。
附图说明
图1为本发明实施例提供的一种过流保护电路的结构示意图;
图2为本发明实施例提供的一种过流保护电路中过流点配置方法的流程示意图;
图3为本发明实施例提供的第一种第一过流保护电路的结构示意图;
图4为本发明实施例提供的第二种第一过流保护电路的结构示意图;
图5为本发明实施例提供的第三种第一过流保护电路的结构示意图;
图6为本发明实施例提供的一种过流保护电路中过流点配置装置的结构示意图;
图7为本发明实施例提供的另一种过流保护电路中过流点配置装置的结构示意图;
图8为本发明实施例提供的一种过流保护装置的结构示意图。
具体实施方式
为了更好地理解本发明实施例的上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬 件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。
本发明实施例涉及通过过流保护电路对计算机等待保护设备进行过流检测保护。过流检测保护是指,过流保护电路检测待保护设备中流过的实际电流是否大于过流点,当检测到待保护设备中流过的实际电流大于过流点时,触发对待保护设备的过流保护,即将待保护设备断电,从而避免待保护设备中流过的实际电流过大,烧坏待保护设备中的某些部件。为了充分阐述本发明实施例的具体实施方式及相应技术效果,下面对如何通过过流保护电路对待保护设备进行过流检测保护进行详述阐述。
图1所示的过流保护电路包括采样电阻R、恒压源U、运算放大器A和比较控制器,采样电阻R的一端输入待保护设备实际运行中的电流Ia,另一端与恒压源U的负端连接;运算放大器A的同向输入端输入Ia,反向输入端与恒压源的正端连接,其中,运算放大器A的同向输入端对应的电压值为Vcc;运算放大器A的输出端与比较控制器连接,比较控制器根据运算放大器的输出判断是否需要触发对待保护设备的过流检测保护。
其中,比较控制器包括但不限于金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)。
通过过流保护电路对待保护设备进行过流检测保护的原则是:当待保护设备实际运行中的电流Ia大于过流保护电路配置的过流点时,触发对待保护设备的过流保护。在具体电路实现时,通过对运算放大器两端的输入电压进行比较实现Ia和过流点的比较。
具体原理如下:
假设过流保护电路中输入Ia的一端对应的电压为Vcc,恒压源的输出电压值为V。那么,
运算放大器A的同向输入端的电压值为Vcc;
运算放大器A的反向输入端的电压值为Vcc-Ia*R+V;
根据运算放大器的工作原理,当同向输入端的电压值大于反向输入端的电压值时,运算放大器输出高电平,即Vcc>Vcc-Ia*R+V时,运算放大器输出高电平。该不等式中V和R为过流保护电路中已知的参数值,因而可以得出结论,当Ia>V/R时,运算放大器输出高电平。比较控制器检测到运算放大器输出高电平后会触发对待保护设备的过流检测保护。
根据如上结论可以看出,V/R即为过流保护电路中配置的过流点,当Ia大于该配置的过流点时,会触发对待保护设备的过流检测保护。因而,针对待保护设备的不同运行状态,可以通过设置过流保护电路中的V和/或R的具体值来配置不同的过流点。
下面,对本发明实施例涉及的基本概念进行解释。需要说明的是,这些解释是为了让本发明实施例更容易被理解,而不应该视为对本发明所要求的保护范围的限定。
一、待保护设备
本发明实施例中,待保护设备可以是个人计算机(Personal Computer,PC)、单板计算机、服务器、手持式计算机、个人数字助理、工作站等计算机设备,也可以是智能手机、平板电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备等终端设备。
二、可选部件和必选部件
本发明实施例中,可选部件和必选部件是针对待保护设备而言的。待保护设备包含 可选部件和必选部件,可选部件和必选部件均为电子部件。
必选部件是指待保护设备中必须配备的部件,待保护设备正常工作过程中必选部件一定在位,即必选部件处于运行状态。可选部件是指待保护设备可以选用的部件,对于待保护设备来说,可选部件不在位或仅有部分可选部件在位也可保证待保护设备的正常工作,例如可选部件包括FRU。
比如,当待保护设备为PC时,必选部件可以包括处理器、主板、内存条、显卡、声卡、网卡、键盘等,可选部件可以是摄像头、话筒等。此时,可选部件不在位也可保证待保护设备的正常工作。
再比如,若PC中配置有多个网卡作为FRU时,用户可根据使用需求选择多个网卡中的一个或几个使用,FRU也被称为可选部件。此时,仅有部分可选部件在位也可保证待保护设备的正常工作。
下面,结合说明书附图对本发明实施例进行详细介绍。
本发明实施例提供一种过流保护电路中过流点配置方法,该方法应用于待保护设备。如图2所示,该方法包括:
S201:确定待保护设备中在位的部件。
其中,待保护设备中在位的部件的数量可以为一个或多个,本发明实施例中对待保护设备中在位的部件的数量不做限制。
S202:获取在位的部件中每个部件的额定功率,并根据在位的每个部件的额定功率计算得到过流点。
可选的,可通过如下两种方法实现S202中计算过流点:
第一种
根据在位的每个部件的额定功率和额定电压计算在位的每个部件的额定电流;将在位的每个部件的额定电流相加,得到在位的每个部件的额定电流总和,将得到的总和作为计算得到的过流点。
第二种
当在位的每个部件的额定电流为已知量时,可将在位的每个部件的额定电流相加,得到在位的每个部件的额定电流总和,将得到的总和作为计算得到的过流点。
S203:根据计算得到的过流点配置第一过流保护电路的过流点。
其中,第一过流保护电路用于对待保护设备进行过流检测保护。
采用图2所示的过流保护电路中过流点配置方法,根据在位的部件的额定功率计算得到过流点,并根据计算得到的过流点配置对待保护设备进行过流检测保护的第一过流保护电路的过流点。相比于现有技术中过流保护电路中过流点是根据待保护设备中所有部件的额定功率计算的,过流点不可调节,存在过流点配置不准确、无法起到对待保护设备的过流检测保护作用的问题,由于本实施例中第一过流保护电路中配置的过流点是根据待保护设备中的在位部件的额定功率计算的,因而第一过流保护电路中配置的过流点适用于待保护设备中的部件的多种在位情况,在每种情况下均可以为第一过流保护电路配置准确的过流点,能更好地起到对待保护设备的过流检测保护作用。
可选地,待保护设备包括必选部件和可选部件,确定的在位的部件包括必选部件和/或在位的可选部件。此时,S202中计算过流点的方式可以是,获取在位的每个可选部件 的额定功率和/或在位的每个必选部件的额定功率,并根据在位的每个可选部件的额定功率和/或在位的每个必选部件的额定功率,计算得到过流点。
由于必选部件是待保护设备中必须配备的部件,因而在待保护设备正常工作过程中,必选部件一定在位;由于可选部件是待保护设备可以选用的部件,因而在待保护设备正常工作过程中,可选部件可能在位,也可能不在位。因此,在执行S201后,确定的在位的部件为全部必选部件和在位的可选部件。
需要说明的是,可选部件的数量可以为一个或多个,必选部件的数量也可以为一个或多个,本发明实施例中对可选部件和必选部件的数量均不做限制。在位的可选部件的数量可以为零个、一个或多个。
当在位的可选部件的数量为零个时,虽然计算得到的过流点与可选部件的额定功率无关,但是计算得到过流点的过程中考虑了可选部件的额定功率,且用于对待保护设备进行过流检测保护的第一过流保护电路的过流点也是根据计算得到的过流点配置的,因而,该第一过流保护电路的过流点配置方法也应视为落入本发明的保护范围。
可选地,待保护设备中的每个可选部件还可设置有一个第二过流保护电路。对于一个可选部件,为其设置的第二过流保护电路可起到对该可选部件的过流检测保护作用,该第二过流保护电路的过流点可根据该可选部件的额定功率配置。
在通过第一过流保护电路对待保护设备进行过流检测保护的情况下,再通过第二过流保护电路对每个可选部件进行过流检测保护,可以更准确地对每个可选部件进行过流检测保护,进一步增强了对可选部件的过流检测保护的效果。
其中,在配置第二过流保护电路的过流点时,可根据可选部件的额定功率和额定电压计算可选部件的额定电流,根据可选部件的额定电流配置第二过流保护电路的过流点。
此外,在设置第二过流保护电路时,可为可选部件中的两个或两个以上可选部件设置一个第二过流保护电路。比如,某两个可选部件通常会一起使用,即当其中一个可选部件在位时,另一个可选部件通常也在位。为这两个可选部件设置一个第二过流保护电路,不仅可以进一步增强对这两个可选部件的过流检测保护的效果,而且与为每个可选部件均设置一个第二过流保护电路的方案相比,可降低电路的元器件成本。
可选地,待保护设备中的必选部件还可设置有一个第三过流保护电路。第三过流保护电路可起到对全部必选部件的过流检测保护作用,该第三过流保护电路的过流点可根据必选部件的额定功率配置。
在通过第一过流保护电路对待保护设备进行过流检测保护的情况下,再通过第三过流保护电路对全部必选部件进行过流检测保护,进一步增强了对必选部件的过流检测保护的效果。
在S203中,需要根据计算得到的过流点配置第一过流保护电路的过流点。由于计算得到的过流点的值与待保护设备的部件在位的情况相关,而部件在位的情况有多种,因而第一过流保护电路在具体实现时需要在不同的情况下配置不同的过流点。显然,图1所示的过流保护电路不能满足这样的要求,因而本发明实施例还提供第一过流保护电路的具体实现形式。
第一过流保护电路的具体实现形式包括但不限于以下三种:
第一种
在图1所示的过流保护电路中,配置的过流点的值等于V/R,因而在第一过流保护电路中可以通过设置多个采样电阻来改变第一过流保护电路中配置的过流点。以第一过流保护电路中设置的采样电阻的个数为四个为例,第一过流保护电路的实现形式可如图3所示。图3中,四个并联的电阻R1、R2、R3和R4中的每个电阻的一端均与一个开关串联,另一端均与恒压源U的负端连接;每个开关的一端与第一过流保护电路的输入端连接,运算放大器A的同向输入端与第一过流保护电路的输入端连接,反向输入端与恒压源U的正端连接,运算放大器A的输出端与比较控制器连接,比较控制器用于在运算放大器A输出为高电平时,触发对待保护设备的过流检测保护。
在图3所示的第一过流保护电路中,可通过调节四个开关的断开或闭合状态,实现开关连接的电阻是否接入到第一过流保护电路中,进而实现配置第一过流保护电路中的过流点。
比如,恒压源的输出电压为50mV,R1、R2、R3和R4的阻值分别为10mΩ、20mΩ、30mΩ和40mΩ。那么,当采用图2所示方法根据待保护设备中部件在位的情况计算出的过流点为5A时,第一过流保护电路中采样电阻的阻值应为50mV/5A=10mΩ。因而第一过流保护电路中的采样电阻应选取为R1,即与R1串联的开关应为闭合状态;对于同一个待保护设备,当部件在位的情况发生变化,采用图2所示方法计算出的过流点为2.5A时,第一过流保护电路中采样电阻的阻值应为50mV/2.5A=20mΩ。因而第一过流保护电路中的采样电阻应选取为R2,即与R2串联的开关应为闭合状态。
需要说明的是,在图3所示的第一过流保护电路中,每次配置第一过流保护电路的过流点时,闭合的开关的数量可以为一个,也可以为多个。比如,当根据图2所示方法计算出的过流点和恒压源的输出电压值计算出采样电阻的阻值应为R1*R2/(R1+R2)时,与R1连接的开关和与R2连接的开关均应为闭合状态。
同样需要说明的是,本发明实施例中对第一过流保护电路中采样电阻的数量不做限制。具体实现时,选取的采样电阻的数量和阻值时可参考待保护设备中部件的数量和额定功率等参数。
第二种
在图1所示的过流保护电路中,配置的过流点的值等于V/R,因而在第一过流保护电路中可以通过设置多个输出电压值不同的恒压源来配置第一过流保护电路中的过流点。以第一过流保护电路中设置的恒压源的个数为四个为例,第一过流保护电路的实现形式可如图4所示。图4中,采样电阻R的一端与第一过流保护电路的输入端相连,另一端连接四个并联开关,四个并联的开关分别与恒压源U1、U2、U3和U4的负端连接,即每个恒压源均与一个开关串联;运算放大器A的反向输入端分别与U1、U2、U3和U4的正端连接,同向输入端与第一过流保护电路的输入端连接,运算放大器A的输出端与比较控制器连接,比较控制器用于在运算放大器A输出为高电平时,触发对待保护设备的过流检测保护。
在图4所示的第一过流保护电路中,可通过调节四个开关的断开或闭合状态,实现开关连接的恒压源是否接入到第一过流保护电路中,进而实现配置第一过流保护电路中的过流点。
比如,U1、U2、U3和U4的输出电压值分别为20mV、30mV、40mV、50mV,采样电阻 的阻值为10mΩ。那么,当采用图2所示方法根据待保护设备中部件在位的情况计算出的过流点为5A时,第一过流保护电路中恒压源的输出电压值应为5A*10mΩ=50mV。因而第一过流保护电路中的恒压源应选取为U4,即与U4串联的开关应为闭合状态;对于同一个待保护设备,当部件在位的情况发生变化,采用图2所示方法计算出的过流点为3A时,第一过流保护电路中采样电阻的阻值应为3A*10mΩ=30mV。因而第一过流保护电路中的恒压源应选取为U2,即与U2串联的开关应为闭合状态。
在图4所示的第一过流保护电路中,可通过控制开关的通断来配置不同的恒压源的输出电压值,从而实现第一过流保护电路的过流点的配置。
需要说明的是,本发明实施例中对图4所示的第一过流保护电路中恒压源的数量不做限制。具体实现时,选取的恒压源的数量和输出电压值时可参考待保护设备中部件的数量和额定功率等参数。
第三种
第三种实现形式与第二种实现形式类似,也是通过设置多个输出电压值不同的恒压源来改变第一过流保护电路中配置的过流点。
图5为第一过流保护电路的第三种实现形式,如图5所述,第三种实现形式与第二种实现形式不同的是,图5所示的第一过流保护电路中有四个运算放大器A1、A2、A3和A4。在该电路中不需要通过控制开关的闭合或断开来实现开关连接的恒压源是否接入到第一过流保护电路中,来实现配置第一过流保护电路的过流点,而是将每个恒压源均接入到第一过流保护电路中。其中,每个恒压源的电压值均不相同。由于图5所示的第一过流保护电路中,采样电阻的阻值为固定值,而配置的过流点的值等于恒压源的输出电压值与采样电阻的阻值的商,因而对于每个恒压源的输出电压值均对应一个配置的过流点。
在图5所示的第一过流保护电路中,对于接入到第一过流保护电路中的每个恒压源,即对于第一过流保护电路中配置的每个过流点,均设置一个运算放大器对该过流点和待保护设备中的实际电流进行比较,并将比较结果输出至比较控制器。其中,输出至比较控制器的比较结果的数量等于第一过流保护电路中的运算放大器的数量。比较控制器在接收到多个比较结果后,可根据应该选择的恒压源的输出电压值来选择多个比较结果中的一个比较结果。
比如,U1、U2、U3和U4的输出电压值分别为20mV、30mV、40mV、50mV,采样电阻的阻值为10mΩ,比较控制器接收到的四个运算放大器A1、A2、A3和A4的比较结果分别为高电平、高电平、低电平和低电平。那么,当采用图2所示方法根据待保护设备中部件在位的情况计算出的过流点为3A时,第一过流保护电路中恒压源的输出电压值应为3A*10mΩ=30mV。因而比较控制器可以判断,与输出电压值为30mV的恒压源连接的运算放大器A2的比较结果可作为是否触发对待保护设备的过流检测保护的依据,由于运算放大器A2的输出为高电平,那么比较控制器即触发对待保护设备的过流检测保护。
同样地,本发明实施例中对图5所示的第一过流保护电路中输出给比较控制器的比较结果的数量不做限制。
本发明实施例提供一种过流保护电路中过流点配置装置,该装置可用于执行图2所示的过流保护电路中过流点配置方法。如图6所示,过流保护电路中过流点配置装置600 包括:
确定单元601,用于确定待保护设备中在位的部件;
计算单元602,用于获取确定单元601确定的在位的部件中每个部件的额定功率,并根据在位的每个部件的额定功率计算得到过流点;
配置单元603,用于根据计算单元602计算得到的过流点配置第一过流保护电路的过流点,第一过流保护电路用于对待保护设备进行过流检测保护。
可选地,待保护设备包括必选部件和可选部件,确定单元601确定的在位的部件包括必选部件和/或在位的可选部件。
可选地,待保护设备中的每个可选部件均设置有一个第二过流保护电路,第二过流保护电路用于对可选部件进行过流检测保护,第二过流保护电路的过流点根据可选部件的额定功率配置。
在具体实现时,装置600的功能可通过执行软件程序实现,比如通过执行存储在基板管理控制器(Baseboard Management Controller,BMC)中的软件程序实现。其中,BMC是一种用于管理设备中各个部件的芯片,它不依赖于设备的处理器或操作系统。BMC硬件实现上可为安装在设备主板上的独立板卡,也可集成在主板上。目前,BMC主要用于对基板进行管理监控,比如:故障查询、故障上报、故障隔离、Firmwaire加载、部件配置信息查询和维护等。BMC不受操作系统的管理方式的限制,比如:用户操作系统不响应或未加载的情况下,仍可通过BMC提取设备中各个部件的相关信息,比如各个部件的额定功率、额定电压等。
本发明实施例提供的过流保护电路中过流点配置装置600可用于执行图2所示的过流保护电路中过流点配置方法,过流保护电路中过流点配置装置600未详细解释和描述的实现方式可参考图2所示的过流保护电路中过流点配置方法中的相关描述。
需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于以上实施例,本发明实施例还提供一种过流保护电路中过流点配置装置,该过流保护电路中过流点配置装置可以执行图2对应的实施例提供的方法,可以与图6所示的过流保护电路中过流点配置装置600相同。
参见图7,装置700包括至少一个处理器701、存储器702和通信接口703;所述至少一个处理器701、所述存储器702和所述通信接口703均通过总线704连接;
所述存储器702,用于存储计算机执行指令;
所述至少一个处理器701,用于执行所述存储器702存储的计算机执行指令,使得所述装置700通过所述通信接口703与其它装置进行数据交互来执行上述实施例提供的过流保护电路中过流点配置方法。
至少一个处理器701,可以包括不同类型的处理器701,或者包括相同类型的处理器701;处理器701可以是以下的任一种:中央处理器(Central Processing Unit,简称CPU)、ARM处理器、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、 专用处理器等具有计算处理能力的器件。一种可选实施方式,所述至少一个处理器701还可以集成为众核处理器。
存储器702可以是以下的任一种或任一种组合:随机存取存储器(Random Access Memory,简称RAM)、只读存储器(Read Only Memory,简称ROM)、非易失性存储器(Non-volatile Memory,简称NVM)、固态硬盘(Solid State Drives,简称SSD)、机械硬盘、磁盘、磁盘阵列等存储介质。
通信接口703用于装置700与其他装置(例如存储有在位的每个部件的额定功率的装置)进行数据交互。通信接口703可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线704可以包括地址总线、数据总线、控制总线等,为便于表示,图7用一条粗线表示该总线。总线704可以是以下的任一种或任一种组合:工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外设组件互连标准(Peripheral Component Interconnect,简称PCI)总线、扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等有线数据传输的器件。
本发明实施例还提供一种过流保护装置,该装置应用的待保护设备包括多个部件。如图8所示,该过流保护装置800包括:多个第一过流保护电路801。
其中,多个第一过流保护电路801与待保护设备包括的多个部件一一对应,每个第一过流保护电路801用于对自身对应的部件进行过流检测保护。
图8所示的过流保护装置800中,由于针对每个部件均设置有第一过流保护电路,因而可以实现对不同部件分别保护。由于每个部件均由一个第一过流保护电路进行过流检测保护,因而装置800无需考虑多个部件的在位情况,即可实现对每个部件的过流检测保护。
需要说明的是,图8所示的过流保护装置800中,为了便于展示多个部件和多个第一过流保护电路801的关系而示出了n个第一过流保护电路801和n个部件。具体实现时,多个第一过流保护电路801的数量可以为两个或两个以上即可,多个部件的数量和多个第一过流保护电路801的数量相同。
如前所述,待保护设备中包括可选部件和必选部件。与图8所示装置800所包括的多个第一过流保护电路801一一对应的多个部件可以是多个可选部件,也可以是多个必选部件,还可以是至少一个可选部件和至少一个必选部件。
当与多个第一过流保护电路801一一对应的多个部件是多个可选部件时,每个第一过流保护电路801用于对自身对应的可选部件进行过流检测保护;
当与多个第一过流保护电路801一一对应的多个部件是多个必选部件时,每个第一过流保护电路801用于对自身对应的必选部件进行过流检测保护;
当与多个第一过流保护电路801一一对应的多个部件是至少一个可选部件和至少一个必选部件时,每个第一过流保护电路801用于对自身对应的可选部件或必选部件进行过流检测保护。
可选地,当与多个第一过流保护电路801一一对应的多个部件是多个可选部件时,装置800还可以包括第二过流保护电路,第二过流保护电路用于对待保护设备包括的必选部件进行过流检测保护。
其中,若必选部件的数量为多个,第二过流保护电路可用于对全部必选部件进行过流检测保护。第二过流保护电路的具体实现形式可参见图1所示的过流保护电路。
当与多个第一过流保护电路801一一对应的多个部件是多个可选部件时,装置800仅对可选部件进行过流保护。在装置800中再设置一个第二过流保护电路对全部必选部件进行过流检测保护,可以实现对待保护设备中的全部部件进行过流检测保护,此外,由于针对全部必选部件仅需设置一个第二过流保护电路,因而还可以降低装置800的元器件成本。
可选地,过流保护装置800还可以包括第三过流保护电路,该第三过流保护电路用于对待保护设备进行过流检测保护。
在针对每个部件均设置第一过流保护电路后,可再针对整个待保护设备设置一个第三过流保护电路,实现对待保护设备中每个部件的双重保护。
其中,第三过流保护电路的过流点可采用现有技术中的过流点配置方法配置,也可采用图2所示的过流保护电路中过流点配置方法配置。当第三过流保护电路的过流点采用现有技术中的过流点配置方法配置时,第三过流保护电路的具体实现形式可参见图1所示的过流保护电路;当第三过流保护电路的过流点采用图2所示的过流保护电路中过流点配置方法配置时,第三过流保护电路的具体实现形式可参见图3、图4或图5中的任一第一过流保护电路。
采用本发明实施例提供的过流保护电路中过流点配置方法,根据在位的部件的额定功率计算得到过流点,并根据计算得到的过流点配置对待保护设备进行过流检测保护的第一过流保护电路的过流点。相比于现有技术中过流保护电路中过流点是根据待保护设备中所有部件的额定功率计算的,过流点不可调节,存在过流点配置不准确、无法起到对待保护设备的过流检测保护作用的问题,由于本发明实施例中第一过流保护电路中配置的过流点是根据待保护设备中的在位部件的额定功率计算的,因而第一过流保护电路中配置的过流点适用于待保护设备中的部件的多种在位情况,在每种情况下均可以为第一过流保护电路配置准确的过流点,能更好地起到对待保护设备的过流检测保护作用。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令 装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种过流保护电路中过流点配置方法,其特征在于,包括:
    确定待保护设备中在位的部件;
    获取所述在位的部件中每个部件的额定功率,并根据所述在位的每个部件的额定功率计算得到过流点;
    根据计算得到的所述过流点配置第一过流保护电路的过流点,所述第一过流保护电路用于对所述待保护设备进行过流检测保护。
  2. 如权利要求1所的方法,其特征在于,所述待保护设备包括必选部件和可选部件,确定的所述在位的部件包括必选部件和/或在位的可选部件。
  3. 如权利要求2所述的方法,其特征在于,所述待保护设备中的每个可选部件设置有一个第二过流保护电路,所述第二过流保护电路用于对所述可选部件进行过流检测保护,所述第二过流保护电路的过流点根据所述可选部件的额定功率配置。
  4. 一种过流保护电路中过流点配置装置,其特征在于,包括:
    确定单元,用于确定待保护设备中在位的部件;
    计算单元,用于获取所述确定单元确定的所述在位的部件中每个部件的额定功率,并根据所述在位的每个部件的额定功率计算得到过流点;
    配置单元,用于根据所述计算单元计算得到的所述过流点配置第一过流保护电路的过流点,所述第一过流保护电路用于对所述待保护设备进行过流检测保护。
  5. 如权利要求4所的装置,其特征在于,所述待保护设备包括必选部件和可选部件,所述确定单元确定的所述在位的部件包括必选部件和/或在位的可选部件。
  6. 如权利要求5所述的装置,其特征在于,所述待保护设备中的每个可选部件设置有一个第二过流保护电路,所述第二过流保护电路用于对所述可选部件进行过流检测保护,所述第二过流保护电路的过流点根据所述可选部件的额定功率配置。
  7. 一种过流保护装置,其特征在于,包括:多个第一过流保护电路,所述多个第一过流保护电路与待保护设备包括的多个部件一一对应,所述多个第一过流保护电路中每个第一过流保护电路用于对自身对应的部件进行过流检测保护。
  8. 如权利要求7所述的装置,其特征在于,与所述多个第一过流保护电路一一对应的所述多个部件包括多个可选部件。
  9. 如权利要求8所述的装置,其特征在于,还包括第二过流保护电路,所述第二过流保护电路用于对所述待保护设备包括的必选部件进行过流检测保护。
  10. 如权利要求7至9任一项所述的装置,其特征在于,还包括:
    第三过流保护电路,用于对所述待保护设备进行过流检测保护。
  11. 如权利要求10所述的装置,其特征在于,所述第三过流保护电路的过流点采用如权利要求1至3任一项所述的过流保护电路中过流点配置方法配置。
PCT/CN2017/087155 2016-09-28 2017-06-05 一种过流点配置方法、装置和过流保护装置 WO2018058999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610859933.5 2016-09-28
CN201610859933.5A CN106648013A (zh) 2016-09-28 2016-09-28 一种过流点配置方法、装置和过流保护装置

Publications (1)

Publication Number Publication Date
WO2018058999A1 true WO2018058999A1 (zh) 2018-04-05

Family

ID=58853512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087155 WO2018058999A1 (zh) 2016-09-28 2017-06-05 一种过流点配置方法、装置和过流保护装置

Country Status (2)

Country Link
CN (1) CN106648013A (zh)
WO (1) WO2018058999A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106648013A (zh) * 2016-09-28 2017-05-10 华为技术有限公司 一种过流点配置方法、装置和过流保护装置
CN107239129A (zh) * 2017-06-28 2017-10-10 联想(北京)有限公司 一种电子设备的电源控制方法及装置
CN107272860A (zh) * 2017-06-29 2017-10-20 郑州云海信息技术有限公司 一种服务器硬盘供电结构及其设计方法
CN107479679A (zh) * 2017-08-02 2017-12-15 郑州云海信息技术有限公司 一种硬盘背板的供电保护方法及装置
CN107562169A (zh) * 2017-10-24 2018-01-09 郑州云海信息技术有限公司 一种防止nvme背板烧毁的过流保护模块及方法
CN109828652B (zh) * 2018-12-26 2021-03-05 维沃移动通信有限公司 功耗模式的控制方法及终端设备
CN111864709B (zh) * 2019-04-16 2022-05-10 维谛新能源有限公司 过载保护方法、控制方法、装置和风电变流器
CN110502087B (zh) * 2019-07-19 2022-06-10 腾讯科技(深圳)有限公司 一种服务器防烧板系统及工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098368A1 (en) * 2004-11-09 2006-05-11 Dell Products L.P. Auto adjustment of over current protection in degraded mode
CN1848577A (zh) * 2005-06-17 2006-10-18 华为技术有限公司 过流保护电路
CN101582581A (zh) * 2008-08-14 2009-11-18 韩俊 防漏电、过流保护的装置
CN103425544A (zh) * 2013-08-19 2013-12-04 浪潮电子信息产业股份有限公司 一种解决风扇可带电维护的方法
CN106648013A (zh) * 2016-09-28 2017-05-10 华为技术有限公司 一种过流点配置方法、装置和过流保护装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144057A2 (zh) * 2011-05-20 2011-11-24 华为技术有限公司 智能配电系统和方法
CN103268144B (zh) * 2013-06-07 2016-09-07 张宁 电源监控装置及过流保护方法
CN105119661A (zh) * 2015-07-20 2015-12-02 上海斐讯数据通信技术有限公司 一种多路负载共享供电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098368A1 (en) * 2004-11-09 2006-05-11 Dell Products L.P. Auto adjustment of over current protection in degraded mode
CN1848577A (zh) * 2005-06-17 2006-10-18 华为技术有限公司 过流保护电路
CN101582581A (zh) * 2008-08-14 2009-11-18 韩俊 防漏电、过流保护的装置
CN103425544A (zh) * 2013-08-19 2013-12-04 浪潮电子信息产业股份有限公司 一种解决风扇可带电维护的方法
CN106648013A (zh) * 2016-09-28 2017-05-10 华为技术有限公司 一种过流点配置方法、装置和过流保护装置

Also Published As

Publication number Publication date
CN106648013A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018058999A1 (zh) 一种过流点配置方法、装置和过流保护装置
CN103268144B (zh) 电源监控装置及过流保护方法
US20200186553A1 (en) System monitor
US10164457B2 (en) Charging method and apparatus
US9026863B2 (en) Replacement of storage responsive to remaining life parameter
JP5891274B2 (ja) データ記憶装置とその異常電圧からの保護方法
US8806254B2 (en) System and method for creating and dynamically maintaining system power inventories
US20160306722A1 (en) Detecting and handling errors in a bus structure
US10579118B2 (en) Detection circuits
US20070005860A1 (en) Interrupt control system and method
TWI645692B (zh) 供電裝置、偵測電路與其供電方法
US20140184266A1 (en) Method and apparatus for chip self deactivation
CN112346552B (zh) 电源监测方法、装置、计算机设备和存储介质
US20190033349A1 (en) Power sense output
US10386425B2 (en) Method and system for managing power faults
JP6285123B2 (ja) 電源監視装置、電源装置、情報処理システム及び電源監視方法
CN113254304A (zh) 一种服务器关机类型的确定方法、服务器及存储介质
CN108879589B (zh) 过流保护方法、装置、终端设备及存储介质
CN110832427B (zh) 功率供给设备的输入功率缩放
CN112732498A (zh) 模拟设备单点上下电的测试方法、装置、设备及存储介质
US20160070632A1 (en) Power profiling method, power profiling system, and processor-readable storage medium
US11175708B2 (en) Thermal simulation for management controller development projects
TWI630478B (zh) 監控一電子元件溫度的方法及裝置
EP3114492A1 (en) System and method to predict whether a protection circuit is likely to prevent a latent failure within a monitored circuit
CN109710495A (zh) 一种信息处理方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854455

Country of ref document: EP

Kind code of ref document: A1