WO2018058916A1 - Système optique - Google Patents

Système optique Download PDF

Info

Publication number
WO2018058916A1
WO2018058916A1 PCT/CN2017/077620 CN2017077620W WO2018058916A1 WO 2018058916 A1 WO2018058916 A1 WO 2018058916A1 CN 2017077620 W CN2017077620 W CN 2017077620W WO 2018058916 A1 WO2018058916 A1 WO 2018058916A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
reflected light
optical system
target
target range
Prior art date
Application number
PCT/CN2017/077620
Other languages
English (en)
Chinese (zh)
Inventor
胡小波
雷祖芳
巫后祥
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Publication of WO2018058916A1 publication Critical patent/WO2018058916A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves

Definitions

  • the present invention belongs to the field of laser optical design, and more particularly to an optical system.
  • the target detecting module is configured to scan and detect the target in the field of view by using the CMOS camera, and obtain coordinate information of the target under the detecting light path through the recognition process; the target striking module is configured to control the striking beam pair by using the coordinate information The target is hit hard.
  • the optical path of the target detecting module and the optical path of the striking beam of the target striking module are on different optical paths, so that the optical system of the entire device captures the target, The accuracy of the strike is not precise enough.
  • An embodiment of the present invention provides an optical system, which aims to solve the small target capturing and striking device in the prior art, which has an optical system that is inaccurate in capturing and striking accuracy of the target, and the user needs to perform the target object. Multiple captures, blows, and numerous operations.
  • an optical system includes:
  • an image receiving unit configured to receive a target range object reflected light having a preset wavelength reflected by the dichroic mirror, form image information, and output, to obtain position information of the target object according to the image information;
  • a laser emitting unit configured to: according to position information of the target object, through the dichroic mirror The target object is subjected to laser emission;
  • the laser emitting optical axis of the laser emitting unit is coaxial with the reflected light receiving optical axis of the reflected light of the target range object.
  • the optical system provided by the embodiment of the present invention is designed to improve the accuracy and reliability of the actual impact of the optical system by designing the laser emitting optical axis of the laser emitting unit and the reflected light of the reflected light of the target range object to receive the optical axis.
  • the transmission and reception coaxial system design can make the equipment structure simpler and lighter, and reduce the design and manufacturing cost of the laser radar.
  • FIG. 1 is a schematic diagram of functional modules of an optical system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an optical system in actual use according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an image receiving unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a laser emitting unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a laser according to an embodiment of the present invention.
  • the optical system provided by the embodiment of the present invention improves the accuracy and reliability of the optical system's actual impact by designing the laser emitting optical axis of the laser emitting unit and the reflected light of the reflected light of the target range object to receive the optical axis.
  • the transmission and reception coaxial system design can make the equipment structure simpler and lighter, and reduce the design and manufacturing cost of the laser radar.
  • the optical system can be applied to various fields, such as medical, marine, mineral, etc., and the following is an example in which an optical system is applied to a trap for a small target object, such as a laser killer. get on In other embodiments of the present invention, it may also be a laser fly killer, a laser insect trap, etc., and is not specifically limited.
  • FIG. 1 is a schematic diagram of functional modules of an optical system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical system according to an embodiment of the present invention. The examples merely set forth the parts related to the present invention.
  • the optical system 100 includes: a dichroic mirror 110, an image receiving unit 120, and a laser emitting unit 130, which are described in detail as follows:
  • the dichroic mirror 110 is used to reflect light of a specific wavelength and transmit light of other wavelengths than light of a specific wavelength.
  • the angle between the dichroic mirror 110 and the horizontal plane is preferably 45 degrees, which can not only completely reflect the reflected light of the target range whose wavelength is consistent with the preset wavelength into the image receiving unit 120.
  • the imaging precision of the image receiving unit 120 is increased; at the same time, the receiving optical axis of the image receiving unit 120 can be ensured at an angle of 90 degrees with the horizontal plane, so that the aspect ratio of the image matches the actual length and width ratio, thereby avoiding image distortion. , the error in the position of the target object is generated, and the accuracy of capturing the target object by the entire system is improved.
  • the angle between the dichroic mirror 110 and the horizontal plane may also be 35 degrees, 40 degrees, 50 degrees, etc., and is not specifically limited.
  • the laser light emitted by the laser emitting unit and the target range object reflected by the dichroic mirror 110 are light of different wavelengths, which are determined by the characteristics of the dichroic mirror 110 itself. For example, if the wavelength of the laser beam emitted by the laser emitting unit is 960 nm, the laser beam of 960 nm can completely penetrate the dichroic mirror 110 to strike the target object; and the target range object reflected by the dichroic mirror 110 reflects the light. At a wavelength of 480 nm, the reflected light of the target range of 480 nm is completely reflected by the dichroic mirror 110, thereby positioning the target object.
  • the image receiving unit 120 is configured to receive the target range object reflected light having the preset wavelength reflected by the dichroic mirror 110, form image information, and output the position information of the target object according to the image information.
  • the image receiving unit 120 includes: an image receiving mirror group 12 1 , a filter member 122 , and a photosensitive element 123 .
  • the image receiving mirror group 121 cooperates with the photosensitive element 123, The reflected light of the target range is guided into the photosensitive element 123.
  • the image receiving mirror group 121 generally adopts a plastic lens, a glass lens, etc., and can be selected according to user requirements.
  • the filter member 122 is disposed between the photosensitive element 123 and the image receiving mirror group 12 1 for transmitting only the target range object having a predetermined wavelength, for example, only The infrared light is allowed to return to the photosensitive member 123 for imaging through the target, thereby highlighting the foreground moving target object in the field of view, and eliminating the influence of the ambient light on the target imaging; meanwhile, the device can be made lighter, saving equipment use and manufacturing cost.
  • the photosensitive element 123 is configured to form the image information of the received target range object, such as a camera, a camera, or the like, having a photographing and imaging function.
  • the laser emitting unit 130 is configured to perform laser emission on the target object through the dichroic mirror 110 according to the position information of the target object; wherein, the laser emitting optical axis of the laser emitting unit 130 and the reflected light of the target range object reflect The light receiving optical axis is coaxial.
  • the laser emitting unit 130 includes: a laser 131 and an optical path deflection module 132.
  • the laser 131 includes: a laser generating element 1311 for generating a laser beam; and a collimating lens group 1312 disposed on the light emitting path of the laser generating element 1311, wherein
  • the collimating lens group 1312 includes at least two cylindrical mirrors for collimating the laser light, and the collimating lens group 1 312 can directionally emit the undirected laser beam generated by the laser generating element 1311 through the spatially formed reference line.
  • the collimation effect of the laser is better, and the capture and impact accuracy of the target object is improved.
  • the optical path deflection module 132 is configured to deflect the laser light path emitted by the laser, and includes at least one mirror or prism.
  • the user can adjust the prism angle according to the actual situation, that is, by controlling the optical path deflection module 132, the laser beam is accurately struck in the direction in which the target object is located, so that the structural design of the laser 131 is more optimized.
  • the optical system provided by the embodiment of the present invention improves the accuracy and reliability of the actual impact of the optical system by designing the laser emitting optical axis of the laser emitting unit and the reflected light of the reflected light of the target range object to receive the optical axis coaxially.
  • the transmission and reception coaxial system design can make the equipment structure simpler and lighter, and reduce the design and manufacturing cost of the laser radar.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

La présente invention concerne un système optique (100), comprenant un miroir dichroïque (110); une unité de réception d'image (120), utilisée pour recevoir une lumière réfléchie d'objet de plage cible d'une longueur d'onde prédéfinie réfléchie par le miroir dichroïque, pour former des informations d'image et pour les transmettre afin d'acquérir des informations de position de l'objet cible sur la base des informations d'image; et une unité d'émission laser (130), utilisée pour effectuer une émission laser sur l'objet cible au moyen du miroir dichroïque sur la base des informations de position d'objet cible. L'axe optique de l'émission laser de l'unité d'émission laser et l'axe optique de réception de lumière réfléchie de la lumière réfléchie d'objet de plage cible sont coaxiaux, ce qui permet d'améliorer la précision et la fiabilité de l'impact en temps réel du système optique. La conception de système d'émission-réception coaxiale permet à la structure de dispositif d'être plus simple et légère, ce qui permet de réduire les coûts de conception et de fabrication du lidar.
PCT/CN2017/077620 2016-09-30 2017-03-22 Système optique WO2018058916A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877544.5 2016-09-30
CN201610877544.5A CN106483529A (zh) 2016-09-30 2016-09-30 一种光学系统

Publications (1)

Publication Number Publication Date
WO2018058916A1 true WO2018058916A1 (fr) 2018-04-05

Family

ID=58268496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077620 WO2018058916A1 (fr) 2016-09-30 2017-03-22 Système optique

Country Status (2)

Country Link
CN (1) CN106483529A (fr)
WO (1) WO2018058916A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483529A (zh) * 2016-09-30 2017-03-08 深圳市镭神智能系统有限公司 一种光学系统
CN107388900B (zh) * 2017-05-04 2023-06-16 成都安的光电科技有限公司 无人机反制系统
CN107015237B (zh) * 2017-06-12 2024-06-21 深圳市镭神智能系统有限公司 一种回波探测光学系统
WO2020063639A1 (fr) * 2018-09-30 2020-04-02 南昌欧菲生物识别技术有限公司 Module de reconnaissance 3d, appareil de reconnaissance 3d et terminal intelligent
CN114280628A (zh) * 2022-03-03 2022-04-05 荣耀终端有限公司 传感器组件及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202083830U (zh) * 2011-05-20 2011-12-21 上海理工大学 一种捕获高折射率微粒的装置
CN104296660A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于结构光方法的微观光滑自由曲面样品测量装置和方法
CN105004704A (zh) * 2015-07-09 2015-10-28 华南师范大学 钕离子敏化上转换纳米晶新用途及高分辨多光子显微系统
CN105044729A (zh) * 2015-06-30 2015-11-11 北京师范大学 用于飞行器探测的拉曼散射激光雷达
CN106483529A (zh) * 2016-09-30 2017-03-08 深圳市镭神智能系统有限公司 一种光学系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199418A (ja) * 1997-01-14 1998-07-31 Toshiba Corp 陰極線管の黒色膜修正方法およびその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202083830U (zh) * 2011-05-20 2011-12-21 上海理工大学 一种捕获高折射率微粒的装置
CN104296660A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于结构光方法的微观光滑自由曲面样品测量装置和方法
CN105044729A (zh) * 2015-06-30 2015-11-11 北京师范大学 用于飞行器探测的拉曼散射激光雷达
CN105004704A (zh) * 2015-07-09 2015-10-28 华南师范大学 钕离子敏化上转换纳米晶新用途及高分辨多光子显微系统
CN106483529A (zh) * 2016-09-30 2017-03-08 深圳市镭神智能系统有限公司 一种光学系统

Also Published As

Publication number Publication date
CN106483529A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2018058916A1 (fr) Système optique
CN109196378B (zh) 用于遥感接收器的光学系统
KR102134178B1 (ko) 피아 식별 시스템 및 방법
WO2018068363A1 (fr) Système optique de radar laser
CN106597459B (zh) 激光主动拒止系统
WO2019028948A1 (fr) Antenne d'émetteur-récepteur radar laser à réseau à commande de phase optique et procédé de mesure de distance
WO2018228355A1 (fr) Système de commande du parallélisme d'un axe optique d'émission laser et d'un axe optique de suivi de cible
US4810088A (en) Laser rangefinder and thermal imager with enhanced scanning mirror control
US20210239801A1 (en) Laser-ranging device and mobile apparatus
JP6341500B2 (ja) レーザレーダ装置
CN111880194A (zh) 非视域成像装置及方法
CN113296079B (zh) 一种远距离光电探测系统
WO2021016801A1 (fr) Système optique de réception, module de réception de lumière laser, radar laser et procédé de réglage de lumière
JP2016109517A (ja) レーザレーダ装置
JP2024503270A (ja) 追跡レーザー測距システムおよび方法
JP6344845B2 (ja) レーザ測距装置
CN208765704U (zh) 单激光测距装置
CN114296072B (zh) 一种反无人机多光谱探测跟踪方法
CN208765707U (zh) 双激光测距装置
JP2000193748A (ja) 大測定範囲用のレ―ザ―距離測定器
RU2335728C1 (ru) Оптико-электронная система поиска и сопровождения цели
CN103615934B (zh) 反狙击手探测系统
WO2021184398A1 (fr) Dispositif de télémétrie laser
US11619711B2 (en) Scanning system and transmitting and receiving device for a scanning system
CN110568420B (zh) 一种激光雷达收发对准装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854376

Country of ref document: EP

Kind code of ref document: A1