WO2018058890A1 - 定位方法和装置 - Google Patents

定位方法和装置 Download PDF

Info

Publication number
WO2018058890A1
WO2018058890A1 PCT/CN2017/074443 CN2017074443W WO2018058890A1 WO 2018058890 A1 WO2018058890 A1 WO 2018058890A1 CN 2017074443 W CN2017074443 W CN 2017074443W WO 2018058890 A1 WO2018058890 A1 WO 2018058890A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
current location
electronic map
stratum
location
Prior art date
Application number
PCT/CN2017/074443
Other languages
English (en)
French (fr)
Inventor
王睿索
晏阳
顾维灏
Original Assignee
北京百度网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京百度网讯科技有限公司 filed Critical 北京百度网讯科技有限公司
Publication of WO2018058890A1 publication Critical patent/WO2018058890A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Definitions

  • the present application relates to the field of data processing technologies, and in particular, to a positioning method and apparatus.
  • High-precision self-positioning of vehicles is the basis for unmanned vehicles to use high-precision maps for planning and driving, and is the main dependent module for autonomous driving.
  • vehicle self-positioning is usually performed in combination with a camera and Light Detection And Ranging (LiDAR) technology.
  • LiDAR Light Detection And Ranging
  • the above self-positioning method is susceptible to weather, light and timeliness, and the self-positioning accuracy needs to be improved.
  • the present application aims to solve at least one of the technical problems in the related art to some extent.
  • Another object of the present application is to propose a positioning device.
  • the positioning method of the first aspect of the present application includes: acquiring formation data of a current location; acquiring electronic map data, where the electronic map data includes geographical location data and formation data corresponding to the geographic location data. And determining geographic location data of the current location according to the stratigraphic data of the current location and the electronic map data.
  • the positioning method proposed by the embodiment of the first aspect of the present invention completes the positioning through the stratum data, because the stratigraphic data is relatively stable and less changed with respect to the ground data, and the collecting method of the stratum data is less susceptible to the weather than the method of collecting the ground data.
  • the effect of light can therefore improve positioning accuracy.
  • the positioning device of the second aspect of the present application includes: a first acquiring module, configured to acquire stratum data of a current location; and a second acquiring module, configured to acquire electronic map data, the electronic map data The geographic location data and the stratum data corresponding to the geographic location data are included; the positioning module is configured to determine geographic location data of the current location according to the stratigraphic data of the current location and the electronic map data.
  • the positioning device proposed by the second embodiment of the present application completes the positioning through the stratum data, because the stratigraphic data is relatively stable and less changed with respect to the ground data, and the collecting method of the stratum data is less susceptible to the weather than the method of collecting the ground data. The effect of light can therefore improve positioning accuracy.
  • An embodiment of the present application further provides an apparatus for positioning, including: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to: acquire stratum data of a current location; acquire an electronic Map data, the electronic map data including geographic location data and geographic location Setting the stratum data corresponding to the data; determining the geographic location data of the current location according to the stratigraphic data of the current location and the electronic map data.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium, when the instructions in the storage medium are executed by a processor of the terminal, enabling the terminal to perform a positioning method, the method comprising: acquiring the current Mapping data of the location; acquiring electronic map data, the electronic map data including geographical location data and formation data corresponding to the geographic location data; determining the geographic location of the current location according to the formation data of the current location and the electronic map data Location data.
  • the embodiment of the present application further provides a computer program product, when the instructions in the computer program product are executed by a processor, performing a positioning method, the method comprising: acquiring formation data of a current location; acquiring electronic map data
  • the electronic map data includes geographical location data and formation data corresponding to the geographic location data; and the geographic location data of the current location is determined according to the formation data of the current location and the electronic map data.
  • FIG. 1 is a schematic flow chart of a positioning method according to an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a positioning method according to another embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for creating an electronic map in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a positioning device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a positioning device according to another embodiment of the present application.
  • FIG. 1 is a schematic flow chart of a positioning method according to an embodiment of the present application.
  • the embodiment includes the following steps:
  • a device for acquiring stratum data in real time such as a ground penetrating radar, can be installed on the vehicle, so that the stratum data of the current location can be acquired in real time.
  • the data that is usually acquired during positioning is data of objects on the ground, such as data of certain markers.
  • Stratigraphic data is data on subsurface media such as rock formations, deposits, and man-made materials located below the ground.
  • ground penetrating radar can be used to obtain stratum data.
  • the ground penetrating radar transmits high-frequency electromagnetic waves to the underground through the transmitting antenna, and receives electromagnetic waves reflected back to the ground through the receiving antenna.
  • the electromagnetic wave propagates in the underground medium, it encounters an interface where there is an electrical difference.
  • the characteristics of the received electromagnetic wave waveform, amplitude intensity and time, the spatial position, structure, shape and burial depth of the underground medium are inferred.
  • S12 Acquire electronic map data, where the electronic map data includes geographical location data and formation data corresponding to the geographic location data.
  • an electronic map may be created in advance to acquire electronic map data in a pre-created electronic map.
  • the electronic map data used in this embodiment further includes the formation data.
  • the geographical location data may specifically refer to Global Positioning System (GPS) data, GPS data such as the latitude and longitude of the feature.
  • GPS Global Positioning System
  • the GPS module can collect GPS data of different locations.
  • the ground penetrating radar can be loaded to collect stratigraphic data at different locations, thereby including GPS data and stratum data in the electronic map data, and according to the same location.
  • the GPS data and the stratum data establish a correspondence between the GPS data and the stratum data.
  • S13 Determine geographic location data of the current location according to the stratum data of the current location and the electronic map data.
  • the geographical location data corresponding to the formation data of the current location may be determined, thereby using the corresponding geographical location data as The location data of the current location, complete the positioning.
  • the positioning is completed by the stratum data, because the stratigraphic data is relatively relative to the ground data.
  • the stability and variation are less, and the collection method of the stratum data is less susceptible to weather and light than the way of collecting the ground data, so the positioning accuracy can be improved.
  • the ground is covered by objects (such as water, ice, snow, dust, stones), thus affecting the accuracy of the collected ground data, thereby reducing the positioning accuracy.
  • the camera and LiDAR are used to collect data in the related art, the visible light is used for acquisition, which is affected by light, such as when the light is dark at night, the data collection is affected, and the positioning accuracy is lowered.
  • the ground penetrating radar is used to collect the stratum data, which is not affected by the ground cover and the light, and the stability of the stratum data is strong, and the time limit can be broken, so that the positioning accuracy and accuracy can be improved.
  • the positioning is performed by the formation data. Since the electronic map data is relatively large, if the stratigraphic data of the current location is matched with all the electronic map data one by one, the amount of calculation will be large. For this reason, coarse positioning can be performed first to determine a small range of data, and then A small range of data is matched to complete the final positioning.
  • FIG. 2 is a schematic flow chart of a positioning method according to another embodiment of the present application. This embodiment takes the self-positioning of the vehicle as an example, and takes the geographical location data as the GPS data as an example.
  • the method in this embodiment includes:
  • the number of corresponding electronic maps can be obtained according to a pre-created electronic map.
  • the electronic map data refers to electronic map data including GPS data and corresponding formation data.
  • a GPS module is installed on a vehicle, and GPS data is collected by the GPS module in real time, so that GPS data of the current location can be acquired.
  • S23 Perform coarse positioning according to the GPS data of the current location and the accuracy of the current location, and determine the area where the current location is located.
  • different regions in the electronic map may have different precisions, and the accuracy of different regions is known after the creation of the electronic map, so the accuracy of the current position can be determined according to the created electronic map.
  • the above-mentioned precision is generally high in the open area, and the accuracy is low in mountainous areas and urban canyon areas.
  • the current location of the vehicle can be determined based on the GPS data of the current location and the corresponding accuracy. For example, if the accuracy of the current position is 100 m, the area within 100 m around the GPS data of the current position is determined as the area where the current position is located.
  • a ground penetrating radar is loaded on a vehicle to detect stratum data in real time, so that stratum data at the current location can be acquired.
  • S25 Match the stratum data of the current location with the stratum data in the electronic map data corresponding to the region where the current location is located, and determine the stratum data matching the stratum data of the current location.
  • the position point corresponding to the GPS data of the current position is O point, and the accuracy of the current position is 100 m, then the electronic map data of the small area within 100 m around the O point is acquired, and then the stratum of the current position is obtained.
  • the data is matched with the stratigraphic data in the acquired electronic map data of the small area, and the stratum data matching the stratum data of the current location is obtained.
  • the rasterization method can be adopted step by step. Specifically, it may include:
  • the area where the current location is located is rasterized with the first precision, and the area is divided into multiple grids;
  • the formation data corresponding to the selected grid reaching the accuracy threshold is determined as the formation data matching the formation data of the current position.
  • the first precision, the second precision, and the accuracy threshold described above may be set according to experience or the like.
  • the precision threshold of the present embodiment can be set to a centimeter level, so that the accuracy of the error is only a centimeter-level precise positioning.
  • the small area determined by the coarse positioning may be divided into a plurality of grids with a radius of 10M, and then the stratum data of the current position and each grid are respectively calculated.
  • Correlation coefficient between the stratigraphic data select a grid with the largest correlation coefficient, and then divide the grid again, for example, divide the grid with a radius of 10M into multiple grids with a radius of 1M.
  • the GPS data corresponding to the matched stratum data can be determined according to the correspondence, and the corresponding GPS data is used as a result of the self-positioning of the vehicle, thereby completing the self-positioning of the vehicle. .
  • the amount of calculation can be reduced by performing coarse layer positioning and then matching the formation data in the region obtained by the coarse positioning. Further, by rasterizing the area and performing grid selection step by step, it is also possible to reduce the amount of calculation and improve the calculation efficiency.
  • the electronic map data is used in the positioning, and the creation process of the electronic map is described below.
  • FIG. 3 is a schematic flowchart diagram of a method for creating an electronic map in the embodiment of the present application.
  • the method in this embodiment includes:
  • S31 Performing multiple traversal on the area where the electronic map is to be drawn, and collecting multi-frame stratum data in a single traversal process.
  • the ground penetrating radar can be loaded on the collecting vehicle to collect multi-frame stratigraphic data, and the specific number of frames is related to the area of the electronic map to be drawn and the area that the ground penetrating radar can detect each time.
  • the ground penetrating radar can determine the relative position of the ground penetrating radar (position with the relative GPS module) and the attitude data (such as the pitch angle) when collecting the stratum data of each frame, and then corresponding to the stratum data according to each frame.
  • the relative position and attitude data of the ground penetrating radar, etc. translate and/or rotate the stratigraphic data of the corresponding frame, and splicing the multi-frame stratum data. It can be understood that the specific translation distance and rotation angle can be similar to the process of splicing multi-frame small images into one overall large image, which will not be described in detail herein.
  • each stratum data may be separately processed, such as filtering and normalization, before splicing to eliminate effects such as time delay, geothermal changes, and other noises.
  • filtering and normalization algorithms are configurable.
  • each layer of stratigraphic data of different traversal processes may be separately fused, for example, the first frame stratigraphic data of the first traversal process and the first stratum stratum data of the second traversal process are merged; or
  • the splicing result obtained by different traversal processes may be fused, for example, the splicing of the multi-frame stratum data in the first traversal process to obtain the spelling of the first traversal process.
  • the result is similar, and the splicing result of the second traversal process can be obtained, and then the splicing result of the first traversal process and the splicing result of the second traversal process are merged.
  • the data of the multiple traversal process may be fused.
  • the fusion of the two stitching results it is possible to first determine the coincident regions in the two stitching results (if both contain the same landmark building), match the coincident regions in different stitching results, and then match the non-coincident regions according to the matching results. Handle accordingly.
  • the mean (or weighted mean) of the stratigraphic data of the same landmark building in different splicing results is used as the final stratigraphic data in the electronic map data, and then the stratigraphic data of the landmark building in each splicing result is calculated.
  • S34 Obtain stratum data of an area of the electronic map to be drawn according to the splicing result and the fusion result.
  • the splicing result of each traversal process is obtained by splicing the multi-frame stratum data collected by each traversal process, and the splicing result of the traversing process is merged again to obtain the stratum data of the area of the electronic map to be drawn.
  • the ground layer data of each frame may be first merged and then merged according to the fusion result to obtain the stratum data of the area of the electronic map to be drawn.
  • S35 Collect geographic location data of an area where the electronic map is to be drawn.
  • the geographical location data is, for example, GPS data, so GPS data of an object (landmark building or road) in an area of the electronic map to be drawn can be acquired by loading the GPS module.
  • S36 Establish a correspondence between the geographical location data and the stratum data of the area of the electronic map to be drawn, to obtain the electronic map data.
  • the correspondence between the GPS data and the stratum data may be determined according to the relative positional relationship between the GPS module and the ground penetrating radar, so that the electronic map data can be established.
  • the correspondence between geographic location data and formation data may be determined according to the relative positional relationship between the GPS module and the ground penetrating radar, so that the electronic map data can be established.
  • the electronic map data including the stratum data can be constructed, thereby providing a basis for the positioning based on the stratum data.
  • FIG. 4 is a schematic structural view of a positioning device according to an embodiment of the present application.
  • the device 40 includes a first acquiring module 401, a second acquiring module 402, and a positioning module 403.
  • the first obtaining module 401 is configured to acquire the stratum data of the current location
  • the second obtaining module 402 is configured to acquire electronic map data, where the electronic map data includes geographical location data and formation data corresponding to the geographic location data;
  • the positioning module 403 is configured to determine geographic location data of the current location according to the formation data of the current location and the electronic map data.
  • the apparatus 40 further includes:
  • the third obtaining module 404 is configured to acquire the geographic location data of the current location and the accuracy of the current location;
  • the determining module 405 is configured to determine an area where the current location is located according to the geographic location data of the current location and the accuracy of the current location.
  • the positioning module 403 includes:
  • the matching sub-module 4031 is configured to match the stratigraphic data of the current location with the stratigraphic data in the electronic map data corresponding to the region where the current location is located, and determine the stratigraphic data that matches the stratum data of the current location;
  • the determining submodule 4032 is configured to determine, in the electronic map data, the geographic location data corresponding to the matched formation data as the geographic location data of the current location.
  • the matching submodule 431 is specifically configured to:
  • the area where the current location is located is rasterized with the first precision, and the area is divided into multiple grids;
  • the formation data corresponding to the selected grid reaching the accuracy threshold is determined as the formation data matching the formation data of the current position.
  • the apparatus 40 further includes:
  • the first collection module 406 is configured to perform multiple traversal on the area to be drawn the electronic map, and collect the multi-frame formation data in a single traversal process;
  • a splicing module 407 configured to splicing multi-frame stratum data collected during a single traversal process
  • the merging module 408 is configured to fuse the splicing result of the traversal process to obtain the stratum data of the area of the electronic map to be drawn;
  • the fourth obtaining module 409 is configured to obtain the stratum data of the area of the electronic map to be drawn according to the splicing result and the merging result;
  • a second collection module 410 configured to collect geographic location data of an area of the electronic map to be drawn
  • the establishing module 411 is configured to establish a correspondence between the geographical location data and the stratum data of the area of the electronic map to be drawn, to obtain the electronic map data.
  • the accuracy threshold is: centimeter-level accuracy.
  • the formation data of the current location is acquired by a ground penetrating radar that is loaded by itself.
  • the positioning is completed by the stratum data, because the stratigraphic data is relatively stable and less changed with respect to the ground data, and the collecting method of the stratum data is less susceptible to the influence of weather and light, and thus can be improved. positioning accuracy.
  • An embodiment of the present application further provides an apparatus for positioning, including: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to: acquire stratum data of a current location; acquire an electronic Map data, the electronic map data includes geographical location data and formation data corresponding to the geographic location data; and the formation data according to the current location and the electronic map data, Determine the geographic location data for the current location.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium, when the instructions in the storage medium are executed by a processor of the terminal, enabling the terminal to perform a positioning method, the method comprising: acquiring the current Mapping data of the location; acquiring electronic map data, the electronic map data including geographical location data and formation data corresponding to the geographic location data; determining the geographic location of the current location according to the formation data of the current location and the electronic map data Location data.
  • the embodiment of the present application further provides a computer program product, when the instructions in the computer program product are executed by a processor, performing a positioning method, the method comprising: acquiring formation data of a current location; acquiring electronic map data
  • the electronic map data includes geographical location data and formation data corresponding to the geographic location data; and the geographic location data of the current location is determined according to the formation data of the current location and the electronic map data.
  • Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a particular logical function or process. And the scope of preferred embodiments of the application includes additional implementations, The functions may be performed in a substantially simultaneous manner or in a reverse order, depending on the order in which they are illustrated, or in the reverse order, which should be understood by those skilled in the art to which the embodiments of the present application.
  • portions of the application can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本申请提出一种定位方法和装置,该定位方法包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。该方法能够提高定位精度。

Description

定位方法和装置
相关申请的交叉引用
本申请要求北京百度网讯科技有限公司于2016年9月29日提交的、发明名称为“定位方法和装置”的、中国专利申请号“201610867251.9”的优先权。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种定位方法和装置。
背景技术
车辆的高精度自定位是无人车运用高精度地图进行规划和行驶的基础,是自动驾驶的主要依赖模块。相关技术中,通常结合相机和光探测与测量(Light Detection And Ranging,LiDAR)技术进行车辆自定位。但是,上述自定位方法易受天气、光线和时效性制约,自定位精度有待提高。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种定位方法,该方法能够提高定位精度。
本申请的另一个目的在于提出一种定位装置。
为达到上述目的,本申请第一方面实施例提出的定位方法,包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请第一方面实施例提出的定位方法,通过地层数据完成定位,由于地层数据相对于地面数据较为稳定、变化较少,并且地层数据的采集方式相对于采集地面数据的方式,不易受到天气、光线的影响,因此可以提高定位精度。
为达到上述目的,本申请第二方面实施例提出的定位装置,包括:第一获取模块,用于获取当前位置的地层数据;第二获取模块,用于获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;定位模块,用于根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请第二方面实施例提出的定位装置,通过地层数据完成定位,由于地层数据相对于地面数据较为稳定、变化较少,并且地层数据的采集方式相对于采集地面数据的方式,不易受到天气、光线的影响,因此可以提高定位精度。
本申请实施例还提出了一种用于定位的装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位 置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请实施例还提出了一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行一种定位方法,所述方法包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请实施例还提出了一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种定位方法,所述方法包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例提出的定位方法的流程示意图;
图2是本申请另一个实施例提出的定位方法的流程示意图;
图3是本申请实施例中创建电子地图的方法的流程示意图;
图4是本申请一个实施例提出的定位装置的结构示意图;
图5是本申请另一个实施例提出的定位装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。相反,本申请的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本申请一个实施例提出的定位方法的流程示意图。
如图1所示,本实施例包括以下步骤:
S11:获取当前位置的地层数据。
以车辆进行自定位为例,可以在车辆上安装用于实时获取地层数据的设备,如探地雷达,从而可以实时获取到当前位置的地层数据。
通常定位时获取的数据是地面上物体的数据,比如某些标志物的数据。
本实施例中,需要获取地层数据。地层数据是位于地面下的岩层、堆积物及人造材料等地下介质的相关数据。具体可以采用探地雷达获取到地层数据。探地雷达是通过发射天线向地下发射高频电磁波,通过接收天线接收反射回地面的电磁波,电磁波在地下介质中传播时遇到存在电性差异的分界面时发生反 射,根据接收到的电磁波的波形、振幅强度和时间的变化等特征推断地下介质的空间位置、结构、形态和埋藏深度等。
S12:获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据。
其中,可以预先创建电子地图,从而在预先创建的电子地图中获取电子地图数据。与通常的仅包括地理位置数据的电子地图数据不同的是,本实施例采用的电子地图数据还包括地层数据。
地理位置数据可以具体是指全球定位系统(Global Positioning System,GPS)数据,GPS数据如地物的经纬度。在创建电子地图时,可以由GPS模块采集不同位置的GPS数据,另外,还可以装载探地雷达采集不同位置的地层数据,从而在电子地图数据中包括GPS数据和地层数据,另外,根据同一位置的GPS数据和地层数据建立GPS数据与地层数据之间的对应关系。
S13:根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
由于电子地图数据包括的地理位置数据与地层数据存在对应关系,因此根据该对应关系以及当前位置的地层数据,可以确定与当前位置的地层数据对应的地理位置数据,从而将对应的地理位置数据作为当前位置的地理位置数据,完成定位。
本实施例中,通过地层数据完成定位,由于地层数据相对于地面数据较为 稳定、变化较少,并且地层数据的采集方式相对于采集地面数据的方式,不易受到天气、光线的影响,因此可以提高定位精度。具体而言,相关技术中采集地面数据时,在特殊天气情况下,地面会被物体(如水、冰雪、灰尘、石子)覆盖,因此会影响采集的地面数据的准确性,从而降低定位精度。另外,相关技术中利用相机和LiDAR采集数据时,是采用可见光进行采集,这会受到光线影响,比如夜晚光线暗时会影响数据采集,降低定位精度。另外,由于地面物体更新较快,电子地图数据会受到时效性限定,在地面物体改变而电子地图未改变时就会造成定位不准。而本实施例采用探地雷达采集地层数据,不会受到地面覆盖物和光线影响,并且地层数据稳定性很强,也可以突破时效性限定,因此可以提高定位准确度及精度。
如上一实施例所示,是通过地层数据进行定位。由于电子地图数据比较庞大,如果将当前位置的地层数据与全部电子地图数据进行一一匹配,则运算量会很大,为此,可以先进行粗定位,确定一个小范围的数据,再对该小范围的数据进行匹配,完成最终定位。
图2是本申请另一个实施例提出的定位方法的流程示意图。本实施例以车辆的自定位为例,且以地理位置数据为GPS数据为例。
如图2所示,本实施例的方法包括:
S21:获取电子地图数据。
与上一实施例类似,可以根据预先创建的电子地图获取相应的电子地图数 据,该电子地图数据是指包括GPS数据和对应的地层数据的电子地图数据。
S22:获取当前位置的GPS数据。
例如,在车辆上安装GPS模块,由GPS模块实时进行GPS数据采集,因此可以获取当前位置的GPS数据。
S23:根据当前位置的GPS数据和当前位置的精度进行粗定位,确定当前位置所在区域。
其中,在电子地图中不同区域可以具有不同的精度,不同区域的精度在创建电子地图后是已知的,因此根据创建的电子地图可以确定当前位置的精度。上述的精度通常来讲开阔地区精度较高,山区、城市峡谷区域,精度较低。
在得到当前位置的GPS数据和精度后,可以根据当前位置的GPS数据和相应的精度,可以确定车辆当前所在区域。例如,当前位置的精度是100m,则将当前位置的GPS数据周围的100m范围内的区域确定为当前位置所在区域。
S24:获取当前位置的地层数据。
例如,在车辆上装载探地雷达,实时检测地层数据,因此可以获取到当前位置的地层数据。
S25:将当前位置的地层数据与当前位置所在区域对应的电子地图数据中的地层数据进行匹配,确定与当前位置的地层数据匹配的地层数据。
比如,当前位置的GPS数据对应的位置点为O点,当前位置的精度是100m,则获取O点周围100m范围内的小区域的电子地图数据,再将当前位置的地层 数据与获取的小区域的电子地图数据中的地层数据进行匹配,得到与当前位置的地层数据匹配的地层数据。
在地层数据匹配时,可以采用逐级进行栅格化的方式。具体可以包括:
将当前位置所在区域采用第一精度进行栅格化,将所述区域划分为多个栅格;
在所述多个栅格中选择一个对应的地层数据与当前位置的地层数据相关度最高的栅格;
对选择的栅格采用第二精度再次进行栅格化以及根据相关度选择栅格,直至采用的精度达到精度阈值;
将选择的达到精度阈值的栅格对应的地层数据确定为与当前位置的地层数据匹配的地层数据。
上述的第一精度、第二精度和精度阈值都可以根据经验等设置。为了提高定位精度,本实施例的精度阈值可以设置为厘米级,从而完成误差仅为厘米级的精确定位。
假设第一精度是10M,第二精度是1M,则可以先对粗定位确定出的小区域以10M为半径的划分为多个栅格,再分别计算当前位置的地层数据与每个栅格中的地层数据之间的相关性系数,选择相关性系数最大的一个栅格,再对该栅格进行再次划分,比如将10M为半径的栅格再次划分为多个以1M为半径的栅格,再重新计算当前位置的地层数据与每个1M为半径的栅格中的地层数据 之间的相关性系数,以此类推,直至栅格的精度满足要求,比如得到半径为厘米级的栅格,再在厘米级精度的栅格中根据相关度选择一个栅格,将选择的厘米级精度的栅格对应的地层数据作为与当前位置的地层数据匹配的地层数据。
可以理解的是,上述以计算相关性系数为例,还可以采用其他算法计算地层数据间的相关度,比如最小二乘等算法。
S26:在电子地图数据中,将与所述匹配的地层数据对应的GPS数据,确定为当前位置的GPS数据,完成车辆自定位。
由于电子地图数据中的地层数据与GPS数据存在对应关系,因此根据该对应关系可以确定与匹配的地层数据对应的GPS数据,将该对应的GPS数据作为车辆自定位的结果,从而完成车辆自定位。
本实施例中,通过先粗定位再在粗定位得到的区域中进行地层数据匹配,可以减小运算量。进一步的,通过对区域进行栅格化以及逐级进行栅格选择,也可以降低运算量提高运算效率。
如上述实施例描述的,在定位时会采用到电子地图数据,下面对电子地图的创建过程进行描述。
图3是本申请实施例中创建电子地图的方法的流程示意图。
如图3所示,本实施例的方法包括:
S31:对待绘制电子地图的区域进行多次遍历,并在单次遍历过程中采集多帧地层数据。
以道路绘制为例,假设到绘制A点到B点的道路,则可以对A点到B点之间的区域进行多次遍历(具体次数可以设置),并在每次遍历过程中采集多帧地层数据。具体的,可以在采集车上装载探地雷达,以采集到多帧地层数据,具体帧数与待绘制电子地图的区域及探地雷达每次能够检测到的区域有关。
S32:对单次遍历过程中采集的多帧地层数据进行拼接。
其中,探地雷达在采集地层数据时,可以确定采集每帧地层数据时探地雷达的相对位置(与相对GPS模块的位置)、姿态数据(如俯仰角)等,之后根据每帧地层数据对应的探地雷达的相对位置和姿态数据等对相应帧的地层数据进行平移和/或旋转等,对多帧地层数据进行拼接。可以理解的是,具体的平移距离和旋转角度可以类似将多帧小图像拼接为一张整体大图像的流程,在此不再详述。
进一步的,在拼接之前还可以分别对每帧地层数据进行处理,如滤波和归一化处理,以消除时间延迟、地热变化以及其他噪声等影响。具体的滤波和归一化算法是可设置的。
S33:对多次遍历过程的多帧地层数据进行融合。
其中,在融合时可以是对不同遍历过程的每帧地层数据分别进行融合,比如对第一次遍历过程的第一帧地层数据与第二次遍历过程中的第一帧地层数据进行融合;或者,在融合时也可以是对不同遍历过程得到的拼接结果进行融合,比如在第一次遍历过程中对多帧地层数据进行拼接后得到第一次遍历过程的拼 接结果,类似的可以得到第二次遍历过程的拼接结果,之后对第一次遍历过程的拼接结果和第二次遍历过程的拼接结果进行融合。
由于在单次遍历过程中采集的数据可能存在误差,为了提高电子地图的准确度,可以对多次遍历过程的数据进行融合。以两次拼接结果的融合为例,可以先确定两次拼接结果中的重合区域(如均包含同一个地标建筑),对不同拼接结果中的重合区域进行匹配,再根据匹配结果对不重合区域进行相应处理。比如,将不同拼接结果中同一个地标建筑的地层数据的均值(或加权均值)作为匹配后的在电子地图数据中最终采用的地层数据,再计算每个拼接结果中的该地标建筑的地层数据与该最终采用的地层数据之间的差值,对于其余区域在拼接结果中相应加上或减去该差值。当然可以理解的是,上述的融合算法仅是简化说明,在实际实施时具体融合算法可以更复杂,是可设置的。
S34:根据拼接结果和融合结果得到待绘制电子地图的区域的地层数据。
比如,分别对每次遍历过程采集的多帧地层数据进行拼接后得到每次遍历过程的拼接结果,再次多次遍历过程的拼接结果进行融合后得到待绘制电子地图的区域的地层数据。或者,也可以先对应每帧地层数据先进行融合再根据融合结果进行拼接得到待绘制电子地图的区域的地层数据。
S35:采集待绘制电子地图的区域的地理位置数据。
地理位置数据例如为GPS数据,因此可以通过装载GPS模块采集到待绘制电子地图的区域中的物体(地标建筑或道路)的GPS数据。
S36:建立所述地理位置数据与所述待绘制电子地图的区域的地层数据之间的对应关系,得到所述电子地图数据。
在获取到待绘制电子地图的区域的GPS数据和地层数据后,可以根据GPS模块和探地雷达之间的相对位置关系,确定GPS数据与地层数据之间的对应关系,从而可以建立电子地图数据中地理位置数据与地层数据之间的对应关系。
本实施例中,通过构建电子地图时采集地层数据,从而可以构建出包含地层数据的电子地图数据,从而可以为基于地层数据的定位提供基础。
图4是本申请一个实施例提出的定位装置的结构示意图。
如图4所示,该装置40包括:第一获取模块401、第二获取模块402和定位模块403。
第一获取模块401,用于获取当前位置的地层数据;
第二获取模块402,用于获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;
定位模块403,用于根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
一些实施例中,参见图5,该装置40还包括:
第三获取模块404,用于获取当前位置的地理位置数据和当前位置的精度;
确定模块405,用于根据所述当前位置的地理位置数据和当前位置的精度,确定当前位置所在区域。
一些实施例中,参见图5,所述定位模块403包括:
匹配子模块4031,用于将所述当前位置的地层数据与所述当前位置所在区域对应的电子地图数据中的地层数据进行匹配,确定与当前位置的地层数据匹配的地层数据;
确定子模块4032,用于在电子地图数据中,将与所述匹配的地层数据对应的地理位置数据,确定为当前位置的地理位置数据。
一些实施例中,所述匹配子模块431具体用于:
将当前位置所在区域采用第一精度进行栅格化,将所述区域划分为多个栅格;
在所述多个栅格中选择一个对应的地层数据与当前位置的地层数据相关度最高的栅格;
对选择的栅格采用第二精度再次进行栅格化以及根据相关度选择栅格,直至采用的精度达到精度阈值;
将选择的达到精度阈值的栅格对应的地层数据确定为与当前位置的地层数据匹配的地层数据。
一些实施例中,参见图5,该装置40还包括:
第一采集模块406,用于对待绘制电子地图的区域进行多次遍历,并在单次遍历过程中采集多帧地层数据;
拼接模块407,用于对单次遍历过程中采集的多帧地层数据进行拼接;
融合模块408,用于对多次遍历过程的拼接结果进行融合,得到待绘制电子地图的区域的地层数据;
第四获取模块409,用于根据拼接结果和融合结果得到待绘制电子地图的区域的地层数据;
第二采集模块410,用于采集待绘制电子地图的区域的地理位置数据;
建立模块411,用于建立所述地理位置数据与所述待绘制电子地图的区域的地层数据之间的对应关系,得到所述电子地图数据。
一些实施例中,所述精度阈值为:厘米级精度。
一些实施例中,所述当前位置的地层数据是通过自身装载的探地雷达采集的。
可以理解的是,本实施例的装置与上述方法实施例对应,具体内容可以参见方法实施例的相关描述,在此不再详细说明。
本实施例中,通过地层数据完成定位,由于地层数据相对于地面数据较为稳定、变化较少,并且地层数据的采集方式相对于采集地面数据的方式,不易受到天气、光线的影响,因此可以提高定位精度。
本申请实施例还提出了一种用于定位的装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据, 确定当前位置的地理位置数据。
本申请实施例还提出了一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行一种定位方法,所述方法包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
本申请实施例还提出了一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种定位方法,所述方法包括:获取当前位置的地层数据;获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其 中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种定位方法,其特征在于,包括:
    获取当前位置的地层数据;
    获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;
    根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    获取当前位置的地理位置数据和当前位置的精度;
    根据所述当前位置的地理位置数据和当前位置的精度,确定当前位置所在区域。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据,包括:
    将所述当前位置的地层数据与所述当前位置所在区域对应的电子地图数据中的地层数据进行匹配,确定与当前位置的地层数据匹配的地层数据;
    在电子地图数据中,将与所述匹配的地层数据对应的地理位置数据,确定为当前位置的地理位置数据。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述当前位置的地层 数据与所述当前位置所在区域对应的电子地图数据中的地层数据进行匹配,确定与当前位置的地层数据匹配的地层数据,包括:
    将当前位置所在区域采用第一精度进行栅格化,将所述区域划分为多个栅格;
    在所述多个栅格中选择一个对应的地层数据与当前位置的地层数据相关度最高的栅格;
    对选择的栅格采用第二精度再次进行栅格化以及根据相关度选择栅格,直至采用的精度达到精度阈值;
    将选择的达到精度阈值的栅格对应的地层数据确定为与当前位置的地层数据匹配的地层数据。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    对待绘制电子地图的区域进行多次遍历,并在单次遍历过程中采集多帧地层数据;
    对单次遍历过程中采集的多帧地层数据进行拼接;
    对多次遍历过程的多帧地层数据进行融合;
    根据拼接结果和融合结果得到待绘制电子地图的区域的地层数据;
    采集待绘制电子地图的区域的地理位置数据;
    建立所述地理位置数据与所述待绘制电子地图的区域的地层数据之间的对应关系,得到所述电子地图数据。
  6. 根据权利要求4-5任一项所述的方法,其特征在于,所述精度阈值为:厘米级精度。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述当前位置的地层数据是通过自身装载的探地雷达采集的。
  8. 一种定位装置,其特征在于,包括:
    第一获取模块,用于获取当前位置的地层数据;
    第二获取模块,用于获取电子地图数据,所述电子地图数据中包括地理位置数据及与地理位置数据对应的地层数据;
    定位模块,用于根据所述当前位置的地层数据和所述电子地图数据,确定当前位置的地理位置数据。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    第三获取模块,用于获取当前位置的地理位置数据和当前位置的精度;
    确定模块,用于根据所述当前位置的地理位置数据和当前位置的精度,确定当前位置所在区域。
  10. 根据权利要求9所述的装置,其特征在于,所述定位模块包括:
    匹配子模块,用于将所述当前位置的地层数据与所述当前位置所在区域对应的电子地图数据中的地层数据进行匹配,确定与当前位置的地层数据匹配的地层数据;
    确定子模块,用于在电子地图数据中,将与所述匹配的地层数据对应的地 理位置数据,确定为当前位置的地理位置数据。
  11. 根据权利要求10所述的装置,其特征在于,所述匹配子模块具体用于:
    将当前位置所在区域采用第一精度进行栅格化,将所述区域划分为多个栅格;
    在所述多个栅格中选择一个对应的地层数据与当前位置的地层数据相关度最高的栅格;
    对选择的栅格采用第二精度再次进行栅格化以及根据相关度选择栅格,直至采用的精度达到精度阈值;
    将选择的达到精度阈值的栅格对应的地层数据确定为与当前位置的地层数据匹配的地层数据。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,还包括:
    第一采集模块,用于对待绘制电子地图的区域进行多次遍历,并在单次遍历过程中采集多帧地层数据;
    拼接模块,用于对单次遍历过程中采集的多帧地层数据进行拼接;
    融合模块,用于对对多次遍历过程的多帧地层数据进行融合;
    第四获取模块,用于根据拼接结果和融合结果得到待绘制电子地图的区域的地层数据;
    第二采集模块,用于采集待绘制电子地图的区域的地理位置数据;
    建立模块,用于建立所述地理位置数据与所述待绘制电子地图的区域的地 层数据之间的对应关系,得到所述电子地图数据。
  13. 一种用于定位的装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行如权利要求1-7任一项所述的方法。
  14. 一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行如权利要求1-7任一项所述的方法。
  15. 一种计算机程序产品,其特征在于,当所述计算机程序产品中的指令由处理器执行时,执行如权利要求1-7任一项所述的方法。
PCT/CN2017/074443 2016-09-29 2017-02-22 定位方法和装置 WO2018058890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610867251.9 2016-09-29
CN201610867251.9A CN106446200A (zh) 2016-09-29 2016-09-29 定位方法和装置

Publications (1)

Publication Number Publication Date
WO2018058890A1 true WO2018058890A1 (zh) 2018-04-05

Family

ID=58172449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074443 WO2018058890A1 (zh) 2016-09-29 2017-02-22 定位方法和装置

Country Status (2)

Country Link
CN (1) CN106446200A (zh)
WO (1) WO2018058890A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270925B (zh) * 2017-07-17 2023-04-07 百度在线网络技术(北京)有限公司 人车交互方法、装置、设备及存储介质
CN107945446B (zh) * 2017-11-20 2020-03-03 北京中科锐景科技有限公司 基于多源卫星的监测对森林热点进行识别的方法及设备
CN109186618B (zh) * 2018-08-31 2022-11-29 平安科技(深圳)有限公司 地图构建方法、装置、计算机设备及存储介质
CN113406622A (zh) * 2021-06-22 2021-09-17 中国科学院空天信息创新研究院 移动载具及其定位系统、方法、控制装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520522A (zh) * 2001-03-14 2004-08-11 威顿技术公司 将位置信息与测量信息融合和进行滤波获得相对地球坐标精确定位的高质量图像的方法
US20090109081A1 (en) * 2007-10-30 2009-04-30 Ryerson Kenneth J Positioning correction system and method for single and multi-channel ground penetrating radar
CN104501803A (zh) * 2015-01-14 2015-04-08 中国电建集团昆明勘测设计研究院有限公司 基于Andriod的便携式智能设备地质导航与地质测绘方法
CN104684785A (zh) * 2012-09-27 2015-06-03 西门子公司 用于定位轨道车辆的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065856A1 (en) * 2012-10-25 2014-05-01 Massachusetts Institute Of Technology Vehicle localization using surface penetrating radar
CN102944224B (zh) * 2012-11-09 2014-08-27 大连理工大学 一种无人驾驶车的自动环境感知系统的工作方法
CN105953805B (zh) * 2016-04-29 2019-10-15 百度在线网络技术(北京)有限公司 地图验证方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520522A (zh) * 2001-03-14 2004-08-11 威顿技术公司 将位置信息与测量信息融合和进行滤波获得相对地球坐标精确定位的高质量图像的方法
US20090109081A1 (en) * 2007-10-30 2009-04-30 Ryerson Kenneth J Positioning correction system and method for single and multi-channel ground penetrating radar
CN104684785A (zh) * 2012-09-27 2015-06-03 西门子公司 用于定位轨道车辆的方法
CN104501803A (zh) * 2015-01-14 2015-04-08 中国电建集团昆明勘测设计研究院有限公司 基于Andriod的便携式智能设备地质导航与地质测绘方法

Also Published As

Publication number Publication date
CN106446200A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US11237004B2 (en) Log trajectory estimation for globally consistent maps
US11435194B2 (en) Scaffolds for globally consistent maps
EP3579188B1 (en) Method, apparatus, device and computer readable storage medium for reconstructing three-dimensional scene
CN107544095B (zh) 一种地面三维激光点云与探地雷达图像融合的方法
US10534091B2 (en) Method and apparatus for generating road surface, method and apparatus for processing point cloud data, computer program, and computer readable recording medium
WO2018058890A1 (zh) 定位方法和装置
TWI431308B (zh) 用於在電子設備中提供針對點位置之增強型資料庫的方法及物品
JP2010534849A (ja) 位置を判定する方法及び装置
WO2020041668A1 (en) Signals of opportunity aided inertial navigation
US11543080B2 (en) Automated pipeline construction modelling
WO2013175022A1 (fr) Systèmes et procédés de topographie et de reconstruction tridimensionnelle à partir d'un nuage de points et supports de stockage informatique pour ces systèmes et procédés
CN113450455A (zh) 用于生成停车场的道路链路的地图的方法、设备和计算机程序产品
EP4136406A1 (en) Vehicle localization system and method
WO2021202785A1 (en) Mapping pipeline optimization using aggregated overhead view reconstruction
JP4255777B2 (ja) 電波伝搬シミュレーション装置、及び電波伝搬シミュレーション方法
Li et al. New methodologies for precise building boundary extraction from LiDAR data and high resolution image
KR102543871B1 (ko) 도로정보 변화 영역 보완 방법 및 시스템
CN108305322B (zh) 一种基于无人机的岩溶区地质缺陷体检测方法
KR102255924B1 (ko) 레인을 검출하는 차량 및 방법
JP6773473B2 (ja) 測量情報管理装置および測量情報管理方法
KR20210032694A (ko) 이미지 기반의 무선 측위 방법 및 장치
Gézero et al. A registration method of point clouds collected by mobile LIDAR using solely standard LAS files information
Lalak et al. The analysis of the accuracy of digital terrain model (Dtm) obtained from high resolution geoeye-1 satellite imagery
Awang Salleh et al. Swift Path Planning: Vehicle Localization by Visual Odometry Trajectory Tracking and Mapping
Gu et al. Correction of vehicle positioning error using 3D-map-GNSS and vision-based road marking detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854350

Country of ref document: EP

Kind code of ref document: A1