WO2018058670A1 - 传输控制信道的方法、网络设备和终端设备 - Google Patents

传输控制信道的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018058670A1
WO2018058670A1 PCT/CN2016/101362 CN2016101362W WO2018058670A1 WO 2018058670 A1 WO2018058670 A1 WO 2018058670A1 CN 2016101362 W CN2016101362 W CN 2016101362W WO 2018058670 A1 WO2018058670 A1 WO 2018058670A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
transmission unit
transmission
terminal device
data channel
Prior art date
Application number
PCT/CN2016/101362
Other languages
English (en)
French (fr)
Inventor
吴作敏
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/101362 priority Critical patent/WO2018058670A1/zh
Priority to BR112019006412A priority patent/BR112019006412A2/pt
Priority to EP16917420.8A priority patent/EP3515024B1/en
Priority to CN201680089702.9A priority patent/CN109792413B/zh
Priority to JP2019517850A priority patent/JP2019534630A/ja
Publication of WO2018058670A1 publication Critical patent/WO2018058670A1/zh
Priority to US16/370,563 priority patent/US10680867B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of transmitting a control channel, a network device, and a terminal device.
  • the selection of Shared Data Channels is based on a scheduling/granting mechanism, and is completely affected by a base station (Base Station, referred to as "BS") control.
  • the network device sends a control channel for scheduling the data channel to the terminal device, and the control channel can be divided into two types, one is a downlink grant (DL Grant), and the network device sends a downlink Grant to the terminal device.
  • DL Grant downlink grant
  • UL Grant uplink grant
  • the Grant notifies the terminal device of the uplink transmission resource allocated to the terminal device, and the terminal device performs uplink data transmission on the permitted uplink transmission resource accordingly.
  • the network device When the network device sends the control channel, it needs to map the control channel to the Control Channel Element (CCE). However, the network device performs random mapping when mapping the control channel, which causes the terminal device to need to perform blind detection multiple times to acquire the control channel, and the complexity of the terminal device blind detection CCE is high.
  • CCE Control Channel Element
  • the present application provides a method for transmitting a control channel, a network device, and a terminal device, which can reduce the number of blind detections of the terminal device and reduce the blind detection complexity of the terminal device.
  • a method for transmitting a control channel comprising: mapping a first control channel to M consecutive numbered first transmission units, the first control channel for scheduling a data channel, and a transmission unit As the smallest unit for transmitting the control channel, M ⁇ 1; transmitting the first control channel to the terminal device.
  • mapping the control channel to the M consecutive number transmission units can reduce the number of blind detections of the terminal device and reduce the blind detection complexity of the terminal device.
  • the mapping the first control channel to the M consecutive numbered first transmission units comprises: mapping the first control channel to the M consecutive numbered first transmission units The upper order is to first map the transmission unit with the largest number among the M first transmission units.
  • the network device when mapping the first control channel, the network device first maps the transmission unit with the largest number.
  • the terminal device When the terminal device is blindly detected, only the transmission unit with the largest mapping number of the control channel may be correctly demodulated, so that it can be determined.
  • the transmission unit with the largest number for transmitting the control channel can improve the probability that the terminal device correctly recognizes the occupied transmission unit.
  • the mapping the first control channel to the M consecutive numbered first transmission units comprises: mapping the first control channel to M consecutive numbers The order on the first transmission unit is mapped in order of number from largest to smallest.
  • mapping according to the number from large to small can not only determine the transmission unit with the largest number for transmitting the control channel, but also improve the efficiency of the network device mapping control channel.
  • the mapping the first control channel to the M consecutive numbered first transmission units comprises: mapping the first control channel to M consecutive numbers The order on the first transmission unit is mapped in a number interleaved manner.
  • the probability that the terminal device correctly recognizes the occupied transmission unit can be improved.
  • each of the M first transmission units includes a T group resource unit RE, where the first control channel is mapped on the M first transmission units, including
  • the network device first occupies the i-th group RE of each of the M first transmission units, and then occupies the i+1th group of each first transmission unit.
  • RE where T ⁇ 2, i takes values from 1 to T.
  • the network device is mapped in such a manner that the manner in which one control channel is mapped to one or more transmission units corresponding to different aggregation levels is different, so that the terminal device can determine the transmission control through blind detection.
  • the transmission unit of the channel may include different coded modulation symbols in one transmission unit to obtain a diversity gain.
  • the data channel is a downlink data channel, where the M number consecutive first transmission units are numbered at a maximum, and the resources corresponding to the data channel include at least one second transmission. a unit, each of the at least one second transmission unit corresponding to a number greater than k.
  • the terminal device can determine the transmission unit with the largest number for transmitting the control channel by blind detection, and determine that the transmission unit whose number is less than or equal to the maximum number is used to transmit the control channel, so as to avoid data rate matching error. Further, the at least one second transmission unit with the number greater than k can be used to transmit the downlink data channel, which can improve resource utilization.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least one transmission unit with a number less than k and does not include the first transmission unit with the number k.
  • the PRB occupied by the resource corresponding to the data channel does not include the first transmission unit numbered k, or the PRB occupied by the resource corresponding to the data channel and the first transmission unit numbered k There is no overlap on the domain.
  • the control channel of the terminal device is carried in a PRB different from the data channel of the terminal device.
  • the flexibility of scheduling is enhanced.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is first.
  • the transmission unit has different positions on at least two of the N PRBs.
  • a first transmission unit is located on multiple PRBs, so that the terminal device can perform channel estimation by combining the multiple PRBs when blindly detecting one or more first transmission units, thereby improving channel estimation performance.
  • the method further includes: sending, to the terminal device, a first DMRS, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the M first transmission units are only located on the symbols occupied by the first DMRS, and the control channel design under different sTTI lengths can be unified, which is beneficial to network device scheduling and terminal device blind detection.
  • the terminal device can acquire the first control channel while acquiring the first DMRS, and can improve the efficiency of the terminal device demodulating the first control channel according to the first DMRS.
  • the data channel is a downlink data channel
  • the resource corresponding to the data channel includes at least one third transmission unit
  • the antenna port corresponding to the data channel includes the at least one third An antenna port corresponding to each third transmission unit in the transmission unit.
  • whether the transmission unit is available for data channel transmission (the resource packet corresponding to the data channel) is determined by the relationship between the antenna port corresponding to the transmission unit and the antenna port corresponding to the data channel.
  • the antenna port corresponding to the transmission unit is a subset or a complete set of antenna ports corresponding to the data channel, so that the terminal device can identify which transmission units in the transmission unit included in the resource corresponding to the data channel can be used for data channel transmission, and can reduce Signaling indicates overhead.
  • the method before the sending the first control channel to the terminal device, the method further includes: sending, to the terminal device, a second control channel, and a second DMRS of the second control channel, wherein the first control channel and the second control channel use the same antenna port and precoding, so that the terminal device is configured according to the second DMRS and the first DMRS Demodulating the first control channel.
  • the network device uses the same antenna port and precoding to send the first control channel and the second control channel at the same time and their corresponding first DMRS and second DMRS to the same terminal device, so that the terminal can be made.
  • the device combines two DMRSs with different locations on the time domain for channel estimation to improve channel estimation performance.
  • the network device determines that the at least one fourth transmission unit that is included in the resource corresponding to the data channel of the terminal device is used to transmit a third control channel of the second terminal device, where the data channel of the first terminal device corresponds to The antenna port is different from the antenna port corresponding to the third control channel, and the number of transmission layers of the data channel of the first terminal device is 1.
  • a second aspect provides a method for transmitting a control channel, the method comprising: receiving a first control channel sent by a network device, where the first control channel is mapped to M consecutive numbered first transmission units, The first control channel is for scheduling a data channel, wherein the transmission unit is a minimum unit for transmitting a control channel, M ⁇ 1; and the data channel is received or transmitted according to the first control channel.
  • the network device maps the control channel to the M numbered consecutive transmission units, which can reduce the number of blind detections of the terminal device and reduce the blind detection complexity of the terminal device.
  • the mapping of the first control channel to the M consecutive numbered first transmission units is to first map the transmission units with the largest number among the M first transmission units.
  • the mapping manner in which the first control channel is mapped to the M first transmission units is performed in an order of number from largest to smallest.
  • mapping according to the number from large to small can not only improve the probability that the terminal device correctly recognizes the occupied transmission unit, but also improve the probability that the terminal device acquires the first control channel.
  • the mapping manner in which the first control channel is mapped to the M first transmission units is mapped in a manner of number interleaving.
  • the probability that the terminal device correctly recognizes the occupied transmission unit can be improved.
  • the mapping manner of the first control channel is to occupy an ith group RE of each of the M first transmission units, and then occupy each first transmission.
  • the manner in which one control channel is mapped to one or more transmission units corresponding to different aggregation levels is different, and the terminal device can determine the transmission unit for transmitting the control channel by blind detection. Further, different coded modulation symbols may be included in one transmission unit to obtain a diversity gain.
  • the data channel is a downlink data channel, where the M number consecutive first transmission units are numbered at a maximum, and the resources corresponding to the data channel include at least one second transmission. a unit, each of the at least one second transmission unit corresponding to a number greater than k.
  • the terminal device can determine the transmission unit with the largest number for transmitting the control channel by blind detection, and determine that the transmission unit whose number is less than or equal to the maximum number is used to transmit the control channel, so as to avoid data rate matching error.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least one transmission unit with a number less than k and does not include the first transmission unit with the number k.
  • the first transmission unit numbered k is not included in the PRB occupied by the resource corresponding to the data channel.
  • the PRB occupied by the resource corresponding to the data channel and the first transmission unit numbered k have no overlap in the frequency domain.
  • the control channel of the terminal device is carried in a PRB different from the data channel of the terminal device.
  • the flexibility of scheduling is enhanced.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is first.
  • the transmission unit has different positions on at least two of the N PRBs.
  • a first transmission unit is located on multiple PRBs, so that the terminal device can perform channel estimation by combining the multiple PRBs when blindly detecting one or more first transmission units, thereby improving channel estimation performance.
  • the method further includes: receiving a first DMRS sent by the network device, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the M first transmission units are only located on the symbols occupied by the first DMRS, and the control channel design under different sTTI lengths can be unified, which is beneficial to network device scheduling and terminal device blind detection. Further, the acquiring, by the terminal device, the first control channel while acquiring the first DMRS, can improve the efficiency of the terminal device demodulating the first control channel according to the first DMRS.
  • the data channel is a downlink data channel; the resource corresponding to the data channel includes at least one third transmission unit, and the antenna port corresponding to the data channel includes the at least one An antenna port corresponding to each of the third transmission units in the three transmission units.
  • whether the transmission unit is available for data channel transmission is determined by the relationship between the antenna port corresponding to the transmission unit and the antenna port corresponding to the data channel (the antenna port corresponding to the transmission unit included in the resource corresponding to the data channel is the data channel corresponding to the data channel.
  • the subset of the antenna ports or the complete set is such that the antenna port corresponding to the transmission unit included in the resource corresponding to the data channel is a subset or a complete set of the antenna ports corresponding to the data channel, and the terminal device can identify the transmission unit included in the resource corresponding to the data channel. Which of the transmission units can be used for the transmission of the data channel.
  • the method before the receiving the first control channel sent by the network device, the method further includes: receiving, by the network device, a second control channel, and a second DMRS of the second control channel, wherein the first control channel and the second control channel use the same antenna port and precoding; and the first control channel sent by the receiving network device includes: according to the The second DMRS and the first DMRS demodulate the first control channel.
  • the terminal equipment combines two DMRSs with different locations in the time domain for channel estimation, which can improve channel estimation performance.
  • a network device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the network device includes a first party for performing the foregoing A module of a method in any of the possible implementations of the first aspect.
  • a terminal device for performing the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • the terminal device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the network device further includes a bus system, wherein the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, and the processor is configured to execute instructions stored in the memory to control the transceiver to receive or send signals, And when the processor executes the instructions stored in the memory, the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect is performed.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the terminal device further includes a bus system, wherein the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, and the processor is configured to execute instructions stored in the memory to control the transceiver to receive or send signals, And when the processor executes the instructions stored in the memory, the method of causing the processor to perform the second aspect or any of the possible implementations of the second aspect is performed.
  • a computer storage medium having stored therein program code for indicating a method of performing the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing any of the above-described second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic flowchart of a method for transmitting a control channel according to an embodiment of the present invention.
  • FIG. 2 is another schematic flowchart of a method of transmitting a control channel according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an example of control channel resource allocation according to an embodiment of the present invention.
  • FIG. 4a is a schematic diagram of another example of a resource map in accordance with an embodiment of the present invention.
  • 4b is a schematic diagram of still another example of a resource map in accordance with an embodiment of the present invention.
  • 4c is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • FIG. 5a is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • FIG. 5c is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of control channel resource allocation according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an example of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an example of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of another example of a network device according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of another embodiment of a terminal device according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • the F components may reside in a process and/or execution thread, and the components may be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • the component may be localized, for example, according to signals having F data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) And/or remote processes to communicate.
  • F data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • remote processes to communicate.
  • the solution of the embodiment of the present invention can be applied to an existing cellular communication system, such as global mobile communication (English full name can be: Global System for Mobile Communication, English abbreviation can be: GSM), code division multiple access (English full name can be: Code Division Multiple Access, English abbreviation can be: CDMA), wideband code division multiple access (English full name can be: Wideband Code Division Multiple Access, English abbreviation can be: WCDMA), general packet radio service (English full name can be: General Packet Radio Service, English abbreviation can be: GPRS), universal mobile communication (English full name can be: Universal Mobile Telecommunications System, English abbreviation can be: UMTS), long-term evolution (English full name can be: Long Term Evolution, English abbreviation can be: In systems such as LTE), it is especially applied to the 4.5G LTE evolution system and the 5G wireless communication system.
  • the supported communications are primarily for voice and data communications. In general, a traditional base station supports a limited number of connections and is easy to implement.
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • UE User Equipment
  • Agent or user device Agent or user device.
  • the terminal device may be a station (STAION, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local) Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and in future 5G networks Terminal equipment or terminal equipment in a future evolved PLMN network, and the like.
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, or a base station in GSM or Code Division Multiple Access (CDMA).
  • BTS Base Transceiver Station
  • BTS may also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station.
  • the invention is not limited thereto.
  • the uplink symbol is referred to as a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol
  • the downlink symbol is referred to as an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink symbol may also be referred to as an OFDM symbol.
  • the uplink symbol and the downlink symbol are collectively referred to as symbols.
  • the symbols mentioned in the technical solutions of the embodiments of the present invention may also be symbols of other types of communications, which are not limited by the embodiments of the present invention.
  • the present invention describes various embodiments in connection with physical channels.
  • the physical channel is specifically used for the transmission of the data information and/or the control information.
  • the physical channel includes one or a combination of the following: a PUSCH (physical uplink shared channel), and a PDCCH (Physical Downlink Control Channel, Physical downlink control channel), EPDCCH (Enhanced-Physical Downlink Control Channel), MPDCCH (MTC physical downlink control channel), PCFICH (Physical Control Format Indicator Channel) Channels, PHICH (Physical Hybrid ARQ indicator channel), PDSCH (Physical Downlink Shared Channel), etc., or newly introduced functions in the standard, but different names, such as Control channel or data channel introduced in short TTI transmission.
  • Reference signals are used for the physical layer and do not carry data information from higher layers, such as a cell-specific reference signal for downlink (Cell-specific Reference Signal, CRS), used for downlink UE-specific Reference Signal (UE-RS) or Group-specific Reference Signal (GRS) for downlink, for uplink demodulation reference signal (Demodulation Reference Signal, DMRS), Sounding Reference Signal (SRS), etc.
  • CRS Cell-specific Reference Signal
  • UE-RS downlink UE-specific Reference Signal
  • GRS Group-specific Reference Signal
  • DMRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • the downlink DMRS includes an EPDCCH DMRS for EPDCCH demodulation and a PDSCH DMRS for PDSCH demodulation.
  • the terminal device may perform channel estimation according to the DMRS, and then demodulate the corresponding EPDCCH or PDSCH according to the estimated channel value, thereby acquiring the Various data, information or signals carried by the EPDCCH or PDSCH.
  • the time length of one subframe is 1 ms in terms of time dimension, and a Normal Cyclic Prefix (NCP) subframe includes 14 symbols.
  • NCP Normal Cyclic Prefix
  • PRB Physical Resource Block
  • RBG Resource Block Group
  • RE resource element
  • REG Resource-Element Group
  • Short Transmission Time Interval (sTTI) transmission refers to a transmission in which the TTI length is less than 1 subframe or the TTI length is less than 1 ms.
  • the sTTI has a length of one, two, three, four, five, six, seven symbols.
  • the symbols in one subframe are generally divided into an integer number of sTTIs, that is, one symbol length may be included in one subframe, for example, the sTTI length is 7 symbols, and one subframe Including two sTTIs, each sTTI is 7 symbols in length; one subframe may also include a combination of multiple symbol lengths, for example, the sTTI length is 2 symbols, but considering that the PDCCH may occupy 1 to 3 symbols, one The subframe includes 6 sTTIs, and the length is 3 symbols, 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols, or, considering that the PDCCH is usually configured with 2 symbols, the length is 2 Symbol, 2 symbols, 3 symbols, 2 symbols, 2 symbols, 3 symbols, or other combinations. There may be multiple short TTIs of different lengths in the system. For example, the system supports 7-symbol sTTI and 2-symbol sTTI in the same
  • the resources in the embodiments of the present invention may be generally referred to as communication resources.
  • the resource may be a communication resource of two dimensions of time and frequency, that is, the communication resource may include a time domain resource and a frequency domain resource.
  • the resource may also include at least one of a code domain resource and an airspace resource.
  • FIG. 1 is a schematic flowchart of a method for transmitting a control channel according to an embodiment of the present invention.
  • 1 shows the steps or operations of the method 100 of transmitting a control channel, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations of FIG. 1, in addition, each of FIG. The steps may be performed in a different order than that presented in FIG. 1, and it is possible that not all of the operations in FIG. 1 are to be performed.
  • the method 100 of transmitting a control channel can include:
  • the first control channel may transmit at least one of three downlink control information (Downlink Control Information, DCI): scheduling information of downlink data transmission (for receiving downlink data channel), scheduling information of uplink data transmission. (for scheduling the transmission of the uplink data channel), and an uplink power control command (for indicating the uplink power control adjustment).
  • DCI Downlink Control Information
  • FIG. 2 is another schematic flowchart of a method of transmitting a control channel according to an embodiment of the present invention.
  • Figure 2 illustrates the steps or operations of the method 200 of transmitting a control channel, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations of Figure 2, in addition, each of Figure 2 The steps may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • the method 200 of transmitting a control channel can include:
  • the first control channel sent by the network device is received, where the first control channel is mapped to the M consecutive numbered first transmission units, where the first control channel is used to schedule a data channel, where the transmission unit is used. For the smallest unit of the transmission control channel, M ⁇ 1;
  • S220 Receive or transmit the data channel according to the first control channel.
  • the network device may determine resources for transmitting the first control channel, that is, the M first transmission units are configured to transmit the first control channel. After the network device maps the first control channel on the M first transmission units, the first control channel may be sent by the M first transmission units. The terminal device receives the first control channel sent by the network device.
  • the first control channel may include at least the following two situations:
  • the method 100 further includes transmitting the data channel to the terminal device;
  • the method 200 also includes receiving the data channel transmitted by the network device.
  • the method 200 also includes transmitting the data channel to the network device;
  • the method 100 also includes receiving the data channel transmitted by the terminal device.
  • the network device when the first control channel is sent, the network device first maps the first control channel to the M consecutive numbered first transmission units, thereby reducing the number of blind detections of the terminal device, thereby reducing the terminal.
  • the blind detection complexity of the device when the first control channel is sent, the network device first maps the first control channel to the M consecutive numbered first transmission units, thereby reducing the number of blind detections of the terminal device, thereby reducing the terminal.
  • a Transmission Element is a minimum unit for transmitting a control channel, and one control channel can be transmitted through an integer number of transmission units.
  • one transmission unit may be a CCE (Control Channel Element) for transmitting a PDCCH in an LTE system, and may be an ECCE (Enhanced Control Channel Element) for transmitting an EPDCCH or an MPDCCH in an LTE system, and may be a PRB or an RBG or a REG.
  • One of them may also be a minimum unit for transmitting a control channel introduced in an sTTI transmission or a minimum unit for transmitting a control channel introduced in a future 5G system.
  • the invention is not limited thereto.
  • sPDCCH control channel
  • sPDSCH data channel
  • the network device determines a frequency domain resource occupied by a transmission unit that can be used to send the sPDCCH within one sTTI.
  • the frequency domain resource is a PRB or an RBG.
  • the sPDCCH corresponding to different lengths of sTTIs may use the same design. Taking the sTTIs of 2 symbols and 7 symbols as an example, in order to make the sPDCCH transmission modes of the two sTTI lengths the same, the resources that the sPDCCH can use in the time domain are limited by the length of the 2 symbol sTTI, that is, the 2 symbols and the 7 symbols.
  • the sPDCCH can occupy up to 2 symbols in the time domain.
  • the sPDCCH of different lengths of sTTIs is used in the same design, which facilitates network device scheduling and terminal device blind detection.
  • the design of the sPDCCH is exemplified by occupying 1 symbol or 2 symbols, but the present invention is not limited thereto.
  • the frequency domain resource occupied by the transmission unit that can be used to send the sPDCCH in one sTTI is a positive integer number of RBGs, where one RBG includes one or more PRBs.
  • 3 is a schematic diagram of an example of control channel resource allocation according to an embodiment of the present invention. Specifically, FIG. 3 is a schematic diagram of multiple RBGs occupied by a transmission unit that can be used to transmit an sPDCCH within a 2-symbol sTTI. As shown in FIG. 3, the transmission unit is located in the bandwidth of the sTTI, occupies 2 symbols in time, and occupies 5 RBGs in the frequency domain, where each RBG may include one or more transmission units. Optionally, the location of the five RBGs may be notified to the terminal device by means of predefined or network device signaling.
  • the network device determines that an sPDCCH for scheduling sTTI downlink data reception in an sTTI is located on a transmission unit included in a PRB where the sPDSCH corresponding to the sPDCCH is located.
  • a transmission unit that is not used for transmitting the sPDCCH in the transmission unit included in the PRB where the sPDSCH is located may be used for transmission of the sTTI data channel.
  • the network device and the terminal device may stipulate that the control channel is occupied in the order of number from small to large when occupying the transmission unit. If there is only a DL Grant in the system, the network device maps the sPDCCH of the same terminal device to the transmission unit included in the PRB where the sPDSCH of the terminal device is located. If the system has both the DL Grant and the UL Grant, the network device uses the transmission unit with the smaller number in the transmission unit included in the PRB of the terminal device to transmit the UL Grant, and then maps the DL Grant after mapping the UL Grant. Among them, both the UL Grant and the DL Grant are transmission units occupying consecutive numbers.
  • the terminal device can know the maximum number of the transmission unit occupied by the sPDCCH after detecting the sPDCCH, and determine, according to the maximum number, that the transmission unit whose number is less than or equal to the maximum number in the transmission unit included in the PRB where the sPDSCH is located has been It is used for sPDCCH transmission, so that it can be determined that the transmission unit whose number is greater than the maximum number in the transmission unit included in the PRB where the sPDSCH is located is used for data transmission.
  • the network device determines a time domain resource, a frequency domain resource, a number of transmission units, a transmission unit number, a physical resource corresponding to the transmission unit, a search space of the terminal device, and a terminal device, which are used by the transmission unit that can be used to send the sPDCCH in the sTTI.
  • Searching for at least one of information such as an aggregation level used by the sPDCCH, and notifying the terminal device of the foregoing information by means of pre-defined or signaling.
  • the network device may notify the terminal device of the foregoing information by using RRC signaling or physical layer signaling. It should be noted that, in order to improve resource utilization, the network device may use a transmission unit that is not used for sPDCCH transmission to transmit a data channel, or a reference signal, or other information.
  • the network device may send the sPDCCH of the different terminal device to the corresponding terminal device on the transmission unit within one sTTI.
  • Multiple sPDCCHs are multiplexed to form an entire search space.
  • the terminal device blindly detects all possible sPDCCHs in the entire search space or in its own search space, thereby determining whether there is a sPDCCH sent by the network device to itself.
  • one sPDCCH that the network device sends to the terminal device is carried in On consecutive M transmission units, M is a positive integer.
  • the network device may limit the value range of the M, that is, limit the sPDCCH aggregation level, and adopt a tree-like aggregation mode.
  • the M value ranges from 1, 2, 4, and 8, that is, the aggregation level is 1, 2, 4, and 8, wherein one sPDCCH can only pass one transmission unit, or two transmission units, or four. Transmission units, or 8 transmission units for transmission.
  • the sPDCCH of one transmission unit may start from an arbitrary transmission unit position; the sPDCCH of two transmission units starts from an even transmission unit position; the sPDCCH of four transmission units starts from an integer multiple of the transmission unit position; 8 transmission units The sPDCCH starts from an integer multiple of the transmission unit position of 8.
  • the terminal device may receive the first sPDCCH sent by the network device by: the terminal device blindly detecting the sPDCCH on the transmission unit that can be used to send the sPDCCH in one sTTI or on the search space notified by the network device.
  • the terminal device detects according to the possible aggregation level supported by the system or according to the aggregation level notified by the network device.
  • the size of the search space is 8 transmission units, and the aggregation level of the sPDCCH may be 1, 2, 4, and 8 as an example.
  • the eight transmission unit numbers are 0 to 7.
  • sPDCCH When the terminal equipment is blindly detected, it is assumed that one sPDCCH is mapped to one transmission unit, and each transmission unit numbered 0 to 7 is detected once to see if it has its own. sPDCCH, a total of 8 tests. If not detected, assume that 1 sPDCCH is mapped to 2 transmission units, detect whether transmission units 0 and 1 have their own sPDCCH, if not detected, re-detect transmission units 2 and 3, and so on, if you press 2 The transmission unit detects that no sPDCCH is detected by itself, and the terminal device further assumes that one sPDCCH is mapped to four transmission units, and detects whether the transmission units 0, 1, 2, 3 and the transmission units 4, 5, 6, and 7 respectively There is its own sPDCCH.
  • the terminal device assumes that one sPDCCH is mapped to eight transmission units, and detects whether there is its own sPDCCH on the transmission unit 0, 1, 2, 3, 4, 5, 6, and 7. If the entire search space is searched and no sPDCCH is detected, the terminal device considers that the network device in the sTTI does not schedule itself. If the sPDCCH is detected in the search process, the terminal device may stop searching and perform downlink data reception or uplink data transmission according to the content of the sPDCCH.
  • the network device numbers all transmission units in the sPDCCH region within one sTTI. Specifically, the transmission unit and the number have a one-to-one correspondence, and the numbers are arranged in order from small to large. For example, assuming that 10 transmission units are included in the sPDCCH region within one sTTI, the network device may number the 10 transmission units as transmission units 0 to 9.
  • one RBG of the sPDCCH region includes N PRBs, and N is a positive integer.
  • the N PRBs include P transmission units, and P is a positive integer.
  • each of the P transmission units is located on the N PRBs, and each transmission unit occupies T REs in one PRB, where T is a positive integer. If the i-th RE of each transmission unit in the N PRBs is regarded as the i-th group REG, it can be considered that each transmission unit includes T REGs, and each REG includes N REs.
  • FIG. 4a is a schematic diagram of an example of a resource map in accordance with an embodiment of the present invention. Further, FIG. 4a is a schematic diagram of mapping a transmission unit included in one RBG to a physical resource under the 1 symbol. As shown in FIG. 4a, the size of the RBG is 8 PRBs, including 4 transmission units, which are TEa, TEb, TEc, and TEd. Each of the four transmission units is located on eight PRBs, and each transmission unit occupies three REs in one PRB. If the i-th RE of each transmission unit in a plurality of PRBs is regarded as one REG, it can be considered that each transmission unit includes 3 REGs, and each REG includes 8 REs.
  • FIG. 4b is a schematic diagram of another example of a resource map in accordance with an embodiment of the present invention. Further, FIG. 4b is a schematic diagram of mapping a transmission unit included in one RBG to a physical resource under the 2 symbol.
  • the size of the RBG is 8 PRBs, including 4 transmission units, which are TEa, TEb, TEc, and TEd.
  • Each of the four transmission units is located on eight PRBs, and each transmission unit occupies 6 REs in one PRB. If the i-th RE of each transmission unit in a plurality of PRBs is regarded as one REG, it can be considered that each transmission unit includes 6 REGs, and each REG includes 8 REs. Alternatively, the RE of the ith subcarrier in each of the plurality of PRBs may be regarded as one REG, and thus it may be considered that each transmission unit includes 3 REGs, and each REG includes 24 REs.
  • the terminal device can perform channel estimation by combining the multiple PRBs when the sPDCCH is blindly detected, thereby improving channel estimation performance.
  • FIG. 4c is a schematic diagram of still another example of a resource map in accordance with an embodiment of the present invention. Further, FIG. 4c is a schematic diagram of mapping a transmission unit included in one RBG to a physical resource under the 2 symbol. As shown in FIG. 4c, the size of the RBG is 8 PRBs, including 4 transmission units, which are TEa, TEb, TEc, and TEd, respectively. Each of the four transmission units is located on eight PRBs, each transmission unit occupies 6 REs in one PRB, and at least one transmission unit is at least two of the 8 PRBs.
  • the positions on the PRBs are different. As shown in the figure, the first RE of TEa in PRB0 is located in the first subcarrier of PRB0, and the first RE of TEa in PRB1 is located in the 4th subcarrier of PRB1, that is, the position of TEa on PRB0 and PRB1 is different. If the i-th RE of each transmission unit in a plurality of PRBs is regarded as one REG, it can be considered that each transmission unit includes 6 REGs, and each REG includes 8 REs. Alternatively, the RE of the ith subcarrier in each of the plurality of PRBs may be regarded as one REG, and thus it may be considered that each transmission unit includes 3 REGs, and each REG includes 24 REs.
  • the reference signal needs to be sent in the RBG, since the position and number of the reference signal in each PRB are the same, with such resource mapping, the reference signal occupies almost the same resources on each transmission unit in the RBG, thereby ensuring The number of resources that each transmission unit can use to transmit DCI or data is relatively balanced.
  • the network device maps the first control channel to the M first transmission units. Specifically, the network device may first determine the M first transmission units, or determine the number of transmission units used to transmit the control channel to be M. Specifically, the manner in which the first control channel is mapped to the M first transmission units is as follows.
  • mapping mode 1 sequential mapping
  • the network device may map the first control channel to the M first transmission units in descending order of the number of the transmission unit.
  • the first control channel is mapped to four first transmission units, and the numbers of the four first transmission units are respectively a transmission unit 0, a transmission unit 1, a transmission unit 2, and a transmission unit 3, and the network device is in the first
  • the order in which the control channel is mapped to the four first transmission units is first mapping transmission unit 0, re-mapping transmission unit 1, re-mapping transmission unit 2, and finally mapping transmission unit 3.
  • the network device performs mapping of the first control channel according to the mapping mode 1.
  • the terminal device may use the MG transmission units. Obtaining the first control channel causes the terminal device to mistakenly think that the first control channel is mapped to the MG transmission units, thereby causing the terminal device to process an error (G ⁇ 1).
  • the terminal device recognizes The transmission units 2 and 3 are not used to transmit the first control channel, and it is considered that the transmission units 2 and 3 are used to transmit the data channel, causing the terminal device to perform an erroneous rate matching process on the data channel.
  • network devices can adopt the following mapping methods:
  • the mapping mode 2 first maps the transmission unit with the largest number among the M first transmission units.
  • the network device first maps to the first transmission unit with the largest number when mapping the control channel to the M first transmission units, and the M number is the largest among the M first transmission units.
  • the mapping order of the transmission units other than the first transmission unit is not limited herein.
  • the network device maps the first control channel to the four first transmission units in the order of mapping the transmission unit 3, Remap the transmission units 1, 2, 0.
  • the terminal device is in blind detection, it is only possible to correctly demodulate the first control channel if it is assumed that the first control channel is first mapped to the transmission unit 3. Therefore, after the terminal device correctly demodulates the first control channel, it can be determined that the transmission unit 3 is occupied, and then it is determined that the transmission unit number is greater than 3, and can be used for data transmission, and the data rate matching error does not occur.
  • mapping mode 2 the network device first maps the transmission unit with the largest number in a given aggregation level.
  • the terminal device When the terminal device is blindly detected, it is only possible to correctly demodulate the transmission unit with the largest number of mappings on the control channel.
  • the transmission unit with the largest number for transmitting the control channel, and determining that the transmission unit whose number is less than or equal to the maximum number is used to transmit the control channel to avoid data rate matching errors.
  • mapping method 3 is further limited based on the mapping method 2.
  • the network device may map the first control channel to the M first transmission units in descending order of the number of the transmission unit.
  • the numbers of the four first transmission units are respectively transmission units 0, 1, 2, and 3, and the network device maps the first control channel to the 4
  • the order of the first transmission units is the first mapping transmission unit 3, the remapping transmission unit 2, the remapping transmission unit 1, and the last mapping transmission unit 0.
  • the mapping mode 3 can improve the efficiency of the network device mapping the first control channel. This is because the mapping mode 3 is similar to the mapping mode 1, and the network device maps the first control channel to the M first transmission units in descending order of the number of the transmission unit. Adopt Mapping mode 3 performs control channel mapping, which not only avoids data rate matching errors, but also improves the efficiency of network device mapping control channels.
  • mapping mode 4 interleaving mapping
  • the network device may map the first control channel to the M first transmission units according to the number interleaving of the transmission unit.
  • the numbers of the four first transmission units are respectively transmission units 0, 1, 2, and 3, and the network device maps the first control channel to the 4
  • the order of the first transmission units is first mapping transmission unit 0, remapping transmission unit 2, remapping transmission unit 1, and last mapping transmission unit 3.
  • the terminal device is blindly detected, only according to transmission units 0 and 1, or The first control channel cannot be correctly demodulated based only on transmission units 2 and 3, thereby avoiding data rate matching errors.
  • mapping modes 2, 3, and 4 in the embodiment of the present invention enables the terminal device to correctly determine the transmission unit with the largest number for transmitting the control channel, and determines that the transmission unit whose number is less than or equal to the maximum number is used.
  • the control channel is transmitted to avoid data rate matching errors.
  • mapping manners describe the order or regularity of the network device mapping the first control channel to the M first transmission units based on the number of the transmission unit from the perspective of the control channel mapping to the transmission unit.
  • the first control channel needs to be mapped to the physical resources corresponding to the M first transmission units.
  • how the network device maps the first control channel to the resources corresponding to the M first transmission units is specifically described. on.
  • the network device may map the first control channel to corresponding resources on the M first transmission units by means of interleaving.
  • each of the first transmission units of the M first transmission units includes a T group resource unit RE, and the network device first occupies each of the first transmission units of the M first transmission units when mapping the first control channel.
  • the i-th group RE further occupies the i+1th group RE of each first transmission unit, where T ⁇ 2, and the value of i ranges from 1 to T.
  • FIG. 5a is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • a specific map 5a gives a schematic diagram of mapping a control channel onto a transmission unit. Assuming that the network device maps the first control channel to the transmission unit TEa, the network device first occupies when mapping the first control channel. The first RE of TEa in each PRB, which occupies the second RE of TEa in each PRB, and so on, until all REs included in TEa are occupied. The number on each RE in Fig. 5a indicates the order in which the control channel occupies the REs in the transmission unit TEa.
  • FIG. 5b is a schematic diagram of still another example of a resource map according to an embodiment of the present invention. Specifically, FIG. 5b specifically shows a schematic diagram of mapping a control channel onto two transmission units. It is assumed that the network device maps the first control channel to the transmission units TEa and TEb. When mapping the first control channel, the network device first occupies the first RE of the TEa in each PRB, and then occupies the TEb in each PRB.
  • the first RE within reoccupy the second RE of TEa in each PRB, and then occupy the second RE of TEb in each PRB; and so on, until all REs included in TEa and TEb are occupied.
  • the number on each RE in Figure 5b indicates the order in which the control channel occupies the REs in the transmission units TEa and TEb.
  • FIG. 5c is a schematic diagram of still another example of a resource map according to an embodiment of the present invention.
  • Figure 5c shows a schematic diagram of mapping a control channel onto four transmission units. It is assumed that the network device maps the first control channel to the transmission units TEa, TEb, TEc and TEd, and when the network device maps the first control channel, it first occupies the first RE of the TEa in each PRB, and then occupies the TEb.
  • the first RE in each PRB reoccupies the first RE of TEc in each PRB, and then occupies the first RE of TEd in each PRB; and then takes the second of TEa in each PRB.
  • REs, which occupy the second RE of the TEb in each PRB, occupy the second RE of TEc in each PRB, and then occupy the second RE of TEd in each PRB; and so on, until All REs included in TEa, TEb, TEc, and TEd are occupied.
  • the number on each RE in Figure 5c indicates the order in which the control channel occupies the REs in the transmission units TEa, TEb, TEc and TEd.
  • mapping mode under the structure of FIG. 4b and FIG. 4c is similar to that of FIG. 4a and will not be described again. It should be noted that when the transmission unit is mapped to two symbols, the mapping order of the i-th group RE and the i+1th group RE of the transmission unit may be a pre-time domain post-frequency domain, or may be a pre-frequency domain post-time domain. The invention is not limited thereto.
  • the network device is mapped in such a manner that the manner in which one control channel is mapped to one or more transmission units corresponding to different aggregation levels is different, so that the terminal device can determine the transmission unit for transmitting the control channel by blind detection. .
  • the terminal device can also determine the transmission unit for transmitting the control channel by blind detection.
  • the interleaving may be performed, so that one coding unit may include different coded modulation symbols, thereby obtaining a diversity gain.
  • the network device maps the first control channel to the M first transmission units.
  • the first control channel is used for scheduling transmission of downlink data, that is, the network device sends the first control channel and also sends the data channel, when the data channel includes F (F ⁇ 1) transmission units, the F transmission units are not included.
  • the transmission unit occupied by the control channel is used to transmit the downlink data channel.
  • the network device indicates that the transmission unit for transmitting the downlink data channel among the resources corresponding to the data channel is sent by signaling to the terminal device, and the signaling overhead is large.
  • the network device may implicitly indicate, by using the first transmission unit occupied by the first control channel, which of the F transmission units included in the data area of the terminal device are used to transmit the data channel (it is required that The data area of the terminal device may refer to a resource corresponding to the data channel of the terminal device, that is, the PRB of the data channel of the terminal device, which can reduce signaling overhead.
  • the network device implicitly notifies the terminal device are described in detail.
  • the M first transmission units of the embodiment of the present invention are transmission units for transmitting a first control channel, where the F transmission units are transmission units included in resources corresponding to downlink data channels of the terminal device, where The F transmission units and the M first transmission units may include the same transmission unit or may include different transmission units.
  • the transmission unit and the number have a one-to-one correspondence. That is, the M first transmission units correspond to the M numbers one by one, and the F transmission units correspond to the F numbers one by one. If the number of the first transmission unit A in the M first transmission units and the number of the transmission unit numbered B in the F transmission units Similarly, the first transmission unit A and the transmission unit B are the same transmission unit.
  • the network device and the terminal device can stipulate that the control channel is occupied in the order of the number from the small to the largest when the transmission unit is occupied. For example, assuming that the M numbers corresponding to the first control channel include the number S, it can be stated that the transmission units numbered 1-S in the F transmission units are occupied. Therefore, when the number of the M numbers corresponding to the M first transmission units is maximally k, the following cases may be included:
  • the number of a transmission units in the F transmission units is less than k, which may indicate that each of the one transmission units is controlled by the first control channel (or possibly other control channels, such as other user equipment).
  • the channel is occupied, so each of the a transmission units is not used to transmit a data channel, where a ⁇ 0.
  • the number of the transmission unit C in the F transmission units is equal to k, and it can be stated that the transmission unit C is occupied by the first control channel, and therefore the transmission unit C is not used for transmitting the data channel.
  • At least one of the F transmission units has a number greater than k, and the transmission unit whose number is greater than k among the F transmission units is a second transmission unit, and each of the at least one second transmission unit may Used to transmit data channels.
  • the terminal device may determine, according to the number (or maximum number) of the M first transmission units corresponding to the first control channel, that at least one of the F transmission units is greater than the number k.
  • the second transmission unit can be configured to transmit the data channel so that the terminal device can correctly receive the data channel to avoid data rate matching errors.
  • first transmission unit the “second transmission unit”, the “first control channel” and the like are referred to herein for convenience of understanding and explanation, and should not be construed as limiting the invention.
  • the transmission units included in the PRB where the M first transmission unit and the F terminal device data channels are located may include the same transmission unit or may not include the same transmission unit, which will be described in detail later.
  • the network device can implicitly indicate the transmission unit of the resource corresponding to the data channel that can be used to transmit the data channel by the number of the transmission unit. Wherein, if the resource corresponding to the data channel includes the second transmission unit, the second transmission unit may not be used to transmit the control channel.
  • the number of M numbers corresponding to the M first transmission units is at most k, and the F transmission units do not include the first transmission unit numbered k. That is, the first transmission unit with the highest number corresponding to the first control channel is not on the resource corresponding to the data channel.
  • the F transmission unit corresponding to the data channel of the terminal device does not need to include the transmission unit for transmitting the first control channel, and the M first transmission orders for transmitting the first control channel.
  • the element can be separated from the resource corresponding to the data channel, which can improve the flexibility of the network device to allocate resources.
  • the control channel of the terminal device is carried on the PRB different from the data channel of the terminal device, Enhanced scheduling flexibility.
  • the terminal device can determine whether the transmission unit corresponding to a certain number is used to transmit its own control channel, and then learn the number of the transmission unit corresponding to the first control channel.
  • the network device may be discontinuously allocated when allocating transmission units of the control channel to the plurality of terminal devices.
  • FIG. 6 is a schematic diagram of control channel resource allocation according to an embodiment of the present invention. As shown in FIG. 6, the number and number of transmission units in one sTTI may be predefined in advance. Within the target sTTI, the network device schedules downlink transmissions of 4 UEs. The network device maps the first control channel of the UE1 to the first transmission unit numbered 3, and the PRB of the data channel of the UE1 includes the transmission units numbered 0 and 2, and does not include the second transmission unit with the number greater than 3. That is, the transmission unit is not included in the data channel occupation resource of UE1.
  • the network device maps the first control channel of the UE2 to the first transmission unit numbered 2, and the PRB of the data channel of the UE2 includes the transmission units numbered 1 and 4, wherein the number of the transmission unit 4 is greater than 2, and can be used for the data channel. Transmitting; mapping the first control channel of UE3 to the first transmission unit numbered 1, and having no transmission unit in the PRB where the data channel of UE3 is located; mapping the first control channel of UE4 to the first transmission unit numbered 5, UE4
  • the transmission channel where the data channel is located includes the transmission units numbered 3 and 5, indicating that the data channel occupied by the UE4 does not include the transmission unit.
  • the method of the embodiment of the present invention does not limit the resources of the data channel, and the transmission unit must be used to transmit the first control channel, and the mapping manner can improve the flexibility of resource allocation of the network device. Further, the method of the embodiment of the present invention can flexibly configure the resource location occupied by the first control channel and the resource location occupied by the data channel. For example, resources occupied by the first control channel and resources occupied by the data channel may be adjacent.
  • the first control channel comprises a control channel based on DMRS demodulation.
  • the terminal device In detecting the first control channel based on the DMRS demodulation, the terminal device needs to first determine the antenna port of the first control channel.
  • the network device can make the terminal device learn the antenna port corresponding to the first control channel in multiple manners. Mode 1, the network device can pass The physical layer signaling or the high layer signaling sends indication information indicating an antenna port corresponding to the first control channel to the terminal device.
  • the antenna port and the transmission unit have a corresponding relationship, and the network device implicitly indicates the antenna port corresponding to the first control channel of the terminal device by using the first transmission unit that transmits the first control channel, for example, the transmission unit corresponding to the even number is corresponding.
  • the antenna port is port 7, and the antenna port corresponding to the odd numbered transmission unit is port 8.
  • the terminal device may determine, by using an antenna port used by the data channel and an antenna port used by the first control channel, whether a transmission unit on the PRB where the data channel is located is available for data channel transmission. Specifically, if the antenna port used by the data channel includes an antenna port used on a transmission unit on the PRB where the data channel is located, the transmission unit on the PRB where the data channel and the data channel are located are demodulated using the same DMRS antenna port, in which case The transmission unit that is not used for control channel transmission can be used for data channel transmission.
  • the antenna port of the data channel is ports 7 and 8
  • the antenna port corresponding to at least one third transmission unit included in the PRB occupied by the data channel is port 8 and the at least one third transmission unit is not occupied by the control channel.
  • the at least one third transmission unit can then be used for data channel transmission.
  • FIG. 7 is a schematic diagram of still another example of a resource map according to an embodiment of the present invention. Further, FIG. 7 specifically determines a schematic diagram of a transmission unit for data transmission according to an antenna port of a data channel and an antenna port of a transmission unit. As shown in FIG. 7, the data channel area includes six transmission units, wherein two transmission units are used to transmit a control channel. The third transmission unit A and the second transmission unit B are included in the remaining four transmission units, wherein the antenna port corresponding to the third transmission unit A is 7, and the antenna port corresponding to the third transmission unit B is 8. . The antenna ports corresponding to the data channel are 7 and 8. Since the demodulation of the data channel is the same as the DMRS of the transmission unit, the third transmission unit A and the third transmission unit B can be used for the data channel transmission.
  • the antenna port used by the data channel and the antenna port used by the transmission unit on the PRB where the data channel is located can determine which transmission units in the transmission unit included in the resource corresponding to the data channel can be used for data. Transmission, the method can save signaling overhead, and the operation is simple and easy to implement.
  • the network device may implicitly indicate, by using the antenna port corresponding to the transmission unit included in the PRB occupied by the data channel, and the number of the M first transmission units, which transmission units can be used to transmit data. channel.
  • the transmission list The element can be used for data channel transmission, so at least one third transmission unit for transmitting a data channel in the F transmission units can be determined by an antenna port corresponding to the transmission unit.
  • the number of the M first transmission units includes 2 and 3, the antenna port of the data channel is port 7, and the number of the F transmission units in the PRB occupied by the data channel includes 0, 1, and 4, where the number is 0.
  • the antenna port corresponding to the transmission unit is also port 7, and the antenna port corresponding to the transmission unit numbered 1 is port 8.
  • the number 0 is smaller than the number 3, since the transmission unit and the data channel numbered 0 correspond to the same antenna port, that is, the DMRS corresponding to the transmission unit numbered 0 carries the same precoding information as the data channel, therefore, The transmission unit numbered 0 can be used to transmit the data channel.
  • the transmission unit corresponding to number 1 has an antenna port and data, and the number is less than 3, which cannot be used to transmit the data channel. Since number 4 is greater than number 3, the transmission unit numbered 4 can be used to transmit the data channel.
  • the network device maps the sPDCCH that schedules the sPDSCH transmission to the transmission unit included in the PRB where the sPDSCH is located.
  • the network device maps the sPDCCH corresponding to the UL Grant and the DL Grant respectively to the transmission unit included in the PRB where the sPDSCH is located. In this way, the sPDSCH and the sPDCCH can share the same DMRS, thereby saving DMRS overhead.
  • the transmission unit resources in the PRB where the sPDSCH of the terminal device 1 is scheduled may be insufficient, or the transmission unit is not included in the PRB where the scheduled sPDSCH is located, or only the uplink data is included. Sending demand without the need for downstream data reception.
  • the network device determines that the at least one fourth transmission unit of the data channel area of the first terminal device is used to transmit the third control channel of the second terminal device, where the antenna port corresponding to the data channel of the first terminal device
  • the antenna port corresponding to the third control channel is different, and the number of transmission layers of the data channel of the first terminal device is 1.
  • the antenna port resources of the DMRS are limited.
  • the network device maps the DL Grant or the UL Grant corresponding to the terminal device 1 to the transmission unit with a smaller number included in the PRB where the data channel of the terminal device 2 is located. Therefore, the sPDCCH of the terminal device 1 and the sPDCCH and/or the sPDSCH of the terminal device 2 may be located in the same PRB, that is, the DMRS of the terminal device 1 and the DMRS of the terminal device 2 may be located at the same PRB.
  • the DMRS for sPDCCH demodulation of the terminal device 1 and the DMRS for sPDCCH and/or sPDSCH demodulation of the terminal device 2 may be code-multiplexed, that is, the DMRS and the terminal of the terminal device 1
  • the DMRS of device 2 uses a different antenna port. Since the antenna port resources of the DMRS are limited, it is preferable that the DMRS of the terminal device 1 and the DMRS of the terminal device with a lower number of data transmission layers are code division multiplexed. For example, the DMRS of the terminal device 1 and the DMRS of the terminal device transmitting only the layer 1 data channel are code-multiplexed.
  • the antenna port corresponding to the first control channel is used by the terminal device to determine an antenna port corresponding to the first data channel.
  • the same antenna port may be used for the data channel and the first control channel. That is, the network device configures the same antenna port for the first control channel and the data channel. For example, if the antenna port corresponding to the first control channel is port7, the antenna port corresponding to the data channel is also port 7.
  • the antenna port of the data channel is associated with the antenna port of the first control channel and RANK.
  • the number of layers of the antenna is defined as the rank of the MIMO channel matrix, that is, the number of independent virtual channels.
  • the antenna port corresponding to the data channel is determined by using the antenna port corresponding to the first control channel, and the signaling overhead can be reduced without additional signaling indication.
  • the first control channel is first demodulated before acquiring the data channel, and if the first control channel is a control channel demodulated by DMRS, the terminal device may adopt at least the following two types. At least one of the modes increases the efficiency of demodulating the first control channel:
  • Method 1 the M first transmission units are located on the symbol of the first DMRS
  • the same design is adopted for the sPDCCHs of different lengths of sTTI, which is advantageous for network device scheduling and blind detection of terminal devices.
  • the same sPDCCH design is limited by the shortest sTTI in the time domain. That is, if the sTTI of 2 symbols is supported in the system, the number of symbols occupied by the sPDCCH in the time domain is preferably not more than 2. Therefore, optionally, when the first DMRS for demodulating the first control channel is sent within one sTTI, the transmission unit for transmitting the first control channel is located at the first The symbol occupied by the DMRS. For example, assuming that the first DMRS is located at symbol 5 and symbol 6, the transmission unit occupied by the first control channel within the sTTI including symbols 5 and 6 may be located at symbol 5, or symbol 6, or symbols 5 and 6.
  • the first transmission unit is located on the symbol occupied by the first DMRS, and the control channel design under different sTTI lengths can be unified, which is beneficial to network device scheduling and terminal device blind detection.
  • the time domain resource occupied by the first DMRS includes the time domain resources corresponding to the M first transmission units (in other words, when the time domain resource occupied by the first DMRS includes the control channel occupied)
  • the terminal device can acquire the first control channel while acquiring the first DMRS, so as to efficiently demodulate the first control channel according to the first DMRS.
  • the method can significantly reduce the processing delay of the terminal device.
  • the time domain resources corresponding to the M first transmission units are the same as the time domain resources occupied by the first DMRS and the frequency domain resources are different.
  • the M first transmission units and the first DMRS are both located on the first or first two symbols of the sTTI (or TTI), but the M first transmission units and the first DMRS occupy different REs.
  • the time domain resources corresponding to the M first transmission units are a subset of the time domain resources occupied by the first DMRS.
  • the M first transmission units are located on the first symbol of the sTTI (or TTI), and the first DMRS is located on the first two symbols of the sTTI (or TTI).
  • the method of the embodiment of the present invention can further improve the efficiency of the terminal device demodulating the first control channel according to the first DMRS.
  • Manner 2 Demodulate the first control channel according to multiple DMRSs.
  • the network device may also send the second control channel before sending the first control channel, and if the first control channel and the second control channel are located in the same PRB, the control channel is based on the DMRS demodulation and is sent to the same a terminal device, the network device may send the first control channel and the second control channel by using the same antenna port and the same precoding, and the terminal device may be configured according to the second DMRS of the second control channel and the first DMRS pair of the first control channel Demodulating a control channel to improve channel estimation performance of the DMRS, thereby improving terminal device demodulation of the first control signal The probability of success of the Tao.
  • the network device sends the second control channel to the terminal device, and then sends the first control channel. If the frequency resources used by the two control channels are the same, in order to enable the terminal device to associate the second DMRS and the first control of the second control channel.
  • the first DMRS of the channel demodulates the first control channel, and the network device transmits the second control channel and the first control channel using the same antenna port and the same precoding.
  • the terminal device can only make the above assumptions if the network device permits.
  • the network device is configured for the terminal device to indicate whether it is possible to assume that two consecutive OFDM stations of the same frequency and the same antenna port use the same precoding signaling.
  • the terminal device receives two sTTIs in the same frequency domain position in one subframe (or two sTTIs in the time domain distance), and the two sTTIs use the same antenna port.
  • Transmission control channel (and/or data channel) in case the network device permits, the terminal device can assume that the precoding of the antenna ports of the two sTTIs is the same, and the terminal device can combine the DMRS of the previous sTTI with the DMRS pair of the current sTTI.
  • the current control channel (and/or data channel) performs channel estimation.
  • the first control channel may be a DL Grant or a UL Grant
  • the second control channel may also be a DL Grant or a UL Grant.
  • the terminal device performs channel estimation by combining two DMRSs with different positions in the time domain, thereby improving channel estimation performance.
  • FIG. 8 is a schematic block diagram of an example of a network device according to an embodiment of the present invention. As shown in FIG. 8, the network device 300 includes:
  • the processing module 310 is configured to map the first control channel to the M consecutive numbered first transmission units, where the first control channel is used to schedule a data channel, M ⁇ 1;
  • the sending module 320 is configured to send the first control channel to the terminal device.
  • the processing module 310 is specifically configured to: map the first control channel to the M consecutive numbered first transmission units, and first map the transmission units with the largest number among the M first transmission units.
  • each of the M first transmission units includes a T group resource list.
  • the processing module 310 is configured to: when mapping the first control channel, first occupy an ith group RE of each of the M first transmission units, and then occupy each The i+1th group RE of a transmission unit, where T ⁇ 2, and the value of i is 1 to T.
  • the data channel is a downlink data channel; the M number consecutive first transmission unit has a maximum number of k, and the resource corresponding to the data channel includes at least one second transmission unit, the at least one Each second transmission unit in the second transmission unit corresponds to a number greater than k.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least one transmission unit with a number less than k and does not include the first transmission unit numbered k.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is in the N The positions on at least two PRBs in the PRB are different.
  • the sending module 320 is further configured to: send the first DMRS to the terminal device, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the data channel is a downlink data channel; the resource corresponding to the data channel includes at least one third transmission unit, and the antenna port corresponding to the data channel includes each of the at least one third transmission unit The antenna port corresponding to the three transmission units.
  • the sending module 320 is further configured to: send a second control channel to the terminal device, and use to demodulate the second control channel.
  • a second DMRS wherein the first control channel and the second control channel use the same antenna port and precoding to cause the terminal device to perform the according to the second DMRS and the first DMRS pair
  • the first control channel performs demodulation.
  • the network device 300 herein is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the network device 300 may be specifically the terminal device in the communication method of the foregoing embodiment, and the network device 300 may be used to perform various processes corresponding to the network device in the foregoing method embodiment. / or steps, in order to avoid repetition, will not repeat them here.
  • FIG. 9 is a schematic block diagram of an example of a terminal device according to an embodiment of the present invention. As shown in Figure 9, The terminal device 400 includes:
  • the communication module 410 is configured to receive a first control channel that is sent by the network device, where the first control channel is mapped to the M consecutive numbered first transmission units, where the first control channel is used to schedule a data channel, where The transmission unit is the smallest unit for transmitting the control channel, M ⁇ 1;
  • the communication module 410 is further configured to receive the data channel according to the first control channel, or send the data channel according to the first control channel.
  • the communication module 410 may correspond to a transceiver module, that is, the communication module may be used for transmitting and receiving signals. Further, the communication module 410 can cope with a transceiver in a physical device.
  • the mapping of the first control channel to the M consecutive numbered first transmission units is to first map the transmission units with the largest number among the M first transmission units.
  • each of the first transmission units of the M first transmission units includes a T group resource unit RE, and the mapping manner of the first control channel mapped to the M consecutive numbered first transmission units is first And occupying an ith group RE of each of the M first transmission units, and occupying an i+1th group RE of each first transmission unit, where T ⁇ 2, the value of i is 1 To T.
  • the data channel is a downlink data channel; the M number consecutive first transmission unit has a maximum number of k, and the resource corresponding to the data channel includes at least one second transmission unit, the at least one Each second transmission unit in the second transmission unit corresponds to a number greater than k.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least one transmission unit with a number less than k and does not include the first transmission unit numbered k.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is in the N The positions on at least two PRBs in the PRB are different.
  • the communication module 410 is further configured to: receive a first DMRS sent by the network device, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the data channel is a downlink data channel; the resource corresponding to the data channel includes at least one third transmission unit, and the antenna port corresponding to the data channel includes each of the at least one third transmission unit The antenna port corresponding to the three transmission units.
  • the communications module 410 is further configured to: receive a second control channel sent by the network device, and use the second control channel to demodulate a second DMRS of the control channel, wherein the first control channel and the second control channel use the same antenna port and precoding; the terminal device 400 further includes a processing module, configured to perform according to the second DMRS and The first DMRS demodulates the first control channel.
  • the terminal device 400 herein is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the terminal device 400 may be specifically the terminal device in the communication method of the foregoing embodiment, and the terminal device 400 may be used to perform various processes corresponding to the terminal device in the foregoing method embodiment. / or steps, in order to avoid repetition, will not repeat them here.
  • FIG. 10 is a schematic block diagram of another example of a network device 500, as shown in FIG. 10, including a transceiver 510, a memory 520, and a processor 530, in accordance with an embodiment of the present invention.
  • the memory 520 is configured to store program instructions.
  • the processor 530 can call program instructions stored in the memory 520.
  • the processor 530 can control the transceiver 510 to receive or transmit information.
  • the network device 500 further includes a bus system 640 interconnecting the processor 530, the memory 520, and the transceiver 510, where
  • the processor 530 is configured to map the first control channel to the M consecutive numbered first transmission units, where the first control channel is used to schedule a data channel, M ⁇ 1;
  • the transceiver 510 is configured to send the first control channel to the terminal device.
  • the processor 530 is specifically configured to: map the first control channel to the M consecutive numbered first transmission units, and first map the transmission units with the largest number among the M first transmission units.
  • each of the first transmission units of the M first transmission units includes a T group resource unit RE; the processor 530 is specifically configured to: when the first control channel is mapped, occupy the M first
  • the ith group RE of each first transmission unit in the first transmission unit occupies the i+1th group RE of each first transmission unit, where T ⁇ 2, and the value of i ranges from 1 to T.
  • the data channel is a downlink data channel; the M number consecutive first transmission unit has a maximum number of k, and the resource corresponding to the data channel includes at least one second transmission unit, the at least one Each second transmission unit in the second transmission unit corresponds to a number greater than k.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least A transmission unit numbered less than k and does not include the first transmission unit numbered k.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is in the N The positions on at least two PRBs in the PRB are different.
  • the transceiver 510 is further configured to: send the first DMRS to the terminal device, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the data channel is a downlink data channel; the resource corresponding to the data channel includes at least one third transmission unit, and the antenna port corresponding to the data channel includes each of the at least one third transmission unit The antenna port corresponding to the three transmission units.
  • the transceiver 510 is further configured to: send a second control channel to the terminal device, and use to demodulate the second a second DMRS of the control channel, wherein the first control channel and the second control channel use the same antenna port and precoding to cause the terminal device to perform according to the second DMRS and the first DMRS pair
  • the first control channel performs demodulation.
  • the network device 500 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiment.
  • the memory 520 can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 530 can be configured to execute instructions stored in a memory, and when the processor executes the instructions, the processor can perform various steps corresponding to the network device in the above method embodiments.
  • FIG. 11 is a schematic block diagram of another example of a terminal device according to an embodiment of the present invention.
  • the terminal device 600 includes a transceiver 610, a memory 620, and a processor 630.
  • the memory 620 is configured to store program instructions.
  • the processor 630 can call program instructions stored in the memory 620.
  • the processor 630 can control the transceiver 610 to receive or transmit information.
  • the terminal device 600 further includes a bus system 640 that interconnects the processor 630, the memory 620, and the transceiver 610, wherein the processor 630 is configured to control the transceiver. 610:
  • a first control channel where the first control channel is mapped to the M consecutive numbered first transmission units, where the first control channel is used to schedule a data channel, where the transmission unit is configured to transmit The smallest unit of the control channel, M ⁇ 1;
  • the processor is further configured to control the transceiver to receive the data channel according to the first control channel, or send the data channel according to the first control channel.
  • the mapping of the first control channel to the M consecutive numbered first transmission units is to first map the transmission units with the largest number among the M first transmission units.
  • each of the first transmission units of the M first transmission units includes a T group resource unit RE, and the mapping manner of the first control channel mapped to the M consecutive numbered first transmission units is first And occupying an ith group RE of each of the M first transmission units, and occupying an i+1th group RE of each first transmission unit, where T ⁇ 2, the value of i is 1 To T.
  • the data channel is a downlink data channel; the M number consecutive first transmission unit has a maximum number of k, and the resource corresponding to the data channel includes at least one second transmission unit, the at least one Each second transmission unit in the second transmission unit corresponds to a number greater than k.
  • the physical resource block PRB occupied by the resource corresponding to the data channel includes at least one transmission unit with a number less than k and does not include the first transmission unit numbered k.
  • each of the M first transmission units is located on N PRBs, N ⁇ 2, and at least one of the M first transmission units is in the N The positions on at least two PRBs in the PRB are different.
  • the transceiver 610 is further configured to: receive a first DMRS sent by the network device, where the first DMRS is used to demodulate the first control channel.
  • the M first transmission units are located on a symbol occupied by the first DMRS.
  • the data channel is a downlink data channel; the resource corresponding to the data channel includes at least one third transmission unit, and the antenna port corresponding to the data channel includes each of the at least one third transmission unit The antenna port corresponding to the three transmission units.
  • the transceiver 610 is further configured to receive the first control channel
  • the transceiver 610 is further configured to: receive a second control channel sent by the network device, and use the a second DMRS of the second control channel, wherein the first control channel and the second control channel use the same antenna port and precoding; the processor 630 is configured to use the second DMRS and the first The DMRS demodulates the first control channel.
  • the terminal device 600 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiment.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory. For example, memory It is also possible to store information about the type of device.
  • the processor 630 can be configured to execute instructions stored in a memory, and when the processor executes the instructions, the processor can perform various steps corresponding to the network device in the above method embodiments.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof. .
  • the transceiver enables communication between the mobile terminal device and other devices or communication networks.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the processor may also include a non-volatile random access memory.
  • the processor can also store information about the type of device.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a control bus may include a control bus, and a status signal bus in addition to the data bus.
  • a status signal bus in addition to the data bus.
  • only one thick line is used to indicate the bus system, but it does not mean that there is only one bus or one type of bus.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the term "and/or” herein is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately while 10 is stored in A. And B, there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输控制信道的方法、网络设备和终端设备,能够减少终端设备在获取控制信道时的盲检次数,减少终端设备的盲检复杂度。该方法包括:将第一控制信道映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,传输单元为用于传输控制信道的最小单元,M≥1;向终端设备发送所述第一控制信道。

Description

传输控制信道的方法、网络设备和终端设备 技术领域
本发明涉及通信领域,并且更具体地,涉及传输控制信道的方法、网络设备和终端设备。
背景技术
在典型无线通信网络,比如,长期演进(Long Term Evolution,LTE)网络中,数据共享信道(Shared Data Channels)的选择基于调度/准许(Scheduling/Grant)机制,完全受基站(Base Station,简称为“BS”)控制。在该机制中,网络设备向终端设备发送用于调度数据信道的控制信道,控制信道可以分为两种,一种为下行授权(Downlink Grant,DL Grant),网络设备向终端设备发送下行Grant以通知终端设备为该终端设备分配的下行传输资源,终端设备据此在经过准许的下行传输资源进行下行数据接收;另一种为上行授权(Uplink Grant,UL Grant),网络设备向终端设备发送上行Grant以通知终端设备为终端设备分配的上行传输资源,终端设备据此在经过准许的上行传输资源上进行上行数据发送。
网络设备在发送控制信道的时候,需要将控制信道映射到控制信道单元(Control Channel Element,CCE)上。然而,网络设备在映射控制信道的的时候进行随机映射,导致终端设备需要盲检多次才能获取控制信道,终端设备盲检CCE的复杂度高。
发明内容
本申请提供一种传输控制信道的方法、网络设备和终端设备,能够减少终端设备的盲检次数,减少终端设备的盲检复杂度。
第一方面,提供一种传输控制信道的方法,所述方法包括:将第一控制信道映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,传输单元为用于传输控制信道的最小单元,M≥1;向终端设备发送所述第一控制信道。
该方案中,将控制信道映射到M个编号连续的传输单元上,能够减少终端设备的盲检次数,减少终端设备的盲检复杂度。
在第一方面可能的实现方式中,所述将第一控制信道映射到M个编号连续的第一传输单元上,包括:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
在该方案中,网络设备在映射第一控制信道时,先映射编号最大的传输单元,终端设备在盲检时,只有假设控制信道先映射编号最大的传输单元才可能正确解调,从而可以确定用于传输控制信道的编号最大的传输单元,可以提高终端设备正确识别被占用的传输单元的概率。
可选地,在第一方面可能的实现方式中,所述将第一控制信道映射到M个编号连续的第一传输单元上,包括:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为按照编号从大到小的顺序进行映射。
该方案中,按照编号从大到小(逆序)的方式映射,不但可以确定用于传输控制信道的编号最大的传输单元,还能够提高网络设备映射控制信道的效率。
可选地,在第一方面可能的实现方式中,所述将第一控制信道映射到M个编号连续的第一传输单元上,包括:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为按照编号交织的方式进行映射。
该方案中,可以提高终端设备正确识别被占用的传输单元的概率。
在第一方面可能的实现方式中,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述将第一控制信道映射在M个第一传输单元上,包括:网络设备在映射所述第一控制信道时,先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
在该方案中,网络设备按这种方式映射,导致一个控制信道映射到不同聚合等级对应的一个或多个传输单元中的方式均不相同,从而使终端设备通过盲检可以确定用于传输控制信道的传输单元。进一步地,该映射方式可以使一个传输单元中包括不同的编码后的调制符号,得到分集增益。
在第一方面可能的实现方式中,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
在该方案中,终端设备通过盲检可以确定用于传输控制信道的编号最大的传输单元,并确定编号小于或等于该最大编号的传输单元都用于传输控制信道,避免出现数据速率匹配错误。进一步地,该编号大于k的至少一个第二传输单元可以用于传输该下行数据信道,能够提高资源利用率。
在第一方面可能的实现方式中,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。换句话说,所述数据信道对应的资源占用的PRB上不包括所述编号为k的第一传输单元,或所述数据信道对应的资源占用的PRB和编号为k的第一传输单元在频域上无重叠。
该方案中,在允许一个终端设备的数据信道所在PRB中包括的传输单元承载另一个终端设备的控制信道的情况下,将该终端设备的控制信道承载在和该终端设备的数据信道不同的PRB上,增强了调度的灵活性。
在第一方面可能的实现方式中,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
在该方案中,一个第一传输单元位于多个PRB上,可以使终端设备在盲检一个或多个第一传输单元时联合该多个PRB进行信道估计,提高信道估计性能。
在第一方面可能的实现方式中,所述方法还包括:向所述终端设备发送第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
在第一方面可能的实现方式中,所述M个第一传输单元位于所述第一DMRS占用的符号上。
该方案中,M个第一传输单元仅位于第一DMRS占用的符号上,可以统一不同sTTI长度下的控制信道设计,有利于网络设备调度和终端设备盲检测。进一步地,能够使终端设备获取第一DMRS的同时获取第一控制信道,能够提高终端设备根据第一DMRS解调第一控制信道的效率。
在第一方面可能的实现方式中,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
在该方案中,通过传输单元对应的天线端口和数据信道对应的天线端口的关系来判断该传输单元是否可用于数据信道传输(数据信道对应的资源包 括的传输单元对应的天线端口是数据信道对应的天线端口的子集或全集),以便于终端设备识别数据信道对应的资源包括的传输单元中哪些传输单元能够用于数据信道的传输,可以减少信令指示开销。
在第一方面可能的实现方式中,所述向所述终端设备发送所述第一控制信道之前,所述方法还包括:向所述终端设备发送第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码,以使所述终端设备根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
在该方案中,网络设备使用相同的天线端口和预编码发送同频不同时的第一控制信道和第二控制信道及其对应的第一DMRS和第二DMRS给同一终端设备,可以使该终端设备联合时域上位置不同的两个DMRS做信道估计,提高信道估计性能。
可选地,网络设备确定所述终端设备的数据信道对应的资源包括的至少一个第四传输单元用于传输第二终端设备的第三控制信道,其中,所述第一终端设备的数据信道对应的天线端口和所述第三控制信道对应的天线端口不同,且,所述第一终端设备的数据信道的传输层数为1。
第二方面,提供一种传输控制信道的方法,所述方法包括:接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,其中,传输单元为用于传输控制信道的最小单元,M≥1;根据所述第一控制信道接收或发送所述数据信道。
该方案中,网络设备将控制信道映射到M个编号连续的传输单元上,能够减少终端设备的盲检次数,减少终端设备的盲检复杂度。
在第二方面可能的实现方式中,所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
该方案中,假设控制信道先映射编号最大的传输单元才可能正确解调,从而可以确定用于传输控制信道的编号最大的传输单元,并可以确定编号小于或等于该最大编号的传输单元都用于传输控制信道。
可选地,在第二方面可能的实现方式中,所述第一控制信道被映射到M个第一传输单元的映射方式为按照编号从大到小的顺序进行映射。
该方案中,按照编号从大到小(逆序)的方式映射,不但可以提高终端设备正确识别被占用的传输单元的概率,同时能够提高终端设备获取第一控制信道的概率。
可选地,在第二方面可能的实现方式中,所述第一控制信道被映射到M个第一传输单元的映射方式为按照编号交织的方式进行映射。
该方案中,可以提高终端设备正确识别被占用的传输单元的概率。
在第二方面可能的实现方式中,所述第一控制信道的映射方式为先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
在该方案中,一个控制信道被映射到不同聚合等级对应的一个或多个传输单元中的方式均不相同,终端设备通过盲检可以确定用于传输控制信道的传输单元。进一步地,可以使一个传输单元中包括不同的编码后的调制符号,得到分集增益。
在第二方面可能的实现方式中,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
在该方案中,终端设备通过盲检可以确定用于传输控制信道的编号最大的传输单元,并确定编号小于或等于该最大编号的传输单元都用于传输控制信道,避免出现数据速率匹配错误。
在第二方面可能的实现方式中,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。所述数据信道对应的资源占用的PRB上不包括所述编号为k的第一传输单元。换句话说,数据信道对应的资源占用的PRB和编号为k的第一传输单元在频域上无重叠。
该方案中,在允许一个终端设备的数据信道所在PRB中包括的传输单元承载另一个终端设备的控制信道的情况下,将该终端设备的控制信道承载在和该终端设备的数据信道不同的PRB上,增强了调度的灵活性。
在第二方面可能的实现方式中,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
在该方案中,一个第一传输单元位于多个PRB上,可以使终端设备在盲检一个或多个第一传输单元时联合该多个PRB进行信道估计,提高信道估计性能。
在第二方面可能的实现方式中,所述方法还包括:接收所述网络设备发送的第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
在第二方面可能的是实现方式中,所述M个第一传输单元位于所述第一DMRS占用的符号上。
该方案中,M个第一传输单元仅位于第一DMRS占用的符号上,可以统一不同sTTI长度下的控制信道设计,有利于网络设备调度和终端设备盲检测。进一步地,终端设备获取第一DMRS的同时获取第一控制信道,能够提高终端设备根据第一DMRS解调第一控制信道的效率。
在第二方面可能的是实现方式中,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
在该方案中,通过传输单元对应的天线端口和数据信道对应的天线端口的关系来判断该传输单元是否可用于数据信道传输(数据信道对应的资源包括的传输单元对应的天线端口是数据信道对应的天线端口的子集或全集)以便于数据信道对应的资源包括的传输单元对应的天线端口是数据信道对应的天线端口的子集或全集,终端设备能够识别数据信道对应的资源包括的传输单元中哪些传输单元能够用于数据信道的传输。
在第二方面可能的是实现方式中,在所述接收网络设备发送的第一控制信道之前,所述方法还包括:接收所述网络设备发送的第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码;所述接收网络设备发送的第一控制信道,包括:根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
该方案中,终端设备联合时域上位置不同的两个DMRS做信道估计,可以提高信道估计性能。
第三方面,提供一种网络设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第一方 面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种终端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。可选地,该网络设备还包括总线系统,其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器接收或发送信号,并且当处理器执行存储器存储的指令时,执行使得处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。可选地,该终端设备还包括总线系统,其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器接收或发送信号,并且当处理器执行存储器存储的指令时,执行使得处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的传输控制信道的方法的一示意性流程图。
图2是根据本发明实施例的传输控制信道的方法的另一示意性流程图。
图3是根据本发明实施例的控制信道资源分配的一例的示意图。
图4a是根据本发明实施例的资源映射图的另一例的示意图。
图4b是根据本发明实施例的资源映射图的又一例的示意图。
图4c是根据本发明实施例的资源映射图的再一例的示意图。
图5a是根据本发明实施例的资源映射图的再一例的示意图。
图5b是根据本发明实施例的资源映射图的再一例的示意图。
图5c是根据本发明实施例的资源映射图的再一例的示意图。
图6是根据本发明实施例的控制信道资源分配的示意图。
图7是根据本发明实施例的资源映射图的再一例的示意图。
图8是根据本发明实施例的网络设备的一例的示意性框图。
图9是根据本发明实施例的终端设备的一例的示意性框图。
图10是根据本发明实施例的网络设备的另一例的示意性框图。
图11是根据本发明实施例的终端设备的另一实施例的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是根据本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。F个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有F个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地 和/或远程进程来通信。
本发明实施例的方案可以应用于现有的蜂窝通信系统,如全球移动通讯(英文全称可以为:Global System for Mobile Communication,英文简称可以为:GSM),码分多址(英文全称可以为:Code Division Multiple Access,英文简称可以为:CDMA),宽带码分多址(英文全称可以为:Wideband Code Division Multiple Access,英文简称可以为:WCDMA),通用分组无线业务(英文全称可以为:General Packet Radio Service,英文简称可以为:GPRS),通用移动通信(英文全称可以为:Universal Mobile Telecommunications System,英文简称可以为:UMTS),长期演进(英文全称可以为:Long Term Evolution,英文简称可以为:LTE)等系统中,尤其应用于4.5G的LTE演进系统和5G的无线通信系统。所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。本发明对此并不限定。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本发明对此并不限定。
应理解,本发明实施例的技术方案可以应用于多种通信系统,例如LTE 或5G系统,也可以应用于其他需要传输控制信道的通信系统。
还应理解,上行符号称为单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号,下行符号称为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。若未来5G技术或LTE技术演进中引入正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的上行多址方式,上行符号也可以称为OFDM符号。在本发明实施例中,上行符号和下行符号都统称为符号。本发明实施例的技术方案中提及的符号也可以是其它类型的通信的符号,本发明实施例对此不作限定。
本发明结合物理信道描述了各个实施例。物理信道具体用于数据信息和/或控制信息的传输,本发明实施例中,物理信道包括以下之一或者组合:PUSCH(physical uplink shared channel,物理上行共享信道),PDCCH(Physical Downlink Control Channel,物理下行控制信道),EPDCCH(Enhanced-Physical Downlink Control Channel,增强的物理下行控制信道),MPDCCH(MTC physical downlink control channel,MTC物理下行控制信道),PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道),PHICH(Physical hybrid ARQ indicator channel,物理混合重传指示信道),PDSCH(Physical Downlink Shared Channel,物理下行共享信道)等,或是标准中新引入的功能相同,但是名称不同的信道,例如短TTI传输中引入的控制信道或数据信道等。
本发明结合解调参考信号描述了各个实施例,参考信号(Reference Signal,RS)用于物理层,不承载来自高层的数据信息,例如用于下行的小区特定参考信号(Cell-specific Reference Signal,CRS),用于下行的终端设备特定参考信号(UE-specific Reference Signal,UE-RS)或用于下行的组特定参考信号(Group-specific Reference Signal,GRS),用于上行的解调参考信号(Demodulation Reference Signal,DMRS),探测参考信号(Sounding reference signal,SRS)等。其中,用于下行的UE-RS也叫用于下行的解调参考信号(Demodulation Reference Signal,DMRS)。
其中,下行DMRS包括用于EPDCCH解调的EPDCCH DMRS,用于PDSCH解调的PDSCH DMRS。终端设备可以根据DMRS进行信道估计,然后再根据估计出来的信道值解调对应的EPDCCH或PDSCH,从而获取该 EPDCCH或PDSCH承载的各种数据、信息或信号等。
应理解,在LTE及其演进系统中,从时间维度上来看,一个子帧的时间长度为1ms,一个正常循环前缀(Normal Cyclic Prefix,NCP)子帧包括14个符号。从频率维度上来看,最小单位是子载波。一个物理资源块(Physical Resource Block,PRB)在频域上包括12个子载波。资源块组(Resource Block Group,RBG)可以包括整数个PRB。从时频二维联合来看,对于一个天线端口传输使用的资源,最小单位是资源单位(Resource Element,RE),一个RE在时域上包括一个符号,在频域上包括一个子载波。资源单元组(Resource-Element Group,REG)可以包括整数个RE。
还应理解,短传输时间间隔(Short Transmission Time Interval,sTTI)传输是指TTI长度小于1个子帧或TTI长度小于1ms的传输。例如,sTTI长度为1个、2个、3个、4个、5个、6个、7个符号中的一种。或者,为了使sTTI的传输不跨子帧边界,通常将一个子帧内的符号划分为整数个sTTI,即一个子帧内可以包括1种符号长度,例如,sTTI长度为7符号,一个子帧包括2个sTTI,每个sTTI的长度为7个符号;一个子帧内也可以包括多种符号长度的组合,例如,sTTI长度为2符号,但考虑到PDCCH可能占用1至3个符号,一个子帧包括6个sTTI,长度分别是3个符号、2个符号、2个符号、2个符号、2个符号、3个符号,或者,考虑到PDCCH通常配置2个符号,长度分别是2个符号、2个符号、3个符号、2个符号、2个符号、3个符号,或其它组合。系统中可能存在多种不同长度的短TTI的情况,例如,系统支持7符号的sTTI和2符号的sTTI在同一个子帧内传输。
还应理解,本发明实施例中的资源(例如第一资源和第二资源等)可以泛指通信资源。该资源可以是时间和频率两个维度的通信资源,即该通信资源可以包括时域资源和频域资源。该资源还可以包括码域资源和空域资源中的至少一种。
以下结合图1和图2详细描述本发明实施例的传输控制信道的方法。
图1是根据本发明实施例的传输控制信道的方法的一示意性流程图。图1示出了传输控制信道的方法100的步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其他操作或者图1的各个操作的变形,此外,图1中的各个步骤可以按照与图1呈现的不同的顺序来执行,并且有可能并非要执行图1中的全部操作。该传输控制信道的方法100可以包括:
S110、将第一控制信道映射到M个编号连续的第一传输单元上,其中,传输单元为用于传输控制信道的最小单元,所述第一控制信道用于调度数据信道,M≥1;
应理解,第一控制信道至少可以传输三种下行控制信息(Downlink Control Information,DCI)中的任一种:下行数据传输的调度信息(用于下行数据信道的接收)、上行数据传输的调度信息(用于调度上行数据信道的发送),以及上行功率控制命令(用于指示上行功率控制调整)。
S120、向终端设备发送所述第一控制信道。
图2是根据本发明实施例的传输控制信道的方法的另一示意性流程图。图2示出了传输控制信道的方法200的步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其他操作或者图2的各个操作的变形,此外,图2中的各个步骤可以按照与图2呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。该传输控制信道的方法200可以包括:
S210、接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,其中,传输单元为用于传输控制信道的最小单元,M≥1;
S220、根据所述第一控制信道接收或发送所述数据信道。
具体而言,网络设备在发送第一控制信道之前,可以确定用于传输第一控制信道的资源,即M个第一传输单元用于传输所述第一控制信道。网络设备将第一控制信道映射在M个第一传输单元上之后,可以通过M个第一传输单元发送所述第一控制信道。终端设备接收网络设备发送的第一控制信道。其中,该第一控制信道可以至少包括以下两种情况:
(1)若该第一控制信道为DL Grant:
该方法100还包括,向所述终端设备发送所述数据信道;
该方法200还包括,接收所述网络设备发送的所述数据信道。
(2)若该第一控制信道为UL Grant:
该方法200还包括,向所述网络设备发送所述数据信道;
该方法100还包括,接收所述终端设备发送的所述数据信道。
本发明实施例的提供的方法,网络设备在发送第一控制信道时,先将第一控制信道映射到M个编号连续的第一传输单元上,可以减少终端设备的盲检测次数,因此减少终端设备的盲检复杂度。
需要说明的是,本发明实施例引入了传输单元(例如第一传输单元和后续公开的第二传输单元和第三传输单元)的概念。传输单元(Transmission Element,TE)为用于传输控制信道的最小单元,一个控制信道可以通过整数个传输单元进行传输。具体地,一个传输单元可以是LTE系统中用于传输PDCCH的CCE(Control Channel Element),可以是LTE系统中用于传输EPDCCH或MPDCCH的ECCE(Enhanced Control Channel Element),可以是PRB或RBG或REG中的一种,还可以是sTTI传输中引入的用于传输控制信道的最小单元或未来5G系统中引入的用于传输控制信道的最小单元。本发明对此并不限定。
以下,为了便于理解和说明,以sTTI传输中的控制信道(sPDCCH)和/或数据信道(sPDSCH)的发送和接收为例,对本发明实施例进行说明。
(一)sPDCCH区域的确定
可选地,网络设备确定一个sTTI内可用于发送sPDCCH的传输单元占用的频域资源。具体地,该频域资源为PRB或RBG。
需要说明的是,系统中可能存在支持多种不同长度的sTTI传输的业务。可选地,不同长度的sTTI对应的sPDCCH可使用相同的设计。以2符号和7符号的sTTI为例,为了使该2种sTTI长度的sPDCCH传输方式相同,sPDCCH在时域上可使用的资源受限于2符号sTTI的长度,即2符号和7符号对应的sPDCCH在时域上均最多可占用2符号。由于系统中可能存在支持不同sTTI长度传输的终端设备,对不同长度的sTTI的sPDCCH使用相同的设计,有利于网络设备调度和终端设备盲检测。
在本发明实施例中,sPDCCH的设计均以占用1符号或2符号为例进行说明,但本发明不限于此。
可选地,一个sTTI内可用于发送sPDCCH的传输单元占用的频域资源为正整数个RBG,其中,1个RBG包括1个或多个PRB。图3是根据本发明实施例的控制信道资源分配的一例的示意图。具体地,图3为一个2符号sTTI内可用于发送sPDCCH的传输单元占用的多个RBG的示意图。如图3所示,该传输单元位于sTTI所在带宽内,在时间上占用2符号,在频域上占用5个RBG,其中,每个RBG中可以包括一个或多个传输单元。可选地,该5个RBG的位置可以通过预定义或网络设备信令通知的方式告诉终端设备。
可选地,网络设备确定一个sTTI内用于调度sTTI下行数据接收的sPDCCH位于该sPDCCH对应的sPDSCH所在PRB中包括的传输单元上。在sTTI传输过程中,为了提高资源利用效率,该sPDSCH所在PRB中包括的传输单元中未被用于发送sPDCCH的传输单元可用于sTTI数据信道的传输。
在具体的调度过程中,可选地,网络设备和终端设备可以约定控制信道在占用传输单元时,按照编号从小到大的顺序进行占用。如果系统中只有DL Grant,网络设备将同一个终端设备的sPDCCH映射到该终端设备的sPDSCH所在PRB中包括的传输单元上。如果系统中既有DL Grant也有UL Grant,网络设备将该终端设备的sPDSCH所在PRB中包括的传输单元中编号较小的传输单元用于传输UL Grant,在映射完UL Grant后再映射DL Grant。其中,UL Grant和DL Grant都是占用编号连续的传输单元。这样做的好处是,终端设备检测到sPDCCH后可以知道该sPDCCH占用的传输单元的最大编号,并根据该最大编号确定sPDSCH所在PRB中包括的传输单元中编号小于或等于该最大编号的传输单元已被用于sPDCCH传输,从而可以判断该sPDSCH所在PRB中包括的传输单元中编号大于该最大编号的传输单元用于数据传输。
(二)终端设备检测sPDCCH的方式
可选地,网络设备确定一个sTTI内可用于发送sPDCCH的传输单元占用的时域资源、频域资源、传输单元数目、传输单元编号、传输单元对应的物理资源、终端设备的搜索空间、终端设备搜索sPDCCH使用的聚合等级等信息中的至少一种,并将上述信息通过预定义或信令通知的方式通知终端设备。进一步可选地,网络设备可以通过RRC信令或物理层信令将上述信息通知给终端设备。需要说明的是,为了提高资源利用率,网络设备可以将没有用于sPDCCH传输的传输单元用于传输数据信道、或参考信号、或其他信息。
可选地,网络设备可以在一个sTTI内的传输单元上将不同终端设备的sPDCCH发送给对应的终端设备。多个sPDCCH复用后构成整个搜索空间。终端设备在整个搜索空间内或在自己的搜索空间内对所有可能sPDCCH盲检测,进而确定是否有网络设备发送给自己的sPDCCH。为了减少终端设备盲检测sPDCCH的次数,网络设备发送给终端设备的一个sPDCCH承载在 编号连续的M个传输单元上,M为正整数。为了进一步地减少终端设备的盲检测次数,网络设备可以限定M的取值范围,即限定sPDCCH聚合等级,并采用树状的聚合方式。举例来说,M取值范围为1,2,4,8,即聚合等级为1,2,4,8,其中,1个sPDCCH只能通过1个传输单元,或2个传输单元,或4个传输单元,或8个传输单元进行传输。其中,1个传输单元的sPDCCH可以从任意传输单元位置开始;2个传输单元的sPDCCH从偶数传输单元位置开始;4个传输单元的sPDCCH从4的整数倍的传输单元位置开始;8个传输单元的sPDCCH从8的整数倍的传输单元位置开始。
可选地,终端设备可以通过下述方式接收网络设备发送的第一sPDCCH:终端设备在一个sTTI内可用于发送sPDCCH的传输单元上或在网络设备通知的搜索空间上盲检测sPDCCH。终端设备根据系统支持的可能的聚合等级或根据网络设备通知的聚合等级进行检测。以搜索空间的大小是8个传输单元,sPDCCH的聚合等级可能为1,2,4,8为例。8个传输单元编号为0~7,终端设备在盲检测时,先假设1个sPDCCH映射到1个传输单元上,把编号为0~7的每个传输单元都检测一遍,看是否有自己的sPDCCH,共检测8次。如果没有检测到,再假设1个sPDCCH映射到2个传输单元上,检测传输单元0和1是否有自己的sPDCCH,如没有检测到,再检测传输单元2和3,以此类推,如果按2个传输单元检测都没有检测到自己的sPDCCH,终端设备再假设1个sPDCCH映射到4个传输单元上,分别检测传输单元0,1,2,3和传输单元4,5,6,7上是否有自己的sPDCCH,如无,终端设备假设1个sPDCCH映射到8个传输单元上,检测传输单元0,1,2,3,4,5,6,7上是否有自己的sPDCCH。如果把整个搜索空间都搜完了,也没有检测到自己的sPDCCH,那么终端设备认为该sTTI中网络设备没有调度自己。如果在搜索过程中检测到了自己的sPDCCH,那么终端设备可以停止搜索,并根据sPDCCH的内容进行下行数据接收或上行数据发送。
(三)传输单元和物理资源的对应关系
可选地,网络设备对1个sTTI内的sPDCCH区域内的所有传输单元进行编号。具体地,传输单元和编号具有一一对应的关系,编号按从小到大的顺序排列。例如,假设1个sTTI内的sPDCCH区域内包括10个传输单元,网络设备可以将这10个传输单元编号为传输单元0至9。
需要说明的是,传输单元和物理资源具有一一对应的关系。可选地,在 本发明实施例中,sPDCCH区域的1个RBG包括N个PRB,N为正整数,该N个PRB中包括P个传输单元,P为正整数。可选地,该P个传输单元中的每个传输单元位于该N个PRB上,且每个传输单元在一个PRB内占用T个RE,T为正整数。如果将每个传输单元在N个PRB内的第i个RE看作第i组REG,即可以认为,每个传输单元包括T个REG,每个REG包括N个RE。以下,以1个RBG包括8个PRB,该8个PRB中包括4个传输单元来举例说明。图4a是根据本发明实施例的资源映射图的一例的示意图。进一步地,图4a具体为1符号下1个RBG内包括的传输单元映射到物理资源的示意图。如图4a所示,RBG的大小为8个PRB,包括4个传输单元,分别为TEa、TEb、TEc、TEd。其中,该4个传输单元中的每个传输单元位于8个PRB上,且每个传输单元在一个PRB内占用3个RE。如果将每个传输单元在多个PRB内的第i个RE看作一个REG,可以认为,每个传输单元包括3个REG,每个REG包括8个RE。
图4b是根据本发明实施例的资源映射图的另一例的示意图。进一步地,图4b具体为2符号下1个RBG内包括的传输单元映射到物理资源的示意图。如图4b所示,RBG的大小为8个PRB,包括4个传输单元,分别为TEa、TEb、TEc、TEd。其中,该4个传输单元中的每个传输单元位于8个PRB上,且每个传输单元在一个PRB内占用6个RE。如果将每个传输单元在多个PRB内的第i个RE看作一个REG,可以认为,每个传输单元包括6个REG,每个REG包括8个RE。又或者,可以将每个传输单元在多个PRB内的位于第i个子载波的RE看作一个REG,因此可以认为,每个传输单元包括3个REG,每个REG包括24个RE。
将一个传输单元和多个PRB上的物理资源对应,可以使终端设备在盲检sPDCCH时联合该多个PRB进行信道估计,提高信道估计性能。
进一步可选地,当N大于或等于2时,该P个传输单元中的至少一个传输单元在该N个PRB中至少两个PRB上的位置可以不同。图4c是根据本发明实施例的资源映射图的又一例的示意图。进一步地,图4c具体为2符号下1个RBG内包括的传输单元映射到物理资源的示意图。如图4c所示,RBG的大小为8个PRB,包括4个传输单元,分别为TEa、TEb、TEc、TEd。其中,该4个传输单元中的每个传输单元位于8个PRB上,每个传输单元在一个PRB内占用6个RE,且至少一个传输单元在该8个PRB中至少两 个PRB上的位置不同。如图所示,TEa在PRB0里的第一个RE位于PRB0的第1个子载波,TEa在PRB1里的第一个RE位于PRB1的第4个子载波,即TEa在PRB0和PRB1上的位置不同。如果将每个传输单元在多个PRB内的第i个RE看作一个REG,可以认为,每个传输单元包括6个REG,每个REG包括8个RE。又或者,可以将每个传输单元在多个PRB内的位于第i个子载波的RE看作一个REG,因此可以认为,每个传输单元包括3个REG,每个REG包括24个RE。
如果该RBG内需要发送参考信号,由于参考信号在每个PRB里的位置和数量相同,因此,采用这样的资源映射,参考信号在该RBG内的每个传输单元上占用的资源差不多,从而保证每个传输单元可用于传输DCI或数据的资源数量比较均衡。
(四)控制信道映射到传输单元对应的物理资源的映射方式
可选地,作为一例,网络设备将第一控制信道映射到M个第一传输单元上。具体地,网络设备可以先确定所述M个第一传输单元,或确定用于传输控制信道的传输单元的数量为M。具体将第一控制信道映射到M个第一传输单元上的方式如下。
映射方式1、顺序映射
具体而言,网络设备可以按照传输单元的编号从小到大的顺序将第一控制信道映射到M个第一传输单元上。
例如,假设第一控制信道映射到4个第一传输单元上,该4个第一传输单元的编号分别是传输单元0、传输单元1、传输单元2和传输单元3,网络设备在将第一控制信道映射到该4个第一传输单元的顺序为先映射传输单元0,再映射传输单元1、再映射传输单元2,最后映射传输单元3。
需要说明的是,网络设备按照映射方式1进行第一控制信道的映射,在有些情况下,虽然第一控制信道被映射到M个第一传输单元,但是终端设备可以通过M-G个传输单元就可以获取该第一控制信道,导致终端设备误认为第一控制信道被映射到M-G个传输单元上,从而导致终端设备处理可能出错(G≥1)。
例如,假设第一控制信道被映射到传输单元0、1、2、3上,终端设备在盲检的时候,可能通过传输单元0和1就正确接收该第一控制信道,从而误认为第一控制信道仅占用传输单元0和1上的资源,此时,终端设备会认 为传输单元2和3没有被用于传输第一控制信道,进而认为传输单元2和3用于传输数据信道,导致终端设备对数据信道进行了错误的速率匹配处理。为了避免该现象,网络设备可以采用下面几种映射方式:
映射方式2、先映射M个第一传输单元中编号最大的传输单元。
具体而言,在映射方式2中,网络设备在将控制信道映射在该M个第一传输单元的时候先映射到编号最大的第一传输单元上,至于M个第一传输单元中除编号最大的第一传输单元以外的传输单元的映射顺序,本发明实施例在此不做限定。
例如,假设第一控制信道被映射到传输单元0、1、2、3上,具体地,网络设备在将第一控制信道映射到该4个第一传输单元的顺序为先映射传输单元3,再映射传输单元1、2、0。终端设备在盲检时,只有在假设第一控制信道先映射到传输单元3的情况下才有可能正确解调该第一控制信道。因此,当终端设备正确解调第一控制信道后,可以判断传输单元3被占用,进而判断传输单元编号大于3的才可用于数据传输,不会出现数据速率匹配错误的现象。
在映射方式2中,网络设备在给定的聚合等级中先映射编号最大的传输单元,终端设备在盲检时,只有假设控制信道先映射编号最大的传输单元才可能正确解调,从而可以确定用于传输控制信道的编号最大的传输单元,并确定编号小于或等于该最大编号的传输单元都用于传输控制信道,避免出现数据速率匹配错误。
映射方式3、倒序映射
具体而言,映射方式3是在映射方式2的基础上进一步地的限定。在映射方式3中,网络设备可以按照传输单元的编号从大到小的顺序将第一控制信道映射到M个第一传输单元上。
例如,假设第一控制信道映射到4个第一传输单元上,该4个第一传输单元的编号分别是传输单元0、1、2、3,网络设备在将第一控制信道映射到该4个第一传输单元的顺序为先映射传输单元3、再映射传输单元2、再映射传输单元1、最后映射传输单元0。
与映射方式2相比,映射方式3能够提高网络设备映射第一控制信道的效率。这是因为,映射方式3和映射方式1类似,网络设备是按照传输单元的编号从大到小的顺序将第一控制信道映射到M个第一传输单元上。采用 映射方式3进行控制信道映射,不但可以避免出现数据速率匹配错误,还能够提高网络设备映射控制信道的效率。
映射方式4、交织映射
具体而言,在映射方式4中,网络设备可以按照传输单元的编号交织的方式将第一控制信道映射到M个第一传输单元上。
例如,假设第一控制信道映射到4个第一传输单元上,该4个第一传输单元的编号分别是传输单元0、1、2、3,网络设备在将第一控制信道映射到该4个第一传输单元的顺序为先映射传输单元0、再映射传输单元2、再映射传输单元1、最后映射传输单元3,此时终端设备在盲检时,仅根据传输单元0和1,或仅根据传输单元2和3都不能正确解调第一控制信道,从而避免出现数据速率匹配错误。
因此,采用本发明实施例中的映射方式2、3和4的方法能够使终端设备正确确定用于传输控制信道的编号最大的传输单元,并确定编号小于或等于该最大编号的传输单元都用于传输控制信道,避免出现数据速率匹配错误。
以上四种映射方式是从控制信道映射到传输单元的角度描述网络设备基于传输单元的编号将第一控制信道映射到M个第一传输单元的顺序或规律。在确定映射顺序之后,需要将第一控制信道映射到M个第一传输单元对应的物理资源上,以下,具体描述网络设备如何将第一控制信道映射到M个第一传输单元所对应的资源上。
可选地,在本发明实施例中,网络设备可以通过交织的方式将所述第一控制信道映射到M个第一传输单元上对应的资源上。具体而言,假设M个第一传输单元中每个第一传输单元包括T组资源单元RE,网络设备在映射第一控制信道时,先占用M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
以下,以图4a所示的传输单元映射到物理资源的结构来进行说明。
假设M为1,即网络设备需要将控制信道映射到1个传输单元上。图5a是根据本发明实施例的资源映射图的再一例的示意图。具体地图5a给出了将控制信道映射到一个传输单元上的示意图。假设网络设备将第一控制信道映射到传输单元TEa上,网络设备在映射所述第一控制信道时,先占用 TEa在每个PRB内的第1个RE,再占用TEa在每个PRB内的第2个RE,以此类推,直至将TEa包括的所有RE占用。图5a中每个RE上的编号表示控制信道占用传输单元TEa中的RE的顺序。
假设M为2,即网络设备需要将控制信道映射到2个传输单元上。图5b是根据本发明实施例的资源映射图的再一例的示意图。具体地,图5b具体给出了将控制信道映射到2个传输单元上的示意图。假设网络设备将第一控制信道映射到传输单元TEa和TEb上,网络设备在映射所述第一控制信道时,先占用TEa在每个PRB内的第1个RE,再占用TEb在每个PRB内的第1个RE;再占用TEa在每个PRB内的第2个RE,再占用TEb在每个PRB内的第2个RE;以此类推,直至将TEa和TEb包括的所有RE占用。图5b中每个RE上的编号表示控制信道占用传输单元TEa和TEb中的RE的顺序。
假设M为4,即网络设备需要将控制信道映射到4个传输单元上。图5c是根据本发明实施例的资源映射图的再一例的示意图。具体地,图5c给出了将控制信道映射到4个传输单元上的示意图。假设网络设备将第一控制信道映射到传输单元TEa、TEb、TEc和TEd上,网络设备在映射所述第一控制信道时,先占用TEa在每个PRB内的第1个RE,再占用TEb在每个PRB内的第1个RE,再占用TEc在每个PRB内的第1个RE,再占用TEd在每个PRB内的第1个RE;再占用TEa在每个PRB内的第2个RE,再占用TEb在每个PRB内的第2个RE,再占用TEc在每个PRB内的第2个RE,再占用TEd在每个PRB内的第2个RE;以此类推,直至将TEa、TEb、TEc和TEd包括的所有RE占用。图5c中每个RE上的编号表示控制信道占用传输单元TEa、TEb、TEc和TEd中的RE的顺序。
图4b、图4c结构下映射方式和图4a类似,不再赘述。需要说明的是,当传输单元映射到2个符号时,传输单元的第i组RE和第i+1组RE的映射顺序可以是先时域后频域,也可以是先频域后时域,本发明对此并不限定。
网络设备按这种方式映射,导致一个控制信道映射到不同聚合等级对应的1个或多个传输单元中的方式均不相同,从而使终端设备通过盲检可以确定用于传输控制信道的传输单元。
需要说明是,本方法可以和上述控制信道映射到传输单元的4种映射方式中的任意一种结合。例如,假设M=4,若网络设备按照编号顺序的方式进 行映射,图4a中的TEa为传输单元0,TEb为传输单元1,TEc为传输单元2,TEd为传输单元3;若网络设备按照编号逆序的方式进行映射,图4a中的TEa为传输单元3,TEb为传输单元2,TEc为传输单元1,TEd为传输单元0。
还需要说明的是,上述映射方式1和本方法结合,也可以使终端设备通过盲检可以确定用于传输控制信道的传输单元。
另外,本发明实施例的方法控制信道映射到传输单元中的RE时进行交织,可以使一个传输单元中包括不同的编码后的调制符号,从而得到分集增益。
(五)隐式指示未被占用的传输单元用于sPDSCH传输
以上,描述了网络设备将第一控制信道映射到M个第一传输单元上。其中,若第一控制信道用于调度下行数据的发送,即网络设备发送第一控制信道还发送数据信道,在数据信道包括F(F≥1)个传输单元时,该F个传输单元中没有被控制信道占用的传输单元用于传输下行数据信道。在现有技术中,网络设备通过向终端设备发送信令指示该数据信道对应的资源中用于传输下行数据信道的传输单元,信令开销较大。
为了解决以上问题,网络设备可以通过第一控制信道占用的第一传输单元隐式指示终端设备的数据区域包括的F个传输单元中哪些传输单元用于传输所述数据信道(需要说明的是,该终端设备的数据区域可以是指终端设备的数据信道对应的资源,即终端设备的数据信道所在PRB),能够减小信令开销。以下,详细描述网络设备隐式通知终端设备的几种方式。
作为一个可选地实施例,网络设备可以通过M个第一传输单元的编号(或最大编号)隐式通知终端设备数据信道所在PRB中包括的F个传输单元中第f个传输单元是否可以用于传输所述数据信道,f=1,…,F。
需要说明的是,本发明实施例的M个第一传输单元是用于传输第一控制信道的传输单元,该F个传输单元为终端设备的下行数据信道对应的资源包括的传输单元,其中,该F个传输单元和该M个第一传输单元可以包括相同的传输单元也可以包括不同的传输单元。
具体地,传输单元和编号具有一一对应的关系。即M个第一传输单元一一对应M个编号,F个传输单元一一对应F个编号。若M个第一传输单元中第一传输单元A的编号与F个传输单元中编号为B的传输单元的编号 相同,说明第一传输单元A和传输单元B为同一个传输单元。网络设备和终端设备可以约定控制信道在占用传输单元时,按照编号从小大到的顺序进行占用。例如,假设第一控制信道对应的M个编号包括编号S,可以说明F个传输单元中编号为1-S中的传输单元被占用。因此,在假设所述M个第一传输单元对应的M个编号中编号最大为k时,可以包括以下几种情况:
(1)F个传输单元中有a个传输单元的编号小于k,可以说明该a个传输单元中每个传输单元均被第一控制信道(也可能是其他控制信道,例如其他用户设备的控制信道)占用,因此该a个传输单元中的每个传输单元均不会用于传输数据信道,其中,a≥0。
(2)F个传输单元中传输单元C的编号等于k,可以说明该传输单元C被第一控制信道占用,因此该传输单元C不会用于传输数据信道。
(3)F个传输单元中至少一个传输单元的编号大于k,该F个传输单元中编号大于k的传输单元为第二传输单元,该至少一个第二传输单元中每个第二传输单元可以用于传输数据信道。
因此,终端设备接收到所述第一控制信道之后,可以根据第一控制信道对应的M个第一传输单元的编号(或最大编号),确定F个传输单元中编号大于编号k的至少一个第二传输单元可以用于传输所述数据信道,以便于终端设备可以正确接收所述数据信道,避免出现数据速率匹配错误。该方案简单易操作,能够节省信令开销,提高资源利用率。
需要说明的是,这里的“第一传输单元”、“第二传输单元”、“第一控制信道”等是为了便于理解和说明而做的称呼,而不应对本发明构成任何限定。M个第一传输单元和F个终端设备数据信道所在PRB中包括的传输单元可以包括相同的传输单元,也可以不包括相同的传输单元,后续会做详细说明。
以上描述了网络设备可以通过传输单元的编号隐式指示数据信道对应的资源中能够用于传输数据信道的传输单元。其中,若数据信道对应的资源包括第二传输单元,该第二传输单元可以不用于传输控制信道。
换句话说,所述M个第一传输单元对应的M个编号中编号最大为k,所述F个传输单元不包括编号为k的第一传输单元。即第一控制信道对应的编号最大的第一传输单元不在所述数据信道对应的资源上。
本方案不限定终端设备的数据信道对应的F个传输单元中一定要包括用于传输第一控制信道的传输单元,传输第一控制信道的M个第一传输单 元可以与数据信道对应的资源分离,能够提高网络设备分配资源的灵活性。
本方案在允许一个终端设备的数据信道所在PRB中包括的传输单元承载另一个终端设备的控制信道的情况下,将该终端设备的控制信道承载在和该终端设备的数据信道不同的PRB上,增强了调度的灵活性。
需要说明的是,系统中传输单元的个数和编号是网络设备和终端设备都知道的。终端设备可以通过盲检的方式确定某个编号对应的传输单元是否用于传输自己的控制信道,进而获知所述第一控制信道对应的传输单元的编号。
可选地,在本发明实施例中,网络设备在为多个终端设备分配控制信道的传输单元时可以不连续分配。图6是根据本发明实施例的控制信道资源分配的示意图。如图6所示,在一个sTTI内传输单元的个数和编号可以是提前预定义的。在目标sTTI内,网络设备调度了4个UE的下行传输。其中,网络设备将UE1的第一控制信道映射到编号为3的第一传输单元,UE1的数据信道所在PRB中包括编号为0和2的传输单元,不包括编号大于3的第二传输单元,即UE1的数据信道占用资源中不包括传输单元。网络设备将UE2的第一控制信道映射到编号为2的第一传输单元,UE2的数据信道所在PRB中包括编号为1和4的传输单元,其中传输单元4的编号大于2,可用于数据信道传输;将UE3的第一控制信道映射到编号为1的第一传输单元,UE3的数据信道所在PRB中没有传输单元;将UE4的第一控制信道映射到编号为5的第一传输单元,UE4的数据信道所在PRB中包括编号为3和5的传输单元,表明UE4的数据信道占用资源中不包括传输单元。
因此,本发明实施例的方法,不限定数据信道的资源包括传输单元一定要用于传输第一控制信道,该映射方式能够提高网络设备资源分配的灵活性。进一步地,本发明实施例的方法网络设备可以灵活配置第一控制信道占用的资源位置和数据信道占用的资源位置,例如,第一控制信道占用的资源和数据信道占用的资源可以相邻。
(六)DMRS解调的sPDCCH
作为一个可选的另一实施例,第一控制信道包括基于DMRS解调的控制信道。终端设备在检测基于DMRS解调的第一控制信道的过程中,需要先确定第一控制信道的天线端口。可选地,网络设备可以通过多种方式使终端设备获知所述第一控制信道对应的天线端口。方式1,网络设备可以通过 物理层信令或高层信令向终端设备发送用于指示所述第一控制信道对应的天线端口的指示信息。方式2,天线端口和传输单元具有对应关系,网络设备通过传输第一控制信道的第一传输单元隐式指示终端设备所述第一控制信道对应的天线端口,例如,编号为偶数的传输单元对应的天线端口为端口7,编号为奇数的传输单元对应的天线端口为端口8。
可选地,终端设备可以通过数据信道使用的天线端口和第一控制信道使用的天线端口确定该数据信道所在PRB上的传输单元是否可用于数据信道传输。具体地,如果数据信道使用的天线端口包括数据信道所在PRB上的传输单元上使用的天线端口,那么数据信道和数据信道所在PRB上的传输单元使用相同的DMRS天线端口解调,在这种情况下,未被用于控制信道传输的传输单元可用于数据信道传输。举例来说,数据信道的天线端口为端口7和8,数据信道占用的PRB中包括的至少一个第三传输单元对应的天线端口为端口8且该至少一个第三传输单元未被控制信道占用,那么该至少一个第三传输单元可用于数据信道传输。
图7是根据本发明实施例的资源映射图的再一例的示意图。进一步地,图7具体是根据数据信道的天线端口和传输单元的天线端口确定用于数据传输的传输单元的示意图。如图7所示,数据信道区域内包括6个传输单元,其中,2个传输单元用于传输控制信道。在剩余的4个传输单元中包括2个第三传输单元A和2个第三传输单元B,其中,第三传输单元A对应的天线端口为7,第三传输单元B对应的天线端口为8。数据信道对应的天线端口为7和8。由于解调该数据信道和传输单元的DMRS相同,第三传输单元A和第三传输单元B可用于该数据信道传输。
因此,本发明实施例的方法,可以通过数据信道使用的天线端口和数据信道所在PRB上的传输单元使用的天线端口来确定该数据信道对应的资源包括的传输单元中哪些传输单元可以用于数据传输,该方法能够节省信令开销,且操作简单易于实现。
作为本申请可选地的又一例,网络设备可以通过数据信道占用的PRB中包括的传输单元对应的天线端口和M个第一传输单元的编号隐式指示终端设备哪些传输单元能够用于传输数据信道。
由上述描述可知,当数据信道的天线端口包括数据信道占用的PRB中的传输单元对应的天线端口且该传输单元未被控制信道占用,那么该传输单 元可用于数据信道传输,因此可以通过传输单元对应的天线端口确定F个传输单元中用于传输数据信道的至少一个第三传输单元。
例如,M个第一传输单元的编号包括2和3,数据信道的天线端口为端口7,数据信道占用的PRB中的F个传输单元的编号包括0、1和4,其中,编号为0的传输单元对应的天线端口也为端口7,编号为1的传输单元对应的天线端口为端口8。虽然编号0小于编号3,但是由于编号为0的传输单元和数据信道对应相同的天线端口,即该编号为0的传输单元对应的DMRS上携带和所述数据信道相同的预编码信息,因此,该编号为0的传输单元上可用于传输所述数据信道。编号为1的传输单元对应的天线端口和数据不同,且编号小于3,不能用于传输所述数据信道。由于编号4大于编号3说明编号为4的传输单元可用于传输所述数据信道。
可选地,网络设备将调度sPDSCH传输的sPDCCH映射到该sPDSCH所在PRB中包括的传输单元上。可选地,如果一个终端设备同时有UL Grant和DL Grant,网络设备将该UL Grant和DL Grant分别对应的sPDCCH都映射到该sPDSCH所在PRB中包括的传输单元上。这种方式可以使sPDSCH和sPDCCH共用相同的DMRS,从而节省DMRS开销。
应理解,在调度过程中,可能出现终端设备1被调度的sPDSCH所在PRB中的传输单元资源不够的情况,或者,被调度的sPDSCH所在PRB中不包括传输单元的情况,或者,仅有上行数据发送需求而没有下行数据接收需求的情况。
可选地,网络设备确定第一终端设备的数据信道区域的至少一个第四传输单元用于传输第二终端设备的第三控制信道,其中,所述第一终端设备的数据信道对应的天线端口和所述第三控制信道对应的天线端口不同,且,所述第一终端设备的数据信道的传输层数为1。换句话说,DMRS的天线端口资源是有限的,网络设备在进行调度的时候,如果需要将一个终端设备的控制信道调度到另一个终端设备的数据信道区域,网络设备优先将该终端设备的控制信道调度到数据传输层数为1层的终端设备的数据信道区域。
举例来说,网络设备将该终端设备1对应的DL Grant或UL Grant映射到终端设备2的数据信道所在PRB中包括的编号较小的传输单元上。因此,终端设备1的sPDCCH和终端设备2的sPDCCH和/或sPDSCH可能位于相同的PRB,即终端设备1的DMRS和终端设备2的DMRS可能位于相同的 PRB。为了节省DMRS的RE开销,可以将终端设备1的用于sPDCCH解调的DMRS和终端设备2的用于sPDCCH和/或sPDSCH解调的DMRS通过码分复用,即终端设备1的DMRS和终端设备2的DMRS使用不同的天线端口。由于DMRS的天线端口资源有限,优选地,终端设备1的DMRS和数据传输层数较低的终端设备的DMRS通过码分复用。例如,终端设备1的DMRS优先和只传输1层数据信道的终端设备的DMRS通过码分复用。
可选地,第一控制信道对应的天线端口用于终端设备确定第一数据信道对应的天线端口。
可选地,作为一例,数据信道和第一控制信道可以使用相同的天线端口。即网络设备为第一控制信道和数据信道配置相同的天线端口。例如,若第一控制信道对应的天线端口为port7,数据信道对应的天线端口也为port7。
可选地,作为另一例,数据信道的天线端口与第一控制信道的天线端口和RANK相关。其中,天线的层(Layer)数定义为MIMO信道矩阵的秩(Rank),也就是独立的虚拟信道的数目。例如,第一控制信道对应的天线端口为port7,RANK=2,说明数据信道的天线端口有两个,分别为port7和port8。若RANK=1,说明数据信道的天线端口仅有一个为port7。
因此,本发明实施例的方法,通过第一控制信道对应的天线端口,确定数据信道对应的天线端口,无需额外信令指示,能够减小信令开销。
需要说明是,在第一控制信道对应的天线端口为port7,且RANK=2的时候,对应的天线端口是port7和port8还是port7和port6可以由协议约定或其他方式进行指示,本发明实施例在此不做限定。
可选地,在终端设备的下行数据接收过程中,在获取数据信道之前首先要解调第一控制信道,若第一控制信道为通过DMRS解调的控制信道,终端设备可以至少通过以下两种方式中的至少一种提高解调第一控制信道的效率:
方式一、M个第一传输单元位于第一DMRS的符号上
如前所述,对不同长度的sTTI的sPDCCH使用相同的设计,有利于网络设备调度和终端设备盲检测。而相同的sPDCCH的设计受限于时域长度最短的sTTI。即系统中如果支持2符号的sTTI,那么sPDCCH在时域上占用的符号数最好不要超过2。因此,可选地,当一个sTTI内发送用于解调第一控制信道的第一DMRS时,用于发送第一控制信道的传输单元位于该第一 DMRS占用的符号上。举例来说,假设该第一DMRS位于符号5和符号6,那么包括符号5和符号6的sTTI内的第一控制信道占用的传输单元可以位于符号5,或者符号6,或者符号5和6。
本发明实施例的方法,第一传输单元位于第一DMRS占用的符号上,可以统一不同sTTI长度下的控制信道设计,有利于网络设备调度和终端设备盲检测。
另外,第一DMRS和第一控制信道在时域上越接近越有利于终端设备快速根据第一DMRS解调该第一控制信道。在所述第一DMRS占用的时域资源包括所述M个第一传输单元对应的时域资源时(换句话说,在所述第一DMRS占用的时域资源包括所述控制信道占用的时域资源时),终端设备能够在获取第一DMRS的同时获取第一控制信道,以便于高效率地根据第一DMRS对第一控制信道进行解调。特别是当sTTI长度为7个符号时,本方法能明显地减小终端设备的处理时延。
需要说明的是,M个第一传输单元位于第一DMRS的符号上可以至少包括以下两种情况:
情况(1)M个第一传输单元(或第一控制信道)对应的时域资源和第一DMRS占用的时域资源相同且频域资源不同。例如,M个第一传输单元和第一DMRS均位于sTTI(或TTI)的第一个或前两个符号上,但是M个第一传输单元和第一DMRS占用不同的RE。
情况(2)M个第一传输单元对应的时域资源是第一DMRS占用的时域资源的子集。例如,M个第一传输单元位于sTTI(或TTI)的第一个符号上,第一DMRS位于该sTTI(或TTI)的前两个符号上。
因此,本发明实施例的方法还能够提高终端设备根据第一DMRS解调第一控制信道的效率。
方式二、根据多个DMRS解调第一控制信道。
具体而言,网络设备在发送第一控制信道之前可能还会发送第二控制信道,若第一控制信道和第二控制信道位于相同的PRB,均是基于DMRS解调的控制信道且发送给同一终端设备,网络设备可以使用相同的天线端口和相同的预编码发送第一控制信道和第二控制信道,终端设备可以根据第二控制信道的第二DMRS和第一控制信道的第一DMRS对第一控制信道进行解调,从而提高DMRS的信道估计性能,进而提高终端设备解调第一控制信 道的成功概率。
例如,网络设备向终端设备先发送第二控制信道,再发送第一控制信道,若两个控制信道使用的频率资源相同,为了使终端设备可以联合第二控制信道的第二DMRS和第一控制信道的第一DMRS解调第一控制信道,网络设备使用相同的天线端口和相同的预编码发送第二控制信道和第一控制信道。
需要说明的是,终端设备只能在网络设备许可的情况下做出上述假设。可选地,网络设备为终端设备配置用于指示是否可以假设连续的2个或多个同频、同天线端口的DMRS使用相同的预编码的信令。
又例如,在信道传输过程中,若终端设备收到一个子帧内频域位置相同的两个sTTI(或时域距离不远的两个sTTI),且该两个sTTI使用了相同的天线端口传输控制信道(和/或数据信道),在网络设备许可的情况下终端设备可以假设该两个sTTI的天线端口使用的预编码相同,终端设备可以联合前一个sTTI的DMRS和当前sTTI的DMRS对当前的控制信道(和/或数据信道)进行信道估计。
需要说明的是,本发明实施例的方法中,第一控制信道可以是DL Grant或UL Grant,第二控制信道也可以是DL Grant或UL Grant。
本发明实施例的方法,终端设备联合时域上位置不同的两个DMRS做信道估计,可以提高信道估计性能。
需要说明的是,本发明实施例中各个实施例在不矛盾的情况下可以相互引用。
以上结合图1至图7描述了本发明实施例的传输控制信道的方法,以下结合图8至图11描述本发明实施例的终端设备和网络设备。
图8是根据本发明实施例的网络设备的一例的示意性框图,如图8所示,所述网络设备300包括:
处理模块310,用于将第一控制信道映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,M≥1;
发送模块320,用于向终端设备发送所述第一控制信道。
可选地,所述处理模块310具体用于:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
可选地,所述M个第一传输单元中每个第一传输单元包括T组资源单 元RE;所述处理模块310具体用于:在映射所述第一控制信道时,先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
可选地,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
可选地,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
可选地,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
可选地,所述发送模块320还用于:向所述终端设备发送第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
可选地,所述M个第一传输单元位于所述第一DMRS占用的符号上。
可选地,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
可选地,所述向所述终端设备发送所述第一控制信道之前,所述发送模块320还用于:向所述终端设备发送第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码,以使所述终端设备根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
应理解,这里的网络设备300以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,网络设备300可以具体为上述实施例通信方法中的终端设备,网络设备300可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图9是根据本发明实施例的终端设备的一例的示意性框图。如图9所示, 所述终端设备400包括:
通信模块410,用于接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,其中,传输单元为用于传输控制信道的最小单元,M≥1;
通信模块410还用于根据所述第一控制信道接收所述数据信道,或根据所述第一控制信道发送所述数据信道。
需要说明的是,本发明实施例的是通信模块410可以对应于收发模块,即该通信模块可以用于收发信号。进一步地,该通信模块410可以应对与实体装置中的收发器。
可选地,所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
可选地,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述第一控制信道被映射到M个编号连续的第一传输单元上的映射方式为先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
可选地,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
可选地,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
可选地,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
可选地,所述通信模块410还用于:接收所述网络设备发送的第一DMRS,所述第一DMRS用于解调所述第一控制信道。
可选地,所述M个第一传输单元位于所述第一DMRS占用的符号上。
可选地,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
可选地,在所述通信模块410接收所述第一控制信道之前,所述通信模块410还用于:接收所述网络设备发送的第二控制信道和用于解调所述第二 控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码;所述终端设备400还包括处理模块,用于根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
应理解,这里的终端设备400以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,终端设备400可以具体为上述实施例通信方法中的终端设备,终端设备400可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图10是根据本发明实施例的网络设备500的另一例的示意性框图,如图10所示,所述网络设备500包括:收发器510、存储器520和处理器530。存储器520,用于存放程序指令。处理器530可以调用存储器520中存放的程序指令。处理器530可以控制收发器510接收或发送信息,可选地,网络设备500还包括将处理器530、存储器520和收发器510互连的总线系统640,其中,
处理器530,用于将第一控制信道映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,M≥1;
收发器510,用于向终端设备发送所述第一控制信道。
可选地,所述处理器530具体用于:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
可选地,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE;所述处理器530具体用于:在映射所述第一控制信道时,先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
可选地,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
可选地,所述数据信道对应的资源占用的物理资源块PRB上包括至少 一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
可选地,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
可选地,所述收发器510还用于:向所述终端设备发送第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
可选地,所述M个第一传输单元位于所述第一DMRS占用的符号上。
可选地,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
可选地,在收发器510向所述终端设备发送所述第一控制信道之前,所述收发器510还用于:向所述终端设备发送第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码,以使所述终端设备根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
应理解,网络设备500可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备对应的各个步骤和/或流程。可选地,该存储器520可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器530可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与网络设备对应的各个步骤。
图11是根据本发明实施例的终端设备的另一例的示意性框图。如图11所示,所述终端设备600包括:收发器610、存储器620和处理器630。存储器620,用于存放程序指令。处理器630可以调用存储器620中存放的程序指令。处理器630可以控制收发器610接收或发送信息,可选地,终端设备600还包括将处理器630、存储器620和收发器610互连的总线系统640,其中,处理器630用于控制收发器610:
接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,其中,传输单元为用于传输控制信道的最小单元,M≥1;
处理器:还用于控制收发器根据所述第一控制信道接收所述数据信道,或根据所述第一控制信道发送所述数据信道。
可选地,所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
可选地,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述第一控制信道被映射到M个编号连续的第一传输单元上的映射方式为先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
可选地,所述数据信道为下行数据信道;所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
可选地,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
可选地,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
可选地,所述收发器610还用于:接收所述网络设备发送的第一DMRS,所述第一DMRS用于解调所述第一控制信道。
可选地,所述M个第一传输单元位于所述第一DMRS占用的符号上。
可选地,所述数据信道为下行数据信道;所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
可选地,在所述收发器610还用于接收所述第一控制信道之前,所述收发器610还用于:接收所述网络设备发送的第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码;所述处理器630用于根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
应理解,终端设备600可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备对应的各个步骤和/或流程。可选地,该存储器620可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器 还可以存储设备类型的信息。该处理器630可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与网络设备对应的各个步骤。
在本发明实施例中,处理器可以是中央处理器(英文:central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
该收发器能够实现移动终端设备与其他设备或通信网络之间的通信。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。为便于表示,图中仅用一条粗线表示总线系统,但并不表示仅有一根总线或一种类型的总线。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存10在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例不再一一赘述。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种传输控制信道的方法,其特征在于,所述方法包括:
    将第一控制信道映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,传输单元为用于传输控制信道的最小单元,M≥1;
    向终端设备发送所述第一控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述将第一控制信道映射到M个编号连续的第一传输单元上,包括:
    将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
  3. 根据权利要求1或2所述的方法,其特征在于,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述将第一控制信道映射在M个第一传输单元上,包括:
    网络设备在映射所述第一控制信道时,先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述数据信道为下行数据信道;
    所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
  5. 根据权利要求4所述的方法,其特征在于,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一DMRS,其中,所述第一DMRS用于解调所 述第一控制信道。
  8. 根据权利要求7所述的方法,其特征在于,所述M个第一传输单元位于所述第一DMRS占用的符号上。
  9. 根据权利要求7或8所述的方法,其特征在于,所述数据信道为下行数据信道;
    所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述向所述终端设备发送所述第一控制信道之前,所述方法还包括:
    向所述终端设备发送第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码,以使所述终端设备根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
  11. 一种传输控制信道的方法,其特征在于,所述方法包括:
    接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,传输单元为用于传输控制信道的最小单元,M≥1;
    根据所述第一控制信道接收或发送所述数据信道。
  12. 根据权利要求11所述的方法,其特征在于,所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
  13. 根据权利要求11或12所述的方法,其特征在于,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述第一控制信道被映射到M个编号连续的第一传输单元上的映射方式为先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述数据信道为下行数据信道;
    所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个 第二传输单元对应的编号大于k。
  15. 根据权利要求14所述的方法,其特征在于,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
  17. 根据要求11至16中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
  18. 根据权利要求17所述的方法,其特征在于,所述M个第一传输单元位于所述第一DMRS占用的符号上。
  19. 根据权利要求17或18所述的方法,其特征在于,所述数据信道为下行数据信道;
    所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,在所述接收网络设备发送的第一控制信道之前,所述方法还包括:
    接收所述网络设备发送的第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码;
    所述接收网络设备发送的第一控制信道,包括:
    根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
  21. 一种网络设备,其特征在于,所述网络设备包括:
    处理模块,用于将第一控制信道映射到M个编号连续的第一传输单元上,传输单元为用于传输控制信道的最小单元,所述第一控制信道用于调度数据信道,M≥1;
    发送模块,用于向终端设备发送所述第一控制信道。
  22. 根据权利要求21所述的网络设备,其特征在于,所述处理模块具体用于:将所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE;
    所述处理模块具体用于:在映射所述第一控制信道时,先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
  24. 根据权利要求21至23中任一项所述的网络设备,其特征在于,所述数据信道为下行数据信道;
    所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
  25. 根据权利要求24所述的网络设备,其特征在于,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
  26. 根据权利要求21至25中任一项所述的网络设备,其特征在于,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
  27. 根据权利要求21至26中任一项所述的网络设备,其特征在于,所述发送模块还用于:向所述终端设备发送第一DMRS,其中,所述第一DMRS用于解调所述第一控制信道。
  28. 根据权利要求27所述的网络设备,其特征在于,所述M个第一传输单元位于所述第一DMRS占用的符号上。
  29. 根据权利要求27或28所述的网络设备,其特征在于,所述数据信道为下行数据信道;
    所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
  30. 根据权利要求27至29中任一项所述的网络设备,其特征在于,所 述向所述终端设备发送所述第一控制信道之前,
    所述发送模块还用于:向所述终端设备发送第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码,以使所述终端设备根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
  31. 一种终端设备,其特征在于,所述终端设备包括:
    通信模块,用于接收网络设备发送的第一控制信道,所述第一控制信道被映射到M个编号连续的第一传输单元上,所述第一控制信道用于调度数据信道,其中,传输单元为用于传输控制信道的最小单元,M≥1;
    通信模块还用于根据所述第一控制信道接收所述数据信道,或根据所述第一控制信道发送所述数据信道。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第一控制信道映射到M个编号连续的第一传输单元上的顺序为先映射M个第一传输单元中编号最大的传输单元。
  33. 根据权利要求31或32所述的终端设备,其特征在于,所述M个第一传输单元中每个第一传输单元包括T组资源单元RE,所述第一控制信道被映射到M个编号连续的第一传输单元上的映射方式为先占用所述M个第一传输单元中每个第一传输单元的第i组RE,再占用每个第一传输单元的第i+1组RE,其中,T≥2,i的取值为1至T。
  34. 根据权利要求31至33中任一项所述的终端设备,其特征在于,所述数据信道为下行数据信道;
    所述M个编号连续的第一传输单元中编号最大为k,所述数据信道对应的资源中包括至少一个第二传输单元,所述至少一个第二传输单元中的每个第二传输单元对应的编号大于k。
  35. 根据权利要求34所述的终端设备,其特征在于,所述数据信道对应的资源占用的物理资源块PRB上包括至少一个编号小于k的传输单元且不包括所述编号为k的第一传输单元。
  36. 根据权利要求31至35中任一项所述的终端设备,其特征在于,所述M个第一传输单元中的每个第一传输单元位于N个PRB上,N≥2,所述M个第一传输单元中的至少一个第一传输单元在所述N个PRB中至少两个PRB上的位置不同。
  37. 根据要求31至36中任一项所述的终端设备,其特征在于,所述通信模块还用于:接收所述网络设备发送的第一DMRS,所述第一DMRS用于解调所述第一控制信道。
  38. 根据权利要求37所述的终端设备,其特征在于,所述M个第一传输单元位于所述第一DMRS占用的符号上。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述数据信道为下行数据信道;
    所述数据信道对应的资源中包括至少一个第三传输单元,所述数据信道对应的天线端口包括所述至少一个第三传输单元中每个第三传输单元对应的天线端口。
  40. 根据权利要求37至39中任一项所述的终端设备,其特征在于,在所述通信模块接收所述第一控制信道之前,所述通信模块还用于:接收所述网络设备发送的第二控制信道和用于解调所述第二控制信道的第二DMRS,其中,所述第一控制信道和所述第二控制信道使用相同的天线端口和预编码;
    所述终端设备还包括处理模块,用于根据所述第二DMRS和所述第一DMRS对所述第一控制信道进行解调。
PCT/CN2016/101362 2016-09-30 2016-09-30 传输控制信道的方法、网络设备和终端设备 WO2018058670A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2016/101362 WO2018058670A1 (zh) 2016-09-30 2016-09-30 传输控制信道的方法、网络设备和终端设备
BR112019006412A BR112019006412A2 (pt) 2016-09-30 2016-09-30 método de transmissão do canal de controle, dispositivo de rede e dispositivo terminal
EP16917420.8A EP3515024B1 (en) 2016-09-30 2016-09-30 Method of transmitting control channel, network device and terminal device
CN201680089702.9A CN109792413B (zh) 2016-09-30 2016-09-30 传输控制信道的方法、网络设备和终端设备
JP2019517850A JP2019534630A (ja) 2016-09-30 2016-09-30 制御チャネル送信方法、ネットワーク装置、及び端末装置
US16/370,563 US10680867B2 (en) 2016-09-30 2019-03-29 Control channel transmission method, network device, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101362 WO2018058670A1 (zh) 2016-09-30 2016-09-30 传输控制信道的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/370,563 Continuation US10680867B2 (en) 2016-09-30 2019-03-29 Control channel transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018058670A1 true WO2018058670A1 (zh) 2018-04-05

Family

ID=61763643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101362 WO2018058670A1 (zh) 2016-09-30 2016-09-30 传输控制信道的方法、网络设备和终端设备

Country Status (6)

Country Link
US (1) US10680867B2 (zh)
EP (1) EP3515024B1 (zh)
JP (1) JP2019534630A (zh)
CN (1) CN109792413B (zh)
BR (1) BR112019006412A2 (zh)
WO (1) WO2018058670A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897776B2 (en) * 2016-11-01 2021-01-19 Apple Inc. Downlink control information design with shorter TTI

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN101378306A (zh) * 2007-08-31 2009-03-04 华为技术有限公司 控制信道分配及ack/nack信道分配指示的方法和装置
CN101729455A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 一种盲检测方法、装置和系统
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波系统中下行控制信道资源分配方法及设备
WO2016119571A1 (en) * 2015-01-28 2016-08-04 Mediatek Inc. Control channel and data channel design for user equipment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383657B (zh) * 2007-09-05 2012-11-28 中兴通讯股份有限公司 一种下行信道控制信令的发送和接收方法及其装置
EP2456082B1 (en) 2007-10-29 2014-06-11 Panasonic Corporation Wireless communication base station apparatus, and wireless communication mobile station apparatus and control channel allocation method
US8238475B2 (en) * 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US8467799B2 (en) * 2009-08-20 2013-06-18 Samsung Electronics Co., Ltd. Method and system for assigning physical uplink control channel (PUCCH) resources
EP2378703A1 (en) 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
WO2012124981A2 (ko) 2011-03-14 2012-09-20 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2012169744A2 (ko) * 2011-06-08 2012-12-13 엘지전자 주식회사 무선통신 시스템에서의 정보 전송 방법 및 장치
AU2012337546B2 (en) * 2011-11-16 2017-01-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information in wireless communication systems
US9769806B2 (en) * 2012-01-17 2017-09-19 Texas Instruments Incorporated Resource configuration for EPDCCH
CN102711253B (zh) * 2012-03-21 2015-02-18 电信科学技术研究院 E-pdcch的资源映射方法及装置
CN106059738B (zh) * 2012-05-10 2019-11-26 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
CN104769871B (zh) * 2012-09-07 2018-02-02 三星电子株式会社 用于控制信道的控制信道元素的复用资源元素组
CN104770030A (zh) * 2012-11-02 2015-07-08 华为技术有限公司 一种信息传输方法、用户设备及基站
CN104219036B (zh) * 2014-09-30 2017-11-14 北京北方烽火科技有限公司 Epdcch盲检测方法、资源映射方法及装置
JP6475026B2 (ja) * 2015-01-27 2019-02-27 株式会社Nttドコモ 基地局、無線通信システム、および通信制御方法
US10111216B2 (en) * 2015-04-02 2018-10-23 Qualcomm Incorporated Reducing blind decoding in enhanced carrier aggregation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN101378306A (zh) * 2007-08-31 2009-03-04 华为技术有限公司 控制信道分配及ack/nack信道分配指示的方法和装置
CN101729455A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 一种盲检测方法、装置和系统
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波系统中下行控制信道资源分配方法及设备
WO2016119571A1 (en) * 2015-01-28 2016-08-04 Mediatek Inc. Control channel and data channel design for user equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CCE Allocation Scheme in PDCCH for Efficient Blind Detection", 3GPP TSG-RAN WG1 R1-074218, 12 October 2007 (2007-10-12), XP050107744 *
See also references of EP3515024A4 *

Also Published As

Publication number Publication date
EP3515024A1 (en) 2019-07-24
CN109792413A (zh) 2019-05-21
EP3515024B1 (en) 2021-11-03
US10680867B2 (en) 2020-06-09
BR112019006412A2 (pt) 2019-09-10
CN109792413B (zh) 2020-11-10
JP2019534630A (ja) 2019-11-28
EP3515024A4 (en) 2019-10-09
US20190229965A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US20240205935A1 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
CN111435897B (zh) 信息传输的方法和通信装置
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
CN102355325B (zh) 一种pucch资源映射的方法及装置
US9602255B2 (en) System and method for data channel transmission and reception
WO2018126777A1 (zh) Pdsch资源确定方法及装置、终端、基站和存储介质
US9807747B2 (en) Method of handling downlink control information and related communication device
US11039430B2 (en) Method and device for setting control and data channel transmission time in wireless communication system
WO2018171667A1 (zh) 一种信道传输方法及网络设备
CN109428680B (zh) 发送或接收上行数据的方法和装置
CN104662978A (zh) 资源分配方法及设备
WO2018010077A1 (zh) 传输数据的方法和终端设备
JP7386252B2 (ja) コンポーネントキャリア上の制御チャネルを取り扱うための技術
WO2017128296A1 (zh) 一种参考信号的传输方法、装置和系统
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
US9590770B2 (en) Method of handling hybrid automatic repeat request feedback and related communication device
WO2013166980A1 (zh) E-pdcch的传输方法、时频资源确定方法及装置
US9313006B2 (en) Methods and apparatus for resource element mapping
WO2018058670A1 (zh) 传输控制信道的方法、网络设备和终端设备
CN118235496A (zh) 对于侧行链路通信的调度
CN110547038B (zh) 通信系统
WO2021062824A1 (zh) 一种信息处理方法和通信设备
WO2020194264A1 (en) Methods and nodes for downlink intra-ue pre-emption
WO2021226970A1 (zh) 信号接收方法、装置和系统
WO2021016802A1 (zh) 控制信息的指示方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006412

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016917420

Country of ref document: EP

Effective date: 20190416

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019006412

Country of ref document: BR

Free format text: APRESENTE O COMPLEMENTO DO TEXTO EM PORTUGUES, ADAPTADO A NORMA VIGENTE, DO PEDIDO CONFORME DEPOSITO INTERNACIONAL INICIAL (RELATORIO DESCRITIVO E DESENHO, SE HOUVER), CONFORME DETERMINA A RESOLUCAO INPI PR NO 77/2013 DE 18/03/2013, ART. 5O E 7O.

ENP Entry into the national phase

Ref document number: 112019006412

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190329