WO2018058552A1 - 一种信息处理方法及其装置 - Google Patents

一种信息处理方法及其装置 Download PDF

Info

Publication number
WO2018058552A1
WO2018058552A1 PCT/CN2016/101137 CN2016101137W WO2018058552A1 WO 2018058552 A1 WO2018058552 A1 WO 2018058552A1 CN 2016101137 W CN2016101137 W CN 2016101137W WO 2018058552 A1 WO2018058552 A1 WO 2018058552A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal quality
coefficient
factor
target
controlled device
Prior art date
Application number
PCT/CN2016/101137
Other languages
English (en)
French (fr)
Inventor
黄宏升
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/101137 priority Critical patent/WO2018058552A1/zh
Priority to CN201680003567.1A priority patent/CN107087441B/zh
Publication of WO2018058552A1 publication Critical patent/WO2018058552A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences

Definitions

  • the present invention relates to the field of communications, and in particular, to an information processing method and apparatus therefor.
  • Remote control technology is a technology for remote control and monitoring of controlled devices. It is a comprehensive technology that uses automatic control technology, communication technology and computer technology. It generally refers to the technology of controlling remote controlled devices. Remote control technology has a wide range of applications in people's production and life, such as "unmanned aerial vehicles", which are unmanned aircraft operated by radio remote control equipment and self-contained program control devices.
  • the domestic drone market has been developed for nearly 40 years, from the initial military field to the consumer sector. At present, the domestic consumer drone market is hot, and the degree of recognition and demand of ordinary people for drones is gradually rising.
  • the remote control signal range of the drone is limited.
  • the remote control signal is monitored in real time, it is inevitable that an unexpected signal interruption will occur, causing the drone to be forced to interrupt the operation or even return automatically.
  • a safe flight area can be set.
  • the sphere can be set by using the fixed point as the center of the fixed point, and the sphere in the sphere as the safe and stable flight area, that is, the safe flight area. Doing so can reduce the probability of remote signal interruption to a certain extent.
  • the signal quality in the sphere area is not always good due to environmental factors in the area, and the method cannot accurately know the area in a region.
  • the signal quality at each location so if the drone enters a poor signal position in the sphere area, signal interruption is more likely to occur.
  • Embodiments of the present invention provide an information processing and apparatus for determining signal quality of a location by acquiring signal quality sampling information of a target area and using the signal quality sampling information.
  • the first aspect of the present invention provides an information processing method for a remote control system including a master device and a controlled device, including:
  • the line data is analyzed to obtain a signal quality coefficient corresponding to the predetermined signal quality influencing factor; the signal quality value of the target position is calculated according to the signal quality coefficient and the ground position coordinate of the target position, and the target position is in the target area.
  • the signal quality value comprises a signal to noise ratio SNR value.
  • a first embodiment of the first aspect of the present invention comprises:
  • the controlled device comprises a drone, an unmanned vehicle, an unmanned boat, an unmanned submarine or a remotely controlled robot.
  • the signal quality influencing factors include environmental factors, relative position factors, and/or attitude factors.
  • the signal quality influencing factor is the environmental factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor
  • the signal quality coefficient is an environmental factor coefficient
  • the second embodiment of the present invention includes:
  • a signal quality value of the target position is calculated according to the environmental factor coefficient and the ground position coordinate of the target position.
  • the first signal quality sampling information is that the controlled device is in the environmental factor and the relative If the signal is obtained under the influence of the position factor, the signal quality coefficient is the environmental factor coefficient and the relative position factor coefficient.
  • the specific area is an area that is not affected by the environmental factor, and acquires a signal quality value and a relative position coordinate of each of the plurality of positions in the specific area to obtain a second signal quality.
  • Sampling information, the relative position coordinate is a position coordinate of the controlled device relative to the main control device; performing data analysis according to the second signal quality sampling information to obtain the relative position factor coefficient; then according to the signal quality coefficient and the target
  • Calculating the signal quality value of the target position according to the ground position coordinate of the location includes: according to the environmental factor coefficient, the relative position coefficient, the ground position coordinate of the target position, the ground position coordinate of the master device, and the ground position of the controlled device The coordinates calculate the signal quality value of the target position.
  • the first signal quality sampling information is that the controlled device is in the environment.
  • the factor obtained by the factor, the relative position factor and the attitude factor are the environmental factor coefficient, the relative position factor coefficient and the attitude factor coefficient.
  • the specific area is an area that is not affected by the environmental factor, and acquires a signal quality value of each of the plurality of locations in the specific area to obtain second signal quality sampling information;
  • the first signal quality sampling information is subjected to data analysis to obtain the relative position factor coefficient; when the controlled device is fixed at a position, obtaining a signal quality value in each of the plurality of postures of the controlled device, a third signal quality sampling information; performing data analysis according to the third signal quality sampling information to obtain the attitude factor coefficient; and calculating the signal quality value of the target position according to the signal quality coefficient and the ground position coordinate of the target position, including:
  • the environmental factor coefficient, the relative position coefficient, the attitude factor coefficient, the ground position coordinate of the target position, the ground position coordinate of the master device, and the posture of the controlled device calculate a signal quality value of the target position.
  • a fifth embodiment of the first aspect of the present invention includes:
  • a second aspect of the present invention provides an information processing apparatus for a remote control system including a main control device and a controlled device, including:
  • a first acquiring module configured to acquire a signal quality value of each of the multiple locations in the target area when the controlled device enters the target area, to obtain first signal quality sampling information
  • a first processing module configured to perform data analysis according to the first signal quality sampling information, to obtain a signal quality coefficient corresponding to a preset signal quality influencing factor
  • the calculation module calculates a signal quality value of the target position according to the signal quality coefficient and the ground position coordinate of the target position, and the target position is in the target area.
  • the first embodiment of the first aspect of the present invention includes:
  • a first acquiring submodule configured to acquire transmit power and received power of each of the multiple locations in the target area
  • a calculation submodule for transmitting work according to each of a plurality of locations in the target area The rate and received power are calculated, and the SNR value of each of the plurality of locations in the target area.
  • the signal quality influencing factor is the environmental factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor.
  • the signal quality coefficient is an environmental factor coefficient
  • the second embodiment of the second aspect of the present invention includes:
  • the first calculation submodule is configured to calculate a signal quality value of the target location according to the environmental factor coefficient and ground location coordinates of the target location.
  • the first embodiment of the second aspect when the signal quality influencing factor is the environmental factor and the relative position factor, the first signal quality sampling information is that the controlled device is in the environment And the signal quality coefficient is an environmental factor coefficient and a relative position factor coefficient, and the third embodiment of the second aspect of the present invention includes:
  • a second acquiring module configured to: when the controlled device enters a specific area, the specific area is an area that is not affected by the environmental factor, and acquire a signal quality value and a relative position of each of the multiple positions in the specific area Coordinates, obtaining second signal quality sampling information, where the relative position coordinate is a position coordinate of the controlled device relative to the main control device;
  • a second processing module configured to perform data analysis according to the first signal quality sampling information, to obtain the relative position factor coefficient
  • the calculation module includes:
  • a second calculating submodule configured to calculate a signal of the target position according to the environmental factor coefficient, the relative position coefficient, the ground position coordinate of the target position, the ground position coordinate of the master device, and the ground position coordinate of the controlled device Quality value.
  • the first embodiment of the second aspect when the signal quality influencing factor is the environmental factor, the relative position factor, and the attitude factor, the first signal quality sampling information is the controlled device.
  • the signal quality coefficient is an environmental factor coefficient, a relative position factor coefficient, and an attitude factor coefficient, which are obtained under the influence of the environmental factor, the relative position factor, and the attitude factor, and the fourth embodiment of the second aspect of the present invention ,include:
  • a second acquiring module configured to: when the controlled device enters a specific area, the specific area is an area that is not affected by the environmental factor, and obtain a signal quality value of each of the multiple positions in the specific area, and obtain a a second processing module, configured to perform data analysis according to the first signal quality sampling information to obtain the relative position factor coefficient; and a third acquiring module, configured to When the control device is fixed at a position, acquiring a signal quality value in each of the plurality of postures of the controlled device to obtain third signal quality sampling information; and a third processing module, configured to sample the third signal quality according to the third signal quality The information is analyzed by data to obtain the attitude factor coefficient;
  • the calculation module includes:
  • a third calculating submodule configured to calculate the target according to the environmental factor coefficient, the relative position coefficient, the attitude factor coefficient, the ground position coordinate of the target position, the ground position coordinate of the master device, and the posture of the controlled device The signal quality value of the location.
  • a fifth embodiment of the second aspect of the present invention includes:
  • a judging module configured to determine whether a signal quality value of the target location is higher than a threshold; and a determining module, configured to determine, if the judging module is yes, a sphere with a threshold length of a radius as a signal security region.
  • the third aspect of the present invention further provides an information processing apparatus for a remote control system including a main control device and a controlled device, including:
  • transceiver a transceiver, a memory, a processor, and a bus; the transceiver, the memory, and the processor are connected by a bus; the transceiver is configured to acquire each of a plurality of locations in the target area when the controlled device enters the target area a signal quality value, the first signal quality sampling information is obtained; the memory is configured to store a first signal quality sampling information of the target area acquired by the transceiver; the processor is configured to perform data according to the first signal quality sampling information Performing analysis to obtain a signal quality coefficient corresponding to a predetermined signal quality influencing factor; the processor is further configured to calculate a signal quality value of the target location according to the signal quality coefficient and a ground position coordinate of the target location, where the target location is in the target region Among them.
  • the position coordinate of the target position in the area calculates the signal quality value of the target position, so when the controlled device is ready to be active at a certain position in the target area, the signal quality value of the position and the surrounding multiple positions can be calculated in advance. It is predicted whether the signal ready to enter the position and the nearby is stable enough. If the signal at the location and nearby is sufficiently stable, the input is selected. If it is not stable enough, the selection is not entered, thereby greatly reducing the probability of signal interruption.
  • FIG. 1 is a schematic diagram of a remote control device system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of an information processing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another embodiment of an information processing apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of an information processing apparatus according to an embodiment of the present invention.
  • Embodiments of the present invention provide an information processing and apparatus for determining signal quality of a location by acquiring signal quality sampling information of a target area and using the signal quality sampling information.
  • the remote control device system including the main control device and the controlled device, mainly uses a remote control technology to remotely control and monitor the controlled device at the main control device end.
  • Remote control technology is a comprehensive technology that uses automatic control technology, communication technology and computer technology. It generally refers to the technology of controlling remote controlled devices.
  • Remote control technology has a wide range of applications in people's production and life. Among them, the more popular "airborne drone" in recent years is a non-manned aircraft used for photographing operated by radio remote control equipment and self-provided program control device.
  • the domestic drone market has been developed for nearly 40 years, from the initial military field to the consumer sector. At present, the domestic consumer drone market is hot, and the degree of recognition and demand of ordinary people for drones is gradually rising.
  • a safe flight area can be set. Specifically, it can be set to a fixed point as a center, the fixed point is generally a master control device, and the preset flying radius is used as a sphere, and the sphere in the sphere is used as a safe and stable flight area, that is, a safe flight area.
  • the core idea of the present invention is that, when the controlled device enters the target area, the signal quality sampling information of the target area is acquired, and data analysis is performed according to the signal quality sampling information, thereby obtaining a signal quality corresponding to the preset signal quality influencing factor.
  • a coefficient the signal quality value of the target position is calculated according to the signal quality coefficient and the position coordinate of the target position in the target area, so when the controlled device is ready to be active at a certain position in the target area, the position may be pre-calculated as well
  • the signal quality value of multiple locations around predict whether the signal ready to enter the location and nearby is stable enough. If the signal at the location and nearby is sufficiently stable, it will choose to enter. If it is not stable enough, then choose not to enter. Significantly reduce the probability of signal interruption.
  • FIG. 1 is a remote control device system according to an embodiment of the present invention.
  • the remote control device system includes a main control device and a controlled device, wherein the main control device performs remote control and monitoring on the controlled device.
  • the control of the controlled device by the master device is It utilizes automatic control technology, communication technology and computer technology, and it has important applications in various sectors of the national economy, especially aerospace and missile nuclear weapons.
  • the controlled equipment can be fixed, such as an automated hydropower station; or it can be active, such as drones, satellites, ballistic missiles, and the like.
  • the controlled device in the remote control device system mentioned in the embodiment of the present invention refers to an active controlled device.
  • the remote control system generally has a monitoring function and is actually a telemetry remote control system.
  • the generalized remote control also includes guidance.
  • the remote control is a command remote control, that is, the control terminal sends the control command to the controlled object through wired or wireless transmission, so that the controlled object acts according to the requirements of the control terminal.
  • Signal transmission technology is a key technology for remote control.
  • the wireless remote control is transmitted by radio waves or laser beams and is mainly used for active controlled objects.
  • Remote control often uses multiplex transmission. Multiplexing can be time division, frequency division and code division.
  • Time-division remote control transmits different control signals in a certain time sequence.
  • the frequency division remote control transmits different control signals simultaneously in mutually non-overlapping frequency bands, and reaches the controlled end and then separates them by a band pass filter.
  • Code division remote control uses different codes to distinguish paths.
  • the remote control signal can be an analog signal or a digital signal.
  • the analog remote control also converts the analog control signal into a form suitable for channel transmission, but the device is simple, low in cost, and can be used in occasions where the requirements are not high.
  • Digital remote control can utilize digital signal processing technology with high accuracy and high reliability. It is the main development direction of remote control.
  • controlled device may include a drone, an unmanned vehicle, an unmanned ship, an unmanned submarine, or a remote control robot.
  • the drone also known as the drone, is abbreviated as "UAV" and is a non-manned aircraft operated by radio remote control equipment and self-contained program control devices. From a technical point of view, it can be divided into: unmanned fixed-wing aircraft, unmanned vertical take-off and landing aircraft, unmanned airships, unmanned helicopters, unmanned multi-rotor aircraft, unmanned paraplanes, and so on. UAVs can be divided into military and civilian applications according to the application field. In military terms, drones are divided into reconnaissance planes and drones.
  • Civilian, drone + industry application is the real need for drones; currently in aerial photography, agriculture, plant protection, self-timer, express delivery, disaster relief, observation of wildlife, surveillance of infectious diseases, mapping, news reports, power inspection
  • the application in the fields of disaster relief, film and television shooting, and manufacturing romance has greatly expanded the use of drones.
  • Developed countries are also actively expanding the application and development of drone technology.
  • a driverless car is a kind of smart car, which can also be called a wheeled mobile robot. It mainly relies on a computer-based smart pilot in the car to realize driverless driving. Driverless car is passing The in-vehicle sensing system senses the road environment, automatically plans the driving route and controls the smart car that the vehicle reaches the intended target.
  • the on-board sensor uses the on-board sensor to sense the surrounding environment of the vehicle, and controls the steering and speed of the vehicle based on the road, vehicle position and obstacle information obtained by the perception, so that the vehicle can travel safely and reliably on the road. It integrates many technologies such as automatic control, architecture, artificial intelligence and visual computing. It is a product of computer science, pattern recognition and intelligent control technology. It is also an important indicator to measure the scientific strength and industrial level of a country. The national economy has broad application prospects.
  • the remote control drone system includes a drone and a main control device, wherein the main control device can be a remote controller, which is a device for remotely controlling the machine.
  • Modern remote controls mainly made up of integrated circuit boards and buttons used to generate different messages (the definition of communication in communication: consisting of a set of interrelated meaningful symbols that can express some complete meaning). composition.
  • FIG. 1 is a schematic diagram of a movable object 100 according to an embodiment of the present invention.
  • the movable object 100 includes a carrier 102 and a load 104.
  • the movable object 100 is described as an aircraft, such description is not limiting, and any type of movable object is applicable. Those skilled in the art will appreciate that any of the embodiments described herein with respect to an aircraft system are applicable to any movable object (such as an unmanned aerial vehicle).
  • the load 104 can be located directly on the movable object 100 without the carrier 102 being required.
  • the movable object 100 can include a power mechanism 106, a sensing system 108, and a communication system 110.
  • the power mechanism 106 can include one or more rotating bodies, propellers, blades, engines, motors, wheels, bearings, magnets, nozzles.
  • the rotating body of the power mechanism may be a self-tightening rotating body, a rotating body assembly, or other rotating body power unit.
  • a movable object can have one or more power mechanisms. All power mechanisms can be of the same type. Alternatively, one or more of the power mechanisms can be of different types.
  • the power mechanism 106 can be mounted to the movable object by suitable means, such as by a support member (such as a drive shaft).
  • the power mechanism 106 can be mounted at any suitable location on the movable object 100, such as a top end, a lower end, a front end, a rear end, a side, or any combination thereof.
  • the power mechanism 106 is capable of causing the movable object to take off vertically from the surface, or The person falls vertically on the surface without any horizontal movement of the movable object 100 (if it is not required to slide on the runway).
  • the power mechanism 106 can allow the movable object 100 to hover in a preset position and/or direction in the air.
  • One or more of the power mechanisms 106 can be independent of other power mechanisms when controlled.
  • one or more of the power mechanisms 106 can be simultaneously controlled.
  • the movable object 100 can have a plurality of horizontally rotating bodies to track the lifting and/or pushing of the target.
  • the horizontally rotating body can be actuated to provide the ability of the movable object 100 to take off vertically, vertically, and spiral.
  • one or more of the horizontally rotating bodies may be rotated in a clockwise direction, while the other one or more of the horizontally rotating bodies may be rotated in a counterclockwise direction.
  • the number of rotating bodies rotating clockwise is the same as the number of rotating bodies rotating counterclockwise.
  • the rate of rotation of each of the horizontally rotating bodies can be varied independently to achieve lifting and/or pushing operations caused by each of the rotating bodies, thereby adjusting the spatial orientation, velocity and/or acceleration of the movable object 100 (eg, relative to Three degrees of freedom of rotation and translation).
  • Sensing system 108 may include one or more sensors to sense the spatial orientation, velocity, and/or acceleration of movable object 100 (eg, relative to rotation and translation of up to three degrees of freedom).
  • the one or more sensors include any of the sensors described above, including a GPS sensor, a motion sensor, an inertial sensor, a proximity sensor, or an image sensor.
  • Sensing data provided by sensing system 108 can be used to track the spatial orientation, velocity, and/or acceleration of target 100 (as appropriate, using suitable processing units and/or control units).
  • the sensing system 108 can be used to acquire data of the environment of the movable object, such as climatic conditions, potential obstacles to be approached, location of geographic features, location of the man-made structure, and the like.
  • Communication system 110 is capable of communicating with terminal 112 having communication system 114 via wireless signal 116.
  • Communication systems 110, 114 may include any number of transmitters, receivers, and/or transceivers for wireless communication.
  • the communication can be one-way communication so that data can be sent from one direction.
  • one-way communication may include that only the movable object 100 transmits data to the terminal 112, or vice versa.
  • One or more transmitters of communication system 110 can transmit data to one or more receivers of communication system 112, and vice versa.
  • the communication can be two-way communication such that data can be transmitted between the movable object 100 and the terminal 112 in both directions.
  • Two-way communication includes one or more transmitters of communication system 110 that can transmit data to one or more receivers of communication system 114, and vice versa.
  • terminal 112 can be directed to movable object 100, carrier 102, and load 104.
  • One or more of the providing control data and receiving information eg, position and/or motion information of the movable object, carrier, or load
  • the terminal's control data may include instructions regarding position, motion, actuation, or control of the movable object, carrier, and/or load.
  • control data may result in a change in the position and/or orientation of the movable object (eg, by controlling the power mechanism 106) or a movement of the carrier relative to the movable object (eg, by control of the carrier 102).
  • Terminal control data can lead to load control, such as controlling the operation of a camera or other image capture device (capturing still or moving images, zooming, turning on or off, switching imaging modes, changing image resolution, changing focus, changing depth of field, changing exposure) Time, change the viewing angle or field of view).
  • the communication of the movable object, carrier, and/or load may include information from one or more sensors, such as sensing system 108 or load 104.
  • the communication may include sensing information transmitted from one or more different types of sensors, such as GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • the sensing information is about the position (such as direction, position), motion, or acceleration of the movable object, the carrier, and/or the load.
  • the sensing information transmitted from the load includes the data captured by the load or the state of the load.
  • the control data provided by terminal 112 can be used to track the status of one or more of movable object 100, carrier 102, or load 104.
  • the carrier 102 and the load 104 may each include a communication module for communicating with the terminal 112 such that the terminal can individually communicate or track the movable object 100, the carrier 102, and the load 104.
  • the movable object 100 can communicate with other remote devices than the terminal 112, and the terminal 112 can also communicate with other remote devices than the movable object 100.
  • the movable object and/or terminal 112 can communicate with a carrier or load of another movable object or another movable object.
  • the additional remote device can be a second terminal or other computing device (such as a computer, desktop, tablet, smartphone, or other mobile device) when needed.
  • the remote device can transmit data to the movable object 100, receive data from the movable object 100, transmit data to the terminal 112, and/or receive data from the terminal 112.
  • the remote device can be connected to the Internet or other telecommunications network to upload data received from the mobile object 100 and/or terminal 112 to a website or server.
  • movement of the movable object, movement of the carrier, and movement of the load relative to a fixed reference (such as an external environment), and/or movements between each other may be controlled by the terminal.
  • the terminal can be a remote control terminal located away from the movable object, the carrier and/or the load.
  • the terminal can be located or affixed to the support platform.
  • the terminal can be handheld or wearable.
  • the terminal can include a smartphone, tablet, desktop, computer, glasses, gloves, helmet, microphone, or any combination thereof.
  • the terminal can include a user interface such as a keyboard, mouse, joystick, touch screen or display. Any suitable user input can interact with the terminal, such as manual input commands, sound control, gesture control, or position control (eg, by motion, position, or tilt of the terminal).
  • main control device mentioned in the embodiment of the present invention may include a remote control device terminal, and may also include a mobile phone.
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a RAN Radio Access Network, which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a RAN Radio Access Network can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone)
  • a computer with a mobile terminal such as a mobile phone (or "cellular" phone)
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, Terminal Device, User Agent, User Device, or User Equipment.
  • the mobile phone includes: radio frequency (RF) circuit, memory, input unit, display unit, sensor, audio circuit, wireless fidelity (WiFi) module, processor, power supply, etc. component.
  • RF radio frequency
  • the master device in the embodiment of the present invention may also be a server.
  • the server can vary greatly depending on configuration or performance, and can include one or one The above central processing units (CPUs) (eg, one or more processors) and memory, one or more storage media (eg, one or one storage device in Shanghai) that stores applications or data.
  • CPUs central processing units
  • storage media eg, one or one storage device in Shanghai
  • a program stored on a storage medium may include one or more modules (not shown), each of which may include a series of instruction operations in the server.
  • the central processor can be configured to communicate with the storage medium to perform a series of instruction operations on the storage medium on the server.
  • the server may also include one or more power sources, one or more wired or wireless network interfaces, one or more input and output interfaces, and/or one or more operating systems, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM. , FreeBSDTM and more.
  • operating systems such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM. , FreeBSDTM and more.
  • an embodiment of an information processing method in the embodiment of the present application is used for a remote control system including a main control device and a controlled device.
  • a remote control system including a main control device and a controlled device.
  • the controlled device When the controlled device enters the target area, acquire a signal quality value of each of the multiple locations in the target area, to obtain first signal quality sampling information.
  • the target area may include an island, a city, a forest, a village, a sea surface, and a campus.
  • the control area is not limited.
  • the target area may also include an indoor apartment and an indoor basketball. Fields, conference rooms, and the like, as long as the preset controlled device is ready to enter or has entered, can be used as a target area, which is not limited herein.
  • the first signal quality sampling information may be a set of correspondences of signal quality values of the arriving locations. If the signal quality values of the four positions are obtained, namely, positions A, B, C, and D, and the corresponding signal quality values are a, b, c, and d, then the elements in the first signal quality sampling information can be considered as ( A, a), (B, b), (C, c), (D, d).
  • the controlled device can collect the signal quality value while flying arbitrarily, or can fly in a fixed position in the area in advance, and uniformly pass the position in the area, and collect the uniformity in this way. Signal quality values for subsequent calculations.
  • the position of the acquired signal quality value may be represented by the position coordinate of the surface inertial coordinate system, that is, when the position of I is acquired, it is represented by (Xi, Yi, Zi).
  • the position coordinates of the I point can be determined by satellite positioning.
  • the signal quality value may be a signal to noise ratio SNR value.
  • Signal-to-noise ratio the English name is called SNR or S/N (SIGNAL-NOISE RATIO), also known as signal Noise ratio.
  • SIGNAL-NOISE RATIO SIGNAL-NOISE RATIO
  • Noise ratio refers to the ratio of signal to noise in an electronic device or electronic system.
  • the signal here refers to an electronic signal from outside the device that needs to be processed by this device.
  • Noise refers to an irregular extra signal (or information) that does not exist in the original signal generated after passing through the device, and the kind The signal does not change as the original signal changes.
  • data analysis can be performed when the controlled device collects enough signal quality values and corresponding locations in the target area such that the first signal quality sampling information is sufficiently rich.
  • the previously collected first signal quality sampling information may also be used, instead of necessarily using the current collection, which is not limited herein.
  • the signal quality is related to factors such as obstacles in the environment, and is called an environmental factor.
  • the signal quality influencing factor is the environmental factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor
  • the signal quality coefficient is an environmental factor coefficient.
  • each factor may be independently considered to obtain a value related to each factor, and then the respective values are calculated.
  • the environmental factor is a very important factor. However, in some feasible embodiments, it is not limited to environmental factors, and may include a posture factor and a relative position factor.
  • the signal quality factors include environmental factors, relative position factors, and/or attitude factors.
  • the signal quality coefficient may include an environmental factor coefficient, or may include a relative position factor coefficient and/or an attitude factor coefficient, and may be used to estimate any of the target regions. A little signal quality.
  • the method includes:
  • the unit of measure for signal-to-noise ratio is dB, which is calculated as 10 lg (PS/PN), where Ps and Pn represent the effective power of the signal and noise, respectively, and can also be converted into the ratio of the voltage amplitude: 20 Lg (VS/VN) , Vs and Vn represent the "effective values" of the signal and noise voltages, respectively.
  • PS/PN power of the signal and noise
  • Vs and Vn represent the "effective values" of the signal and noise voltages, respectively.
  • the signal-to-noise ratio In a narrow sense, it refers to the ratio of the power of the output signal of the amplifier to the noise power of the simultaneous output. It is often expressed in decibels. The higher the signal-to-noise ratio of the device, the less noise it produces. In general, the larger the signal-to-noise ratio, the smaller the noise mixed in the signal, and the higher the sound quality of the sound playback, otherwise the opposite.
  • the signal-to-noise ratio should generally not be lower than 70dB, and the signal-to-noise ratio of high-fidelity speakers should reach 110dB or more.
  • step 203 Please refer to step 203.
  • Step 303 and step 304 in this embodiment are the same as steps 202 and 203 of the foregoing embodiment, and are not described herein.
  • the method includes:
  • the position coordinates (xi, yi, zi) in the respective surface inertial coordinate systems of the controlled device in the first signal quality sampling information may be acquired, Get the following matrix:
  • the environmental factor coefficient is obtained, which is the signal quality factor.
  • Step 401 and step 402 in this embodiment are the same as steps 201 and 202 of the foregoing embodiment, and are not described herein.
  • the signal quality influencing factor is the environmental factor and the relative position factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor and the relative position factor
  • the signal quality coefficient is an environmental factor coefficient and a relative position factor coefficient, in another implementation of the present invention. Ways, including:
  • the specific area is an area that is not affected by the environmental factor, and acquires a signal quality value and a relative position coordinate of each of the multiple positions in the specific area to obtain a second.
  • Signal quality sampling information the relative position coordinate is a position coordinate of the controlled device relative to the master device.
  • the SNR values of the multiple locations and the position coordinates of the corresponding relative positions may be acquired by fixed environmental factors, that is, in the same environment of the open space, such as a laboratory or an open playground. This calculates the relative position factor coefficient.
  • the relative position factor coefficient is a fitting coefficient [b1, b2, ..., b10]T
  • position coordinates (xi, yi, zi) of respective relative positions of the controlled device in the first signal quality sampling information may be acquired, Get the following matrix:
  • calculating the signal quality value of the target position according to the signal quality coefficient and the ground position coordinate of the target position includes:
  • Step 501 and step 502 in this embodiment are the same as steps 201 and 202 of the foregoing embodiment, and are not described herein.
  • the first signal quality sampling information is that the controlled device is in the environmental factor, the relative position factor, and the Obtained under the influence of the attitude factor
  • the signal quality coefficient is an environmental factor coefficient, a relative position factor coefficient, and an attitude factor coefficient.
  • the method includes:
  • the specific area is an area that is not affected by the environmental factor, and obtains a signal quality value of each of the multiple locations in the specific area to obtain second signal quality sampling information.
  • the so-called attitude factor that is, the direction of the antenna carried by the controlled device affects its signal quality. However, in some scenarios, if the controlled device has the same antenna in each direction, or the influence of its attitude factor is very small, then The attitude factor can be ignored.
  • the so-called relative position factor is the influence of the relative position of the controlled device relative to the master device on the signal quality. In some scenarios, if the target area is far from the master device, in general, the relative position of each position in the target area to the master device is similar, and the relative position factor can be ignored. It should be noted that there are other factors that may affect the signal quality, and will not be repeated here.
  • the relative position factor coefficient and the attitude factor coefficient may be calculated.
  • the relative position factor coefficient and the attitude factor coefficient can be obtained by testing in another area or laboratory, and used in the target area, and the environmental factor coefficient needs to acquire data in the target area and calculate it. .
  • the relative position factor is the influence of the relative position between the master device and the controlled device on the signal quality of the target location
  • the relative position is the coordinate established by using the master device as the coordinate origin. Department, called the remote body coordinate system.
  • the direction of the x-axis, the y-axis and the z-axis may be the east direction of the x-axis, the east direction of the x-axis, the north direction of the z-axis, and the positive direction of the z-axis directly above the horizontal plane. Other methods of determining the directions of the x-axis, the y-axis, and the z-axis are not limited herein.
  • the position coordinates of the controlled device are used as relative position coordinates, that is, relative position factors are related to the relative position coordinates.
  • the relative position factor is related to the relative position coordinate, regardless of the posture of the controlled device or the environment, the relative position factor can be calculated in an open position or in the laboratory. Obtain.
  • the attitude factor is the effect of the attitude of the controlled device relative to the master device on the signal quality, while the determination of the attitude of the controlled device is determined using the Euler angle.
  • Euler angle is a set of three independent angular parameters used to uniquely determine the position of the fixed point of rotation. It consists of the nutation angle ⁇ , the precession angle ⁇ and the rotation angle ⁇ . It is first proposed by L. Euler, hence the name .
  • the fixed coordinate system O-xyz (the body coordinate system of the master device) and the coordinate system O-x'y'z' (the body coordinate system of the controlled device) fixed to the rigid body are determined by the fixed point O.
  • the vertical planes Oxy and Ox'y' are basic planes.
  • the angle ⁇ from the axis Oz to Oz' is called the nutation angle.
  • the perpendicular ON of the plane zOz' is called the pitch line, which is the intersection of the basic plane Ox'y' and Oxy.
  • the angle ⁇ should be measured in the counterclockwise direction when viewed from the positive end of the ON.
  • the angle from the fixed axis Ox to the pitch line ON is called the precession angle
  • the angle ⁇ from the pitch line ON amount to the moving axis Ox' is called the rotation angle. From the positive ends of the axes Oz and Oz', the angles ⁇ and ⁇ are also measured in a counterclockwise direction.
  • the body coordinate system of the controlled device is obtained by taking the Z-axis directly above the controlled device and the X-axis on the front side, and determining the Y-axis by the method of the right-hand coordinate system. Then, the attitude factor is determined by the body coordinate system of the master device and the body coordinate system of the controlled device, which is ( ⁇ , ⁇ , ⁇ ).
  • the controlled device may perform data analysis, and the controlled device may be sent to the main control device for calculation, which is not limited herein.
  • the controlled device can perform data analysis.
  • the amount of data is large, a larger server is required for processing, and if it needs to be processed to a stationary device on the ground, The master device sends the data to enable the master device to perform data analysis.
  • the SNR values of the multiple locations and the corresponding relatives may be obtained by fixed environmental factors, ie, in the same environment, such as a laboratory or an open playground.
  • the position coordinates of the position in order to calculate the relative position factor coefficient.
  • the relative position factor coefficient is a fitting coefficient [c1, c2, . . . , c10]T
  • the position coordinates (x i , y i , z) of the respective relative positions of the controlled device in the first signal quality sampling information may be acquired. i ), get the following matrix:
  • the position coordinate in the surface inertial coordinate system of the controlled device is X
  • the position coordinate relative to the relative position of the master device is X′
  • +X'*B+X"*C since the value of SNR, X, X', and X" can be obtained
  • B is calculated by step xx
  • C is calculated by step xxx
  • A can be calculated.
  • the attitude factor coefficient C is obtained. That is, A, B and C can be used as the coefficient of the environmental factor.
  • calculating the signal quality value of the target position according to the signal quality coefficient and the ground position coordinate of the target position includes:
  • step 203 Please refer to step 203.
  • Step 601 and step 602 in this embodiment are the same as steps 201 and 202 of the foregoing embodiment, and are not described herein.
  • the method includes:
  • the signal quality value of point A can be calculated using the signal quality factor and the position coordinates of point A.
  • the target area may be divided into a plurality of small areas, and then a plurality of points in a small area are taken, and the signal quality values of the several points are respectively calculated, and the small area is determined according to the signal quality values of the several points.
  • Signal quality if the signal quality of the small area passes, the small area can be used as part of the signal security area, otherwise the small area is considered as part of the non-signal security area.
  • the signal quality of the small area is calculated, and the signal quality of the small area is determined as a whole, and the signal quality of all small areas of the entire target area may be further calculated.
  • a small area with a sufficiently good signal quality is used as a good signal area, and other signal quality is not good enough as a good area of the flying signal.
  • Steps 701 to 703 in this embodiment are the same as steps 201 to 203 of the foregoing embodiment, and are not described herein.
  • an embodiment of the present invention further provides an information processing apparatus 800 for a remote control system including a main control device and a controlled device, including:
  • the first obtaining module 801 is configured to acquire a signal quality value of each of the plurality of locations in the target area when the controlled device enters the target area, to obtain first signal quality sampling information.
  • the first processing module 802 is configured to perform data analysis according to the first signal quality sampling information, to obtain a signal quality coefficient corresponding to a preset signal quality influencing factor.
  • the calculating module 803 calculates a signal quality value of the target position according to the signal quality coefficient and the ground position coordinate of the target position, and the target position is in the target area.
  • the first obtaining module 801 when the signal quality value includes a signal to noise ratio SNR value, the first obtaining module 801 includes:
  • the first obtaining submodule 8011 is configured to acquire transmit power and received power of each of the multiple locations in the target area.
  • the calculation sub-module 8012 is configured to calculate an SNR value of each of the plurality of locations in the target region according to the transmit power and the received power of each of the plurality of locations in the target region.
  • the signal quality influencing factor is the environmental factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor
  • the signal quality coefficient is an environmental factor coefficient.
  • the calculation module 803 includes:
  • the first calculation sub-module 8031 is configured to calculate a signal quality value of the target location according to the environmental factor coefficient and ground location coordinates of the target location.
  • the signal quality influencing factor is the environmental factor and the relative position factor
  • the first signal quality sampling information is obtained by the controlled device under the influence of the environmental factor and the relative position factor.
  • the signal quality coefficient is an environmental factor coefficient and a relative position factor coefficient
  • the apparatus 800 further includes:
  • the second obtaining module 804 is configured to: when the controlled device enters a specific area, the specific area is an area that is not affected by the environmental factor, and obtain a signal quality value and a relative value of each of the multiple locations in the specific area.
  • the position coordinates obtain the second signal quality sampling information, where the relative position coordinates are the position coordinates of the controlled device relative to the master device.
  • the second processing module 805 is configured to perform data analysis according to the first signal quality sampling information to obtain the relative position factor coefficient.
  • calculation module 803 includes:
  • a second calculation sub-module 8032 configured to calculate the target location according to the environmental factor coefficient, the relative position coefficient, the ground location coordinate of the target location, the ground location coordinate of the master device, and the ground location coordinate of the controlled device Signal quality value.
  • the signal quality influencing factor is the environmental factor, the relative position factor, and the attitude factor
  • the first signal quality sampling information is that the controlled device is in the environmental factor, the relative position factor, and the Obtained under the influence of the attitude factor
  • the signal quality coefficient is an environmental factor coefficient, a relative position factor coefficient, and an attitude factor coefficient
  • the apparatus 800 further includes:
  • a second obtaining module 804 configured to: when the controlled device enters a specific area, the specific area is an area that is not affected by the environmental factor, and obtain a signal quality value of each of the multiple locations in the specific area, and obtain Second signal quality sampling information.
  • the second processing module 805 is configured to perform data analysis according to the first signal quality sampling information to obtain the relative position factor coefficient.
  • the third obtaining module 806 is configured to acquire a signal quality value in each of the plurality of postures of the controlled device when the controlled device is fixed in a position, to obtain third signal quality sampling information.
  • the third processing module 807 is configured to perform data analysis according to the third signal quality sampling information to obtain the attitude factor coefficient.
  • calculation module 803 includes:
  • a third calculating submodule 8033 configured to calculate the environmental factor coefficient, the relative position coefficient, the attitude factor coefficient, the ground position coordinate of the target position, the ground position coordinate of the master device, and the posture of the controlled device The signal quality value of the target location.
  • the apparatus 800 further includes:
  • the determining module 808 is configured to determine whether the signal quality value of the target location is higher than a threshold.
  • the determining module 809 is configured to determine, as the signal security area, a sphere having a radius of a threshold length centered on the target position if the determining module determines to be YES.
  • an embodiment of the present invention further provides an information processing apparatus 900 for a remote control system including a main control device and a controlled device, including:
  • the transceiver 901, the memory 902, and the processor 903 are connected by a bus 904.
  • the transceiver 901 is configured to acquire a signal quality value of each of the plurality of locations in the target area when the controlled device enters the target area, to obtain first signal quality sampling information.
  • the memory 902 is configured to store a program, first signal quality sampling information of the target area acquired by the transceiver 901.
  • the processor 903 is configured to perform data analysis according to the first signal quality sampling information to obtain a signal quality coefficient corresponding to a preset signal quality influencing factor.
  • the processor 903 is further configured to calculate a signal quality value of the target location according to the signal quality coefficient and ground location coordinates of the target location, where the target location is in the target area.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种信息处理及其装置,用于通过获取目标区域的信号质量采样信息,并使用该信号质量采样信息确定一个位置的信号质量。该方法包括:当受控设备进入目标区域时,获取所述目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;根据所述第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值,所述目标位置处于所述目标区域之中。

Description

一种信息处理方法及其装置 技术领域
本发明涉及通信领域,尤其涉及一种信息处理方法及其装置。
背景技术
遥控技术是对受控设备进行远距离控制和监测的技术。它是利用自动控制技术,通信技术和计算机技术而形成的一门综合性技术,一般都是指对远距离的受控设备进行控制的技术。遥控技术在人们的生产生活中具有广泛的应用,如“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。国内无人机市场已发展了将近40余年,从最初的军用领域逐渐扩展到消费领域。目前国内消费无人机市场火热,普通民众对无人机的认可程度和需求度逐渐攀升。
目前,无人机的遥控信号范围有限,虽然遥控信号在实时监测,但还是不免会发生意外信号中断,导致无人机被迫中断作业甚至自动返航。为了解决该问题,可以设定安全飞行区域。具体地,可以通过设定以固定点为圆心,预设的飞行半径做球体,以球体内的范围作为信号安全稳定的飞行区域,即安全飞行区域。这么做可以在一定程度上减少遥控信号中断的概率。
然而,若在一个存在不均匀的复杂障碍物的飞行环境中,由于该区域内的环境因素的影响,该球体区域内的信号质量并非总是良好的,该方法不能精确地获悉一个区域中的各个位置的信号质量,因此若无人机进入该球体区域中的一个信号不良的位置时,还是较容易发生信号中断。
发明内容
本发明实施例提供了一种信息处理及其装置,用于通过获取目标区域的信号质量采样信息,并使用该信号质量采样信息确定一个位置的信号质量。
有鉴于此,本发明第一方面提供了一种信息处理方法,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;根据该第一信号质量采样信息进 行数据分析,得到预设的信号质量影响因素对应的信号质量系数;根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
优选的,该信号质量值包括信噪比SNR值。
结合本发明第一方面,本发明第一方面的第一种实施方式,包括:
获取该目标区域中的多个位置中的每一个位置的发射功率和接收功率;根据该目标区域中的多个位置中的每一个位置的发射功率和接收功率计算,该目标区域中的多个位置中每一个位置的SNR值。
优选的,该受控设备包括无人机、无人车、无人船、无人潜水艇或遥控机器人。
优选的,该信号质量影响因素包括环境因素、相对位置因素和/或姿态因素。
结合本发明第一方面的第一种实施方式,当该信号质量影响因素为该环境因素时,该第一信号质量采样信息则为该受控设备在处于该环境因素的影响下获取的,则该信号质量系数为环境因素系数,本发明的第二种实施方式,包括:
根据该环境因素系数和该目标位置的地面位置坐标计算该目标位置的信号质量值。
结合本发明第一方面的第一种实施方式,当该信号质量影响因素为该环境因素和该相对位置因素时,该第一信号质量采样信息为该受控设备在处于该环境因素以及该相对位置因素的影响下获取的,则该信号质量系数为环境因素系数和相对位置因素系数,
本发明第一方面的第三种实施方式,包括:
当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,该相对位置坐标为该受控设备相对于该主控设备的位置坐标;根据该第二信号质量采样信息进行数据分析,得到该相对位置因素系数;则该根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值包括:根据该环境因素系数、该相对位置系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标和该受控设备的地面位置坐标计算该目标位置的信号质量值。
结合本发明第一方面的第一种实施方式,当该信号质量影响因素为该环境因素、该相对位置因素和该姿态因素时,该第一信号质量采样信息为该受控设备在处于该环境因素、该相对位置因素和该姿态因素的影响下获取的,则该信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,
本发明第一方面的第四种实施方式,包括:
当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息;根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数;当该受控设备固定在一个位置上时,获取该受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息;根据该第三信号质量采样信息进行数据分析,得到该姿态因素系数;则该根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值包括:根据该环境因素系数、该相对位置系数、该姿态因素系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标、该受控设备的姿态计算该目标位置的信号质量值。
结合本发明第一方面,本发明第一方面的第五种实施方式,包括:
判断该目标位置的信号质量值是否高于阈值;若是,则确定以该目标位置为中心,阈值长度为半径的球体内作为信号安全区域。
本发明第二方面提供了一种信息处理装置,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
第一获取模块,用于当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;
第一处理模块,用于根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;
计算模块,根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
结合本发明第二方面,当该信号质量值包括信噪比SNR值时,本发明第一方面的第一种实施方式,包括:
第一获取子模块,用于获取该目标区域中的多个位置中的每一个位置的发射功率和接收功率;
计算子模块,用于根据该目标区域中的多个位置中的每一个位置的发射功 率和接收功率计算,该目标区域中的多个位置中每一个位置的SNR值。
结合本发明第二方面、第二方面的第一种实施方式,当该信号质量影响因素为该环境因素时,该第一信号质量采样信息为该受控设备在处于该环境因素的影响下获取的,则该信号质量系数为环境因素系数,本发明第二方面的第二种实施方式,包括:
第一计算子模块,用于根据该环境因素系数和该目标位置的地面位置坐标计算该目标位置的信号质量值。
结合本发明第二方面、第二方面的第一种实施方式,当该信号质量影响因素为该环境因素和该相对位置因素时,该第一信号质量采样信息为该受控设备在处于该环境因素以及该相对位置因素的影响下获取的,则该信号质量系数为环境因素系数和相对位置因素系数,本发明第二方面的第三种实施方式,包括:
第二获取模块,用于当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,该相对位置坐标为该受控设备相对于该主控设备的位置坐标;
第二处理模块,用于根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数;
则该计算模块包括:
第二计算子模块,用于根据该环境因素系数、该相对位置系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标和该受控设备的地面位置坐标计算该目标位置的信号质量值。
结合本发明第二方面、第二方面的第一种实施方式,当该信号质量影响因素为该环境因素、该相对位置因素和该姿态因素时,该第一信号质量采样信息为该受控设备在处于该环境因素、该相对位置因素和该姿态因素的影响下获取的,则该信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,本发明第二方面的第四种实施方式,包括:
第二获取模块,用于当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息;第二处理模块,用于根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数;第三获取模块,用于当该受 控设备固定在一个位置上时,获取该受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息;第三处理模块,用于根据该第三信号质量采样信息进行数据分析,得到该姿态因素系数;
则该计算模块包括:
第三计算子模块,用于根据该环境因素系数、该相对位置系数、该姿态因素系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标、该受控设备的姿态计算该目标位置的信号质量值。
结合本发明第二方面,本发明第二方面的第五种实施方式,包括:
判断模块,用于判断该目标位置的信号质量值是否高于阈值;确定模块,用于若该判断模块判断为是,则确定以该目标位置为中心,阈值长度为半径的球体内作为信号安全区域。
本发明第三方面还提供了一种信息处理装置,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
收发器、存储器、处理器以及总线;该收发器、该存储器以及该处理器通过总线连接;该收发器用于当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;该存储器用于存储程序、该收发器获取的该目标区域的第一信号质量采样信息;该处理器用于根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;该处理器还用于根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
从以上技术方案可以看出,本发明实施例具有以下优点:
由于当受控设备进入目标区域时,获取目标区域的信号质量采样信息,根据该信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数,根据该信号质量系数和目标区域中的目标位置的位置坐标计算该目标位置的信号质量值,因此当受控设备准备要在目标区域中的某个位置活动时,可以预先计算该位置以及周围多个位置的信号质量值,预测准备进入该位置以及附近的信号是否足够稳定良好,如果该位置及附近的信号足够稳定良好,则会选择进入,如果不够稳定良好,则选择不进入,从而大大减少信号中断的概率。
附图说明
图1为本发明实施例中遥控设备系统的示意图;
图2为本发明实施例中信息处理方法的一个实施例示意图;
图3为本发明实施例中信息处理方法的另一个实施例示意图;
图4为本发明实施例中信息处理方法的另一个实施例示意图;
图5为本发明实施例中信息处理方法的另一个实施例示意图;
图6为本发明实施例中信息处理方法的另一个实施例示意图;
图7为本发明实施例中信息处理方法的另一个实施例示意图;
图8为本发明实施例中信息处理装置的一个实施例示意图;
图9为本发明实施例中信息处理装置的另一个实施例示意图;
图10为本发明实施例中信息处理装置的另一个实施例示意图;
图11为本发明实施例中信息处理装置的另一个实施例示意图;
图12为本发明实施例中信息处理装置的另一个实施例示意图;
图13为本发明实施例中信息处理装置的另一个实施例示意图;
图14为本发明实施例中信息处理装置的一个实施例示意图。
具体实施方式
本发明实施例提供了一种信息处理及其装置,用于通过获取目标区域的信号质量采样信息,并使用该信号质量采样信息确定一个位置的信号质量。
为了使本技术领域的人员更好地理解本发明实施例方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚 地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
遥控设备系统,包括主控设备和被控设备,主要是利用遥控技术在主控设备端对受控设备进行远距离控制和监测的系统。遥控技术是利用自动控制技术,通信技术和计算机技术而形成的一门综合性技术,一般都是指对远距离的受控设备进行控制的技术。遥控技术在人们的生产生活中具有广泛的应用,其中近年来比较火热的“航拍无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的用于拍照的不载人飞机。国内无人机市场已发展了将近40余年,从最初的军用领域逐渐扩展到消费领域。目前国内消费无人机市场火热,普通民众对无人机的认可程度和需求度逐渐攀升。
然而,对于遥控设备系统,由于遥控信号的范围有限,虽然实时监测遥控信号,但还是不免会发生意外信号中断,导致无人机被迫中断作业甚至自动返航。为了解决该问题,可以设定安全飞行区域。具体地,可以通过设定以固定点为圆心,该固定点一般为主控设备,预设的飞行半径做球体,以球体内的范围作为信号安全稳定的飞行区域,即安全飞行区域。
但是,在现实的环境中,常常存在许多不均匀的复杂障碍物,收到区域内的环境因素的影响,若依然按照原来的方式确定安全飞行区域,则该球体区域内的不同位置的信号参差不齐,会导致一些信号不好的位置被当成信号良好的位置,若把球体收窄得过小,则会浪费了许多信号良好的位置。
因此,本发明的核心思想是,由于当受控设备进入目标区域时,获取目标区域的信号质量采样信息,根据该信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数,根据该信号质量系数和目标区域中的目标位置的位置坐标计算该目标位置的信号质量值,因此当受控设备准备要在目标区域中的某个位置活动时,可以预先计算该位置以及周围多个位置的信号质量值,预测准备进入该位置以及附近的信号是否足够稳定良好,如果该位置及附近的信号足够稳定良好,则会选择进入,如果不够稳定良好,则选择不进入,从而大大减少信号中断的概率。
请参考图1,为本发明实施例中的遥控设备系统。
遥控设备系统,包括主控设备和受控设备,其中,主控设备对受控设备进行远距离控制和监测。在该遥控设备系统中,主控设备对受控设备的控制,是 利用了自动控制技术、通信技术和计算机技术,它在国民经济各部门,特别是航空航天和导弹核武器等方面有重要应用。
一般来说,受控设备可以是固定的,如自动化水电站;也可以是活动的,如无人驾驶飞机、人造卫星、弹道导弹等。而本发明实施例中所提及的遥控设备系统中的受控设备,指的是活动的受控设备。
遥控设备系统一般都具有监测功能,实际上是一个遥测遥控系统。广义的遥控也包括制导。通常所说的遥控是指令遥控,即由控制端将控制指令通过有线或无线传输的方式送到受控对象,使受控对象按控制端的要求动作。信号传输技术是遥控的一项关键技术。
无线遥控采用无线电波或激光束传输,主要用于活动的受控对象。遥控常采用多路传输方式。多路传输可用时分、频分与码分。时分遥控是按一定的时间顺序传输不同的控制信号。频分遥控是用互不重叠的频带同时传输不同的控制信号,到达受控端再用带通滤波器把它们分开。码分遥控是利用不同的编码区分通路。遥控信号可采用模拟信号或数字信号。模拟遥控也要把模拟控制信号变换成适合于信道传输的形式,但设备简单,成本低,可用于要求不高的场合。数字遥控可利用数字信号处理技术,精确性好,可靠性高。它是遥控的主要发展方向。
需要说明的是,在本发明实施例中所指的受控设备可以包括无人机、无人车、无人船、无人潜水艇或遥控机器人。
无人机亦称为无人驾驶飞机,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。从技术角度定义可以分为:无人固定翼机、无人垂直起降机、无人飞艇、无人直升机、无人多旋翼飞行器、无人伞翼机等。无人机按应用领域,可分为军用与民用。军用方面,无人机分为侦察机和靶机。民用方面,无人机+行业应用,是无人机真正的刚需;目前在航拍、农业、植保、自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄、制造浪漫等等领域的应用,大大的拓展了无人机本身的用途,发达国家也在积极扩展行业应用与发展无人机技术。
无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶。无人驾驶汽车是通过 车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。
它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。
还有无人船、无人潜水艇或遥控机器人,在此不一一赘述。以下如无特别说明,以下的遥控设备系统以遥控无人机系统为例进行说明。
遥控无人机系统包括无人机和主控设备,其中,主控设备可以为遥控器,为一种用来远控机械的装置。现代的遥控器,主要是由集成电路电板和用来产生不同讯息(传播学中的讯息定义:由一组相互关联的有意义符号组成,能够表达某种完整意义的信息。)的按钮所组成。
图1为本发明实施例提供的一种可移动物体100的示意图。该可移动物体100包括承载体102及负载104。尽管可移动物体100被描述为飞行器,然而这样的描述并不是限制,任何类型的可移动物体都适用。本领域技术人员应该了解,本文所描述的任何关于飞行器系统的实施例适用于任何可移动物体(如无人飞行器)。在某些实施例中,负载104可以直接位于可移动物体100上,而不需要承载体102。可移动物体100可以包括动力机构106,传感系统108以及通讯系统110。
动力机构106可以包括一个或者多个旋转体、螺旋桨、桨叶、引擎、电机、轮子、轴承、磁铁、喷嘴。例如,该动力机构的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。可移动物体可以有一个或多个动力机构。所有的动力机构可以是相同的类型。可选的,一个或者多个动力机构可以是不同的类型。动力机构106可以通过合适的手段安装在可移动物体上,如通过支撑元件(如驱动轴)。动力机构106可以安装在可移动物体100任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。
在某些实施例中,动力机构106能够使可移动物体垂直地从表面起飞,或 者垂直地降落在表面上,而不需要可移动物体100任何水平运动(如不需要在跑道上滑行)。可选的,动力机构106可以允许可移动物体100在空中预设位置和/或方向盘旋。一个或者多个动力机构106在受到控制时可以独立于其它的动力机构。可选的,一个或者多个动力机构106可以同时受到控制。例如,可移动物体100可以有多个水平方向的旋转体,以追踪目标的提升及/或推动。水平方向的旋转体可以被致动以提供可移动物体100垂直起飞、垂直降落、盘旋的能力。在某些实施例中,水平方向的旋转体中的一个或者多个可以顺时针方向旋转,而水平方向的旋转体中的其它一个或者多个可以逆时针方向旋转。例如,顺时针旋转的旋转体与逆时针旋转的旋转体的数量一样。每一个水平方向的旋转体的旋转速率可以独立变化,以实现每个旋转体导致的提升及/或推动操作,从而调整可移动物体100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。
传感系统108可以包括一个或者多个传感器,以感测可移动物体100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。该一个或者多个传感器包括前述描述的任何传感器,包括GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器。传感系统108提供的感测数据可以用于追踪目标100的空间方位、速度及/或加速度(如下该,利用适合的处理单元及/或控制单元)。可选的,传感系统108可以用于采集可移动物体的环境的数据,如气候条件、要接近的潜在的障碍、地理特征的位置、人造结构的位置等。
通讯系统110能够实现与具有通讯系统114的终端112通过无线信号116进行通讯。通讯系统110、114可以包括任何数量的用于无线通讯的发送器、接收器、及/或收发器。该通讯可以是单向通讯,这样数据可以从一个方向发送。例如,单向通讯可以包括,只有可移动物体100传送数据给终端112,或者反之亦然。通讯系统110的一个或者多个发送器可以发送数据给通讯系统112的一个或者多个接收器,反之亦然。可选的,该通讯可以是双向通讯,这样,数据可以在可移动物体100与终端112之间在两个方向传输。双向通讯包括通讯系统110的一个或者多个发送器可以发送数据给通讯系统114的一个或者多个接收器,及反之亦然。
在某些实施例中,终端112可以向可移动物体100、承载体102及负载104 中的一个或者多个提供控制数据,并且从可移动物体100、承载体102及负载104中的一个或者多个中接收信息(如可移动物体、承载体或者负载的位置及/或运动信息,负载感测的数据,如相机捕获的影像数据)。在某些实施例中,终端的控制数据可以包括关于位置、运动、致动的指令,或者对可移动物体、承载体及/或负载的控制。例如,控制数据可以导致可移动物体位置及/或方向的改变(如通过控制动力机构106),或者导致承载体相对于可移动物体的运动(如通过对承载体102的控制)。终端的控制数据可以导致负载控制,如控制相机或者其它影像捕获设备的操作(捕获静止或者运动的影像、变焦、开启或关闭、切换成像模式、改变影像分辨率、改变焦距、改变景深、改变曝光时间、改变可视角度或者视场)。在某些实施例中,可移动物体、承载体及/或负载的通讯可以包括一个或者多个传感器(如传感系统108或者负载104)发出的信息。该通讯可以包括从一个或者多个不同类型的传感器(如GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器)传送的感应信息。该感应信息是关于可移动物体、承载体及/或负载的位置(如方向、位置)、运动、或者加速度。从负载传送的感应信息包括负载捕获的数据或者负载的状态。终端112传送提供的控制数据可以用于追踪可移动物体100、承载体102或者负载104中一个或者多个的状态。可选的或者同时地,承载体102及负载104每一个都可以包括通讯模块,用于与终端112通讯,以便终端可以单独地通讯或者追踪可移动物体100、承载体102及负载104。
在某些实施例中,可移动物体100可以与除了终端112之外的其它远程设备通讯,终端112也可以与除可移动物体100之外的其它远程设备进行通讯。例如,可移动物体及/或终端112可以与另一个可移动物体或者另一个可移动物体的承载体或负载通讯。当有需要的时候,该另外的远程设备可以是第二终端或者其它计算设备(如计算机、桌上型电脑、平板电脑、智能手机、或者其它移动设备)。该远程设备可以向可移动物体100传送数据,从可移动物体100接收数据,传送数据给终端112,及/或从终端112接收数据。可选的,该远程设备可以连接到因特网或者其它电信网络,以使从可移动物体100及/或终端112接收的数据上传到网站或者服务器上。
在某些实施例中,可移动物体的运动、承载体的运动及负载相对固定参照物(如外部环境)的运动,及/或者彼此间的运动,都可以由终端所控制。该 终端可以是远程控制终端,位于远离可移动物体、承载体及/或负载的地方。终端可以位于或者粘贴于支撑平台上。可选的,该终端可以是手持的或者穿戴式的。例如,该终端可以包括智能手机、平板电脑、桌上型电脑、计算机、眼镜、手套、头盔、麦克风或者其中任意的结合。该终端可以包括用户界面,如键盘、鼠标、操纵杆、触摸屏或者显示器。任何适合的用户输入可以与终端交互,如手动输入指令、声音控制、手势控制或者位置控制(如通过终端的运动、位置或者倾斜)。
需要说明的是,本发明实施例所提及的主控设备,可以包括遥控设备终端,也可以包括手机。
其中,需要特别说明的是,本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(RAN Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、终端设备、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
在一些可行的实施例中,手机包括:射频(Radio Frequency,RF)电路、存储器、输入单元、显示单元、传感器、音频电路、无线保真(wireless fidelity,WiFi)模块、处理器、以及电源等部件。本领域技术人员可以理解,手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,本发明实施例中的主控设备还可以是服务器。
该服务器可因配置或性能不同而产生比较大的差异,可以包括一个或一个 以上中央处理器(central processing units,CPU)(例如,一个或一个以上处理器)和存储器,一个或一个以上存储应用程序或数据的存储介质(例如一个或一个以上海量存储设备)。其中,存储器和存储介质可以是短暂存储或持久存储。存储在存储介质的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器可以设置为与存储介质通信,在服务器上执行存储介质中的一系列指令操作。
服务器还可以包括一个或一个以上电源,一个或一个以上有线或无线网络接口,一个或一个以上输入输出接口,和/或,一个或一个以上操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
为便于理解,下面对本申请实施例中的具体流程进行描述,请参阅图2,本申请实施例中一种信息处理方法的一个实施例,用于包括主控设备和受控设备的遥控系统,包括:
201、当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
在一些可行的实施例中,目标区域可以包括海岛、城市、森林、村落、海面上、校园内,此处不作限定,当受控设备为小型机器人时,目标区域还可以包括公寓室内、室内篮球场、会议室等等,只要是预设的受控设备准备进入的或者已经进入的区域,都可以作为目标区域,此处不作限定。
在一些可行的实施例中,第一信号质量采样信息可以是到达的位置的信号质量值的对应关系的集合。如获取了4个位置的信号质量值,分别是位置A、B、C和D,对应的信号质量值是a、b、c和d,则可以认为第一信号质量采样信息内的元素为(A,a)、(B,b)、(C,c)、(D,d)。
在一些可行的实施例中,受控设备可以一边随意飞行,一边收集信号质量值,也可以预先在区域内的固定位置飞行,均匀的经过区域内的位置,通过这样的方式收集到较为均匀的信号质量值,以便于后续的计算。
需要说明的是,获取的信号质量值的位置,可以使用地表惯性坐标系的位置坐标来表示,即当获取I的位置时,使用(Xi,Yi,Zi)来表示。具体的,I点的位置坐标可以通过卫星定位来确定。
需要说明的是,该信号质量值可以为信噪比SNR值。
信噪比,英文名称叫做SNR或S/N(SIGNAL-NOISE RATIO),又称为讯 噪比。是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。
同样是“原信号不存在”还有一种东西叫“失真”,失真和噪声实际上有一定关系,二者的不同是失真是有规律的,而噪声则是无规律的,这个以后再讲。
202、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
在一些可行的实施例中,当受控设备在目标区域中收集了足够多的信号质量值和对应的位置,使得第一信号质量采样信息足够丰富时,则可以对此进行数据分析。在另一些可行的实施例中,也可以使用之前收集的第一信号质量采样信息,而不是一定需要使用本次收集的,此处不作限定。
在一个不均匀的环境中,其信号质量与环境中的障碍物等因素有关系,则被称为环境因素。优选的,当该信号质量影响因素为该环境因素时,该第一信号质量采样信息则为该受控设备在处于该环境因素的影响下获取的,则该信号质量系数为环境因素系数。
在一些可行的实施例中,若认为一个位置的信号质量值与多个因素有关系,则可以将各个因素进行各自独立考虑,得到各个因素相关的数值,然后将各自数值进行计算。
在本发明实施例中,环境因素是一个非常重要的因素,然而,在一些可行的实施例中,不限于环境因素,还可以包括姿态因素和相对位置因素。该信号质量影响因素包括环境因素、相对位置因素和/或姿态因素。
203、根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
在一些可行的实施例中,当获取信号质量系数后,该信号质量系数可以包括环境因素系数,也可以同时包括相对位置因素系数和/或姿态因素系数,则可以用于估算目标区域中的任意一点的信号质量。
请参考图3,在本发明的另一个实施方式,包括:
301、获取该目标区域中的多个位置中的每一个位置的发射功率和接收功率。
信噪比的计量单位是dB,其计算方法是10lg(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。在音频放大器中,我们希望的是该放大器除了放大信号外,不应该添加任何其它额外的东西。因此,信噪比应该越高越好。
狭义来讲是指放大器的输出信号的功率与同时输出的噪声功率的比,常常用分贝数表示,设备的信噪比越高表明它产生的噪声越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。
302、根据该目标区域中的多个位置中的每一个位置的发射功率和接收功率计算,该目标区域中的多个位置中每一个位置的SNR值。
在一些可行的实施例中,可以在飞行的过程中在当下的位置收集PS和Pn,然后使得SNR=PS/Pn,以计算得到SNR。
303、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
304、根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
请参考步骤203。
本实施例中步骤303和步骤304与上述实施例的步骤202和步骤203相同,此处不赘述。
请参考图4,当该信号质量影响因素为该环境因素时,该第一信号质量采样信息则为该受控设备在处于该环境因素的影响下获取的,则该信号质量系数为环境因素系数,在本发明的另一个实施方式,包括:包括:
401、当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
402、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
403、根据该环境因素系数和该目标位置的地面位置坐标计算该目标位置的信号质量值。
在一些可行的实施例中,当信号质量影响因素为环境因素时,其环境因素系数可以为一个拟合系数为A=[a1,a2,……,a10]T,当获取点I的基于地表惯性坐标系的位置坐标(xi,yi,zi),可以将其化为高阶拟合系数,以二阶为例,为[1,xi,yi,zi,xi2,yi2,zi2,xiyi,yizi,xizi],(i为1,2,……,10)则使得SNRi=[1,xi,yi,zi,xi2,yi2,zi2,xiyi,yizi,xizi][a1,a2,……,a10]T,则可以计算得到SNRi。
当需要计算拟合系数[a1,a2,……,a10]T时,可以获取第一信号质量采样信息中的受控设备的各个地表惯性坐标系下的位置坐标(xi,yi,zi),得到以下矩阵:
Figure PCTCN2016101137-appb-000001
使得:
Figure PCTCN2016101137-appb-000002
再使用最小二乘法计算拟合系数[a1,a2,……,a10]T,则得到环境因素系数,即为信号质量影响因素。
本实施例中步骤401和步骤402与上述实施例的步骤201和步骤202相同,此处不赘述。
请参考图5,当该信号质量影响因素为该环境因素和该相对位置因素时, 该第一信号质量采样信息为该受控设备在处于该环境因素以及该相对位置因素的影响下获取的,则该信号质量系数为环境因素系数和相对位置因素系数,在本发明的另一个实施方式,包括:
501、当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
502、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
503、当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,该相对位置坐标为该受控设备相对于该主控设备的位置坐标。
在一些可行的实施例中,可以通过固定环境因素,即在空旷的相同的环境下,如实验室或者空旷的操场中进行获取多个位置的SNR值以及相对应的相对位置的位置坐标,以此计算相对位置因素系数。
具体的,在一些可行的实施例中,设相对位置因素系数为一个拟合系数[b1,b2,……,b10]T,当获取点A的基于地表惯性坐标系的位置坐标(xi,yi,zi),可以将其化为高阶拟合系数,以二阶为例,为[1,xi,yi,zi,xi2,yb2,zi2,xiyi,yizi,xizi],则使得SNRb=[1,xi,yi,zi,xi2,yb2,zi2,xiyi,yizi,xizi][b1,b2,……,b10]T,则可以计算得到SNRi,(i为1,2,……,10)。
504、根据该第二信号质量采样信息进行数据分析,得到该相对位置因素系数。
当需要计算拟合系数为B=[b1,b2,……,b10]T时,可以获取第一信号质量采样信息中的受控设备的各个相对位置的位置坐标(xi,yi,zi),得到以下矩阵:
Figure PCTCN2016101137-appb-000003
使得:
Figure PCTCN2016101137-appb-000004
再使用最小二乘法计算拟合系数[b1,b2,……,b10]T,则得到相对位置因素系数。即A和B即可作为该环境因素系数。
则该根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值包括:
505、根据该环境因素系数、该相对位置系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标和该受控设备的地面位置坐标计算该目标位置的信号质量值。
请参考203。
本实施例中步骤501和步骤502与上述实施例的步骤201和步骤202相同,此处不赘述。
请参考图6,当该信号质量影响因素为该环境因素、该相对位置因素和该姿态因素时,该第一信号质量采样信息为该受控设备在处于该环境因素、该相对位置因素和该姿态因素的影响下获取的,则该信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,在本发明的另一个实施方式,包括:
601、当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
602、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
603、当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息。
请参考步骤503。
604、根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数。
请参考步骤504。
605、当该受控设备固定在一个位置上时,获取该受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息。
606、根据该第三信号质量采样信息进行数据分析,得到该姿态因素系数。
所谓姿态因素,即受控设备携带的天线的方向影响了其信号质量,然而,在一些场景下,若受控设备在每个方向都有一样的天线,或者其姿态因素的影响非常小,则可以忽略姿态因素。所谓相对位置因素,即受控设备相对于主控设备的相对位置对信号质量造成的影响。在一些场景下,若目标区域为离主控设备较远,总的来说,在目标区域中的每个位置对于主控设备的相对位置都差不多,则可以忽略相对位置因素。需要说明的是,还可以有其他因素对信号质量有影响,在此不一一赘述。
需要说明的是,在一些可行的实施例中,当认为相对位置因素和姿态因素有影响时,可以计算其相对位置因素系数和姿态因素系数。在一些可行的实施例中,相对位置因素系数和姿态因素系数可以通过在一个其他区域或者实验室中测试获得,在目标区域中使用,而环境因素系数则需要再目标区域中获取数据并计算得到。
在一些可行的实施例中,相对位置因素即为主控设备与受控设备之间的相对位置对目标位置的信号质量的影响,其相对位置即为以主控设备为坐标原点而建立的坐标系,称为遥控本体坐标系。其x轴,y轴和z轴的方向,可以分别为x轴的正向方向为东方,y轴的正向方向为北方,z轴的正向方向为垂直于水平面的正上方,也可以有其他确定x轴,y轴和z轴的方向的方法,此处不作限定。以该x轴,y轴和z轴和原点建立起来的坐标系下,受控设备的位置坐标,作为相对位置坐标,即相对位置因素与该相对位置坐标相关。
可知的是,若相对位置因素与该相对位置坐标相关,则与受控设备的姿态或者所处的环境无关,则该相对位置因素可以在一个空旷的位置计算得到,也可以通过在实验室中获取。
在一些可行的实施例中,类似的,姿态因素为受控设备相对于主控设备的姿态对信号质量的影响,而受控设备的姿态的确定使用欧拉角确定。欧拉角是用来唯一地确定定点转动明体位置的三个一组独立角参量,由章动角θ、进动角ψ和自转角φ组成,为L.欧拉首先提出,故得名。
具体的,由定点O作出固定坐标系O-xyz(主控设备的本体坐标系)以及固连于刚体的坐标系O-x'y'z'(受控设备的本体坐标系)确定。以轴Oz和Oz'为基本轴,其垂直面Oxy和Ox'y'为基本平面.由轴Oz量到Oz'的角度θ称为章动角。平面zOz'的垂线ON称为节线,它又是基本平面Ox'y'和Oxy的交线。在右手坐标系中,由ON的正端看,角θ应按逆时针方向计量。由固定轴Ox量到节线ON的角度ψ称为进动角,由节线ON量到动轴Ox'的角度φ称为自转角。由轴Oz和Oz'正端看,角ψ和φ也都按逆时针方向计量。
需要说明的是,该受控设备的本体坐标系,为以受控设备平放时的正上方为Z轴,正面为X轴,通过右手坐标系的方法确定Y轴,以此得到。则姿态因素与主控设备的本体坐标系与受控设备的本体坐标系确定,为(θ,ψ,φ)。
需要说明的是,当收集到第一信号质量采样信息时,可以让受控设备进行数据分析,只要该受控设备有处理器,也可以发送至主控设备进行计算,在此不作限定。优选的,当数据量较小时,则可以让受控设备进行数据分析,当数据量较大时,则需要较大的服务器进行处理,则需要向地面的不动的设备进行处理,则可以向主控设备发送,以使得主控设备进行数据分析。
在一些可行的实施例中,与步骤402类似的,可以通过固定环境因素,即在空旷的相同的环境下,如实验室或者空旷的操场中进行获取多个位置的SNR值以及相对应的相对位置的位置坐标,以此计算相对位置因素系数。
具体的,在一些可行的实施例中,设相对位置因素系数为一个拟合系数[c1,c2,……,c10]T,当获取点I的基于地表惯性坐标系的位置坐标(xi,yi,zi),可以将其化为高阶拟合系数,以二阶为例,为[1,xi,yi,zi,xi2,yb2,zi2,xiyi,yizi,xizi],则使得SNRc=[1,xi,yi,zi,xi2,yi2,zi2,xiyi,yizi,xizi][c1,c2,……,c10]T,则可以计算得到SNRi,(i为1,2,……,10)。
当需要计算拟合系数为C=[c1,c2,……,c10]T时,可以获取第一信号质量采样信息中的受控设备的各个相对位置的位置坐标(xi,yi,zi),得到以下矩阵:
Figure PCTCN2016101137-appb-000005
使得:
Figure PCTCN2016101137-appb-000006
在一些可行的实施例中,具体的,另受控设备的地表惯性坐标系下的位置坐标为X,相对于主控设备的相对位置的位置坐标为X’,则可以认为SNR=X*A+X’*B+X”*C,由于可以获取SNR的值、X、X’和X”,通过步骤xx已经计算得到B,通过步骤xxx计算得到C,则可以计算得到A。
再使用最小二乘法计算拟合系数[c1,c2,……,c10]T,则得到姿态因素系数C。即A、B和C即可作为该环境因素系数。
则该根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值包括:
607、根据该环境因素系数、该相对位置系数、该姿态因素系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标、该受控设备的姿态计算该目标位置的信号质量值。
请参考步骤203。
本实施例中步骤601和步骤602与上述实施例的步骤201和步骤202相同,此处不赘述。
请参考图7,包括根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值之后,在本发明的另一个实施方式,包括:
701、当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
702、根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
703、根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
704、判断该目标位置的信号质量值是否高于阈值。
705、若是,则确定以该目标位置为中心,阈值长度为半径的球体内作为 信号安全区域。
在一些场景下,如当受控设备准备进入A点时,可以使用信号质量系数以及A点的位置坐标计算A点的信号质量值。进一步的,可以把目标区域分为若干个小区域,然后取一个小区域中的若干个点,分别计算该若干个点的信号质量值,根据该若干个点的信号质量值判断该小区域的信号质量,若该小区域的信号质量过关,则可以将该小区域作为信号安全区域的一部分,否则将该小区域作为非信号安全区域的一部分。
在另一些可行的实施例中,可以当要进入一个小区域是计算该小区域的信号质量,整体判断该小区域的信号质量,也可以进而计算整个目标区域的所有小区域的信号质量,进而将信号质量足够良好的小区域集合作为信号良好区域,将其他信号质量不够好的作为飞信号良好区域。
本实施例中步骤701至步骤703与上述实施例的步骤201至步骤203相同,此处不赘述。
请参考图8,本发明实施例还提供一种信息处理装置800,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
第一获取模块801,用于当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
第一处理模块802,用于根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
计算模块803,根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
请参考图9,当该信号质量值包括信噪比SNR值,该第一获取模块801包括:
第一获取子模块8011,用于获取该目标区域中的多个位置中的每一个位置的发射功率和接收功率。
计算子模块8012,用于根据该目标区域中的多个位置中的每一个位置的发射功率和接收功率计算,该目标区域中的多个位置中每一个位置的SNR值。
请参考图10,当该信号质量影响因素为该环境因素时,该第一信号质量采样信息为该受控设备在处于该环境因素的影响下获取的,则该信号质量系数为环境因素系数,该计算模块803包括:
第一计算子模块8031,用于根据该环境因素系数和该目标位置的地面位置坐标计算该目标位置的信号质量值。
请参考图11,当该信号质量影响因素为该环境因素和该相对位置因素时,该第一信号质量采样信息为该受控设备在处于该环境因素以及该相对位置因素的影响下获取的,则该信号质量系数为环境因素系数和相对位置因素系数,该装置800还包括:
第二获取模块804,用于当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,该相对位置坐标为该受控设备相对于该主控设备的位置坐标。
第二处理模块805,用于根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数。
则该计算模块803包括:
第二计算子模块8032,用于根据该环境因素系数、该相对位置系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标和该受控设备的地面位置坐标计算该目标位置的信号质量值。
请参考图12,当该信号质量影响因素为该环境因素、该相对位置因素和该姿态因素时,该第一信号质量采样信息为该受控设备在处于该环境因素、该相对位置因素和该姿态因素的影响下获取的,则该信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,该装置800还包括:
第二获取模块804,用于当该受控设备进入特定区域时,该特定区域为不受该环境因素影响的区域,获取该特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息。
第二处理模块805,用于根据该第一信号质量采样信息进行数据分析,得到该相对位置因素系数。
第三获取模块806,用于当该受控设备固定在一个位置上时,获取该受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息。
第三处理模块807,用于根据该第三信号质量采样信息进行数据分析,得到该姿态因素系数。
则该计算模块803包括:
第三计算子模块8033,用于根据该环境因素系数、该相对位置系数、该姿态因素系数、该目标位置的地面位置坐标、该主控设备的地面位置坐标、该受控设备的姿态计算该目标位置的信号质量值。
请参考图13,该装置800还包括:
判断模块808,用于判断该目标位置的信号质量值是否高于阈值。
确定模块809,用于若该判断模块判断为是,则确定以该目标位置为中心,阈值长度为半径的球体内作为信号安全区域。
请参考图14,本发明实施例中还提供了一种信息处理装置900,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
收发器901、存储器902、处理器903以及总线904。
该收发器901、该存储器902以及该处理器903通过总线904连接。
该收发器901用于当受控设备进入目标区域时,获取该目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息。
该存储器902用于存储程序、该收发器901获取的该目标区域的第一信号质量采样信息。
该处理器903用于根据该第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数。
该处理器903还用于根据该信号质量系数和目标位置的地面位置坐标计算该目标位置的信号质量值,该目标位置处于该目标区域之中。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种信息处理方法,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
    当受控设备进入目标区域时,获取所述目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;
    根据所述第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;
    根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值,所述目标位置处于所述目标区域之中。
  2. 根据权利要求1所述方法,其特征在于,所述信号质量值包括信噪比SNR值。
  3. 根据权利要求2所述方法,其特征在于,所述获取所述目标区域中的多个位置的信号质量值包括:
    获取所述目标区域中的多个位置中的每一个位置的发射功率和接收功率;
    根据所述目标区域中的多个位置中的每一个位置的发射功率和接收功率计算,所述目标区域中的多个位置中每一个位置的SNR值。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,所述受控设备包括无人机、无人车、无人船、无人潜水艇或遥控机器人。
  5. 根据权利要求1-3中任一项所述方法,其特征在于,所述信号质量影响因素包括环境因素、相对位置因素和/或姿态因素。
  6. 根据权利要求5所述方法,其特征在于,当所述信号质量影响因素为所述环境因素时,所述第一信号质量采样信息则为所述受控设备在处于所述环境因素的影响下获取的,则所述信号质量系数为环境因素系数,
    则所述根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值包括:
    根据所述环境因素系数和所述目标位置的地面位置坐标计算所述目标位置的信号质量值。
  7. 根据权利要求5所述方法,其特征在于,当所述信号质量影响因素为所述环境因素和所述相对位置因素时,所述第一信号质量采样信息为所述受控设备在处于所述环境因素以及所述相对位置因素的影响下获取的,则所述信号 质量系数为环境因素系数和相对位置因素系数,
    则所述根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值之前,还包括:
    当所述受控设备进入特定区域时,所述特定区域为不受所述环境因素影响的区域,获取所述特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,所述相对位置坐标为所述受控设备相对于所述主控设备的位置坐标;
    根据所述第二信号质量采样信息进行数据分析,得到所述相对位置因素系数;
    则所述根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值包括:
    根据所述环境因素系数、所述相对位置系数、所述目标位置的地面位置坐标、所述主控设备的地面位置坐标和所述受控设备的地面位置坐标计算所述目标位置的信号质量值。
  8. 根据权利要求5所述方法,其特征在于,当所述信号质量影响因素为所述环境因素、所述相对位置因素和所述姿态因素时,所述第一信号质量采样信息为所述受控设备在处于所述环境因素、所述相对位置因素和所述姿态因素的影响下获取的,则所述信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,
    所述根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值之前,还包括:
    当所述受控设备进入特定区域时,所述特定区域为不受所述环境因素影响的区域,获取所述特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息;
    根据所述第一信号质量采样信息进行数据分析,得到所述相对位置因素系数;
    当所述受控设备固定在一个位置上时,获取所述受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息;
    根据所述第三信号质量采样信息进行数据分析,得到所述姿态因素系数;
    则所述根据所述信号质量系数和目标位置的地面位置坐标计算所述目标 位置的信号质量值包括:
    根据所述环境因素系数、所述相对位置系数、所述姿态因素系数、所述目标位置的地面位置坐标、所述主控设备的地面位置坐标、所述受控设备的姿态计算所述目标位置的信号质量值。
  9. 根据权利要求1所述方法,其特征在于,包括根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值之后,还包括:
    判断所述目标位置的信号质量值是否高于阈值;
    若是,则确定以所述目标位置为中心,阈值长度为半径的球体内作为信号安全区域。
  10. 一种信息处理装置,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
    第一获取模块,用于当受控设备进入目标区域时,获取所述目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;
    第一处理模块,用于根据所述第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;
    计算模块,根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值,所述目标位置处于所述目标区域之中。
  11. 根据权利要求10所述装置,其特征在于,所述信号质量值包括信噪比SNR值,所述第一获取模块包括:
    第一获取子模块,用于获取所述目标区域中的多个位置中的每一个位置的发射功率和接收功率;
    计算子模块,用于根据所述目标区域中的多个位置中的每一个位置的发射功率和接收功率计算,所述目标区域中的多个位置中每一个位置的SNR值。
  12. 根据权利要求10或11所述装置,其特征在于,当所述信号质量影响因素为所述环境因素时,所述第一信号质量采样信息为所述受控设备在处于所述环境因素的影响下获取的,则所述信号质量系数为环境因素系数,所述计算模块包括:
    第一计算子模块,用于根据所述环境因素系数和所述目标位置的地面位置坐标计算所述目标位置的信号质量值。
  13. 根据权利要求10或11所述装置,其特征在于,当所述信号质量影响 因素为所述环境因素和所述相对位置因素时,所述第一信号质量采样信息为所述受控设备在处于所述环境因素以及所述相对位置因素的影响下获取的,则所述信号质量系数为环境因素系数和相对位置因素系数,所述装置还包括:
    第二获取模块,用于当所述受控设备进入特定区域时,所述特定区域为不受所述环境因素影响的区域,获取所述特定区域中的多个位置中每一个位置的信号质量值和相对位置坐标,得到第二信号质量采样信息,所述相对位置坐标为所述受控设备相对于所述主控设备的位置坐标;
    第二处理模块,用于根据所述第一信号质量采样信息进行数据分析,得到所述相对位置因素系数;
    则所述计算模块包括:
    第二计算子模块,用于根据所述环境因素系数、所述相对位置系数、所述目标位置的地面位置坐标、所述主控设备的地面位置坐标和所述受控设备的地面位置坐标计算所述目标位置的信号质量值。
  14. 根据权利要求10或11所述装置,其特征在于,当所述信号质量影响因素为所述环境因素、所述相对位置因素和所述姿态因素时,所述第一信号质量采样信息为所述受控设备在处于所述环境因素、所述相对位置因素和所述姿态因素的影响下获取的,则所述信号质量系数为环境因素系数、相对位置因素系数和姿态因素系数,所述装置还包括:
    第二获取模块,用于当所述受控设备进入特定区域时,所述特定区域为不受所述环境因素影响的区域,获取所述特定区域中的多个位置中每一个位置的信号质量值,得到第二信号质量采样信息;
    第二处理模块,用于根据所述第一信号质量采样信息进行数据分析,得到所述相对位置因素系数;
    第三获取模块,用于当所述受控设备固定在一个位置上时,获取所述受控设备的多个姿态中每一个姿态下的信号质量值,得到第三信号质量采样信息;
    第三处理模块,用于根据所述第三信号质量采样信息进行数据分析,得到所述姿态因素系数;
    则所述计算模块包括:
    第三计算子模块,用于根据所述环境因素系数、所述相对位置系数、所述姿态因素系数、所述目标位置的地面位置坐标、所述主控设备的地面位置坐标、 所述受控设备的姿态计算所述目标位置的信号质量值。
  15. 根据权利要求10所述装置,其特征在于,包括装置还包括:
    判断模块,用于判断所述目标位置的信号质量值是否高于阈值;
    确定模块,用于若所述判断模块判断为是,则确定以所述目标位置为中心,阈值长度为半径的球体内作为信号安全区域。
  16. 一种信息处理装置,用于包括主控设备和受控设备的遥控系统,其特征在于,包括:
    收发器、存储器、处理器以及总线;
    所述收发器、所述存储器以及所述处理器通过总线连接;
    所述收发器用于当受控设备进入目标区域时,获取所述目标区域中的多个位置中每一个位置的信号质量值,得到第一信号质量采样信息;
    所述存储器用于存储程序、所述收发器获取的所述目标区域的第一信号质量采样信息;
    所述处理器用于根据所述第一信号质量采样信息进行数据分析,得到预设的信号质量影响因素对应的信号质量系数;
    所述处理器还用于根据所述信号质量系数和目标位置的地面位置坐标计算所述目标位置的信号质量值,所述目标位置处于所述目标区域之中。
PCT/CN2016/101137 2016-09-30 2016-09-30 一种信息处理方法及其装置 WO2018058552A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/101137 WO2018058552A1 (zh) 2016-09-30 2016-09-30 一种信息处理方法及其装置
CN201680003567.1A CN107087441B (zh) 2016-09-30 2016-09-30 一种信息处理方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101137 WO2018058552A1 (zh) 2016-09-30 2016-09-30 一种信息处理方法及其装置

Publications (1)

Publication Number Publication Date
WO2018058552A1 true WO2018058552A1 (zh) 2018-04-05

Family

ID=59614401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101137 WO2018058552A1 (zh) 2016-09-30 2016-09-30 一种信息处理方法及其装置

Country Status (2)

Country Link
CN (1) CN107087441B (zh)
WO (1) WO2018058552A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531761A (zh) * 2019-08-19 2019-12-03 深圳元戎启行科技有限公司 无人车调度方法、装置及执行无人车调度方法的系统
CN114040435A (zh) * 2021-11-26 2022-02-11 中国联合网络通信集团有限公司 网络覆盖质量的评测方法、装置、存储介质及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614577B (zh) * 2018-05-30 2021-02-09 中国联合网络通信集团有限公司 无人机的信息传输方法与装置
CN110351752B (zh) * 2019-06-27 2021-11-30 珠海云洲智能科技股份有限公司 一种无人艇及其网络优化方法、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204360218U (zh) * 2014-12-31 2015-05-27 深圳市大疆创新科技有限公司 移动物体
CN104683540A (zh) * 2013-11-26 2015-06-03 深圳市金立通信设备有限公司 一种改善通讯终端信号质量的方法及终端
CN105556410A (zh) * 2014-12-31 2016-05-04 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
CN105636114A (zh) * 2016-01-06 2016-06-01 广东欧珀移动通信有限公司 一种信号质量确定方法,及终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442333B (zh) * 2007-11-23 2013-03-27 联想(北京)有限公司 移动终端及其通信控制方法、电脑
CN101699896A (zh) * 2009-11-26 2010-04-28 北京东方信联科技有限公司 一种移动网络无线信号监测系统和方法
CN103581995B (zh) * 2013-08-30 2016-05-18 西安电子科技大学 一种用于移动通信网覆盖性能的测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683540A (zh) * 2013-11-26 2015-06-03 深圳市金立通信设备有限公司 一种改善通讯终端信号质量的方法及终端
CN204360218U (zh) * 2014-12-31 2015-05-27 深圳市大疆创新科技有限公司 移动物体
CN105556410A (zh) * 2014-12-31 2016-05-04 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
CN105636114A (zh) * 2016-01-06 2016-06-01 广东欧珀移动通信有限公司 一种信号质量确定方法,及终端设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531761A (zh) * 2019-08-19 2019-12-03 深圳元戎启行科技有限公司 无人车调度方法、装置及执行无人车调度方法的系统
CN114040435A (zh) * 2021-11-26 2022-02-11 中国联合网络通信集团有限公司 网络覆盖质量的评测方法、装置、存储介质及设备
CN114040435B (zh) * 2021-11-26 2023-11-21 中国联合网络通信集团有限公司 网络覆盖质量的评测方法、装置、存储介质及设备

Also Published As

Publication number Publication date
CN107087441B (zh) 2019-03-08
CN107087441A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
US11797009B2 (en) Unmanned aerial image capture platform
US20210185643A1 (en) Adaptive communication mode switching
CN109219785B (zh) 一种多传感器校准方法与系统
EP2032436B1 (en) Wirelessly controlling unmanned aircraft and accessing associated surveillance data
CN107719673B (zh) 远程控制方法及终端
WO2016138687A1 (zh) 多旋翼飞行器的控制系统、终端及机载飞控系统
WO2018058552A1 (zh) 一种信息处理方法及其装置
US20210044005A1 (en) Antenna system for unmanned aerial vehicle
CN105892476A (zh) 一种飞行器的控制方法及控制终端
WO2017201698A1 (zh) 一种追踪目标的方法及装置
Zhu et al. Research of remote measurement and control technology of UAV based on mobile communication networks
WO2018018514A1 (en) Target-based image exposure adjustment
JP2016170030A (ja) 追尾アンテナシステム、飛翔体および追尾アンテナ装置
JP7472310B2 (ja) 無人航空システム通信
US20180202831A1 (en) Auxiliary control method and system for unmanned aerial vehicle
WO2021056503A1 (zh) 可移动平台的定位方法、装置、可移动平台及存储介质
KR102472809B1 (ko) 복수의 무인이동체를 이용한 감시 시스템
WO2020062024A1 (zh) 基于无人机的测距方法、装置及无人机
WO2022000245A1 (zh) 飞行器的定位方法、辅助定位系统的控制方法和装置
Do Trong et al. A Scheme of Autonomous Victim Search at Sea Based on Deep Learning Technique Using Cooperative Networked UAVs
KR20230122785A (ko) 비행체 제어 장치 및 방법
Gonzalez et al. On internet based supermedia enhanced telepresence via cellular data network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917302

Country of ref document: EP

Kind code of ref document: A1