WO2018058473A1 - 可穿戴显示设备及无人机系统 - Google Patents

可穿戴显示设备及无人机系统 Download PDF

Info

Publication number
WO2018058473A1
WO2018058473A1 PCT/CN2016/100948 CN2016100948W WO2018058473A1 WO 2018058473 A1 WO2018058473 A1 WO 2018058473A1 CN 2016100948 W CN2016100948 W CN 2016100948W WO 2018058473 A1 WO2018058473 A1 WO 2018058473A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
optical element
light
eyepiece
display device
Prior art date
Application number
PCT/CN2016/100948
Other languages
English (en)
French (fr)
Inventor
洪小平
黄淮
刘怀宇
蒋梦瑶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680004729.3A priority Critical patent/CN107466373B/zh
Priority to PCT/CN2016/100948 priority patent/WO2018058473A1/zh
Priority to PCT/CN2017/080452 priority patent/WO2018058938A1/zh
Priority to CN201780023973.9A priority patent/CN109073906B/zh
Publication of WO2018058473A1 publication Critical patent/WO2018058473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera

Definitions

  • the present invention relates to a virtual reality technology, and more particularly to a wearable display device and a drone system.
  • Virtual reality the specific meaning is: comprehensive use of computer graphics systems and various interfaces such as reality and control, providing immersive sensation technology in a three-dimensional environment that can be generated on a computer.
  • Representative products include Oculus Rift and Sony's Morpheus.
  • Augmented reality is a new technology developed on the basis of virtual reality. It is a technology that increases the user's perception of the real world through the information provided by the computer system, and superimposes the computer-generated virtual object, scene or system prompt information into the real scene.
  • the representative products are Google Glass and Microsoft's Hololens.
  • a virtual reality glasses solution includes: an upper screen and a right screen set at a certain angle, and a transflective optical element between the upper screen and the right screen, and the light of the upper screen passes through the reflection of the optical element.
  • the light of the right screen passes through the transmission of the beam splitting element to the right eye, but since the transflective optical element has a certain thickness, the incident light enters the optical element, and the thickness of the optical element causes each incident light to be
  • the optical element 30 is reflected and transmitted multiple times. As shown in FIG. 6 of the specification, when the incident light A1 emitted from the upper screen is incident into the optical element 30, the left eye should only see the reflected light C1, but the optical element 30 has a certain thickness, causing multiple reflections.
  • the incident light A1 emitted from the right screen is incident on the right element of the optical element 30.
  • the visible light B1 should only be seen, but the transmitted light B2 is observed due to multiple transmissions, and due to the reflection
  • the light C1, C2, and C3 are reflected into the left eye successively; and the transmitted light B1 and B2 are transmitted into the right eye successively, so that the left eye and the right eye will observe the image residual phenomenon.
  • a wearable display device comprising: a first screen, a second screen at an angle to the first screen, an optical element disposed between the first screen and the second screen, a first eyepiece and a second eyepiece,
  • the optical element is capable of partially reflecting and partially transmitting light emitted by the first screen or the second screen, the first eyepiece for viewing an image of the first screen, and the second eyepiece for viewing an image of the second screen
  • the surface of the optical element is provided with an anti-reflection film, and the thickness of the anti-reflection film is changed according to a change of an incident angle formed between the light emitted from the first screen or the second screen and the optical element to eliminate the optical element.
  • An unmanned aerial vehicle system comprising the above-described wearable display device and a camera that is easy to use for taking a picture from a first angle of view of an unmanned aerial vehicle, the camera being communicatively coupled to the wearable display device.
  • the present invention provides a wearable display device by coating an antireflection film having a thickness varying on one surface of an optical element, the thickness of the antireflection film being from the first screen or the second
  • the light emitted by the screen changes with the change of the incident angle formed between the optical element, and the reflected light incident on the antireflection film and the first surface is offset by the antireflection film, so that the first eyepiece receives only the reflected light.
  • the second eyepiece receives the transmitted light, which solves the phenomenon of ghosting caused by the wearable display device when worn, so that the wearable display device is more realistic and clear when viewing the image.
  • FIG. 1 is a schematic diagram of a wearable display device according to an embodiment of the invention.
  • Figure 2 is a side view of the drone system.
  • FIG. 3 is an optical path diagram after light rays emitted from the first screen are incident on the optical elements included in the wearable display device shown in FIG. 1.
  • FIG. 4 is a light path diagram after light rays emitted from the second screen are incident on the optical elements included in the wearable display device shown in FIG. 1.
  • FIG. 5 is a side view of a wearable display device according to still another embodiment of the present invention.
  • FIG. 6 is a light path diagram of light emitted from a first screen or a second screen in the prior art after being incident on an optical element.
  • the wearable display device 100 included in the UAV system 200 and the UAV system 200 provided by the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
  • FIG. 2 is a schematic structural diagram of an unmanned aerial vehicle system 200 according to an embodiment of the present invention.
  • the drone system 200 includes a wearable display device 100 and a camera 80 for taking a picture at a first angle of view of the unmanned aerial vehicle.
  • the camera 80 is communicatively coupled to the wearable display device 100.
  • the wearable device 100 includes a first screen 10, a second screen 20, an optical element 30, a first eyepiece 40, a second eyepiece 50, a first light blocking member 60 and a second light blocking member 70.
  • the camera 80 is disposed on one side of the second screen 20 for taking a picture with a first angle of view of the UAV, and the first screen 10 and the second screen 20 may be used to present the camera 80 for shooting. Picture.
  • the first screen 10 and the second screen 20 are disposed at a predetermined angle with each other.
  • the first screen 10 and the second screen 20 are vertically disposed, and the first screen 10 is located in a horizontal direction.
  • the two screens 20 are in the vertical direction.
  • the first screen 10 and the second screen 20 may be any one of an OLED display, a plasma display, or a liquid crystal display.
  • the first screen 10 and the second screen 20 are respectively connected to an audio and video playback device or connected to the same audio and video playback device, that is, the first screen 10 and the second screen 20 can display the same audio and video, or can be presented differently. Audio and video.
  • the optical element 30 can achieve partial transmission partial reflection of light.
  • the optical element 30 is a half transflective lens disposed between the first screen 10 and the second screen 20, specifically but Without limitation, the optical element 30 is disposed at a position of an angle bisector of the first screen 10 and the second screen 20.
  • the optical element 30 is plated with an anti-reflection film 32 on the plane of the second screen 20 disposed vertically, and the optical element 30 is plated with a semi-transparent surface facing the plane of the first screen 10 disposed horizontally. Semi-reflective film.
  • the anti-reflection film 32 and the transflective film may be replaced.
  • the thickness of the anti-reflection film 32 varies with the change of the incident angle ⁇ formed between the incident light rays incident on the optical element 30 and the optical element 30 emitted by the first screen 10 or the second screen 20,
  • the anti-reflection film 32 is used to eliminate ghosting caused by multiple reflections or multiple transmissions of light in the optical element 30.
  • the transflective film (not shown) is configured to make the phase difference between the P component and the S component of the reflected light close to 0° or close to 180° when the light passes, or the P component and the S component of the transmitted light.
  • the phase difference is close to 0° or close to 180°; wherein the P component is parallel to the incident surface, and the S component is perpendicular to the incident surface, eliminating images caused by an eyepiece receiving an image that would otherwise enter the other eyepiece due to the polarization of the light. Afterimage phenomenon.
  • the first eyepiece 40 is disposed on an outgoing light path after the outgoing light of the first screen 10 is reflected by the optical element 30, and the second eyepiece 50 is disposed on the outgoing light path after the outgoing light of the second screen 20 is transmitted through the optical element 30.
  • the first eyepiece 40 and the second eyepiece 50 are respectively disposed on the surface of the optical element 30 with a polarizing plate 401, the polarizing plate 401 can be rotated, and the polarizing plate 401 is rotated and adjusted for receiving incident
  • the surface is linearly polarized to filter out polarized light in other directions.
  • the polarizing plate 401 is for the first eyepiece 40 to receive only the linearly polarized light of the first screen 10, and the second eyepiece 50 only receives the linearly polarized light of the second screen 20.
  • a wave plate may be separately disposed on the surface of the first eyepiece 40 and the second eyepiece 50 adjacent to the optical element 30, and the wave plate is used to reverse the light incident on the wave plate. The phase difference is to reduce the residual image.
  • the first light blocking member 60 is disposed on a surface of the first screen 10 facing away from the optical element 30, and the second light blocking member 70 is disposed on a surface of the second screen 20 facing away from the optical element 30, the first light blocking member
  • the light blocking member 70 and the second light blocking member 70 are respectively used to block light from the external environment from being projected onto the first screen 10 and the second screen 20.
  • the light shielding member is a light transmittance adjustable member.
  • the thickness of the AR coating is ⁇ /4n, so that the reflected light from the upper and lower surfaces of the AR coating can produce destructive interference, but a thickness such as ⁇ /4n is perpendicular to a certain color.
  • a thickness such as ⁇ /4n is perpendicular to a certain color.
  • the incident angle formed between the incident ray 41 incident on the antireflection film 32 from the first screen 10 or the second screen 20 and the antireflection film 32 is A value of uncertainty between 0 degrees and 90 degrees, so that the incident light rays on the surface of the non-vertical anti-reflection film 32 are destructively interfered with the reflected light generated on the upper and lower surfaces of the anti-reflection film 32, Then, the thickness and material of the anti-reflection film 32 plated on the surface of the optical element 30 are designed such that the thickness of the anti-reflection film 32 is emitted with one of the first screen 10 or the second screen 20 and the light The change of the incident angle formed between the optical elements 30 changes, so that different incident angles correspond to the anti-reflection films 32 of different thicknesses, so that the reflected light generated by each incident light on the upper and lower surfaces of the anti-reflection film 32 is cancelled. Interference, thereby reducing or even eliminating optical component 30 Permeable film interface between the reflected light 32, and the solution wear
  • the incident light rays which are vertically emitted from the first screen 10 form an incident angle with the optical element 30 of 45 degrees, and the other two incident light rays are formed with the optical element 30.
  • the incident angle is greater than 45 degrees, and the larger the incident angle, the greater the optical path difference (n ⁇ , n is the refractive index, and ⁇ is the wavelength) when transmitted in the AR coating 32. Therefore, in order to compensate for the optical path difference, the incident angle is incident.
  • a thinner anti-reflection film is plated at a large angle, and a thicker anti-reflection film 32 is plated at a position where the incident angle is small.
  • the working principle of the wearable display device 100 is as follows: Referring to FIG. 3 , the light emitted by the first screen 10 is first incident on the optical component 30 and then incident on the anti-reflection film 32 .
  • the light emitted from the first screen 10 is incident on the optical element 30 to form the incident light 41, and is reflected and refracted on the surface of the optical element 30 to obtain the reflected light 43 and the refracted light 42.
  • the refracted light 42 is on the anti-reflection film 32.
  • the second surface 321 reflects and refracts to obtain reflected light 44 and refracted light 45.
  • the first surface 320 of the anti-reflection film 32 is reflected and refracted to obtain reflected light 47 and refracted light 46.
  • the reflected light 44 of the second surface 321 of the anti-reflection film 32 interferes with the reflected light 47 of the first surface 320.
  • the reflected light 43 and the refracted light 46 are left, and the reflected light 43 is received by the first eyepiece 40, and the refracted light is emitted from the optical element 30 without being utilized. As such, the first eyepiece 40 receives the reflected light 43 while avoiding ghosting.
  • the light emitted by the second screen 20 is first incident on the anti-reflection film 32 and then incident on the optical element 30.
  • the light emitted by the second screen 20 is incident on the anti-reflection film 32 to form the incident light ray 51, and is reflected and refracted on the first surface 320 of the anti-reflection film 32 to obtain the refracted light 52 and the reflected light 53 in the anti-reflection film 32.
  • the second surface 321 is reflected and refracted to obtain a reflected ray 54 and a refracted ray 56.
  • the refracted ray 56 is reflected and refracted on the surface of the optical element 30 to obtain a reflected ray 57 and a refracted ray 57.
  • the reflected ray 57 is in the optical element 30.
  • the surface contacted by the anti-reflection film 32 is again reflected and refracted to obtain a reflected ray 61 and a refracted ray 59.
  • the refracted ray 59 is reflected at the first surface 320 to obtain a reflected ray 62, since the second eyepiece 50 is located on the second screen 20 Opposite side, so the second eyepiece 50 can only receive the light transmitted from the optical element 30, so that light emitted from the first surface 320, such as the reflected light 53, will not be received by the second eyepiece 50, and this part of the light will not Be exploited.
  • the reflected rays 61, 62 generated on the first surface 320 and the second surface 321 of the AR coating 32 undergo interference cancellation, so that the second eyepiece 50 receives only the refracted ray 58 and avoids ghosting of the image entering the eye.
  • the second embodiment is substantially the same as the first embodiment, except that the wearable device 300 of the second embodiment does not include the first light blocking member 60 and the second light blocking member 70, but includes a fixing frame 90.
  • the fixing frame 90 includes a first frame 91 and a second frame 92 that are opposite to each other, and a third frame 93 that vertically connects the first frame 91 and the second frame 92.
  • the first screen 10 is disposed on an inner wall of the first frame 91.
  • the second screen 20 is disposed on the inner wall 93 of the third frame, and the optical element 30 is disposed at a position of an angle bisector formed by the first frame 91 and the third frame 93 and abuts against the second frame 92.
  • the third embodiment is substantially the same as the first embodiment except that the surface of the optical element 30 is divided into a plurality of regions from the first screen 10 to the first screen 10, and the area of each region can be equal.
  • the regions may be unequally plated with the same thickness of the AR coating 32 such that the thickness of the AR coating 32 exhibits a gradient change.
  • the fourth embodiment is substantially the same as the first embodiment except that the surface of the optical element 30 is divided into a plurality of regions from the first screen 10 to the first screen 10, each region being plated with the same thickness. Antireflection film 32. The thickness of the AR coating 32 is changed gradually.
  • the wearable display device 100, 300 provided by the present invention has a thickness of the anti-reflection film 32 plated on one surface of the optical component 30 along with the first screen 10 or the second screen 20.
  • One of the emitted light changes with a change in the angle of incidence formed between the optical elements 30.
  • the reflected light incident on the first surface 320 and the second surface 321 of the anti-reflection film 32 is counteracted by the anti-reflection film 32, so that the first eyepiece 40 receives only the reflected light, and the second eyepiece 50 receives the transmission from the optical element 30.
  • the refracting light solves the phenomenon of ghosting caused by the wearable display device 100 when worn, so that the wearable display device 100 makes the image more realistic and clear when viewing the image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种可穿戴显示设备,其包括:第一屏幕、与第一屏幕呈一定角度的第二屏幕、设置在第一屏幕与第二屏幕之间的光学元件、第一目镜与第二目镜,所述光学元件能够对第一屏幕或第二屏幕发出的光线部分反射、部分透射,所述第一目镜用于观看第一屏幕的图像,所述第二目镜用于观看第二屏幕的图像,所述光学元件的表面设有增透膜,所述增透膜的厚度随着第一屏幕或者第二屏幕出射的光线与所述光学元件之间形成的入射角的变化而变化,以消除光学元件对光线的多次反射或者透射造成的重影。

Description

可穿戴显示设备及无人机系统 技术领域
本发明涉及一种虚拟现实技术,尤其涉及一种可穿戴显示设备及无人机系统。
背景技术
随着科技的发展,越来越多的眼镜或头盔产品在影音播放,视频游戏以及无人机第一视角飞行等领域大量涌现,这些产品从原理与用户体验上大概分为虚拟现实与增强现实两大类。虚拟现实,具体含义是:综合利用计算机图形系统和各种现实及控制等接口设备,在计算机上生成的、可交互的三维环境中提供沉浸感觉的技术,代表产品有Oculus 的Rift 和Sony 的Morpheus。增强现实,是在虚拟现实基础上发展起来的新技术,是通过计算机系统提供的信息增加用户对现实世界感知的技术,并将计算机生成的虚拟物体、场景或系统提示信息叠加到真实场景中,从而实现对现实的“增强”,代表产品有谷歌眼镜和微软的Hololens。
目前一种虚拟现实眼镜方案为:包括互呈一定角度设置的上屏幕与右屏幕,及在上屏幕与右屏幕之间设置一个半透半反的光学元件,上屏幕的光线通过光学元件的反射进入左眼,右屏幕的光线经过分光元件的透射到达右眼,但是由于半透半反的光学元件具有一定的厚度,导致入射光线进入光学元件时,光学元件的厚度造成同每一个入射光线在光学元件30中多次反射及透射。如说明书附图6所示,从上屏幕发出的入射光线A1入射至光学元件30中时左眼本应只看到反射光线C1的,却由于光学元件30具有一定的厚度,造成多次反射,导致观众观看到了反射光线C2,C3;从右屏幕发出的入射光线A1入射至光学元件30中右眼本应只看到透射光线B1的,却由于多次透射观看到了透射光线B2,且由于反射光线C1、C2、C3是先后反射进入左眼;及透射光线B1、B2是先后透射进入右眼,如此,便导致左眼及右眼均会观看到影像残留现象。
发明内容
有鉴于此,有必要提供一种能够解决上述技术问题的可穿戴显示设备及无人机系统。
一种可穿戴显示设备,其包括:第一屏幕、与第一屏幕呈一定角度的第二屏幕、设置在第一屏幕与第二屏幕之间的光学元件、第一目镜与第二目镜,所述光学元件能够对第一屏幕或第二屏幕发出的光线部分反射、部分透射,所述第一目镜用于观看第一屏幕的图像,所述第二目镜用于观看第二屏幕的图像,所述光学元件的表面设有增透膜,所述增透膜的厚度随着第一屏幕或者第二屏幕出射的光线与所述光学元件之间形成的入射角的变化而变化,以消除光学元件对光线的多次反射或者透射造成的重影。一种无人机系统,包括上述可穿戴显示设备及易用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接于所述可穿戴显示设备。
与现有技术相比,本发明提供的可穿戴显示设备,通过在光学元件的其中一个表面镀设厚度变化的增透膜,所述增透膜的厚度是随着从第一屏幕或者第二屏幕发出的光线与所述光学元件之间形成的入射角的变化而变化,利用增透膜将入射至增透膜上、第一表面的反射光线相干涉抵消,使第一目镜仅接收反射光线,第二目镜接收透射光线,解决了所述可穿戴显示设备在穿戴时所造成的重影现象,使可穿戴显示设备在观看图像时图像更为真实、清楚。
附图说明
图1是本发明一实施例提供的可穿戴显示设备的示意图。
图2是无人机系统的侧视图。
图3是第一屏幕发出的光线入射至图1所示的可穿戴显示设备包括的光学元件之后的光路图。
图4是第二屏幕发出的光线入射至图1所示的可穿戴显示设备包括的光学元件之后的光路图。
图5是本发明又一实施例提供的可穿戴显示设备的侧视图。
图6是现有技术中第一屏幕或者第二屏幕发出的光线入射至光学元件之后的光路图。
主要元件符号说明
可穿戴显示设备 100,300
无人机系统 200
第一屏幕 10
第二屏幕 20
光学元件 30
增透膜 32
第一表面 320
第二表面 321
第一目镜 40
第二目镜 50
第一遮光件 60
第二遮光件 70
摄像头 80
入射光线 A1,41,51
折射光线 42, 45,46,52,56,58,59,B1,B2
反射光线 43,44,47,53,54,57,61,62,C1,C2,C3
偏振片 401
固定框 90
第一边框 91
第二边框 92
第三边框 93
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面结合将结合附图及实施例,对本发明提供的无人机系统200及无人机系统200包括的可穿戴显示设备100作进一步的详细说明。
第一实施例
请参阅图2,为本发明一实施例提供的一种无人机系统200的结构示意图。所述无人机系统200包括可穿戴显示设备100及用于以无人飞行器第一视角拍摄画面的摄像头80。所述摄像头80通信连接于所述可穿戴显示设备100。所述可穿戴设备100包括:第一屏幕10、第二屏幕20、光学元件30、第一目镜40、第二目镜50、第一遮光件60与第二遮光件70。在本实施方式中,所述摄像头80设置在第二屏幕20的一侧,用于以无人飞行器第一视角拍摄画面,第一屏幕10与第二屏幕20可以用于呈现所述摄像头80拍摄的画面。
所述第一屏幕10与第二屏幕20互呈预定角度设置,在本实施方式中,所述第一屏幕10与第二屏幕20垂直设置,所述第一屏幕10位于水平方向,所述第二屏幕20位于竖直方向。所述第一屏幕10与第二屏幕20可以为OLED显示屏、等离子显示器或液晶显示器等中的任意一种。所述第一屏幕10与第二屏幕20各自连接一音视频播放装置或者连接于同一音视频播放装置,也即第一屏幕10与第二屏幕20可以呈现相同的音视频,也可以呈现不同的音视频。
所述光学元件30可实现光线的部分透射部分反射,优选地,所述光学元件30为一半透半反镜片,其设置所述第一屏幕10与所述第二屏幕20之间,具体地但不限制地,所述光学元件30设置在所述第一屏幕10与所述第二屏幕20的角平分线的位置。所述光学元件30朝向竖直设置的所述第二屏幕20的平面上镀设有增透膜32,所述光学元件30朝向水平设置的所述第一屏幕10的平面上镀设有半透半反膜。可选的,所述增透膜32和半反半透膜可以更换位置。
所述增透膜32的厚度随着第一屏幕10或者第二屏幕20发出、入射至所述光学元件30的入射光线与所述光学元件30之间形成的入射角θ的变化而变化,所述增透膜32用于消除因光线在所述光学元件30中的多次反射或者多次透射导致的重影。
所述半透半反膜(图未示),用于在光线通过时,使反射光的P分量和S分量的相位差接近0°或接近180°,或透射光的P分量和S分量的相位差接近0°或接近180°;其中,P分量平行于入射面,S分量垂直于入射面,而消除由于光线的偏振而被一个目镜接受到本该进入另外一个目镜的图像而造成的影像残影现象。
第一目镜40设置在第一屏幕10的出射光线经过光学元件30反射之后的出光光路上,第二目镜50设置在第二屏幕20的出射光线经过光学元件30透射之后的出光光路上。所述第一目镜40及第二目镜50在靠近所述光学元件30的表面上分别设置有偏振片401,所述偏振片401可以旋转,所述偏振片401经旋转调整后用于接收入射之其表面的线偏振光而过滤掉其他方向的偏振光。所述偏振片401是为了使第一目镜40只接受第一屏幕10的线偏振光,第二目镜50只接受第二屏幕20的线偏振光。
在其他实施方式中,也可以在所述第一目镜40及第二目镜50靠近所述光学元件30的表面上分别设置波片,所述波片用于使入射至波片的光线产生反向的相位差,以消减残留影像。
所述第一遮光件60设置在第一屏幕10的背离所述光学元件30的表面,第二遮光件70设置在第二屏幕20的背离所述光学元件30的表面,所述第一遮光件60及第二遮光件70分别用于阻挡外界环境的光线投射到所述第一屏幕10和所述第二屏幕20上。所述遮光件为透光率可调件。
理想状态下,增透膜的厚度是λ/4n便可以使增透膜的上下两个表面的反射光就可以产生相消干涉,但是λ/4n这样一个厚度是针对某种色光垂直入射至增透膜的情况,实际情况下,如图2所示,从第一屏幕10或者第二屏幕20入射至增透膜32的入射光线41与增透膜32之间形成的入射角是是介于0度~90度之间的不确定的一个数值,所以,要想将该些不垂直增透膜32表面的入射光线在增透膜32的上下两个表面产生的反射光线产生相消干涉,则是设计镀设在所述光学元件30表面的增透膜32的厚度及材料,使增透膜32的厚度随着第一屏幕10或者第二屏幕20二者之一出射的光线与所述光学元件30之间形成的入射角的变化而变化,使不同的入射角对应不同厚度的增透膜32,进而使每一个入射光线在增透膜32的上下两个表面产生的反射光线相消干涉,从而减少甚至消除光学元件30与增透膜32之间界面的反射光,而解决可穿戴显示设备100的残影现象。
因为从图2所示的侧视图中可以看出,从第一屏幕10竖直出射的那根入射光线与光学元件30形成的入射角是45度,其它两根入射光线与光学元件30形成的入射角是大于45度,入射角越大,在增透膜32中传输时,光程差(nλ,n为折射率,λ为波长)就越大,所以,为了弥补光程差,在入射角大的位置镀较薄的增透膜,在入射角较小的位置镀较厚的增透膜32。
所述可穿戴式显示设备100的工作原理是:请参阅图3,所述第一屏幕10出射的光线先入射至所述光学元件30,再入射至所述增透膜32。所述第一屏幕10出射的光线先入射至所述光学元件30形成入射光线41,在光学元件30表面发生反射及折射,得到反射光线43及折射光线42,折射光线42在增透膜32的第二表面321反射及折射,得到反射光线44及折射光线45。在增透膜32的第一表面320发生反射与折射,得到反射光线47及折射光线46,增透膜32第二表面321的反射光线44与第一表面320的反射光线47发生干涉相消,就剩下反射光线43及折射光线46,反射光线43被第一目镜40接收,折射光线从光学元件30中出射而不被利用。如此,第一目镜40就接收到反射光线43,而避免了发生重影。
请参阅图4,第二屏幕20发出的光线先入射至所述增透膜32,再入射至所述光学元件30。第二屏幕20发出的光线先入射至所述增透膜32形成入射光线51,在增透膜32的第一表面320发生反射及折射,得到折射光线52及反射光线53,在增透膜32的第二表面321发生反射及折射,得到反射光线54及折射光线56,折射光线56在光学元件30的表面发生反射及折射,得到反射光线57及折射光线58,反射光线57在光学元件30与增透膜32接触的表面再次发生反射与折射,得到反射光线61及折射光线59,折射光线59在第一表面320处发生反射,得到反射光线62,由于第二目镜50位于与第二屏幕20相对侧,所以第二目镜50只能接收从光学元件30透射出去的光线,从而,从第一表面320出射的光线,譬如反射光线53就不会被第二目镜50接收,这部分光线将不被利用。在增透膜32第一表面320及第二表面321上产生的反射光线61、62发生干涉相消,从而,第二目镜50只接收折射光线58,而避免了进入眼睛的图像发生重影。
第二实施例
第二实施例与第一实施例基本相同,其不同之处在于,第二实施例的可穿戴设备300不包括第一遮光件60与第二遮光件70,而是包括一个固定框90,所述固定框90包括平行相对的第一边框91与第二边框92以及垂直连接第一边框91与第二边框92的第三边框93,所述第一屏幕10设置在第一边框91的内壁,所述第二屏幕20设置在第三边框的内壁93,所述光学元件30设置在第一边框91与第三边框93所形成的角平分线的位置且抵靠在第二边框92。观众佩戴所述可穿戴设备300时,可以为观众呈现具立体效果的视频图像。
第三实施例
第三实施例与第一实施例基本相同,其不同之处在于,将光学元件30的表面从靠近第一屏幕10到远离第一屏幕10分为多个区域,每个区域的面积可以相等也可以不等,使每个区域镀设同一个厚度的增透膜32,从而使增透膜32的厚度呈现梯度变化。
第四实施例
第四实施例与第一实施例基本相同,其不同之处在于,将光学元件30的表面从靠近第一屏幕10到远离第一屏幕10分为多个区域,每个区域镀设同一个厚度的增透膜32。使增透膜32的厚度呈现渐变变化。
综上所述,本发明提供的可穿戴显示设备100、300,在所述光学元件30其中一个表面所镀设的增透膜32的厚度是随着第一屏幕10或者第二屏幕20二者之一发出的光线与所述光学元件30之间形成的入射角的变化而变化。利用增透膜32将入射至增透膜32第一表面320、第二表面321的反射光线相干涉抵消,使第一目镜40仅接收反射光线,第二目镜50接收从光学元件30中透射的折射光线,解决了所述可穿戴显示设备100在穿戴时所造成的重影现象,使可穿戴显示设备100在观看图像时图像更为真实、清楚。
可以理解的是,以上实施例仅用来说明本发明,并非用作对本发明的限定。对于本领域的普通技术人员来说,根据本发明的技术构思做出的其它各种相应的改变与变形,都落在本发明权利要求的保护范围之内。

Claims (21)

  1. 一种可穿戴显示设备,其包括:第一屏幕、与第一屏幕呈一定角度的第二屏幕、设置在第一屏幕与第二屏幕之间的光学元件、第一目镜与第二目镜,所述光学元件对第一屏幕或第二屏幕发出的光线部分反射、部分透射,所述第一目镜用于观看第一屏幕的图像,所述第二目镜用于观看第二屏幕的图像,其特征在于:所述光学元件的表面设有增透膜,所述增透膜的厚度随着第一屏幕或者第二屏幕二者之一出射的光线与所述光学元件之间形成的入射角的变化而变化,以消除光学元件对光线的多次反射或者透射造成的重影。
  2. 如权利要求1所述的的可穿戴显示设备,其特征在于,所述第一屏幕与所述第二屏幕成一定夹角设置,所述光学元件设置在所述第一屏幕与第二屏幕的角平分线的位置。
  3. 如权利要求2所述的可穿戴显示设备,其特征在于,所述第一屏幕与所述第二屏幕垂直设置,所述第一屏幕位于水平方向,所述第二屏幕位于竖直方向。
  4. 如权利要求1所述的可穿戴显示设备,其特征在于,所述光学元件的表面从靠近第一屏幕到远离第一屏幕分为多个区域,每个区域镀设同一个厚度的增透膜,使所述增透膜的厚度随着第一屏幕或者第二屏幕二者之一出射的光线与所述光学元件之间形成的入射角呈现梯度变化。
  5. 如权利要求1所述的可穿戴显示设备,其特征在于,所述光学元件的表面从靠近第一屏幕到远离第一屏幕分为多个区域,每个区域镀设同一个厚度的增透膜,使所述增透膜的厚度随着第一屏幕或者第二屏幕二者之一出射的光线与所述光学元件之间形成的入射角呈现渐变变化。
  6. 如权利要求2所述的可穿戴显示设备,其特征在于,所述所述第一屏幕与第二屏幕为OLED显示屏、等离子显示器或液晶显示器等中的任意一种。
  7. 如权利要求3所述的可穿戴显示设备,其特征在于,所述光学元件的与所述增透膜相背对的另外一个表面镀设有半透半反膜,所述半透半反膜用于在光线通过时,使反射光的P分量和S分量的相位差接近0°或接近180°,或透射光的P分量和S分量的相位差接近0°或接近180°;其中,P分量平行于入射面,S分量垂直于入射面。
  8. 如权利要求1所述的可穿戴显示设备,其特征在于,所述第一目镜及第二目镜靠近所述光学元件的表面上分别设置有偏振片,所述偏振片可以旋转,所述偏振片经旋转调整后使得第一目镜只接受第一屏幕的线偏振光,第二目镜只接受第二屏幕的线偏振光。
  9. 如权利要求1所述的可穿戴显示设备,其特征在于,所述第一目镜及第二目镜靠近所述光学元件的表面上分别设置有波片,所述波片用于使入射至波片的光线产生反向的相位差,以消减残留影像。
  10. 如权利要求1所述的可穿戴显示设备,其特征在于,所述第一目镜和所述第二目镜均包括至少一个凸透镜、或至少一个菲涅尔透镜。
  11. 如权利要求1所述的可穿戴显示设备,其特征在于,还包括第一遮光件与第二遮光件,所述第一遮光件设置在第一屏幕的背离所述光学元件的表面,第二遮光件设置在第二屏幕的背离所述光学元件的表面,所述第一遮光件及第二遮光件分别用于阻挡外界真实场景的光线投射到所述第一屏幕和所述第二屏幕上。
  12. 如权利要求1所述的可穿戴显示设备,其特征在于,还包括固定框,所述固定框包括平行相对的第一边框与第二边框以及垂直连接第一边框与第二边框的第三边框,所述第一屏幕设置在第一边框的内壁,所述第二屏幕设置在第三边框的内壁,所述光学元件设置在第一边框与第三边框所形成的角平分线的位置且抵靠在第二边框。
  13. 一种无人机系统,其包括:可穿戴显示设备及易用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接于所述可穿戴显示设备,所述可穿戴设备包括:第一屏幕、与第一屏幕呈一定角度的第二屏幕、设置在第一屏幕与第二屏幕之间的光学元件、第一目镜与第二目镜,所述光学元件能够对第一屏幕或第二屏幕发出的光线部分反射、部分透射,所述第一目镜用于观看第一屏幕的图像,所述第二目镜用于观看第二屏幕的图像,其特征在于:所述光学元件的表面设有增透膜,所述增透膜的厚度随着第一屏幕或者第二屏幕出射的光线与所述光学元件之间的入射角的变化而变化,以消除光学元件对光线的多次反射或者透射造成的重影。
  14. 如权利要求13所述的无人机系统,其特征在于,所述第一屏幕与所述第二屏幕成一定夹角设置,所述光学元件设置在所述第一屏幕与第二屏幕的角平分线的位置。
  15. 如权利要求14所述的无人机系统,其特征在于,所述第一屏幕与所述第二屏幕垂直设置,所述第一屏幕位于水平方向,所述第二屏幕位于竖直方向。
  16. 如权利要求13所述的无人机系统,其特征在于,所述光学元件的表面从靠近第一屏幕到远离第一屏幕分为多个区域,每个区域镀设同一个厚度的增透膜,使所述增透膜的厚度随着第一屏幕或者第二屏幕二者之一出射的光线与所述光学元件之间形成的入射角呈现梯度变化。
  17. 如权利要求13所述的可穿戴显示设备,其特征在于,所述光学元件的表面从靠近第一屏幕到远离第一屏幕分为多个区域,每个区域镀设同一个厚度的增透膜,使所述增透膜的厚度随着第一屏幕或者第二屏幕二者之一出射的光线与所述光学元件之间形成的入射角呈现渐变变化。
  18. 如权利要求13所述的无人机系统,其特征在于,所述所述第一屏幕与第二屏幕为OLED显示屏、等离子显示器或液晶显示器等中的任意一种。
  19. 如权利要求13所述的无人机系统,其特征在于,所述光学元件的与所述增透膜相背对的另外一个表面镀设有半透半反膜,所述半透半反膜用于,在光线通过时,使反射光的P分量和S分量的相位差接近0°或接近180°,或透射光的P分量和S分量的相位差接近0°或接近180°;其中,P分量平行于入射面,S分量垂直于入射面。
  20. 如权利要求13所述的无人机系统,其特征在于,所述第一目镜及第二目镜靠近所述光学元件的表面上分别设置有偏振片,所述偏振片可以旋转,所述偏振片经旋转调整后,使得第一目镜只接受第一屏幕的线偏振光,第二目镜只接受第二屏幕的线偏振光。
  21. 如权利要求13所述的无人机系统,其特征在于,所述第一目镜及第二目镜靠近所述光学元件的表面上分别设置有波片,所述波片用于使入射至波片的光线产生反向的相位差,以消减残留影像。
PCT/CN2016/100948 2016-09-29 2016-09-29 可穿戴显示设备及无人机系统 WO2018058473A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680004729.3A CN107466373B (zh) 2016-09-29 2016-09-29 可穿戴显示设备及无人机系统
PCT/CN2016/100948 WO2018058473A1 (zh) 2016-09-29 2016-09-29 可穿戴显示设备及无人机系统
PCT/CN2017/080452 WO2018058938A1 (zh) 2016-09-29 2017-04-13 穿戴式设备和无人机系统
CN201780023973.9A CN109073906B (zh) 2016-09-29 2017-04-13 穿戴显示设备和无人机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100948 WO2018058473A1 (zh) 2016-09-29 2016-09-29 可穿戴显示设备及无人机系统

Publications (1)

Publication Number Publication Date
WO2018058473A1 true WO2018058473A1 (zh) 2018-04-05

Family

ID=60545123

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/100948 WO2018058473A1 (zh) 2016-09-29 2016-09-29 可穿戴显示设备及无人机系统
PCT/CN2017/080452 WO2018058938A1 (zh) 2016-09-29 2017-04-13 穿戴式设备和无人机系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080452 WO2018058938A1 (zh) 2016-09-29 2017-04-13 穿戴式设备和无人机系统

Country Status (2)

Country Link
CN (2) CN107466373B (zh)
WO (2) WO2018058473A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663147A (zh) * 2018-04-28 2020-01-07 深圳市大疆创新科技有限公司 激光二极管封装模块及发射装置、测距装置、电子设备
EP3608764A4 (en) * 2018-06-08 2020-10-28 SZ DJI Technology Co., Ltd. CONTROL METHOD AND DEVICE FOR SCREEN
TWI669533B (zh) * 2018-08-01 2019-08-21 宏達國際電子股份有限公司 頭戴式顯示器以及多深度的成像裝置
CN109442341A (zh) * 2018-10-12 2019-03-08 东风汽车有限公司 Oled汽车车灯
CN112051672A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种消伪影式显示光机及其方法和近眼显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252953A1 (en) * 2006-04-27 2007-11-01 Robert Metzger Crosstalk reduced stereoscopic viewing apparatus
CN201518076U (zh) * 2009-11-09 2010-06-30 北京东方恒润科技有限责任公司 立体图像显示设备
JP2011090191A (ja) * 2009-10-23 2011-05-06 Nanao Corp 立体画像表示装置
US20110199547A1 (en) * 2009-09-16 2011-08-18 Akinori Hayashi Stereoscopic image display apparatus
CN203941346U (zh) * 2014-04-24 2014-11-12 卢桓 一种3d显示系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767305B2 (en) * 2011-08-02 2014-07-01 Google Inc. Method and apparatus for a near-to-eye display
JP6119091B2 (ja) * 2011-09-30 2017-04-26 セイコーエプソン株式会社 虚像表示装置
CN205942090U (zh) * 2016-04-29 2017-02-08 深圳市大疆创新科技有限公司 可穿戴设备及无人机系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252953A1 (en) * 2006-04-27 2007-11-01 Robert Metzger Crosstalk reduced stereoscopic viewing apparatus
US20110199547A1 (en) * 2009-09-16 2011-08-18 Akinori Hayashi Stereoscopic image display apparatus
JP2011090191A (ja) * 2009-10-23 2011-05-06 Nanao Corp 立体画像表示装置
CN201518076U (zh) * 2009-11-09 2010-06-30 北京东方恒润科技有限责任公司 立体图像显示设备
CN203941346U (zh) * 2014-04-24 2014-11-12 卢桓 一种3d显示系统

Also Published As

Publication number Publication date
CN107466373B (zh) 2019-11-05
CN107466373A (zh) 2017-12-12
WO2018058938A1 (zh) 2018-04-05
CN109073906A (zh) 2018-12-21
CN109073906B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US11347061B2 (en) Compact eye tracking using folded display optics
WO2018058473A1 (zh) 可穿戴显示设备及无人机系统
US11277602B2 (en) Method and system for display device with integrated polarizer
US20220308343A1 (en) Near-to-eye display device and augmented reality apparatus
US6853491B1 (en) Collimating optical member for real world simulation
CN108681073A (zh) 一种增强现实光学显示系统
CN107111132A (zh) 通过超精细结构保护的紧凑型头戴式显示系统
JPH04339488A (ja) 三次元映像表示方法および装置
CN107065181B (zh) 虚拟现实设备的光学系统
CN210776039U (zh) 微型化短距离光学系统
US20180157052A1 (en) Display apparatus and method of displaying using optical combiners and context and focus image renderers
CN208580263U (zh) 一种增强现实光学显示系统
CN108572457A (zh) 一种光学显示系统
CN108594441A (zh) 一种光学系统
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
CN103529637A (zh) 3d影视系统及3d投影方法
CN208314343U (zh) 一种光学显示系统
TWM591624U (zh) 短距離之光學系統
CN116661154B (zh) 一种光路多次折叠的光学系统及头戴显示装置
US20180348533A1 (en) Display system and display method of display system
TW202340643A (zh) 具有定向光柵以減少出現重疊影像的顯示系統
TWI797563B (zh) 超短距目鏡系統
EP2721813B1 (en) Videoconferencing system using an inverted telescope camera
CN210200278U (zh) 成像组件和成像装置
CN112505920A (zh) 微型化短距离光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917227

Country of ref document: EP

Kind code of ref document: A1