WO2018058467A1 - 信号的传输方法及装置 - Google Patents

信号的传输方法及装置 Download PDF

Info

Publication number
WO2018058467A1
WO2018058467A1 PCT/CN2016/100940 CN2016100940W WO2018058467A1 WO 2018058467 A1 WO2018058467 A1 WO 2018058467A1 CN 2016100940 W CN2016100940 W CN 2016100940W WO 2018058467 A1 WO2018058467 A1 WO 2018058467A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
identifier
cell identifier
signal
cell
Prior art date
Application number
PCT/CN2016/100940
Other languages
English (en)
French (fr)
Inventor
唐海
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CN201680085830.6A priority Critical patent/CN109314549B/zh
Priority to US16/305,546 priority patent/US11075686B2/en
Priority to EP16917221.0A priority patent/EP3451552B1/en
Priority to PCT/CN2016/100940 priority patent/WO2018058467A1/zh
Priority to TW106128829A priority patent/TWI710269B/zh
Publication of WO2018058467A1 publication Critical patent/WO2018058467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a method and apparatus for transmitting signals.
  • MIMO Multiple-Input Multiple-Output
  • LTE Long Term Evolution
  • a cell common signal (for example, a synchronization signal, etc.) can be transmitted using only one beam.
  • the beam is usually a "wide beam” that can cover the entire cell, and is relatively “narrow beam".
  • the common signal transmitted by the wide beam cannot obtain sufficient shaping gain, which affects the transmission quality of the common signal.
  • multiple beams may be used to transmit the common signal, but the terminal cannot determine which beam in the cell to obtain the common signal, and thus cannot be in the subsequent signal transmission process. Use this beam.
  • Embodiments of the present invention provide a signal transmission method and apparatus, so that a terminal determines a beam used when transmitting a subsequent signal.
  • the first aspect provides a method for transmitting a signal, including: receiving, by a terminal, a synchronization signal sent by a network side device; the terminal determining, according to the synchronization signal, a beam identifier and at least part of a cell identifier; and the terminal according to the beam identifier and / or the at least part of the cell identity transmits a subsequent signal.
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the determining, by the terminal, the beam identifier and the at least part of the cell identifier according to the synchronization signal including: the terminal according to the sequence information of the synchronization signal, Determining the beam identification and the at least a portion of the cell identity.
  • the terminal may determine the beam identifier according to the sequence information of the synchronization signal and at least Part of the cell identity such that the terminal determines the beam to use when transmitting subsequent signals.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal, Determining the sequence information of the synchronization signal, determining the beam identifier and the at least part of the cell identifier, including: the terminal, according to the sequence ID of the synchronization signal, the total number of beams in each cell preset, and the preset at least And determining, by the number of partial cell identifiers, the beam identifier and the at least part of the cell identifier.
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the sequence ID of the synchronization signal, the total number of beams in each cell preset, and the preset number of the at least part of the cell identifier, thereby The terminal determines the beam to use when transmitting subsequent signals.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal, And determining, by the sequence information of the synchronization signal, the beam identifier and the at least part of the cell identifier, including: determining, by the terminal, the at least part of the cell identifier according to the sequence information of the first synchronization signal; The sequence information determines the beam identification.
  • the terminal may determine at least part of the cell identifier and the beam identifier according to the sequence information of the first synchronization signal and the sequence information of the second synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal, Determining, by the synchronization signal, the beam identifier and the at least part of the cell identifier, the terminal determining, according to the sequence information of the synchronization signal, the at least part of the cell identifier; the terminal according to the first transmission time unit and the second transmission time unit
  • the beam identification is determined by the number of transmission time units between the interval, and the correspondence between the number of transmission time units and the beam identification, wherein the first transmission time unit is a transmission time unit that transmits the first synchronization signal,
  • the second transmission time unit is a transmission time unit that transmits the second synchronization signal.
  • the terminal determines the at least part of the cell identifier according to the sequence information of the synchronization signal, and determines the beam identifier according to the number of transmission time units between the first transmission time unit and the second transmission time unit, so that the terminal Determine the beam to use when transmitting subsequent signals.
  • the terminal determines, according to the synchronization signal, a beam identifier and at least a part of a small
  • the area identifier includes: the terminal determining, according to the sequence information of the synchronization signal, the at least part of the cell identifier; the physical resource used by the terminal according to the synchronization signal, and the correspondence between the physical resource and the beam identifier, Determining the beam identification.
  • the terminal determines the at least part of the cell identifier according to the sequence information of the synchronization signal, and determines the beam identifier according to the physical resource used for transmitting the synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the determining, by the terminal, the beam identifier and the at least part of the cell identifier according to the synchronization signal further includes: Determining, by the terminal, the beam identifier and the first cell identifier according to the synchronization signal, where the first cell identifier is a part of the cell identifier in the complete cell identifier, and the terminal according to the beam identifier and/or the location
  • the at least part of the cell identity transmission subsequent signal includes: the terminal determining a second cell identity from the synchronization channel corresponding synchronization channel, where the second cell identity and the first cell identity form the complete cell identity
  • the terminal determines the complete cell identifier according to the first cell identifier and the second cell identifier; the terminal transmits the subsequent signal according to the beam identifier and/or the complete cell identifier.
  • the terminal determines the beam identifier and the first cell identifier according to the synchronization signal, and determines the second cell identifier from the synchronization channel corresponding to the synchronization signal, thereby finally determining the cell used in transmitting the subsequent signal and the cell in the cell. Beam and transmit subsequent signals through the beam.
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier And including: the terminal determining, according to the beam identifier and/or the at least part of the cell identifier, a physical resource used for transmitting the subsequent signal; and the terminal transmitting the subsequent signal on the physical resource.
  • the terminal transmits a subsequent signal according to the beam identifier and at least part of the cell identifier, so that the terminal can transmit the subsequent signal by using the beam used when receiving the synchronization signal.
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier
  • the method includes: the terminal generates a scrambling sequence according to the beam identifier and/or the at least part of the cell identifier; the terminal scrambles the subsequent signal according to the scrambling sequence; The subsequent signal of the disturbance.
  • the terminal may use the beam identifier and at least part of the cell identifier to determine The sequence is scrambled to use the scrambling sequence to scramble subsequent signals.
  • the subsequent signal includes a broadcast signal, a random access signal, a control signal, a reference signal, and a data signal.
  • the terminal may transmit subsequent broadcast signals, random access signals, control signals, reference signals, and data signals on the beam used for receiving the synchronization signal.
  • the subsequent signal includes a preamble
  • the terminal identifies and/or according to the beam And transmitting, by the terminal, the preamble sequence according to the beam identifier and/or the at least part of the cell identifier; and the terminal transmitting the preamble signal according to the preamble sequence.
  • the terminal may determine the preamble sequence by using the beam identifier and at least part of the cell identifier, so that the preamble sequence is transmitted by using the preamble sequence.
  • the subsequent signal includes a pilot signal
  • the terminal identifies and/or according to the beam identifier Transmitting, by the at least part of the cell identifier, a subsequent signal, the terminal: generating, by the terminal, a pilot sequence according to the beam identifier and/or the at least part of the cell identifier; and transmitting, by the terminal, the pilot signal according to the pilot sequence .
  • the terminal may determine the pilot sequence using the beam identifier and at least part of the cell identity, thereby transmitting the pilot signal using the pilot sequence.
  • a second aspect provides a method for transmitting a signal, including: determining, by a network side device, a cell identifier and a beam identifier; and the network side device sending a synchronization signal according to at least part of the cell identifier and the beam identifier.
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the synchronization signal is one of the plurality of synchronization signals
  • the network side device is configured according to the at least part of the cell identifier and the The beam identifier sends the synchronization signal
  • the network side device sends the multiple synchronization signals by using multiple beams according to the at least part of the cell identifier and the beam identifier, and the synchronization signals transmitted by different beams are different.
  • multiple different synchronization signals are sent through different multiple beams, and finally
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, including: The network side device determines sequence information of the synchronization signal according to the at least part of the cell identifier and the beam identifier; and the network side device sends the synchronization signal generated based on the sequence information.
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the sequence information of the synchronization signal, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the network side device is configured according to at least part Determining the sequence information of the synchronization signal by the cell identifier and the beam identifier, including: the network side device according to the at least part of the cell identifier, the beam identifier, and a preset total in each cell The number of beams, and the number of said at least part of said cell identifiers, determines the sequence ID of said synchronization signal.
  • the terminal may determine the beam identifier and at least part of the cell identifier according to the sequence ID of the synchronization signal, the total number of beams in each cell preset, and the preset number of the at least part of the cell identifier, thereby The terminal determines the beam to use when transmitting subsequent signals.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the network side device is configured according to at least part of And the determining, by the network side device, the sequence information of the first synchronization signal according to the at least part of the cell identifier, and based on the first synchronization signal, The sequence information generates the first synchronization signal; the network side device determines sequence information of the second synchronization signal according to the beam identifier, and generates the second synchronization based on sequence information of the second synchronization signal a signal; the network side device transmits the first synchronization signal and the second synchronization signal.
  • the terminal may determine at least part of the cell identifier and the beam identifier according to the sequence information of the first synchronization signal and the sequence information of the second synchronization signal respectively sent by the network side device, so that the terminal determines the beam used when transmitting the subsequent signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the synchronization signal The number includes a first synchronization signal and a second synchronization signal
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, including: the network side device according to the at least part of the cell Identifying, determining a sequence ID of the first synchronization signal and a sequence ID of the second synchronization signal; the network side device generating the first synchronization signal according to the sequence ID of the first synchronization signal, and according to the Generating, by the sequence ID of the second synchronization signal, the second synchronization signal; the network side device determining, according to the beam identifier, a number of transmission time units between the first transmission time unit and the second transmission time unit; the network The side device transmits the first synchronization signal on the first transmission
  • the terminal determines the at least part of the cell identifier according to the sequence information of the synchronization signal, and determines the beam identifier according to the number of transmission time units between the first transmission time unit and the second transmission time unit, so that the terminal Determine the beam to use when transmitting subsequent signals.
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, and further includes The network side device sends the synchronization signal according to the first cell identifier and the beam identifier, where the first cell identifier is a part of the complete cell identifier, and the method further includes: The network side device sends the second cell identifier by using a synchronization channel corresponding to the synchronization signal, where the second cell identifier and the first cell identifier constitute the complete the cell identifier.
  • the terminal determines the beam identifier and the first cell identifier according to the synchronization signal, and determines the second cell identifier from the synchronization channel corresponding to the synchronization signal, thereby finally determining the cell used in transmitting the subsequent signal and the cell in the cell. Beam and transmit subsequent signals through the beam.
  • the method further includes: the network side device according to the at least part of the cell identifier and the The beam identification transmits subsequent signals.
  • the network side device transmits the subsequent signal according to the at least part of the cell identifier and the beam identifier, so that the terminal receives the subsequent signal by using the beam corresponding to the wave speed identifier.
  • the network side device transmits a subsequent signal according to the at least part of the cell identifier and the beam identifier,
  • the network side device generates a scrambling sequence according to the at least part of the cell identifier and the beam identifier; the network side device pairs the follow-up letter according to the scrambling sequence The number is scrambled; the network side device transmits the scrambled subsequent signal.
  • the scrambling sequence may be determined using the beam identification and at least a portion of the cell identity to scramble the subsequent signal using the scrambling sequence.
  • the subsequent signals include a broadcast signal, a control signal, a reference signal, and a data signal.
  • subsequent broadcast signals, random access signals, control signals, reference signals, data signals, and the like may be transmitted on the beam used for receiving the synchronization signal.
  • the network side device transmits a subsequent signal according to the at least part of the cell identifier and the beam identifier, The network side device determines, according to the at least part of the cell identifier and the beam identifier, a physical resource used for transmitting the subsequent signal; and the network side device transmits the subsequent signal on the physical resource.
  • the physical resource for transmitting the subsequent signal may be determined by the oh beam identifier and at least part of the cell identifier, so that the subsequent signal is transmitted at the physical resource.
  • the subsequent signal includes a pilot signal
  • the network side device is configured according to the at least part of the cell identifier And transmitting, by the beam identifier, a subsequent signal, where: the network side device generates a pilot sequence according to the at least part of the cell identifier and the beam identifier; and the network side device transmits the pilot sequence according to the pilot sequence Pilot signal.
  • the pilot sequence may be determined using the beam identification and at least a portion of the cell identity to transmit the pilot signal using the pilot sequence.
  • a signal transmission apparatus comprising means for performing the method of the first aspect.
  • a signal transmission apparatus comprising means for performing the method of the second aspect.
  • a signal transmission apparatus comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the first aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • a signal transmission apparatus comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the second aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • a computer readable storage medium for program code for a method of signal detection, the program code for performing the method instructions of the first aspect.
  • a computer readable storage medium for program code for a method of signal detection, the program code for performing the method instructions of the second aspect.
  • FIG. 1 shows a schematic flow chart of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 2 shows a schematic flow chart of a method of transmitting a signal according to another embodiment of the present invention.
  • FIG. 3 shows a schematic block diagram of a signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • FIG. 6 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a terminal may be referred to as a terminal device or a user equipment (User Equipment, referred to as "UE"), and may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., and may be accessed via a wireless access network.
  • UE User Equipment
  • RAN Radio Access Network
  • core networks may be mobile terminals, such as mobile phones (or “cellular” phones) and computers with mobile terminals, for example, Portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, GSM or Code Division Multiple Access (CDMA).
  • Base station Base Transceiver Station, BTS
  • BTS Base Transceiver Station
  • Node B, NB base station
  • a relay station or an access point or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the network device may be a macro base station, or may be a base station for providing a small cell, where the small cell may include: a metro cell, a micro cell. Micro cell, Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a plurality of beams (for example, a narrow beam) can be used to transmit a common signal in one cell, but the terminal cannot determine which beam in the cell obtains a common signal when accessing the cell, This beam is thus used during subsequent signal transmissions.
  • FIG. 1 is a schematic flowchart of a method for transmitting a signal according to an embodiment of the present invention. The method shown in FIG. 1 includes:
  • the terminal receives a synchronization signal sent by the network side device.
  • the synchronization signal is one of different multiple synchronization signals transmitted by the network side device using different beams.
  • the synchronization signal may be a downlink signal used by the terminal to synchronize with the network side device to determine the downlink timing and the transmission frequency.
  • the synchronization signal may include a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Cell-specific Reference Signal (CRS), and a Beam Reference Signal (BRS). ).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Cell-specific Reference Signal
  • BRS Beam Reference Signal
  • the terminal determines a beam identifier and at least a part of a cell identifier according to the synchronization signal.
  • the at least part of the cell identifier may be a complete cell identifier or a part of the cell identifier of the complete cell identifier.
  • the complete cell identifier may include a cell group identifier (Cell Group ID) and an intra-group cell identifier (ID within Cell Group), and the at least part of the cell identifier may be a cell group identifier or a cell identifier in the group.
  • the complete cell identifier (Cell ID) may also be composed of the cell ID1 and the cell ID2, and the partial cell ID may be the cell ID1 or the cell ID2.
  • the beam identifier may be combined with at least part of the cell identifier to indicate one beam.
  • the beam identifier is 1 and the cell identifier is 3, and the beam with the beam identifier 1 in the cell 3 can be determined.
  • the terminal determines the beam identifier and the at least part of the cell identifier according to the sequence information of the synchronization signal.
  • sequence information of the synchronization signal may be the sequence ID of the synchronization signal, and may be other information related to the sequence of generating the synchronization signal, which is not specifically limited in the embodiment of the present invention.
  • sequence information of the synchronization signal can be obtained by blind detection of the synchronization signal by the terminal.
  • the sequence information may be determined by the terminal to perform blind detection on the PSS, and the sequence information may also be determined by the terminal to perform blind detection on the SSS.
  • the sequence information may also be determined by the terminal to perform blind detection on the PSS and the SSS, and the embodiment of the present invention determines The manner of the sequence information is not specifically limited.
  • the terminal may perform blind detection on the PSS to determine the sequence ID1 of the synchronization signal, and perform blind detection on the SSS to determine the sequence ID2 of the synchronization signal.
  • the terminal and the network side device can pre-arrange the sequence ID of the synchronization signal and the sequence of the synchronization signal.
  • the correspondence between the ID1 and the sequence ID2 of the synchronization signal i.e., using a predetermined mapping relationship
  • the terminal can determine the sequence ID of the synchronization sequence based on the sequence ID1 of the synchronization signal and the sequence ID2 of the synchronization signal.
  • the terminal may determine the at least part of the cell identifier by performing blind detection on the synchronization information. For example, the terminal may perform blind detection on the PSS, determine the cell identifier in the group, perform blind detection on the SSS, and determine the cell group ID. The terminal may also detect only the PSS in the group, that is, a part of the cell identifier. This embodiment of the present invention does not specifically limit this.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the terminal determines, according to the sequence information of the synchronization signal, a beam identifier and at least part of a cell identifier, including: Determining, by the terminal, the beam identifier and the at least part of the cell identifier according to a sequence ID of the synchronization signal, a preset total number of beams in each cell, and a preset number of the at least part of the cell identifiers.
  • the value of N in the above formula may be 504, the value of M may be 8 or 4, and the value of K may be 63 or 126.
  • the value of the parameter in the above formula is not specifically limited in the embodiment of the present invention.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the terminal determines, according to the sequence information of the synchronization signal, a beam identifier and at least part of a cell identifier, including: Determining, by the terminal, the at least the sequence information of the first synchronization signal And determining, by the terminal, the beam identifier according to the sequence information of the second synchronization signal.
  • sequence information of the second synchronization signal or the physical resource used for transmitting the second synchronization signal may be determined by at least part of a cell identifier obtained by performing blind detection on the first synchronization signal.
  • first synchronization signal may be a PSS or an SSS
  • second synchronization signal may be a CRS or a BRS
  • first synchronization signal may be a PSS
  • second synchronization signal may be an SSS.
  • the types of the first synchronization signal and the above-described second synchronization signal are not specifically limited.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the terminal determines, according to the synchronization signal, a beam identifier and at least a part of a cell identifier, including: the terminal according to the Determining, by the sequence information of the synchronization signal, the at least part of the cell identifier; the number of transmission time units of the terminal according to the interval between the first transmission time unit and the second transmission time unit, and the correspondence between the number of transmission time units and the beam identification Determining the beam identifier, wherein the first transmission time unit is a transmission time unit that transmits the first synchronization signal, and the second transmission time unit is a transmission time unit that transmits the second synchronization signal.
  • the foregoing transmission time unit may refer to a transmission unit such as a subframe, an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a time slot, a shortened time slot, and a shortened subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the beam identifier may be mp, p may be a preset positive integer; if the first synchronization is transmitted The beam identifier may be m-1 when the subframe used for the signal and the subframe used for transmitting the second synchronization signal are separated by m subframes.
  • first synchronization signal may be a PSS or an SSS
  • second synchronization signal may be a CRS or a BRS
  • first synchronization signal may be a PSS
  • second synchronization signal may be an SSS.
  • the types of the first synchronization signal and the above-described second synchronization signal are not specifically limited.
  • the corresponding relationship between the number of the transmission time units and the beam identifier may be configured in advance for the terminal, and may also be sent by the network side device to the terminal, which is not specifically limited in this embodiment of the present invention.
  • the determining, by the terminal, the beam identifier and the at least part of the cell identifier according to the synchronization signal the determining, by the terminal, determining, according to the sequence information of the synchronization signal, The at least part of the cell identifier is determined; the terminal determines the beam identifier according to a physical resource used by the synchronization signal and a correspondence between the physical resource and the beam identifier.
  • the corresponding relationship between the preset physical resource and the beam identifier may be a correspondence between a time domain physical resource index and a beam identifier, or a corresponding relationship between a frequency domain physical resource index and a beam identifier, or may be a time-frequency physical resource index.
  • the corresponding relationship between the above-mentioned correspondences is not specifically limited in the embodiment of the present invention.
  • first synchronization signal may be any one of SSS, CRS, and BRS, which is not specifically limited in this embodiment of the present invention.
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier.
  • the foregoing terminal transmitting the subsequent signal may be that the terminal receives the subsequent signal or the terminal sends a subsequent signal, that is, the subsequent signal may be a downlink signal or an uplink signal.
  • the transmitting, by the terminal, the subsequent signal according to the beam identifier and/or the at least part of the cell identifier may refer to that the terminal uses the beam corresponding to the beam identifier to transmit a subsequent signal according to the beam identifier and/or the at least part of the cell identifier.
  • the terminal may select a beam with a better quality of the transmission signal from the beams used for transmitting the plurality of synchronization signals as the used beam for transmitting the subsequent signal, wherein the beam with better quality of the transmitted signal may refer to A beam that transmits a signal quality greater than a preset threshold.
  • the plurality of beams described above may be multiple beams in one cell.
  • the terminal can select different synchronization signals transmitted by multiple beams, select a beam with a better transmission signal to transmit subsequent signals, and obtain a shaping gain to improve signal transmission quality.
  • the step 120 further includes: determining, by the terminal, the beam identifier and the first cell identifier according to the synchronization signal, where the first cell identifier is a part of a cell identifier in a complete cell identifier;
  • Step 130 includes: determining, by the terminal, a second cell identifier from the synchronization channel corresponding synchronization channel, where the second cell identifier and the first cell identifier constitute the complete cell identifier; The cell identity and the second cell identity determine the complete cell identity; the terminal transmits the subsequent signal according to the beam identity and/or the complete cell identity.
  • the synchronization channel corresponding to the synchronization signal may be that the scrambling sequence used by the synchronization channel transmission signal may be generated by using the sequence ID carried by the synchronization signal; or transmitting the synchronization.
  • the physical resource location used by the signal has a fixed relative position between the physical resource location corresponding to the synchronization channel, for example, a fixed time offset between the transmission time unit transmitting the synchronization signal and the transmission time unit corresponding to the synchronization channel .
  • a scrambling sequence of the synchronization channel eg, PBCH
  • the synchronization channel may be a Physical Broadcast Channel (PBCH), a Physical Sidelink Broadcast Channel (PSBCH), or the like.
  • PBCH Physical Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier, including: the terminal according to the beam identifier and/or the at least part of the cell And identifying, by the physical resource used for transmitting the subsequent signal, the terminal transmitting the subsequent signal on the physical resource.
  • the terminal may determine, according to the beam identifier and/or the at least part of the cell identifier, index information of a physical resource used for transmitting the subsequent signal, where the index information may be at least a time domain resource index, a frequency domain resource index, and a time-frequency resource index. For example, the terminal determines, according to the index information, a physical resource used for transmitting a subsequent signal.
  • step 130 further includes: the terminal generating a scrambling sequence according to the beam identifier and/or the at least part of the cell identifier; the terminal according to the scrambling sequence to the subsequent The signal is scrambled; the terminal transmits the scrambled subsequent signal.
  • CSI-RS channel state information reference signal
  • the subsequent signals include a broadcast signal, a random access signal, a control signal, a reference signal, and a data signal.
  • the broadcast signal may be a broadcast signal sent by using a PBCH, and the random access signal may be sent through a physical random access channel (PRACH).
  • the signal to be sent, the control signal may be a control signal sent through a Physical Uplink Control Channel (PUCCH) or a Physical Downlink Control Channel (PDCCH), and the reference signal may be a sounding reference signal (Sounding) Reference Signal, SRS), CSI-RS, CRS, Demodulation Reference Signal (DMRS), BRS, etc.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • SRS Sounding reference signal
  • CSI-RS CSI-RS
  • CRS Demodulation Reference Signal
  • BRS Demodulation Reference Signal
  • the subsequent signal includes a preamble
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier, including: the terminal according to the beam identifier and / or the at least part of the cell identity generates a preamble sequence; the terminal transmits the preamble signal according to the preamble sequence.
  • the subsequent signal includes a pilot signal
  • the terminal transmits a subsequent signal according to the beam identifier and/or the at least part of the cell identifier, including: the terminal according to the beam identifier And/or the at least part of the cell identity generates a pilot sequence; the terminal transmits the pilot signal according to the pilot sequence.
  • FIG. 2 is a schematic flowchart of a method for transmitting a signal according to another embodiment of the present invention. It should be understood that the method shown in FIG. 2 is similar to the specific details of the method shown in FIG. 1 and is no longer used for brevity. Narration. The method shown in Figure 2 includes:
  • the network side device determines a cell identifier and a beam identifier.
  • the network side device determines a complete cell identifier and a beam identifier.
  • the network side device sends a synchronization signal according to at least part of the cell identifier and the beam identifier.
  • the network side device may send different multiple synchronization signals through multiple beams, and each of the multiple synchronization signals has a one-to-one correspondence with the multiple beams.
  • the foregoing at least part of the cell identifier is any part of the complete cell identifier, for example, the cell group identifier or the intra-group cell identifier in the complete cell identifier, which is not specifically limited in this embodiment of the present invention.
  • the synchronization signal is one of a plurality of synchronization signals
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, including: The network side device sends the multiple synchronization signals by using multiple beams according to the at least part of the cell identifier and the beam identifier, and the synchronization signals transmitted by different beams are different.
  • the network side device is configured according to at least part of the cell identifier And the determining, by the network side device, the sequence information of the synchronization signal according to the at least part of the cell identifier and the beam identifier; the network side device sending is based on the The synchronization signal generated by the sequence information.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the network side device determines the sequence of the synchronization signal according to at least part of the cell identifier and the beam identifier.
  • the information includes: determining, by the network side device, the synchronization according to the at least part of the cell identifier, the beam identifier, a preset total number of beams in each cell, and a total number of preset cells.
  • the sequence ID of the signal includes determining, by the network side device, the synchronization according to the at least part of the cell identifier, the beam identifier, a preset total number of beams in each cell, and a total number of preset cells.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, including: The network side device determines the sequence information of the first synchronization signal according to the at least part of the cell identifier, and generates the first synchronization signal based on the sequence information of the first synchronization signal; Determining, by the beam identifier, sequence information of the second synchronization signal, and generating the second synchronization signal based on sequence information of the second synchronization signal; the network side device transmitting the first synchronization signal and the Second synchronization signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the network side device according to at least part of Transmitting the synchronization signal to the cell identifier and the beam identifier, comprising: determining, by the network side device, the sequence ID of the first synchronization signal and the sequence ID of the second synchronization signal according to the at least part of the cell identifier
  • the network side device generates the first synchronization signal according to the sequence ID of the first synchronization signal, and generates the second synchronization signal according to the sequence ID of the second synchronization signal; Determining, by the beam identifier, a transmission time unit of an interval between the first transmission time unit and the second transmission time unit; the network side device transmitting the first synchronization signal on the first transmission time unit;
  • the device transmits the second synchronization signal on the second transmission time unit.
  • the network side device sends a synchronization signal according to the at least part of the cell identifier and the beam identifier, and further includes: the network side device according to the first cell identifier and the beam The identifier is sent to the synchronization signal, where the first cell identifier is a part of the complete cell identity, and the method further includes: the network side device sending the first channel by using a synchronization channel that transmits the synchronization signal
  • the second cell identifier, the second cell identifier and the first cell identifier constitute the complete the cell identifier.
  • the method further includes: the network side device transmitting a subsequent signal according to the at least part of the cell identifier and the beam identifier.
  • the network side device transmits, according to the at least part of the cell identifier and the beam identifier, a subsequent signal, where the network side device is configured according to the at least part of the cell identifier.
  • the subsequent signals include a broadcast signal, a control signal, a reference signal, and a data signal.
  • the network side device transmits, according to the at least part of the cell identifier and the beam identifier, a subsequent signal, where the network side device is configured according to the at least part of the cell identifier. Determining, by the beam identifier, a physical resource used for transmitting the subsequent signal; and the network side device transmitting the subsequent signal on the physical resource.
  • the subsequent signal includes a pilot signal
  • the network side device transmits the subsequent signal according to the at least part of the cell identifier and the beam identifier, including: the network side device according to The at least part of the cell identifier and the beam identifier generate a pilot sequence; the network side device transmits the pilot signal according to the pilot sequence.
  • the signal transmission method of the embodiment of the present invention is described in detail above with reference to FIGS. 1 and 2.
  • the apparatus for detecting signals according to the embodiment of the present invention will be described in detail below with reference to FIGS. 3 to 6. It should be understood that the apparatus shown in FIG. 3 and FIG. 5 can implement the various steps in FIG. 1.
  • the apparatus shown in FIG. 4 and FIG. 6 can implement the various steps in FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 3 shows a schematic block diagram of a signal transmission apparatus according to an embodiment of the present invention.
  • the device shown in Figure 3 can be a terminal.
  • the apparatus 300 shown in FIG. 3 includes a receiving module 310, a determining module 320, and a transmitting module 330.
  • the receiving module 310 is configured to receive a synchronization signal sent by the network side device.
  • a determining module 320 configured to determine, according to the synchronization signal received by the receiving module, a beam identifier and at least part of a cell identifier;
  • the transmitting module 330 is configured to transmit a subsequent signal according to the beam identifier determined by the determining module and/or the at least part of the cell identifier.
  • the determining module is further configured to: determine the beam identifier and the at least part of the cell identifier according to the sequence information of the synchronization signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the determining module is further configured to: preset a total of each cell in the cell according to the sequence ID of the synchronization signal The number of beams, and the preset number of the at least partial cell identifiers, determine the beam identifier and the at least part of the cell identity.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the determining module is further configured to: determine the at least part of the cell identifier according to the sequence information of the first synchronization signal; And determining the beam identifier according to the sequence information of the second synchronization signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the determining module is further configured to: determine the at least part of the cell identifier according to the sequence information of the synchronization signal; Determining, according to the number of transmission time units between the first transmission time unit and the second transmission time unit, and the correspondence between the number of transmission time units and the beam identification, wherein the first transmission time unit is a transmission a transmission time unit of the first synchronization signal, where the second transmission time unit is a transmission time unit that transmits the second synchronization signal.
  • the determining module is further configured to: determine, according to the sequence information of the synchronization signal, the at least part of the cell identifier; the physical resource used according to the transmission of the synchronization signal, and the physical resource and Corresponding relationship of the beam identifiers, determining the beam identifier.
  • the determining module is further configured to: determine, according to the synchronization signal, the beam identifier and the first cell identifier, where the first cell identifier is a part of the complete cell identifier
  • the transmitting module is further configured to: determine, according to the synchronization signal, a second cell identifier, where the second cell identifier and the first cell identifier constitute the complete cell identifier; And determining, by the cell identifier and the second cell identifier, the complete cell identifier; and transmitting the subsequent signal according to the beam identifier and/or the complete cell identifier.
  • the transmitting module is further configured to: determine, according to the beam identifier and/or the at least part of the cell identifier, a physical resource used for transmitting the subsequent signal; and on the physical resource The subsequent signal is transmitted.
  • the transmitting module is further configured to: generate a scrambling sequence according to the beam identifier and/or the at least part of the cell identifier; and add the subsequent signal according to the scrambling sequence Disturbing; transmitting the scrambled subsequent signal.
  • the subsequent signals include a broadcast signal, a random access signal, a control signal, a reference signal, and a data signal.
  • the subsequent signal includes a preamble
  • the transmission module The method is further configured to: generate a preamble sequence according to the beam identifier and/or the at least part of the cell identifier; and transmit the preamble signal according to the preamble sequence.
  • the subsequent signal includes a pilot signal
  • the transmitting module is further configured to: generate a pilot sequence according to the beam identifier and/or the at least part of the cell identifier;
  • the pilot signal is transmitted in a frequency sequence.
  • the cell identifier is a complete cell identifier.
  • FIG. 4 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • the device shown in FIG. 4 may be a network side device.
  • the apparatus 400 shown in FIG. 4 includes a determination module 410 and a first transmission module 420.
  • a determining module 410 configured to determine a cell identifier and a beam identifier
  • the first sending module 420 is configured to send a synchronization signal according to at least part of the cell identifier and the beam identifier.
  • the synchronization signal is one of a plurality of synchronization signals
  • the first sending module is specifically configured to: according to the at least part of the cell identifier and the beam identifier, The plurality of synchronization signals are transmitted through a plurality of beams, and the synchronization signals transmitted by different beams are different.
  • the first sending module is specifically configured to: determine sequence information of the synchronization signal according to the at least part of the cell identifier and the beam identifier; and generate, generate, based on the sequence information The synchronization signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the determining module is configured to: according to the at least part of the cell identifier, the beam identifier, preset The total number of beams in each cell and the number of said at least part of said cell identifiers determine the sequence ID of said synchronization signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the first sending module is specifically configured to: determine, according to the at least part of the cell identifier, the first And synchronizing the sequence information of the signal, and generating the first synchronization signal based on the sequence information of the first synchronization signal; determining sequence information of the second synchronization signal according to the beam identifier, and based on the second synchronization signal
  • the sequence information generates the second synchronization signal; the first synchronization signal and the second synchronization signal are transmitted.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the first transmission The sending module is configured to: determine, according to the at least part of the cell identifier, a sequence ID of the first synchronization signal and a sequence ID of the second synchronization signal; generate a location according to the sequence ID of the first synchronization signal Decoding a first synchronization signal, and generating the second synchronization signal according to the sequence ID of the second synchronization signal; determining, according to the beam identifier, a transmission time unit of an interval between the first transmission time unit and the second transmission time unit
  • the first synchronization signal is sent on the first transmission time unit; after the time corresponding to the number of transmission time units, the network side device sends the second on the second transmission time unit Synchronization signal.
  • the first sending module is specifically configured to: send the synchronization signal according to the first cell identifier and the beam identifier, where the first cell identifier is a complete identifier of the cell a part of the cell identifier; the device further includes: a second sending module, configured to send the second cell identifier by using a synchronization channel corresponding to the synchronization signal, where the second cell identifier and the first cell identifier are configured The complete cell identifier.
  • the apparatus further includes: a transmission module, configured to transmit a subsequent signal according to the at least part of the cell identifier and the beam identifier.
  • the transmitting module is specifically configured to: generate a scrambling sequence according to the at least part of the cell identifier and the beam identifier; and add the subsequent signal according to the scrambling sequence Disturbing; transmitting the scrambled subsequent signal.
  • the subsequent signals include a broadcast signal, a control signal, a reference signal, and a data signal.
  • the transmitting module is further configured to: determine, according to the at least part of the cell identifier and the beam identifier, a physical resource used for transmitting the subsequent signal; and the physical resource The subsequent signal is transmitted on.
  • the subsequent signal includes a pilot signal
  • the transmission module is further configured to: generate a pilot sequence according to the at least part of the cell identifier and the beam identifier; The pilot sequence transmits the pilot signal.
  • the cell identifier is a complete cell identifier.
  • FIG. 5 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • the apparatus 500 shown in FIG. 5 includes a memory 510, a processor 520, an input/output interface 530, a communication interface 540, and a bus system 550.
  • the memory 510, the processor 520, the input/output interface 530, and the communication interface 540 are connected by a bus system 550 for storing instructions for executing instructions stored in the memory 520 to control input/ Output interface 530
  • the input data and information are received, the operation result and the like are outputted, and the communication interface 540 is controlled to transmit a signal.
  • a communication interface 540 configured to receive a synchronization signal sent by the network side device
  • the processor 520 is configured to determine, according to the synchronization signal, a beam identifier and at least part of a cell identifier;
  • the communication interface 540 is configured to transmit a subsequent signal according to the beam identifier and/or the at least part of the cell identifier.
  • the processor 520 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 540 enables communication between device 500 for signal detection and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 510 can include read only memory and random access memory and provides instructions and data to the processor 520.
  • a portion of processor 520 may also include a non-volatile random access memory.
  • processor 520 can also store information of the type of device.
  • the bus system 550 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 550 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 520 or an instruction in a form of software.
  • the steps of the signal transmission method disclosed in the embodiment of the present invention may be directly implemented as a hardware processor execution completion, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 510, and the processor 520 reads the information in the memory 510 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor is further configured to: determine the beam identifier and the at least part of the cell identifier according to the sequence information of the synchronization signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the processor is further configured to: preset a total of each cell in the cell according to the sequence ID of the synchronization signal Number of beams, and a preset number of said at least part of the cell identifier, determining the location Describe the beam identification and the at least part of the cell identity.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the processor is further configured to: determine the at least part of the cell identifier according to the sequence information of the first synchronization signal; And determining the beam identifier according to the sequence information of the second synchronization signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the processor is further configured to: determine the at least part of the cell identifier according to the sequence information of the synchronization signal; Determining, according to the number of transmission time units between the first transmission time unit and the second transmission time unit, and the correspondence between the number of transmission time units and the beam identification, wherein the first transmission time unit is a transmission a transmission time unit of the first synchronization signal, where the second transmission time unit is a transmission time unit that transmits the second synchronization signal.
  • the processor is further configured to: determine, according to the sequence information of the synchronization signal, the at least part of the cell identifier; the physical resource used according to the transmission of the synchronization signal, and the physical resource and Corresponding relationship of the beam identifiers, determining the beam identifier.
  • the processor is further configured to: determine, according to the synchronization signal, the beam identifier and the first cell identifier, where the first cell identifier is a part of the complete cell identifier
  • the communication interface is further configured to: determine a second cell identifier from the synchronization channel corresponding to the synchronization channel, where the second cell identifier and the first cell identifier constitute the complete cell identifier; And determining, by the cell identifier and the second cell identifier, the complete cell identifier; and transmitting the subsequent signal according to the beam identifier and/or the complete cell identifier.
  • the communications interface is further configured to: determine, according to the beam identifier and/or the at least part of the cell identifier, a physical resource used to transmit the subsequent signal; on the physical resource The subsequent signal is transmitted.
  • the communications interface is further configured to: generate a scrambling sequence according to the beam identifier and/or the at least part of the cell identifier; and add the subsequent signal according to the scrambling sequence Disturbing; transmitting the scrambled subsequent signal.
  • the subsequent signals include a broadcast signal, a random access signal, a control signal, a reference signal, and a data signal.
  • the subsequent signal includes a preamble
  • the communication interface is further configured to: generate a preamble sequence according to the beam identifier and/or the at least part of the cell identifier; and transmit according to the preamble sequence The preamble signal.
  • the subsequent signal includes a pilot signal
  • the communication interface And the method is further configured to: generate a pilot sequence according to the beam identifier and/or the at least part of the cell identifier; and transmit the pilot signal according to the pilot sequence.
  • the cell identifier is a complete cell identifier.
  • FIG. 6 shows a schematic block diagram of a signal transmission apparatus according to another embodiment of the present invention.
  • the apparatus 600 for signal detection shown in FIG. 6 includes a memory 610, a processor 620, an input/output interface 630, a communication interface 640, and a bus system 650.
  • the memory 610, the processor 620, the input/output interface 630, and the communication interface 640 are connected by a bus system 650 for storing instructions for executing instructions stored in the memory 620 to control input/
  • the output interface 630 receives the input data and information, outputs data such as an operation result, and controls the communication interface 640 to transmit a signal.
  • the processor 620 is configured to determine a cell identifier and a beam identifier.
  • the communication interface 640 is configured to send a synchronization signal according to at least part of the cell identifier and the beam identifier.
  • the processor 620 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 640 enables communication between device 600 for signal detection and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 610 can include read only memory and random access memory and provides instructions and data to the processor 620.
  • a portion of the processor 620 can also include a non-volatile random access memory.
  • the processor 620 can also store information of the device type.
  • the bus system 650 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 650 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 620 or an instruction in a form of software.
  • the steps of the signal transmission method disclosed in the embodiment of the present invention may be directly implemented as a hardware processor execution completion, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 610, and the processor 620 reads the information in the memory 610.
  • the steps of the above method are completed in combination with the hardware. To avoid repetition, it will not be described in detail here.
  • the synchronization signal is one of a plurality of synchronization signals
  • the communication interface is specifically configured to: according to the at least part of the cell identifier and the beam identifier, The plurality of synchronization signals are transmitted by different beams, and the synchronization signals transmitted by different beams are different.
  • the communications interface is specifically configured to: determine sequence information of the synchronization signal according to the at least part of the cell identifier and the beam identifier; and send a location generated based on the sequence information Said synchronization signal.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the processor is configured to: according to the at least part of the cell identifier, the beam identifier, preset The total number of beams in each cell, and the number of said at least part of said cell identifiers, determines the sequence ID of said synchronization signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the communication interface is specifically configured to: determine the first synchronization signal according to the at least part of the cell identifier. Sequence information, and generating the first synchronization signal based on the sequence information of the first synchronization signal; determining sequence information of the second synchronization signal according to the beam identifier, and based on the sequence of the second synchronization signal The information generates the second synchronization signal; the first synchronization signal and the second synchronization signal are transmitted.
  • the sequence information of the synchronization signal includes a sequence ID of the synchronization signal
  • the synchronization signal includes a first synchronization signal and a second synchronization signal
  • the communication interface is specifically configured to: Determining at least part of the cell identifier, determining a sequence ID of the first synchronization signal and a sequence ID of the second synchronization signal; generating the first synchronization signal according to the sequence ID of the first synchronization signal, and according to Generating, by the sequence ID of the second synchronization signal, the second synchronization signal; determining, according to the beam identifier, a number of transmission time units between the first transmission time unit and the second transmission time unit; in the first transmission Transmitting the first synchronization signal on a time unit; after the time corresponding to the number of transmission time units, the network side device transmits the second synchronization signal on the second transmission time unit.
  • the communications interface is specifically configured to: send the synchronization signal according to the first cell identifier and the beam identifier, where the first cell identifier is complete in the cell identifier a part of the cell identifier; the communication interface is further configured to send the second cell identifier, the second cell identifier, and the first cell identifier by using a synchronization channel corresponding to the synchronization signal Forming the complete cell identifier.
  • the communications interface is further configured to transmit a subsequent signal according to the at least part of the cell identifier and the beam identifier.
  • the communications interface is specifically configured to: generate a scrambling sequence according to the at least part of the cell identifier and the beam identifier; and add the subsequent signal according to the scrambling sequence Disturbing; transmitting the scrambled subsequent signal.
  • the subsequent signals include a broadcast signal, a control signal, a reference signal, and a data signal.
  • the communications interface is further configured to: determine, according to the at least part of the cell identifier and the beam identifier, a physical resource used for transmitting the subsequent signal; The subsequent signal is transmitted on.
  • the subsequent signal includes a pilot signal
  • the communications interface is further configured to: generate a pilot sequence according to the at least part of the cell identifier and the beam identifier; The pilot sequence transmits the pilot signal.
  • the cell identifier is a complete cell identifier.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号的传输方法和装置。该方法包括:终端接收网络侧设备发送的同步信号;所述终端根据所述同步信号确定波束标识和至少部分的小区标识;所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号。在本发明实施例中,终端可以根据同步信号确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。

Description

信号的传输方法及装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及信号的传输方法及装置。
背景技术
多天线(Multiple-Input Multiple-Output,MIMO)技术在长期演进(Long Term Evolution,LTE)系统中得到了充分的应用,通过对信号进行基于天线阵列的信号预处理,从而获得明显的赋性增益,以扩大覆盖范围,改善边缘吞吐量以及抑制干扰。
在LTE系统中,小区公共信号(例如,同步信号等)只能采用一个波束进行传输,通常情况下,该波束通常为可以覆盖整个小区的“宽波束”,相对“窄波束”而言,通过宽波束传输的公共信号无法获得足够的赋形增益,影响了公共信号的传输质量。
为了提高公共信号的传输质量,可以采用多个波束(例如,窄波束)传输公共信号,但是终端无法确定是通过该小区中的哪个波束获得公共信号的,进而也无法在后续的信号传输过程中使用该波束。
发明内容
本发明实施例提供了一种信号的传输方法及装置,以使得终端确定传输后续信号时使用的波束。
第一方面提供一种信号的传输方法,包括:终端接收网络侧设备发送的同步信号;所述终端根据所述同步信号确定波束标识和至少部分的小区标识;所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号。
在本发明实施例中,终端可以根据同步信号确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第一方面,在第一方面的一种可能的实现方式中,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
本发明实施例终端可以根据同步信号的序列信息确定波束标识和至少 部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述同步信号的序列信息包括所述同步信号的序列ID,所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识。
本发明实施例终端可以根据同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述同步信号包括第一同步信号和第二同步信号,所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:所述终端根据所述第一同步信号的序列信息确定所述至少部分小区标识;所述终端根据所述第二同步信号的序列信息确定所述波束标识。
本发明实施例终端可以根据第一同步信号的序列信息和第二同步信号的序列信息分别确定至少部分的小区标识和波束标识,从而终端确定传输后续信号时使用的波束。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述同步信号包括第一同步信号和第二同步信号,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列信息,确定所述至少部分的小区标识;所述终端根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
在本发明实施例中,终端根据同步信号的序列信息确定所述至少部分的小区标识,并根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量确定波束标识,从而终端确定传输后续信号时使用的波束。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述终端根据所述同步信号确定波束标识和至少部分的小 区标识,包括:所述终端根据所述同步信号的序列信息确定所述至少部分的小区标识;所述终端根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
在本发明实施例中,终端根据同步信号的序列信息确定所述至少部分的小区标识,并根据传输所述同步信号所使用的物理资源确定波束标识,从而终端确定传输后续信号时使用的波束。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,还包括:所述终端根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;所述终端根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;所述终端根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
在本发明实施例中,终端根据同步信号确定波束标识和第一小区标识,并从同步信号对应的同步信道中确定第二小区标识,从而最终确定传输后续信号时使用的小区和该小区中的波束,并通过该波束传输后续信号。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;所述终端在所述物理资源上传输所述后续信号。
在本发明实施例中,终端根据波束标识和至少部分的小区标识,传输后续信号,从而该终端可以通过接收同步信号时使用的波束传输后续信号。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;所述终端根据所述加扰序列对所述后续信号进行加扰;所述终端传输经过加扰的所述后续信号。
在本发明实施例中,终端可以使用波束标识和至少部分的小区标识确定 加扰序列,从而使用该加扰序列对后续信号进行加扰。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述后续信号包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
在本发明实施例中,终端可以在接收同步信号使用的波束上,传输后续的广播信号、随机接入信号、控制信号、参考信号以及数据信号等。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述后续信号包括前导信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成前导序列;所述终端根据所述前导序列传输所述前导信号。
在本发明实施例中,终端可以使用波束标识和至少部分的小区标识确定前导序列,从而使用该前导序列传输前导信号。
结合第一方面或上述可能的实现方式中的任一种,在第一方面的一种可能的实现方式中,所述后续信号包括导频信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成导频序列;所述终端根据所述导频序列传输所述导频信号。
在本发明实施例中,终端可以使用波束标识和至少部分的小区标识确定导频序列,从而使用该导频序列传输导频信号。
第二方面,提供一种信号的传输方法,包括:网络侧设备确定小区标识和波束标识;所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号。
在本发明实施例中,终端可以根据同步信号确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第二方面,在第二方面的一种可能的实现方式中,在所述同步信号为多个同步信号中的一个同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
在本发明实施例中,通过不同的多个波束发送多个不同的同步信号,终 端可以根据同步信号确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;所述网络侧设备发送基于所述序列信息生成的所述同步信号。
本发明实施例终端可以根据同步信号的序列信息确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述同步信号的序列信息包括所述同步信号的序列ID,所述网络侧设备根据至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息,包括:所述网络侧设备根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及所述至少部分的所述小区标识的数量,确定所述同步信号的序列ID。
本发明实施例终端可以根据同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定波束标识和至少部分的小区标识,从而终端确定传输后续信号时使用的波束。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述同步信号包括第一同步信号和第二同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;所述网络侧设备根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;所述网络侧设备发送所述第一同步信号和所述第二同步信号。
本发明实施例终端可以根据网络侧设备发送的第一同步信号的序列信息和第二同步信号的序列信息分别确定至少部分的小区标识和波束标识,从而终端确定传输后续信号时使用的波束。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信 号包括第一同步信号和第二同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;所述网络侧设备根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;所述网络侧设备根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量;所述网络侧设备在所述第一传输时间单元上发送所述第一同步信号;经过所述传输时间单元数量对应的时间之后,所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
在本发明实施例中,终端根据同步信号的序列信息确定所述至少部分的小区标识,并根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量确定波束标识,从而终端确定传输后续信号时使用的波束。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,还包括:所述网络侧设备根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述方法还包括:所述网络侧设备通过所述同步信号对应的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的所述小区标识。
在本发明实施例中,终端根据同步信号确定波束标识和第一小区标识,并从同步信号对应的同步信道中确定第二小区标识,从而最终确定传输后续信号时使用的小区和该小区中的波束,并通过该波束传输后续信号。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述方法还包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
在本发明实施例中,网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,以使终端使用波速标识对应的波束接收后续信号。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;所述网络侧设备根据所述加扰序列对所述后续信 号进行加扰;所述网络侧设备传输所述加扰后的所述后续信号。
在本发明实施例中,可以使用波束标识和至少部分的小区标识确定加扰序列,从而使用该加扰序列对后续信号进行加扰。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
在本发明实施例中,可以在接收同步信号使用的波束上,传输后续的广播信号、随机接入信号、控制信号、参考信号以及数据信号等。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;所述网络侧设备在所述物理资源上传输所述后续信号。
在本发明实施例中,可以通过哦波束标识和至少部分的小区标识确定传输后续信号的物理资源,从而在该物理资源传输后续信号。
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述后续信号包括导频信号,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成导频序列;所述网络侧设备根据所述导频序列传输所述导频信号。
在本发明实施例中,可以使用波束标识和至少部分的小区标识确定导频序列,从而使用该导频序列传输导频信号。
第三方面,提供一种信号的传输装置,所述装置包括用于执行第一方面中的方法的模块。
第四方面,提供一种信号的传输装置,所述装置包括用于执行第二方面中的方法的模块。
第五方面,提供一种信号的传输装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第一方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第六方面,提供一种信号的传输装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第二方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于信号检测的方法的程序代码,所述程序代码用于执行第一方面中的方法指令。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于信号检测的方法的程序代码,所述程序代码用于执行第二方面中的方法指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的一种信号的传输方法的示意性流程图。
图2示出了根据本发明另一实施例的信号的传输方法的示意性流程图。
图3示出了根据本发明实施例的信号的传输装置的示意性框图。
图4示出了根据本发明另一实施例的信号的传输装置的示意性框图。
图5示出了根据本发明另一实施例的信号的传输装置的示意性框图。
图6示出了根据本发明另一实施例的信号的传输装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案,可以应用于各种通信系统,例如:全球移 动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE),尤其应用于4.5G的LTE演进系统和5G新空口(New Radio,NR)的无线通信系统。
还应理解,终端(Terminal)可称之为终端设备或用户设备(User Equipment,简称“UE”),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,“RAN”)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
还应理解,网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(Node B,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本发明实施例中,网络设备(例如基站)可以是宏基站,也可以是用于提供小小区(small cell)的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
目前,5G系统中提出了在一个小区中可以采用多个波束(例如,窄波束)传输公共信号,但是终端无法确定在接入该小区时,是通过该小区中的哪个波束获得公共信号的,从而在后续的信号传输过程中使用该波束。
为了解决上述问题,下面结合图1详细的描述本发明实施例。
图1示出了根据本发明实施例的一种信号的传输方法的示意性流程图,图1所示的方法包括:
110,终端接收网络侧设备发送的同步信号。
具体地,上述同步信号是网络侧设备使用不同的波束发送的不同的多个同步信号中的一个。
上述同步信号可以是终端用于与网络侧设备进行同步,确定下行定时和传输频点的下行信号。该同步信号可以包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、小区特定参考信号(Cell-specific reference signals,CRS)和波束参考信号(Beam Reference Signal,BRS)。
120,所述终端根据所述同步信号确定波束标识和至少部分的小区标识。
具体地,上述至少部分小区标识可以是完整的小区标识或完整的小区标识的一部分小区标识。例如,完整的小区标识可以包括小区组标识(Cell Group ID)和组内的小区标识(ID within Cell Group),上述至少部分的小区标识可以是小区组标识或者组内的小区标识。完整的小区标识(Cell ID),还可以由小区ID1和小区ID2组成,则部分的小区ID可以是小区ID1或小区ID2。
需要说明的是,波束标识可以与至少部分的小区标识联合指示一个波束。例如,波束标识为1,小区标识为3,可以确定是小区3中波束标识为1的波束。
可选地,作为一个实施例,所述终端根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
应理解,上述同步信号的序列信息可以是该同步信号的序列ID,还可以是其他与生成同步信号的序列相关的信息,本发明实施例对此不作具体限定。
需要说明的是,该同步信号的序列信息可以由终端对同步信号进行盲检得到。该序列信息可以由终端对PSS进行盲检确定,该序列信息还可以由终端对SSS进行盲检确定,该序列信息还可以由终端对PSS和SSS进行盲检联合确定,本发明实施例对于确定序列信息的方式不作具体限定。
例如,终端可以对PSS进行盲检确定同步信号的序列ID1,对SSS进行盲检确定同步信号的序列ID2,终端可以通过ID1和ID2确定同步信号的序列ID(例如,同步信号的序列ID=ID1*ID2)。
终端和网络侧设备可以预先约定同步信号的序列ID与同步信号的序列 ID1和同步信号的序列ID2的对应关系(即采用约定好的映射关系),终端可以根据同步信号的序列ID1和同步信号的序列ID2确定同步序列的序列ID。
还应理解,终端可以通过对同步信息进行盲检确定上述至少部分小区标识,例如,终端可以通过对PSS进行盲检,确定组内小区标识,对SSS进行盲检,确定小区组ID。终端还可以只对PSS进行检测确定组内小区标识,即一部分小区标识。本发明实施例对此不作具体限定。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识。
可选地,所述终端根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识,包括:所述终端根据
Figure PCTCN2016100940-appb-000001
确定所述至少部分的小区标识k,所述终端根据m=N mod M,确定所述波束标识m,其中,N表示所述同步信号的序列ID,M表示每个小区内总的波束数量。
可选地,所述终端根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识,包括:所述终端根据k=N mod K,确定所述波束标识k,所述终端根据
Figure PCTCN2016100940-appb-000002
确定所述至少部分的小区标识m,其中,N表示所述同步信号的序列ID,K表示预设的所述至少部分的小区标识的数量。
例如,上述公式中N的取值可以为504,M的取值可以为8或4,K的取值可以为63或126。本发明实施例对上述公式中参数的取值不作具体限定。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:所述终端根据所述第一同步信号的序列信息确定所述至少 部分小区标识;所述终端根据所述第二同步信号的序列信息确定所述波束标识。
需要说明的是,上述第二同步信号的序列信息或者传输第二同步信号所使用的物理资源可以通过对第一同步信号进行盲检后得到的至少部分小区标识确定。
应理解,上述第一同步信号可以为PSS或SSS,上述第二同步信号可以为CRS或BRS;或者上述第一同步信号可以为PSS,上述第二同步信号可以为SSS,本发明实施例对上述第一同步信号和上述第二同步信号的类型不作具体限定。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列信息,确定所述至少部分的小区标识;所述终端根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
具体地,上述传输时间单元可以指子帧、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、时隙、缩短时隙、缩短子帧等传输单元。
例如,若传输第一同步信号所在的OFDM符号和传输第二同步信号所在OFDM符号之间间隔m个OFDM符号,则波束标识可以为m-p,p可以为预设的正整数;若传输第一同步信号所用的子帧和传输第二同步信号所用的子帧之间间隔m个子帧,则波束标识可以为m-1。
应理解,上述第一同步信号可以为PSS或SSS,上述第二同步信号可以为CRS或BRS;或者上述第一同步信号可以为PSS,上述第二同步信号可以为SSS,本发明实施例对上述第一同步信号和上述第二同步信号的类型不作具体限定。
还应理解,上述传输时间单元数量和波束标识的对应关系可以预先为终端配置,还可以由网络侧设备向终端发送,本发明实施例对此不作具体限定。
可选地,作为一个实施例,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:所述终端根据所述同步信号的序列信息确定所 述至少部分的小区标识;所述终端根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
具体地,上述预设的物理资源和波束标识的对应关系可以是时域物理资源索引与波束标识的对应关系,或者频域物理资源索引与波束标识的对应关系,还可以是时频物理资源索引与波束标识的对应关系,本发明实施例对上述对应关系不作具体限定。
应理解,上述第一同步信号可以是SSS、CRS、BRS中任一种信号,本发明实施例对此不作具体限定。
130,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号。
具体地,上述终端传输后续信号可以指终端接收上述后续信号或终端发送后续信号,也就是说该后续信号可以是下行信号还可以是上行信号。
该终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号可以指该终端根据所述波束标识和/或所述至少部分的小区标识使用该波束标识对应的波束传输后续信号。
需要说明的是,终端可以从传输上述多个同步信号所使用的波束中选择传输信号的质量较好的波束,作为传输后续信号的所使用的波束,其中传输信号的质量较好的波束可以指传输信号质量大于预设阈值的波束。
应理解,上述多个波束可以是一个小区中的多个波束。
在本发明实施例中,由于终端可以通过多个波束发送的不同的同步信号,选择传输信号质量较好的波束传输后续信号,获得赋形增益,以提高信号传输质量。
可选地,作为一个实施例,步骤120还包括:所述终端根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的小区标识中的一部分小区标识;步骤130包括:所述终端从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;所述终端根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;所述终端根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
具体地,上述同步信号对应的同步信道可以指该同步信道传输信号使用的加扰序列可以采用上述同步信号携带的序列ID生成;或者传输上述同步 信号使用的物理资源位置与同步信道对应的物理资源位置之间具有固定的相对位置,例如,传输上述同步信号的传输时间单元和上述同步信道对应的传输时间单元之间具有固定的时间偏移量。
例如,同步信号可以携带小区ID k和波束ID m,终端可以基于k、m、p=k*m中任一个参数,生成同步信号对应的同步信道(例如,PBCH)的加扰序列。
终端可以通过检测同步信号确定第一小区标识N1,从在同步信号对应的同步信道中确定第二小区标识为N2,则完整的小区标识k=N1*N2。
应理解,上述同步信道可以是物理广播信道(Physical Broadcast Channel,PBCH),物理设备间广播信道(Physical Sidelink Broadcast Channel,PSBCH)等。
可选地,作为一个实施例,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;所述终端在所述物理资源上传输所述后续信号。
具体的,终端可以根据波束标识和/或至少部分的小区标识确定传输后续信号使用的物理资源的索引信息,该索引信息可以是时域资源索引、频域资源索引、时频资源索引中的至少一种,从而终端根据该索引信息确定传输后续信号所使用的物理资源。
可选地,作为一个实施例,步骤130还包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;所述终端根据所述加扰序列对所述后续信号进行加扰;所述终端传输经过加扰的所述后续信号。
例如,同步信号可以携带部分小区ID N1和波束ID m,在同步信号关联的同步信道中携带剩余部分小区ID N2,从而得到完整小区ID k=N1*N2,终端基于该小区ID k或波束ID m或者p=k*m生成信道状态信息参考信号(Channel Status Information Reference Signal,CSI-RS)序列,并用所述CSI-RS序列来接收CSI-RS,从而进行移动性测量。
可选地,作为一个实施例,所述后续信号包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
具体地,广播信号可以是通过PBCH发送的广播信号,随机接入信号可以是通过物理随机接入信道(Physical Random Access Channel,PRACH)发 送的信号,控制信号可以是通过物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送的控制信号,参考信号可以是探测参考信号(Sounding Reference Signal,SRS)、CSI-RS、CRS、解调参考信号(Demodulation Reference Signal,DMRS)、BRS等。
可选地,作为一个实施例,所述后续信号包括前导信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成前导序列;所述终端根据所述前导序列传输所述前导信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:所述终端根据所述波束标识和/或所述至少部分的小区标识生成导频序列;所述终端根据所述导频序列传输所述导频信号。
图2示出了根据本发明另一实施例的信号的传输方法的示意性流程图,应理解,图2所示的方法与图1所示的方法的具体细节类似,为了简洁在此不再赘述。图2所示的方法包括:
210,网络侧设备确定小区标识和波束标识。
具体地,网络侧设备确定完整的小区标识和波束标识。
220,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号。
具体地,网络侧设备可以通过多个波束发送不同的多个同步信号,该多个同步信号中的每个同步信号与该多个波束一一对应。
应理解,上述至少部分的小区标识为上述完整的小区标识中的任意一部分,例如可以是上述完整小区标识中的小区组标识或组内小区标识,本发明实施例对此不作具体限定。
可选地,作为一个实施例,所述同步信号为多个同步信号中的一个同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
可选地,作为一个实施例,所述网络侧设备根据至少部分的所述小区标 识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;所述网络侧设备发送基于所述序列信息生成的所述同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述网络侧设备根据至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息,包括:所述网络侧设备根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及预设的小区的总数量,确定所述同步信号的序列ID。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;所述网络侧设备根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;所述网络侧设备发送所述第一同步信号和所述第二同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信号包括第一同步信号和第二同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;所述网络侧设备根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;所述网络侧设备根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元;所述网络侧设备在所述第一传输时间单元上发送所述第一同步信号;所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
可选地,作为一个实施例,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,还包括:所述网络侧设备根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述方法还包括:所述网络侧设备通过传输所述同步信号的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的所述小区标识。
可选地,作为一个实施例,所述方法还包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
可选地,作为一个实施例,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;所述网络侧设备根据所述加扰序列对所述后续信号进行加扰;所述网络侧设备传输所述加扰后的所述后续信号。
可选地,作为一个实施例,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
可选地,作为一个实施例,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;所述网络侧设备在所述物理资源上传输所述后续信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成导频序列;所述网络侧设备根据所述导频序列传输所述导频信号。
上文结合图1和图2详细的说明了描述了本发明实施例的信号的传输方法,下面结合图3至图6详细描述本发明实施例的信号检测的装置。应理解,图3和图5所示的装置能够实现图1中的各个步骤,图4和图6所示的装置能够实现图2中的各个步骤,为避免重复,在此不再详细赘述。
图3示出了根据本发明实施例的信号的传输装置的示意性框图。图3所示的装置可以为终端。图3所示的装置300包括:接收模块310、确定模块320和传输模块330。
接收模块310,用于接收网络侧设备发送的同步信号;
确定模块320,用于根据所述接收模块接收的所述同步信号确定波束标识和至少部分的小区标识;
传输模块330,用于根据所述确定模块确定的所述波束标识和/或所述至少部分的小区标识传输后续信号。
可选地,作为一个实施例,所述确定模块还用于:根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述确定模块还用于:根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述确定模块还用于:根据所述第一同步信号的序列信息确定所述至少部分小区标识;根据所述第二同步信号的序列信息确定所述波束标识。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述确定模块还用于:根据所述同步信号的序列信息,确定所述至少部分的小区标识;根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
可选地,作为一个实施例,所述确定模块还用于:根据所述同步信号的序列信息确定所述至少部分的小区标识;根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
可选地,作为一个实施例,所述确定模块还用于:根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述传输模块还用于:从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
可选地,作为一个实施例,所述传输模块还用于:根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;在所述物理资源上传输所述后续信号。
可选地,作为一个实施例,所述传输模块还用于:根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;根据所述加扰序列对所述后续信号进行加扰;传输经过加扰的所述后续信号。
可选地,作为一个实施例,所述后续信号包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
可选地,作为一个实施例,所述后续信号包括前导信号,所述传输模块 还用于:根据所述波束标识和/或所述至少部分的小区标识生成前导序列;根据所述前导序列传输所述前导信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述传输模块还用于:根据所述波束标识和/或所述至少部分的小区标识生成导频序列;根据所述导频序列传输所述导频信号。
可选地,作为一个实施例,所述小区标识为完整的小区标识。
图4示出了根据本发明另一实施例的信号的传输装置的示意性框图。图4所示的装置可以为网络侧设备。图4所示的装置400包括:确定模块410和第一发送模块420。
确定模块410,用于确定小区标识和波束标识;
第一发送模块420,用于根据至少部分的所述小区标识和所述波束标识发送同步信号。
可选地,作为一个实施例,所述同步信号为多个同步信号中的一个同步信号,所述第一发送模块具体用于:根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
可选地,作为一个实施例,所述第一发送模块具体用于:根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;发送基于所述序列信息生成的所述同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述确定模块用于:根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及所述至少部分的所述小区标识的数量,确定所述同步信号的序列ID。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述第一发送模块具体用于:根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;发送所述第一同步信号和所述第二同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信号包括第一同步信号和第二同步信号,所述第一发 送模块具体用于:根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量;在所述第一传输时间单元上发送所述第一同步信号;经过所述传输时间单元数量对应的时间之后,所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
可选地,作为一个实施例,所述第一发送模块具体用于:根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述装置还包括:第二发送模块,用于通过所述同步信号对应的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的所述小区标识。
可选地,作为一个实施例,所述装置还包括:传输模块,用于根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
可选地,作为一个实施例,所述传输模块具体用于:根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;根据所述加扰序列对所述后续信号进行加扰;传输所述加扰后的所述后续信号。
可选地,作为一个实施例,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
可选地,作为一个实施例,所述传输模块具体还用于:根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;在所述物理资源上传输所述后续信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述传输模块具体还用于:根据所述至少部分的所述小区标识和所述波束标识生成导频序列;根据所述导频序列传输所述导频信号。
可选地,作为一个实施例,所述小区标识为完整的小区标识。
图5示出了根据本发明另一实施例的信号的传输装置的示意性框图。图5所示的装置500包括:存储器510、处理器520、输入/输出接口530、通信接口540和总线系统550。其中,存储器510、处理器520、输入/输出接口530和通信接口540通过总线系统550相连,该存储器510用于存储指令,该处理器520用于执行该存储器520存储的指令,以控制输入/输出接口530 接收输入的数据和信息,输出操作结果等数据,并控制通信接口540发送信号。
通信接口540,用于接收网络侧设备发送的同步信号;
处理器520,用于根据所述同步信号确定波束标识和至少部分的小区标识;
所述通信接口540,用于根据所述波束标识和/或所述至少部分的小区标识传输后续信号。
应理解,在本发明实施例中,该处理器520可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口540使用例如但不限于收发器一类的收发装置,来实现信号检测的装置500与其他设备或通信网络之间的通信。
该存储器510可以包括只读存储器和随机存取存储器,并向处理器520提供指令和数据。处理器520的一部分还可以包括非易失性随机存取存储器。例如,处理器520还可以存储设备类型的信息。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
在实现过程中,上述方法的各步骤可以通过处理器520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的信号的传输方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器510,处理器520读取存储器510中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述处理器还用于:根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述处理器还用于:根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所 述波束标识和所述至少部分的小区标识。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述处理器还用于:根据所述第一同步信号的序列信息确定所述至少部分小区标识;根据所述第二同步信号的序列信息确定所述波束标识。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述处理器还用于:根据所述同步信号的序列信息,确定所述至少部分的小区标识;根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
可选地,作为一个实施例,所述处理器还用于:根据所述同步信号的序列信息确定所述至少部分的小区标识;根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
可选地,作为一个实施例,所述处理器还用于:根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述通信接口还用于:从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
可选地,作为一个实施例,所述通信接口还用于:根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;在所述物理资源上传输所述后续信号。
可选地,作为一个实施例,所述通信接口还用于:根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;根据所述加扰序列对所述后续信号进行加扰;传输经过加扰的所述后续信号。
可选地,作为一个实施例,所述后续信号包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
可选地,作为一个实施例,所述后续信号包括前导信号,所述通信接口还用于:根据所述波束标识和/或所述至少部分的小区标识生成前导序列;根据所述前导序列传输所述前导信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述通信接口 还用于:根据所述波束标识和/或所述至少部分的小区标识生成导频序列;根据所述导频序列传输所述导频信号。
可选地,作为一个实施例,所述小区标识为完整的小区标识。
图6示出了根据本发明另一实施例的信号的传输装置的示意性框图。图6所示的信号检测的装置600包括:存储器610、处理器620、输入/输出接口630、通信接口640和总线系统650。其中,存储器610、处理器620、输入/输出接口630和通信接口640通过总线系统650相连,该存储器610用于存储指令,该处理器620用于执行该存储器620存储的指令,以控制输入/输出接口630接收输入的数据和信息,输出操作结果等数据,并控制通信接口640发送信号。
处理器620,用于确定小区标识和波束标识;
通信接口640,用于根据至少部分的所述小区标识和所述波束标识发送同步信号。
应理解,在本发明实施例中,该处理器620可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口640使用例如但不限于收发器一类的收发装置,来实现信号检测的装置600与其他设备或通信网络之间的通信。
该存储器610可以包括只读存储器和随机存取存储器,并向处理器620提供指令和数据。处理器620的一部分还可以包括非易失性随机存取存储器。例如,处理器620还可以存储设备类型的信息。
该总线系统650除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统650。
在实现过程中,上述方法的各步骤可以通过处理器620中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的信号的传输方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器610,处理器620读取存储器610中的信息, 结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述同步信号为多个同步信号中的一个同步信号,所述通信接口具体用于:根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
可选地,作为一个实施例,所述通信接口具体用于:根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;发送基于所述序列信息生成的所述同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述处理器用于:根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及所述至少部分的所述小区标识的数量,确定所述同步信号的序列ID。
可选地,作为一个实施例,所述同步信号包括第一同步信号和第二同步信号,所述通信接口具体用于:根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;发送所述第一同步信号和所述第二同步信号。
可选地,作为一个实施例,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信号包括第一同步信号和第二同步信号,所述通信接口具体用于:根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量;在所述第一传输时间单元上发送所述第一同步信号;经过所述传输时间单元数量对应的时间之后,所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
可选地,作为一个实施例,所述通信接口具体用于:根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;所述通信接口,还用于通过所述同步信号对应的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识 构成所述完整的所述小区标识。
可选地,作为一个实施例,所述通信接口,还用于根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
可选地,作为一个实施例,所述通信接口具体用于:根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;根据所述加扰序列对所述后续信号进行加扰;传输所述加扰后的所述后续信号。
可选地,作为一个实施例,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
可选地,作为一个实施例,所述通信接口具体还用于:根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;在所述物理资源上传输所述后续信号。
可选地,作为一个实施例,所述后续信号包括导频信号,所述通信接口具体还用于:根据所述至少部分的所述小区标识和所述波束标识生成导频序列;根据所述导频序列传输所述导频信号。
可选地,作为一个实施例,所述小区标识为完整的小区标识。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (52)

  1. 一种信号的传输方法,其特征在于,包括:
    终端接收网络侧设备发送的同步信号;
    所述终端根据所述同步信号确定波束标识和至少部分的小区标识;
    所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号。
  2. 如权利要求1所述的方法,其特征在于,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:
    所述终端根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
  3. 如权利要求2所述的方法,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,
    所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:
    所述终端根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识。
  4. 如权利要求2所述的方法,其特征在于,所述同步信号包括第一同步信号和第二同步信号,
    所述终端根据所述同步信号的序列信息,确定波束标识和至少部分的小区标识,包括:
    所述终端根据所述第一同步信号的序列信息确定所述至少部分小区标识;
    所述终端根据所述第二同步信号的序列信息确定所述波束标识。
  5. 如权利要求1所述的方法,其特征在于,所述同步信号包括第一同步信号和第二同步信号,
    所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:
    所述终端根据所述同步信号的序列信息,确定所述至少部分的小区标识;
    所述终端根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,
    其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
  6. 如权利要求1所述的方法,其特征在于,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,包括:
    所述终端根据所述同步信号的序列信息确定所述至少部分的小区标识;
    所述终端根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
  7. 如权利要求1所述的方法,其特征在于,所述终端根据所述同步信号确定波束标识和至少部分的小区标识,还包括:
    所述终端根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的所述小区标识中的一部分小区标识;
    所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:
    所述终端从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;
    所述终端根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;
    所述终端根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:
    所述终端根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;
    所述终端在所述物理资源上传输所述后续信号。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:
    所述终端根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;
    所述终端根据所述加扰序列对所述后续信号进行加扰;
    所述终端传输经过加扰的所述后续信号。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述后续信号 包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
  11. 如权利要求1-7中任一项所述的方法,其特征在于,所述后续信号包括前导信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:
    所述终端根据所述波束标识和/或所述至少部分的小区标识生成前导序列;
    所述终端根据所述前导序列传输所述前导信号。
  12. 如权利要求1-7中任一项所述的方法,其特征在于,所述后续信号包括导频信号,所述终端根据所述波束标识和/或所述至少部分的小区标识传输后续信号,包括:
    所述终端根据所述波束标识和/或所述至少部分的小区标识生成导频序列;
    所述终端根据所述导频序列传输所述导频信号。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述小区标识为完整的小区标识。
  14. 一种信号的传输方法,其特征在于,包括:
    网络侧设备确定小区标识和波束标识;
    所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号。
  15. 如权利要求14所述的方法,其特征在于,所述同步信号为多个同步信号中的一个同步信号,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
  16. 如权利要求14或15所述的方法,其特征在于,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;
    所述网络侧设备发送基于所述序列信息生成的所述同步信号。
  17. 如权利要求14-16中任一项所述的方法,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,
    所述网络侧设备根据至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息,包括:
    所述网络侧设备根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及所述至少部分的所述小区标识的数量,确定所述同步信号的序列ID。
  18. 如权利要求14或15所述的方法,其特征在于,所述同步信号包括第一同步信号和第二同步信号,
    所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;
    所述网络侧设备根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;
    所述网络侧设备发送所述第一同步信号和所述第二同步信号。
  19. 如权利要求14或15所述的方法,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信号包括第一同步信号和第二同步信号,
    所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;
    所述网络侧设备根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;
    所述网络侧设备根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量;
    所述网络侧设备在所述第一传输时间单元上发送所述第一同步信号;
    经过所述传输时间单元数量对应的时间之后,所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
  20. 如权利要求14所述的方法,其特征在于,所述网络侧设备根据至少部分的所述小区标识和所述波束标识发送同步信号,还包括:
    所述网络侧设备根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;
    所述方法还包括:
    所述网络侧设备通过所述同步信号对应的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的所述小区标识。
  21. 如权利要求14-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
  22. 如权利要求21所述的方法,其特征在于,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;
    所述网络侧设备根据所述加扰序列对所述后续信号进行加扰;
    所述网络侧设备传输所述加扰后的所述后续信号。
  23. 如权利要求21或22所述的方法,其特征在于,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
  24. 如权利要求21所述的方法,其特征在于,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;
    所述网络侧设备在所述物理资源上传输所述后续信号。
  25. 如权利要求21所述的方法,其特征在于,所述后续信号包括导频信号,所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识传输后续信号,包括:
    所述网络侧设备根据所述至少部分的所述小区标识和所述波束标识生成导频序列;
    所述网络侧设备根据所述导频序列传输所述导频信号。
  26. 如权利要求14-25中任一项所述的方法,其特征在于,所述小区标识为完整的小区标识。
  27. 一种信号的传输装置,其特征在于,包括:
    接收模块,用于接收网络侧设备发送的同步信号;
    确定模块,用于根据所述接收模块接收的所述同步信号确定波束标识和至少部分的小区标识;
    传输模块,用于根据所述确定模块确定的所述波束标识和/或所述至少部分的小区标识传输后续信号。
  28. 如权利要求27所述的装置,其特征在于,所述确定模块还用于:根据所述同步信号的序列信息,确定所述波束标识和所述至少部分的小区标识。
  29. 如权利要求28所述的装置,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,所述确定模块还用于:
    根据所述同步信号的序列ID,预设的每个小区内总的波束数量,以及预设的所述至少部分的小区标识的数量,确定所述波束标识和所述至少部分的小区标识。
  30. 如权利要求28所述的装置,其特征在于,所述同步信号包括第一同步信号和第二同步信号,所述确定模块还用于:
    根据所述第一同步信号的序列信息确定所述至少部分小区标识;
    根据所述第二同步信号的序列信息确定所述波束标识。
  31. 如权利要求27所述的装置,其特征在于,所述同步信号包括第一同步信号和第二同步信号,所述确定模块还用于:
    根据所述同步信号的序列信息,确定所述至少部分的小区标识;
    根据第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量,以及传输时间单元数量和波束标识的对应关系,确定所述波束标识,
    其中,所述第一传输时间单元为传输所述第一同步信号的传输时间单元,所述第二传输时间单元为传输所述第二同步信号的传输时间单元。
  32. 如权利要求27所述的装置,其特征在于,所述确定模块还用于:
    根据所述同步信号的序列信息确定所述至少部分的小区标识;
    根据传输所述同步信号所使用的物理资源,以及物理资源和波束标识的对应关系,确定所述波束标识。
  33. 如权利要求27所述的装置,其特征在于,所述确定模块还用于:
    根据所述同步信号确定所述波束标识和第一小区标识,所述第一小区标识为完整的所述小区标识中的一部分小区标识;
    所述传输模块还用于:
    从所述同步信号对应同步信道中确定第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的小区标识;
    根据所述第一小区标识和所述第二小区标识确定所述完整的小区标识;
    根据所述波束标识和/或所述完整的小区标识传输所述后续信号。
  34. 如权利要求27-33中任一项所述的装置,其特征在于,所述传输模块还用于:
    根据所述波束标识和/或所述至少部分的小区标识,确定传输所述后续信号使用的物理资源;
    在所述物理资源上传输所述后续信号。
  35. 如权利要求27-33中任一项所述的装置,其特征在于,所述传输模块还用于:
    根据所述波束标识和/或所述至少部分的小区标识生成加扰序列;
    根据所述加扰序列对所述后续信号进行加扰;
    传输经过加扰的所述后续信号。
  36. 如权利要求27-35中任一项所述的装置,其特征在于,所述后续信号包括广播信号、随机接入信号、控制信号、参考信号以及数据信号。
  37. 如权利要求27-33中任一项所述的装置,其特征在于,所述后续信号包括前导信号,所述传输模块还用于:
    根据所述波束标识和/或所述至少部分的小区标识生成前导序列;
    根据所述前导序列传输所述前导信号。
  38. 如权利要求27-33中任一项所述的装置,其特征在于,所述后续信号包括导频信号,所述传输模块还用于:
    根据所述波束标识和/或所述至少部分的小区标识生成导频序列;
    根据所述导频序列传输所述导频信号。
  39. 如权利要求27-38中任一项所述的装置,其特征在于,所述小区标识为完整的小区标识。
  40. 一种信号的传输装置,其特征在于,包括:
    确定模块,用于确定小区标识和波束标识;
    第一发送模块,用于根据至少部分的所述小区标识和所述波束标识发送同步信号。
  41. 如权利要求40所述的装置,其特征在于,所述同步信号为多个同步信号中的一个同步信号,所述第一发送模块具体用于:
    根据所述至少部分的所述小区标识和所述波束标识,通过多个波束发送所述多个同步信号,不同的波束传输的同步信号不同。
  42. 如权利要求40或41所述的装置,其特征在于,所述第一发送模块具体用于:
    根据所述至少部分的所述小区标识和所述波束标识确定所述同步信号的序列信息;
    发送基于所述序列信息生成的所述同步信号。
  43. 如权利要求42所述的装置,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,所述确定模块用于:
    根据所述至少部分的所述小区标识,所述波束标识,预设的每个小区内总的波束数量,以及所述至少部分的所述小区标识的数量,确定所述同步信号的序列ID。
  44. 如权利要求40或41所述的装置,其特征在于,所述同步信号包括第一同步信号和第二同步信号,所述第一发送模块具体用于:
    根据所述至少部分的所述小区标识,确定所述第一同步信号的序列信息,并基于所述第一同步信号的序列信息生成所述第一同步信号;
    根据所述波束标识,确定所述第二同步信号的序列信息,并基于所述第二同步信号的序列信息生成所述第二同步信号;
    发送所述第一同步信号和所述第二同步信号。
  45. 如权利要求42所述的装置,其特征在于,所述同步信号的序列信息包括所述同步信号的序列ID,所述同步信号包括第一同步信号和第二同步信号,所述第一发送模块具体用于:
    根据所述至少部分的所述小区标识,确定所述第一同步信号的序列ID和所述第二同步信号的序列ID;
    根据所述第一同步信号的序列ID生成所述第一同步信号,并根据所述第二同步信号的序列ID生成所述第二同步信号;
    根据所述波束标识,确定第一传输时间单元和第二传输时间单元之间间隔的传输时间单元数量;
    在所述第一传输时间单元上发送所述第一同步信号;
    经过所述传输时间单元数量对应的时间之后,所述网络侧设备在所述第二传输时间单元上发送所述第二同步信号。
  46. 如权利要求40-45中任一项所述的装置,其特征在于,所述第一发送模块具体用于:
    根据所述第一小区标识和所述波束标识发送所述同步信号,所述第一小区标识为完整的所述小区标识中的一部分小区标识;
    所述装置还包括:
    第二发送模块,用于通过所述同步信号对应的同步信道发送所述第二小区标识,所述第二小区标识和所述第一小区标识构成所述完整的所述小区标识。
  47. 如权利要求40-46中任一项所述的装置,其特征在于,所述装置还包括:
    传输模块,用于根据所述至少部分的所述小区标识和所述波束标识传输后续信号。
  48. 如权利要求47所述的装置,其特征在于,所述传输模块具体用于:
    根据所述至少部分的所述小区标识和所述波束标识生成加扰序列;
    根据所述加扰序列对所述后续信号进行加扰;
    传输所述加扰后的所述后续信号。
  49. 如权利要求47或48所述的装置,其特征在于,所述后续信号包括广播信号、控制信号、参考信号以及数据信号。
  50. 如权利要求47所述的装置,其特征在于,所述传输模块具体还用于:
    根据所述至少部分的所述小区标识和所述波束标识,确定传输所述后续信号使用的物理资源;
    在所述物理资源上传输所述后续信号。
  51. 如权利要求47所述的装置,其特征在于,所述后续信号包括导频信号,所述传输模块具体还用于:
    根据所述至少部分的所述小区标识和所述波束标识生成导频序列;
    根据所述导频序列传输所述导频信号。
  52. 如权利要求40-51中任一项所述的装置,其特征在于,所述小区标识为完整的小区标识。
PCT/CN2016/100940 2016-09-29 2016-09-29 信号的传输方法及装置 WO2018058467A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680085830.6A CN109314549B (zh) 2016-09-29 2016-09-29 信号的传输方法及装置
US16/305,546 US11075686B2 (en) 2016-09-29 2016-09-29 Signal transmission method and device
EP16917221.0A EP3451552B1 (en) 2016-09-29 2016-09-29 Signal transmission method and apparatus
PCT/CN2016/100940 WO2018058467A1 (zh) 2016-09-29 2016-09-29 信号的传输方法及装置
TW106128829A TWI710269B (zh) 2016-09-29 2017-08-24 信號的傳輸方法及裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100940 WO2018058467A1 (zh) 2016-09-29 2016-09-29 信号的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018058467A1 true WO2018058467A1 (zh) 2018-04-05

Family

ID=61762293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100940 WO2018058467A1 (zh) 2016-09-29 2016-09-29 信号的传输方法及装置

Country Status (5)

Country Link
US (1) US11075686B2 (zh)
EP (1) EP3451552B1 (zh)
CN (1) CN109314549B (zh)
TW (1) TWI710269B (zh)
WO (1) WO2018058467A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025061A1 (zh) * 2018-08-03 2020-02-06 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
US20210337494A1 (en) * 2020-04-28 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for indication and transmission of downlink signal/channel for initial access

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173436A2 (en) * 2011-06-17 2012-12-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
CN103748801A (zh) * 2011-07-28 2014-04-23 三星电子株式会社 无线通信系统中用于波束形成的装置和方法
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端
CN105393467A (zh) * 2013-06-28 2016-03-09 财团法人中央大学校产学协力团 波束训练装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
JP6336728B2 (ja) * 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
EP3075089B1 (en) * 2013-11-27 2021-09-08 Telefonaktiebolaget LM Ericsson (publ) Sending and detecting synchronization signals and an associated information message
AU2014355189B2 (en) * 2013-11-27 2018-02-01 Telefonaktiebolaget L M Ericsson (Publ) Network node, wireless device, methods therein, for sending and detecting, respectively, synchronization signal and an associated information
US20160100373A1 (en) * 2014-10-07 2016-04-07 Mediatek Inc. Signal Format for Cell Search and Synchronization in Wireless Networks
EP3211934B1 (en) * 2014-11-13 2020-01-01 Huawei Technologies Co., Ltd. Signal synchronization method and device for high-frequency communication
CN107210797A (zh) * 2015-01-22 2017-09-26 华为技术有限公司 获取ue位置的方法和装置
WO2016210302A1 (en) * 2015-06-25 2016-12-29 Interdigital Patent Holdings, Inc. Methods and apparatus for initial cell search and selection using beamforming
CN111030743B (zh) * 2015-09-11 2023-08-11 苹果公司 5g系统中用于初始获取的参考信号
US9930656B2 (en) * 2015-12-21 2018-03-27 Intel IP Corporation Cell search and synchronization in millimeter-wave capable small cells
US10805913B2 (en) * 2016-06-17 2020-10-13 Lg Electronics Inc. Method and user equipment for receiving donwlink signal, method and base station for transmitting downlink signal
WO2018008916A2 (ko) * 2016-07-02 2018-01-11 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
JP6882291B2 (ja) * 2016-07-29 2021-06-02 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
EP3477984B1 (en) * 2016-08-30 2021-04-14 Huawei Technologies Co., Ltd. Random access methods, apparatus and system
JP6216425B1 (ja) * 2016-09-01 2017-10-18 パナソニック株式会社 基地局装置、通信システムおよび送信制御方法
US11490342B2 (en) * 2016-09-28 2022-11-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, network device, and terminal device
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173436A2 (en) * 2011-06-17 2012-12-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
CN103748801A (zh) * 2011-07-28 2014-04-23 三星电子株式会社 无线通信系统中用于波束形成的装置和方法
CN105393467A (zh) * 2013-06-28 2016-03-09 财团法人中央大学校产学协力团 波束训练装置及方法
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端

Also Published As

Publication number Publication date
US20210175959A1 (en) 2021-06-10
TWI710269B (zh) 2020-11-11
US11075686B2 (en) 2021-07-27
CN109314549A (zh) 2019-02-05
TW201815202A (zh) 2018-04-16
EP3451552B1 (en) 2021-07-07
EP3451552A4 (en) 2019-07-10
CN109314549B (zh) 2020-08-25
EP3451552A1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US11540309B2 (en) Data transmission method and apparatus
US11844035B2 (en) Method and device for signal detection
RU2721359C1 (ru) Способ передачи информации управления нисходящего канала связи, терминал и сетевое устройство
US11791923B2 (en) Method for transmitting signal, terminal device and network device
JP7133627B2 (ja) データ伝送方法、デスクランブル方法、復調方法及び機器
US10958364B2 (en) Data transmission method, device, and system
US11924829B2 (en) Signal reception apparatus and method and communications system
JP2020518188A (ja) 端末、ネットワーク装置、および方法
WO2020191713A1 (en) System and method for signal detection at asynchronous devices and devices without a time frame structure
WO2018058467A1 (zh) 信号的传输方法及装置
TW201828676A (zh) 傳輸上行訊號的方法和設備
WO2018120172A1 (zh) 用于传输信号的方法和网络设备
CN114501632A (zh) 一种信号传输方法、装置、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016917221

Country of ref document: EP

Effective date: 20181126

NENP Non-entry into the national phase

Ref country code: DE