WO2018058464A1 - 传输信号的方法、终端设备和网络设备 - Google Patents

传输信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018058464A1
WO2018058464A1 PCT/CN2016/100932 CN2016100932W WO2018058464A1 WO 2018058464 A1 WO2018058464 A1 WO 2018058464A1 CN 2016100932 W CN2016100932 W CN 2016100932W WO 2018058464 A1 WO2018058464 A1 WO 2018058464A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
beams
transmissions
terminal device
synchronization signal
Prior art date
Application number
PCT/CN2016/100932
Other languages
English (en)
French (fr)
Inventor
唐海
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to EP16917218.6A priority Critical patent/EP3461180A4/en
Priority to PCT/CN2016/100932 priority patent/WO2018058464A1/zh
Priority to JP2019500639A priority patent/JP6817409B2/ja
Priority to CN201680087139.1A priority patent/CN109417753B/zh
Priority to KR1020197011152A priority patent/KR20190055172A/ko
Priority to US16/312,070 priority patent/US10694398B2/en
Priority to TW106128830A priority patent/TWI764918B/zh
Publication of WO2018058464A1 publication Critical patent/WO2018058464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting a signal, a terminal device, and a network device.
  • MIMO Multiple-Input Multiple-Output
  • LTE Long Term Evolution
  • the transmission of signals usually uses only one beam for transmission, and the number of beams or the number of signals used for transmitting signals cannot be flexibly configured, which affects the quality of cell access.
  • the embodiment of the present invention provides a method and a device for transmitting a signal, which can flexibly configure the number of beams used for transmitting a signal or the number of transmissions of a signal, thereby improving the quality of cell access, and since both supports a single beam.
  • the transmission mechanism in turn supports a multi-beam transmission mechanism, which provides a good compromise between detection complexity and beamforming gain.
  • the number of beams used for transmitting signals or the number of transmissions of signals can be flexibly configured, thereby improving the quality of cell access, and supporting both single-beam transmission mechanism and multi-beam transmission.
  • Mechanism which provides a good compromise between detection complexity and beamforming gain.
  • the number of transmissions of the signal can be expressed in terms of the number of resources. For example, the number of Channel State Information-Reference Signal (CSI-RS) resources.
  • CSI-RS Channel State Information-Reference Signal
  • the synchronization signal carries sequence information
  • the terminal device determines, according to the detected synchronization signal, a wave used by the transmission signal
  • the number of bundles or the number N of transmissions of the signal includes: the terminal device determines the number of the beams or the number N of transmissions corresponding to the sequence information according to the sequence information.
  • the correspondence between the sequence information and the number of beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the sequence information may be the sequence identifier used to generate the sequence.
  • the sequence information may be obtained by a primary synchronization signal, or may be obtained by a secondary synchronization signal, or may be obtained by combining a primary synchronization signal and a secondary synchronization signal.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the terminal device is configured according to the detected synchronization And determining, by the signal, the number of beams used to transmit the signal or determining the number N of transmissions of the signal, comprising: determining, by the terminal device, the number of first time domain resource units that are different between the primary synchronization signal and the secondary synchronization signal The number of the first time domain resource unit corresponding to the number of the beam or the number of transmissions N; or the terminal device determines the first frequency domain resource unit according to the difference between the primary synchronization signal and the secondary synchronization signal The number of the beams corresponding to the number of frequency domain resource units or the number N of transmissions.
  • the correspondence between the number of the first time domain resource unit and the number of the beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling. .
  • the correspondence between the number of the first frequency domain resource unit and the number of the beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling. .
  • the time domain resource unit may be a subframe, an OFDM symbol, a time slot, a shortened time slot, or a shortened subframe.
  • the correspondence between the indication information and the number of beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the indication information may also be used to indicate a beam identifier of the current beam.
  • the correspondence between the number of second time domain resource units and the number of beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling. .
  • the terminal device determines, according to the detected synchronization signal or the synchronization channel, a beam used for transmitting the signal
  • the number or the number N of transmissions of the signal includes: the terminal device determines, according to the physical resource of the synchronization signal, the number of the beam corresponding to the physical resource of the physical signal or the number N of transmissions; or the terminal device according to the The physical resource of the synchronization channel determines the number of the beams or the number N of transmissions corresponding to the physical resources of the synchronization channel.
  • the correspondence between the physical resources of the synchronization signal and the number of the beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the terminal device determines, according to the detected synchronization signal and/or the synchronization channel, the transmission signal is used.
  • the number of beams or the number N of transmissions of the signal includes: the terminal device determines, according to the synchronization signal or the synchronization channel, that the signal is transmitted by using one beam or M beams, or determines the number of transmissions of the signal. For 1 or K, M and K are pre-stored positive integers greater than 1.
  • the transmission time unit in which the synchronization signal and the synchronization channel are located has a fixed time offset.
  • the terminal device performs the transmission of the signal with the network device according to the number of the beams, including: The terminal device sends the signal after the beamforming corresponding to the number of the beam to the network device according to the number of the beam; or the terminal device receives the signal after the beamforming corresponding to the number of the beam sent by the network device.
  • the terminal device performs the transmission of the signal with the network device according to the number N of transmissions
  • the method includes: the terminal device sends N the signals to the network device according to the number N of transmissions; or the terminal device receives the N signals sent by the network device according to the number N of transmissions.
  • the signal includes at least one of the following signals: a broadcast signal, a random access signal Reference signal, control signal and beam reference signal.
  • a method for transmitting a signal comprising: determining, by a network device, a number of beams used to transmit a signal or determining a number of transmissions of the signal, N, N being a positive integer; the network device transmitting synchronization to the terminal device A signal and/or a synchronization channel, the synchronization signal and/or the synchronization channel being generated based on the number of beams or the number N of transmissions.
  • the terminal device Sending a synchronization signal and/or a synchronization channel generated based on the number of beams or the number of transmissions to the terminal device, so that the terminal device can flexibly configure the number of beams or signals used for transmitting the signal based on the detected synchronization signal and/or the synchronization channel.
  • the number of transmissions increases the quality of cell access, and since both single-beam transmission mechanisms and multi-beam transmission mechanisms are supported, there is a good compromise between detection complexity and beamforming gain.
  • the method further includes: determining, by the network device, the number of the beams or the number of the transmissions N, The sequence information corresponding to the number of the beams or the number N of transmissions; the network device sending the synchronization signal to the terminal device, the network device sending a synchronization signal generated based on the sequence information to the terminal device.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the method further includes: the network device Determining, according to the number of the beams or the number N of transmissions, the number of first time domain resource units that are different from the number of the beams or the number of transmissions N, or the network device according to the difference between the primary synchronization signal and the secondary synchronization signal Determining, by the number of the beams or the number N of transmissions, the number of first frequency domain resource units that are different from the number of the beams or the number N of transmissions, and the difference between the primary synchronization signal and the secondary synchronization signal; the network device to the terminal device Sending the synchronization signal includes: the network device sending the synchronization signal to the terminal device according to the first time domain resource unit number or the first frequency domain resource unit number.
  • the method further includes: determining, by the network device, the number of the beams or the number of the transmissions N, And indication information corresponding to the number of the beams or the number N of transmissions; the network device sending the synchronization channel to the terminal device, the network device sending, to the terminal device, a synchronization channel carrying the indication information.
  • the method further includes: determining, by the network device, the number of the beams or the number of transmissions N, Determining the number of second time domain resource units between the synchronization signal and the synchronization channel corresponding to the number of the beams or the number of transmissions N, or determining, by the network device, the beam according to the number of the beams or the number N of transmissions a quantity or a number of second frequency domain resource units of the synchronization signal corresponding to the synchronization channel and the synchronization channel; the network device sending the synchronization signal and the synchronization channel to the terminal device, including: the network device according to the second The number of time domain resource units or the number of the second frequency domain resource units sends the synchronization signal and the synchronization channel to the terminal device.
  • the method further includes: determining, by the network device, the number of the beams or the number of transmissions N, a physical resource of the synchronization signal corresponding to the number of the beams or the number N of transmissions; or the network device determines the synchronization channel corresponding to the number of the beams or the number of transmissions N according to the number of the beams or the number N of transmissions a physical resource; the network device sends a synchronization signal or a synchronization channel to the terminal device, including: the network device sends the synchronization signal to the terminal device according to the physical resource of the synchronization signal; or the network device is based on the physical resource of the synchronization channel Sending the synchronization channel to the terminal device.
  • the signal includes at least one of the following signals: a broadcast signal, a random access signal, Reference signal, control signal and beam reference signal.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising: a memory, a processor, a transceiver, and a bus system.
  • the memory, the processor and the transceiver are connected by a bus system for storing instructions for executing instructions stored in the memory, the processor executing the method of the first aspect when the instruction is executed, and
  • the control transceiver receives input data and information, and outputs data such as operation results.
  • a network device in a sixth aspect, includes: a memory, a processor, Transceiver and bus system.
  • the memory, the processor and the transceiver are connected by a bus system for storing instructions for executing instructions stored in the memory, the processor executing the method of the second aspect when the instruction is executed, and
  • the control transceiver receives input data and information, and outputs data such as operation results.
  • a computer storage medium for storing computer software instructions for use in the above method, comprising a program designed to perform the above aspects.
  • the names of the terminal device and the network device are not limited to the device itself. In actual implementation, these devices may appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
  • FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present invention.
  • Figure 2 shows a schematic diagram of one possible beamforming.
  • FIG. 3 is a schematic block diagram of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 4 is another schematic block diagram of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal device for transmitting a signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a network device for transmitting signals according to an embodiment of the present invention.
  • FIG. 7 is another schematic block diagram of a terminal device for transmitting a signal according to an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a network device for transmitting signals according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network
  • the device may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB, NB) in the WCDMA system, or an evolved base station (Evolutional NodeB, eNB or eNodeB) in the LTE system. It can also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or The network device and the like in the PLMN network in the future are not limited in the embodiment of the present invention.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional NodeB, eNB or eNodeB evolved base station
  • It can also be a wireless controller in a Cloud Radio Access Network (C
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • MIMO Multiple Input Multiple Output
  • the use of MIMO technology at high frequencies places high demands on the RF components of the antenna, and the hardware cost of the antenna (such as analog/digital A/D, digital/analog D/A converter) is also greatly increased.
  • hybrid beamforming is usually adopted in the high frequency band to reduce the number of transmitting and receiving radio units. As shown in FIG.
  • FIG. 3 shows a schematic block diagram of a method 100 of transmitting a signal in accordance with an embodiment of the present invention. As shown in FIG. 3, the method 100 includes:
  • the terminal device determines, according to the detected synchronization signal and/or the synchronization channel, the number of beams used to transmit the signal, or determines the number of transmissions of the signal, N, N is a positive integer;
  • the terminal device performs transmission of the signal with a network device according to the number of the beams or the number N of transmissions.
  • the signal here can be an uplink signal or a downlink signal.
  • Can be the signal packet At least one of the following signals is included: a broadcast signal, a random access signal, a reference signal, a control signal, and a beam reference signal.
  • the number of beams and the number of transmissions N are one-to-one correspondence. Specifically, N beamformed signals can be obtained through N beams.
  • the transmission of the signal with the network device here refers to the transmission and reception of the signal with the network device.
  • the terminal device may receive the signal sent by the network device, or the terminal device may send the signal to the network device.
  • the synchronization signal carries sequence information
  • the terminal device determines, according to the detected synchronization signal, the number of beams used to transmit the signal or determines the number N of transmissions of the signal, including: the terminal.
  • the device determines, according to the sequence information, the number of the beams or the number N of transmissions corresponding to the sequence information.
  • the number of corresponding beams or the number of transmissions in the range of 0-503 is 1 to be single-beam transmission, and the number of corresponding beams or the number of transmissions in the range of 504-1007 is N, that is, multi-beam transmission, wherein N is a pre-agreed positive integer greater than one.
  • the number of the corresponding number of beams or the number of transmissions of the range whose sequence identifier is 0 to 100 is 1, and the number of the corresponding number of beams or the number of transmissions of the range of 101 to 200 is 2, and the range of the sequence identifier is 201 to 300.
  • the number of beams or the number of transmissions is three.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the terminal device determines, according to the detected synchronization signal, the number of beams used to transmit the signal or determines the number of transmissions of the signal.
  • the terminal device determines, according to the first time domain resource unit that is different between the primary synchronization signal and the secondary synchronization signal, the number corresponding to the first time domain resource unit.
  • the number of the beams or the number of transmissions N; or the terminal device determines the beam corresponding to the number of the first frequency domain resource units according to the number of the first frequency domain resource units that are different between the primary synchronization signal and the secondary synchronization signal The number or the number of transmissions N.
  • the number of first time domain resource units may be a number of transmission time units that differ between the primary synchronization signal and the secondary synchronization signal.
  • the transmission time unit may be a subframe, an OFDM symbol, a time slot, a shortened time slot, a shortened subframe, and the like.
  • the number of the first frequency domain resource unit may be a physical resource block (PRB), a subcarrier, or the like.
  • the terminal device may pre-store the correspondence between the number of the first frequency domain resource units and the number of beams or the number of transmissions.
  • the terminal device may also pre-store the correspondence between the number of the first time domain resource units and the number of beams or the number of transmissions.
  • the number of beams or the number of transmissions is one, that is, single beam transmission; if the primary synchronization signal and the secondary synchronization signal are different by B OFDM symbols, then The number of beams or the number of transmissions is N, that is, multi-beam transmission, where N is a pre-agreed value.
  • the synchronization channel carries indication information indicating the number of the beams or the number N of transmissions
  • the terminal device determines, according to the detected synchronization channel, the number of beams used to transmit the signal or Determining the number N of transmissions of the signal includes: determining, by the terminal device, the number of the beams or the number N of transmissions according to the indication information.
  • the correspondence between the indication information and the number of beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the indication information can also be used to indicate a beam identification of the current beam. For example, the indication information may be 1 bit.
  • the indication information it may be determined as a single beam. If the indication information is 1, it may be determined as a multi-beam N, and N is a positive integer that is pre-agreed to be greater than 1.
  • the indication information is 2 bits, and the number of corresponding beams of 00 is 1, 1, the number of corresponding beams is 2, the number of corresponding beams is 3, and the number of corresponding beams is 4.
  • the terminal device determines, according to the detected synchronization channel, the number of beams used to transmit the signal or determines the number N of transmissions of the signal, including: the terminal device according to the detected synchronization.
  • the scrambling sequence used by the channel determines the number of beams or the number N of transmissions corresponding to the scrambling sequence.
  • the terminal device may pre-store the correspondence between the sequence identifier and the number of beams or the number of transmissions, and then generate the used sequence identifier according to the scrambling sequence to determine the number of beams or the number of transmissions.
  • the sequence identifier when the sequence identifier is smaller than A, the number of corresponding beams or the number of transmissions is K1, and when the sequence identifier is greater than or equal to A, the number of corresponding beams or the number of transmissions is K2, and when the sequence identifier is greater than or equal to B, the number of corresponding beams or the number of transmissions is K3.
  • the terminal device determines, according to the detected synchronization signal and the synchronization channel, the number of beams used to transmit the signal or determines the number N of transmissions of the signal, including: the terminal device according to the synchronization Determining, by the number of second time domain resource units, the difference between the signal and the synchronization channel, determining the number of the beam or the number of transmissions N corresponding to the number of the second time domain resource unit; the terminal device according to the synchronization signal and the synchronization channel The number of the second frequency domain resource units differing from each other, and the number of the beams or the number N of transmissions corresponding to the number of the second frequency domain resource units is determined.
  • the number of second time domain resource units may be the number of transmission time units of the difference between the synchronization signal and the synchronization channel.
  • the transmission time unit may be a subframe, an OFDM symbol, a time slot, a shortened time slot, a shortened subframe, and the like.
  • the number of the second frequency domain resource unit may be a physical resource block (PRB), a subcarrier, or the like.
  • the terminal device may pre-store the correspondence between the number of the first frequency domain resource units and the number of beams or the number of transmissions.
  • the terminal device may also pre-store the correspondence between the number of the first time domain resource units and the number of beams or the number of transmissions.
  • the terminal device determines, according to the detected synchronization signal or the synchronization channel, the number of beams used to transmit the signal or determines the number N of transmissions of the signal, including: the terminal device according to the synchronization a physical resource of the signal, the number of the beam corresponding to the physical resource of the physical signal or the number of the transmission N is determined; or the terminal device determines the number of the beam corresponding to the physical resource of the synchronization channel according to the physical resource of the synchronization channel Or the number of transmissions N.
  • the correspondence between the physical resources of the synchronization signal and the number of the beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the correspondence between the physical resources of the synchronization channel and the number of the beams or the number of transmissions may be pre-agreed between the network device and the terminal device, or may be configured by the network device, and indicated to the terminal device by signaling.
  • the terminal device determines, according to the detected synchronization signal and/or the synchronization channel, the number of beams used to transmit the signal or determines the number N of transmissions of the signal, including: the terminal device according to The synchronization signal or the synchronization channel determines whether one or M beams are used to transmit the signal, or determines that the number of transmissions of the signal is one or K, and M and K are pre-stored positive integers greater than one, respectively. .
  • the number of beams or the number of transmissions may also be 0, and the terminal does not need to receive signals.
  • the terminal device may not perform transmission and reception of these signals, for example, if the signal is a beam reference signal, the number of beams If 1, it is not necessary to receive the beam reference signal.
  • the signal is a beam reference signal and the number of transmissions is 0, the beam reference signal may not need to be received.
  • the present invention is described by taking only the beam reference signal as an example, and the present invention is not limited thereto.
  • the terminal device detects the synchronization signal, and obtains a synchronization sequence identifier by blind detection from the synchronization signal.
  • the synchronization sequence identifier is obtained by the identifier 1 carried by the primary synchronization signal and the identifier 2 carried by the secondary synchronization signal.
  • the terminal determines the number N of beams used for PBCH transmission according to the synchronization sequence identifier.
  • the correspondence between the synchronization sequence identifier and the number of beams is pre-agreed by the terminal device and the network device.
  • a part of the synchronization sequence identifier corresponds to a single beam, and another part of the synchronization sequence identifier corresponds to multiple beams.
  • the number of beams is fixed to K, that is, the number of beams N is 1 or K.
  • the terminal can perform reception of the PBCH according to the number of beams N.
  • the terminal needs to separately receive N PBCH signals, and the PBCH signals are formed by the network device by using N beams, and then sent to the terminal device, where the N PBCH signals are transmitted by using different physical resources.
  • the physical resource of the PBCH signal is N physical resources that have a fixed mapping relationship with physical resources that detect a synchronization signal.
  • the terminal device detects the synchronization signal; the terminal device detects the PBCH corresponding to the synchronization signal, and obtains the number of transmissions of the signal according to the number of indication information transmitted by the signal carried by the PBCH.
  • the terminal device performs reception of the subsequent N beam reference signals according to the number N of signal transmissions.
  • the terminal needs to receive N beam reference signals, and each beam reference signal is shaped by a network device by using different beams, and then sent to the terminal device, where the N beam reference signals are transmitted by using different physical resources.
  • the physical resources used by the N beam reference signals are N physical resources agreed by the terminal device and the network device in advance.
  • the synchronization channel may be a PBCH (Physical Broadcast Channel), a PSBCH (Physical Sidelink Broadcast Channel), or the like.
  • the signal to be transmitted may be a broadcast signal such as a physical broadcast channel (PBCH), or may be a random access signal such as a physical random access channel (PRACH), or may be a channel.
  • a reference signal such as a Channel State Information-Reference Signal (CSI-RS) or a Demodulation Reference Signal (DMRS) may also be a control signal.
  • the signal may be a beam reference signal. (Beam Reference Signal, BRS).
  • the terminal device performs the transmission of the signal with the network device according to the number of the beams or the number N of transmissions, including: the terminal device according to the number of the beams or the number N of transmissions, Determining a physical resource or a sequence resource corresponding to the number of the beams or the number N of transmissions; the terminal device performs transmission of the signal on the physical resource or using the sequence resource with the network device.
  • the physical resources used by each beam corresponding signal may be agreed in advance between the terminal device and the network device, and the terminal device and/or the network device determine the beam corresponding signal to be sent according to the number of beams or the number of transmissions N, and Each beam transmits and receives a corresponding signal on a physical resource used by the corresponding signal.
  • the terminal device and the network device can agree in advance that the number of beams or the number of transmissions N is 4 to 1 to 4 (assuming that all physical resources are divided into 20, and physical resources of different labels are corresponding. The location is unique. Then, when the terminal device needs to transmit the random access signal, the physical resources 1 to 4 can be determined according to the number of beams or the number of transmissions N to perform the transmission of the random access signal.
  • Each physical resource may include multiple time domain resource units and multiple frequency domain resource units.
  • the terminal device and the network device may also pre-arrange the sequence resources used by each beam corresponding signal, wherein the sequence resource may be a sequence used to determine the transmission of the signal. It should be understood that the foregoing is merely a schematic of the embodiments of the present invention, and the embodiments of the present invention are not limited thereto.
  • the terminal device performs the signal transmission with the network device according to the number of the beams, including: the terminal device sends, according to the number of the beams, a beam corresponding to the number of the beams according to the number of the beams.
  • the signal after shaping; or the terminal device receives the signal after the beamforming corresponding to the number of beams sent by the network device.
  • the terminal device is configured according to the number N of transmissions, and The network device performs the transmission of the signal, including: the terminal device sends N the signals to the network device according to the number N of transmissions; or the terminal device receives the N signals sent by the network device according to the number N of transmissions. .
  • the method further includes: the terminal device according to the number of the beam or the transmission
  • the number N is used to receive the feedback information sent by the network device, or the terminal device sends feedback information to the network device according to the number of the beams or the number N of transmissions, where the feedback information is used to indicate the beam corresponding to the number of the beams.
  • the beamforming technology can be divided into two methods: codebook based and channel reciprocity according to the feedback manner of channel information.
  • the former is based on the codebook information fed back by the terminal, and the network device determines the precoding codebook used for the next transmission; the latter uses the channel reciprocity to obtain the downlink channel information according to the Sounding Reference Signal (SRS) sent by the uplink.
  • SRS Sounding Reference Signal
  • the terminal device usually reports a beam index or an index of the CSI-RS resource corresponding to the beam index according to the number of beams, and the like, for the network device to perform subsequent data.
  • Beamforming is performed.
  • the beam index reported by the terminal device may be a beam used by a signal with the best signal quality in the downlink signal sent by the network device, or a signal quality ranked second, or other beam index. This is not a limitation.
  • the feedback information includes a beam identifier of the first beam and/or channel state information CSI corresponding to the beam identifier, or the feedback information includes a signal identifier of the first signal and/or a corresponding to the signal identifier.
  • Channel state information CSI Channel state information
  • the terminal device can perform feedback of beam identification (for example, beam index) according to the number of beams.
  • Each beam identifier indicates the identity of one beam in all beams corresponding to the number of beams. For example, if the number of beams is N, the number of bits of one beam identification may be log2(N).
  • the terminal may receive a signal corresponding to each beam according to the number of beams, thereby reporting the beam identifier.
  • the terminal device can also perform feedback of the CSI corresponding to the beam identification at the same time. Specifically, in addition to feeding back information for indicating a certain beam, the terminal device needs to feed back CSI based on the beam measurement.
  • the CSI includes at least one of a rank indication RI, a precoding matrix indication PMI, and a channel quality indicator CQI.
  • the terminal device performs feedback of the signal identification according to the number of signals.
  • Each of the signal identifiers indicates an identifier of a signal in all signals corresponding to the number of signals. For example, if the number of signals is N, the number of bits identified by one signal may be log2(N).
  • the signal here can be represented by the resource used by the signal, so the signal identifier can also be a signal resource identifier, such as a CSI-RS resource identifier. For example, if the terminal device determines that the number of CSI-RS resources is four, the CSI-RS signals on the four CSI-RS resources are respectively detected, and the CSI-RS signal with the best signal quality in the detected signal is obtained.
  • the index of the CSI-RS resource corresponding to the CSI-RS signal is fed back to the network device as a signal identifier.
  • the terminal device can also perform feedback of the CSI corresponding to the signal identification at the same time. Specifically, in addition to the feedback resource identifier, the terminal device needs to feed back the CSI measured based on the signal corresponding to the resource identifier.
  • the CSI may be at least one of a Rank Indication (RI), a Precoding Matrix Indicator (PMI), and a Channel Quality Indicator (CQI).
  • the method for transmitting a signal provided by the embodiment of the present invention can flexibly configure the number of beams used for transmitting a signal or the number of transmissions of a signal, thereby improving the quality of cell access, and supporting both a single beam transmission mechanism and multiple beams.
  • the transmission mechanism provides a good compromise between detection complexity and beamforming gain.
  • the network device determines the number of beams used to transmit the signal or determines the number of transmissions of the signal N, N is a positive integer;
  • the method further includes: determining, by the network device, sequence information corresponding to the number of the beams or the number of transmissions N according to the number of the beams or the number N of transmissions;
  • the terminal device sends the synchronization signal, and the network device sends a synchronization signal generated based on the sequence information to the terminal device.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the method further includes: determining, by the network device, the number of the beam or the transmission according to the number of the beams or the number N of transmissions The number of first time domain resource units of the difference between the primary synchronization signal and the secondary synchronization signal corresponding to the number N, or the network device determines the number of the beam or the transmission according to the number of the beams or the number N of transmissions The number of the first frequency domain resource unit that is different from the primary synchronization signal and the secondary synchronization signal corresponding to the number N; the network device sends the synchronization signal to the terminal device, including: the network device according to the first time domain resource unit number or The number of the first frequency domain resource unit sends the synchronization signal to the terminal device.
  • the method further includes: determining, by the network device, indication information corresponding to the number of the beams or the number of transmissions N according to the number of the beams or the number N of transmissions; the network The device sends a synchronization channel to the terminal device, where the network device sends a synchronization channel carrying the indication information to the terminal device.
  • the method further includes: determining, by the network device, the synchronization signal corresponding to the number of the beams or the number of transmissions N and the synchronization channel according to the number of the beams or the number N of transmissions
  • the synchronization signal and the synchronization channel are transmitted.
  • the method further includes: determining, by the network device, the physical resource of the synchronization signal corresponding to the number of the beams or the number of transmissions N according to the number of the beams or the number N of transmissions; Or the network device determines the number of the beams according to the number of the beams or the number N of transmissions.
  • FIG. 5 shows a terminal device 300 for transmitting signals according to an embodiment of the present invention.
  • the terminal device 300 includes:
  • the determining unit 310 is configured to determine, according to the detected synchronization signal and/or the synchronization channel, the number of beams used to transmit the signal or determine the number of transmissions of the signal N, N is a positive integer;
  • the transmitting unit 320 is configured to perform transmission of the signal with the network device according to the number of the beams or the number N of transmissions.
  • the terminal device provided by the embodiment of the present invention can flexibly configure the number of beams used for transmitting signals or the number of transmissions of signals, thereby improving the quality of cell access, and supporting both the single beam transmission mechanism and the multi-beam transmission mechanism.
  • the terminal device provided by the embodiment of the present invention can flexibly configure the number of beams used for transmitting signals or the number of transmissions of signals, thereby improving the quality of cell access, and supporting both the single beam transmission mechanism and the multi-beam transmission mechanism.
  • the synchronization signal carries sequence information
  • the determining unit 310 is specifically configured to: determine, according to the sequence information, the number of the beams or the number N of transmissions corresponding to the sequence information.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the determining unit 310 is specifically configured to: according to the first time domain resource that is different between the primary synchronization signal and the secondary synchronization signal a number of units, determining the number of the beams corresponding to the number of the first time domain resource units or the number of transmissions N; or determining the number of the first frequency domain resource units according to the difference between the primary synchronization signal and the secondary synchronization signal The number of the beams corresponding to the number of the first frequency domain resource units or the number N of transmissions.
  • the synchronization channel carries indication information for indicating the number of the beam or the number N of transmissions.
  • the determining unit 310 is specifically configured to: determine the number of the beam or the identifier according to the indication information.
  • the number of transmissions is N.
  • the determining unit 310 is specifically configured to: determine, according to the scrambling sequence used by the detected synchronization channel, the number of the beams or the number N of transmissions corresponding to the scrambling sequence.
  • the determining unit 310 is specifically configured to: determine, according to the number of second time domain resource units that are different between the synchronization signal and the synchronization channel, to determine the number of resource elements in the second time domain.
  • the determining unit 310 is specifically configured to: determine, according to a physical resource of the synchronization signal, the number of the beam corresponding to the physical resource of the physical signal or the number N of transmissions; or according to the The physical resource of the synchronization channel determines the number of the beams or the number N of transmissions corresponding to the physical resources of the synchronization channel.
  • the determining unit 310 is specifically configured to: according to the synchronization signal or the synchronization channel, determine whether to transmit the signal by using one beam or M beams, or determine the transmission of the signal.
  • the number is one or K, and M and K are pre-stored positive integers greater than one, respectively.
  • the physical resource that transmits the synchronization signal and the synchronization channel has a fixed relative position, and/or the scrambling sequence used by the synchronization channel is generated based on the sequence information carried by the synchronization signal.
  • the transmitting unit 320 is specifically configured to: determine, according to the number of the beams or the number N of transmissions, physical resources or sequence resources corresponding to the number of the beams or the number of transmissions N; The transmission of the signal is performed on the physical resource or by using the sequence resource with the network device.
  • the transmitting unit 320 is configured to: send, according to the number of the beams, the signal after the beamforming corresponding to the number of the beams to the network device; or receive the signal sent by the network device.
  • the transmitting unit 320 is specifically configured to: send the N signals to the network device according to the number N of transmissions; or receive the N sent by the network device according to the number N of transmissions. This signal.
  • the N signals are shaped by using different beams, where N is a positive integer greater than 1.
  • the signal includes at least one of the following signals: Broadcast signal, random access signal, reference signal, control signal and beam reference signal.
  • terminal device 300 for transmitting signals may correspond to the terminal device in the method embodiment of the present invention, and the above and other operations and/or functions of the respective units in the terminal device 300 respectively implement FIG. The corresponding process of the method in the following is not repeated here for the sake of brevity.
  • FIG. 6 shows a network device 400 for transmitting signals in accordance with an embodiment of the present invention.
  • the network device 400 includes:
  • the first determining unit 410 is configured to determine the number of beams used to transmit the signal or determine the number of transmissions of the signal N, N is a positive integer;
  • a sending unit configured to send a synchronization signal and/or a synchronization channel to the terminal device, where the synchronization signal and/or the synchronization channel is generated based on the number of the beams or the number N of transmissions.
  • the network device provided by the embodiment of the present invention sends a synchronization signal and/or a synchronization channel generated based on the number of beams or the number of transmissions to the terminal device, so that the terminal device can be flexible based on the detected synchronization signal and/or the synchronization channel.
  • the network device 400 further includes: a second determining unit, configured to determine, according to the number of the beams or the number N of transmissions, a sequence corresponding to the number of the beams or the number of transmissions N
  • the sending unit 420 is specifically configured to: send a synchronization signal generated based on the sequence information to the terminal device.
  • the network device 400 further includes: determining, according to the number of the beams or the number N of transmissions, indication information corresponding to the number of the beams or the number N of transmissions; the sending unit The 420 is specifically configured to: send, to the terminal device, a synchronization channel that carries the indication information.
  • the network device 400 further includes: according to the number of the beams Or the number of transmissions N, determining the number of second time domain resource units that are different from the synchronization signal and the synchronization channel corresponding to the number of the beams or the number of transmissions N, or the network device according to the number of the beams or the transmission a number N, the number of second frequency domain resource units that are different from the synchronization signal and the synchronization channel corresponding to the number of the beams or the number of transmissions N; the sending unit 420 is specifically configured to: according to the second time domain The number of resource units or the number of resource units in the second frequency domain, the synchronization signal and the synchronization channel are transmitted to the terminal device.
  • the network device 400 further includes: determining, according to the number of the beams or the number N of transmissions, a physical resource of the synchronization signal corresponding to the number of the beams or the number N of transmissions; or Determining, according to the number of the beams or the number of transmissions N, physical resources of the synchronization channel corresponding to the number of the beams or the number of transmissions N; the sending unit 420 is specifically configured to: according to physical resources of the synchronization signal, to the terminal The device sends the synchronization signal; or sends the synchronization channel to the terminal device according to the physical resource of the synchronization channel.
  • the signal includes at least one of the following signals: a broadcast signal, a random access signal, a reference signal, a control signal, and a beam reference signal.
  • the network device 400 for transmitting signals may correspond to the network device in the method embodiment of the present invention, and the above and other operations and/or functions of the respective units in the network device 400 are respectively implemented to implement FIG. The corresponding process of the method in the following is not repeated here for the sake of brevity.
  • the embodiment of the present invention further provides a terminal device 500 for transmitting signals.
  • the terminal device 500 includes a processor 510, a memory 520, a bus system 530, and a transceiver 540, wherein the processor 510, the memory 520, and the transceiver 540 are connected by the bus system 530, and the memory 520 is configured to store instructions.
  • the processor 510 is configured to execute the instruction stored in the memory 520 to control the transceiver 540 to send a signal.
  • the processor 510 is configured to: determine, according to the detected synchronization signal and/or the synchronization channel, the transmission signal is used.
  • the number of beams or the number of transmissions of the signal N, N is a positive integer; according to the number of beams or the number N of transmissions, the transmission of the signal is performed with the network device.
  • the terminal device for transmitting signals provided by the embodiment of the present invention can flexibly configure the number of beams used for transmitting signals or the number of transmissions of signals, thereby improving the quality of cell access, and supporting both the single beam transmission mechanism and the multi-beam transmission mechanism.
  • the beam transmission mechanism provides a good compromise between detection complexity and beamforming gain.
  • the processor 510 may be a central processing unit (Central) Processing Unit (referred to as "CPU"), which may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic. Devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 520 can include read only memory and random access memory and provides instructions and data to the processor 510. A portion of the memory 520 may also include a non-volatile random access memory. For example, the memory 520 can also store information of the device type.
  • the bus system 530 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 530 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 520, and the processor 510 reads the information in the memory 520 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the synchronization signal carries sequence information
  • the processor 510 is specifically configured to: determine, according to the sequence information, the number of the beams or the number N of transmissions corresponding to the sequence information.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the processor 510 is specifically configured to: according to the first time domain resource that is different between the primary synchronization signal and the secondary synchronization signal a number of units, determining the number of the beams corresponding to the number of the first time domain resource units or the number of transmissions N; or determining the number of the first frequency domain resource units according to the difference between the primary synchronization signal and the secondary synchronization signal The number of the beams corresponding to the number of the first frequency domain resource units or the number N of transmissions.
  • the synchronization channel carries indication information for indicating the number of the beams or the number N of transmissions.
  • the processor 510 is specifically configured to: determine the number of the beams or the number according to the indication information.
  • the number of transmissions is N.
  • the processor 510 is specifically configured to: determine, according to the second time domain resource unit that is different between the synchronization signal and the synchronization channel, the second time domain resource list The number of the beams corresponding to the number of the elements or the number of the transmissions N; or determining the number of the beams corresponding to the number of the second frequency domain resource units according to the number of second frequency domain resource units between the synchronization signal and the synchronization channel Or the number of transmissions N.
  • the processor 510 is specifically configured to: determine, according to the physical resource of the synchronization signal, the number of the beam or the number N of transmissions corresponding to the physical resource of the physical signal; or according to the The physical resource of the synchronization channel determines the number of the beams or the number N of transmissions corresponding to the physical resources of the synchronization channel.
  • the processor 510 is specifically configured to: according to the synchronization signal or the synchronization channel, determine whether to transmit the signal by using one beam or M beams, or determine the transmission of the signal.
  • the number is one or K, and M and K are pre-stored positive integers greater than one, respectively.
  • the physical resource that transmits the synchronization signal and the synchronization channel has a fixed relative position, and/or the scrambling sequence used by the synchronization channel is generated based on the sequence information carried by the synchronization signal.
  • the processor 510 is specifically configured to: determine, according to the number of the beams or the number N of transmissions, physical resources or sequence resources corresponding to the number of the beams or the number of transmissions N; The transmission of the signal is performed on the physical resource or by using the sequence resource with the network device.
  • the processor 510 is specifically configured to: send the N signals to the network device according to the number N of transmissions; or receive the N sent by the network device according to the number N of transmissions. This signal.
  • the N signals are shaped by using different beams, where N is a positive integer greater than 1.
  • the signal includes at least one of the following signals: a broadcast signal, a random access signal, a reference signal, a control signal, and a beam reference signal.
  • terminal device 500 for transmitting signals may correspond to the terminal device 500 in the embodiment of the present invention, and may correspond to the terminal device in the method according to the embodiment of the present invention, and the terminal device 500
  • the above and other operations and/or functions of the respective units are respectively implemented in order to implement the corresponding processes of the method in FIG. 3, and are not described herein again for brevity.
  • the processor 610 is configured to execute an instruction stored by the memory 620 to control the transceiver 640 to send a signal, where the processor 610 is configured to: determine a number of beams used to transmit the signal or determine a number N of transmissions of the signal, N is a positive integer; a synchronization signal and/or a synchronization channel is transmitted to the terminal device, and the synchronization signal and/or the synchronization channel is generated based on the number of beams or the number N of transmissions.
  • the network device for transmitting a signal provided by the embodiment of the present invention sends a synchronization signal and/or a synchronization channel generated based on the number of beams or the number of transmissions to the terminal device, so that the terminal device can be based on the detected synchronization signal and/or the synchronization channel.
  • the number of beams used for transmitting signals or the number of transmissions of signals can be flexibly configured, thereby improving the quality of cell access, and supporting both the single beam transmission mechanism and the multi-beam transmission mechanism, thereby detecting complexity and beamforming. There is a good compromise between gains.
  • the processor 610 may be a central processing unit ("CPU"), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor 610. A portion of the memory 620 can also include a non-volatile random access memory. For example, the memory 620 can also store information of the device type.
  • the bus system 630 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 630 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 620, and the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 610 is specifically configured to: determine, by the network device, sequence information corresponding to the number of the beams or the number of transmissions N according to the number of the beams or the number N of transmissions; The terminal device transmits a synchronization signal generated based on the sequence information.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the processor 610 is specifically configured to determine the number of the beam or the transmission according to the number of the beams or the number N of transmissions.
  • the number of first time domain resource units of the primary synchronization signal and the secondary synchronization signal corresponding to the number N, or according to the number of the beams or the number of transmissions N, is determined to correspond to the number of the beams or the number of transmissions N
  • the number of the first frequency domain resource unit that is different from the secondary synchronization signal and the secondary synchronization signal; and the synchronization signal is sent to the terminal device according to the first time domain resource unit number or the first frequency domain resource unit number.
  • the processor 610 is specifically configured to: determine, according to the number of the beams or the number N of transmissions, indication information corresponding to the number of the beams or the number N of transmissions; The terminal device sends a synchronization channel carrying the indication information.
  • the processor 610 is specifically configured to: determine, according to the number of the beams or the number N of transmissions, the synchronization signal and the synchronization channel corresponding to the number of the beams or the number N of transmissions. Determining the number of second time domain resource units that are different from each other, or determining, according to the number of the beams or the number N of transmissions, a second difference between the synchronization signal and the synchronization channel corresponding to the number of beams or the number of transmissions N The number of frequency domain resource units; according to the second time domain resource unit number or the second frequency domain resource unit number, the synchronization signal and the synchronization channel are sent to the terminal device.
  • the processor 610 is specifically configured to: determine, according to the number of the beams or the number N of transmissions, a physical resource of the synchronization signal corresponding to the number of the beams or the number N of transmissions; Or determining, according to the number of the beams or the number N of transmissions, a physical resource of the synchronization channel corresponding to the number of the beams or the number N of transmissions; and transmitting the synchronization signal to the terminal device according to a physical resource of the synchronization signal; or And transmitting the synchronization channel to the terminal device according to the physical resource of the synchronization channel.
  • the signal comprises at least one of the following signals: a broadcast signal, a random access signal, a reference signal, a control signal, and a beam reference signal.
  • the network device 600 for transmitting signals may correspond to the network device 600 in the embodiment of the present invention, and may correspond to the network device in the method according to the embodiment of the present invention, and the network device 600
  • the above and other operations and/or functions of the respective units are respectively implemented in order to implement the corresponding processes of the method in FIG. 4, and are not described herein again for brevity.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or the technical solution All or part of it may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输信号的方法、终端设备和网络设备,该方法包括:终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;该终端设备根据该波束数量或该传输个数N,与网络设备进行该信号的传输。本发明实施例的方法、终端设备和网络设备,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。

Description

传输信号的方法、终端设备和网络设备 技术领域
本发明涉及通信领域,尤其涉及传输信号的方法、终端设备和网络设备。
背景技术
多天线(Multiple-Input Multiple-Output,MIMO)技术是长期演进(Long Term Evolution,LTE)系统的核心技术之一,可以大幅提高系统的传输速率。波束赋形就是一种基于天线阵列的信号预处理技术,通过调整各天线阵元上发送信号的权值,产生具有指向性的波束。
现有技术中,信号的传输通常只采用最多一个波束进行传输,不能灵活的配置传输信号所采用的波束数量或信号的传输个数,影响了小区接入的质量。
发明内容
有鉴于此,本发明实施例提供了一种传输信号的方法和设备,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
第一方面,提供了一种传输信号的方法,该方法包括:终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;该终端设备根据该波束数量或该传输个数N,与网络设备进行该信号的传输。
基于检测到的同步信号和/或同步信道,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
可选地,信号的传输个数可以使用资源数量表示。例如,信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源数量。
结合第一方面,在第一方面的第一种可能的实现方式中,该同步信号携带序列信息,该终端设备根据检测到的同步信号,确定传输信号所采用的波 束数量或确定该信号的传输个数N,包括:该终端设备根据该序列信息,确定与该序列信息对应的该波束数量或该传输个数N。
可选地,序列信息与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,序列信息可以是生成序列所用的序列标识。该序列信息可以是由主同步信号得到,也可以是由辅同步信号得到,还可以是主同步信号和辅同步信号联合得到。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第二种可能的实现方式中,该同步信号包括主同步信号和辅同步信号,该终端设备根据检测到的同步信号,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该主同步信号和该辅同步信号之间相差的第一时域资源单元数量,确定与该第一时域资源单元数量对应的该波束数量或该传输个数N;或该终端设备根据该主同步信号和该辅同步信号之间相差的第一频域资源单元数量,确定与该第一频域资源单元数量对应的该波束数量或该传输个数N。
可选地,第一时域资源单元数量与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,第一频域资源单元数量与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
时域资源单元可以是子帧、OFDM符号、时隙、缩短时隙或缩短子帧等。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第三种可能的实现方式中,该同步信道携带用于指示该波束数量或该传输个数N的指示信息,该终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该指示信息,确定该波束数量或该传输个数N。
可选地,该指示信息与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,该指示信息还可以用于指示当前波束的波束标识。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第四种可能的实现方式中,该终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:述终端设备根据该检测到的同步信道所用的加扰序列,确定与该加扰序列对应的该波束数量或该传输个数N。
可选地,终端设备可以预先存储序列标识与波束数量或传输个数的对应关系,再根据加扰序列生成所用的序列标识确定波束数量或传输个数。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第五种可能的实现方式中,该终端设备根据检测到的同步信号和同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号和该同步信道之间相差的第二时域资源单元数量,确定与该第二时域资源单元数量对应的该波束数量或该传输个数N;或该终端设备根据该同步信号和该同步信道之间相差的第二频域资源单元数量,确定与该第二频域资源单元数量对应的该波束数量或该传输个数N。
可选地,第二时域资源单元数量与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,第二频域资源单元数量与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第六种可能的实现方式中,该终端设备根据检测到的同步信号或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号的物理资源,确定与该物理信号的物理资源对应的该波束数量或该传输个数N;或该终端设备根据该同步信道的物理资源,确定与该同步信道的物理资源对应的该波束数量或该传输个数N。
可选地,同步信号的物理资源与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,同步信道的物理资源与波束数量或传输个数之间的对应关系可 以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第七种可能的实现方式中,该终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号或该同步信道,确定传输该信号采用的是1个波束或M个波束,或确定该信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第八种可能的实现方式中,传输该同步信号和同步信道的物理资源具有固定的相对位置,和/或,该同步信道所用的加扰序列是基于该同步信号携带的序列信息生成。
可选地,同步信号和同步信道所在的传输时间单元具有固定的时间偏移量。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第九种可能的实现方式中,该终端设备根据该波束数量或该传输个数N,与网络设备进行该信号的传输,包括:该终端设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的物理资源或序列资源;该终端设备在该物理资源上或采用该序列资源与该网络设备进行该信号的传输。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第十种可能的实现方式中,该终端设备根据该波束数量,与网络设备进行该信号的传输,包括:该终端设备根据该波束数量,向该网络设备发送经过该波束数量对应的波束赋形之后的该信号;或该终端设备接收该网络设备发送的经过该波束数量对应的波束赋形之后的该信号。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第十一种可能的实现方式中,该终端设备根据该传输个数N,与网络设备进行该信号的传输,包括:该终端设备根据该传输个数N,向该网络设备发送N个该信号;或该终端设备接收该网络设备根据该传输个数N发送的N个该信号。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第十二种可能的实现方式中,该N个该信号采用不同的波束进行赋形,其中,N为大于1的正整数。
结合第一方面或上述第一方面的任一种实现方式,在第一方面的第十三种可能的实现方式中,该信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
第二方面,提供了一种传输信号的方法,该方法包括:网络设备确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;该网络设备向终端设备发送同步信号和/或同步信道,该同步信号和/或该同步信道是基于该波束数量或该传输个数N生成的。
向终端设备发送基于波束数量或传输个数生成的同步信号和/或同步信道,使得终端设备可以基于检测到的同步信号和/或同步信道,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第一种可能的实现方式中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的序列信息;该网络设备向终端设备发送同步信号,包括:该网络设备向该终端设备发送基于该序列信息生成的同步信号。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第二种可能的实现方式中,该同步信号包括主同步信号和辅同步信号,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一时域资源单元数量,或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一频域资源单元数量;该网络设备向终端设备发送同步信号,包括:该网络设备根据该第一时域资源单元数量或该第一频域资源单元数量,向该终端设备发送该同步信号。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第三种可能的实现方式中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定用于与该波束数量或该传输个数N对应的指示信息;该网络设备向终端设备发送同步信道,包括:该网络设备向该终端设备发送携带该指示信息的同步信道。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第四种可能的实现方式中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二时域资源单元数量,或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二频域资源单元数量;该网络设备向终端设备发送同步信号和同步信道,包括:该网络设备根据该第二时域资源单元数量或该第二频域资源单元数量,向该终端设备发送该同步信号和该同步信道。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第五种可能的实现方式中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号的物理资源;或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信道的物理资源;该网络设备向终端设备发送同步信号或同步信道,包括:该网络设备根据该同步信号的物理资源,向该终端设备发送该同步信号;或该网络设备根据该同步信道的物理资源,向该终端设备发送该同步信道。
结合第二方面或上述第二方面的任一种实现方式,在第二方面的第六种可能的实现方式中,该信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该设备包括:存储器、处理器、收发器和总线系统。其中,存储器、处理器和收发器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器执行第一方面的方法,并控制收发器接收输入的数据和信息,输出操作结果等数据。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、 收发器和总线系统。其中,存储器、处理器和收发器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器执行第二方面的方法,并控制收发器接收输入的数据和信息,输出操作结果等数据。
第七方面,提供了一种计算机存储介质,用于储存为上述方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本申请中,终端设备和网络设备的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例的一种可能的应用场景的示意图。
图2示出了一种可能的波束赋形的示意图。
图3示出了本发明实施例提供的传输信号的方法的示意性框图。
图4示出了本发明实施例提供的传输信号的方法的另一示意性框图。
图5示出了本发明实施例提供的传输信号的终端设备的示意性框图。
图6示出了本发明实施例提供的传输信号的网络设备的示意性框图。
图7示出了本发明实施例提供的传输信号的终端设备的另一示意性框图。
图8示出了本发明实施例提供的传输信号的网络设备的另一示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
特别地,本发明实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)系统、低密度签名(Low Density Signature,简称为“LDS”)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本发明实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,简称为“OFDM”)、滤波器组多载波(Filter Bank Multi-Carrier,简称为“FBMC”)、通用频分复用(Generalized Frequency Division Multiplexing,简称为“GFDM”)、滤波正交频分复用(Filtered-OFDM,简称为“F-OFDM”)系统等。
本发明实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络 设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本发明实施例并不限定。
图1是本发明一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
与LTE系统中的单波束传输机制不同,在未来通信系统中,需要支持在高频段(中心频率在6GHz以上,典型的比如28GHz)进行数据传输,为了达到更高的传输速率,需要采用多天线(Multiple Input Multiple Output,MIMO)技术。在高频采用MIMO技术对天线的射频器件要求很高,天线的硬件成本(比如模/数A/D,数/模D/A转换器)也会大大增加。为了降低成本,在高频段通常采用混合波束赋形的方式来减少收发射频单元的数量。如图2所示,数据信号在经过数字波束赋形后,形成每个射频单元的数字发送信号,通过数模转换器变成模拟信号。每个射频单元对应的模拟信号经过不同的相移器,形成模拟赋形信号在不同的天线单元上传输,从而实现在模拟域进行波束赋形。通过这种混合波束赋形的方法可以降低射频通道的数量,从而降低硬件成本,同时还能获得赋形增益。
图3示出了根据本发明实施例的传输信号的方法100的示意性框图。如图3所示,该方法100包括:
S110,终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,N为正整数;
S120,所述终端设备根据所述波束数量或所述传输个数N,与网络设备进行所述信号的传输。
首先,需要说明以下几点:
一、这里的信号可以是上行信号,也可以是下行信号。可以是该信号包 括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
二、这里的波束数量和传输个数N是一一对应的。具体地,经过N个波束可以获得N个波束赋形的信号。
三、这里的与网络设备进行该信号的传输,是指跟网络设备进行该信号的收发。可以是终端设备接收网络设备发送的该信号,也可以是终端设备向网络设备发送该信号。
随着通信技术的不断演进,未来通信系统中需要多样化的业务种类,多波束传输机制应运而生。灵活配置传输信号采用的波束数量或信号的传输个数,能够提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
应理解,信号的传输个数可以使用资源数量表示。例如,信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源数量。
可选地,在本发明实施例中,该同步信号携带序列信息,该终端设备根据检测到的同步信号,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该序列信息,确定与该序列信息对应的该波束数量或该传输个数N。
可选地,序列信息可以是生成序列所用的序列标识。该序列信息可以由主同步信号得到,也可以由辅同步信号得到,也可以由主同步信号和辅同步信号联合得到。具体地,终端设备可以预先存储序列信息与波束数量或者传输个数的对应关系,再根据序列信息确定波束数量或传输个数。例如,序列标识为0-503的范围内对应波束数量或传输个数为1即单波束传输,序列标识为504-1007的范围内对应波束数量或传输个数为N,即多波束传输,其中N为预先约定的大于1的正整数。或者,还可以是序列标识为0~100的范围对应波束数量或传输个数为1,序列标识为101~200的范围对应波束数量或传输个数为2,序列标识为201~300的范围对应波束数量或传输个数为3等。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该终端设备根据检测到的同步信号,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该主同步信号和该辅同步信号之间相差的第一时域资源单元数量,确定与该第一时域资源单元数量对应的 该波束数量或该传输个数N;或该终端设备根据该主同步信号和该辅同步信号之间相差的第一频域资源单元数量,确定与该第一频域资源单元数量对应的该波束数量或该传输个数N。
具体地,第一时域资源单元数量可以是主同步信号和辅同步信号之间相差的传输时间单元数量。这里传输时间单元可以是子帧、OFDM符号、时隙、缩短时隙、缩短子帧等。第一频域资源单元数量可以是物理资源块(Physical Resource Block,PRB)、子载波等。终端设备可以预先存储该第一频域资源单元数量与波束数量或者传输个数的对应关系。终端设备也可以预先存储该第一时域资源单元数量与波束数量或传输个数的对应关系。举例来说,如果主同步信号和辅同步信号之间相差A个OFDM符号,则波束数量或传输数量为1即单波束传输;如果主同步信号和辅同步信号之间相差B个OFDM符号,则波束数量或传输数量为N,即多波束传输,其中N为预先约定的值。
可选地,在本发明实施例中,该同步信道携带用于指示该波束数量或该传输个数N的指示信息,该终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该指示信息,确定该波束数量或该传输个数N。该指示信息与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。该指示信息还可以用于指示当前波束的波束标识。举例来说,该指示信息可以为1bit,可以约定若该指示信息为0则可以确定为单波束,若该指示信息为1可以确定为多波束N,N为预先约定好大于1的正整数。再例如,该指示信息为2bit,可以约定00对应波束数量为1,01对应波束数量为2,10对应波束数量为3,11对应波束数量为4。
可选地,在本发明实施例中,该终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:述终端设备根据该检测到的同步信道所用的加扰序列,确定与该加扰序列对应的该波束数量或该传输个数N。具体的,终端设备可以预先存储序列标识与波束数量或者传输个数的对应关系,再根据加扰序列生成所用的序列标识确定波束数量或传输个数。例如,序列标识小于A时对应波束数量或者传输个数为K1,序列标识大于等于A小于B时对应波束数量或者传输个数为K2,序列标识大于等于B时对应波束数量或者传输数量个数为K3。
可选地,在本发明实施例中,该终端设备根据检测到的同步信号和同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号和该同步信道之间相差的第二时域资源单元数量,确定与该第二时域资源单元数量对应的该波束数量或该传输个数N;该终端设备根据该同步信号和该同步信道之间相差的第二频域资源单元数量,确定与该第二频域资源单元数量对应的该波束数量或该传输个数N。
具体地,第二时域资源单元数量可以是同步信号和同步信道之间相差的传输时间单元数量。这里传输时间单元可以是子帧、OFDM符号、时隙、缩短时隙、缩短子帧等。第二频域资源单元数量可以是物理资源块(Physical Resource Block,PRB)、子载波等。终端设备可以预先存储该第一频域资源单元数量与波束数量或者传输个数的对应关系。终端设备也可以预先存储该第一时域资源单元数量与波束数量或传输个数的对应关系。举例来说,如果主同步信号和辅同步信号之间相差A个OFDM符号,则波束数量或传输数量为1即单波束传输;如果主同步信号和辅同步信号之间相差B个OFDM符号,则波束数量或传输数量为N,即多波束传输,其中N为预先约定的值。
可选地,在本发明实施例中,该终端设备根据检测到的同步信号或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号的物理资源,确定与该物理信号的物理资源对应的该波束数量或该传输个数N;或该终端设备根据该同步信道的物理资源,确定与该同步信道的物理资源对应的该波束数量或该传输个数N。
可选地,同步信号的物理资源与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,同步信道的物理资源与波束数量或传输个数之间的对应关系可以由网络设备和终端设备之间预先约定好,也可以由网络设备配置,通过信令指示给终端设备。
可选地,在本发明实施例中,该终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,包括:该终端设备根据该同步信号或该同步信道,确定传输该信号采用的是1个波束或M个波束,或确定该信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
作为一个特殊的实施例,该波束数量或传输个数也可以为0,此时终端不需要接收信号。本领域技术人员理解,有些信号只能在多波束机制下传输,若传输这些信号的波束为1,那么终端设备可以不进行这些信号的收发,例如,如果所述信号为波束参考信号,波束数量为1,则不需要接收所述波束参考信号。再例如,如果所述信号为波束参考信号,且传输个数为0,则可以不需要接收所述波束参考信号。应理解,本发明仅以波束参考信号为例进行说明,本发明并不限于此。
还应理解,上述各种对应关系可以由网络设备指示给终端设备,也可以是由网络设备和终端设备预先约定好。且上述仅以同步信号和/或同步信道的一些相关特性为例进行说明,本发明并不限于此。
作为一个具体的实施例,终端设备检测同步信号,从同步信号中盲检得到同步序列标识,该同步序列标识由主同步信号携带的标识1和辅同步信号携带的标识2得到。终端根据所述同步序列标识,确定PBCH传输所采用的波束数量N。其中,同步序列标识和波束数量的对应关于由终端设备与网络设备预先约定好。一部分同步序列标识对应单个波束,另一部分同步序列标识对应多个波束,多个波束情况下波束数量固定为K,即波束数量N为1或者K。终端可以根据所述波束数量N进行PBCH的接收。其中,终端需要分别接收N个PBCH信号,这些PBCH信号由网络设备采用N个波束进行赋形后发送给终端设备,所述N个PBCH信号采用不同的物理资源传输。所述PBCH信号的物理资源为与检测到同步信号的物理资源有固定映射关系的N个物理资源。
作为另一个具体的实施例,终端设备检测同步信号;终端设备检测同步信号对应的PBCH,根据所述PBCH携带的信号传输个数指示信息得到信号的传输个数。终端设备根据所述信号传输个数N进行后续N个波束参考信号的接收。其中,终端需要接收N个波束参考信号,每个波束参考信号由网络设备采用不同的波束进行赋形后发送给终端设备,所述N个波束参考信号采用不同的物理资源传输。所述N个波束参考信号采用的物理资源为终端设备与网络设备预先约定好的N个物理资源。
可选地,在本发明实施例中,同步信道是与同步信号关联的信道:二者的物理资源具有固定的相对位置,和/或同步信道的加扰序列采用同步信号携带的序列标识生成。具体的,同步信号和同步信道所在的传输时间单元可以 具有固定的时间偏移量,或者同步信号和同步信道所在的频域单元可以具有固定的频域偏移量。
应理解,同步信道可以是PBCH(Physical Broadcast Channel),PSBCH(Physical Sidelink Broadcast Channel)等。上述进行传输的信号可以是如物理广播信道(Physical Broadcast Channel,PBCH)等广播信号、也可也以是物理随机接入信号(Physical Random Access Channel,PRACH)等随机接入信号、还可以是信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)等参考信号,还可以是控制信号,典型的,所述信号可以是波束参考信号(Beam Reference Signal,BRS)。
可选地,在本发明实施例中,该终端设备根据该波束数量或该传输个数N,与网络设备进行该信号的传输,包括:该终端设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的物理资源或序列资源;该终端设备在该物理资源上或采用该序列资源与该网络设备进行该信号的传输。
具体地,终端设备和网络设备之间可以提前约定好每个波束对应信号所用的物理资源,终端设备和/或网络设备根据波束数量或传输个数N确定要发送给的波束对应信号,并且在各个波束对应信号所用的物理资源上进行相应信号的收发。举例来说,终端设备和网络设备可以提前约定好波束数量或传输个数N为4所对应的物理资源为1~4(假设将所有的物理资源划分为20个,并且不同标号的物理资源对应的位置唯一),那么当终端设备需要传输随机接入信号时,即可根据波束数量或传输个数N确定物理资源1~4进行该随机接入信号的传输。其中,每个物理资源可以包含多个时域资源单元和多个频域资源单元。终端设备和网络设备还可以提前约定好每个波束对应信号所用的序列资源,其中,序列资源可以是用于确定传输该信号所采用的序列。应理解,上述仅仅是本发明实施例的一种示意,本发明实施例并不限于此。
可选地,在本发明实施例中,该终端设备根据该波束数量,与网络设备进行该信号的传输,包括:该终端设备根据该波束数量,向该网络设备发送经过该波束数量对应的波束赋形之后的该信号;或该终端设备接收该网络设备发送的经过该波束数量对应的波束赋形之后的该信号。
可选地,在本发明的另一实施例中,该终端设备根据该传输个数N,与 网络设备进行该信号的传输,包括:述终端设备根据该传输个数N,向该网络设备发送N个该信号;或该终端设备接收该网络设备根据该传输个数N发送的N个该信号。
应理解,传输通常包括收发,换句话说,在本发明实施例中的传输包括终端设备发送信号,和终端设备接收信号。并且终端设备是根据所确定的波束数量或传输个数N向网络设备发送经过波束赋形之后的信号,或终端设备接收网络设备根据所确定的波束数量或传输个数N发送的经过波束赋形之后的信号。
可选地,该N个该信号采用不同的波束进行赋形,其中,N为大于1的正整数。具体是指该信号可以采用不同的波束赋形,也可以是指采用不同的波束进行发送赋形。
进一步地,在本发明实施例中,在该终端设备根据该波束数量或该传输个数N,与网络设备进行该信号的传输之后,该方法还包括:该终端设备根据该波束数量或该传输个数N,接收该网络设备发送的反馈信息,或该终端设备根据该波束数量或该传输个数N,向该网络设备发送反馈信息,其中,该反馈信息用于指示该波束数量对应的波束集合中的第一波束,或该传输个数N对应的信号集合中的第一信号。
本领域技术人员理解,波束赋形技术可以根据信道信息的反馈方式分为基于码本的(Codebook based)和基于信道互易性两种方式。前者基于终端反馈的码本信息,由网络设备确定下一次传输采用的预编码码本;后者则根据上行发送的探测参考信号(Sounding Reference Signal,SRS),利用信道互易性得到下行信道信息,并进行下行需要的预编码矩阵计算与选择。举例来说,如果网络设备采用N个波束进行赋形,则终端设备通常会根据波束数量上报一个波束索引或者该波束索引对应的CSI-RS资源的索引等,以用于网络设备进行对后续数据进行波束赋形。通常,终端设备上报的波束索引可以是网络设备采用多波束发送的下行信号中信号质量最好的信号所采用的波束,也可以是信号质量排第二的,或其他的波束索引,本发明对此并不构成限定。
可选地,该反馈信息包括该第一波束的波束标识和/或与该波束标识对应的信道状态信息CSI,或该反馈信息包括该第一信号的信号标识和/或与该信号标识对应的信道状态信息CSI。
终端设备根据所述波束数量可以进行波束标识(例如波束索引)的反馈。每个波束标识指示了一个波束在波束数量对应的所有波束中的标识,例如,假设波束数量为N,则一个波束标识的比特数可以为log2(N)。所述终端可以根据波束数量接收各波束对应的信号,从而上报波束标识。终端设备还可以同时进行波束标识对应的CSI的反馈。具体的,终端设备除了反馈用于指示某个波束的信息外,还需要反馈基于该波束测量得到的CSI。例如,该CSI包括秩指示RI、预编码矩阵指示PMI和信道质量指示CQI中的至少一种。
终端设备根据所述信号数量进行信号标识的反馈。每个所述信号标识指示了一个信号在信号数量对应的所有信号中的标识,例如,假设信号数量为N,则一个信号标识的比特数可以为log2(N)。这里的信号可以通过信号所用资源的方式表示,所以信号标识也可以是信号资源标识,比如CSI-RS资源标识。例如,终端设备确定CSI-RS资源的数量为4个,则分别对4个CSI-RS资源上的CSI-RS信号进行检测,得到检测的信号中信号质量最好的CSI-RS信号,将所述CSI-RS信号对应的CSI-RS资源的索引作为信号标识反馈给网络设备。终端设备还可以同时进行信号标识对应的CSI的反馈。具体的,终端设备除了反馈资源标识外,还需要反馈基于资源标识所对应的信号进行测量得到的CSI。例如,该CSI可以是秩指示(Rank Indication,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、信道质量指示(Channel Quality Indicator,CQI)等中的至少一种。
因此,本发明实施例提供的传输信号的方法,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。同时,解决了现有技术没有机制在小区接入过程中能够令网络设备或者终端设备确定后续传输所用的波束,终端无法在小区接入后马上获得波束赋形增益的问题。
上文中从终端设备的角度详细描述了本发明实施例的传输信号的方法,下面将结合图4从网络设备的角度描述本发明实施例的传输信号的方法200。如图4所示,该方法200包括:
S210,网络设备确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;
S220,该网络设备向终端设备发送同步信号和/或同步信道,该同步信 号和/或该同步信道是基于该波束数量或该传输个数N生成的。
随着通信技术的不断演进,未来通信系统中需要多样化的业务种类,多波束传输机制应运而生。灵活配置传输信号采用的波束数量或信号的传输个数,能够提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
可选地,在本发明实施例中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的序列信息;该网络设备向终端设备发送同步信号,包括:该网络设备向该终端设备发送基于该序列信息生成的同步信号。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一时域资源单元数量,或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一频域资源单元数量;该网络设备向终端设备发送同步信号,包括:该网络设备根据该第一时域资源单元数量或该第一频域资源单元数量,向该终端设备发送该同步信号。
可选地,在本发明实施例中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定用于与该波束数量或该传输个数N对应的指示信息;该网络设备向终端设备发送同步信道,包括:该网络设备向该终端设备发送携带该指示信息的同步信道。
可选地,在本发明实施例中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二时域资源单元数量,或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二频域资源单元数量;该网络设备向终端设备发送同步信号和同步信道,包括:该网络设备根据该第二时域资源单元数量或该第二频域资源单元数量,向该终端设备发送该同步信号和该同步信道。
可选地,在本发明实施例中,该方法还包括:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号的物理资源;或该网络设备根据该波束数量或该传输个数N,确定与该波束数 量或该传输个数N对应的该同步信道的物理资源;该网络设备向终端设备发送同步信号或同步信道,包括:该网络设备根据该同步信号的物理资源,向该终端设备发送该同步信号;或该网络设备根据该同步信道的物理资源,向该终端设备发送该同步信道。
应理解,网络设备与终端设备的交互及相关特性、功能等与终端设备的相关特性、功能相应,为了简洁,在此不再赘述。
上文中详细描述了根据本发明实施例的传输信号的方法,下面将结合图5至图8,描述根据本发明实施例的传输信息的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图5示出了本发明实施例的传输信号的终端设备300。如图5所示,该终端设备300包括:
确定单元310,用于根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;
传输单元320,用于根据该波束数量或该传输个数N,与网络设备进行该信号的传输。
因此,本发明实施例提供的终端设备,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
可选地,在本发明实施例中,该同步信号携带序列信息,该确定单元310具体用于:根据该序列信息,确定与该序列信息对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该确定单元310具体用于:根据该主同步信号和该辅同步信号之间相差的第一时域资源单元数量,确定与该第一时域资源单元数量对应的该波束数量或该传输个数N;或根据该主同步信号和该辅同步信号之间相差的第一频域资源单元数量,确定与该第一频域资源单元数量对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该同步信道携带用于指示该波束数量或该传输个数N的指示信息,该确定单元310具体用于:根据该指示信息,确定该波束数量或该传输个数N。
可选地,在本发明实施例中,该确定单元310具体用于:根据该检测到的同步信道所用的加扰序列,确定与该加扰序列对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该确定单元310具体用于:根据该同步信号和该同步信道之间相差的第二时域资源单元数量,确定与该第二时域资源单元数量对应的该波束数量或该传输个数N;或根据该同步信号和该同步信道之间相差的第二频域资源单元数量,确定与该第二频域资源单元数量对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该确定单元310具体用于:根据该同步信号的物理资源,确定与该物理信号的物理资源对应的该波束数量或该传输个数N;或根据该同步信道的物理资源,确定与该同步信道的物理资源对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该确定单元310具体用于:根据该同步信号或该同步信道,确定传输该信号采用的是1个波束或M个波束,或确定该信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
可选地,在本发明实施例中,传输该同步信号和同步信道的物理资源具有固定的相对位置,和/或,该同步信道所用的加扰序列是基于该同步信号携带的序列信息生成。
可选地,在本发明实施例中,该传输单元320具体用于:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的物理资源或序列资源;在该物理资源上或采用该序列资源与该网络设备进行该信号的传输。
可选地,在本发明实施例中,该传输单元320具体用于:根据该波束数量,向该网络设备发送经过该波束数量对应的波束赋形之后的该信号;或接收该网络设备发送的经过该波束数量对应的波束赋形之后的该信号。
可选地,在本发明实施例中,该传输单元320具体用于:根据该传输个数N,向该网络设备发送N个该信号;或接收该网络设备根据该传输个数N发送的N个该信号。
可选地,在本发明实施例中,该N个该信号采用不同的波束进行赋形,其中,N为大于1的正整数。
可选地,在本发明实施例中,该信号包括以下信号中的至少一种信号: 广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
应理解,根据本发明实施例的传输信号的终端设备300可对应于本发明方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3中的方法的相应流程,为了简洁,在此不再赘述。
图6示出了本发明实施例的传输信号的网络设备400。如图6所示,该网络设备400包括:
第一确定单元410,用于确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;
发送单元,用于向终端设备发送同步信号和/或同步信道,该同步信号和/或该同步信道是基于该波束数量或该传输个数N生成的。
因此,本发明实施例提供的网络设备,向终端设备发送基于波束数量或传输个数生成的同步信号和/或同步信道,使得终端设备可以基于检测到的同步信号和/或同步信道,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
可选地,在本发明实施例中,该网络设备400还包括:第二确定单元,用于根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的序列信息;该发送单元420具体用于:向该终端设备发送基于该序列信息生成的同步信号。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该网络设备400还包括:第三确定单元,用于根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一时域资源单元数量,或根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一频域资源单元数量;该发送单元420具体用于:根据该第一时域资源单元数量或该第一频域资源单元数量,向该终端设备发送该同步信号。
可选地,在本发明实施例中,该网络设备400还包括:根据该波束数量或该传输个数N,确定用于与该波束数量或该传输个数N对应的指示信息;该发送单元420具体用于:向该终端设备发送携带该指示信息的同步信道。
可选地,在本发明实施例中,该网络设备400还包括:根据该波束数量 或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二时域资源单元数量,或该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二频域资源单元数量;该发送单元420具体用于:根据该第二时域资源单元数量或该第二频域资源单元数量,向该终端设备发送该同步信号和该同步信道。
可选地,在本发明实施例中,该网络设备400还包括:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号的物理资源;或根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信道的物理资源;该发送单元420具体用于:根据该同步信号的物理资源,向该终端设备发送该同步信号;或根据该同步信道的物理资源,向该终端设备发送该同步信道。
可选地,在本发明实施例中,该信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
应理解,根据本发明实施例的传输信号的网络设备400可对应于本发明方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图4中的方法的相应流程,为了简洁,在此不再赘述。
如图7所示,本发明实施例还提供了一种传输信号的终端设备500。该终端设备500包括:处理器510、存储器520、总线系统530和收发器540,其中,该处理器510、该存储器520和该收发器540通过该总线系统530相连,该存储器520用于存储指令,该处理器510用于执行该存储器520存储的指令,以控制该收发器540发送信号;其中,该处理器510用于:根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;根据该波束数量或该传输个数N,与网络设备进行该信号的传输。
因此,本发明实施例提供的传输信号的终端设备,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
应理解,在本发明实施例中,该处理器510可以是中央处理单元(Central  Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器520可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器520的一部分还可以包括非易失性随机存取存储器。例如,存储器520还可以存储设备类型的信息。
该总线系统530除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统530。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器520,处理器510读取存储器520中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,该同步信号携带序列信息,该处理器510具体用于:根据该序列信息,确定与该序列信息对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该处理器510具体用于:根据该主同步信号和该辅同步信号之间相差的第一时域资源单元数量,确定与该第一时域资源单元数量对应的该波束数量或该传输个数N;或根据该主同步信号和该辅同步信号之间相差的第一频域资源单元数量,确定与该第一频域资源单元数量对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该同步信道携带用于指示该波束数量或该传输个数N的指示信息,该处理器510具体用于:根据该指示信息,确定该波束数量或该传输个数N。
可选地,在本发明实施例中,该处理器510具体用于:根据该同步信号和该同步信道之间相差的第二时域资源单元数量,确定与该第二时域资源单 元数量对应的该波束数量或该传输个数N;或根据该同步信号和该同步信道之间相差的第二频域资源单元数量,确定与该第二频域资源单元数量对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该处理器510具体用于:根据该同步信号的物理资源,确定与该物理信号的物理资源对应的该波束数量或该传输个数N;或根据该同步信道的物理资源,确定与该同步信道的物理资源对应的该波束数量或该传输个数N。
可选地,在本发明实施例中,该处理器510具体用于:根据该同步信号或该同步信道,确定传输该信号采用的是1个波束或M个波束,或确定该信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
可选地,在本发明实施例中,传输该同步信号和同步信道的物理资源具有固定的相对位置,和/或,该同步信道所用的加扰序列是基于该同步信号携带的序列信息生成。
可选地,在本发明实施例中,该处理器510具体用于:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的物理资源或序列资源;在该物理资源上或采用该序列资源与该网络设备进行该信号的传输。
可选地,在本发明实施例中,该处理器510具体用于:根据该波束数量,向该网络设备发送经过该波束数量对应的波束赋形之后的该信号;或接收该网络设备发送的经过该波束数量对应的波束赋形之后的该信号。
可选地,在本发明实施例中,该处理器510具体用于:根据该传输个数N,向该网络设备发送N个该信号;或接收该网络设备根据该传输个数N发送的N个该信号。
可选地,在本发明实施例中,该N个该信号采用不同的波束进行赋形,其中,N为大于1的正整数。
可选地,在本发明实施例中,该信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
应理解,根据本发明实施例的传输信号的终端设备500可对应于本发明实施例中的终端设备500,并可以对应于执行根据本发明实施例的方法中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3中的方法的相应流程,为了简洁,在此不再赘述。
如图8所示,本发明实施例还提供了一种传输信号的网络设备600。该 网络设备600包括:处理器610、存储器610、总线系统630和收发器640,其中,该处理器610、该存储器620和该收发器640通过该总线系统630相连,该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令,以控制该收发器640发送信号;其中,该处理器610用于:确定传输信号所采用的波束数量或确定该信号的传输个数N,N为正整数;向终端设备发送同步信号和/或同步信道,该同步信号和/或该同步信道是基于该波束数量或该传输个数N生成的。
因此,本发明实施例提供的传输信号的网络设备,向终端设备发送基于波束数量或传输个数生成的同步信号和/或同步信道,使得终端设备可以基于检测到的同步信号和/或同步信道,能够灵活配置传输信号所采用的波束数量或信号的传输个数,从而提高小区接入的质量,并且由于既支持单波束传输机制又支持多波束传输机制,从而在检测复杂度和波束赋形增益之间有很好的折中。
应理解,在本发明实施例中,该处理器610可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器610还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器620可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器620的一部分还可以包括非易失性随机存取存储器。例如,存储器620还可以存储设备类型的信息。
该总线系统630除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统630。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器620,处理器610读取存储器620中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,该处理器610具体用于:该网络设备根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的序列信息;向该终端设备发送基于该序列信息生成的同步信号。
可选地,在本发明实施例中,该同步信号包括主同步信号和辅同步信号,该处理器610具体用于:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一时域资源单元数量,或根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该主同步信号与该辅同步信号之间相差的第一频域资源单元数量;根据该第一时域资源单元数量或该第一频域资源单元数量,向该终端设备发送该同步信号。
可选地,在本发明实施例中,该处理器610具体用于:根据该波束数量或该传输个数N,确定用于与该波束数量或该传输个数N对应的指示信息;向该终端设备发送携带该指示信息的同步信道。
可选地,在本发明实施例中,该处理器610具体用于:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二时域资源单元数量,或根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号与该同步信道之间相差的第二频域资源单元数量;根据该第二时域资源单元数量或该第二频域资源单元数量,向该终端设备发送该同步信号和该同步信道。
可选地,在本发明实施例中,该处理器610具体用于:根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信号的物理资源;或根据该波束数量或该传输个数N,确定与该波束数量或该传输个数N对应的该同步信道的物理资源;根据该同步信号的物理资源,向该终端设备发送该同步信号;或根据该同步信道的物理资源,向该终端设备发送该同步信道。
可选地,该信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
应理解,根据本发明实施例的传输信号的网络设备600可对应于本发明实施例中的网络设备600,并可以对应于执行根据本发明实施例的方法中的网络设备,并且网络设备600中的各个单元的上述和其它操作和/或功能分别为了实现图4中的方法的相应流程,为了简洁,在此不再赘述。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案 的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换。

Claims (42)

  1. 一种传输信号的方法,其特征在于,包括:
    终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,N为正整数;
    所述终端设备根据所述波束数量或所述传输个数N,与网络设备进行所述信号的传输。
  2. 根据权利要求1所述的方法,其特征在于,所述同步信号携带序列信息,所述终端设备根据检测到的同步信号,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述序列信息,确定与所述序列信息对应的所述波束数量或所述传输个数N。
  3. 根据权利要求1所述的方法,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述终端设备根据检测到的同步信号,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述主同步信号和所述辅同步信号之间相差的第一时域资源单元数量,确定与所述第一时域资源单元数量对应的所述波束数量或所述传输个数N;或
    所述终端设备根据所述主同步信号和所述辅同步信号之间相差的第一频域资源单元数量,确定与所述第一频域资源单元数量对应的所述波束数量或所述传输个数N。
  4. 根据权利要求1所述的方法,其特征在于,所述同步信道携带用于指示所述波束数量或所述传输个数N的指示信息,所述终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述指示信息,确定所述波束数量或所述传输个数N。
  5. 根据权利要求1所述的方法,其特征在于,所述终端设备根据检测到的同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述检测到的同步信道所用的加扰序列,确定与所述加扰序列对应的所述波束数量或所述传输个数N。
  6. 根据权利要求1所述的方法,其特征在于,所述终端设备根据检测到的同步信号和同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述同步信号和所述同步信道之间相差的第二时域资源单元数量,确定与所述第二时域资源单元数量对应的所述波束数量或所述传输个数N;或
    所述终端设备根据所述同步信号和所述同步信道之间相差的第二频域资源单元数量,确定与所述第二频域资源单元数量对应的所述波束数量或所述传输个数N。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备根据检测到的同步信号或同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述同步信号的物理资源,确定与所述同步信号的物理资源对应的所述波束数量或所述传输个数N;或
    所述终端设备根据所述同步信道的物理资源,确定与所述同步信道的物理资源对应的所述波束数量或所述传输个数N。
  8. 根据权利要求1所述的方法,其特征在于,所述终端设备根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,包括:
    所述终端设备根据所述同步信号和/或所述同步信道,确定传输所述信号采用的是1个波束或M个波束,或确定所述信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
  9. 根据权利要求1所述的方法,其特征在于,传输所述同步信号和同步信道的物理资源具有固定的相对位置,和/或,所述同步信道所用的加扰序列是基于所述同步信号携带的序列信息生成。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述终端设备根据所述波束数量或所述传输个数N,与网络设备进行所述信号的传输,包括:
    所述终端设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的物理资源或序列资源;
    所述终端设备在所述物理资源上或采用所述序列资源与所述网络设备 进行所述信号的传输。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述终端设备根据所述波束数量,与网络设备进行所述信号的传输,包括:
    所述终端设备根据所述波束数量,向所述网络设备发送经过所述波束数量对应的波束赋形之后的所述信号;或
    所述终端设备接收所述网络设备发送的经过所述波束数量对应的波束赋形之后的所述信号。
  12. 根据权利要求1至10中任一项所述的方法,其特征在于,所述终端设备根据所述传输个数N,与网络设备进行所述信号的传输,包括:
    所述终端设备根据所述传输个数N,向所述网络设备发送N个所述信号;或
    所述终端设备接收所述网络设备根据所述传输个数N发送的N个所述信号。
  13. 根据权利要求12所述的方法,其特征在于,所述N个所述信号采用不同的波束进行赋形,其中,N为大于1的正整数。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
  15. 一种传输信号的方法,其特征在于,包括:
    网络设备确定传输信号所采用的波束数量或确定所述信号的传输个数N,N为正整数;
    所述网络设备向终端设备发送同步信号和/或同步信道,所述同步信号和/或所述同步信道是基于所述波束数量或所述传输个数N生成的。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的序列信息;
    所述网络设备向终端设备发送同步信号,包括:
    所述网络设备向所述终端设备发送基于所述序列信息生成的同步信号。
  17. 根据权利要求15所述的方法,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述方法还包括:
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数 量或所述传输个数N对应的所述主同步信号与所述辅同步信号之间相差的第一时域资源单元数量,或
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述主同步信号与所述辅同步信号之间相差的第一频域资源单元数量;
    所述网络设备向终端设备发送同步信号,包括:
    所述网络设备根据所述第一时域资源单元数量或所述第一频域资源单元数量,向所述终端设备发送所述同步信号。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述波束数量或所述传输个数N,确定用于与所述波束数量或所述传输个数N对应的指示信息;
    所述网络设备向终端设备发送同步信道,包括:
    所述网络设备向所述终端设备发送携带所述指示信息的同步信道。
  19. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号与所述同步信道之间相差的第二时域资源单元数量,或
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号与所述同步信道之间相差的第二频域资源单元数量;
    所述网络设备向终端设备发送同步信号和同步信道,包括:
    所述网络设备根据所述第二时域资源单元数量或所述第二频域资源单元数量,向所述终端设备发送所述同步信号和所述同步信道。
  20. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号的物理资源;或
    所述网络设备根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信道的物理资源;
    所述网络设备向终端设备发送同步信号或同步信道,包括:
    所述网络设备根据所述同步信号的物理资源,向所述终端设备发送所述同步信号;或
    所述网络设备根据所述同步信道的物理资源,向所述终端设备发送所述同步信道。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
  22. 一种传输信号的终端设备,其特征在于,所述终端设备包括:
    确定单元,用于根据检测到的同步信号和/或同步信道,确定传输信号所采用的波束数量或确定所述信号的传输个数N,N为正整数;
    传输单元,用于根据所述波束数量或所述传输个数N,与网络设备进行所述信号的传输。
  23. 根据权利要求22所述的终端设备,其特征在于,所述同步信号携带序列信息,所述确定单元具体用于:
    根据所述序列信息,确定与所述序列信息对应的所述波束数量或所述传输个数N。
  24. 根据权利要求22所述的终端设备,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述确定单元具体用于:
    根据所述主同步信号和所述辅同步信号之间相差的第一时域资源单元数量,确定与所述第一时域资源单元数量对应的所述波束数量或所述传输个数N;或
    根据所述主同步信号和所述辅同步信号之间相差的第一频域资源单元数量,确定与所述第一频域资源单元数量对应的所述波束数量或所述传输个数N。
  25. 根据权利要求22所述的终端设备,其特征在于,所述同步信道携带用于指示所述波束数量或所述传输个数N的指示信息,所述确定单元具体用于:
    根据所述指示信息,确定所述波束数量或所述传输个数N。
  26. 根据权利要求22所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述检测到的同步信道所用的加扰序列,确定与所述加扰序列对应的所述波束数量或所述传输个数N。
  27. 根据权利要求22所述的终端设备,其特征在于,所述确定单元具 体用于:
    根据所述同步信号和所述同步信道之间相差的第二时域资源单元数量,确定与所述第二时域资源单元数量对应的所述波束数量或所述传输个数N;或
    根据所述同步信号和所述同步信道之间相差的第二频域资源单元数量,确定与所述第二频域资源单元数量对应的所述波束数量或所述传输个数N。
  28. 根据权利要求22所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述同步信号的物理资源,确定与所述物理信号的物理资源对应的所述波束数量或所述传输个数N;或
    根据所述同步信道的物理资源,确定与所述同步信道的物理资源对应的所述波束数量或所述传输个数N。
  29. 根据权利要求22所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述同步信号或所述同步信道,确定传输所述信号采用的是1个波束或M个波束,或确定所述信号的传输个数为1个或K个,M和K分别为预存的大于1的正整数。
  30. 根据权利要求22所述的终端设备,其特征在于,传输所述同步信号和同步信道的物理资源具有固定的相对位置,和/或,所述同步信道所用的加扰序列是基于所述同步信号携带的序列信息生成。
  31. 根据权利要求22所述的终端设备,其特征在于,所述传输单元具体用于:
    根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的物理资源或序列资源;
    在所述物理资源上或采用所述序列资源与所述网络设备进行所述信号的传输。
  32. 根据权利要求22所述的终端设备,其特征在于,所述传输单元具体用于:
    根据所述波束数量,向所述网络设备发送经过所述波束数量对应的波束赋形之后的所述信号;或
    接收所述网络设备发送的经过所述波束数量对应的波束赋形之后的所 述信号。
  33. 根据权利要求22所述的终端设备,其特征在于,所述传输单元具体用于:
    根据所述传输个数N,向所述网络设备发送N个所述信号;或
    接收所述网络设备根据所述传输个数N发送的N个所述信号。
  34. 根据权利要求22所述的终端设备,其特征在于,所述N个所述信号采用不同的波束进行赋形,其中,N为大于1的正整数。
  35. 根据权利要求22所述的终端设备,其特征在于,所述信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
  36. 一种传输信号的网络设备,其特征在于,所述网络设备包括:
    第一确定单元,用于确定传输信号所采用的波束数量或确定所述信号的传输个数N,N为正整数;
    发送单元,用于向终端设备发送同步信号和/或同步信道,所述同步信号和/或所述同步信道是基于所述波束数量或所述传输个数N生成的。
  37. 根据权利要求36所述的网络设备,其特征在于,所述网络设备还包括:
    第二确定单元,用于根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的序列信息;
    所述发送单元具体用于:
    向所述终端设备发送基于所述序列信息生成的同步信号。
  38. 根据权利要求36所述的网络设备,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述网络设备还包括:
    第三确定单元,用于根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述主同步信号与所述辅同步信号之间相差的第一时域资源单元数量,或
    根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述主同步信号与所述辅同步信号之间相差的第一频域资源单元数量;
    所述发送单元具体用于:
    根据所述第一时域资源单元数量或所述第一频域资源单元数量,向所述 终端设备发送所述同步信号。
  39. 根据权利要求36所述的网络设备,其特征在于,所述网络设备还包括:
    第四确定单元,用于根据所述波束数量或所述传输个数N,确定用于与所述波束数量或所述传输个数N对应的指示信息;
    所述发送单元具体用于:
    向所述终端设备发送携带所述指示信息的同步信道。
  40. 根据权利要求36所述的网络设备,其特征在于,所述网络设备还包括:
    第五确定单元,用于根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号与所述同步信道之间相差的第二时域资源单元数量;或
    根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号与所述同步信道之间相差的第二频域资源单元数量;
    所述发送单元具体用于:
    根据所述第二时域资源单元数量或所述第二频域资源单元数量,向所述终端设备发送所述同步信号和所述同步信道。
  41. 根据权利要求36所述的网络设备,其特征在于,所述网络设备还包括:
    第六确定单元,用于根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信号的物理资源;或
    根据所述波束数量或所述传输个数N,确定与所述波束数量或所述传输个数N对应的所述同步信道的物理资源;
    所述发送单元具体用于:
    根据所述同步信号的物理资源,向所述终端设备发送所述同步信号;或
    根据所述同步信道的物理资源,向所述终端设备发送所述同步信道。
  42. 根据权利要求36所述的网络设备,其特征在于,所述信号包括以下信号中的至少一种信号:广播信号、随机接入信号、参考信号、控制信号和波束参考信号。
PCT/CN2016/100932 2016-09-29 2016-09-29 传输信号的方法、终端设备和网络设备 WO2018058464A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16917218.6A EP3461180A4 (en) 2016-09-29 2016-09-29 SIGNAL TRANSMISSION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE
PCT/CN2016/100932 WO2018058464A1 (zh) 2016-09-29 2016-09-29 传输信号的方法、终端设备和网络设备
JP2019500639A JP6817409B2 (ja) 2016-09-29 2016-09-29 信号を伝送する方法、端末装置及びネットワーク機器
CN201680087139.1A CN109417753B (zh) 2016-09-29 2016-09-29 传输信号的方法、终端设备和网络设备及计算机存储介质
KR1020197011152A KR20190055172A (ko) 2016-09-29 2016-09-29 신호를 전송하는 방법, 단말 설비와 네트워크 설비
US16/312,070 US10694398B2 (en) 2016-09-29 2016-09-29 Signal transmission method, terminal device, and network device
TW106128830A TWI764918B (zh) 2016-09-29 2017-08-24 傳輸信號的方法、終端設備和網絡設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100932 WO2018058464A1 (zh) 2016-09-29 2016-09-29 传输信号的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018058464A1 true WO2018058464A1 (zh) 2018-04-05

Family

ID=61762350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100932 WO2018058464A1 (zh) 2016-09-29 2016-09-29 传输信号的方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US10694398B2 (zh)
EP (1) EP3461180A4 (zh)
JP (1) JP6817409B2 (zh)
KR (1) KR20190055172A (zh)
CN (1) CN109417753B (zh)
TW (1) TWI764918B (zh)
WO (1) WO2018058464A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016432415B2 (en) * 2016-12-13 2022-03-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112220A1 (en) * 2012-10-24 2014-04-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving common channel information in wireless communication system
CN104025469A (zh) * 2011-12-28 2014-09-03 三星电子株式会社 无线通信系统中获取发射波束分集的波束形成方法和装置
CN104620551A (zh) * 2012-04-30 2015-05-13 三星电子株式会社 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
KR20170106446A (ko) * 2015-01-22 2017-09-20 후아웨이 테크놀러지 컴퍼니 리미티드 Ue의 위치를 획득하는 방법, 및 장치
KR101988325B1 (ko) * 2017-02-06 2019-06-12 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국간 신호 송수신 방법 및 이를 지원하는 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025469A (zh) * 2011-12-28 2014-09-03 三星电子株式会社 无线通信系统中获取发射波束分集的波束形成方法和装置
CN104620551A (zh) * 2012-04-30 2015-05-13 三星电子株式会社 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法
US20140112220A1 (en) * 2012-10-24 2014-04-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving common channel information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461180A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016432415B2 (en) * 2016-12-13 2022-03-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
US11728876B2 (en) 2016-12-13 2023-08-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device

Also Published As

Publication number Publication date
US10694398B2 (en) 2020-06-23
EP3461180A4 (en) 2019-06-05
CN109417753A (zh) 2019-03-01
EP3461180A1 (en) 2019-03-27
TWI764918B (zh) 2022-05-21
TW201815203A (zh) 2018-04-16
KR20190055172A (ko) 2019-05-22
JP6817409B2 (ja) 2021-01-20
CN109417753B (zh) 2021-03-09
JP2019534586A (ja) 2019-11-28
US20190208428A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
TWI746711B (zh) 傳輸信號的方法、終端設備和網絡設備
WO2017050295A1 (zh) 一种多天线信道测量方法和装置
US11736155B2 (en) Method and device for transmitting signal
EP4087345A1 (en) Beam pair training method and communication apparatus
WO2019029689A1 (zh) 测量报告上报方法和用户终端
US20190149217A1 (en) Method, terminal device and network device for transmitting signal
US11671223B2 (en) Method for signal transmission, network device and terminal device
TWI764918B (zh) 傳輸信號的方法、終端設備和網絡設備
WO2018028626A1 (zh) 测量的方法和装置
CN114651468A (zh) 一种参考信号测量方法、资源指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016917218

Country of ref document: EP

Effective date: 20181218

ENP Entry into the national phase

Ref document number: 2019500639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011152

Country of ref document: KR

Kind code of ref document: A