WO2018058367A1 - 数据传输方法、基站及用户设备 - Google Patents

数据传输方法、基站及用户设备 Download PDF

Info

Publication number
WO2018058367A1
WO2018058367A1 PCT/CN2016/100560 CN2016100560W WO2018058367A1 WO 2018058367 A1 WO2018058367 A1 WO 2018058367A1 CN 2016100560 W CN2016100560 W CN 2016100560W WO 2018058367 A1 WO2018058367 A1 WO 2018058367A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
guard interval
symbol
base station
configuration information
Prior art date
Application number
PCT/CN2016/100560
Other languages
English (en)
French (fr)
Inventor
吴南龙
罗超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100560 priority Critical patent/WO2018058367A1/zh
Priority to CN201680089351.1A priority patent/CN109716840A/zh
Publication of WO2018058367A1 publication Critical patent/WO2018058367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, a base station, and a user equipment.
  • the multimedia broadcast multicast service (English full name: Multimedia Broadcast Multicast Service, English abbreviation: MBMS) provides the same content for multiple users in a specific area. This specific area is called an MBMS area.
  • MBMS area multiple cells may be simultaneously transmitted, and each cell is configured with a number of physical resources.
  • the user equipment (English name: User Equipment, English abbreviation: UE) receives
  • the composite signal of the plurality of cells is obtained, but the composite signal on the UE side is equivalent to a signal transmitted by a single point of the dispersion channel over a period of time, and the transmission mode in which the multiple cells simultaneously transmit the same content is called a multicast broadcast list.
  • the main advantage of MBSFN is that multiple cells simultaneously transmit the same content, which enhances the received signal strength, reduces interference, and improves the diversity gain of the system.
  • the MBSFN subframe mainly includes a control region and an MBSFN region, which are used for control signaling and multicast channel (MCH) transmission, respectively.
  • MCH multicast channel
  • MBMS has been developed into an enhanced multimedia broadcast multicast service ( English full name: Enhanced Multimedia Broadcast Multicast Service (English abbreviation: eMBMS), in order to extend the coverage of eMBMS, such as supporting 15 km of single-station coverage, it is necessary to further extend the cyclic prefix in MCH transmission (English full name: Cyclic Prefix, English abbreviation: CP) length, when the length of the CP supported by the MBSFN subframe used to carry the MCH transmission is too large, the MBSFN may need to support the subframe transmission with different coverage capabilities at the same time, but the problem is that the symbol switching is supported in the two coverage capabilities.
  • eMBMS Enhanced Multimedia Broadcast Multicast Service
  • symbols that support longer CPs can combine symbols that experience longer transmission times, resulting in better multipath gain.
  • the UE will receive data from different transmission distances, for longer symbols of the CP.
  • the CP portion of the symbol from the farther path overlaps the CP portion of the symbol of the closer path, then However, the UE will be merged into a useful signal, but when the long CP symbol of one subframe is in front of the short CP symbol of another subframe, the delay of the longer path of the long CP symbol may exceed the CP duration of the short CP symbol, thereby Overlapping with the data region of the short CP symbol, and thus for the short CP symbol
  • the reception causes inter-symbol interference (English full name: Inter Symbol Interference, English abbreviation: ISI), which is multipath signal interference, so it is necessary to consider this problem in the design of the MBSFN subframe structure.
  • ISI Inter Symbol Interference
  • the MBSFN subframe structure has been defined in the standard, and is specifically defined as Case 3 and Case 4 in Figure 2.
  • Case 1 and Case 2 are other subframe structures defined in the standard, but are not applied.
  • the subcarrier spacing in case 1 is 15 khz
  • the CP duration of the first symbol is 5.2 us
  • the CP duration of other symbols is 4.7 us
  • the CP is a normal CP
  • the subcarrier spacing in case 2 is 15 khz
  • CP 15 khz
  • the duration is 16.7us
  • the CP is an extended CP.
  • the subcarrier spacing is 15khz
  • the first two symbols are the control region
  • the latter symbol is the MBSFN region
  • the CP duration is 16.7us.
  • the subcarrier spacing is 7.5khz.
  • the symbols are all MBSFN areas
  • the CP duration is 33.3us
  • the CP is an extended CP.
  • a longer CP duration is required.
  • a 100us or 200us CP has a duration that is close to or exceeds the symbol duration defined by the existing scheme, so the symbol in the adjacent subframe will be The junction brings a lot of interference, so the existing MBSFN does not consider the possible interference problem at the symbolic junction of different coverage capabilities.
  • the embodiments of the present invention provide a data transmission method, a base station, and a user equipment, which can avoid the symbol delay of the strong coverage capability from causing interference to the symbols of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • a first aspect of the embodiments of the present invention provides a data transmission method, including:
  • the base station generates subframe configuration information, and the subframe configuration information is used to determine the structure of each subframe, such as the CP duration of each region symbol of each subframe, the transmission start time point, and whether some symbols need to be left blank as a guard interval;
  • the base station determines, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, the base station sets the first n symbols of the second subframe as the guard interval, and in time, the first The subframe is a previous subframe adjacent to the second subframe, where n is a preset value, for example, the value of n is 1, 2, or 3; the base station sends the subframe configuration information to the user equipment UE, so that the UE The data is received according to the subframe configuration information and the acquired guard interval.
  • the base station may send a message of the guard interval to the UE by using a broadcast or the like. It can be seen that when the symbols of different subframes with different coverage capabilities are adjacent, that is, subframes with different coverage capabilities are adjacent, and the previous subframe is When the coverage is strong, the guard interval can be avoided to avoid the symbol delay of the strong coverage capability to interfere with the symbol of the weak coverage capability, thus ensuring the correct reception of the weak coverage capability subframe.
  • the base station when the base station according to the CP duration of the symbol of the first subframe and the second subframe, when the base station according to the CP duration of the symbol of the first subframe and the second subframe, when the CP duration of the symbol of the frame determines that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, the base station sets the first n symbols of the second subframe as the guard interval.
  • the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe.
  • the method further includes:
  • Which subframes (second subframe) the base station broadcasts to the UE through the broadcast channel includes a guard interval, which is a predetermined fixed integer number of symbols.
  • the method further includes:
  • Which subframes (second subframe) the base station broadcasts to the UE through the broadcast channel includes the guard interval and the duration of the guard interval.
  • a second aspect of the embodiments of the present invention provides a data transmission method, including:
  • the user equipment UE receives the subframe configuration information sent by the base station, where the subframe configuration information is the subframe configuration information generated by the base station; the UE receives the subframe configuration information, and calculates the structure of each subframe, including the symbols of each region of each subframe.
  • the CP duration, the transmission start time point, and whether some symbols are left blank as the guard interval, and the downlink data is received in combination with the obtained guard interval, where the guard interval is determined by the base station according to the subframe configuration information.
  • the base station sets the guard interval of the first n symbols of the second subframe, and the first subframe is adjacent to the second subframe.
  • n is the default value. It can be seen that when the symbols of different subframes with different coverage capabilities are adjacent, that is, the subframes with different coverage capabilities are adjacent, and the coverage capability of the previous subframe is strong, the strong coverage capability can be avoided by setting the guard interval. The symbol delay interferes with the sign of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability of the subframe.
  • the UE after receiving the subframe configuration information and acquiring the guard interval, the UE receives the data according to the subframe configuration information and the acquired guard interval, including:
  • the UE After receiving the subframe configuration information, the UE sends the information about the guard interval that is set to the UE. After receiving the information about the guard interval, the UE receives the subframe configuration information and the guard interval. The information receives the data.
  • the information of the guard interval is used to notify the UE which subframes (second subframes) have the guard interval, or the information of the guard interval is used to notify the UE which subframes (second subframes) have the guard interval and the The length of the guard interval.
  • the receiving data by the UE according to the subframe configuration information and the acquired guard interval includes:
  • the UE accesses the enhanced enhanced eMBMS carrier, and when the UE performs cell search, the second subframe is found through the primary synchronization signal and the secondary synchronization signal (since the primary synchronization signal and the secondary synchronization signal are only in the normal or extended CP sub-eMBMS carrier)
  • the UE determines that the fixed length of the second subframe is a guard interval. Therefore, the UE does not need to send any message notification about the guard interval by the base station to determine that the received second subframe has a guard interval of a fixed duration. Further, the data is received according to the subframe configuration information and the guard interval, so that it is not necessary to occupy the broadcast channel resources.
  • a third aspect of the embodiments of the present invention provides a base station, including:
  • the generating module is configured to generate subframe configuration information, where the subframe configuration information is used to determine the structure of each subframe, such as the CP duration of each region symbol of each subframe, the transmission start time point, and whether some symbols need to be left blank as protection
  • a setting module configured to: when determining, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, setting the first n symbols of the second subframe as the guard interval
  • the first subframe is a previous subframe adjacent to the second subframe
  • n is a preset value, for example, the value of n is 1, 2, or 3
  • the sending module is configured to use the subframe.
  • the configuration information is sent to the user equipment UE, so that the UE receives data according to the subframe configuration information and the acquired guard interval.
  • the base station may send a message of the guard interval to the UE by using a broadcast or the like. It can be seen that when the symbols of different subframes with different coverage capabilities are adjacent, that is, the subframes with different coverage capabilities are adjacent, and the coverage capability of the previous subframe is strong, the strong coverage capability can be avoided by setting the guard interval. The symbol delay interferes with the sign of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability of the subframe.
  • the setting module is specifically configured to: when the CP duration according to the symbol of the first subframe And when the CP duration of the symbol of the second subframe determines that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, setting the first n symbols of the second subframe as the protection interval And wherein the CP duration of the symbol of the first subframe is greater than the CP duration of the symbol of the second subframe.
  • the sending module is further configured to broadcast, by the broadcast channel, which subframes (second subframe) to the UE include a guard interval, the duration of the guard interval being a predetermined fixed integer number of symbols.
  • the sending module is further configured to broadcast to the UE, through the broadcast channel, which subframes (second subframe) include the guard interval and the duration of the guard interval.
  • a fourth aspect of the embodiments of the present invention provides a user equipment UE, including:
  • a first receiving module configured to receive subframe configuration information sent by the base station, where the subframe configuration information is subframe configuration information generated by the base station;
  • a second receiving module configured to calculate a structure of each subframe after receiving the subframe configuration information, including a CP duration of each region symbol of each subframe, a transmission start time point, and whether some symbols are left blank as a guard interval And receiving the downlink data in combination with the obtained guard interval, where the guard interval is when the base station determines, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe.
  • the base station sets a guard interval of the first n symbols of the second subframe, and the first subframe is a previous subframe adjacent to the second subframe, where n is a preset value.
  • the strong coverage capability can be avoided by setting the guard interval.
  • the symbol delay interferes with the sign of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability of the subframe.
  • the second receiving module is specifically configured to receive information about a guard interval sent by the base station, and receive data according to the subframe configuration information and the information of the guard interval, where the information of the guard interval is used to notify the UE.
  • the subframe (second subframe) has the guard interval, or the information of the guard interval is used to inform the UE which subframes (second subframe) have the guard interval and the duration of the guard interval.
  • the second receiving module is specifically configured to: the UE accesses the enhanced enhanced eMBMS carrier, and when the UE performs cell search, discovers the second subframe by using the primary synchronization signal and the secondary synchronization signal (due to the primary The synchronization signal and the secondary synchronization signal appear only on the normal or extended CP subframe on the eMBMS carrier, and the UE determines that the second fixed period of the second subframe is the guard interval, and thus the UE has no
  • the base station needs to send any message notification about the guard interval to determine that the received second subframe has a guard interval of fixed duration, and then receives data according to the subframe configuration information and the guard interval, so that the broadcast channel resource does not need to be occupied.
  • the guard interval can avoid the symbol delay of the strong coverage capability from interfering with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • FIG. 2 is a schematic structural diagram of a subframe in the prior art
  • FIG. 3 is a schematic structural diagram of a system in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a user equipment UE according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an embodiment of a system according to an embodiment of the present invention.
  • the present invention is mainly applied to an LTE communication system, and the system architecture of the LTE is shown in FIG. 3, and the description of each network element and interface in FIG. 3 is as follows:
  • MME/S-GW Mobility Management Entity/Serving-Gateway
  • the MME is a key control node in LTE and belongs to the core network element. It is mainly responsible for the signaling processing part. , that is, control plane functions, including access control, mobility management, attach and detach, session management functions, and gateway selection.
  • the S-GW is an important network element of the core network in LTE. It is mainly responsible for the user plane function of user data forwarding, that is, routing and forwarding of data packets under the control of the MME.
  • Base station (English name: evolved Node B, English abbreviation: eNB): The base station is mainly responsible for radio resource management and quality of service (English name: Quality of Service, QoS) management, data compression and encryption. On the core network side, the base station is mainly responsible for forwarding control plane signaling to the MME and forwarding user plane service data to the /S-GW.
  • QoS Quality of Service
  • the UE is a device that accesses the network side through the base station in LTE, and may be, for example, a handheld terminal, a notebook computer, or other devices that can access the network.
  • the S1 interface is a standard interface between the base station and the core network.
  • the base station is connected to the MME through the S1-MME interface, and is used for control signaling transmission.
  • the base station is connected to the S-GW through the S1-U interface, and is used for the user.
  • the transmission of data wherein the S1-MME interface and the S1-U interface are collectively referred to as an S1 interface.
  • the X2 interface is a standard interface between the base station and the base station, and is used to implement interworking between base stations.
  • an embodiment of the data transmission method in the embodiment of the present invention includes:
  • the base station generates subframe configuration information.
  • the base station performs radio resource configuration, that is, generates subframe configuration information, and passes the sub-frame.
  • the frame configuration information determines the structure of each subframe, such as the CP duration of each region symbol of each subframe, the transmission start time point, and whether some symbols need to be left blank as guard intervals.
  • the base station determines, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, the base station sets the first n symbols of the second subframe as the guard interval.
  • the first subframe is adjacent to the second subframe, and in time sequence, the first subframe is located in front of the second subframe, where n is a preset value.
  • the CP with a strong coverage capability corresponds to a long CP, and the coverage capability is weak.
  • the required CP is a short CP, that is, the CP of the symbol in the first subframe is a long CP, and the CP of the symbol in the second subframe is a short CP.
  • step 102 may be specifically: when the base station according to the CP duration of the symbol of the first subframe and the second subframe When the CP duration of the symbol determines that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, the base station sets the first n symbols of the second subframe as the guard interval, where the symbol of the first subframe The CP duration is greater than the CP duration of the symbol of the second subframe.
  • the base station configures the subframe structure of the transmitted data, different CPs are set for different subframes according to a certain rule (or as needed), so the CP length of each subframe is known in timing, and it is easy to determine.
  • the coverage of the previous subframe is greater than the coverage capability of the subsequent subframe.
  • the base station can compare the coverage capability of any one of the symbols in the first subframe and the coverage capability of any one of the second subframes instead of comparing.
  • the base station determines the coverage capability of the symbols of each of the two adjacent subframes according to the subframe configuration information, and determines that the coverage capability of the symbols of the previous subframe in the adjacent two subframes is greater than the subsequent subframe.
  • the base station sets the first n symbols of the next subframe as the guard interval.
  • the value of n is 1, 2, or 3.
  • the value of the guard interval may refer to the adjacent symbol of the adjacent subframe.
  • the delay of the long CP symbol from the farther path can be avoided as much as possible to interfere with the adjacent short CP symbol.
  • the value of the long CP is 100us. Or 200us as an example, the specific value of n can refer to the following table:
  • the base station sends the subframe configuration information to the user equipment UE.
  • the base station may send the subframe configuration information to the UE by using a broadcast, and the base station may select to send the guard interval message to the UE.
  • the UE receives data according to the subframe configuration information and the acquired guard interval.
  • the data sent by the base station is mainly concentrated in the subframe of the long CP symbol with strong coverage capability, and the base station sends one or several consecutive short CP symbols at intervals. a frame, so that the UE receives one or consecutive subframes of short CP symbols at intervals, and after the UE requests to receive the broadcast or multicast service from the base station, the UE considers that the first short CP symbol is received.
  • a fixed number of symbols in front of the frame is used as a guard interval.
  • the fixed number may be a preset value of the base station, so that the UE may not receive any message notification about the guard interval, that is, the second subframe that is considered to be subjected to a guard interval of a fixed duration. So that you do not have to occupy the broadcast channel resources.
  • the primary synchronization signal (English full name: Primary Synchronization Signal: PSS) and the secondary synchronization signal when the UE passes the cell search (English full name: Secondary Synchronization Signal, English abbreviation:
  • PSS Primary Synchronization Signal
  • Secondary Synchronization Signal English abbreviation:
  • the UE determines that the second fixed duration of the second subframe is the guard interval, it should be understood that The fixed duration is the first n symbols of the second subframe preset by the base station.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the sign of the weak coverage capability, thus ensuring Correct reception of weak coverage sub-frames.
  • Another embodiment of the data transmission method in the embodiment of the present invention includes:
  • the base station generates subframe configuration information.
  • the base station performs radio resource configuration, that is, generates subframe configuration information, and determines the structure of each subframe by using subframe configuration information, such as the CP duration of each region symbol of each subframe, the transmission start time point, and whether Some symbols need to be left blank as guard intervals and so on.
  • the base station determines, according to the subframe configuration information, that a coverage capability of a symbol of the first subframe is greater than a coverage capability of a symbol of the second subframe.
  • the base station sets the first n symbols of the second subframe as a guard interval.
  • the base station can renumber the symbol bits after the guard interval from 0, and the guard interval does not occupy the sign bit, so that the resource mapping can still be Starting from the sign bit 0, the order in which the UE receives the information in the second subframe is not affected, and the second subframe boundary can be aligned.
  • the base station may also choose not to re-number, so that the UE receives the information in the second subframe from the n+th of the second subframe. One symbol starts to be received, so that the position of the control channel for time synchronization in one radio frame is not affected.
  • the base station sends the subframe configuration information to the user equipment UE.
  • the base station may send the subframe configuration information to the UE by using a broadcast, and the base station may select to send the guard interval message to the UE.
  • the base station sends first information to the UE, where the first information is used to notify the UE that the at least one second subframe of the guard interval is configured, so that the UE receives data according to the subframe configuration information and the first information.
  • the subframes (second subframes) that the base station can broadcast to the UE through the broadcast channel include a guard interval, and the duration of the guard interval is a predetermined fixed integer. Symbols.
  • step 205 may also be:
  • the base station sends the second information to the UE, where the second information is used to notify the UE of the at least one second subframe of the guard interval and the duration of the guard interval, so that the UE receives data according to the subframe configuration information and the second information.
  • the subframes (second subframes) that the base station can broadcast to the UE through the BCH include the guard interval and the duration of the guard interval, and the duration of the guard interval ranges from 1 to 3 symbols.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • FIG. 6 another embodiment of the data transmission method in the embodiment of the present invention includes:
  • the UE receives subframe configuration information that is sent by the base station, where the subframe configuration information is subframe configuration information generated by the base station.
  • the base station after the base station generates the subframe configuration information, the base station sends the subframe configuration information to the UE.
  • the UE receives information about a guard interval sent by the base station.
  • the guard interval is that when the base station determines, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, the base station sets the first n symbols of the second subframe.
  • the guard interval is set.
  • the first subframe is a previous subframe adjacent to the second subframe, and n is a preset value.
  • the information of the guard interval is used to notify the UE that the at least one second subframe has the guard interval, or the information of the guard interval is used to notify the UE that the at least one second subframe of the guard interval and the guard interval are duration.
  • the UE receives data according to the subframe configuration information and the information of the guard interval.
  • the UE may receive the subframe configuration information and the information of the guard interval through the BCH, and then calculate the structure of each subframe, and perform downlink data reception according to the result of each subframe, for example, the UE first receives the BCH. After receiving the system information, it receives downlink control information and downlink services. data.
  • the receiving data by the UE according to the subframe configuration information and the information of the guard interval includes: when the UE performs cell search, determining, by the UE, the protection according to the primary synchronization signal and the secondary synchronization signal in the cell search. Interval; the UE receives data according to the subframe configuration information and the guard interval.
  • the second subframe is found by using the primary synchronization signal and the secondary synchronization signal (since the primary synchronization signal and the secondary synchronization signal are only on the eMBMS carrier)
  • the UE determines that the second subframe has a fixed duration of guard interval, and the UE does not need to send any message notification about the guard interval by the base station to determine that the received second subframe has a fixed interval.
  • the guard interval of the duration and then the data is received according to the subframe configuration information and the guard interval, so that it is not necessary to occupy the broadcast channel resources.
  • an embodiment of the base station in the embodiment of the present invention includes:
  • a generating module 401 configured to generate subframe configuration information
  • the setting module 402 is configured to: when determining, according to the subframe configuration information, that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe, setting the first n symbols of the second subframe as the guard interval, One subframe is a previous subframe adjacent to the second subframe, and n is a preset value;
  • the sending module 403 is configured to send the subframe configuration information to the user equipment UE, so that the UE receives the data according to the subframe configuration information and the acquired guard interval.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • the subframe configuration information includes a CP duration of a symbol of the first subframe and a second subframe
  • the CP duration of the symbol is set by the module 402, specifically for determining that the coverage capability of the symbol of the first subframe is greater than the second subframe according to the CP duration of the symbol of the first subframe and the CP duration of the symbol of the second subframe.
  • the symbol coverage capability is set, the first n symbols of the second subframe are set as guard intervals; the CP duration of the symbols of the first subframe is greater than the CP duration of the symbols of the second subframe.
  • the sending module 403 is specifically configured to send the subframe configuration information to the user equipment UE by using a broadcast channel. .
  • the sending module 403 is further configured to send, to the UE, first information, where the first information is used.
  • the UE is notified to have at least one second subframe of the guard interval.
  • the sending module 403 can broadcast to the UE which subframes (the second subframe) to include the guard interval, and the duration of the guard interval is a predetermined fixed integer number of symbols.
  • the sending module 403 is further configured to send, to the UE, second information, where the second information is used. Notifying the UE of the at least one second subframe of the guard interval and the duration of the guard interval.
  • the sending module 403 can broadcast to the UE which subframes (second subframes) include the guard interval and the duration of the guard interval, and the duration of the guard interval ranges from 1 to 3 symbols.
  • the base station in the embodiment of the present invention is described above from the perspective of a modular functional entity.
  • the base station in the embodiment of the present invention is described from the perspective of hardware processing.
  • the base station in the embodiment of the present invention includes: The device 501, the transmitter 502, and the memory 503.
  • the base station may have more or less components than those shown in FIG. 8, may combine two or more components, or may have different component configurations or settings, and each component may include one Hardware, software, or a combination of hardware and software, including multiple signal processing and/or application specific integrated circuits.
  • the processor 501 is configured to call an instruction stored in the memory 503 to perform the following operations:
  • the transmitter 502 is configured to perform the following operations:
  • the base station also includes:
  • the memory 503 is configured to store instructions required by the processor 501 to perform corresponding operations.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • processor 501 is specifically configured to perform the following operations:
  • the first time is determined according to the CP duration of the symbol of the first subframe and the CP duration of the symbol of the second subframe.
  • the coverage capability of the symbol of the subframe is greater than the coverage capability of the symbol of the second subframe
  • the first n symbols of the second subframe are set as the guard interval; the CP duration of the symbol of the first subframe is greater than the symbol of the second subframe.
  • the length of the CP is the length of the CP.
  • the transmitter 502 is specifically configured to perform the following operations:
  • the subframe configuration information is transmitted to the user equipment UE through the broadcast channel.
  • the transmitter 502 is further configured to perform the following operations:
  • the transmitter 502 is further configured to perform the following operations:
  • an embodiment of the user equipment UE in the embodiment of the present invention includes:
  • the first receiving module 601 is configured to receive subframe configuration information sent by the base station, where the subframe configuration information is subframe configuration information generated by the base station;
  • the second receiving module 602 is configured to receive data according to the subframe configuration information and the acquired guard interval, where the guard interval is determined by the base station according to the subframe configuration information that the coverage capability of the symbol of the first subframe is greater than the symbol of the second subframe.
  • the coverage interval is a guard interval in which the base station sets the first n symbols of the second subframe.
  • the first subframe is the previous subframe adjacent to the second subframe, and n is a preset value.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • the second receiving module 602 is specifically configured to receive information about a guard interval sent by the base station;
  • the frame configuration information and the information of the guard interval receive data; wherein the information of the guard interval is used to notify the UE of at least one second subframe having a guard interval, or the information of the guard interval is used to notify the UE that at least one second has a guard interval
  • the length of the subframe and the guard interval is specifically configured to receive information about a guard interval sent by the base station;
  • the frame configuration information and the information of the guard interval receive data; wherein the information of the guard interval is used to notify the UE of at least one second subframe having a guard interval, or the information of the guard interval is used to notify the UE that at least one second has a guard interval The length of the subframe and the guard interval.
  • the second receiving module 602 is specifically configured to perform cell search according to the cell search.
  • the primary synchronization signal and the secondary synchronization signal determine a guard interval; the data is received according to the subframe configuration information and the guard interval.
  • the UE in the embodiment of the present invention is described above from the perspective of a modular functional entity. The following describes the UE in the embodiment of the present invention from the perspective of hardware processing. Referring to FIG. 10, the UE in the embodiment of the present invention includes: The processor 701, the processor 702, and the memory 703.
  • the UE involved in the embodiments of the present invention may have more or less components than those shown in FIG. 10, may combine two or more components, or may have different component configurations or settings, and each component may include one Hardware, software, or a combination of hardware and software, including multiple signal processing and/or application specific integrated circuits.
  • the receiver 701 is configured to perform the following operations:
  • subframe configuration information sent by the base station, where the subframe configuration information is subframe configuration information generated by the base station;
  • the guard interval of the first n symbols of the subframe is set.
  • the first subframe is the previous subframe adjacent to the second subframe, and n is a preset value.
  • the guard interval may be set.
  • the symbol delay that avoids strong coverage capability interferes with the symbol of weak coverage capability, thereby ensuring correct reception of weak coverage capability subframes.
  • the UE further includes a processor 702 for invoking an instruction stored in the memory 703 to perform the following operations:
  • the subframe structure is determined according to the subframe configuration information and the acquired guard interval.
  • the memory 703 is configured to store instructions required by the processor 702 to perform corresponding operations.
  • the receiver 701 is specifically configured to perform the following operations:
  • the UE is notified of the at least one second subframe having the guard interval and the duration of the guard interval.
  • the receiver 701 is specifically configured to perform the following operations:
  • the guard interval is determined according to the primary synchronization signal and the secondary synchronization signal in the cell search; and the data is received according to the subframe configuration information and the guard interval.
  • an embodiment of the present invention further provides a system, where the system includes: a base station 801 and a user equipment 802;
  • the base station 801 is configured to generate subframe configuration information.
  • the base station 801 When determining that the coverage capability of the symbol of the first subframe is greater than the coverage capability of the symbol of the second subframe according to the subframe configuration information, setting the first n symbols of the second subframe For the guard interval, the first subframe is the previous subframe adjacent to the second subframe, n is a preset value; the subframe configuration information is sent to the user equipment 802;
  • the user equipment 802 is configured to receive subframe configuration information sent by the base station 801, and receive data according to the subframe configuration information and the acquired guard interval.
  • the guard interval can be avoided.
  • the symbol delay of the coverage capability interferes with the symbol of the weak coverage capability, thereby ensuring the correct reception of the weak coverage capability subframe.
  • the disclosed apparatus and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了数据传输方法、基站及用户设备,能够避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。本发明实施例方法包括:基站生成子帧配置信息;当所述基站根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设置为保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值;所述基站将所述子帧配置信息发送给用户设备UE,以使得所述UE根据所述子帧配置信息以及获取到的所述保护间隔接收数据。

Description

数据传输方法、基站及用户设备 技术领域
本发明涉及通信技术领域,尤其涉及数据传输方法、基站及用户设备。
背景技术
长期演进(英文全称:Lone Term Evolution,英文缩写:LTE)中多媒体广播多播业务(英文全称:Multimedia Broadcast Multicast Service,英文缩写:MBMS)在一个特定区域中为多个用户提供了相同的内容,这个特定区域称为MBMS区域,在MBMS区域中可能包含多个小区同时进行传输,并且每个小区中配置有点对多点的物理资源,用户设备(英文全称:User Equipment,英文缩写:UE)接收到的是上述多个小区的合成信号,但在UE侧该合成信号相当于经过一段时间色散信道的单点发射的信号,这种多个小区同时传输相同内容的传输方式称为多播广播单频网(英文全称:Multimedia Broadcast Single Frequency Network,英文缩写:MBSFN)传输方式,MBSFN的主要好处是多个小区同时传输相同的内容增强了接收信号强度、降低了干扰,提高了系统的分集增益。在MBSFN中,MBSFN子帧主要包括控制区域和MBSFN区域,分别用于控制信令以及多播信道(Multicast Channel,英文缩写:MCH)传输,现在,MBMS已经发展为增强的多媒体广播多播业务(英文全称:Enhanced Multimedia Broadcast Multicast Service,英文缩写:eMBMS),为了扩展eMBMS的覆盖能力,比如支持15公里的单站覆盖,需要进一步扩展MCH传输中的循环前缀(英文全称:Cyclic Prefix,英文缩写:CP)长度,当用于承载MCH传输的MBSFN子帧支持的CP时长过大时,MBSFN内可能需要同时支持不同覆盖能力的子帧传输,但是存在的问题是在支持两种覆盖能力的符号切换交界处,支持更长CP的符号可以合并经历更长传输时间的符号,从而有更好的多径增益,如图1所示,UE会接收来自不同传输距离的数据,对于CP较长的符号,当来自较远路径的符号的CP部分与较近路径的符号的CP部分有重叠时,则仍然会被UE合并为有用信号,但是当一个子帧的长CP符号在另一个子帧的短CP符号的前面时,长CP符号较远路径的时延可能超过短CP符号的CP时长,从而与短CP符号的数据区域产生重叠,进而对短CP符号的 接收造成符号间干扰(英文全称:Inter Symbol Interference,英文缩写:ISI),也即是多径信号干扰,因此有必要在对MBSFN子帧结构的设计中考虑该问题。
现有方案中,MBSFN子帧结构已经在标准中进行了定义,具体定义如图2中情况3和情况4两种情况,情况1和情况2是标准中定义的其他子帧结构,但未应用于MBSFN子帧,情况1中子载波间隔为15khz,第一个符号的CP时长为5.2us,其他符号的CP时长为4.7us,且CP为正常CP;情况2中子载波间隔为15khz,CP时长为16.7us,且CP为扩展CP;情况3中子载波间隔为15khz,前面两个符号为控制区域,后面符号为MBSFN区域,CP时长为16.7us;情况4中子载波间隔为7.5khz,符号全为MBSFN区域,CP时长为33.3us,且CP为扩展CP。
然而,随着MCH覆盖能力需求的提升,此时需要更长的CP时长,比如100us或200us的CP,其时长已经接近或超过现有方案定义的符号时长,所以会在相邻子帧的符号交界处带来较大的干扰,因此,现有MBSFN中并未考虑不同覆盖能力的符号交界处可能的干扰问题。
发明内容
本发明实施例提供了数据传输方法、基站及用户设备,能够避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
本发明实施例的第一方面提供一种数据传输方法,包括:
基站生成子帧配置信息,子帧配置信息用来决定每个子帧的结构,比如每个子帧各区域符号的CP时长,传输起始时间点以及是否需要留空某些符号作为保护间隔等;当基站根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置为保护间隔,在时序上,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值,比如n的取值为1、2或3;基站将子帧配置信息发送给用户设备UE,以使得UE根据子帧配置信息以及获取到的保护间隔接收数据。应理解,基站可以采用广播等方式将保护间隔的消息发送给UE。可见,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的 覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
在一些可能的实现方式中,若子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,则当基站根据第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置为保护间隔。
应理解,当第一子帧的符号的CP时长大于第二子帧的符号的CP时长时,第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力。
在另一些可能的实现方式中,该方法还包括:
基站通过广播信道向UE广播哪些子帧(第二子帧)包含了保护间隔,该保护间隔的时长为约定好的固定整数个符号。
在另一些可能的实现方式中,该方法还包括:
基站通过广播信道向UE广播哪些子帧(第二子帧)包含了保护间隔以及保护间隔的时长。
本发明实施例第二方面提供了一种数据传输方法,包括:
用户设备UE接收基站发送的子帧配置信息,该子帧配置信息为基站生成的子帧配置信息;UE接收到子帧配置信息,计算出每个子帧的结构,包括每个子帧各区域符号的CP时长,传输起始时间点以及是否留空了某些符号作为保护间隔等,并结合获取到的保护间隔进行下行数据的接收,其中,该保护间隔为当基站根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置而成的保护间隔,且第一子帧为与第二子帧相邻的前一个子帧,n为预设取值。可见,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
在一些可能的实现方式中,UE接收到子帧配置信息并获取到保护间隔后,根据子帧配置信息以及获取到的保护间隔接收数据包括:
UE接收到子帧配置信息后,基站将设置好的保护间隔的信息发送给UE,UE接收到保护间隔的信息后,UE根据接收到的子帧配置信息以及保护间隔 的信息接收数据。其中,该保护间隔的信息用于通知UE哪些子帧(第二子帧)具有该保护间隔,或者该保护间隔的信息用于通知UE哪些子帧(第二子帧)具有该保护间隔以及该保护间隔的时长。
在另一些可能的实现方式中,UE根据子帧配置信息以及获取到的保护间隔接收数据包括:
UE接入到覆盖增强的eMBMS载波,当UE进行小区搜索,通过主同步信号和辅同步信号发现第二子帧时(由于主同步信号和辅同步信号在eMBMS载波上只在正常或扩展CP子帧上出现),UE确定第二子帧前部固定时长为保护间隔,由此,UE无需基站发送任何关于保护间隔的消息通知即可以确定接收到的第二子帧含有固定时长的保护间隔,进而根据子帧配置信息以及保护间隔接收数据,这样就不必占用广播信道资源。
本发明实施例第三方面提供了一种基站,包括:
生成模块,用于生成子帧配置信息,子帧配置信息用来决定每个子帧的结构,比如每个子帧各区域符号的CP时长,传输起始时间点以及是否需要留空某些符号作为保护间隔等;设置模块,用于当根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间隔,在时序上,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值,比如n的取值为1、2或3;发送模块,用于将子帧配置信息发送给用户设备UE,以使得UE根据子帧配置信息以及获取到的保护间隔接收数据。应理解,基站可以采用广播等方式将保护间隔的消息发送给UE。可见,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
在一些可能的实现方式中,若子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,设置模块,具体用于当根据第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间 隔,其中,第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
在另一些可能的实现方式中,发送模块,还用于通过广播信道向UE广播哪些子帧(第二子帧)包含了保护间隔,该保护间隔的时长为约定好的固定整数个符号。
在另一些可能的实现方式中,发送模块,还用于通过广播信道向UE广播哪些子帧(第二子帧)包含了保护间隔以及保护间隔的时长。
本发明实施例第四方面提供了一种用户设备UE,包括:
第一接收模块,用于接收基站发送的子帧配置信息,子帧配置信息为基站生成的子帧配置信息;
第二接收模块,用于接收到子帧配置信息后,计算出每个子帧的结构,包括每个子帧各区域符号的CP时长,传输起始时间点以及是否留空了某些符号作为保护间隔等,并结合获取到的保护间隔进行下行数据的接收,其中,该保护间隔为当基站根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置而成的保护间隔,且第一子帧为与第二子帧相邻的前一个子帧,n为预设取值。可见,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
在一些可能的实现方式中,第二接收模块,具体用于接收基站发送的保护间隔的信息;根据子帧配置信息以及保护间隔的信息接收数据;其中,该保护间隔的信息用于通知UE哪些子帧(第二子帧)具有该保护间隔,或者该保护间隔的信息用于通知UE哪些子帧(第二子帧)具有该保护间隔以及该保护间隔的时长。
在另一些可能的实现方式中,第二接收模块,具体用于UE接入到覆盖增强的eMBMS载波,当UE进行小区搜索,通过主同步信号和辅同步信号发现第二子帧时(由于主同步信号和辅同步信号在eMBMS载波上只在正常或扩展CP子帧上出现),UE确定第二子帧前部固定时长为保护间隔,由此,UE无 需基站发送任何关于保护间隔的消息通知即可以确定接收到的第二子帧含有固定时长的保护间隔,进而根据子帧配置信息以及保护间隔接收数据,这样就不必占用广播信道资源。
本发明实施例提供的技术方案中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
附图说明
图1为现有技术中多径信号干扰示意图;
图2为现有技术中一种子帧结构示意图;
图3为本发明实施例中系统架构示意图;
图4为本发明实施例中数据传输方法一个实施例示意图;
图5为本发明实施例中数据传输方法另一个实施例示意图;
图6为本发明实施例中数据传输方法另一个实施例示意图;
图7为本发明实施例中基站的一个实施例示意图;
图8为本发明实施例中基站的另一个实施例示意图;
图9为本发明实施例中用户设备UE一个实施例示意图;
图10为本发明实施例中用户设备UE另一个实施例示意图;
图11为本发明实施例中系统一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术 语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明主要应用于LTE通信系统,LTE的系统架构如图3所示,图3中各网元和接口的描述如下:
移动性管理实体/服务网关(英文全称:Mobility Management Entity/Serving–Gateway,英文缩写:MME/S-GW):MME是LTE中的关键控制节点,属于核心网网元,主要负责信令处理部分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能。S-GW是LTE中核心网的重要网元,主要负责用户数据转发的用户面功能,即在MME的控制下进行数据包的路由和转发。
基站(英文全称:evolved Node B,英文缩写:eNB):基站主要负责空口侧的无线资源管理、服务质量(英文全称:Quality of Service,英文缩写:QoS)管理、数据压缩和加密等功能。核心网侧,基站主要负责向MME转发控制面信令以及向/S-GW转发用户面业务数据。
UE:UE是LTE中通过基站接入网络侧的设备,例如可以是手持终端、笔记本电脑或是其他可以接入网络的设备。
S1接口:S1接口是基站与核心网之间的标准接口,其中基站通过S1-MME接口与MME连接,用于控制信令的传输,基站通过S1-U接口与S-GW连接,用于用户数据的传输,其中S1-MME接口和S1-U接口统称为S1接口。
X2接口:X2接口是基站和基站之间的标准接口,用于实现基站之间的互通。
在上面LTE的系统架构的基础上,下面通过具体实施例对本发明实施例中的数据传输方法进行说明,请参阅图4,本发明实施例中数据传输方法一个实施例包括:
101、基站生成子帧配置信息;
本实施例中,基站会进行无线资源配置,即生成子帧配置信息,通过子 帧配置信息来决定每个子帧的结构,比如每个子帧各区域符号的CP时长、传输起始时间点以及是否需要留空某些符号作为保护间隔等。
102、当基站根据该子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置为保护间隔;
本实施例中,第一子帧与第二子帧相邻,在时序上,第一子帧位于第二子帧的前面,其中n为预设取值。另外,覆盖能力强对应需要的CP为长CP,覆盖能力弱对应需要的CP为短CP,即第一子帧中符号的CP为长CP,第二子帧中符号的CP为短CP。
若子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,则步骤102可以具体为:当基站根据第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置为保护间隔,其中,第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
由于基站在安排所发送数据的子帧结构时,会按一定规律(或者说根据需要)为不同子帧设置不同的CP,所以就会在时序上知道每个子帧的CP长度,也就容易确定子帧相邻时前子帧覆盖能力大于后一子帧的覆盖能力的情况。
应理解,由于子帧中所有的符号具有相同的覆盖能力,所以基站可以通过对第一子帧中任意一个符号的覆盖能力以及第二子帧中任意一个符号的覆盖能力进行比较,来代替比较第一子帧中最后一个符号的覆盖能力以及第二子帧中第一个符号的覆盖能力。
需要说明的是,基站会根据该子帧配置信息确定每两个相邻子帧的符号的覆盖能力,当确定相邻两个子帧中的前一个子帧的符号的覆盖能力大于后一个子帧的符号的覆盖能力时,基站将后一个子帧的前n个符号设置为保护间隔,比如n的取值为1、2或3,保护间隔的取值可以参照相邻子帧的相邻符号对应CP时长的差值,即第一子帧的长CP的时长与第二子帧的短CP的时长的差值,这样第一子帧的长CP符号一方面能充分利用长CP带来的合并增益,增强覆盖能力,另一方面,也可以尽量避免来自较远路径的长CP符号的时延对后面相邻短CP符号的干扰;另外结合图2,以长CP取值为100us 或200us为例,n的具体取值可以参照下表:
(长CP,短CP) n的取值
(100us,正常CP) 1
(100us,扩展CP16.7us) 1
(100us,扩展CP33.3us) 1
(200us,正常CP) 2或3
(200us,扩展CP16.7us) 2
(200us,扩展CP33.3us) 1
103、基站将该子帧配置信息发送给用户设备UE。
本实施例中,基站在生成子帧配置信息后,基站可以将子帧配置信息通过广播发送给UE,并且,基站可以选择将保护间隔的消息发送给UE。
104、UE根据该子帧配置信息以及获取到的该保护间隔接收数据。
本实施例中,在覆盖增强的eMBMS场景下,基站发送的数据主要集中在覆盖能力较强的长CP符号的子帧中,基站每隔一段时间会发送一个或连续数个短CP符号的子帧,从而UE每隔一段时间会接收到一个或连续数个短CP符号的子帧,UE在向基站请求接收广播或多播业务后,UE会认为收到的第一个短CP符号的子帧的前面固定数量的符号作为保护间隔,这个固定数量可以是基站预先设定的数值,从而UE可以无需基站发送任何关于保护间隔的消息通知即认为受到的第二子帧含有固定时长的保护间隔,这样便不必占用广播信道资源。
应理解,由于UE一开始会进行小区搜索,当UE通过小区搜索时的主同步信号(英文全称:Primary Synchronization Signal,英文缩写:PSS)和辅同步信号(英文全称:Secondary Synchronization Signal,英文缩写:SSS)发现第二子帧时(由于主同步信号和辅同步信号在eMBMS载波上只在正常或扩展CP子帧上出现),UE确定第二子帧前部固定时长为保护间隔,应理解,固定时长为基站预先设定的第二子帧的前n个符号。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了 弱覆盖能力的子帧的正确接收。
下面从基站的角度对本发明实施例中的数据传输方法进行说明,请参阅图5,本发明实施例中数据传输方法另一个实施例包括:
201、基站生成子帧配置信息;
本实施例中,基站会进行无线资源配置,即生成子帧配置信息,通过子帧配置信息来决定每个子帧的结构,比如每个子帧各区域符号的CP时长、传输起始时间点以及是否需要留空某些符号作为保护间隔等。
202、基站根据该子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力;
本实施例中,在该子帧配置信息下,存在覆盖能力更强(对应需要更长CP)的符号在覆盖能力较弱的符号(对应需要较短CP)之前。
203、基站将第二子帧的前n个符号设置为保护间隔;
本实施例中,基站在将第二子帧的前n个符号设置为保护间隔后,基站可以在保护间隔后的符号位重新从0开始编号,保护间隔不占用符号位,使得资源映射仍能够从符号位0开始,不会影响UE对第二子帧内的信息的接收顺序,且第二子帧边界能够对齐。
当然,基站在将第二子帧的前n个符号设置为保护间隔后,基站也可以选择不重新编号,这样UE对第二子帧内的信息的接收是从第二子帧的第n+1个符号开始接收,这样便不会影响用于时间同步的控制信道在一个无线帧中的位置。
204、基站将该子帧配置信息发送给用户设备UE。
本实施例中,基站在生成子帧配置信息后,基站可以将子帧配置信息通过广播发送给UE,并且,基站可以选择将保护间隔的消息发送给UE。
205、基站向UE发送第一信息,该第一信息用于通知UE具有该保护间隔的至少一个第二子帧,以使得UE根据该子帧配置信息以及第一信息接收数据。
本实施例中,基站可以通过广播信道(英文全称:Broadcast Channel,英文缩写:BCH)向UE广播哪些子帧(第二子帧)包含了保护间隔,该保护间隔的时长为约定好的固定整数个符号。
在本发明的一些可能实现方式中,步骤205还可以为:
基站向UE发送第二信息,该第二信息用于通知UE具有该保护间隔的至少一个第二子帧以及保护间隔的时长,以使得UE根据该子帧配置信息以及第二信息接收数据。
本实施例中,基站可以通过BCH向UE广播哪些子帧(第二子帧)包含了保护间隔以及保护间隔的时长,该保护间隔的时长的取值范围为1至3个符号。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
下面从UE的角度对本发明实施例中的数据传输方法进行说明,请参阅图6,本发明实施例中数据传输方法另一个实施例包括:
301、UE接收基站发送的子帧配置信息,该子帧配置信息为基站生成的子帧配置信息;
本实施例中,在基站生成子帧配置信息后,基站将该子帧配置信息发送给UE。
302、UE接收基站发送的保护间隔的信息;
本实施例中,该保护间隔为当基站根据该子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置而成的保护间隔,该第一子帧为与第二子帧相邻的前一个子帧,n为预置取值。
其中,该保护间隔的信息用于通知UE具有该保护间隔的至少一个第二子帧,或,该保护间隔的信息用于通知UE具有该保护间隔的至少一个第二子帧以及该保护间隔的时长。
303、UE根据该子帧配置信息以及该保护间隔的信息接收数据。
本实施例中,UE可以通过BCH接收该子帧配置信息以及该保护间隔的信息,进而计算出每个子帧的结构,并根据每个子帧的结果进行下行数据的接收,比如UE先接收BCH上的系统信息后,再接收下行控制信息和下行业务 数据。
可选的,在本发明的一些实施例中,UE根据子帧配置信息以及保护间隔的信息接收数据包括:当UE进行小区搜索时,UE根据小区搜索中的主同步信号和辅同步信号确定保护间隔;UE根据子帧配置信息以及保护间隔接收数据。
具体的,当UE接入到覆盖增强的eMBMS载波时,当UE进行小区搜索,通过主同步信号和辅同步信号发现第二子帧时(由于主同步信号和辅同步信号在eMBMS载波上只在正常或扩展CP子帧上出现),UE确定第二子帧前部固定时长为保护间隔,由此,UE无需基站发送任何关于保护间隔的消息通知即可以确定接收到的第二子帧含有固定时长的保护间隔,进而根据子帧配置信息以及保护间隔接收数据,这样就不必占用广播信道资源。
上面介绍了本发明实施例中的数据传输方法,下面介绍本发明实施例中的基站,请参阅图7,本发明实施例中基站的一个实施例包括:
生成模块401,用于生成子帧配置信息;
设置模块402,用于当根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间隔,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值;
发送模块403,用于将子帧配置信息发送给用户设备UE,以使得UE根据子帧配置信息以及获取到的保护间隔接收数据。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
可选的,在上述图7所对应的实施例的基础上,本发明实施例中基站的另一个实施例中,若子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,则设置模块402,具体用于当根据第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间隔;第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
可选的,在上述图7所对应的实施例的基础上,本发明实施例中基站的另一个实施例中,发送模块403,具体用于通过广播信道将子帧配置信息发送给用户设备UE。
可选的,在上述图7所对应的实施例的基础上,本发明实施例中基站的另一个实施例中,发送模块403,还用于向UE发送第一信息,该第一信息用于通知UE具有该保护间隔的至少一个第二子帧。
本实施例中,发送模块403可以通过BCH向UE广播哪些子帧(第二子帧)包含了保护间隔,该保护间隔的时长为约定好的固定整数个符号。
可选的,在上述图7所对应的实施例的基础上,本发明实施例中基站的另一个实施例中,发送模块403,还用于向UE发送第二信息,该第二信息用于通知UE具有该保护间隔的至少一个第二子帧以及该保护间隔的时长。
本实施例中,发送模块403可以通过BCH向UE广播哪些子帧(第二子帧)包含了保护间隔以及保护间隔的时长,该保护间隔的时长的取值范围为1至3个符号。
上面从模块化功能实体的角度对本发明实施例中的基站进行了描述,下面从硬件处理的角度对本发明实施例中的基站进行描述,请参阅图8,本发明实施例中的基站包括:处理器501、发射器502以及存储器503。
本发明实施例涉及的基站可以具有比图8所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
处理器501用于调用存储器503中存储的指令执行如下操作:
生成子帧配置信息;
当根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将所述第二子帧的前n个符号设置为保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值;
发射器502用于执行如下操作:
将所述子帧配置信息发送给用户设备UE,以使得所述UE根据所述子帧配置信息以及获取到的所述保护间隔接收数据。
基站还包括:
存储器503,用于存储处理器501执行相应的操作所需要的指令。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
可选的,处理器501具体用于执行如下操作:
若子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,则当根据第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间隔;第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
可选的,发射器502具体用于执行如下操作:
通过广播信道将子帧配置信息发送给用户设备UE。
可选的,发射器502还用于执行如下操作:
向UE发送第一信息,第一信息用于通知UE具有保护间隔的至少一个第二子帧。
可选的,发射器502还用于执行如下操作:
向UE发送第二信息,第二信息用于通知UE具有保护间隔的至少一个第二子帧以及保护间隔的时长。
上面介绍了本发明实施例中的基站,下面通过实施例介绍本发明实施例中的用户设备UE,请参阅图9,本发明实施例中用户设备UE的一个实施例包括:
第一接收模块601,用于接收基站发送的子帧配置信息,子帧配置信息为基站生成的子帧配置信息;
第二接收模块602,用于根据子帧配置信息以及获取到的保护间隔接收数据,保护间隔为当基站根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置而成的保护间隔,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
可选的,在上述图9所对应的实施例的基础上,本发明实施例中UE的另一个实施例中,第二接收模块602,具体用于接收基站发送的保护间隔的信息;根据子帧配置信息以及保护间隔的信息接收数据;其中,保护间隔的信息用于通知UE具有保护间隔的至少一个第二子帧,或,保护间隔的信息用于通知UE具有保护间隔的至少一个第二子帧以及保护间隔的时长。
可选的,在上述图9所对应的实施例的基础上,本发明实施例中UE的另一个实施例中,第二接收模块602,具体用于当进行小区搜索时,根据小区搜索中的主同步信号和辅同步信号确定保护间隔;根据子帧配置信息以及保护间隔接收数据。
上面从模块化功能实体的角度对本发明实施例中的UE进行了描述,下面从硬件处理的角度对本发明实施例中的UE进行描述,请参阅图10,本发明实施例中的UE包括:接收器701、处理器702以及存储器703。
本发明实施例涉及的UE可以具有比图10所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
接收器701用于执行如下操作:
接收基站发送的子帧配置信息,子帧配置信息为基站生成的子帧配置信息;
根据子帧配置信息以及获取到的保护间隔接收数据,保护间隔为当基站根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,基站将第二子帧的前n个符号设置而成的保护间隔,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以 避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
UE还包括:处理器702,用于调用存储器703中存储的指令执行如下操作:
根据子帧配置信息以及获取到的保护间隔确定子帧结构。
存储器703,用于存储处理器702执行相应的操作所需要的指令。
可选的,接收器701具体用于执行如下操作:
接收基站发送的保护间隔的信息;根据子帧配置信息以及保护间隔的信息接收数据;其中,保护间隔的信息用于通知UE具有保护间隔的至少一个第二子帧,或,保护间隔的信息用于通知UE具有保护间隔的至少一个第二子帧以及保护间隔的时长。
可选的,接收器701具体用于执行如下操作:
当进行小区搜索时,根据小区搜索中的主同步信号和辅同步信号确定保护间隔;根据子帧配置信息以及保护间隔接收数据。
请参阅图11,本发明实施例还提供一种系统,该系统包括:基站801以及用户设备802;
基站801,用于生成子帧配置信息;当根据子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将第二子帧的前n个符号设置为保护间隔,第一子帧为与第二子帧相邻的前一个子帧,n为预设取值;将子帧配置信息发送给用户设备802;
用户设备802,用于接收基站801发送的子帧配置信息;根据子帧配置信息以及获取到的保护间隔接收数据。
本实施例中,当不同覆盖能力的不同子帧的符号相邻时,即具有不同覆盖能力的子帧相邻时,且前一个子帧的覆盖能力较强时,通过设置保护间隔可以避免强覆盖能力的符号时延对弱覆盖能力的符号造成干扰,从而保证了弱覆盖能力的子帧的正确接收。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭示的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (14)

  1. 一种数据传输方法,其特征在于,包括:
    基站生成子帧配置信息;
    当所述基站根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设置为保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值;
    所述基站将所述子帧配置信息发送给用户设备UE,以使得所述UE根据所述子帧配置信息以及获取到的所述保护间隔接收数据。
  2. 根据权利要求1所述的方法,其特征在于,所述子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,所述当所述基站根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设置为保护间隔包括:
    当所述基站根据所述第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定所述第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设置为保护间隔;
    所述第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送第一信息,所述第一信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送第二信息,所述第二信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧以及所述保护间隔的时长。
  5. 一种数据传输方法,其特征在于,包括:
    用户设备UE接收基站发送的子帧配置信息,所述子帧配置信息为基站生成的子帧配置信息;
    所述UE根据所述子帧配置信息以及获取到的保护间隔接收数据,所述保护间隔为当所述基站根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设 置而成的保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值。
  6. 根据权利要求5所述的方法,其特征在于,所述UE根据所述子帧配置信息以及获取到的保护间隔接收数据包括:
    所述UE接收所述基站发送的保护间隔的信息;
    所述UE根据所述子帧配置信息以及所述保护间隔的信息接收数据;
    其中,所述保护间隔的信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧,或,所述保护间隔的信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧以及所述保护间隔的时长。
  7. 根据权利要求5所述的方法,其特征在于,所述UE根据所述子帧配置信息以及获取到的保护间隔接收数据包括:
    当所述UE进行小区搜索时,所述UE根据小区搜索中的主同步信号和辅同步信号确定所述保护间隔;
    所述UE根据所述子帧配置信息以及所述保护间隔接收数据。
  8. 一种基站,其特征在于,包括:
    生成模块,用于生成子帧配置信息;
    设置模块,用于当根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将所述第二子帧的前n个符号设置为保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值;
    发送模块,用于将所述子帧配置信息发送给用户设备UE,以使得所述UE根据所述子帧配置信息以及获取到的所述保护间隔接收数据。
  9. 根据权利要求8所述的基站,其特征在于,所述子帧配置信息包括第一子帧的符号的CP时长以及第二子帧的符号的CP时长,所述设置模块,具体用于当根据所述第一子帧的符号的CP时长以及第二子帧的符号的CP时长确定所述第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,将所述第二子帧的前n个符号设置为保护间隔,其中,所述第一子帧的符号的CP时长大于第二子帧的符号的CP时长。
  10. 根据权利要求8或9所述的基站,其特征在于,所述发送模块,还用于向所述UE发送第一信息,所述第一信息用于通知所述UE具有所述保护间 隔的至少一个所述第二子帧。
  11. 根据权利要求8或9所述的基站,其特征在于,所述发送模块,还用于向所述UE发送第二信息,所述第二信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧以及所述保护间隔的时长。
  12. 一种用户设备UE,其特征在于,包括:
    第一接收模块,用于接收基站发送的子帧配置信息,所述子帧配置信息为基站生成的子帧配置信息;
    第二接收模块,用于根据所述子帧配置信息以及获取到的保护间隔接收数据,所述保护间隔为当所述基站根据所述子帧配置信息确定第一子帧的符号的覆盖能力大于第二子帧的符号的覆盖能力时,所述基站将所述第二子帧的前n个符号设置而成的保护间隔,所述第一子帧为与所述第二子帧相邻的前一个子帧,所述n为预设取值。
  13. 根据权利要求12所述的UE,其特征在于,所述第二接收模块,具体用于接收所述基站发送的保护间隔的信息;根据所述子帧配置信息以及所述保护间隔的信息接收数据;其中,所述保护间隔的信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧,或,所述保护间隔的信息用于通知所述UE具有所述保护间隔的至少一个所述第二子帧以及所述保护间隔的时长。
  14. 根据权利要求12所述的UE,其特征在于,所述第二接收模块,具体用于当进行小区搜索时,根据小区搜索中的主同步信号和辅同步信号确定所述保护间隔;根据所述子帧配置信息以及所述保护间隔接收数据。
PCT/CN2016/100560 2016-09-28 2016-09-28 数据传输方法、基站及用户设备 WO2018058367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/100560 WO2018058367A1 (zh) 2016-09-28 2016-09-28 数据传输方法、基站及用户设备
CN201680089351.1A CN109716840A (zh) 2016-09-28 2016-09-28 数据传输方法、基站及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100560 WO2018058367A1 (zh) 2016-09-28 2016-09-28 数据传输方法、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2018058367A1 true WO2018058367A1 (zh) 2018-04-05

Family

ID=61763626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100560 WO2018058367A1 (zh) 2016-09-28 2016-09-28 数据传输方法、基站及用户设备

Country Status (2)

Country Link
CN (1) CN109716840A (zh)
WO (1) WO2018058367A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112087796A (zh) * 2019-06-12 2020-12-15 普天信息技术有限公司 单子带系统下行传输控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090079151A (ko) * 2008-01-16 2009-07-21 삼성전자주식회사 무선통신 시스템에서 다양한 길이의 사이클릭 프리픽스를수용하는 효율적인 프레임 구조와 송수신 장치 및 방법
CN102045843A (zh) * 2009-10-10 2011-05-04 中兴通讯股份有限公司 一种第二类中继站的下行子帧配置和传输方法及系统
CN102210129A (zh) * 2008-11-13 2011-10-05 高通股份有限公司 使用不同循环前缀长度对超帧内不同帧的不等多径保护
CN105101458A (zh) * 2014-05-08 2015-11-25 夏普株式会社 D2d通信中的不同cp长度共存的配置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197803B (zh) * 2006-12-04 2011-12-21 华为技术有限公司 一种时分双工系统中发送数据的方法、装置及系统
CN101336006B (zh) * 2007-06-26 2010-10-13 上海无线通信研究中心 在传输时隙内多个随机接入信号的时分复用接入方法
CN101132268B (zh) * 2007-09-13 2011-07-13 中兴通讯股份有限公司 时分双工模式下基于正交频分复用技术的帧的生成方法
CN103686985B (zh) * 2012-09-25 2019-03-12 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及装置
CN103906260A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 随机接入前导处理方法及装置
CN104813600B (zh) * 2013-09-25 2019-02-12 华为技术有限公司 信号的发送方法、接收方法、装置及通信设备
US20150085834A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Time division long term evolution (td-lte) frame structure modification
CN106063209B (zh) * 2014-03-03 2019-09-03 华为技术有限公司 信息发送方法、接收方法和装置
BR122023024931A2 (pt) * 2014-08-07 2024-01-23 ONE Media, LLC Aparelho e método para transmitir um fluxo de transporte de taxa variável

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090079151A (ko) * 2008-01-16 2009-07-21 삼성전자주식회사 무선통신 시스템에서 다양한 길이의 사이클릭 프리픽스를수용하는 효율적인 프레임 구조와 송수신 장치 및 방법
CN102210129A (zh) * 2008-11-13 2011-10-05 高通股份有限公司 使用不同循环前缀长度对超帧内不同帧的不等多径保护
CN102045843A (zh) * 2009-10-10 2011-05-04 中兴通讯股份有限公司 一种第二类中继站的下行子帧配置和传输方法及系统
CN105101458A (zh) * 2014-05-08 2015-11-25 夏普株式会社 D2d通信中的不同cp长度共存的配置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Resource block and guard band arrangement supporting mixed numerology", 3GPP TSG - RAN WG1 #86, R1-167260, 26 August 2016 (2016-08-26), XP051125796, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgran/WG1RL1/TSGR186/Docs/R1-167260zip> *

Also Published As

Publication number Publication date
CN109716840A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
JP6559716B2 (ja) ミリメートル波接続ポイントおよびユーザ機器の協調発見
CN110601809B (zh) 信息发送方法及装置、信息接收方法及装置
EP2928220B1 (en) Method, system, base station and cluster epc for establishing group call context
CN106464396A (zh) 设备到设备同步源选择
EP3065427B1 (en) Radio base station, user terminal, and radio communication method
US20200163097A1 (en) Communication method, network device, and relay device
JP2017525202A (ja) 指向性ワイヤレスネットワークにおける接続ポイント発見および関連付けのための方法および装置
WO2014106498A1 (zh) 一种前导序列的传输方法、装置及系统
CN107734602B (zh) 同步处理方法、装置和设备
WO2012163192A1 (zh) 一种数据传输方法和装置
JPWO2019193727A1 (ja) ユーザ装置
WO2017167011A1 (zh) 信息的传输方法及相关装置
WO2015154652A1 (zh) 信息传输方法、基站、用户设备及通信系统
EP3499763A1 (en) Synchronous processing method, apparatus and device
WO2017128285A1 (zh) 一种上行传输方法、基站及终端设备
WO2017036306A1 (zh) 上下行干扰协调的处理方法及装置
WO2016107600A1 (zh) 支持多媒体广播多播业务传输的方法,设备及系统
US9743284B2 (en) Spectrum allocation method and device
JP2020504942A (ja) システム情報の伝送方法及び装置
KR102293597B1 (ko) 단말 간 직접 통신 방법 및 장치
WO2017113395A1 (zh) 一种无线通信方法、设备及系统
EP3185632A1 (en) Comp jt communication method and base station
JP2017505055A (ja) 隣接セルに近い移動局を識別する方法
JP2020503738A (ja) 情報伝送方法、ネットワーク機器及び端末装置
EP3542486B1 (en) Listen before talk for reference signals in mimo systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917122

Country of ref document: EP

Kind code of ref document: A1