WO2018056432A1 - Method for detecting hemolysis in blood sample and hemolysis detection chip - Google Patents

Method for detecting hemolysis in blood sample and hemolysis detection chip Download PDF

Info

Publication number
WO2018056432A1
WO2018056432A1 PCT/JP2017/034447 JP2017034447W WO2018056432A1 WO 2018056432 A1 WO2018056432 A1 WO 2018056432A1 JP 2017034447 W JP2017034447 W JP 2017034447W WO 2018056432 A1 WO2018056432 A1 WO 2018056432A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
mirna
hemolysis
hsa
abundance
Prior art date
Application number
PCT/JP2017/034447
Other languages
French (fr)
Japanese (ja)
Inventor
一恵 名取
近藤 哲司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017550662A priority Critical patent/JPWO2018056432A1/en
Publication of WO2018056432A1 publication Critical patent/WO2018056432A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for detecting hemolysis of a blood sample and evaluating the presence or absence of hemolysis, a chip used for detection of hemolysis, and a chip for miRNA expression analysis.
  • MiRNA is transcribed from genomic DNA as RNA (precursor) with a hairpin-like structure. This precursor is cleaved by a dsRNA cleaving enzyme (Drosha, Dicer) having a specific enzyme RNase III cleavage activity, then changed to a double-stranded form, and then becomes a single strand.
  • a dsRNA cleaving enzyme Rosha, Dicer
  • RNase III RNase III cleavage activity
  • One of the antisense strands is incorporated into a protein complex called RISC and is considered to be involved in mRNA translational suppression.
  • miRNA has a different form at each stage after transcription.Therefore, when miRNA is targeted for detection, various forms such as a hairpin structure, a double-stranded structure, and a single-stranded structure are usually used. It is necessary to consider. miRNA consists of RNA of 15 to 25 bases, and its existence has been confirmed in various organisms.
  • miRNA is present not only in cells but also in blood samples such as serum and plasma, which are samples that do not contain cells, and their abundance is a biomarker (indicator of various diseases including cancer). ) Is suggested. As of August 2016, more than 2500 miRNAs exist in humans, and when using a highly sensitive measurement system such as a DNA microarray, the abundance of more than 1000 miRNAs can be detected simultaneously in serum and plasma. Is possible. Therefore, biomarker search research targeting serum and plasma using the DNA microarray method has been carried out, and development to biomarker tests that can detect diseases early is expected.
  • miRNA derived from a hemolyzed blood sample cannot accurately measure the abundance, which may reduce the reliability of the measurement result.
  • a biomarker of disease in a test that measures the abundance of miRNA contained in a blood sample, if an examination / diagnosis is performed based on the measurement of the abundance with uncertainty, an appropriate treatment opportunity will be provided. Missing or applying the wrong medical care can put unnecessary financial and physical strain on the patient. Therefore, in order to accurately measure the abundance, it is very important to confirm the presence or absence of hemolysis and use a non-hemolyzed blood sample for the test.
  • Hemolysis is caused by various factors such as physical, chemical or biological damage to the blood cell membrane of erythrocytes in the blood, causing hemoglobin or miRNA to escape into the serum or plasma. That is.
  • causes of hemolysis include mechanical stimuli, chemical substances, changes in temperature, heat, osmotic pressure, etc., as well as various direct and indirect effects, including external forces such as vibration and ultrasound on blood samples, electric and magnetic fields, etc.
  • the cause of hemolysis is not limited to these. For example, it is known that hemolysis occurs due to the influence of blood collection procedures, and bubbles may enter when sucking blood due to inadequate syringes, or strong vortices may be wound when sucked into a vacuum blood collection tube. May cause hemolysis as a factor.
  • mixing with an anticoagulant may be caused by shaking vigorously or by giving a strong vibration when transporting a blood sample. Furthermore, it is known that hemolysis occurs even when whole blood is left for a long time without separating serum or plasma.
  • the degree of hemolysis can be evaluated by measuring the amount of miRNA, hemoglobin, etc. shed from the red blood cells in the blood sample. For example, there is a method of measuring hemoglobin concentration in blood using a spectrophotometer or the like. In addition, color tone comparison with a color sample by visual observation is used as a simple method, which utilizes the fact that hemoglobin is a protein having heme as a red pigment.
  • hsa-miR-451a is used as a hemolysis marker for blood samples. It has been reported to be used as This is a method for evaluating the presence or absence of hemolysis using the difference between the abundance of hsa-miR-451a and the abundance of hsa-miR-23a-3p that is not affected by hemolysis (Non-patent Document 1). On the other hand, it has been reported that hsa-miR-451a is also used as a cancer marker such as gastric cancer (Patent Document 1).
  • a biomarker of disease in a test that measures the abundance of miRNA contained in a blood sample, a slight abundance difference in the target miRNA affects the test result. It is important to detect the presence or absence of hemolysis, evaluate the presence or absence of hemolysis, and use a non-hemolyzed sample.
  • the color comparison with the color sample by the naked eye which is the conventional method, for example, if the hemoglobin concentration is not less than 200 mg / dL, the red color is easily observed with the naked eye unless the specimen has a high degree of hemolysis. It ’s difficult.
  • Samples with a low degree of hemolysis have a slight color difference even when compared with samples with a hemoglobin concentration of 0 mg / dL, and it is difficult to distinguish the presence or absence of hemolysis with the naked eye. Further, the determination result is easily affected by individual differences by the observer and lacks reliability.
  • the method of measuring blood hemoglobin concentration using a spectrophotometer or the like is preferable because it requires an additional measurement step separate from the measurement of the abundance of miRNA, resulting in increased test costs and process complexity. Absent.
  • Hsa-miR-451a used as the above-mentioned hemolysis marker has a small variation in the abundance even in a specimen having a hemoglobin concentration of 200 mg / dL as shown in Comparative Example 3 of the present specification, and has low detection sensitivity of hemolysis .
  • hsa-miR-451a has been reported to be used as a cancer marker for gastric cancer and the like. It is not preferable to use it as a hemolysis marker.
  • the problem to be solved by the present invention is to obtain an accurate gene expression analysis result from a blood sample.For example, even a sample with a low hemolysis concentration of hemoglobin concentration of 100 ⁇ ⁇ ⁇ mg / dL can be easily and highly sensitively. To provide a method for evaluating the presence or absence of hemolysis using miRNA capable of detecting hemolysis as a new hemolysis marker.
  • the present inventors have studied miRNA that can detect hemolysis with high sensitivity, even in a blood sample that has a low degree of hemolysis and a small amount of red blood cell contents such as hemoglobin.
  • a miRNA capable of evaluating the presence or absence of hemolysis at a level that can be judged as appropriate in a test for measuring the abundance of miRNA contained in a blood sample was found, and the present invention was completed.
  • the present invention comprises the following aspects. (1) miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131, miR-642b in blood samples A method for detecting hemolysis, comprising a measurement step of measuring the abundance of at least one miRNA selected from the group consisting of -3p, miR-92a-3p and miR-92b-3p.
  • miR-191-5p is hsa-miR-191-5p
  • miR-22-3p is hsa-miR-22-3p
  • miR-3158-5p is hsa-miR-3158-5p
  • MiR-320a is hsa-miR-320a
  • miR-484 is hsa-miR-484
  • miR-486-5p is hsa-miR-486-5p
  • miR-6073 is hsa-miR-6073
  • MiR-6131 is hsa-miR-6131
  • miR-642b-3p is hsa-miR-642b-3p
  • miR-92a-3p is hsa-miR-92a-3p
  • miR-92b The method according to (1), wherein -3p is hsa-miR-92b-3p.
  • the miRNA is a polynucleotide shown in any of the following (a) to (e): (a) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence; (b) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence. (c) a polynucleotide comprising a base sequence represented by any one of SEQ ID NOs: 1 to 11 or a base sequence complementary to a base sequence in which u is t in the base sequence.
  • a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence complementary to the base sequence in which u is t in the base sequence; (e) a polynucleotide that hybridizes with the polynucleotide of any one of (a) to (d) under stringent conditions.
  • the abundance or expression level of the miRNA in the blood sample the difference between the abundance or expression level and the abundance of the standard endogenous miRNA or external standard nucleic acid in the blood sample, or the abundance or expression level
  • the ratio of the standard endogenous miRNA or the external standard nucleic acid in the blood sample exceeds a threshold value that is predetermined as a reference for evaluating the presence or absence of hemolysis
  • the blood sample is evaluated as a hemolytic sample
  • the method according to any one of (1) to (4), comprising an evaluation step.
  • the measurement step contacts a probe for capturing at least one miRNA selected from the miRNA immobilized on a support and a nucleic acid sample extracted from a blood sample and labeled with a labeling substance.
  • the measurement step includes measuring the abundance of a desired target miRNA contained in the blood sample simultaneously with measurement of the abundance of at least one miRNA selected from the miRNA contained in the blood sample.
  • miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073 which are miRNAs for detecting hemolysis in blood samples
  • a chip for miRNA expression analysis comprising an immobilized support.
  • hemolysis it is possible to detect hemolysis with high sensitivity even in a blood sample with a low degree of hemolysis, that is, a blood sample in which hemoglobin or miRNA that is the contents of red blood cells is small, which has been difficult with the conventional method.
  • the presence or absence of hemolysis can be easily and highly sensitively evaluated.
  • hemolysis can be detected even if the hemoglobin concentration is about 100 mg / dL, so that a slight abundance difference in the target miRNA affects the results, for example, blood as a biomarker for disease.
  • Tests that measure the abundance of miRNA contained in a sample makes it possible to determine the suitability of a blood sample (select a blood sample that is not affected by hemolysis and provide it for testing), and provide highly reliable test results Can be obtained.
  • the present invention is a method for detecting hemolysis of a blood sample, miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-
  • at least one miRNA selected from the group consisting of 6073, miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p is used as a “hemolysis marker”.
  • miRNA that serves as an index for detecting the degree or presence of hemolysis in a blood sample may be referred to as a “hemolysis marker”.
  • RNA is a kind of non-coding RNA (ncRNA) that is a short-chain RNA of about 15 to 25 bases produced in vivo, and is considered to have a function of regulating the expression of mRNA.
  • miRNA is transcribed from genomic DNA as RNA (precursor) with a hairpin-like structure. This precursor is cleaved by a dsRNA cleaving enzyme (Drosha, Dicer) having a specific enzyme RNase III cleavage activity, then changed to a double-stranded form, and then becomes a single strand.
  • RISC protein complex
  • miRNA has different aspects at each stage after transcription. Therefore, when miRNA is targeted (detection target), normally, such as a hairpin structure, a double-stranded structure, a single-stranded structure, etc. Various forms need to be considered. The presence of miRNA has been confirmed in various organisms.
  • animal species from which blood samples to which the present invention can be applied include mammals such as humans, mice, rats, dogs, pigs, monkeys, hamsters, guinea pigs, cows, horses, rabbits, sheep, goats, cats, etc. Although not limited to these, human is preferable.
  • the blood sample to which the present invention can be applied is a sample separated from a living body, and examples thereof include serum and plasma.
  • RNA can be extracted from these blood samples, and the abundance of miRNA can be measured using this RNA.
  • RNA extraction is a known method (for example, the method of Favaloro et al. (Favaloro et.al., Methods Enzymol. 65: 718 (1980))), and various kits therefor are commercially available (for example, Qiagen miRNeasy, "3D-Gene” (RNA) extraction (reagent) from liquid (sample) etc. from Toray Industries, Inc. can be applied.
  • the method of the present invention comprises miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131 contained in a blood sample. Measuring the abundance of at least one miRNA selected from the group consisting of miR-642b-3p, miR-92a-3p and miR-92b-3p. Further, as will be described later, simultaneously with the measurement of the abundance of the miRNA contained in the blood sample, the abundance of a desired target miRNA such as a disease biomarker or the abundance of a correction standard nucleic acid may be measured.
  • the miRNA used as a hemolysis marker of the present invention is a miRNA that is selected as a miRNA whose abundance increases in a hemolyzed specimen, and whose abundance increases well in correlation with the degree of hemolysis, that is, the hemoglobin concentration.
  • the expression level ratio between the specimen having a hemoglobin concentration of 0 mg / dL and the specimen having a hemoglobin concentration of 40 mg / dL is preferably 2 or more, It is preferable to select miRNAs that are more preferably 3 or more.
  • miRNAs whose increase in abundance is statistically significant in hemolyzed specimens can be selected by comparison between groups in gene expression analysis. For example, a statistical analysis method based on a commonly used t test may be used. For example, the statistical language “R” package “SAM” (Tusher VG et. Al., Proc Natl Acad Sic USA. 2001 98 (9) 5116-5121) can be applied as it is.
  • RNA obtained from hemolyzed specimens (hereinafter also referred to as “hemolyzed specimens”) and non-hemolyzed specimens ( Hereinafter, when compared with RNA obtained from “non-hemolyzed specimen”), there is a difference in the abundance of various miRNAs contained therein. Therefore, in a gene expression analysis, if a hemolyzed sample is included, the correlation between the samples decreases, and the abundance of the target miRNA in the blood sample cannot be accurately measured.
  • the test result is inaccurate and unreliable, such as a specimen that should originally be determined to be non-cancerous is determined as cancer.
  • a hemoglobin sample with a hemoglobin concentration of 100 mg / dL is a hemolyzed sample. It is important that it can be detected as
  • the method of the present invention is accurate in gene expression analysis for measuring the abundance of a gene product contained in a specimen, for example, analysis using an array chip such as a microarray, analysis by polymerase chain reaction (PCR) method, or sequencing method. It can be used to obtain analysis results.
  • a miRNA contained in a blood sample is labeled and a probe for capturing one or a plurality of target miRNAs and a probe for capturing a miRNA of a hemolytic marker are immobilized on a support.
  • probes for capturing nucleic acids such as hemolytic markers, target miRNAs described later, and standard nucleic acids for correction, are also collectively referred to as “capture probes” or simply “probes”.
  • probes for capturing miRNAs are “ Also referred to as “miRNA capture probe”.
  • Measurement of the abundance of miRNA can be performed, for example, by a hybridization assay using an array chip such as a microarray in which a probe that specifically binds to the target miRNA is immobilized on a support.
  • an array chip including a support on which one or a plurality of “hemolytic marker capture probes” for capturing miRNA for detecting hemolysis is immobilized can be used.
  • an array chip including a support on which a “target miRNA capture probe” for capturing a target miRNA described later and a “standard nucleic acid capture probe for correction” for capturing a standard nucleic acid for correction are further immobilized. Also good.
  • Capture probe or “probe for capturing” means a substance capable of binding directly or indirectly, preferably directly and selectively to the miRNA to be captured.
  • Nucleic acids, proteins, saccharides and other antigenic compounds In the present invention, a nucleic acid probe can be preferably used.
  • nucleic acid derivatives such as PNA (peptide nucleic acid) and LNA (LockedLNucleic ⁇ ⁇ Acid) can be used as the nucleic acid.
  • a derivative means a labeled derivative with a fluorophore, a modified nucleotide (for example, a nucleotide containing a group such as halogen, alkyl such as methyl, alkoxy such as methoxy, thio, carboxymethyl, etc.)
  • a chemically modified derivative such as a derivative comprising a nucleotide having undergone a constitution, saturation of a double bond, deamination, substitution of an oxygen molecule with a sulfur molecule, and the like.
  • the chain length of the nucleic acid probe is preferably not less than the length of the miRNA to be detected from the viewpoint of ensuring the stability and specificity of hybridization. Usually, if the chain length is about 17 to 25 bases, the probe can sufficiently exhibit selective binding to the target miRNA. Such an oligonucleic acid probe having a short chain length can be easily prepared by a known chemical synthesis method or the like.
  • the nucleic acid probe has a base sequence that is completely complementary to the target miRNA. However, even if there are some differences, the base is highly homologous enough to hybridize with the target miRNA under stringent conditions. Any array can be used as a capture probe.
  • the stringency during hybridization is a function of temperature, salt concentration, probe chain length, GC content of the nucleotide sequence of the probe, and the concentration of the chaotropic agent in the hybridization buffer.
  • the conditions described in Sambrook, J. et al. (1998) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New York can be used. .
  • Stringent temperature conditions are about 30 ° C or higher.
  • Other conditions include the hybridization time, the concentration of the detergent (eg, SDS), the presence or absence of carrier DNA, and various stringencies can be set by combining these conditions.
  • Those skilled in the art can appropriately determine conditions for obtaining a function as a capture probe prepared for detection of a desired sample RNA.
  • miRNA sequence information can be obtained from databases such as GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and miRBase website (http://www.mirbase.org/). it can.
  • GenBank http://www.ncbi.nlm.nih.gov/genbank/
  • miRBase website http://www.mirbase.org/. It can.
  • a hemolytic marker capture probe, a target miRNA capture probe, and a standard nucleic acid capture probe for correction can be designed based on sequence information available from these sites.
  • the number of miRNA capture probes immobilized on the support is not particularly limited.
  • the abundance of miRNA may be measured using a fixed number of miRNA capture probes covering all known miRNAs whose sequences have been identified on a support, or for testing purposes, etc. Accordingly, a desired number of miRNA capture probes immobilized on a support may be used.
  • the same support as that used in known microarrays and macroarrays can be used.
  • a slide glass, a membrane, beads or the like can be used. it can.
  • a support having a shape having a plurality of convex portions on the surface described in Japanese Patent No. 4244788 can also be used.
  • the material of the support is not particularly limited, and examples thereof include inorganic materials such as glass, ceramic, and silicon; polymers such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, polymethyl methacrylate, and silicone rubber.
  • a method for immobilizing a capture probe on a support there are known a method of synthesizing oligo DNA on the surface of the support and a method of dropping oligo DNA synthesized in advance on the surface of the support and immobilizing it.
  • the former method examples include the method of Ronald et al. (US Pat. No. 5,705,610), the method of Michel et al. (US Pat. No. 6,142,266), and the method of Francesco et al. (US Pat. No. 7037659).
  • the support since an organic solvent is used during the DNA synthesis reaction, the support is preferably made of a material resistant to the organic solvent.
  • DNA synthesis is controlled by irradiating light from the back surface of the support, and therefore the support is preferably made of a light-transmitting material.
  • Examples of the latter method include the method of Hirota et al. (Patent No. 3922454) and a method using a spotter.
  • Examples of the spot method include a pin method based on mechanical contact of a pin tip with a solid phase, an ink jet method utilizing the principle of an ink jet printer, and a capillary method using a capillary tube.
  • post-treatment such as cross-linking by UV irradiation and surface blocking is performed as necessary.
  • a functional group such as an amino group or an SH group is introduced at the end of the oligo DNA.
  • the surface modification of the support is usually performed by treatment with a silane coupling agent having an amino group or the like.
  • a nucleic acid sample labeled with a labeling substance is prepared from RNA extracted from the sample, and the labeled nucleic acid sample is probed. It is carried out by contacting with.
  • the “sample-derived nucleic acid sample” includes not only RNA extracted from the sample, but also cDNA and cRNA prepared from the RNA by a reverse transcription reaction.
  • the labeled sample-derived nucleic acid sample may be a sample obtained by directly or indirectly labeling a sample RNA with a labeling substance, or a cDNA or cRNA prepared from the sample RNA may be directly or indirectly labeled with a labeling substance. It may be labeled.
  • Methods for binding a labeling substance to a sample-derived nucleic acid sample include binding a labeling substance to the 3 ′ end of the nucleic acid sample, binding a labeling substance to the 5 ′ end, and incorporating a nucleotide bound to the labeling substance into the nucleic acid.
  • An enzymatic reaction can be used in the method of binding a labeling substance to the 3 ′ end and the method of binding a labeling substance to the 5 ′ end.
  • T4-RNA Ligase, Terminal Deoxitidil Transferase, Poly A-polymerase, etc. can be used.
  • any labeling method can be referred to the method described in “Shao-YaoYYing, edited by miRNA experiment protocol, Yodosha, 2008”.
  • kits for binding a labeling substance directly or indirectly to the end of RNA are commercially available.
  • “3D-Gene” miRNA labeling kit (Toray) miRCURYmimiRNA HyPower labeling kit (Exicon)
  • NCode miRNA Labeling system Life Technologies Co., Ltd.
  • FlashTag Biotin RNA Labeling Kit Genesphere
  • cDNA or cRNA incorporating a labeled substance is prepared by synthesizing cDNA or cRNA from sample RNA in the presence of labeled deoxyribonucleotides or labeled ribonucleotides, and this is arrayed.
  • a method of hybridizing with the above probe is also possible.
  • examples of labeling substances that can be used include various labeling substances that are also used in known microarray analysis. Specific examples include fluorescent dyes, phosphorescent dyes, enzymes, and radioisotopes, but are not limited thereto. Preferred are fluorescent dyes that are easy to measure and easy to detect. Specifically, cyanine (cyanine 2), aminomethylcoumarin, fluorescein, indocarbocyanine (cyanine 3), cyanine 3.5, tetramethylrhodamine, rhodamine red, Texas red, indocarbocyanine (cyanine 5), cyanine Examples include, but are not limited to, 5.5, cyanine 7, and known fluorescent dyes such as oyster.
  • semiconductor fine particles having a light emitting property may be used as the labeling substance.
  • semiconductor fine particles include cadmium selenium (CdSe), cadmium tellurium (CdTe), indium gallium phosphide (InGaP), silver indium zinc sulfide (AgInZnS), and the like.
  • the nucleic acid sample derived from the specimen labeled as described above is brought into contact with the miRNA capture probe on the support, and the nucleic acid sample and the probe are hybridized.
  • This hybridization step can be performed in the same manner as in the past.
  • the reaction temperature and time are appropriately selected according to the chain length of the nucleic acid to be hybridized, but in the case of nucleic acid hybridization, it is usually about 30 ° C. to 70 ° C. for 1 minute to several tens of hours.
  • Hybridization is performed, and after washing, the signal intensity from the labeling substance in each probe-immobilized region on the support is detected.
  • the signal intensity is detected using an appropriate signal reader according to the type of labeling substance.
  • a fluorescent dye is used as a labeling substance
  • a fluorescence microscope or a fluorescence scanner may be used.
  • Measured value of detected fluorescence intensity is compared with ambient noise. Specifically, the measured value obtained from the probe-immobilized region is compared with the measured value obtained from other positions, and the case where the former numerical value is exceeded is detected (effective determination positive). .
  • the background noise may be subtracted.
  • the ambient noise can be subtracted from the detected measurement value as background noise.
  • the measurement value may be used as it is, but the measurement value is corrected using a standard nucleic acid for correction, and the corrected measurement value is obtained as the expression level of the hemolysis marker.
  • the expression level may be used to evaluate hemolysis. In particular, when hemolysis is to be detected with high sensitivity for the purpose of gene analysis or the like, it is preferable to evaluate using the expression level obtained by correcting the measured value using the standard nucleic acid for correction.
  • Standard nucleic acids for correction include housekeeping RNAs such as U1snoRNA, U2snoRNA, U3snoRNA, U4snoRNA, U5snoRNA, U6snoRNA, 5S rRNA, and 5.8S rRNA (see JP 2007-75095 A; JP 2007-97429 A).
  • Endogenous miRNA for correction of Robotts, TC et al., 2014, PLoS ONE, 9 (2), e89237; Chen, X. et al., 2013, PLoS ONE, 8 (11), e79652; WO 2016 / 043170 or the like
  • an external standard nucleic acid added during RNA extraction or labeling or by using an external standard nucleic acid added during RNA extraction or labeling.
  • Endogenous means not naturally added to the specimen, but naturally present in the specimen.
  • endogenous miRNA refers to miRNA that is naturally present in the sample and is derived from the organism that provided the sample, hsa-miR-149-3p (SEQ ID NO: 12), hsa-miR -2861 (SEQ ID NO: 13), hsa-miR-4463 (SEQ ID NO: 14) and the like are included. These endogenous miRNAs are known to remain in abundance even in hemolyzed specimens, and gene expression analysis of desired target miRNAs such as disease biomarkers contained in blood specimens is performed by applying the method of the present invention.
  • the expression level E of the hemolytic marker is a constant value of the measured value a of the abundance of miRNA (standard endogenous miRNA) whose abundance is known to remain unchanged even in hemolyzed samples, as shown in Equation 1.
  • the correction coefficient (A / a) for correcting to A the measurement value e of the abundance of the hemolytic marker can be corrected and acquired.
  • E e x A / a (Formula 1)
  • a threshold value used as a reference for evaluating the presence or absence of hemolysis may be set in advance for the amount of hemolysis marker to be used.
  • the threshold is set for each hemolysis marker.
  • the measured abundance of the hemolytic marker exceeds a predetermined threshold value, it can be evaluated that the specimen is a hemolytic specimen.
  • miRNA When using one hemolysis marker, miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131,
  • One miRNA may be arbitrarily selected from miR-642b-3p, miR-92a-3p and miR-92b-3p, but the abundance increases significantly depending on the degree of hemolysis, that is, the hemoglobin concentration. For example, it is preferable to select one of miR-486-5p and miR-92a-3p.
  • the hemolysis marker is selected from miRNAs excluding the target miRNA. That's fine.
  • this value exceeds a predetermined threshold value using the abundance of the hemolysis marker contained in the blood sample or the expression level thereof The presence or absence of hemolysis can be evaluated.
  • a threshold value is exceeded for each individual hemolytic marker. In this case, it is preferable to provide further judgment criteria by prioritizing or weighting individual evaluations using a plurality of hemolytic markers.
  • Threshold values for evaluating the presence or absence of hemolysis can be arbitrarily set according to the purpose of evaluation and the accuracy required.
  • a commercially available blood sample may be used as a standard sample, and the abundance of a hemolysis marker in the standard sample may be used as a threshold for the abundance of the hemolysis marker.
  • the relationship between the hemoglobin concentration of the blood sample and the abundance of the hemolytic marker is measured, and the abundance of the hemolytic marker or a value obtained by multiplying the abundance by an appropriate ratio (for example, 1 to 1.2 times the abundance)
  • a threshold value may be set for (value).
  • a threshold value may be set for the difference or ratio between the amount of endogenous miRNA or the amount of external standard nucleic acid added during RNA extraction or labeling and the amount of hemolytic marker of the present invention.
  • the variation (standard deviation SD) between individuals of the abundance may be measured in advance, and the value of this variation may be used as a threshold for the abundance of the hemolysis marker, For example, a median value + 2SD may be set as the upper limit 95% reliability reference value.
  • the threshold value can be arbitrarily set according to the measurement or examination using the blood sample, and the detection sensitivity of hemolysis can be increased by setting the threshold more strictly.
  • a threshold value used as a reference for evaluating the presence or absence of hemolysis is set in advance with respect to the abundance of the hemolysis marker contained in the blood sample, it can be evaluated using the abundance measurement value e or expression level E. .
  • the measurement value e when used, as shown in Formula 2A, when the measurement value e exceeds the threshold value t1, it can be evaluated that the blood sample is a hemolysis sample.
  • the expression level E when shown in Formula 2B, when the expression level E exceeds the threshold value t2, it can be evaluated that the blood sample is a hemolyzed sample.
  • the threshold values t1 and t2 can be arbitrarily set for each hemolysis marker according to the purpose of evaluation and the accuracy required.
  • a threshold value for evaluating the presence or absence of hemolysis with respect to the difference from the amount of nucleic acid may be set in advance, and the presence or absence of hemolysis may be evaluated depending on whether or not the difference exceeds the threshold value.
  • a threshold value may be arbitrarily determined for each combination of miRNA used as a hemolysis marker and standard endogenous miRNA or external standard nucleic acid.
  • the abundance measurement value e is used as the abundance of the hemolysis marker contained in the blood sample
  • the difference from the measurement value a of the abundance of standard endogenous miRNA or external standard nucleic acid in the blood sample as shown in Formula 3A (E ⁇ a) is obtained, and when the absolute value of this value exceeds the threshold value t3, it can be evaluated that the blood sample is a hemolyzed sample.
  • the expression level E is used as the abundance of the hemolysis marker contained in the blood sample, as shown in Formula 3B, the abundance A in the blood sample of the standard endogenous miRNA or external standard nucleic acid (becomes a constant value) A difference (E ⁇ A) is obtained, and when the absolute value of this value exceeds the threshold value t4, it can be evaluated that the blood sample is a hemolyzed sample.
  • EA- > t4 (Formula 3B)
  • a threshold for evaluating the presence or absence of hemolysis is set in advance with respect to the ratio between the abundance of the hemolysis marker and the abundance of standard endogenous miRNA or external standard nucleic acid, and whether or not the ratio exceeds the threshold.
  • the presence or absence of hemolysis may be evaluated by When a plurality of standard endogenous miRNAs or external standard nucleic acids are used, a threshold value may be arbitrarily determined for each combination of miRNA used as a hemolysis marker and standard endogenous miRNA or external standard nucleic acid.
  • the ratio (e /?) To the measurement value a of the abundance of the standard endogenous miRNA or external standard nucleic acid in the blood sample a) is obtained, and when this value exceeds the threshold value t5, it can be evaluated that the blood sample is a hemolyzed sample.
  • the expression level E is used as the abundance of the hemolytic marker contained in the blood sample, as shown in Formula 4B, the abundance A (which is a constant value) in the blood sample of the standard endogenous miRNA or external standard nucleic acid
  • the ratio (E / A) is obtained, and when this value exceeds the threshold value t6, it can be evaluated that the blood sample is a hemolyzed sample.
  • the thresholds t1 to t6 are given a certain error ⁇ width, and “t1 ⁇ ⁇ ” to “t6 ⁇ ⁇ ”, respectively. Also good.
  • the error ⁇ may be set arbitrarily. For example, in Equation 2A, about 10% of e can be set as ⁇ so that the threshold value t1 has a width.
  • a threshold for each abundance a value obtained by converting the abundance value into a logarithm may be used.
  • an appropriate threshold value may be set according to the conversion. For example, when Expression 4A is applied, the abundance ratio (e / a) may be converted into a logarithmic value, and the threshold value t5 may be set in accordance with the conversion. In this case, as a result, the difference between the logarithmic values of the abundances e and a is obtained.
  • the presence or absence of hemolysis can be evaluated according to the evaluation criteria using the abundance contained in the blood sample for each hemolysis marker, and the results can be combined to determine the presence or absence of hemolysis in the blood sample.
  • the blood sample is a hemolytic sample. It can be evaluated that there is.
  • a blood sample may be evaluated as a hemolytic sample when hemolysis is detected with a specific one type of hemolytic marker.
  • the present invention is miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR- which are miRNAs for detecting hemolysis of a blood sample Hemolysis comprising a support on which a probe for capturing at least one miRNA selected from the group consisting of 6073, miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p is immobilized A detection chip is provided.
  • the present invention also includes a probe for capturing a target miRNA, and miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, which are miRNAs for detecting hemolysis in a blood sample.
  • a chip for miRNA expression analysis comprising a support on which a probe is immobilized.
  • the target miRNA, miRNA (hemolysis marker) for detecting hemolysis, the probe for capturing these, and the support on which these capture probes are immobilized are as described above.
  • the chip for miRNA expression analysis of the present invention is for capturing a housekeeping RNA used in the correction step, a specific correction endogenous miRNA, a correction nucleic acid such as an external standard nucleic acid to be added, particularly a correction endogenous miRNA.
  • the probe may be further immobilized on the support.
  • miRNAs consisting of the nucleotide sequences represented by SEQ ID NOS: 1 to 11 described below are used as miRNAs (hemolysis markers) for detecting the degree or presence of hemolysis in a blood sample.
  • hsa-miR-191-5p gene or “hsa-miR-191-5p” refers to the hsa-miR-191-5p gene consisting of the base sequence represented by SEQ ID NO: 1 ( miRBase Accession No. MIMAT0000440) and other species homologs or orthologs.
  • the hsa-miR-191-5p gene can be obtained by the method described in Lagos-Quintana M et al., 2003, RNA, Vol. 9, p175-179.
  • “Hsa-miR-191-5p” includes the sequence of “hsa-mir-191” (miRBasemiAccession No. MI0000465, SEQ ID NO: 15) having a hairpin-like structure as a precursor.
  • hsa-miR-22-3p gene or “hsa-miR-22-3p” refers to the hsa-miR-22-3p gene consisting of the base sequence represented by SEQ ID NO: 2 ( miRBase Accession No. MIMAT0000077) and other species homologs or orthologs.
  • the hsa-miR-22-3p gene can be obtained by the method described in Lagos-Quintana M et al., 2001, Science, 294, p853-858.
  • “Hsa-miR-22-3p” includes the sequence of “hsa-mir-22” (miRBasemiAccession No. MI0000078, SEQ ID NO: 16) having a hairpin-like structure as a precursor.
  • hsa-miR-3158-5p gene or “hsa-miR-3158-5p” refers to the hsa-miR-3158-5p gene consisting of the base sequence represented by SEQ ID NO: 3 ( miRBase Accession No. MIMAT0019211) and other species homologs or orthologs.
  • the hsa-miR-3158-5p gene can be obtained by the method described in Creighton CJ et al., 2010, PLoS One, Volume 5.
  • “Hsa-miR-3158-5p” has a hairpin-like structure as its precursor, “hsa-mir-3158-1, hsa-mir-3158-2” (miRBase Accession No. MI0014186, MI0014187, SEQ ID NO: 17 and 18).
  • hsa-miR-320a gene or “hsa-miR-320a” refers to the hsa-miR-320a gene (miRBase Accession No. MIMAT0000510) consisting of the base sequence shown in SEQ ID NO: 4. And other species homologues or orthologues.
  • the hsa-miR-320a gene can be obtained by the method described in Michael MZ et al., 2003, Mol Cancer Res, Vol. 1, p882-891.
  • “hsa-miR-320a” includes the sequence of “hsa-mir-320a” (miRBase Accession No. MI0000542, SEQ ID NO: 19) having a hairpin-like structure as a precursor.
  • hsa-miR-484 gene or “hsa-miR-484” refers to the hsa-miR-484 gene consisting of the base sequence represented by SEQ ID NO: 5 (miRBase ⁇ ⁇ Accession ⁇ ⁇ No. MIMAT0002174) And other species homologues or orthologues.
  • the hsa-miR-484 gene can be obtained by the method described in Fu H et al., 2005, FEBS Lett, 579, p3849-3854.
  • “hsa-miR-484” includes the sequence of “hsa-mir-484” (miRBase Accession No. MI0002468, SEQ ID NO: 20) having a hairpin-like structure as a precursor.
  • hsa-miR-486-5p gene or “hsa-miR-486-5p” refers to the hsa-miR-486-5p gene consisting of the base sequence represented by SEQ ID NO: 6 ( miRBase Accession No. MIMAT0002177) and other species homologs or orthologs.
  • the hsa-miR-486-5p gene can be obtained by the method described in Fu H et al., 2005, FEBS Lett, 579, p3849-3854.
  • “Hsa-miR-486-5p” has a hairpin-like structure as a precursor thereof, “hsa-mir-486-1, hsa-mir-486-2” (miRBaseMIAccession ⁇ No. MI0002470, MI0023622, SEQ ID NO: 21, 22).
  • hsa-miR-6073 gene or “hsa-miR-6073” refers to the hsa-miR-6073 gene consisting of the base sequence represented by SEQ ID NO: 7 (miRBase Accession ⁇ ⁇ No. MIMAT0023698). And other species homologues or orthologues.
  • the hsa-miR-6073 gene can be obtained by the method described in Voellenkle C et al., 2012, RNA, 18, p472-484.
  • “Hsa-miR-6073” includes a sequence of “hsa-mir-6073” (miRBase Accession No. MI0020350, SEQ ID NO: 23) having a hairpin-like structure as a precursor.
  • hsa-miR-6131 gene or “hsa-miR-6131” refers to the hsa-miR-6131 gene consisting of the base sequence represented by SEQ ID NO: 8 (miRBase Accession ⁇ ⁇ No. MIMAT0024615). And other species homologues or orthologues.
  • the hsa-miR-6131 gene can be obtained by the method described in Dannemann M et al., 2012, Genome Biol Evol, vol. 4, p552-564.
  • “Hsa-miR-6131” includes the sequence of “hsa-mir-6131” (miRBase Accession No. MI0021276, SEQ ID NO: 24) having a hairpin-like structure as a precursor.
  • hsa-miR-642b-3p gene or “hsa-miR-642b-3p” refers to the hsa-miR-642b-3p gene comprising the nucleotide sequence represented by SEQ ID NO: 9 ( miRBase Accession No. MIMAT0018444) and other species homologs or orthologs.
  • the hsa-miR-642b-3p gene can be obtained by the method described in Witten D et al., 2010, BMC Biol, Vol. 8, p58.
  • “hsa-miR-642b-3p” includes the sequence of “hsa-mir-642b” (miRBase Accession No. MI0016685, SEQ ID NO: 25) having a hairpin-like structure as a precursor.
  • hsa-miR-92a-3p gene or “hsa-miR-92a-3p” refers to the hsa-miR-92a-3p gene consisting of the base sequence represented by SEQ ID NO: 10 ( miRBase Accession No. MIMAT0000092) and other species homologs or orthologs.
  • SEQ ID NO: 10 miRBase Accession No. MIMAT0000092
  • the hsa-miR-92a-3p gene can be obtained by the method described in Mourelatos Z et al., 2002, Genes Dev, 16, p720-728.
  • “Hsa-miR-92a-3p” has a hairpin-like structure as a precursor thereof, “hsa-mir-92a-1, hsa-mir-92a-2” (miRBase Accession No. MI0000093, MI0000094, SEQ ID NO: 26, 27).
  • hsa-miR-92b-3p gene or “hsa-miR-92b-3p” refers to the hsa-miR-92b-3p gene consisting of the base sequence represented by SEQ ID NO: 11 ( miRBase Accession No. MIMAT0003218) and other species homologs or orthologs.
  • SEQ ID NO: 11 miRBase Accession No. MIMAT0003218
  • the hsa-miR-92b-3p gene can be obtained by the method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, 103, p3687-3692.
  • “Hsa-miR-92b-3p” includes the sequence of “hsa-mir-92b” (miRBasemiAccession No. MI0003560, SEQ ID NO: 28) having a hairpin-like structure as a precursor.
  • Example 1 Selection of hemolytic marker (DNA microarray) The following experiment was performed using "3D-Gene” human miRNA oligo chip (compatible with miRBase release 21) manufactured by Toray Industries, Inc.
  • sample RNA RNA contained in the serum sample (hereinafter referred to as “sample RNA”) is extracted using “3D-Gene” RNA extraction reagent from liquid sample kit (Toray Industries, Inc.). did.
  • the obtained sample RNA was labeled using “3D-Gene” “miRNA” labeling kit (Toray Industries, Inc.).
  • the labeled sample RNA was hybridized using “3D-Gene” miRNA chip (Toray Industries, Inc.) according to the standard protocol.
  • the DNA microarray after hybridization was subjected to a microarray scanner (Toray Industries, Inc.), and the fluorescence intensity was measured to obtain the abundance of various miRNAs.
  • the scanner was set to 100% laser output, and the voltage setting of the photomultiplier was set to AUTO.
  • the abundance of various miRNAs detected by the DNA microarray was corrected using the abundance of the endogenous miRNA hsa-miR-149-3p (SEQ ID NO: 12) to obtain the expression levels of the various miRNAs.
  • the expression level was obtained for each serum specimen having hemoglobin concentrations of 0, 40, 80, 100, and 200 mg / dL after detection with a DNA microarray.
  • the ratio between the expression level of each miRNA and the expression level of each miRNA in each serum sample with a hemoglobin concentration of 40, 80, 100, or 200 ⁇ g / dL (( 40, 80, 100 or 200 mg / dL expression level) / (0 mg / dL expression level)).
  • miRNAs that were stably detected in the high expression region were narrowed down.
  • miRNAs whose expression levels varied greatly depending on the degree of hemolysis were selected from the narrowed miRNAs. That is, there is a correlation between the increase in hemoglobin concentration and expression level (expression ratio), and the ratio between the expression level of hemoglobin concentration 0 mg / dL and the expression level of 40 mg / dL ((expression of hemoglobin concentration 40 mg / dL) MiRNA (SEQ ID NOs: 1 to 11) having an amount (quantity) / (0 mg / dL expression level)) of 2 or more was selected as a hemolysis marker. Table 1 shows the expression levels obtained from 11 selected miRNAs and serum samples with hemoglobin concentrations of 40, 80, 100, and 200 mg / dL.
  • the miRNAs (SEQ ID NOs: 1 to 11) shown in Table 1 increased in expression level as the hemoglobin concentration, that is, the degree of hemolysis increased, and the degree thereof was large. That is, it was found that miRNA shown in Table 1 can be used as a hemolysis marker, and hemolysis in a serum sample can be detected by measuring its expression level (abundance).
  • hsa-miR-486-5p (SEQ ID NO: 6) and hsa-miR-92a-3p (SEQ ID NO: 10) show sensitive fluctuations even in slight hemolyzed samples with a hemoglobin concentration of 40 mg / dL. It was found that hemolysis can be detected with higher sensitivity.
  • miRNAs represented by SEQ ID NOS: 1 to 11 of the present invention can detect hemolysis in a serum specimen having a hemoglobin concentration of 100 mg / dL or more.
  • miRNAs represented by SEQ ID NOs: 1 to 5, 8, 9, and 11 are in serum samples having a hemoglobin concentration of 80 mg / dL or more
  • miRNAs represented by SEQ ID NOs: 6 and 10 have a hemoglobin concentration of 40 mg / dL or more. It was shown that hemolysis can be detected with high sensitivity in each serum sample.
  • the serum specimen having a hemoglobin concentration of 200 mg / dL was observed to be reddish with the naked eye, and could be determined to be a hemolyzed specimen.
  • red color was not observable with the naked eye, and all were observed in almost the same color tone and could not be determined as hemolyzed samples. From this, it was found that hemolysis having a hemoglobin concentration of 100 mg / dL or less could not be detected by the conventional method by visual observation.
  • Serum was prepared from blood that was aspirated into a vacuum blood collection tube vigorously from one healthy human, different from Example 1.
  • the hemoglobin concentration was 150 mg / dL.
  • the hemolysis marker of the present invention hsa-miR-486-5p, can correctly detect hemolysis in a serum sample having a hemoglobin concentration of 150 mg / dL.
  • Example 3 In the same manner as in Example 3, a serum sample of one healthy human was prepared. As a result of measuring this serum sample with Eight Check-3WP (Sysmex Corporation), the hemoglobin concentration was 100 mg / dL. Thereafter, in the same manner as in Example 2, the expression level of miRNA derived from a serum sample was obtained. Hsa-miR-486-5p (SEQ ID NO: 6) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 1.
  • the hemolysis marker of the present invention hsa-miR-486-5p
  • hemolysis with a hemoglobin concentration of about 100 mg / dL is said to affect the results of gene expression analysis (particularly in the case of miRNA expression analysis in blood samples).
  • hemolysis can be reliably detected even in a specimen having a hemoglobin concentration of 100 mg / dL, and it has been found that this is an effective method for obtaining an accurate gene expression analysis result.
  • Example 4 Serum specimens were prepared from blood that was slowly aspirated into a vacuum blood collection tube from one healthy human. As a result of measuring this serum sample with Eight Check-3WP (Sysmex Corporation), the hemoglobin concentration was 0 mg / dL. Except for this, the expression level of miRNA derived from a serum sample was obtained in the same manner as in Example 2. Hsa-miR-486-5p (SEQ ID NO: 6) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 1.
  • the expression level of hsa-miR-486-5p derived from the serum sample was 120, which was below the threshold value 1 of 275 for the hemolysis marker, so no hemolysis was detected.
  • hsa-miR-486-5p which is a hemolysis marker of the present invention, can correctly detect a serum sample having a hemoglobin concentration of 0 mg / dL if it is not a hemolyzed sample.
  • ⁇ Comparative example 2> Using the same serum sample having a hemoglobin concentration of 100 mg / dL as used in Example 3, the expression level of miRNA derived from the sample was obtained. Using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker, hemolysis was evaluated using threshold 1 as in Example 2. When the threshold value 1 of hsa-miR-451a was calculated as described in Example 1, it was 1774.
  • the expression level of hsa-miR-451a was 1212, which was below the numerical value 1774 of the threshold value 1 of the miRNA, so that it could not be detected as a hemolyzed sample.
  • the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 100 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining results.
  • Example 3 Using the serum sample having a hemoglobin concentration of 200 mg / dL used in Example 1, the expression level of miRNA derived from the sample was obtained. Using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker, hemolysis was evaluated using threshold 1 as in Example 2.
  • the expression level of hsa-miR-451a was 1182, which was lower than the numerical value 1774 of threshold value 1 of the miRNA, so that it could not be detected as a hemolyzed sample.
  • the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 200 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining results.
  • Example 5 Using the same serum sample having a hemoglobin concentration of 150 mg / dL as used in Example 2, the expression level of miRNA derived from the sample was obtained. Hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and its expression level was obtained in the same manner as in Example 2.
  • a value that is 1.1 times the expression level obtained from the serum sample having a hemoglobin concentration of 80 mg / dL used in Example 1 is obtained, and this is used as the threshold value 2 for the expression level of each hemolytic marker. It was decided to evaluate that it was a hemolyzed specimen.
  • hsa-miR-642b-3p which is a hemolysis marker of the present invention, can correctly detect hemolysis in a serum sample having a hemoglobin concentration of 150 mg / dL.
  • Example 6 Using the same serum sample having a hemoglobin concentration of 100 mg / dL as used in Example 3, the expression level of miRNA derived from the sample was obtained. In the same manner as in Example 5, hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 2.
  • the hemolysis marker of the present invention hsa-miR-642b-3p
  • a hemoglobin concentration of 100 mg / dL has an effect on the results of gene expression analysis (particularly in the case of miRNA expression analysis in blood samples).
  • hemolysis can be reliably detected even in a specimen having a hemoglobin concentration of 100 mg / dL, and it has been found that this is an effective method for obtaining an accurate gene expression analysis result.
  • Example 7 Using the same serum sample having a hemoglobin concentration of 0 mg / dL as used in Example 4, the expression level of miRNA derived from the sample was obtained. In the same manner as in Example 5, hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 2.
  • the expression level of the serum sample-derived hsa-miR-642b-3p was 512, which was lower than 1711 which is the threshold value 2 of the hemolysis marker, so hemolysis was not detected.
  • hsa-miR-642b-3p which is a hemolysis marker of the present invention, can correctly detect a serum sample having a hemoglobin concentration of 0 mg / dL if it is not a hemolyzed sample.
  • ⁇ Comparative example 4> Using miRNA derived from a serum sample having the same hemoglobin concentration of 100 mg / dL as used in Example 3, and using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker As in Example 5, hemolysis was evaluated using threshold value 2. When the threshold value 2 of hsa-miR-451a was determined as described in Example 5, it was 1480.
  • the expression level of hsa-miR-451a was 1200, which was below the value 1480 of threshold value 2 of the miRNA, so that it could not be detected as a hemolyzed sample.
  • the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 100 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining the above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A new method for detecting hemolysis in a blood sample at a high sensitivity is disclosed. With the hemolysis detecting method according to the present invention, at least one type of miRNA the abundance of which increases in a blood sample in which hemolysis is occurring is used as a hemolysis marker, hemolysis in the blood sample is detected by using the abundance thereof as an indicator, and thus, the presence/absence of hemolysis is assessed. With the method according to the present invention, it is possible to detect hemolysis at a high sensitivity even in a blood sample in which the degree of hemolysis is low and spillage of the contents of red blood cells, such as hemoglobin, is low.

Description

血液検体の溶血を検出する方法及び溶血検出用チップMethod for detecting hemolysis of blood sample and chip for hemolysis detection
 本発明は、血液検体の溶血を検出し、溶血の有無を評価する方法、溶血の検出に用いるチップ及びmiRNA発現解析用チップに関する。 The present invention relates to a method for detecting hemolysis of a blood sample and evaluating the presence or absence of hemolysis, a chip used for detection of hemolysis, and a chip for miRNA expression analysis.
 miRNA(マイクロRNA)は、ゲノムDNAからヘアピン様構造のRNA(前駆体)として転写されてくる。この前駆体は、特定の酵素RNase III切断活性を有するdsRNA切断酵素(Drosha、Dicer)により切断された後、二本鎖の形態へと変化し、その後一本鎖となる。そして、片方のアンチセンス鎖がRISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与すると考えられている。このように、miRNAは、転写後、各段階においてその態様は異なるため、通常、miRNAを検出対象とする場合は、ヘアピン構造体、二本鎖構造体、一本鎖構造体等の各種形態を考慮する必要がある。miRNAは15~25塩基のRNAからなり、様々な生物でその存在が確認されている。 MiRNA (microRNA) is transcribed from genomic DNA as RNA (precursor) with a hairpin-like structure. This precursor is cleaved by a dsRNA cleaving enzyme (Drosha, Dicer) having a specific enzyme RNase III cleavage activity, then changed to a double-stranded form, and then becomes a single strand. One of the antisense strands is incorporated into a protein complex called RISC and is considered to be involved in mRNA translational suppression. As described above, miRNA has a different form at each stage after transcription.Therefore, when miRNA is targeted for detection, various forms such as a hairpin structure, a double-stranded structure, and a single-stranded structure are usually used. It is necessary to consider. miRNA consists of RNA of 15 to 25 bases, and its existence has been confirmed in various organisms.
 近年、miRNAは、細胞内のみならず、細胞を含まない検体である血清、血漿などの血液検体にも多く存在し、その存在量が、がんをはじめとした様々な疾患のバイオマーカー(指標)となる可能性が示唆されている。miRNAは、2016年8月現在、ヒトで2500種以上が存在し、高感度なDNAマイクロアレイ等の測定系を利用した場合、そのうちの1000種を超えるmiRNAの存在量を血清・血漿中で同時に検出することが可能である。そこで、DNAマイクロアレイ法を用いて血清・血漿を対象としたバイオマーカー探索研究が実施されており、疾患を早期に発見できるバイオマーカー検査への展開が期待されている。 In recent years, miRNA is present not only in cells but also in blood samples such as serum and plasma, which are samples that do not contain cells, and their abundance is a biomarker (indicator of various diseases including cancer). ) Is suggested. As of August 2016, more than 2500 miRNAs exist in humans, and when using a highly sensitive measurement system such as a DNA microarray, the abundance of more than 1000 miRNAs can be detected simultaneously in serum and plasma. Is possible. Therefore, biomarker search research targeting serum and plasma using the DNA microarray method has been carried out, and development to biomarker tests that can detect diseases early is expected.
 ところが、溶血した血液検体由来のmiRNAでは正確な存在量が測定できないことが知られており、測定結果の信頼性を下げてしまうことがある。疾患のバイオマーカーとして、血液検体に含まれるmiRNAの存在量を測定する検査においては、不確実性を有する存在量の測定値をもとに検査・診断してしまうと、適切な治療の機会を逃したり、間違った医療を適用することで患者に不要な経済的、体力的負担を強いたりすることになる。したがって、存在量を正確に測定するために、溶血の有無を確認し、溶血していない血液検体を検査に使用することがきわめて重要である。 However, it is known that miRNA derived from a hemolyzed blood sample cannot accurately measure the abundance, which may reduce the reliability of the measurement result. As a biomarker of disease, in a test that measures the abundance of miRNA contained in a blood sample, if an examination / diagnosis is performed based on the measurement of the abundance with uncertainty, an appropriate treatment opportunity will be provided. Missing or applying the wrong medical care can put unnecessary financial and physical strain on the patient. Therefore, in order to accurately measure the abundance, it is very important to confirm the presence or absence of hemolysis and use a non-hemolyzed blood sample for the test.
 溶血とは、物理的または化学的、生物学的など様々な要因によって、血液に含まれる赤血球の細胞膜が損傷を受けて壊れ、赤血球の内部にあるヘモグロビンやmiRNAなどが血清や血漿中に流出することである。溶血が起こる原因としては、機械的刺激や化学物質、温度や熱、浸透圧の変化などの他、血液検体に対する振動や超音波などの外部力、電場や磁場などを含めた各種の直接、間接的の物理的な力、凍結融解による状態変化などが考えられるが、溶血の原因はこれらに限定されるものではない。例えば、採血の手技の影響で溶血することが知られており、注射器の不備により血液を吸引するときに泡が入ったり、真空採血管に勢いよく吸引されたりするときに強い渦を巻くことが要因となって溶血することがある。また、抗凝固剤を混ぜるときに強く振とう混和したり、血液検体を運搬するときに強い振動を与えたりすることが要因になることもある。さらには、血清または血漿を分離せずに全血のまま長時間放置しても溶血することが知られている。 Hemolysis is caused by various factors such as physical, chemical or biological damage to the blood cell membrane of erythrocytes in the blood, causing hemoglobin or miRNA to escape into the serum or plasma. That is. Causes of hemolysis include mechanical stimuli, chemical substances, changes in temperature, heat, osmotic pressure, etc., as well as various direct and indirect effects, including external forces such as vibration and ultrasound on blood samples, electric and magnetic fields, etc. However, the cause of hemolysis is not limited to these. For example, it is known that hemolysis occurs due to the influence of blood collection procedures, and bubbles may enter when sucking blood due to inadequate syringes, or strong vortices may be wound when sucked into a vacuum blood collection tube. May cause hemolysis as a factor. In addition, mixing with an anticoagulant may be caused by shaking vigorously or by giving a strong vibration when transporting a blood sample. Furthermore, it is known that hemolysis occurs even when whole blood is left for a long time without separating serum or plasma.
 血液検体中の、赤血球から流出したmiRNAやヘモグロビンなどの量を測定すれば、溶血の程度を評価することができる。例えば、分光光度計などを用いて血液中のヘモグロビン濃度を測定する方法がある。また、肉眼観察による色見本との色調比較が簡便な方法として用いられており、これはヘモグロビンが赤色素であるヘムを持つタンパク質であることを利用している。 The degree of hemolysis can be evaluated by measuring the amount of miRNA, hemoglobin, etc. shed from the red blood cells in the blood sample. For example, there is a method of measuring hemoglobin concentration in blood using a spectrophotometer or the like. In addition, color tone comparison with a color sample by visual observation is used as a simple method, which utilizes the fact that hemoglobin is a protein having heme as a red pigment.
 近年では、上述の通りmiRNAの研究が盛んに行われている中で溶血による測定値への影響も懸念されており、そのような研究の一例として、hsa-miR-451aを血液検体の溶血マーカーとして用いることが報告されている。hsa-miR-451aの存在量と、溶血の影響を受けないhsa-miR-23a-3pの存在量との差を用いて溶血の有無を評価する方法である(非特許文献1)。一方、hsa-miR-451aは、胃癌などの癌マーカーとしても用いられることが報告されている(特許文献1)。 In recent years, as miRNA research is actively conducted as described above, there is a concern about the effect of hemolysis on the measurement value. As one example of such research, hsa-miR-451a is used as a hemolysis marker for blood samples. It has been reported to be used as This is a method for evaluating the presence or absence of hemolysis using the difference between the abundance of hsa-miR-451a and the abundance of hsa-miR-23a-3p that is not affected by hemolysis (Non-patent Document 1). On the other hand, it has been reported that hsa-miR-451a is also used as a cancer marker such as gastric cancer (Patent Document 1).
特開2013-85542号公報JP 2013-85542 JP
 疾患のバイオマーカーとして、血液検体に含まれるmiRNAの存在量を測定する検査においては、標的miRNAのわずかな存在量差が検査結果に影響を与えることから、正確な検査結果を得るために、溶血を高感度に検出して溶血の有無を評価し、溶血していない検体を使用することが重要である。しかしながら、従来の方法である肉眼観察による色見本との色調比較では、例えばヘモグロビン濃度200 mg/dL以上の溶血の程度が大きい検体でなければ、赤色を帯びていることを肉眼で容易に観察することは難しい。溶血の程度が小さい検体では、ヘモグロビン濃度0 mg/dLの検体と比較しても色調の差がわずかであり、肉眼で溶血の有無を見分けることは難しい。また、その判定結果は観察者による個人差の影響を受けやすく、信頼性に欠ける。また、分光光度計などを用いて血液中ヘモグロビン濃度を測定する方法は、miRNAの存在量の測定とは別の測定工程が増えるため、検査費用の増大と工程的な煩雑さをもたらすことから好ましくない。 As a biomarker of disease, in a test that measures the abundance of miRNA contained in a blood sample, a slight abundance difference in the target miRNA affects the test result. It is important to detect the presence or absence of hemolysis, evaluate the presence or absence of hemolysis, and use a non-hemolyzed sample. However, in the color comparison with the color sample by the naked eye which is the conventional method, for example, if the hemoglobin concentration is not less than 200 mg / dL, the red color is easily observed with the naked eye unless the specimen has a high degree of hemolysis. It ’s difficult. Samples with a low degree of hemolysis have a slight color difference even when compared with samples with a hemoglobin concentration of 0 mg / dL, and it is difficult to distinguish the presence or absence of hemolysis with the naked eye. Further, the determination result is easily affected by individual differences by the observer and lacks reliability. In addition, the method of measuring blood hemoglobin concentration using a spectrophotometer or the like is preferable because it requires an additional measurement step separate from the measurement of the abundance of miRNA, resulting in increased test costs and process complexity. Absent.
 前述の溶血マーカーとして用いられているhsa-miR-451aは、本願明細書の比較例3に示すように、ヘモグロビン濃度200 mg/dLの検体でも存在量の変動が小さく、溶血の検出感度が低い。また、前記の通り、hsa-miR-451aは、胃癌などの癌マーカーとしても用いられることが報告されており、検査目的とする疾患のバイオマーカーとしても重複して用いられる場合には、これを溶血マーカーとして用いることは好ましくない。 Hsa-miR-451a used as the above-mentioned hemolysis marker has a small variation in the abundance even in a specimen having a hemoglobin concentration of 200 mg / dL as shown in Comparative Example 3 of the present specification, and has low detection sensitivity of hemolysis . In addition, as described above, hsa-miR-451a has been reported to be used as a cancer marker for gastric cancer and the like. It is not preferable to use it as a hemolysis marker.
 このように、溶血の程度が小さい検体の場合は、従来の方法では溶血を検出することが難しく、正確な遺伝子発現解析の結果を得ることが難しい。本発明が解決しようとする課題は、血液検体から正確な遺伝子発現解析の結果を得るために、例えば、ヘモグロビン濃度100 mg/dLの溶血の程度が小さい検体であっても、簡便かつ高感度に溶血を検出することができるmiRNAを新たな溶血マーカーとして溶血の有無を評価する方法を提供することである。 Thus, in the case of a specimen with a low degree of hemolysis, it is difficult to detect hemolysis with the conventional method, and it is difficult to obtain an accurate gene expression analysis result. The problem to be solved by the present invention is to obtain an accurate gene expression analysis result from a blood sample.For example, even a sample with a low hemolysis concentration of hemoglobin concentration of 100 小 さ い mg / dL can be easily and highly sensitively. To provide a method for evaluating the presence or absence of hemolysis using miRNA capable of detecting hemolysis as a new hemolysis marker.
 本発明者らは上記課題を解決するため鋭意検討の結果、溶血の程度が小さく、ヘモグロビンなどの赤血球の内容物の流出が少ない血液検体であっても、溶血を高感度に検出できるmiRNA、特に疾患バイオマーカーとして血液検体に含まれるmiRNAの存在量を測定する検査における適否を判断可能なレベルの溶血の有無を評価できるmiRNAを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have studied miRNA that can detect hemolysis with high sensitivity, even in a blood sample that has a low degree of hemolysis and a small amount of red blood cell contents such as hemoglobin. As a disease biomarker, a miRNA capable of evaluating the presence or absence of hemolysis at a level that can be judged as appropriate in a test for measuring the abundance of miRNA contained in a blood sample was found, and the present invention was completed.
 本発明は、以下の態様からなる。
(1) 血液検体中のmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAの存在量を測定する測定工程を含む、溶血の検出方法。
(2) miR-191-5pがhsa-miR-191-5pであり、miR-22-3pがhsa-miR-22-3pであり、miR-3158-5pがhsa-miR-3158-5pであり、miR-320aがhsa-miR-320aであり、miR-484がhsa-miR-484であり、miR-486-5pがhsa-miR-486-5pであり、miR-6073がhsa-miR-6073であり、miR-6131がhsa-miR-6131であり、miR-642b-3pがhsa-miR-642b-3pであり、miR-92a-3pがhsa-miR-92a-3pであり、miR-92b-3pがhsa-miR-92b-3pである、(1)に記載の方法。
(3) 前記miRNAが、下記の(a)~(e)のいずれかに示すポリヌクレオチドである、(1)または(2)に記載の溶血の検出方法。
(a) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド。
(b) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列を含むポリヌクレオチド。
(c) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド。
(d) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド。
(e) 前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
(4) 血液検体に含まれる前記miRNAの存在量の測定値を補正し、補正済み測定値を前記miRNAの発現量として取得する補正工程をさらに含む、(1)~(3)のいずれか1項に記載の方法。
(5) 血液検体中の前記miRNAの存在量若しくは発現量、該存在量若しくは発現量と標準内因性miRNA若しくは外部標準核酸の血液検体中存在量との差、又は、該存在量若しくは発現量と標準内因性miRNA若しくは外部標準核酸の血液検体中存在量との比が、溶血の有無を評価するための基準として予め定められた閾値を超える場合に、当該血液検体を溶血検体であると評価する評価工程を含む、(1)~(4)のいずれか1項に記載の方法。
(6) 前記測定工程が、支持体上に固定化された前記miRNAから選択される少なくとも1つのmiRNAを捕捉するためのプローブと、血液検体から抽出され標識物質で標識された核酸試料とを接触させてハイブリダイゼーションを行ない、血液検体に含まれる当該miRNAの存在量を測定する工程である、(1)~(5)のいずれか1項に記載の方法。
(7) 前記測定工程において、血液検体に含まれる前記miRNAから選択される少なくとも1つのmiRNAの存在量の測定と同時に、当該血液検体に含まれる所望の標的miRNAの存在量を測定することを含む、(1)~(6)のいずれか1項に記載の方法。
(8) 血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブが固定化された支持体を含む、溶血検出用チップ。
(9) 血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブ及び所望の標的miRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA発現解析用チップ。
The present invention comprises the following aspects.
(1) miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131, miR-642b in blood samples A method for detecting hemolysis, comprising a measurement step of measuring the abundance of at least one miRNA selected from the group consisting of -3p, miR-92a-3p and miR-92b-3p.
(2) miR-191-5p is hsa-miR-191-5p, miR-22-3p is hsa-miR-22-3p, miR-3158-5p is hsa-miR-3158-5p MiR-320a is hsa-miR-320a, miR-484 is hsa-miR-484, miR-486-5p is hsa-miR-486-5p, miR-6073 is hsa-miR-6073 MiR-6131 is hsa-miR-6131, miR-642b-3p is hsa-miR-642b-3p, miR-92a-3p is hsa-miR-92a-3p, miR-92b The method according to (1), wherein -3p is hsa-miR-92b-3p.
(3) The method for detecting hemolysis according to (1) or (2), wherein the miRNA is a polynucleotide shown in any of the following (a) to (e):
(a) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence;
(b) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence.
(c) a polynucleotide comprising a base sequence represented by any one of SEQ ID NOs: 1 to 11 or a base sequence complementary to a base sequence in which u is t in the base sequence.
(d) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence complementary to the base sequence in which u is t in the base sequence;
(e) a polynucleotide that hybridizes with the polynucleotide of any one of (a) to (d) under stringent conditions.
(4) Any one of (1) to (3), further comprising a correction step of correcting the measurement value of the abundance of the miRNA contained in the blood sample and obtaining the corrected measurement value as the expression level of the miRNA. The method according to item.
(5) The abundance or expression level of the miRNA in the blood sample, the difference between the abundance or expression level and the abundance of the standard endogenous miRNA or external standard nucleic acid in the blood sample, or the abundance or expression level When the ratio of the standard endogenous miRNA or the external standard nucleic acid in the blood sample exceeds a threshold value that is predetermined as a reference for evaluating the presence or absence of hemolysis, the blood sample is evaluated as a hemolytic sample The method according to any one of (1) to (4), comprising an evaluation step.
(6) The measurement step contacts a probe for capturing at least one miRNA selected from the miRNA immobilized on a support and a nucleic acid sample extracted from a blood sample and labeled with a labeling substance. The method according to any one of (1) to (5), wherein hybridization is performed to measure the abundance of the miRNA contained in the blood sample.
(7) The measurement step includes measuring the abundance of a desired target miRNA contained in the blood sample simultaneously with measurement of the abundance of at least one miRNA selected from the miRNA contained in the blood sample. The method according to any one of (1) to (6).
(8) miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073 miRNAs for detecting hemolysis in blood samples , MiR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p, comprising a support on which is immobilized a probe for capturing at least one miRNA selected from the group consisting of miR-92b-3p For chips.
(9) miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073 which are miRNAs for detecting hemolysis in blood samples A probe for capturing at least one miRNA selected from the group consisting of miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p, and a probe for capturing a desired target miRNA A chip for miRNA expression analysis comprising an immobilized support.
 本発明により、従来の方法では困難であった、溶血の程度が小さい血液検体、すなわち赤血球の内容物であるヘモグロビンやmiRNAの流出が少ない血液検体であっても、溶血を高感度に検出することができ、溶血の有無を簡便かつ高感度に評価することができる。特に、ヘモグロビン濃度が100 mg/dL程度の溶血であっても溶血を検出することができるので、標的miRNAのわずかな存在量差が結果に影響を与えるような検査、例えば疾患のバイオマーカーとして血液検体に含まれるmiRNAの存在量を測定する検査において、血液検体としての適否を判断すること(溶血の影響がない血液検体を選択して検査に供すること)が可能となり、信頼性の高い検査結果を得ることができる。 According to the present invention, it is possible to detect hemolysis with high sensitivity even in a blood sample with a low degree of hemolysis, that is, a blood sample in which hemoglobin or miRNA that is the contents of red blood cells is small, which has been difficult with the conventional method. The presence or absence of hemolysis can be easily and highly sensitively evaluated. In particular, hemolysis can be detected even if the hemoglobin concentration is about 100 mg / dL, so that a slight abundance difference in the target miRNA affects the results, for example, blood as a biomarker for disease. Tests that measure the abundance of miRNA contained in a sample makes it possible to determine the suitability of a blood sample (select a blood sample that is not affected by hemolysis and provide it for testing), and provide highly reliable test results Can be obtained.
 本発明は、血液検体の溶血を検出する方法であって、miR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを「溶血マーカー」として用いる方法である。ここで、本明細書において、血液検体の溶血の程度又は有無を検出するための指標となるmiRNAを「溶血マーカー」ということがある。 The present invention is a method for detecting hemolysis of a blood sample, miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR- In this method, at least one miRNA selected from the group consisting of 6073, miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p is used as a “hemolysis marker”. Here, in this specification, miRNA that serves as an index for detecting the degree or presence of hemolysis in a blood sample may be referred to as a “hemolysis marker”.
 「miRNA」は、生体内で作られる鎖長15~25塩基程度の短鎖RNAであるノンコーディングRNA(ncRNA)の一種であり、mRNAの発現を調節する機能を有すると考えられている。miRNAは、ゲノムDNAからからヘアピン様構造のRNA(前駆体)として転写されてくる。この前駆体は、特定の酵素RNase III切断活性を有するdsRNA切断酵素(Drosha、Dicer)により切断された後、二本鎖の形態へと変化し、その後一本鎖となる。そして、片方のアンチセンス鎖がRISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与すると考えられている。このように、miRNAは、転写後、各段階においてその態様は異なるので、通常、miRNAを標的(検出対象)とする場合は、ヘアピン構造体、二本鎖構造体、一本鎖構造体等の各種形態を考慮する必要がある。miRNAは様々な生物でその存在が確認されている。 “MiRNA” is a kind of non-coding RNA (ncRNA) that is a short-chain RNA of about 15 to 25 bases produced in vivo, and is considered to have a function of regulating the expression of mRNA. miRNA is transcribed from genomic DNA as RNA (precursor) with a hairpin-like structure. This precursor is cleaved by a dsRNA cleaving enzyme (Drosha, Dicer) having a specific enzyme RNase III cleavage activity, then changed to a double-stranded form, and then becomes a single strand. One of the antisense strands is incorporated into a protein complex called RISC and is considered to be involved in mRNA translational suppression. As described above, miRNA has different aspects at each stage after transcription. Therefore, when miRNA is targeted (detection target), normally, such as a hairpin structure, a double-stranded structure, a single-stranded structure, etc. Various forms need to be considered. The presence of miRNA has been confirmed in various organisms.
 本発明を適用できる血液検体の由来となる動物種は、ヒト、マウス、ラット、イヌ、ブタ、サル、ハムスター、モルモット、ウシ、ウマ、ウサギ、ヒツジ、ヤギ、ネコ等の哺乳動物などを挙げることができ、これらに限定されるものではないが、中でも、ヒトが好ましい。 Examples of animal species from which blood samples to which the present invention can be applied include mammals such as humans, mice, rats, dogs, pigs, monkeys, hamsters, guinea pigs, cows, horses, rabbits, sheep, goats, cats, etc. Although not limited to these, human is preferable.
 本発明を適用できる血液検体は、生体から分離された検体であり、例えば、血清、血漿などを挙げることができる。 The blood sample to which the present invention can be applied is a sample separated from a living body, and examples thereof include serum and plasma.
 本発明においては、これらの血液検体からRNAを抽出し、このRNAを用いてmiRNAの存在量を測定することができる。RNAの抽出は、公知の方法(例えば、Favaloroらの方法(Favaloro et.al., Methods Enzymol.65: 718 (1980))等)、そのためのキットも各種市販されている(例えば、キアゲン社のmiRNeasy、東レ社の"3D-Gene" RNA extraction reagent from liquid sample等)を適用することができる。 In the present invention, RNA can be extracted from these blood samples, and the abundance of miRNA can be measured using this RNA. RNA extraction is a known method (for example, the method of Favaloro et al. (Favaloro et.al., Methods Enzymol. 65: 718 (1980))), and various kits therefor are commercially available (for example, Qiagen miRNeasy, "3D-Gene" (RNA) extraction (reagent) from liquid (sample) etc. from Toray Industries, Inc. can be applied.
<測定工程>
 本発明の方法は、血液検体に含まれるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAの存在量を測定する工程を含む。また、後述するように、血液検体に含まれる当該miRNAの存在量の測定と同時に、疾患バイオマーカーなどの所望の標的miRNAの存在量や補正用標準核酸の存在量の測定を行ってもよい。
<Measurement process>
The method of the present invention comprises miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131 contained in a blood sample. Measuring the abundance of at least one miRNA selected from the group consisting of miR-642b-3p, miR-92a-3p and miR-92b-3p. Further, as will be described later, simultaneously with the measurement of the abundance of the miRNA contained in the blood sample, the abundance of a desired target miRNA such as a disease biomarker or the abundance of a correction standard nucleic acid may be measured.
 一般に、溶血すると、赤血球の内容物が血清や血漿中に流出するため、血液検体におけるmiRNAを含む核酸の存在量は増加する。本発明の溶血マーカーとして用いるmiRNAは、溶血した検体では存在量が増加するmiRNAとして選択され、溶血の程度、すなわちヘモグロビン濃度と良く相関して存在量が増加するmiRNAである。溶血マーカーを選択する方法としては、例えば、後述する補正によって得られる発現量において、ヘモグロビン濃度0 mg/dLの検体とヘモグロビン濃度40 mg/dLの検体との発現量比が、好ましくは2以上、より好ましくは3以上になるようなmiRNAを選択することが好ましい。また、統計的手法を適用して、遺伝子発現解析の群間比較により、溶血検体において存在量の増加が統計学的に有意であるmiRNAを選抜することができる。例えば、一般に利用されるt検定などに基づく統計解析法を利用すればよい。例えば、統計言語「R」のパッケージ「SAM」(Tusher VG et. al., Proc Natl Acad Sic USA. 2001 98(9)5116-5121)をそのまま適用することもできる。 Generally, when hemolysis occurs, the contents of red blood cells flow out into the serum and plasma, so that the amount of nucleic acid containing miRNA in the blood sample increases. The miRNA used as a hemolysis marker of the present invention is a miRNA that is selected as a miRNA whose abundance increases in a hemolyzed specimen, and whose abundance increases well in correlation with the degree of hemolysis, that is, the hemoglobin concentration. As a method for selecting a hemolysis marker, for example, in the expression level obtained by correction described below, the expression level ratio between the specimen having a hemoglobin concentration of 0 mg / dL and the specimen having a hemoglobin concentration of 40 mg / dL is preferably 2 or more, It is preferable to select miRNAs that are more preferably 3 or more. In addition, by applying a statistical technique, miRNAs whose increase in abundance is statistically significant in hemolyzed specimens can be selected by comparison between groups in gene expression analysis. For example, a statistical analysis method based on a commonly used t test may be used. For example, the statistical language “R” package “SAM” (Tusher VG et. Al., Proc Natl Acad Sic USA. 2001 98 (9) 5116-5121) can be applied as it is.
 前述のとおり、溶血すると赤血球中のmiRNAなどの内容物が血清や血漿中に流出することから、溶血した検体(以下「溶血検体」ともいう。)から得られたRNAと溶血していない検体(以下「非溶血検体」ともいう。)から得られたRNAとを比べると、それぞれに含まれる各種miRNAの存在量に差が生じる。そのため、遺伝子発現解析において、溶血検体が含まれていると、検体間の相関は低下し、血液検体中の標的miRNAの存在量を正確に測定できなくなる。 As described above, since the contents of miRNA in red blood cells flow into serum and plasma when hemolysis occurs, RNA obtained from hemolyzed specimens (hereinafter also referred to as “hemolyzed specimens”) and non-hemolyzed specimens ( Hereinafter, when compared with RNA obtained from “non-hemolyzed specimen”), there is a difference in the abundance of various miRNAs contained therein. Therefore, in a gene expression analysis, if a hemolyzed sample is included, the correlation between the samples decreases, and the abundance of the target miRNA in the blood sample cannot be accurately measured.
 遺伝子発現解析において、標的とするバイオマーカーの存在量比(存在量の変動)が2倍以上である場合、通常、その差は有意であると判断される。つまり、標的バイオマーカーの存在量比が2倍以上となる程度の溶血が存在する場合、その遺伝子発現解析の結果は信頼性に欠けるということになる。例えば、癌マーカーとして知られているLet-7シリーズなどのmiRNAを標的バイオマーカーとする場合において、ヘモグロビン濃度が100 mg/dLである溶血検体から得られる結果とヘモグロビン濃度0 mg/dLの非溶血検体から得られる結果とを比べると、2倍以上の存在量比が生じることがある。その結果、本来非癌であると判定されるべき検体が癌として判定されてしまうことになるなど、その検査結果は不正確で、信頼性に欠けるものとなる。このように、遺伝子発現解析などの標的バイオマーカーのわずかな存在量差が検査結果に影響を与えるような検査においては、1つの基準として、ヘモグロビン濃度が100 mg/dLの検体を溶血検体であるとして検出できることが重要である。 In gene expression analysis, when the abundance ratio (fluctuation in abundance) of target biomarkers is 2 times or more, the difference is usually judged to be significant. In other words, if there is hemolysis to the extent that the abundance ratio of the target biomarker is twice or more, the result of the gene expression analysis will be unreliable. For example, when miRNA such as Let-7 series, which is known as a cancer marker, is used as a target biomarker, results obtained from a hemolyzed sample with a hemoglobin concentration of 100 mg / dL and non-hemolyzed hemoglobin with a hemoglobin concentration of 0 mg / dL When compared with results obtained from specimens, abundance ratios of more than twice may occur. As a result, the test result is inaccurate and unreliable, such as a specimen that should originally be determined to be non-cancerous is determined as cancer. Thus, in a test where a slight difference in the amount of target biomarkers such as gene expression analysis affects the test result, a hemoglobin sample with a hemoglobin concentration of 100 mg / dL is a hemolyzed sample. It is important that it can be detected as
 本発明の方法は、検体に含まれる遺伝子産物の存在量を測定する遺伝子発現解析、例えばマイクロアレイ等のアレイチップを用いた解析や、ポリメラーゼ連鎖反応(PCR)法、シークエンス法による解析において、正確な解析結果を得るために用いることができる。遺伝子発現解析には、例えば、血液検体に含まれるmiRNAを標識し、1又は複数の標的miRNAを捕捉するためのプローブと、溶血マーカーのmiRNAを捕捉するためのプローブとが固定された支持体に標識miRNAを接触させ、プローブでmiRNAを捕捉することにより、各種miRNAの存在量を測定すること、1又は複数の標的miRNAを増幅するためのプローブと、溶血マーカーのmiRNAを増幅するためのプローブとを使用して増幅反応を行い、標的miRNAの存在量を測定することなどが含まれ、さらにこれらの結果を利用して遺伝子発現の解析や検査、例えば、病態を把握するために臨床検体を測定する検査を行うことが含まれる。 The method of the present invention is accurate in gene expression analysis for measuring the abundance of a gene product contained in a specimen, for example, analysis using an array chip such as a microarray, analysis by polymerase chain reaction (PCR) method, or sequencing method. It can be used to obtain analysis results. In gene expression analysis, for example, a miRNA contained in a blood sample is labeled and a probe for capturing one or a plurality of target miRNAs and a probe for capturing a miRNA of a hemolytic marker are immobilized on a support. Contacting the labeled miRNA and capturing the miRNA with the probe, measuring the abundance of various miRNAs, a probe for amplifying one or more target miRNAs, and a probe for amplifying the miRNA of the hemolytic marker To measure the abundance of the target miRNA, and to use these results to analyze and test gene expression, for example, to measure clinical specimens to understand the pathology To perform an inspection.
 以下、溶血マーカーや、後述する標的miRNA、補正用標準核酸等の、核酸を捕捉するためのプローブを、総じて「捕捉プローブ」又は単に「プローブ」ともいい、特にmiRNAを捕捉するためのプローブを「miRNA捕捉プローブ」ともいう。 Hereinafter, probes for capturing nucleic acids, such as hemolytic markers, target miRNAs described later, and standard nucleic acids for correction, are also collectively referred to as “capture probes” or simply “probes”. In particular, probes for capturing miRNAs are “ Also referred to as “miRNA capture probe”.
 miRNAの存在量の測定は、例えば、対象のmiRNAに特異的に結合するプローブを支持体上に固定化したマイクロアレイ等のアレイチップを用いたハイブリダイゼーションアッセイにより行なうことができる。本発明においては、溶血を検出するためのmiRNAを捕捉するための1又は複数の「溶血マーカー捕捉プローブ」が固定化された支持体を含むアレイチップを用いることができる。また、後述する標的miRNAを捕捉するための「標的miRNA捕捉プローブ」、補正用標準核酸を捕捉するための「補正用標準核酸捕捉プローブ」がさらに固定化された支持体を含むアレイチップを用いてもよい。 Measurement of the abundance of miRNA can be performed, for example, by a hybridization assay using an array chip such as a microarray in which a probe that specifically binds to the target miRNA is immobilized on a support. In the present invention, an array chip including a support on which one or a plurality of “hemolytic marker capture probes” for capturing miRNA for detecting hemolysis is immobilized can be used. In addition, by using an array chip including a support on which a “target miRNA capture probe” for capturing a target miRNA described later and a “standard nucleic acid capture probe for correction” for capturing a standard nucleic acid for correction are further immobilized. Also good.
 「捕捉プローブ」又は「捕捉するためのプローブ」とは、捕捉対象のmiRNAと直接的又は間接的に、好ましくは直接的に、かつ選択的に結合し得る物質を意味し、代表的な例として、核酸、タンパク質、糖類及び他の抗原性化合物を挙げることができる。本発明においては、核酸プローブを好ましく用いることができる。核酸は、DNAやRNAのほか、PNA(ペプチド核酸)やLNA(Locked Nucleic Acid)などの核酸誘導体を用いることができる。ここで誘導体とは、核酸の場合、蛍光団などによるラベル化誘導体、修飾ヌクレオチド(例えば、ハロゲン、メチルなどのアルキル、メトキシなどのアルコキシ、チオ、カルボキシメチルなどの基を含むヌクレオチド、及び塩基の再構成、二重結合の飽和、脱アミノ化、酸素分子の硫黄分子への置換などを受けたヌクレオチドなど)を含む誘導体などの化学修飾誘導体を意味する。 “Capture probe” or “probe for capturing” means a substance capable of binding directly or indirectly, preferably directly and selectively to the miRNA to be captured. , Nucleic acids, proteins, saccharides and other antigenic compounds. In the present invention, a nucleic acid probe can be preferably used. In addition to DNA and RNA, nucleic acid derivatives such as PNA (peptide nucleic acid) and LNA (LockedLNucleic ほ か Acid) can be used as the nucleic acid. Here, in the case of nucleic acid, a derivative means a labeled derivative with a fluorophore, a modified nucleotide (for example, a nucleotide containing a group such as halogen, alkyl such as methyl, alkoxy such as methoxy, thio, carboxymethyl, etc.) Means a chemically modified derivative such as a derivative comprising a nucleotide having undergone a constitution, saturation of a double bond, deamination, substitution of an oxygen molecule with a sulfur molecule, and the like.
 核酸プローブの鎖長は、ハイブリダイゼーションの安定性と特異性を確保する観点から、検出対象とするmiRNAの長さ以上とすることが好ましい。通常、17~25塩基程度の鎖長とすれば、プローブが対象とするmiRNAへの選択的結合性を十分に発揮することができる。そのような鎖長の短いオリゴ核酸プローブは、周知の化学合成法等により容易に調製することができる。 The chain length of the nucleic acid probe is preferably not less than the length of the miRNA to be detected from the viewpoint of ensuring the stability and specificity of hybridization. Usually, if the chain length is about 17 to 25 bases, the probe can sufficiently exhibit selective binding to the target miRNA. Such an oligonucleic acid probe having a short chain length can be easily prepared by a known chemical synthesis method or the like.
 核酸プローブは、対象のmiRNAと完全に相補的な塩基配列とすることが好ましいが、一部に相違があっても、対象のmiRNAとストリンジェントな条件でハイブリダイズできる程度に相同性の高い塩基配列であれば、捕捉プローブとして使用可能である。 It is preferable that the nucleic acid probe has a base sequence that is completely complementary to the target miRNA. However, even if there are some differences, the base is highly homologous enough to hybridize with the target miRNA under stringent conditions. Any array can be used as a capture probe.
 ハイブリダイゼーション時のストリンジェンシーは、温度、塩濃度、プローブの鎖長、プローブのヌクレオチド配列のGC含量及びハイブリダイゼーション緩衝液中のカオトロピック剤の濃度の関数であることが知られている。ストリンジェントな条件としては、例えば、Sambrook, J. et al. (1998) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New Yorkに記載された条件などを用いることができる。ストリンジェントな温度条件は、約30℃以上である。その他の条件としては、ハイブリダイゼーション時間、洗浄剤(例えば、SDS)の濃度、及びキャリアDNAの存否等であり、これらの条件を組み合わせることによって、様々なストリンジェンシーを設定することができる。当業者は、所望する検体RNAの検出のために用意した捕捉プローブとしての機能を得るための条件を適宜決定することができる。 It is known that the stringency during hybridization is a function of temperature, salt concentration, probe chain length, GC content of the nucleotide sequence of the probe, and the concentration of the chaotropic agent in the hybridization buffer. For example, the conditions described in Sambrook, J. et al. (1998) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New York can be used. . Stringent temperature conditions are about 30 ° C or higher. Other conditions include the hybridization time, the concentration of the detergent (eg, SDS), the presence or absence of carrier DNA, and various stringencies can be set by combining these conditions. Those skilled in the art can appropriately determine conditions for obtaining a function as a capture probe prepared for detection of a desired sample RNA.
 miRNAの配列情報は、GenBank(http://www.ncbi.nlm.nih.gov/genbank/)等のデータベースやmiRBaseのウェブサイト(http://www.mirbase.org/)から入手することができる。溶血マーカー捕捉プローブ、標的miRNA捕捉プローブ及び補正用標準核酸捕捉プローブは、これらのサイトから入手できる配列情報に基づいて設計することができる。 miRNA sequence information can be obtained from databases such as GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and miRBase website (http://www.mirbase.org/). it can. A hemolytic marker capture probe, a target miRNA capture probe, and a standard nucleic acid capture probe for correction can be designed based on sequence information available from these sites.
 支持体上に固定化されるmiRNA捕捉プローブの数は特に限定されない。例えば、配列が同定されている公知のmiRNAの全てを網羅する数のmiRNA捕捉プローブを支持体上に固定化したものを用いて、miRNAの存在量を測定してもよいし、検査目的等に応じて所望の数のmiRNA捕捉プローブを支持体上に固定化したものを用いてもよい。 The number of miRNA capture probes immobilized on the support is not particularly limited. For example, the abundance of miRNA may be measured using a fixed number of miRNA capture probes covering all known miRNAs whose sequences have been identified on a support, or for testing purposes, etc. Accordingly, a desired number of miRNA capture probes immobilized on a support may be used.
 捕捉プローブが整列固定化される支持体としては、公知のマイクロアレイやマクロアレイ等で使用されている支持体と同様のものを用いることができ、例えば、スライドガラスや膜、ビーズなどを用いることができる。特許第4244788号等に記載されている、表面に複数の凸部を有する形状の支持体を用いることもできる。支持体の材質は、特に限定されないが、ガラス、セラミック、シリコンなどの無機材料;ポリエチレンテレフタレート、酢酸セルロース、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、シリコーンゴム等のポリマーなどを挙げることができる。 As the support on which the capture probes are aligned and fixed, the same support as that used in known microarrays and macroarrays can be used. For example, a slide glass, a membrane, beads or the like can be used. it can. A support having a shape having a plurality of convex portions on the surface described in Japanese Patent No. 4244788 can also be used. The material of the support is not particularly limited, and examples thereof include inorganic materials such as glass, ceramic, and silicon; polymers such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, polymethyl methacrylate, and silicone rubber.
 支持体に捕捉プローブを固定化する方法としては、支持体表面上でオリゴDNAを合成する方法と、あらかじめ合成しておいたオリゴDNAを支持体表面へ滴下し固定する方法が知られている。 As a method for immobilizing a capture probe on a support, there are known a method of synthesizing oligo DNA on the surface of the support and a method of dropping oligo DNA synthesized in advance on the surface of the support and immobilizing it.
 前者の方法としては、Ronaldらの方法(米国特許第5705610号明細書)、Michelらの方法(米国特許第6142266号明細書)、Francescoらの方法(米国特許第7037659号明細書)が挙げられる。これらの方法ではDNA合成反応時に有機溶媒を用いるため、支持体は有機溶媒に耐性のある材質であることが望ましい。また、Francescoらの方法では、支持体の裏面から光を照射してDNA合成を制御するため、支持体は透光性を有する材質であることが好ましい。 Examples of the former method include the method of Ronald et al. (US Pat. No. 5,705,610), the method of Michel et al. (US Pat. No. 6,142,266), and the method of Francesco et al. (US Pat. No. 7037659). . In these methods, since an organic solvent is used during the DNA synthesis reaction, the support is preferably made of a material resistant to the organic solvent. In the method of Francesco et al., DNA synthesis is controlled by irradiating light from the back surface of the support, and therefore the support is preferably made of a light-transmitting material.
 後者の方法としては、廣田らの方法(特許第3922454号)やスポッターを用いる方法を挙げることができる。スポットの方式としては、固相へのピン先端の機械的な接触によるピン方式、インクジェットプリンターの原理を利用したインクジェット方式、毛細管によるキャピラリー方式等が挙げられる。スポット処理した後は、必要に応じてUV照射によるクロスリンキング、表面のブロッキング等の後処理が行なわれる。表面処理した支持体表面に共有結合でオリゴDNAを固定化させるため、オリゴDNAの末端にはアミノ基やSH基等の官能基が導入される。支持体の表面修飾は、通常、アミノ基等を有するシランカップリング剤処理によって行なわれる。 Examples of the latter method include the method of Hirota et al. (Patent No. 3922454) and a method using a spotter. Examples of the spot method include a pin method based on mechanical contact of a pin tip with a solid phase, an ink jet method utilizing the principle of an ink jet printer, and a capillary method using a capillary tube. After spot treatment, post-treatment such as cross-linking by UV irradiation and surface blocking is performed as necessary. In order to immobilize the oligo DNA by covalent bonding to the surface of the surface-treated support, a functional group such as an amino group or an SH group is introduced at the end of the oligo DNA. The surface modification of the support is usually performed by treatment with a silane coupling agent having an amino group or the like.
 支持体上に固定化された各種miRNA捕捉プローブとのハイブリダイゼーションは、検体から抽出したRNAから、標識物質で標識された核酸試料(検体由来の核酸試料)を調製し、この標識核酸試料をプローブと接触させることにより実施する。「検体由来の核酸試料」には、検体から抽出したRNAのほか、該RNAから逆転写反応により調製されたcDNA及びcRNAが包含される。標識された検体由来の核酸試料は、検体RNAを直接的又は間接的に標識物質で標識したものでもよいし、また、検体RNAから調製されたcDNAやcRNAを直接的又は間接的に標識物質で標識したものでもよい。 For hybridization with various miRNA capture probes immobilized on a support, a nucleic acid sample labeled with a labeling substance (sample-derived nucleic acid sample) is prepared from RNA extracted from the sample, and the labeled nucleic acid sample is probed. It is carried out by contacting with. The “sample-derived nucleic acid sample” includes not only RNA extracted from the sample, but also cDNA and cRNA prepared from the RNA by a reverse transcription reaction. The labeled sample-derived nucleic acid sample may be a sample obtained by directly or indirectly labeling a sample RNA with a labeling substance, or a cDNA or cRNA prepared from the sample RNA may be directly or indirectly labeled with a labeling substance. It may be labeled.
 検体由来の核酸試料に標識物質を結合させる方法としては、核酸試料の3'末端に標識物質を結合させる方法、5'末端に標識物質を結合させる方法、標識物質が結合したヌクレオチドを核酸に取り込ませる方法を挙げることができる。3'末端に標識物質を結合させる方法、5'末端に標識物質を結合させる方法では酵素反応を用いることができる。酵素反応には、T4 RNA LigaseやTerminal Deoxitidil Transferase、Poly A polymeraseなどを用いることができる。いずれの標識方法も「Shao-Yao Ying編、miRNA実験プロトコール、羊土社、2008年」に記載されている方法を参考にすることができる。また、RNAの末端に直接又は間接的に標識物質を結合させるためのキットが各種市販されている。例えば、3'末端に直接又は間接的に標識物質を結合させるキットとしては、"3D-Gene" miRNA labeling kit(東レ社)、miRCURY miRNA HyPower labeling kit(エキシコン社)、NCode miRNA Labeling system(ライフテクノロジーズ社)、FlashTag Biotin RNA Labeling Kit(ジェニスフィア社)等を例示することができる。 Methods for binding a labeling substance to a sample-derived nucleic acid sample include binding a labeling substance to the 3 ′ end of the nucleic acid sample, binding a labeling substance to the 5 ′ end, and incorporating a nucleotide bound to the labeling substance into the nucleic acid. Can be mentioned. An enzymatic reaction can be used in the method of binding a labeling substance to the 3 ′ end and the method of binding a labeling substance to the 5 ′ end. For the enzyme reaction, T4-RNA Ligase, Terminal Deoxitidil Transferase, Poly A-polymerase, etc. can be used. Any labeling method can be referred to the method described in “Shao-YaoYYing, edited by miRNA experiment protocol, Yodosha, 2008”. Various kits for binding a labeling substance directly or indirectly to the end of RNA are commercially available. For example, as a kit for binding a labeling substance directly or indirectly to the 3 ′ end, “3D-Gene” miRNA labeling kit (Toray), miRCURYmimiRNA HyPower labeling kit (Exicon), NCode miRNA Labeling system (Life Technologies Co., Ltd.), FlashTag Biotin RNA Labeling Kit (Genisphere), and the like.
 このほか、従来法と同様に、標識したデオキシリボヌクレオチド又は標識したリボヌクレオチドの存在下で検体RNAからcDNA又はcRNAを合成することにより、標識物質が取り込まれたcDNA又はcRNAを調製し、これをアレイ上のプローブとハイブリダイズさせる、という方法も可能である。 In addition, as in the conventional method, cDNA or cRNA incorporating a labeled substance is prepared by synthesizing cDNA or cRNA from sample RNA in the presence of labeled deoxyribonucleotides or labeled ribonucleotides, and this is arrayed. A method of hybridizing with the above probe is also possible.
 本発明において、使用できる標識物質としては、公知のマイクロアレイ解析においても使用されている各種の標識物質を挙げることができる。具体的には、蛍光色素、りん光色素、酵素、放射線同位体などが挙げられるが、これらに限定されない。好ましいのは、測定が簡便で、検出しやすい蛍光色素である。具体的には、シアニン(シアニン2)、アミノメチルクマリン、フルオロセイン、インドカルボシアニン(シアニン3)、シアニン3.5、テトラメチルローダミン、ローダミンレッド、テキサスレッド、インドカルボシアニン(シアニン5)、シアニン5.5、シアニン7、オイスターなどの公知の蛍光色素が挙げられるが、これらに限定されない。 In the present invention, examples of labeling substances that can be used include various labeling substances that are also used in known microarray analysis. Specific examples include fluorescent dyes, phosphorescent dyes, enzymes, and radioisotopes, but are not limited thereto. Preferred are fluorescent dyes that are easy to measure and easy to detect. Specifically, cyanine (cyanine 2), aminomethylcoumarin, fluorescein, indocarbocyanine (cyanine 3), cyanine 3.5, tetramethylrhodamine, rhodamine red, Texas red, indocarbocyanine (cyanine 5), cyanine Examples include, but are not limited to, 5.5, cyanine 7, and known fluorescent dyes such as oyster.
 また、標識物質としては、発光性を有する半導体微粒子を用いてもよい。このような半導体微粒子としては、例えばカドミウムセレン(CdSe)、カドミウムテルル(CdTe)、インジウムガリウムリン(InGaP)、シルバーインジウム硫化亜鉛(AgInZnS)などが挙げられる。 Further, as the labeling substance, semiconductor fine particles having a light emitting property may be used. Examples of such semiconductor fine particles include cadmium selenium (CdSe), cadmium tellurium (CdTe), indium gallium phosphide (InGaP), silver indium zinc sulfide (AgInZnS), and the like.
 上記のようにして標識された検体由来の核酸試料を支持体上のmiRNA捕捉プローブと接触させ、核酸試料とプローブをハイブリダイズさせる。このハイブリダイゼーション工程は、従来と全く同様に行うことができる。反応温度及び時間は、ハイブリダイズさせる核酸の鎖長に応じて適宜選択されるが、核酸のハイブリダイゼーションの場合、通常、30℃~70℃程度で1分間~十数時間である。ハイブリダイゼーションを行ない、洗浄後、支持体上の個々のプローブ固定化領域における標識物質からのシグナル強度を検出する。シグナル強度の検出は、標識物質の種類に応じて適当なシグナル読取装置を用いて行なう。蛍光色素を標識物質として用いた場合には、蛍光顕微鏡や蛍光スキャナー等を用いればよい。 The nucleic acid sample derived from the specimen labeled as described above is brought into contact with the miRNA capture probe on the support, and the nucleic acid sample and the probe are hybridized. This hybridization step can be performed in the same manner as in the past. The reaction temperature and time are appropriately selected according to the chain length of the nucleic acid to be hybridized, but in the case of nucleic acid hybridization, it is usually about 30 ° C. to 70 ° C. for 1 minute to several tens of hours. Hybridization is performed, and after washing, the signal intensity from the labeling substance in each probe-immobilized region on the support is detected. The signal intensity is detected using an appropriate signal reader according to the type of labeling substance. When a fluorescent dye is used as a labeling substance, a fluorescence microscope or a fluorescence scanner may be used.
 検出された蛍光強度の測定値は、周辺ノイズと比較される。具体的には、プローブ固定化領域から得られた測定値と、それ以外の位置から得られた測定値を比較し、前者の数値が上回っている場合を検出された(有効判定陽性)とする。 Measured value of detected fluorescence intensity is compared with ambient noise. Specifically, the measured value obtained from the probe-immobilized region is compared with the measured value obtained from other positions, and the case where the former numerical value is exceeded is detected (effective determination positive). .
 検出された測定値に、バックグラウンドノイズが含まれている場合には、バックグラウンドノイズを減算してもよい。周辺ノイズをバックグラウンドノイズとして、検出した測定値から減算することもできる。その他、「藤淵航、堀本勝久編、マイクロアレイデータ統計解析プロトコール、羊土社、2008年」に記載されている方法を用いてもよい。 If the detected measurement value includes background noise, the background noise may be subtracted. The ambient noise can be subtracted from the detected measurement value as background noise. In addition, you may use the method described in "Fujitoko, Katsuhisa Horimoto edition, microarray data statistical analysis protocol, Yodosha, 2008".
<補正工程>
 測定工程で得られた溶血マーカーの存在量として、測定値をそのまま用いてもよいが、補正用標準核酸を用いて測定値を補正し、補正済み測定値を溶血マーカーの発現量として取得し、この発現量を用いて溶血の評価を行ってもよい。特に、遺伝子解析等の目的で高感度に溶血を検出しようとする場合は、補正用標準核酸を用いて測定値を補正して得た発現量を用いて評価することが好ましい。
<Correction process>
As the abundance of the hemolytic marker obtained in the measurement step, the measurement value may be used as it is, but the measurement value is corrected using a standard nucleic acid for correction, and the corrected measurement value is obtained as the expression level of the hemolysis marker. The expression level may be used to evaluate hemolysis. In particular, when hemolysis is to be detected with high sensitivity for the purpose of gene analysis or the like, it is preferable to evaluate using the expression level obtained by correcting the measured value using the standard nucleic acid for correction.
 補正用標準核酸は、U1snoRNA、U2snoRNA、U3snoRNA、U4snoRNA、U5snoRNA、U6snoRNA、5S rRNA、5.8S rRNAといったハウスキーピングRNA(特開2007-75095号公報; 特開2007-97429号公報など参照)や、特定の補正用内因性miRNA(Roberts, T.C.ら、2014年、PLoS ONE、第9(2)巻、e89237; Chen, X.ら、2013年、PLoS ONE、第8(11)巻、e79652; WO 2016/043170など参照)を用いて補正してもよいし、RNAの抽出時や標識時に添加した外部標準核酸を用いて補正してもよい。「内因性」とは、人工的に検体に添加されたものではなく、検体に自然に存在することを意味する。例えば「内因性miRNA」と言った場合、検体中に自然に存在している、その検体を提供した生物に由来するmiRNAを示し、hsa-miR-149-3p(配列番号12)、hsa-miR-2861(配列番号13)、hsa-miR-4463(配列番号14)などが含まれる。これら内因性miRNAは溶血検体であっても存在量が変わらないことがわかっており、本発明の方法を適用して、血液検体に含まれる疾患バイオマーカーなど所望の標的miRNAの遺伝子発現解析を行う場合は、そのような存在量が一定の内因性miRNAを利用して、この存在量の測定値を一定値に補正する方法を用いることが好ましい。本明細書では、溶血の有無にかかわらず血液検体中の存在量が一定である内因性miRNAを「標準内因性miRNA」と呼ぶことがある。また、検体に依存されないスパイクコントロールなどの外部標準核酸を利用して、この存在量の測定値を一定値に補正する方法を用いてもよい。例えば、溶血マーカーの発現量Eは、式1に示すように、溶血検体であっても存在量が変わらないことがわかっているmiRNA(標準内因性miRNA)の存在量の測定値aを一定値Aへ補正するための補正係数(A/a)を用いて、溶血マーカーの存在量の測定値eを補正して取得することができる。
  E = e×A/a  (式1)
Standard nucleic acids for correction include housekeeping RNAs such as U1snoRNA, U2snoRNA, U3snoRNA, U4snoRNA, U5snoRNA, U6snoRNA, 5S rRNA, and 5.8S rRNA (see JP 2007-75095 A; JP 2007-97429 A). Endogenous miRNA for correction of (Roberts, TC et al., 2014, PLoS ONE, 9 (2), e89237; Chen, X. et al., 2013, PLoS ONE, 8 (11), e79652; WO 2016 / 043170 or the like) or by using an external standard nucleic acid added during RNA extraction or labeling. “Endogenous” means not naturally added to the specimen, but naturally present in the specimen. For example, “endogenous miRNA” refers to miRNA that is naturally present in the sample and is derived from the organism that provided the sample, hsa-miR-149-3p (SEQ ID NO: 12), hsa-miR -2861 (SEQ ID NO: 13), hsa-miR-4463 (SEQ ID NO: 14) and the like are included. These endogenous miRNAs are known to remain in abundance even in hemolyzed specimens, and gene expression analysis of desired target miRNAs such as disease biomarkers contained in blood specimens is performed by applying the method of the present invention. In such a case, it is preferable to use a method of correcting the measured value of the abundance to a constant value using endogenous miRNA having a constant abundance. In the present specification, an endogenous miRNA whose abundance in a blood sample is constant regardless of the presence or absence of hemolysis may be referred to as a “standard endogenous miRNA”. Alternatively, a method of correcting the measured value of the abundance to a constant value using an external standard nucleic acid such as spike control that does not depend on the specimen may be used. For example, the expression level E of the hemolytic marker is a constant value of the measured value a of the abundance of miRNA (standard endogenous miRNA) whose abundance is known to remain unchanged even in hemolyzed samples, as shown in Equation 1. Using the correction coefficient (A / a) for correcting to A, the measurement value e of the abundance of the hemolytic marker can be corrected and acquired.
E = e x A / a (Formula 1)
<評価工程>
 本発明の方法では、使用する溶血マーカーの存在量に対し、溶血の有無を評価するための基準とする閾値を予め設定しておいてよい。閾値は溶血マーカーごとに設定される。測定した溶血マーカーの存在量が予め任意に定めた閾値を超える場合に、当該検体が溶血検体であると評価することができる。より厳格な又は高精度の評価を行う場合には、溶血マーカーの存在量として、前述の補正工程で得られた発現量を用いることが好ましい。
<Evaluation process>
In the method of the present invention, a threshold value used as a reference for evaluating the presence or absence of hemolysis may be set in advance for the amount of hemolysis marker to be used. The threshold is set for each hemolysis marker. When the measured abundance of the hemolytic marker exceeds a predetermined threshold value, it can be evaluated that the specimen is a hemolytic specimen. When performing a stricter or high-precision evaluation, it is preferable to use the expression level obtained in the above-described correction step as the abundance of the hemolytic marker.
 1つの溶血マーカーを用いる場合には、miR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pから1つのmiRNAを任意に選択すればよいが、溶血の程度、すなわちヘモグロビン濃度に依存して存在量が顕著に増加するものを選択することが好ましく、例えば、miR-486-5p、miR-92a-3pのいずれかを選択することが好ましい。また、より厳格な又は高精度の評価を行う場合には、複数の溶血マーカーを用いることが好ましい。例えば、2~5個の溶血マーカーを用いることがより好ましく、特に、miR-486-5p及びmiR-92a-3pの2つを選択することが好ましい。また、例えば、遺伝子発現解析を目的とする場合であって、発現解析対象とする標的miRNAが本発明の溶血マーカーのいずれかに該当する場合は、当該標的miRNAを除くmiRNAから溶血マーカーを選択すればよい。 When using one hemolysis marker, miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131, One miRNA may be arbitrarily selected from miR-642b-3p, miR-92a-3p and miR-92b-3p, but the abundance increases significantly depending on the degree of hemolysis, that is, the hemoglobin concentration. For example, it is preferable to select one of miR-486-5p and miR-92a-3p. Moreover, when performing stricter or highly accurate evaluation, it is preferable to use a plurality of hemolytic markers. For example, it is more preferable to use 2 to 5 hemolysis markers, and it is particularly preferable to select two of miR-486-5p and miR-92a-3p. In addition, for example, in the case of gene expression analysis, and when the target miRNA targeted for expression analysis corresponds to any of the hemolysis markers of the present invention, the hemolysis marker is selected from miRNAs excluding the target miRNA. That's fine.
 本発明の溶血マーカーの中から1つのmiRNAを用いる場合には、血液検体に含まれる当該溶血マーカーの存在量、又はその発現量を用いて、この値が予め任意に定める閾値を超えるか否かによって溶血の有無を評価することができる。本発明の溶血マーカーの中から複数のmiRNAを用いる場合には、個々の溶血マーカーごとに閾値を超えるか否かを評価してもよい。この場合には、複数の溶血マーカーによる個々の評価に優先順位付けや重み付けをすること等により、さらなる判断基準を設けることが好ましい。 When using one miRNA from the hemolysis marker of the present invention, whether or not this value exceeds a predetermined threshold value using the abundance of the hemolysis marker contained in the blood sample or the expression level thereof The presence or absence of hemolysis can be evaluated. When a plurality of miRNAs are used from among the hemolytic markers of the present invention, it may be evaluated whether or not a threshold value is exceeded for each individual hemolytic marker. In this case, it is preferable to provide further judgment criteria by prioritizing or weighting individual evaluations using a plurality of hemolytic markers.
 溶血の有無を評価するための閾値は、評価の目的や求める精度などに応じて任意に設定することができる。例えば、市販されている血液検体を標準検体として、標準検体における溶血マーカーの存在量を当該溶血マーカーの存在量の閾値としてもよい。また、血液検体のヘモグロビン濃度と当該溶血マーカーの存在量との関係を測定し、当該溶血マーカーの存在量又はその存在量に適当な比率を乗じた値(例えば、存在量の1~1.2倍の値)に閾値を設定してもよい。また、前述した内因性miRNA、もしくはRNAの抽出時や標識時に添加した外部標準核酸の存在量と、本発明の溶血マーカーの存在量との差もしくは比に閾値を設定してもよい。さらに、個々の溶血マーカーごとに、存在量の個体間のバラつき(標準偏差SD)を予め測定しておき、このバラつきの値を使用して溶血マーカーの存在量の閾値に設定してもよく、例えば上限95%信頼性基準値として中央値+2SDの値を設定してもよい。個体間のバラつきを測定する際は、できるだけ多くの個体、例えば数十~数百程度の個体から血液検体を得て測定を行なうことが望ましい。このように、血液検体を使用する測定や検査に応じて、閾値は任意に設定することができ、より厳しく設定することで、溶血の検出感度を高くすることができる。 Threshold values for evaluating the presence or absence of hemolysis can be arbitrarily set according to the purpose of evaluation and the accuracy required. For example, a commercially available blood sample may be used as a standard sample, and the abundance of a hemolysis marker in the standard sample may be used as a threshold for the abundance of the hemolysis marker. Further, the relationship between the hemoglobin concentration of the blood sample and the abundance of the hemolytic marker is measured, and the abundance of the hemolytic marker or a value obtained by multiplying the abundance by an appropriate ratio (for example, 1 to 1.2 times the abundance) A threshold value may be set for (value). In addition, a threshold value may be set for the difference or ratio between the amount of endogenous miRNA or the amount of external standard nucleic acid added during RNA extraction or labeling and the amount of hemolytic marker of the present invention. Furthermore, for each hemolytic marker, the variation (standard deviation SD) between individuals of the abundance may be measured in advance, and the value of this variation may be used as a threshold for the abundance of the hemolysis marker, For example, a median value + 2SD may be set as the upper limit 95% reliability reference value. When measuring the variation between individuals, it is desirable to obtain blood samples from as many individuals as possible, for example, about several tens to several hundreds of individuals. As described above, the threshold value can be arbitrarily set according to the measurement or examination using the blood sample, and the detection sensitivity of hemolysis can be increased by setting the threshold more strictly.
 血液検体に含まれる溶血マーカーの存在量に対し、溶血の有無を評価するための基準とする閾値を予め設定する場合は、存在量の測定値eもしくは発現量Eを用いて評価することができる。測定値eを用いる場合は、式2Aに示すように、測定値eが閾値t1を上回る場合に血液検体が溶血検体であると評価することができる。発現量Eを用いて評価する場合は、式2Bに示すように、発現量Eが閾値t2を上回る場合に血液検体が溶血検体であると評価することができる。閾値t1、t2は、個々の溶血マーカーごとに、評価の目的や求める精度などに応じて、それぞれ任意に設定することができる。
  e>t1  (式2A)
  E>t2  (式2B)
When a threshold value used as a reference for evaluating the presence or absence of hemolysis is set in advance with respect to the abundance of the hemolysis marker contained in the blood sample, it can be evaluated using the abundance measurement value e or expression level E. . When the measurement value e is used, as shown in Formula 2A, when the measurement value e exceeds the threshold value t1, it can be evaluated that the blood sample is a hemolysis sample. When evaluating using the expression level E, as shown in Formula 2B, when the expression level E exceeds the threshold value t2, it can be evaluated that the blood sample is a hemolyzed sample. The threshold values t1 and t2 can be arbitrarily set for each hemolysis marker according to the purpose of evaluation and the accuracy required.
e> t1 (Formula 2A)
E> t2 (Formula 2B)
 また、溶血マーカーの存在量と、溶血検体であっても存在量が変わらないことがわかっている内因性miRNA(標準内因性miRNA)や、RNAの抽出時や標識時に添加した外部標準核酸などの核酸の存在量との差に対し、溶血の有無を評価するための閾値を予め設定し、その差がその閾値を超えるか否かによって溶血の有無を評価してもよい。複数の標準内因性miRNA又は外部標準核酸を用いる場合は、溶血マーカーとして用いるmiRNAと、標準内因性miRNA又は外部標準核酸との組み合わせごとに、閾値を任意に定めればよい。血液検体に含まれる溶血マーカーの存在量として存在量の測定値eを用いる場合は、式3Aに示すように、標準内因性miRNA又は外部標準核酸の血液検体中存在量の測定値aとの差(e-a)を求め、この値の絶対値が閾値t3を上回る場合に血液検体が溶血検体であると評価することができる。血液検体に含まれる溶血マーカーの存在量として発現量Eを用いる場合は、式3Bに示すように、標準内因性miRNA又は外部標準核酸の血液検体中の存在量A(一定値となる)との差(E-A)を求め、この値の絶対値が閾値t4を上回る場合に血液検体が溶血検体であると評価することができる。
  |e-a|>t3  (式3A)
  |E-A|>t4  (式3B)
In addition, the presence of hemolytic markers and endogenous miRNAs (standard endogenous miRNAs) that are known to remain unchanged even in hemolyzed samples, external standard nucleic acids added during RNA extraction and labeling, etc. A threshold value for evaluating the presence or absence of hemolysis with respect to the difference from the amount of nucleic acid may be set in advance, and the presence or absence of hemolysis may be evaluated depending on whether or not the difference exceeds the threshold value. When a plurality of standard endogenous miRNAs or external standard nucleic acids are used, a threshold value may be arbitrarily determined for each combination of miRNA used as a hemolysis marker and standard endogenous miRNA or external standard nucleic acid. When the abundance measurement value e is used as the abundance of the hemolysis marker contained in the blood sample, the difference from the measurement value a of the abundance of standard endogenous miRNA or external standard nucleic acid in the blood sample as shown in Formula 3A (E−a) is obtained, and when the absolute value of this value exceeds the threshold value t3, it can be evaluated that the blood sample is a hemolyzed sample. When the expression level E is used as the abundance of the hemolysis marker contained in the blood sample, as shown in Formula 3B, the abundance A in the blood sample of the standard endogenous miRNA or external standard nucleic acid (becomes a constant value) A difference (E−A) is obtained, and when the absolute value of this value exceeds the threshold value t4, it can be evaluated that the blood sample is a hemolyzed sample.
| e−a | > t3 (Formula 3A)
| EA- > t4 (Formula 3B)
 あるいは、溶血マーカーの存在量と、標準内因性miRNAや外部標準核酸の存在量との比に対し、溶血の有無を評価するための閾値を予め設定し、その比がその閾値を超えるか否かによって溶血の有無を評価してもよい。複数の標準内因性miRNA又は外部標準核酸を用いる場合は、溶血マーカーとして用いるmiRNAと、標準内因性miRNA又は外部標準核酸との組み合わせごとに、閾値を任意に定めればよい。血液検体に含まれる溶血マーカーの存在量の測定値eを用いる場合は、式4Aに示すように、標準内因性miRNA又は外部標準核酸の血液検体中存在量の測定値aとの比(e/a)を求め、この値が閾値t5を上回る場合に血液検体が溶血検体であると評価することができる。血液検体に含まれる溶血マーカーの存在量として発現量Eを用いる場合は、式4Bに示すように、標準内因性miRNA又は外部標準核酸の血液検体中の存在量A(一定値となる)との比(E/A)を求め、この値が閾値t6を上回る場合に血液検体が溶血検体であると評価することができる。
  e/a>t5  (式4A)
  E/A>t6  (式4B)
Alternatively, a threshold for evaluating the presence or absence of hemolysis is set in advance with respect to the ratio between the abundance of the hemolysis marker and the abundance of standard endogenous miRNA or external standard nucleic acid, and whether or not the ratio exceeds the threshold The presence or absence of hemolysis may be evaluated by When a plurality of standard endogenous miRNAs or external standard nucleic acids are used, a threshold value may be arbitrarily determined for each combination of miRNA used as a hemolysis marker and standard endogenous miRNA or external standard nucleic acid. When the measurement value e of the abundance of the hemolytic marker contained in the blood sample is used, as shown in Formula 4A, the ratio (e /?) To the measurement value a of the abundance of the standard endogenous miRNA or external standard nucleic acid in the blood sample a) is obtained, and when this value exceeds the threshold value t5, it can be evaluated that the blood sample is a hemolyzed sample. When the expression level E is used as the abundance of the hemolytic marker contained in the blood sample, as shown in Formula 4B, the abundance A (which is a constant value) in the blood sample of the standard endogenous miRNA or external standard nucleic acid The ratio (E / A) is obtained, and when this value exceeds the threshold value t6, it can be evaluated that the blood sample is a hemolyzed sample.
e / a> t5 (Formula 4A)
E / A> t6 (Formula 4B)
 ここで、上記の式2A~式4Bにおいて、実験の誤差等を考慮して、閾値t1~t6に一定の誤差αの幅を持たせて、それぞれ「t1±α」~「t6±α」としてもよい。この場合の誤差αは任意に設定すればよいが、例えば、式2Aにおいては、eの10%程度をαとして設定して閾値t1に幅を持たせることができる。 Here, in the above formulas 2A to 4B, in consideration of experimental errors, etc., the thresholds t1 to t6 are given a certain error α width, and “t1 ± α” to “t6 ± α”, respectively. Also good. In this case, the error α may be set arbitrarily. For example, in Equation 2A, about 10% of e can be set as α so that the threshold value t1 has a width.
 また、各存在量の閾値として、存在量の値を対数に変換したものを用いてもよい。この場合、その変換にあわせて適切な閾値を設定すればよい。例えば、式4Aを適用する場合に、存在量比(e/a)を対数値に変換し、その変換にあわせて閾値t5を設定すればよい。この場合、結果的に、存在量e、aの各対数値の差を求めることになる。 Also, as a threshold for each abundance, a value obtained by converting the abundance value into a logarithm may be used. In this case, an appropriate threshold value may be set according to the conversion. For example, when Expression 4A is applied, the abundance ratio (e / a) may be converted into a logarithmic value, and the threshold value t5 may be set in accordance with the conversion. In this case, as a result, the difference between the logarithmic values of the abundances e and a is obtained.
 また、個々の溶血マーカーごとに血液検体に含まれる存在量を用いて、評価基準に従って溶血の有無を評価し、その結果を総合して血液検体の溶血の有無を判定することができる。具体的には、例えば、溶血マーカーごとの判定において、溶血を検出した溶血マーカーの数が、溶血を検出しなかった溶血マーカーの数又は任意の所定数を上回る場合に、血液検体を溶血検体であると評価することができる。また、より厳格な又は高精度の評価を行う場合には、特定の1種の溶血マーカーで溶血を検出した場合に、血液検体を溶血検体であると評価してもよい。 Further, the presence or absence of hemolysis can be evaluated according to the evaluation criteria using the abundance contained in the blood sample for each hemolysis marker, and the results can be combined to determine the presence or absence of hemolysis in the blood sample. Specifically, for example, in the determination for each hemolytic marker, when the number of hemolytic markers that have detected hemolysis exceeds the number of hemolytic markers that have not detected hemolysis or any predetermined number, the blood sample is a hemolytic sample. It can be evaluated that there is. Further, in the case of performing stricter or high-precision evaluation, a blood sample may be evaluated as a hemolytic sample when hemolysis is detected with a specific one type of hemolytic marker.
 本発明は、血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブが固定化された支持体を含む、溶血検出用チップを提供する。また、本発明は、標的miRNAを捕捉するためのプローブと、血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA発現解析用チップを提供する。ここで、標的miRNA、溶血を検出するためのmiRNA(溶血マーカー)、これらを捕捉するためのプローブ、また、これらの捕捉プローブが固定化される支持体は、前記のとおりである。 The present invention is miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR- which are miRNAs for detecting hemolysis of a blood sample Hemolysis comprising a support on which a probe for capturing at least one miRNA selected from the group consisting of 6073, miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p is immobilized A detection chip is provided. The present invention also includes a probe for capturing a target miRNA, and miR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, which are miRNAs for detecting hemolysis in a blood sample. for capturing at least one miRNA selected from the group consisting of miR-484, miR-486-5p, miR-6073, miR-6131, miR-642b-3p, miR-92a-3p and miR-92b-3p Provided is a chip for miRNA expression analysis comprising a support on which a probe is immobilized. Here, the target miRNA, miRNA (hemolysis marker) for detecting hemolysis, the probe for capturing these, and the support on which these capture probes are immobilized are as described above.
 本発明のmiRNA発現解析用チップは、前記の補正工程で用いるハウスキーピングRNA、特定の補正用内因性miRNA、添加する外部標準核酸等の補正用核酸、特に補正用内因性miRNAを捕捉するためのプローブが、さらに支持体に固定化されていてもよい。 The chip for miRNA expression analysis of the present invention is for capturing a housekeeping RNA used in the correction step, a specific correction endogenous miRNA, a correction nucleic acid such as an external standard nucleic acid to be added, particularly a correction endogenous miRNA. The probe may be further immobilized on the support.
 本発明においては、以下に説明する配列番号1~11で示される塩基配列からなるmiRNAを、血液検体の溶血の程度又は有無を検出するためのmiRNA(溶血マーカー)として使用する。 In the present invention, miRNAs consisting of the nucleotide sequences represented by SEQ ID NOS: 1 to 11 described below are used as miRNAs (hemolysis markers) for detecting the degree or presence of hemolysis in a blood sample.
 本明細書で使用される「hsa-miR-191-5p遺伝子」又は「hsa-miR-191-5p」という用語は、配列番号1で示される塩基配列からなるhsa-miR-191-5p遺伝子(miRBase Accession No. MIMAT0000440)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-191-5p遺伝子は、Lagos-Quintana Mら、2003年、RNA、9巻、p175-179に記載される方法によって得ることができる。また、「hsa-miR-191-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-191」(miRBase Accession No. MI0000465、配列番号15)の配列を含む。 As used herein, the term “hsa-miR-191-5p gene” or “hsa-miR-191-5p” refers to the hsa-miR-191-5p gene consisting of the base sequence represented by SEQ ID NO: 1 ( miRBase Accession No. MIMAT0000440) and other species homologs or orthologs. The hsa-miR-191-5p gene can be obtained by the method described in Lagos-Quintana M et al., 2003, RNA, Vol. 9, p175-179. “Hsa-miR-191-5p” includes the sequence of “hsa-mir-191” (miRBasemiAccession No. MI0000465, SEQ ID NO: 15) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-22-3p遺伝子」又は「hsa-miR-22-3p」という用語は、配列番号2で示される塩基配列からなるhsa-miR-22-3p遺伝子(miRBase Accession No. MIMAT0000077)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-22-3p遺伝子は、Lagos-Quintana Mら、2001年、Science、294巻、p853-858に記載される方法によって得ることができる。また、「hsa-miR-22-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-22」(miRBase Accession No. MI0000078、配列番号16)の配列を含む。 As used herein, the term “hsa-miR-22-3p gene” or “hsa-miR-22-3p” refers to the hsa-miR-22-3p gene consisting of the base sequence represented by SEQ ID NO: 2 ( miRBase Accession No. MIMAT0000077) and other species homologs or orthologs. The hsa-miR-22-3p gene can be obtained by the method described in Lagos-Quintana M et al., 2001, Science, 294, p853-858. “Hsa-miR-22-3p” includes the sequence of “hsa-mir-22” (miRBasemiAccession No. MI0000078, SEQ ID NO: 16) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-3158-5p遺伝子」又は「hsa-miR-3158-5p」という用語は、配列番号3で示される塩基配列からなるhsa-miR-3158-5p遺伝子(miRBase Accession No. MIMAT0019211)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-3158-5p遺伝子は、Creighton CJら、2010年、PLoS One、5巻に記載される方法によって得ることができる。また、「hsa-miR-3158-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-3158-1、hsa-mir-3158-2」(miRBase Accession No. MI0014186、MI0014187、配列番号17、18)の配列を含む。 As used herein, the term “hsa-miR-3158-5p gene” or “hsa-miR-3158-5p” refers to the hsa-miR-3158-5p gene consisting of the base sequence represented by SEQ ID NO: 3 ( miRBase Accession No. MIMAT0019211) and other species homologs or orthologs. The hsa-miR-3158-5p gene can be obtained by the method described in Creighton CJ et al., 2010, PLoS One, Volume 5. “Hsa-miR-3158-5p” has a hairpin-like structure as its precursor, “hsa-mir-3158-1, hsa-mir-3158-2” (miRBase Accession No. MI0014186, MI0014187, SEQ ID NO: 17 and 18).
 本明細書で使用される「hsa-miR-320a遺伝子」又は「hsa-miR-320a」という用語は、配列番号4で示される塩基配列からなるhsa-miR-320a遺伝子(miRBase Accession No. MIMAT0000510)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-320a遺伝子は、Michael MZら、2003年、Mol Cancer Res、1巻、p882-891に記載される方法によって得ることができる。また、「hsa-miR-320a」は、その前駆体としてヘアピン様構造をとる「hsa-mir-320a」(miRBase Accession No. MI0000542、配列番号19)の配列を含む。 As used herein, the term “hsa-miR-320a gene” or “hsa-miR-320a” refers to the hsa-miR-320a gene (miRBase Accession No. MIMAT0000510) consisting of the base sequence shown in SEQ ID NO: 4. And other species homologues or orthologues. The hsa-miR-320a gene can be obtained by the method described in Michael MZ et al., 2003, Mol Cancer Res, Vol. 1, p882-891. In addition, “hsa-miR-320a” includes the sequence of “hsa-mir-320a” (miRBase Accession No. MI0000542, SEQ ID NO: 19) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-484遺伝子」又は「hsa-miR-484」という用語は、配列番号5で示される塩基配列からなるhsa-miR-484遺伝子(miRBase Accession No. MIMAT0002174)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-484遺伝子は、Fu Hら、2005年、FEBS Lett、579巻、p3849-3854に記載される方法によって得ることができる。また、「hsa-miR-484」は、その前駆体としてヘアピン様構造をとる「hsa-mir-484」(miRBase Accession No. MI0002468、配列番号20)の配列を含む。 As used herein, the term “hsa-miR-484 gene” or “hsa-miR-484” refers to the hsa-miR-484 gene consisting of the base sequence represented by SEQ ID NO: 5 (miRBase か ら Accession 塩 基 No. MIMAT0002174) And other species homologues or orthologues. The hsa-miR-484 gene can be obtained by the method described in Fu H et al., 2005, FEBS Lett, 579, p3849-3854. In addition, “hsa-miR-484” includes the sequence of “hsa-mir-484” (miRBase Accession No. MI0002468, SEQ ID NO: 20) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-486-5p遺伝子」又は「hsa-miR-486-5p」という用語は、配列番号6で示される塩基配列からなるhsa-miR-486-5p遺伝子(miRBase Accession No. MIMAT0002177)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-486-5p遺伝子は、Fu Hら、2005年、FEBS Lett、579巻、p3849-3854に記載される方法によって得ることができる。また、「hsa-miR-486-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-486-1、hsa-mir-486-2」(miRBase Accession No. MI0002470、MI0023622、配列番号21、22)の配列を含む。 As used herein, the term “hsa-miR-486-5p gene” or “hsa-miR-486-5p” refers to the hsa-miR-486-5p gene consisting of the base sequence represented by SEQ ID NO: 6 ( miRBase Accession No. MIMAT0002177) and other species homologs or orthologs. The hsa-miR-486-5p gene can be obtained by the method described in Fu H et al., 2005, FEBS Lett, 579, p3849-3854. “Hsa-miR-486-5p” has a hairpin-like structure as a precursor thereof, “hsa-mir-486-1, hsa-mir-486-2” (miRBaseMIAccession 番号 No. MI0002470, MI0023622, SEQ ID NO: 21, 22).
 本明細書で使用される「hsa-miR-6073遺伝子」又は「hsa-miR-6073」という用語は、配列番号7で示される塩基配列からなるhsa-miR-6073遺伝子(miRBase Accession No. MIMAT0023698)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-6073遺伝子は、Voellenkle Cら、2012年、RNA、18巻、p472-484に記載される方法によって得ることができる。また、「hsa-miR-6073」は、その前駆体としてヘアピン様構造をとる「hsa-mir-6073」(miRBase Accession No. MI0020350、配列番号23)の配列を含む。 As used herein, the term “hsa-miR-6073 gene” or “hsa-miR-6073” refers to the hsa-miR-6073 gene consisting of the base sequence represented by SEQ ID NO: 7 (miRBase Accession 配 列 No. MIMAT0023698). And other species homologues or orthologues. The hsa-miR-6073 gene can be obtained by the method described in Voellenkle C et al., 2012, RNA, 18, p472-484. “Hsa-miR-6073” includes a sequence of “hsa-mir-6073” (miRBase Accession No. MI0020350, SEQ ID NO: 23) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-6131遺伝子」又は「hsa-miR-6131」という用語は、配列番号8で示される塩基配列からなるhsa-miR-6131遺伝子(miRBase Accession No. MIMAT0024615)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-6131遺伝子は、Dannemann Mら、2012年、Genome Biol Evol、4巻、p552-564に記載される方法によって得ることができる。また、「hsa-miR-6131」は、その前駆体としてヘアピン様構造をとる「hsa-mir-6131」(miRBase Accession No. MI0021276、配列番号24)の配列を含む。 As used herein, the term “hsa-miR-6131 gene” or “hsa-miR-6131” refers to the hsa-miR-6131 gene consisting of the base sequence represented by SEQ ID NO: 8 (miRBase Accession 塩 基 No. MIMAT0024615). And other species homologues or orthologues. The hsa-miR-6131 gene can be obtained by the method described in Dannemann M et al., 2012, Genome Biol Evol, vol. 4, p552-564. “Hsa-miR-6131” includes the sequence of “hsa-mir-6131” (miRBase Accession No. MI0021276, SEQ ID NO: 24) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-642b-3p遺伝子」又は「hsa-miR-642b-3p」という用語は、配列番号9で示される塩基配列からなるhsa-miR-642b-3p遺伝子(miRBase Accession No. MIMAT0018444)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-642b-3p遺伝子は、Witten Dら、2010年、BMC Biol、8巻、p58に記載される方法によって得ることができる。また、「hsa-miR-642b-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-642b」(miRBase Accession No. MI0016685、配列番号25)の配列を含む。 As used herein, the term “hsa-miR-642b-3p gene” or “hsa-miR-642b-3p” refers to the hsa-miR-642b-3p gene comprising the nucleotide sequence represented by SEQ ID NO: 9 ( miRBase Accession No. MIMAT0018444) and other species homologs or orthologs. The hsa-miR-642b-3p gene can be obtained by the method described in Witten D et al., 2010, BMC Biol, Vol. 8, p58. In addition, “hsa-miR-642b-3p” includes the sequence of “hsa-mir-642b” (miRBase Accession No. MI0016685, SEQ ID NO: 25) having a hairpin-like structure as a precursor.
 本明細書で使用される「hsa-miR-92a-3p遺伝子」又は「hsa-miR-92a-3p」という用語は、配列番号10で示される塩基配列からなるhsa-miR-92a-3p遺伝子(miRBase Accession No. MIMAT0000092)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-92a-3p遺伝子は、Mourelatos Zら、2002年、Genes Dev、16巻、p720-728に記載される方法によって得ることができる。また、「hsa-miR-92a-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-92a-1、hsa-mir-92a-2」(miRBase Accession No. MI0000093、MI0000094、配列番号26、27)の配列を含む。 As used herein, the term “hsa-miR-92a-3p gene” or “hsa-miR-92a-3p” refers to the hsa-miR-92a-3p gene consisting of the base sequence represented by SEQ ID NO: 10 ( miRBase Accession No. MIMAT0000092) and other species homologs or orthologs. The hsa-miR-92a-3p gene can be obtained by the method described in Mourelatos Z et al., 2002, Genes Dev, 16, p720-728. “Hsa-miR-92a-3p” has a hairpin-like structure as a precursor thereof, “hsa-mir-92a-1, hsa-mir-92a-2” (miRBase Accession No. MI0000093, MI0000094, SEQ ID NO: 26, 27).
 本明細書で使用される「hsa-miR-92b-3p遺伝子」又は「hsa-miR-92b-3p」という用語は、配列番号11で示される塩基配列からなるhsa-miR-92b-3p遺伝子(miRBase Accession No. MIMAT0003218)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-92b-3p遺伝子は、Cummins JMら、2006年、Proc Natl Acad Sci U S A、103巻、p3687-3692に記載される方法によって得ることができる。また、「hsa-miR-92b-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-92b」(miRBase Accession No. MI0003560、配列番号28)の配列を含む。 As used herein, the term “hsa-miR-92b-3p gene” or “hsa-miR-92b-3p” refers to the hsa-miR-92b-3p gene consisting of the base sequence represented by SEQ ID NO: 11 ( miRBase Accession No. MIMAT0003218) and other species homologs or orthologs. The hsa-miR-92b-3p gene can be obtained by the method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, 103, p3687-3692. “Hsa-miR-92b-3p” includes the sequence of “hsa-mir-92b” (miRBasemiAccession No. MI0003560, SEQ ID NO: 28) having a hairpin-like structure as a precursor.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
<実施例1> 溶血マーカーの選択
(DNAマイクロアレイ)
 東レ株式会社製の"3D-Gene" human miRNA oligo chip(miRBase release 21対応)を用いて以下の実験を行なった。
<Example 1> Selection of hemolytic marker (DNA microarray)
The following experiment was performed using "3D-Gene" human miRNA oligo chip (compatible with miRBase release 21) manufactured by Toray Industries, Inc.
(血清検体の調製)
 健常ヒトより、真空採血管に勢いよく吸引させた場合と、真空採血管にゆっくりと吸引させた場合の2条件で採血し、それぞれ血清を調製した。真空採血管に勢いよく吸引させた血清検体は、赤色を帯びており、エイトチェック-3WP(シスメックス社)で測定した結果、ヘモグロビン濃度は200 mg/dLであり、溶血検体であった。一方、真空採血管にゆっくりと吸引させた血清検体のヘモグロビン濃度は0 mg/dLであり、非溶血検体であった。この2つの血清検体を混合して、ヘモグロビン濃度が0、40、80、100、200mg/dL、全量が400μLとなるように調整した血液検体を用意した。得られた血清検体を-80℃に設定した冷凍庫に収容し、下記に述べるRNA抽出作業まで、そのまま静置した。
(Preparation of serum sample)
Blood was collected from healthy humans under two conditions: when sucked vigorously into a vacuum blood collection tube and when slowly sucked into the vacuum blood collection tube, and serum was prepared respectively. The serum sample that was vigorously aspirated into the vacuum blood collection tube was reddish, and as a result of measurement with Eightcheck-3WP (Sysmex Corporation), the hemoglobin concentration was 200 mg / dL and was a hemolyzed sample. On the other hand, the hemoglobin concentration of the serum sample slowly sucked into the vacuum blood collection tube was 0 mg / dL, which was a non-hemolyzed sample. These two serum samples were mixed to prepare blood samples adjusted to have hemoglobin concentrations of 0, 40, 80, 100, 200 mg / dL and a total amount of 400 μL. The obtained serum specimen was stored in a freezer set at −80 ° C. and left as it was until the RNA extraction operation described below.
(検体RNAの調製とmiRNA発現量の測定)
 上記のように調製された血清検体を同時に溶解し、血清検体に含まれるRNA(以下、検体RNAという。)を、"3D-Gene" RNA extraction reagent from liquid sample kit(東レ社)を用いて抽出した。
(Preparation of sample RNA and measurement of miRNA expression level)
The serum sample prepared as described above is dissolved simultaneously, and RNA contained in the serum sample (hereinafter referred to as “sample RNA”) is extracted using “3D-Gene” RNA extraction reagent from liquid sample kit (Toray Industries, Inc.). did.
 得られた検体RNAを、"3D-Gene" miRNA labeling kit(東レ社)を用いて標識した。標識した検体RNAについて、"3D-Gene" miRNA chip(東レ社)を用い、その標準プロトコールに従い、ハイブリダイゼーションを行った。ハイブリダイゼーション後のDNAマイクロアレイをマイクロアレイスキャナー(東レ社)に供して蛍光強度を測定し、各種miRNAの存在量を取得した。スキャナーの設定は、レーザー出力100%、フォトマルチプライヤーの電圧設定をAUTO設定にした。 The obtained sample RNA was labeled using “3D-Gene” “miRNA” labeling kit (Toray Industries, Inc.). The labeled sample RNA was hybridized using “3D-Gene” miRNA chip (Toray Industries, Inc.) according to the standard protocol. The DNA microarray after hybridization was subjected to a microarray scanner (Toray Industries, Inc.), and the fluorescence intensity was measured to obtain the abundance of various miRNAs. The scanner was set to 100% laser output, and the voltage setting of the photomultiplier was set to AUTO.
 DNAマイクロアレイで検出された各種miRNAの存在量を、内因性miRNAであるhsa-miR-149-3p(配列番号12)の存在量を用いて補正し、各種miRNAの発現量を取得した。 The abundance of various miRNAs detected by the DNA microarray was corrected using the abundance of the endogenous miRNA hsa-miR-149-3p (SEQ ID NO: 12) to obtain the expression levels of the various miRNAs.
 以上のようにして、DNAマイクロアレイでの検出後、ヘモグロビン濃度0、40、80、100、200 mg/dLの各血清検体について、発現量を取得した。 As described above, the expression level was obtained for each serum specimen having hemoglobin concentrations of 0, 40, 80, 100, and 200 mg / dL after detection with a DNA microarray.
(溶血マーカーの選択)
 上記のようにして得られた各血清検体のmiRNAの発現量を比較し、以下のようにして、溶血の程度に依存して発現量が変動する程度の大きいmiRNAを、溶血マーカーとして選択した。
(Selection of hemolysis marker)
The miRNA expression levels of the serum samples obtained as described above were compared, and miRNAs whose expression levels varied depending on the degree of hemolysis were selected as hemolysis markers as follows.
 まず、ヘモグロビン濃度0 mg/dLの血清検体を基準として、その各種miRNAの発現量と、ヘモグロビン濃度40、80、100、200 mg/dLの各血清検体における各種miRNAの発現量との比((40、80、100又は200 mg/dLの発現量)/(0 mg/dLの発現量))を求めた。 First, the ratio between the expression level of each miRNA and the expression level of each miRNA in each serum sample with a hemoglobin concentration of 40, 80, 100, or 200 μg / dL (( 40, 80, 100 or 200 mg / dL expression level) / (0 mg / dL expression level)).
 次に、発現が検出されたmiRNAのうち、高発現領域で安定して検出されるmiRNAを絞り込んだ。 Next, of the miRNAs whose expression was detected, miRNAs that were stably detected in the high expression region were narrowed down.
 さらに、絞り込んだmiRNAのなかから、溶血の程度に依存して発現量が変動する程度が大きいmiRNAを選択した。すなわち、ヘモグロビン濃度と発現量(発現量比)の増加に相関が見られ、ヘモグロビン濃度0 mg/dLの発現量と40 mg/dLの発現量との比((ヘモグロビン濃度40 mg/dLの発現量)/(0 mg/dLの発現量))が2以上であるmiRNA(配列番号1~11)を溶血マーカーとして選択した。選択した11種のmiRNAと、ヘモグロビン濃度40、80、100、200 mg/dLの血清検体から得られた各発現量を表1に示す。 Furthermore, miRNAs whose expression levels varied greatly depending on the degree of hemolysis were selected from the narrowed miRNAs. That is, there is a correlation between the increase in hemoglobin concentration and expression level (expression ratio), and the ratio between the expression level of hemoglobin concentration 0 mg / dL and the expression level of 40 mg / dL ((expression of hemoglobin concentration 40 mg / dL) MiRNA (SEQ ID NOs: 1 to 11) having an amount (quantity) / (0 mg / dL expression level)) of 2 or more was selected as a hemolysis marker. Table 1 shows the expression levels obtained from 11 selected miRNAs and serum samples with hemoglobin concentrations of 40, 80, 100, and 200 mg / dL.
 表1に示すmiRNA(配列番号1~11)は、ヘモグロビン濃度すなわち溶血の程度が高くなるにつれて、発現量が増加し、その程度が大きかった。すなわち、表1に示すmiRNAは溶血マーカーとして用いることができ、その発現量(存在量)を測定することによって、血清検体の溶血を検出できることが分かった。特に、hsa-miR-486-5p(配列番号6)およびhsa-miR-92a-3p(配列番号10)は、ヘモグロビン濃度40 mg/dLの軽微な溶血検体においても鋭敏な変動を示しており、より高感度に溶血を検出できることが分かった。 The miRNAs (SEQ ID NOs: 1 to 11) shown in Table 1 increased in expression level as the hemoglobin concentration, that is, the degree of hemolysis increased, and the degree thereof was large. That is, it was found that miRNA shown in Table 1 can be used as a hemolysis marker, and hemolysis in a serum sample can be detected by measuring its expression level (abundance). In particular, hsa-miR-486-5p (SEQ ID NO: 6) and hsa-miR-92a-3p (SEQ ID NO: 10) show sensitive fluctuations even in slight hemolyzed samples with a hemoglobin concentration of 40 mg / dL. It was found that hemolysis can be detected with higher sensitivity.
(閾値の設定)
 健常と疾患を含むヒト300名よりそれぞれ採血し、血清を調製した。上記と同様に、各血清検体に含まれるRNAを抽出し、各種miRNAの存在量を取得した。内因性miRNAであるhsa-miR-149-3p(配列番号12)を用いて各種miRNAの存在量を補正し、発現量を取得した。表1に示す溶血マーカーごとに、300検体の発現量の中央値+2SDを求め、この数値を各溶血マーカーの発現量の閾値1とした。表1は、各miRNAの発現量が閾値1を上回る場合に、その血液検体が溶血検体であると判定できることを示す。
(Threshold setting)
Blood was collected from 300 humans including normal and diseased, and serum was prepared. In the same manner as described above, RNA contained in each serum sample was extracted to obtain the abundance of various miRNAs. The abundance of various miRNAs was corrected using hsa-miR-149-3p (SEQ ID NO: 12), which is an endogenous miRNA, to obtain expression levels. For each hemolysis marker shown in Table 1, the median expression level of 2 samples + 2SD was determined, and this value was used as the threshold value 1 for the expression level of each hemolysis marker. Table 1 shows that when the expression level of each miRNA exceeds the threshold 1, the blood sample can be determined to be a hemolyzed sample.
 表1に示すとおり、本発明の配列番号1~11で示される全てのmiRNAは、少なくともヘモグロビン濃度100 mg/dL以上の血清検体において溶血を検出することができることが示された。特に、配列番号1~5、8、9、11で示されるmiRNAは、ヘモグロビン濃度80 mg/dL以上の血清検体において、配列番号6、10で示されるmiRNAは、ヘモグロビン濃度40 mg/dL以上の血清検体において、それぞれ高感度で溶血を検出することができることが示された。 As shown in Table 1, it was shown that all miRNAs represented by SEQ ID NOS: 1 to 11 of the present invention can detect hemolysis in a serum specimen having a hemoglobin concentration of 100 mg / dL or more. In particular, miRNAs represented by SEQ ID NOs: 1 to 5, 8, 9, and 11 are in serum samples having a hemoglobin concentration of 80 mg / dL or more, and miRNAs represented by SEQ ID NOs: 6 and 10 have a hemoglobin concentration of 40 mg / dL or more. It was shown that hemolysis can be detected with high sensitivity in each serum sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<比較例1>
 本発明の血液検体の溶血の評価方法を、従来の方法である肉眼観察による方法と比較するため、上記実施例1で使用したヘモグロビン濃度0、40、80、100、200 mg/dLの血清検体を用いて、肉眼観察による方法によって溶血の有無の評価を実施した。
<Comparative Example 1>
In order to compare the hemolysis evaluation method of the blood sample of the present invention with the conventional method by visual observation, serum samples having hemoglobin concentrations of 0, 40, 80, 100, and 200 mg / dL used in Example 1 above are used. The presence or absence of hemolysis was evaluated by a method by visual observation.
 表2に示すとおり、ヘモグロビン濃度200 mg/dLの血清検体は、肉眼で赤色を帯びていることが観察され、溶血検体であると判定できた。一方、ヘモグロビン濃度40、80、100 mg/dLの血清検体では、肉眼で赤色を観察できず、いずれもほぼ同等の色調に観察され、溶血検体であると判定できなかった。このことから、従来の肉眼観察による方法では、ヘモグロビン濃度が100 mg/dL以下である溶血を検出することができないことがわかった。 As shown in Table 2, the serum specimen having a hemoglobin concentration of 200 mg / dL was observed to be reddish with the naked eye, and could be determined to be a hemolyzed specimen. On the other hand, in serum samples with hemoglobin concentrations of 40, 80, and 100 mg / dL, red color was not observable with the naked eye, and all were observed in almost the same color tone and could not be determined as hemolyzed samples. From this, it was found that hemolysis having a hemoglobin concentration of 100 mg / dL or less could not be detected by the conventional method by visual observation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例2>
 実施例1とは異なる、健常ヒト1名より、真空採血管に勢いよく吸引させた血液から、血清を調製した。この血清検体をエイトチェック-3WP(シスメックス社)で測定した結果、ヘモグロビン濃度は150 mg/dLであった。
<Example 2>
Serum was prepared from blood that was aspirated into a vacuum blood collection tube vigorously from one healthy human, different from Example 1. As a result of measuring this serum sample with Eight Check-3WP (Sysmex Corporation), the hemoglobin concentration was 150 mg / dL.
 これ以外は、実施例1と同様にしてRNAを抽出し、各種miRNAの存在量を取得した。この存在量を、内因性miRNAであるhsa-miR-149-3p(配列番号12)の存在量を用いて補正して、血清検体由来のmiRNAの発現量を取得した。溶血マーカーとして、hsa-miR-486-5p(配列番号6)を選択し、その発現量が実施例1で得られた閾値1(275)を上回る場合に溶血検体であると評価することとした。 Other than this, RNA was extracted in the same manner as in Example 1 to obtain the abundance of various miRNAs. This abundance was corrected using the abundance of endogenous miRNA hsa-miR-149-3p (SEQ ID NO: 12) to obtain the expression level of miRNA derived from serum samples. As a hemolysis marker, hsa-miR-486-5p (SEQ ID NO: 6) was selected, and when the expression level exceeded the threshold value 1 (275) obtained in Example 1, it was determined that the sample was a hemolysis sample. .
 その結果、表3に示すとおり、血清検体由来のhsa-miR-486-5pの発現量は1450であり、当該溶血マーカーの閾値1を上回ったことから、この血清検体は溶血検体であると評価した。 As a result, as shown in Table 3, the expression level of hsa-miR-486-5p derived from a serum sample was 1450, which exceeded the threshold value 1 of the hemolysis marker. Therefore, this serum sample was evaluated as a hemolysis sample. did.
 以上より、本発明の溶血マーカーであるhsa-miR-486-5pは、ヘモグロビン濃度150 mg/dLの血清検体の溶血を正しく検出できることが確認された。 From the above, it was confirmed that the hemolysis marker of the present invention, hsa-miR-486-5p, can correctly detect hemolysis in a serum sample having a hemoglobin concentration of 150 mg / dL.
<実施例3>
 実施例3と同様にして、健常ヒト1名の血清検体を用意した。この血清検体をエイトチェック-3WP(シスメックス社)で測定した結果、ヘモグロビン濃度は100 mg/dLであった。以下、実施例2と同様にして、血清検体由来のmiRNAの発現量を取得した。溶血マーカーとして、hsa-miR-486-5p(配列番号6)を選択し、閾値1を用いて溶血の評価を行った。
<Example 3>
In the same manner as in Example 3, a serum sample of one healthy human was prepared. As a result of measuring this serum sample with Eight Check-3WP (Sysmex Corporation), the hemoglobin concentration was 100 mg / dL. Thereafter, in the same manner as in Example 2, the expression level of miRNA derived from a serum sample was obtained. Hsa-miR-486-5p (SEQ ID NO: 6) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 1.
 その結果、表3に示すとおり、血清検体由来のhsa-miR-486-5pの発現量は955であり、当該溶血マーカーの閾値1である275を上回ったことから、この血清検体は溶血検体であると評価した。 As a result, as shown in Table 3, the expression level of hsa-miR-486-5p derived from the serum sample was 955, which exceeded the threshold value 275 of the hemolysis marker. Evaluated that there was.
 以上より、本発明の溶血マーカーであるhsa-miR-486-5pは、ヘモグロビン濃度100 mg/dLの血清検体の溶血を正しく検出できることが確認された。一般に、ヘモグロビン濃度が100 mg/dL程度の溶血であっても、遺伝子発現解析の結果(特に、血液検体中のmiRNAの発現解析の場合)に影響があるとされている。本発明のマーカーによれば、ヘモグロビン濃度が100 mg/dLである検体でも溶血を確実に検出することができ、正確な遺伝子発現解析結果を得るために有効な方法であることがわかった。 From the above, it was confirmed that the hemolysis marker of the present invention, hsa-miR-486-5p, can correctly detect hemolysis of a serum sample having a hemoglobin concentration of 100 mg / dL. In general, even hemolysis with a hemoglobin concentration of about 100 mg / dL is said to affect the results of gene expression analysis (particularly in the case of miRNA expression analysis in blood samples). According to the marker of the present invention, hemolysis can be reliably detected even in a specimen having a hemoglobin concentration of 100 mg / dL, and it has been found that this is an effective method for obtaining an accurate gene expression analysis result.
<実施例4>
 健常ヒト1名より、真空採血管にゆっくりと吸引させた血液から、血清検体を調製した。この血清検体をエイトチェック-3WP(シスメックス社)で測定した結果、ヘモグロビン濃度は0 mg/dLであった。これ以外は実施例2と同様にして、血清検体由来のmiRNAの発現量を取得した。溶血マーカーとして、hsa-miR-486-5p(配列番号6)を選択し、閾値1を用いて溶血の評価を行った。
<Example 4>
Serum specimens were prepared from blood that was slowly aspirated into a vacuum blood collection tube from one healthy human. As a result of measuring this serum sample with Eight Check-3WP (Sysmex Corporation), the hemoglobin concentration was 0 mg / dL. Except for this, the expression level of miRNA derived from a serum sample was obtained in the same manner as in Example 2. Hsa-miR-486-5p (SEQ ID NO: 6) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 1.
 その結果、表3に示すとおり、血清検体由来のhsa-miR-486-5pの発現量は120であり、当該溶血マーカーの閾値1である275を下回ったことから、溶血は検出されなかった。 As a result, as shown in Table 3, the expression level of hsa-miR-486-5p derived from the serum sample was 120, which was below the threshold value 1 of 275 for the hemolysis marker, so no hemolysis was detected.
 以上より、本発明の溶血マーカーであるhsa-miR-486-5pは、ヘモグロビン濃度0 mg/dLの血清検体を溶血検体ではないと正しく検出できることが確認された。 From the above, it was confirmed that hsa-miR-486-5p, which is a hemolysis marker of the present invention, can correctly detect a serum sample having a hemoglobin concentration of 0 mg / dL if it is not a hemolyzed sample.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<比較例2>
 実施例3で使用したものと同一のヘモグロビン濃度100 mg/dLの血清検体を用い、その検体由来のmiRNAの発現量を取得した。溶血マーカーとして、非特許文献1に記載のhsa-miR-451a(配列番号29)を使用して、実施例2と同様に閾値1を用いて溶血の評価を行った。実施例1に記載した通りにhsa-miR-451aの閾値1を求めたところ、1774であった。
<Comparative example 2>
Using the same serum sample having a hemoglobin concentration of 100 mg / dL as used in Example 3, the expression level of miRNA derived from the sample was obtained. Using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker, hemolysis was evaluated using threshold 1 as in Example 2. When the threshold value 1 of hsa-miR-451a was calculated as described in Example 1, it was 1774.
 その結果、表4に示すとおり、hsa-miR-451aの発現量は1212であり、当該miRNAの閾値1の数値1774を下回ったことから、溶血検体であることは検出できなかった。 As a result, as shown in Table 4, the expression level of hsa-miR-451a was 1212, which was below the numerical value 1774 of the threshold value 1 of the miRNA, so that it could not be detected as a hemolyzed sample.
 このことから、hsa-miR-451aを用いて溶血を検出する方法では、遺伝子発現解析の結果に影響するとされるヘモグロビン濃度100 mg/dLの血清検体の溶血を検出できず、正確な遺伝子発現解析結果を得るために適する方法とはいえないことが確認された。 Therefore, the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 100 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining results.
<比較例3>
 実施例1で使用したヘモグロビン濃度200 mg/dLの血清検体を用い、その検体由来のmiRNAの発現量を取得した。溶血マーカーとして、非特許文献1に記載のhsa-miR-451a(配列番号29)を使用して、実施例2と同様に閾値1を用いて溶血の評価を行った。
<Comparative Example 3>
Using the serum sample having a hemoglobin concentration of 200 mg / dL used in Example 1, the expression level of miRNA derived from the sample was obtained. Using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker, hemolysis was evaluated using threshold 1 as in Example 2.
 その結果、表4に示すとおり、hsa-miR-451aの発現量は1182であり、当該miRNAの閾値1の数値1774を下回ったことから、溶血検体であることは検出できなかった。 As a result, as shown in Table 4, the expression level of hsa-miR-451a was 1182, which was lower than the numerical value 1774 of threshold value 1 of the miRNA, so that it could not be detected as a hemolyzed sample.
 このことから、hsa-miR-451aを用いて溶血を検出する方法では、遺伝子発現解析の結果に影響するとされるヘモグロビン濃度200 mg/dLの血清検体の溶血を検出できず、正確な遺伝子発現解析結果を得るために適する方法とはいえないことが確認された。 Therefore, the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 200 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例5>
 実施例2で使用したものと同一のヘモグロビン濃度150 mg/dLの血清検体を用い、その検体由来のmiRNAの発現量を取得した。溶血マーカーとしてhsa-miR-642b-3p(配列番号9)を選択して、実施例2と同様にその発現量を取得した。
<Example 5>
Using the same serum sample having a hemoglobin concentration of 150 mg / dL as used in Example 2, the expression level of miRNA derived from the sample was obtained. Hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and its expression level was obtained in the same manner as in Example 2.
 ここで、実施例1で使用したヘモグロビン濃度80 mg/dLの血清検体から得られた発現量の1.1倍の数値を求め、これを各溶血マーカーの発現量の閾値2とし、これを上回る場合に溶血検体であると評価することとした。 Here, a value that is 1.1 times the expression level obtained from the serum sample having a hemoglobin concentration of 80 mg / dL used in Example 1 is obtained, and this is used as the threshold value 2 for the expression level of each hemolytic marker. It was decided to evaluate that it was a hemolyzed specimen.
 その結果、表5に示すとおり、血清検体由来のhsa-miR-642b-3pの発現量は2686であり、当該溶血マーカーの閾値2である1711を上回ったことから、この血清検体は溶血検体であると評価した。 As a result, as shown in Table 5, the expression level of hsa-miR-642b-3p derived from the serum sample was 2686, which exceeded the threshold 2 of 1711 of the hemolysis marker. Evaluated that there was.
 以上より、本発明の溶血マーカーであるhsa-miR-642b-3pは、ヘモグロビン濃度150 mg/dLの血清検体の溶血を正しく検出できることが確認された。 From the above, it was confirmed that hsa-miR-642b-3p, which is a hemolysis marker of the present invention, can correctly detect hemolysis in a serum sample having a hemoglobin concentration of 150 mg / dL.
<実施例6>
 実施例3で使用したものと同一のヘモグロビン濃度100 mg/dLの血清検体を用い、その検体由来のmiRNAの発現量を取得した。実施例5と同様にして、溶血マーカーとしてhsa-miR-642b-3p(配列番号9)を選択して、閾値2を用いて溶血の評価を行った。
<Example 6>
Using the same serum sample having a hemoglobin concentration of 100 mg / dL as used in Example 3, the expression level of miRNA derived from the sample was obtained. In the same manner as in Example 5, hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 2.
 その結果、表5に示すとおり、血清検体由来のhsa-miR-642b-3pの発現量は1782であり、当該溶血マーカーの閾値2である1711を上回ったことから、この血清検体は溶血検体であると評価した。 As a result, as shown in Table 5, the expression level of hsa-miR-642b-3p derived from the serum sample was 1782, which exceeded the threshold 2 of 1711 for the hemolysis marker. Evaluated that there was.
 以上より、本発明の溶血マーカーであるhsa-miR-642b-3pは、ヘモグロビン濃度100 mg/dLの血清検体の溶血を正しく検出できることが確認された。上述した通り、一般に、ヘモグロビン濃度が100 mg/dL程度の溶血であっても、遺伝子発現解析の結果(特に、血液検体中のmiRNAの発現解析の場合)に影響があるとされている。この本発明のマーカーによれば、ヘモグロビン濃度が100 mg/dLである検体でも溶血を確実に検出できることができ、正確な遺伝子発現解析結果を得るために有効な方法であることがわかった。 From the above, it was confirmed that the hemolysis marker of the present invention, hsa-miR-642b-3p, can correctly detect hemolysis of a serum sample having a hemoglobin concentration of 100 mg / dL. As described above, it is generally said that even hemolysis with a hemoglobin concentration of about 100 mg / dL has an effect on the results of gene expression analysis (particularly in the case of miRNA expression analysis in blood samples). According to the marker of the present invention, hemolysis can be reliably detected even in a specimen having a hemoglobin concentration of 100 mg / dL, and it has been found that this is an effective method for obtaining an accurate gene expression analysis result.
<実施例7>
 実施例4で使用したものと同一のヘモグロビン濃度0 mg/dLの血清検体を用い、その検体由来のmiRNAの発現量を取得した。実施例5と同様にして、溶血マーカーとしてhsa-miR-642b-3p(配列番号9)を選択して、閾値2を用いて溶血の評価を行った。
<Example 7>
Using the same serum sample having a hemoglobin concentration of 0 mg / dL as used in Example 4, the expression level of miRNA derived from the sample was obtained. In the same manner as in Example 5, hsa-miR-642b-3p (SEQ ID NO: 9) was selected as a hemolysis marker, and hemolysis was evaluated using threshold value 2.
 その結果、表5に示すとおり、血清検体由来のhsa-miR-642b-3pの発現量は512であり、当該溶血マーカーの閾値2である1711を下回ったことから、溶血は検出されなかった。 As a result, as shown in Table 5, the expression level of the serum sample-derived hsa-miR-642b-3p was 512, which was lower than 1711 which is the threshold value 2 of the hemolysis marker, so hemolysis was not detected.
 以上より、本発明の溶血マーカーであるhsa-miR-642b-3pは、ヘモグロビン濃度0 mg/dLの血清検体を溶血検体ではないと正しく検出できることが確認された。 From the above, it was confirmed that hsa-miR-642b-3p, which is a hemolysis marker of the present invention, can correctly detect a serum sample having a hemoglobin concentration of 0 mg / dL if it is not a hemolyzed sample.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<比較例4>
 実施例3で使用したものと同一のヘモグロビン濃度100 mg/dLの血清検体由来のmiRNAを使用し、溶血マーカーとして、非特許文献1に記載のhsa-miR-451a(配列番号29)を使用して、実施例5と同様に閾値2を用いて溶血の評価を行った。実施例5に記載した通りにhsa-miR-451aの閾値2を求めたところ、1480であった。
<Comparative example 4>
Using miRNA derived from a serum sample having the same hemoglobin concentration of 100 mg / dL as used in Example 3, and using hsa-miR-451a (SEQ ID NO: 29) described in Non-Patent Document 1 as a hemolysis marker As in Example 5, hemolysis was evaluated using threshold value 2. When the threshold value 2 of hsa-miR-451a was determined as described in Example 5, it was 1480.
 その結果、表6に示すとおり、hsa-miR-451aの発現量は1200であり、当該miRNAの閾値2の数値1480を下回ったことから、溶血検体であることは検出できなかった。 As a result, as shown in Table 6, the expression level of hsa-miR-451a was 1200, which was below the value 1480 of threshold value 2 of the miRNA, so that it could not be detected as a hemolyzed sample.
 以上より、hsa-miR-451aを用いて溶血を検出する方法では、遺伝子発現解析の結果に影響するとされるヘモグロビン濃度100 mg/dLの血清検体の溶血を検出できず、正確な遺伝子発現解析結果を得るために適する方法とはいえないことが確認された。 Based on the above, the method for detecting hemolysis using hsa-miR-451a cannot detect hemolysis in a serum sample with a hemoglobin concentration of 100 mg / dL, which is thought to affect the results of gene expression analysis. It was confirmed that this is not a suitable method for obtaining the above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (9)

  1.  血液検体中のmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAの存在量を測定する測定工程を含む、溶血の検出方法。 MiR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR-6131, miR-642b-3p, in blood samples A method for detecting hemolysis, comprising a measurement step of measuring the abundance of at least one miRNA selected from the group consisting of miR-92a-3p and miR-92b-3p.
  2.  miR-191-5pがhsa-miR-191-5pであり、miR-22-3pがhsa-miR-22-3pであり、miR-3158-5pがhsa-miR-3158-5pであり、miR-320aがhsa-miR-320aであり、miR-484がhsa-miR-484であり、miR-486-5pがhsa-miR-486-5pであり、miR-6073がhsa-miR-6073であり、miR-6131がhsa-miR-6131であり、miR-642b-3pがhsa-miR-642b-3pであり、miR-92a-3pがhsa-miR-92a-3pであり、miR-92b-3pがhsa-miR-92b-3pである、請求項1に記載の方法。 miR-191-5p is hsa-miR-191-5p, miR-22-3p is hsa-miR-22-3p, miR-3158-5p is hsa-miR-3158-5p, miR- 320a is hsa-miR-320a, miR-484 is hsa-miR-484, miR-486-5p is hsa-miR-486-5p, miR-6073 is hsa-miR-6073, miR-6131 is hsa-miR-6131, miR-642b-3p is hsa-miR-642b-3p, miR-92a-3p is hsa-miR-92a-3p, and miR-92b-3p is The method of claim 1, which is hsa-miR-92b-3p.
  3.  前記miRNAが、下記の(a)~(e)のいずれかに示すポリヌクレオチドである、請求項1または2に記載の溶血の検出方法。
    (a) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド。
    (b) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列を含むポリヌクレオチド。
    (c) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド。
    (d) 配列番号1~11のいずれかで表される塩基配列又は当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド。
    (e) 前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
    The method for detecting hemolysis according to claim 1 or 2, wherein the miRNA is a polynucleotide shown in any of the following (a) to (e).
    (a) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence;
    (b) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence in which u is t in the base sequence.
    (c) a polynucleotide comprising a base sequence represented by any one of SEQ ID NOs: 1 to 11 or a base sequence complementary to a base sequence in which u is t in the base sequence.
    (d) a polynucleotide comprising the base sequence represented by any of SEQ ID NOs: 1 to 11 or a base sequence complementary to the base sequence in which u is t in the base sequence;
    (e) a polynucleotide that hybridizes with the polynucleotide of any one of (a) to (d) under stringent conditions.
  4.  血液検体に含まれる前記miRNAの存在量の測定値を補正し、補正済み測定値を前記miRNAの発現量として取得する補正工程をさらに含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, further comprising a correction step of correcting a measurement value of the abundance of the miRNA contained in a blood sample and obtaining a corrected measurement value as the expression level of the miRNA. .
  5.  血液検体中の前記miRNAの存在量若しくは発現量、該存在量若しくは発現量と標準内因性miRNA若しくは外部標準核酸の血液検体中存在量との差、又は、該存在量若しくは発現量と標準内因性miRNA若しくは外部標準核酸の血液検体中存在量との比が、溶血の有無を評価するための基準として予め定められた閾値を超える場合に、当該血液検体を溶血検体であると評価する評価工程を含む、請求項1~4のいずれか1項に記載の方法。 The abundance or expression level of the miRNA in the blood sample, the difference between the abundance or expression level and the standard endogenous miRNA or external standard nucleic acid in the blood sample, or the abundance or expression level and the standard endogenous an evaluation step for evaluating that the blood sample is a hemolyzed sample when the ratio of the miRNA or the external standard nucleic acid in the blood sample exceeds a predetermined threshold as a reference for evaluating the presence or absence of hemolysis; The method according to any one of claims 1 to 4, comprising:
  6.  前記測定工程が、支持体上に固定化された前記miRNAから選択される少なくとも1つのmiRNAを捕捉するためのプローブと、血液検体から抽出され標識物質で標識された核酸試料とを接触させてハイブリダイゼーションを行ない、血液検体に含まれる当該miRNAの存在量を測定する工程である、請求項1~5のいずれか1項に記載の方法。 In the measurement step, a probe for capturing at least one miRNA selected from the miRNA immobilized on a support is contacted with a nucleic acid sample extracted from a blood sample and labeled with a labeling substance. The method according to any one of claims 1 to 5, which is a step of performing hybridization and measuring the abundance of the miRNA contained in a blood sample.
  7.  前記測定工程において、血液検体に含まれる前記miRNAから選択される少なくとも1つのmiRNAの存在量の測定と同時に、当該血液検体に含まれる所望の標的miRNAの存在量を測定することを含む、請求項1~6のいずれか1項に記載の方法。 The measuring step includes measuring the abundance of a desired target miRNA contained in the blood sample at the same time as measuring the abundance of at least one miRNA selected from the miRNA contained in the blood sample. The method according to any one of 1 to 6.
  8.  血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブが固定化された支持体を含む、溶血検出用チップ。 MiR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR- miRNAs for detecting hemolysis in blood samples A hemolysis detection chip comprising a support on which a probe for capturing at least one miRNA selected from the group consisting of 6131, miR-642b-3p, miR-92a-3p and miR-92b-3p is immobilized.
  9.  血液検体の溶血を検出するためのmiRNAであるmiR-191-5p、miR-22-3p、miR-3158-5p、miR-320a、miR-484、miR-486-5p、miR-6073、miR-6131、miR-642b-3p、miR-92a-3p及びmiR-92b-3pからなる群から選ばれる少なくとも1つのmiRNAを捕捉するためのプローブ及び所望の標的miRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA発現解析用チップ。 MiR-191-5p, miR-22-3p, miR-3158-5p, miR-320a, miR-484, miR-486-5p, miR-6073, miR- miRNAs for detecting hemolysis in blood samples A probe for capturing at least one miRNA selected from the group consisting of 6131, miR-642b-3p, miR-92a-3p and miR-92b-3p and a probe for capturing a desired target miRNA are immobilized. A chip for miRNA expression analysis including a support.
PCT/JP2017/034447 2016-09-26 2017-09-25 Method for detecting hemolysis in blood sample and hemolysis detection chip WO2018056432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550662A JPWO2018056432A1 (en) 2016-09-26 2017-09-25 Method for detecting hemolysis of blood sample and chip for hemolysis detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186836 2016-09-26
JP2016-186836 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056432A1 true WO2018056432A1 (en) 2018-03-29

Family

ID=61690404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034447 WO2018056432A1 (en) 2016-09-26 2017-09-25 Method for detecting hemolysis in blood sample and hemolysis detection chip

Country Status (2)

Country Link
JP (1) JPWO2018056432A1 (en)
WO (1) WO2018056432A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027098A1 (en) * 2018-07-31 2020-02-06 東レ株式会社 Method for evaluating quality of body fluid specimen
CN112924661A (en) * 2021-02-20 2021-06-08 北京中医药大学东方医院 Data detection method, system, electronic equipment and storage medium
WO2021132231A1 (en) * 2019-12-26 2021-07-01 東レ株式会社 Method for evaluating quality of blood serum specimen
WO2021132232A1 (en) * 2019-12-26 2021-07-01 東レ株式会社 Method for evaluating quality of serum specimen
WO2023001461A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2023001460A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2024017798A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133522A1 (en) * 2014-03-04 2015-09-11 国立大学法人大阪大学 Colorectal cancer drug, and method for predicting prognosis of colorectal cancer patient
WO2016071729A1 (en) * 2014-11-05 2016-05-12 Biomirna Holdings, Ltd. Methods of using micro-rna biomarkers for haemolysis detection
WO2016144265A1 (en) * 2015-03-09 2016-09-15 Agency For Science, Technology And Research Method of determining the risk of developing breast cancer by detecting the expression levels of micrornas (mirnas)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133522A1 (en) * 2014-03-04 2015-09-11 国立大学法人大阪大学 Colorectal cancer drug, and method for predicting prognosis of colorectal cancer patient
WO2016071729A1 (en) * 2014-11-05 2016-05-12 Biomirna Holdings, Ltd. Methods of using micro-rna biomarkers for haemolysis detection
WO2016144265A1 (en) * 2015-03-09 2016-09-15 Agency For Science, Technology And Research Method of determining the risk of developing breast cancer by detecting the expression levels of micrornas (mirnas)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KIRSCHNER MB ET AL.: "Haemolysis during sample preparation alters microRNA content of plasma", PLOS ONE, vol. 6, no. 9, September 2011 (2011-09-01), pages e24145, XP055604012, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0024145 *
KIRSCHNER MB ET AL.: "The impact of hemolysis on cell -free microRNA biomarkers", FRONT. GENET., vol. 4, 2013, pages 94, XP055198264, DOI: doi:10.3389/fgene.2013.00094 *
KONDO SATOSHI ET AL.: "MicroRNA detection technology with DNA chip 3D- Gene", PREPRINTS OF THE CHEMICAL SOCIETY OF JAPAN, vol. 95, no. 1, 2015, pages 42 *
KONDO SATOSHI: "High performance DNA chip and analysis of variety sample", RNA- BUNSEKI, vol. 5, no. 12, 2012, pages 709 - 715, XP009514090 *
LANDONI E ET AL.: "Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation", BMC BIOINFORMATICS, vol. 16, no. 1, 18 November 2015 (2015-11-18), pages 1 - 10, XP021237422, DOI: 10.1186/s12859-015-0820-9 *
PIZZAMIGLIO S ET AL.: "A methodological procedure for evaluating the impact of hemolysis on circulating microRNAs", ONCOL. LETT., vol. 13, no. 1, 30 November 2016 (2016-11-30) - January 2017 (2017-01-01), pages 315 - 320, XP055604016, ISSN: 1792-1074, DOI: 10.3892/ol.2016.5452 *
SHKURNIKOV MY ET AL.: "Analysis of plasma microRNA associated with hemolysis", BULL. EXP. BIOL. MED., vol. 160, no. 6, April 2016 (2016-04-01), pages 748 - 750, XP035900977, DOI: doi:10.1007/s10517-016-3300-y *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027098A1 (en) * 2018-07-31 2020-02-06 東レ株式会社 Method for evaluating quality of body fluid specimen
CN112513267A (en) * 2018-07-31 2021-03-16 东丽株式会社 Method for evaluating quality of body fluid sample
JPWO2020027098A1 (en) * 2018-07-31 2021-08-02 東レ株式会社 Quality evaluation method for body fluid samples
JP7363478B2 (en) 2018-07-31 2023-10-18 東レ株式会社 Quality assessment method for body fluid samples
CN112513267B (en) * 2018-07-31 2024-05-10 东丽株式会社 Quality evaluation method for body fluid sample
WO2021132231A1 (en) * 2019-12-26 2021-07-01 東レ株式会社 Method for evaluating quality of blood serum specimen
WO2021132232A1 (en) * 2019-12-26 2021-07-01 東レ株式会社 Method for evaluating quality of serum specimen
CN112924661A (en) * 2021-02-20 2021-06-08 北京中医药大学东方医院 Data detection method, system, electronic equipment and storage medium
WO2023001461A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2023001460A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2024017798A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data
WO2024017786A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data

Also Published As

Publication number Publication date
JPWO2018056432A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018056432A1 (en) Method for detecting hemolysis in blood sample and hemolysis detection chip
US11408027B2 (en) Method of evaluating quality of miRNA derived from body fluid
JP4435259B2 (en) Detection method of trace gastric cancer cells
CN110438201A (en) A kind of method of microRNA detection kit and multi-biotin Molecular Detection microRNA
US11348663B2 (en) Method and device for comparative analysis of miRNA expression level
JP7363478B2 (en) Quality assessment method for body fluid samples
JP4317854B2 (en) Detection method of trace gastric cancer cells
WO2016084848A1 (en) Method and device for correcting level of expression of small rna
WO2021132232A1 (en) Method for evaluating quality of serum specimen
JP5998674B2 (en) Comparative analysis method of small RNA expression level
WO2021132231A1 (en) Method for evaluating quality of blood serum specimen
CN102443633A (en) Method for real time quantitative PCR detection of hematopoietic chimeras and designing of genetic marker primers of hematopoietic chimeras
JP2014082953A (en) Cancer detection method, cancer detection kit, method for screening for therapeutic agent for cancer, and therapeutic agent for cancer
JP2021153487A (en) METHOD FOR PREPARING SERUM SAMPLE INCLUDING miRNA FROM BLOOD SAMPLE
JP2021119752A (en) Method for determining quality of hybridization reaction of nucleic acid
JP2010094075A (en) Method for detecting small-sized rna
CN118326011A (en) Quality evaluation method for body fluid sample
JP2022076117A (en) Method for testing prostate cancer
KR20210024919A (en) Urinary exosome-derived miRNA gene biomarkers for diagnosis of BK virus nephropathy in kidney allografts and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550662

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853199

Country of ref document: EP

Kind code of ref document: A1