WO2018056153A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2018056153A1
WO2018056153A1 PCT/JP2017/033169 JP2017033169W WO2018056153A1 WO 2018056153 A1 WO2018056153 A1 WO 2018056153A1 JP 2017033169 W JP2017033169 W JP 2017033169W WO 2018056153 A1 WO2018056153 A1 WO 2018056153A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
hole
discharge
valve
valve body
Prior art date
Application number
PCT/JP2017/033169
Other languages
French (fr)
Japanese (ja)
Inventor
淑恵 松嵜
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to CN201780057814.0A priority Critical patent/CN109715946A/en
Publication of WO2018056153A1 publication Critical patent/WO2018056153A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members

Definitions

  • the present invention relates to a compressor mainly used in an air conditioning system for vehicles.
  • a variable capacity compressor described in Patent Document 1 As this type of compressor, for example, a variable capacity compressor described in Patent Document 1 has been proposed.
  • a valve plate having a suction port and a discharge port is disposed between a cylinder bore formed in a cylinder block and a rear housing that closes the cylinder bore.
  • a suction lead plate for opening and closing the suction port is disposed on the cylinder bore side of the valve plate.
  • the suction lead plate has a suction lead that opens and closes a suction port.
  • the suction lead has a valve portion formed at a distal end and a pair of leg portions extending from the valve portion toward the base side. An opening is formed between the legs. The opening extends from a position communicating with the discharge port to a position before the valve portion.
  • the suction port has a shape extending in the width direction perpendicular to the longitudinal direction of the suction lead constituting the suction valve, and an opening is formed in the suction lead.
  • the suction lead is composed of a valve portion at the tip and a pair of legs sandwiching the opening, the torsional rigidity of the suction lead is reduced, and the suction lead is twisted when the refrigerant is sucked, and the refrigerant enters the cylinder bore.
  • the suction becomes uneven and the risk of vibration and noise increases and the risk of breakage of the suction valve increases.
  • the present invention has been made paying attention to the problems of the above-described conventional example, and stably sucks the refrigerant while improving the suction efficiency of the refrigerant, generates vibration and noise, and breaks the suction valve. It aims at providing the compressor which can reduce a risk.
  • an aspect of a compressor according to the present invention includes a cylinder block having a plurality of cylinder bores, a suction chamber that is disposed on one end side of the cylinder block and into which refrigerant is sucked, and a cylinder bore.
  • a cylinder head formed with a discharge chamber for discharging the compressed refrigerant, a suction hole that is disposed between the cylinder block and the cylinder head and communicates the cylinder bore and the suction chamber, and a discharge that communicates the cylinder bore and the discharge chamber.
  • the suction through hole and the discharge through hole are formed in the suction valve body constituting the suction valve, and the rigidity reinforcing portion is formed between the suction through hole and the discharge through hole.
  • a compressor capable of suppressing twisting of the suction valve body.
  • FIG. 1 It is a whole lineblock diagram showing a 1st embodiment of the compressor concerning the present invention. It is a figure which shows the valve plate applied to FIG. 1, (a) is a front view, (b) is an enlarged front view of a suction hole and a discharge hole, (c) is sectional drawing on the AA line of a suction hole. is there. It is a figure which shows the suction valve body formation board applied to FIG. 1, Comprising: (a) is a front view, (b) is an enlarged view which shows the positional relationship of a cylinder bore and a tongue piece.
  • FIG.3 It is sectional drawing which shows the operation state of a suction valve, Comprising: (a) shows the closed state on the AA line of FIG.3 (b), (b) is the open state on the AA line of FIG.3 (b). (C) shows the open state on the CC line of FIG.3 (b). It is a figure which shows 2nd Embodiment of the valve plate and suction valve which can be applied to the compressor which concerns on this invention, Comprising: (a) is a front view which shows a part of valve plate, (b) is a suction valve body. It is the front part shown.
  • variable capacity compressor 100 used in a refrigeration apparatus constituting a vehicle air conditioning system, for example.
  • the variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101 a formed on the same circumference, a front housing 102 provided at one end of the cylinder block 101, and a valve plate 103 at the other end of the cylinder block 101. And a cylinder head 104 provided via the cylinder.
  • a drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the center thereof.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the inclination angle can be changed along the drive shaft 110.
  • the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122.
  • the link arm 121 is movably connected and the other end side is rotatably connected to the second arm 111a via the second connection pin 123.
  • the through hole 111b of the swash plate 111 is shaped so that the swash plate 111 can tilt within the range of the maximum inclination angle and the minimum inclination angle.
  • An inclination angle restricting portion is formed.
  • an inclination reduction spring 114 that urges the swash plate 111 toward the minimum inclination angle to reach the minimum inclination angle is mounted, and between the swash plate 111 and the spring support member 116.
  • An inclination increasing spring 115 is attached to urge the swash plate 111 in an increasing direction. Since the urging force of the inclination increasing spring 115 is set to be larger than the urging force of the inclination decreasing spring 114 at the minimum inclination angle, the swash plate 111 has the inclination decreasing spring 114 and the inclination increasing spring 115 when the drive shaft 110 is not rotating. It is located at an inclination angle that balances the urging force.
  • One end of the drive shaft 110 extends through the inside of the boss portion 102a protruding to the outside of the front housing 102, and is connected to a power transmission device (not shown).
  • a shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the inside and the outside.
  • the drive shaft 110 and the rotor 112 are supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction.
  • the clearance between the thrust plate 134 abutting portion of the drive shaft 110 and the thrust plate 134 is adjusted to a predetermined clearance by an adjustment screw 135.
  • a piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140.
  • the swash plate 111 includes a pair of shoes 137. Via the piston 136. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111 by the drive shaft 110.
  • a suction chamber 141 defined by an annular partition 104a and a discharge chamber 142 surrounding the suction chamber 141 in a ring shape with the partition 104a interposed therebetween are formed at the center.
  • the suction chamber 141 communicates with the cylinder bore 101a through a suction hole 103a provided in the valve plate 103 and a suction valve body 138a formed in the suction valve body forming plate 138 (FIG. 4A).
  • the discharge chamber 142 communicates with the cylinder bore 101 a through a discharge valve body 106 a formed on the discharge valve body forming plate 106 and a discharge hole 103 b provided in the valve plate 103.
  • the cylinder head 104 is joined in this order and fastened by a plurality of through bolts 105 to form a compressor housing.
  • the cylinder head 104 is formed with a suction passage 104b communicating the suction side external refrigerant circuit and the suction chamber 141, whereby the suction chamber 141 is connected to the suction side external refrigerant circuit of the air conditioning system.
  • the discharge chamber 142 is connected to a discharge-side external refrigerant circuit of the air conditioning system via the discharge passage 104c.
  • the cylinder head 104 is further provided with a control valve 300.
  • the control valve 300 adjusts the opening of the communication passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140.
  • the refrigerant in the crank chamber 140 flows to the suction chamber 141 via the communication path 146 including the orifice 103 c formed in the valve plate 103. Therefore, the discharge capacity of the variable capacity compressor 100 can be variably controlled by changing the pressure of the crank chamber 140 by the control valve 300 and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136.
  • the air conditioning system When the air conditioning system is in operation, that is, when the variable capacity compressor 100 is in an operating state, the energization amount of the solenoid built in the control valve 300 is adjusted based on the external signal, and the discharge capacity is adjusted so that the pressure in the suction chamber 141 becomes a predetermined value. Is variably controlled.
  • the control valve 300 can optimally control the suction pressure according to the external environment.
  • the valve plate 103 is a disk-shaped thick metal plate (thickness of about 2 to 3 mm), and the suction hole 103a and the discharge hole 103b are located at positions facing the cylinder bores 101a when viewed from the front. Is formed through.
  • these suction holes 103a and discharge holes 103b for example, a suction hole 103a is formed on the center side of the valve plate 103 on the installation line L0 passing through the center of the valve plate, and a discharge hole 103b is formed on the outer peripheral side.
  • a suction hole 103a is formed on the center side of the valve plate 103 on the installation line L0 passing through the center of the valve plate
  • a discharge hole 103b is formed on the outer peripheral side.
  • the suction hole 103a is an arc-shaped hole that becomes a main hole formed in an arc shape along the opening edge of the cylinder bore 101a shown in a dashed line when viewed from the front.
  • Part 103a1 and a pair of extended hole parts 103a2 extending in parallel to each other from both ends of the arcuate hole part 103a1 toward the discharge hole 103b, and inside the arcuate hole part 103a1 and a pair of extended hole parts 103a2.
  • a recess 103a3 is formed between the two.
  • the width W1 between the expansion hole portions 103a2 on the intermediate width direction line L3 is set wider than the width W2 of each expansion hole portion 103a2 on the intermediate width direction line L3.
  • the cross-sectional area of the suction through hole 138a6 formed in the suction valve body 138a described later can be increased. It becomes possible.
  • the discharge hole 103b is formed in a circular shape as shown in an enlarged view in FIG.
  • An annular groove 103d is formed around the suction hole 103a along the inner peripheral surface of the suction hole 103a so as to leave a valve seat 103e having a narrow edge.
  • a suction valve body forming plate 138 is joined to the cylinder bore 101 a side of the valve plate 103.
  • the intake valve body forming plate 138 is a disk-shaped metal thin plate (plate thickness of about 0.3 to 0.5 mm).
  • the intake valve body forming plate 138 is formed by extending a reed valve type intake valve body 138a from the outer peripheral side to the inner peripheral side in the radial direction at a position facing each of the suction holes 103a and the discharge holes 103b of the valve plate 103. ing.
  • the suction valve body 138 a is formed by a substantially U-shaped punching hole 138 a 0 that is punched into the suction valve body forming plate 138 and has an outer peripheral base that is continuous with the suction valve body forming plate 138. . As shown in an enlarged view in FIG.
  • the suction valve body 138a is arranged at a base portion side at a predetermined interval and in parallel with a pair of arm portions 138a1 and at the distal end side of the pair of arm portions 138a1. And an opening restricting piece 138a3 projecting from the tip of the suction valve portion 138a2 along the installation line L0. Further, the suction valve body 138a includes a rigid reinforcing portion 138a4 that bridges between the longitudinal intermediate portions of the pair of arm portions 138a1, and a discharge through hole 138a5 is formed on the base side with the rigid reinforcing portion 138a4 interposed therebetween. In addition, a suction through hole 138a6 is formed on the suction valve portion 138a2.
  • the suction valve portion 138a2 is formed so as to cover the suction hole 103a of the valve plate 103, and the peripheral edge except for the opening degree restricting piece 138a3 at the tip portion is opposed to an annular groove 103d formed around the suction hole 103a.
  • the discharge through-hole 138a5 exposes the discharge hole 103b, for example, by a semicircular portion having a radius larger than the radius of the discharge hole 103b and a rectangular portion connected to the semicircular portion, and is larger than the cross-sectional area of the discharge hole 103b.
  • the cross-sectional area is formed.
  • the suction through-hole 138a6 is opposed to the recess 103a3 of the suction hole 103a and is located in a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 with the upper side at the lower side as viewed in FIG. It is formed in a shorter isosceles trapezoidal shape.
  • the periphery of the suction through hole 138a6 facing the region surrounded by the arc-shaped hole 103a1 of the suction hole 103a and the pair of expansion holes 103a2 is viewed from the front. And disposed in an annular groove 103d formed around the suction hole 103a.
  • the width W1 between the expansion hole portions 103a2 on the width direction line L3 in FIG. 2B is set wider than the width W2 on the width direction line L3 of the expansion hole portions 103a2. Therefore, as shown in FIG. 3B, the width W3 between the leg portions on the width direction line L3 of the suction through hole 138a6 is set wider than the width W2 of the expansion hole portion 103a2 on the width direction line L3. be able to. Therefore, the cross-sectional area of the suction through hole 138a6 can be increased, and the amount of refrigerant sucked can be increased.
  • the cylinder bore 101a is cut out at the end facing the opening restriction piece 138a3 of the intake valve body 138a in accordance with the shape of the opening restriction piece 138a3, thereby opening the intake valve opening.
  • a restricting portion 101b is formed.
  • the intake valve opening restriction portion 101b accommodates an opening restriction piece 138a3 of the intake valve body 138a therein, and restricts further movement of the intake valve body 138a in a state where the opening restriction piece 138a3 is in contact with the bottom.
  • the maximum opening of the suction valve body 138a is set to about 0.5 to 1.0 mm at the center position of the arcuate hole 103a1 of the suction hole 103a, for example.
  • the suction valve body 138a and the valve seat 103e formed around the suction hole 103a of the valve plate 103 constitute a reed valve type suction valve. Next, the operation of the suction valve of the first embodiment will be described.
  • the intake valve is configured such that the intake valve portion 138a2 of the intake valve body 138a is connected to the intake hole 103a of the valve plate 103, as shown in FIG.
  • the suction hole 103a is closed in contact with the surrounding valve seat 103e.
  • the suction through-hole 138a6 has a peripheral edge of a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 as the valve seat 103e. It arrange
  • the suction valve body 138a is opened as shown in FIGS. 4 (b) and 4 (c).
  • the peripheral edge of the suction valve portion 138a2 on the front end side is disposed in the annular groove 103d that defines the valve seat 103e, and is surrounded by the arc-shaped hole portion 103a1 of the suction hole 103a and the pair of expansion hole portions 103a2. Since the peripheral edge of the suction through hole 138a6 formed so as to face the region is also disposed in the annular groove 103d, the suction valve body 138a is easily separated from the valve plate 103, and passes through the suction valve body 138a.
  • the refrigerant can be quickly started to be sucked into the cylinder bore 101a.
  • the suction valve body 138a covers the entire annular groove 103d
  • the suction valve body 138a sticks to the valve plate 103 and becomes difficult to separate, and there is a possibility that a refrigerant suction delay may occur.
  • the opening degree of the intake valve body 138a is restricted by the opening degree restricting piece 138a3 coming into contact with the bottom part of the intake valve opening degree restricting part 101b, and becomes the maximum opening degree.
  • the suction hole 103a formed in the valve plate 103 has an arcuate hole 103a1 and both ends of the arcuate hole 103a1 in the circumferential direction from the discharge hole 103b side.
  • the cross-sectional area of the suction hole 103a can be increased as compared with the case where only the arc-shaped hole portion 103a1 is formed. Therefore, the amount of refrigerant sucked from the suction chamber 141 of the cylinder head 104 into the cylinder bore 101a can be increased. Moreover, since the pair of extended hole portions 103a2 are extended toward the discharge through hole 138a5, the width along the width direction line L1 orthogonal to the installation line L0 of the suction hole 103a in FIG. The cross-sectional area can be increased without expanding.
  • the suction valve body 138a is adjacent to the suction valve portion 138a2 and is located in a region surrounded by the arc-shaped hole portion 103a1 and the pair of expansion hole portions 103a2 of the suction hole 103a when viewed from the front.
  • a through hole 138a6 is formed.
  • the discharge valve body 106a opens the discharge hole 103b, and the refrigerant in the cylinder bore 101a becomes the discharge through hole 138a5 of the suction valve body 138a and the discharge hole 103b of the valve plate 103. Is discharged to the discharge chamber 142 of the cylinder head 104, and discharged from the discharge chamber 142 to the discharge-side external refrigerant circuit of the air conditioning system through the discharge passage 104c.
  • the piston 136 reaches top dead center, the process proceeds to the above-described suction process, and the suction process and the compression process are repeated while the air conditioning system is operating.
  • the suction valve body 138a is in a closed state where the suction valve portion 138a2 closes the suction hole 103a of the valve plate 103, and the suction valve portion 138a2 opens the suction hole 103a and the opening restriction piece 138a3 is sucked.
  • the elastic deformation centering on the base portion is repeated between the valve opening state in contact with the bottom of the valve opening restriction portion 101b.
  • the suction valve body 138a includes a rigidity reinforcing portion 138a4 that connects a pair of parallel arm portions 138a1 that connect the base portion and the suction valve portion 138a2 on the distal end side.
  • the rigidity of the suction valve body 138a can be increased, and the strength against repeated elastic deformation can be ensured.
  • the intake valve body 138a can be operated in a stable posture without being twisted when shifting from the closed state to the open state or vice versa. it can. A stable refrigerant flow can be obtained without causing a bias in the refrigerant passing through the intake valve body 138a.
  • the suction hole 103a formed in the valve plate 103 in the first embodiment described above is replaced with the curvature of the arcuate hole 103a1 serving as the main hole as shown in FIG.
  • the radius is reduced, and a pair of extended hole portions 103a2 are provided at both ends of the arc-shaped hole portion 103a1 so as to continue to the discharge hole 103b side in the extending direction of the arc-shaped hole portion 103a1.
  • the shape of the suction through hole 138a6 of the suction valve body 138a is changed from an isosceles trapezoidal shape to a bowl shape as shown in FIG. 5 (b).
  • it has the same structure as 1st Embodiment mentioned above.
  • the rigidity reinforcing portion 138a4 is formed in the suction valve body 138a, the same effect as that of the first embodiment described above can be obtained, and the suction hole of the valve plate 103 can be obtained. Since the shape of 103a is formed in a simple arc shape by the arc-shaped hole portion 103a1 and a pair of extended hole portions 103a2 continuous at both ends thereof, the valve plate 103 can be easily manufactured. In the first and second embodiments, the case where the suction hole 103a of the valve plate 103 is formed by the arcuate hole 103a1 and the pair of expansion holes 103a2 has been described. However, the present invention is not limited to this. Absent. For example, as shown in FIG.
  • a rectangular hole 103a4 serving as a main hole extending along the width direction line L1 orthogonal to the installation line L0 is formed. You may make it form a pair of expansion hole part 103a5 extended from the both ends of part 103a4 to the discharge hole 103b side. Accordingly, the suction valve body 138a is also rectangular so as to face a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 of the suction hole 103a instead of the isosceles trapezoidal suction through hole 138a6.
  • the suction through hole 138a7 may be formed.
  • the refrigerant suction flow path in the suction step is increased. That is, in the third embodiment, as shown in FIG. 7A, in the configuration of the first embodiment described above, the suction valve body is attached to the joint surface that fixes the suction valve body forming plate 138 of the valve plate 103.
  • a connecting groove 103f having a depth of about 0.5 mm reaching the discharge hole 103b from a position facing the central portion of the suction through hole 138a6 of 138a is formed. Therefore, when the suction valve body 138a is closed, as shown in FIG. 7B, the suction through hole 138a6 is connected to the discharge through hole 138a5 via the connection groove 103f.
  • the suction hole 103a is used for suction through the suction step described above. Since the refrigerant flow toward the through hole 138a6 also flows into the cylinder bore 101a from the discharge through hole 138a5 through the connecting groove 103f, the refrigerant flows into the cylinder bore 101a from the first embodiment by adding the connecting groove 103f. The amount of refrigerant can be increased.
  • the shape of the connecting groove 103f is not limited to a tapered shape, and may be a parallel shape as long as the refrigerant can pass therethrough.
  • a fourth embodiment of the compressor according to the present invention will be described with reference to FIG.
  • a plurality of opening degree restricting pieces for restricting the opening degree of the intake valve body are provided. That is, in the fourth embodiment, as shown in FIG. 8, the suction hole 103a formed in the valve plate 103 has a horizontally long oval shape. Accordingly, the suction through hole 138a6 of the suction valve body 138a has a rectangular shape adjacent to the suction hole 103a as shown in FIG.
  • the suction valve portion 138a2 is formed with two opening restriction pieces 138a3 that project obliquely outward. Accordingly, the cylinder bore 101a is also formed with two intake valve opening restriction portions 101b at positions facing the opening restriction pieces 138a3. Other configurations are the same as those of the first embodiment described above. According to the fourth embodiment, when the suction valve body 138a is changed from the closed state to the opened state, the two opening restriction pieces 138a3 of the suction valve body 138a are formed in the cylinder bore 101a, respectively. It contacts the bottom of the degree restricting portion 101b.
  • the suction valve body 138a when the suction valve body 138a is in the open state, the suction valve body 138a can be maintained in a stable posture without being twisted, and the refrigerant can be sucked stably.
  • the suction chamber 141 is provided on the center side of the cylinder head 104 and the discharge chamber 142 is formed outside the suction chamber 141.
  • the present invention is not limited to this. Instead of this, the discharge chamber 142 may be provided on the center side, and the suction chamber 141 may be provided outside thereof.
  • the installation line L0 passing through the centers of the suction hole 103a and the discharge hole 103b of the valve plate 103 passes through the center of the valve plate 103 has been described.
  • the present invention is not limited to this. Instead, the installation line L0 passing through the centers of the suction hole 103a and the discharge hole 103b may be inclined so as to pass through a position away from the center of the valve plate 103.
  • the center line of the suction valve body 138a may be inclined so as to pass through a position off the center of the suction valve body forming plate 138.
  • the suction hole 103a, the discharge hole 103b, and the suction valve body 138a may be disposed in the opening edge of the cylinder bore 101a.
  • the present invention is not limited to this, and the present invention is also applied to a fixed capacity compressor. be able to.
  • the case where the present invention is applied to a compressor used in a vehicle air conditioning system has been described.
  • the present invention is not limited to this, and other systems that employ a reed valve type intake valve are used.
  • the present invention can be applied to a compressor to be used.
  • SYMBOLS 100 Variable capacity compressor, 101 ... Cylinder block, 101a ... Cylinder bore, 102 ... Front housing, 103 ... Valve plate, 103a ... Suction hole, 103a1 ... Arc-shaped hole, 103a4 ... Rectangular hole, 103a2, 103a5 ... Expansion Hole 103b ... Discharge hole 103f ... Connecting groove 104 ... Cylinder head 110 ... Drive shaft 111 ... Swash plate 112 ... Rotor 120 ... Link mechanism 136 ... Piston 137 ... Shoe 138 ... Suction valve body Forming plate, 138a ... suction valve body, 138a1 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

Provided is a compressor configured so that refrigerant suction efficiency is increased, refrigerant suction can be consistently performed, and the generation of vibration and noise and the risk of damage on a suction valve can be reduced. This compressor is provided with: a valve plate 103 disposed between a cylinder block in which a plurality of cylinder bores are formed and a cylinder head in which a refrigerant suction chamber and a refrigerant discharge chamber are formed, the valve plate 103 having formed therein a suction hole 103a and a discharge hole 103b; and a suction valve body 138a which is formed in a suction valve body forming plate 138 for covering the suction hole and the discharge hole and which opens and closes the suction hole. The suction valve body is provided with: a suction valve section 138a2 for covering the suction hole; an opening degree restriction piece 138a3 which is in contact with a suction valve opening degree restriction section formed on a cylinder bore and which protrudes from the suction valve section; a discharge through-hole 138a5 in communication with the discharge hole; a suction through-hole 138a6 formed on the discharge through-hole side of the suction valve section; and a rigid reinforcement section 138a4 formed between the discharge through-hole and the suction through-hole.

Description

圧縮機Compressor
 本発明は、主に車両用の空調システムに使用される圧縮機に関する。 The present invention relates to a compressor mainly used in an air conditioning system for vehicles.
 この種の圧縮機として、例えば特許文献1に記載された可変容量式の圧縮機が提案されている。
 この特許文献1に記載された圧縮機は、シリンダブロックに形成したシリンダボアとこのシリンダボアを閉塞するリアハウジングとの間に吸入ポート及び吐出ポートを形成したバルブプレートが配置されている。このバルブプレートのシリンダボア側に吸入ポートを開閉する吸入リードプレートが配置されている。
 この吸入リードプレートは、吸入ポートを開閉する吸入リードを有し、この吸入リードは、先端に形成された弁部と、この弁部から基部側に延びる一対の脚部とを有し、一対の脚部間に開口部が形成されている。この開口部は、吐出ポートに連通する位置から弁部の手前まで延長されている。
 この構成により、弁部による吸入ポートの閉塞状態からシリンダボアの内圧が低下する吸入状態となると、吸入リードが基部を中心として先端側がシリンダボア側に撓み、弁部が吸入ポートから離間することにより、吸入ポートからの冷媒が弁部の周囲と開口部とを通じてシリンダボアに吸入される。
As this type of compressor, for example, a variable capacity compressor described in Patent Document 1 has been proposed.
In the compressor described in Patent Document 1, a valve plate having a suction port and a discharge port is disposed between a cylinder bore formed in a cylinder block and a rear housing that closes the cylinder bore. A suction lead plate for opening and closing the suction port is disposed on the cylinder bore side of the valve plate.
The suction lead plate has a suction lead that opens and closes a suction port. The suction lead has a valve portion formed at a distal end and a pair of leg portions extending from the valve portion toward the base side. An opening is formed between the legs. The opening extends from a position communicating with the discharge port to a position before the valve portion.
With this configuration, when the suction port is in the suction state in which the internal pressure of the cylinder bore decreases from the closed state of the suction port by the valve portion, the suction lead is bent toward the cylinder bore side with the base portion as the center, and the valve portion is separated from the suction port, thereby The refrigerant from the port is sucked into the cylinder bore through the periphery of the valve portion and the opening.
米国特許出願公開第2015/0086400号明細書US Patent Application Publication No. 2015/0086400
 ところで、上記特許文献1に記載された圧縮機では、吸入ポートを、吸入弁を構成する吸入リードの長手方向と直交する幅方向に拡がる形状とし、さらに吸入リードに開口部が形成されていることにより、冷媒の吸入効率を向上させることができる。しかしながら、吸入リードが先端の弁部と開口部を挟む一対の脚部とで構成されているので、吸入リードの捩じれ剛性が低下し、冷媒の吸入時に吸入リードが捩じれて冷媒のシリンダボア内への吸入が不均一となり、振動・騒音の発生や、吸入弁の破損リスクが増大するという問題があった。
 そこで、本発明は、上記従来例の課題に着目してなされたものであり、冷媒の吸入効率を高めながら、冷媒の吸入を安定して行なうとともに、振動・騒音の発生や、吸入弁の破損リスクを低減することができる圧縮機を提供することを目的としている。
By the way, in the compressor described in the above-mentioned Patent Document 1, the suction port has a shape extending in the width direction perpendicular to the longitudinal direction of the suction lead constituting the suction valve, and an opening is formed in the suction lead. Thus, the refrigerant suction efficiency can be improved. However, since the suction lead is composed of a valve portion at the tip and a pair of legs sandwiching the opening, the torsional rigidity of the suction lead is reduced, and the suction lead is twisted when the refrigerant is sucked, and the refrigerant enters the cylinder bore. There is a problem in that the suction becomes uneven and the risk of vibration and noise increases and the risk of breakage of the suction valve increases.
Accordingly, the present invention has been made paying attention to the problems of the above-described conventional example, and stably sucks the refrigerant while improving the suction efficiency of the refrigerant, generates vibration and noise, and breaks the suction valve. It aims at providing the compressor which can reduce a risk.
 上記課題を解決するために、本発明に係る圧縮機の一態様は、複数のシリンダボアを形成したシリンダブロックと、このシリンダブロックの一端側に配置され、冷媒が吸入される吸入室と、シリンダボアで圧縮された冷媒が吐出される吐出室とが形成されたシリンダヘッドと、シリンダブロック及びシリンダヘッド間に配置され、シリンダボアと吸入室とを連通する吸入孔と、シリンダボアと吐出室とを連通する吐出孔とが半径方向に形成されたバルブプレートと、バルブプレートの吸入孔及び吐出孔を覆う吸入弁体形成板に可撓性を持たせて形成され、吸入孔を開閉する吸入弁体と、吐出孔を開閉する吐出弁体とを備え、吸入弁体は、先端側に形成された吸入孔を覆う吸入弁部と、シリンダボアに形成された吸入弁開度規制部に当接する吸入弁部から突出した開度規制片と、基部側に形成された吐出孔に連通する吐出用貫通孔と、吸入弁部の吐出用貫通孔側に形成された吸入用貫通孔と、吐出用貫通孔及び吸入用貫通孔間に形成された剛性補強部とを備えている。 In order to solve the above-described problem, an aspect of a compressor according to the present invention includes a cylinder block having a plurality of cylinder bores, a suction chamber that is disposed on one end side of the cylinder block and into which refrigerant is sucked, and a cylinder bore. A cylinder head formed with a discharge chamber for discharging the compressed refrigerant, a suction hole that is disposed between the cylinder block and the cylinder head and communicates the cylinder bore and the suction chamber, and a discharge that communicates the cylinder bore and the discharge chamber. A valve plate in which a hole is formed in a radial direction, a suction valve body that is formed by providing flexibility to a suction valve body forming plate that covers the suction hole and the discharge hole of the valve plate, and a discharge valve body A discharge valve body that opens and closes the hole, and the suction valve body abuts on a suction valve portion that covers the suction hole formed on the distal end side and a suction valve opening restriction portion formed on the cylinder bore An opening restricting piece projecting from the valve input portion, a discharge through hole communicating with the discharge hole formed on the base side, a suction through hole formed on the discharge through hole side of the suction valve portion, and a discharge And a rigid reinforcing portion formed between the through hole and the suction through hole.
 本発明の一態様によれば、吸入弁を構成する吸入弁体に吸入用貫通孔及び吐出用貫通孔を形成するとともに、吸入用貫通孔及び吐出用貫通孔間に剛性補強部を形成したので、吸入弁体の捩じれを抑制することができる圧縮機を提供することができる。 According to one aspect of the present invention, the suction through hole and the discharge through hole are formed in the suction valve body constituting the suction valve, and the rigidity reinforcing portion is formed between the suction through hole and the discharge through hole. In addition, it is possible to provide a compressor capable of suppressing twisting of the suction valve body.
本発明に係る圧縮機の第1の実施形態を示す全体構成図である。It is a whole lineblock diagram showing a 1st embodiment of the compressor concerning the present invention. 図1に適用するバルブプレートを示す図であって、(a)は正面図、(b)は吸入孔及び吐出孔の拡大正面図、(c)は吸入孔のA−A線上の断面図である。It is a figure which shows the valve plate applied to FIG. 1, (a) is a front view, (b) is an enlarged front view of a suction hole and a discharge hole, (c) is sectional drawing on the AA line of a suction hole. is there. 図1に適用する吸入弁体形成板を示す図であって、(a)は正面図、(b)はシリンダボアと舌片との位置関係を示す拡大図である。It is a figure which shows the suction valve body formation board applied to FIG. 1, Comprising: (a) is a front view, (b) is an enlarged view which shows the positional relationship of a cylinder bore and a tongue piece. 吸入弁の動作状態を示す断面図であって、(a)は図3(b)のA−A線上における閉状態を示し、(b)は図3(b)のA−A線上における開状態を示し、(c)は図3(b)のC−C線上における開状態を示す。It is sectional drawing which shows the operation state of a suction valve, Comprising: (a) shows the closed state on the AA line of FIG.3 (b), (b) is the open state on the AA line of FIG.3 (b). (C) shows the open state on the CC line of FIG.3 (b). 本発明に係る圧縮機に適用し得るバルブプレート及び吸入弁の第2の実施形態を示す図であって、(a)はバルブプレートの一部を示す正面図、(b)は吸入弁体を示す正面部である。It is a figure which shows 2nd Embodiment of the valve plate and suction valve which can be applied to the compressor which concerns on this invention, Comprising: (a) is a front view which shows a part of valve plate, (b) is a suction valve body. It is the front part shown. 本発明に係る圧縮機に適用し得るバルブプレート及び吸入弁の第2の実施形態の変形例を示す図であって、(a)はバルブプレートの一部を示す正面図、(b)は吸入弁体を示す正面部である。It is a figure which shows the modification of 2nd Embodiment of the valve plate and suction valve which can be applied to the compressor which concerns on this invention, Comprising: (a) is a front view which shows a part of valve plate, (b) is suction. It is a front part which shows a valve body. 本発明に係る圧縮機に適用し得るバルブプレート及び吸入弁体の第3の実施形態を示す図であって、(a)はバルブプレートの一部を示す正面図、(b)は吸入弁体を示す正面部である。It is a figure which shows 3rd Embodiment of the valve plate and suction valve body which can be applied to the compressor based on this invention, Comprising: (a) is a front view which shows a part of valve plate, (b) is a suction valve body. It is a front part which shows. 本発明に係る圧縮機に適用し得るバルブプレート及び吸入弁体の第4の実施形態を示す正面図である。It is a front view which shows 4th Embodiment of the valve plate and suction valve body which can be applied to the compressor which concerns on this invention.
 次に、図面を参照して、本発明の一実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 また、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
〔第1の実施形態〕
 まず、本発明に係る圧縮機の第1の実施形態について図1~図4を伴って説明する。
 本発明に係る圧縮機の一態様は、図1に示すように、例えば車輛空調システムを構成する冷凍装置に使用される可変容量圧縮機100である。この可変容量圧縮機100は、同一円周上に複数のシリンダボア101aを形成したシリンダブロック101と、このシリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103を介して設けられたシリンダヘッド104とを備えている。
 シリンダブロック101とフロントハウジング102とによって規定されるクランク室140内を横断して、駆動軸110が設けられ、その中心部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112とリンク機構120を介して連結し、駆動軸110に沿ってその傾角が変化可能となっている。
 リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121と、から構成されている。
 斜板111の貫通孔111bは斜板111が最大傾角と最小傾角の範囲で傾動可能となるように形状が定められており、貫通孔111bには駆動軸110と当接する最大傾角規制部と最小傾角規制部とが形成されている。斜板111が駆動軸110に対して直交するときの斜板111の傾角を0°とした場合、貫通孔111bの最小傾角規制部は斜板111をほぼ0°まで傾角変位可能なように形成されている。
 ロータ112と斜板111との間には斜板111を最小傾角に向けて最小傾角に至るまで付勢する傾角減少バネ114が装着され、また斜板111とバネ支持部材116との間には斜板111の傾角を増大する方向に付勢する傾角増大バネ115が装着されている。最小傾角において傾角増大バネ115の付勢力は傾角減少バネ114の付勢力より大きく設定されているので、斜板111は駆動軸110が回転していないときは、傾角減少バネ114と傾角増大バネ115の付勢力がバランスする傾角に位置する。
 駆動軸110の一端は、フロントハウジング102の外側に突出したボス部102a内を貫通して外側まで延在し、図示しない動力伝達装置に連結されている。尚、駆動軸110とボス部102aとの間には、軸封装置130が挿入され、内部と外部とを遮断している。駆動軸110及びロータ112はラジアル方向に軸受131、132で支持され、スラスト方向に軸受133、スラストプレート134で支持されている。尚、駆動軸110のスラストプレート134当接部とスラストプレート134との隙間は調整ネジ135により所定の隙間に調整されている。したがって外部駆動源からの動力が動力伝達装置に伝達され、駆動軸110は動力伝達装置と同期して回転可能となっている。
 シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側空間には、斜板111の外周部が収容され、斜板111は一対のシュー137を介してピストン136と連動する構成となっている。したがって駆動軸110による斜板111の回転によりピストン136がシリンダボア101a内を往復動することが可能となる。
 シリンダヘッド104には、中央部に円環状の隔壁104aで区画された吸入室141と、隔壁104aを挟んで吸入室141を環状に取り囲む吐出室142とが形成されている。吸入室141は、シリンダボア101aとは、バルブプレート103に設けられた吸入孔103a、及び、吸入弁体形成板138に形成された吸入弁体138aを介して連通している(図4(a)~(c)参照)。吐出室142は、シリンダボア101aとは、吐出弁体形成板106に形成された吐出弁体106a、及び、バルブプレート103に設けられた吐出孔103bを介して連通している。
 フロントハウジング102、センターガスケット(図示せず)、シリンダブロック101、シリンダガスケット(図示せず)、吸入弁体形成板138、バルブプレート103、吐出弁体形成板106、ヘッドガスケット(図示せず)、シリンダヘッド104は、これらの順で接合され、複数の通しボルト105により締結されて、圧縮機ハウジングをなす。
 シリンダヘッド104には、吸入側外部冷媒回路と吸入室141とを連通する吸入通路104bが形成され、これによって吸入室141は空調システムの吸入側外部冷媒回路と接続されている。また、吐出室142は吐出通路104cを介して空調システムの吐出側外部冷媒回路と接続されている。
 シリンダヘッド104にはさらに制御弁300が設けられている。制御弁300は吐出室142とクランク室140とを連通する連通路145の開度を調整し、クランク室140への吐出ガス導入量を制御する。またクランク室140内の冷媒は、バルブプレート103に形成されたオリフィス103cを含む連通路146を経由して、吸入室141へ流れる。
 したがって制御弁300によりクランク室140の圧力を変化させ、斜板111の傾角、つまりピストン136のストロークを変化させることにより、可変容量圧縮機100の吐出容量を可変制御することができる。 空調システム作動時、つまり可変容量圧縮機100の作動状態では、外部信号に基づいて制御弁300に内蔵されるソレノイドの通電量が調整され、吸入室141の圧力が所定値になるように吐出容量が可変制御される。制御弁300は、外部環境に応じて、吸入圧力を最適制御することができる。
 次に吸入機構を構成するバルブプレート103及び吸入弁体形成板138の構造について、図1~図4を参照しながら説明する。
 先ず、バルブプレート103の構造について説明する。バルブプレート103は、図2に示すように、円板状の金属製厚板(板厚2~3mm程度)であり、正面から見て各シリンダボア101aに対向する位置に吸入孔103a及び吐出孔103bが貫通して形成されている。これら吸入孔103a及び吐出孔103bは、例えばバルブプレートの中心を通る設置線L0上のバルブプレート103の中心側に吸入孔103aが形成され、外周側に吐出孔103bが形成されている。
 ここで、吸入孔103aは、図2(b)に拡大図示するように、正面から見て一点鎖線図示のシリンダボア101aの開口縁に沿って円弧状に形成された主孔部となる円弧状孔部103a1と、この円弧状孔部103a1の両端部から吐出孔103b側に向けて互いに平行に延びる一対の拡張孔部103a2とで形成され、円弧状孔部103a1の内側と一対の拡張孔部103a2間とで窪み部103a3が形成されている。
 そして、この窪み部103a3の内面を通る設置線L0と直交する幅方向線L1と、一対の拡張孔部103a2の外側内面を通る幅方向線L1と平行な幅方向線L2との中間の幅方向線をL3としたとき、この中間の幅方向線L3上の拡張孔部103a2間の幅W1が中間の幅方向線L3上の各拡張孔部103a2の幅W2より広く設定されている。このように、拡張孔部103a2間の幅W1を拡張孔部103a2の幅W2より広く設定することにより、後述する吸入弁体138aに形成される吸入用貫通孔138a6の断面積を広くとることが可能となる。
 また、吐出孔103bは、図2(b)に拡大図示するように、円形に形成されている。
 そして、吸入孔103aの周囲には、細幅の縁部でなる弁座103eを残すように吸入孔103aの内周面に沿う環状溝103dが形成されている。
 バルブプレート103のシリンダボア101a側に吸入弁体形成板138が接合されている。吸入弁体形成板138は、円板状の金属製薄板(板厚0.3~0.5mm程度)である。この吸入弁体形成板138は、バルブプレート103の各吸入孔103a及び吐出孔103bに対向する位置にリード弁形式の吸入弁体138aが外周側から半径方向に内周側に延長して形成されている。吸入弁体138aは、吸入弁体形成板138に打ち抜き加工された外方を開放する略U字状の打ち抜き孔138a0によって形成され、外周側の基部が吸入弁体形成板138に連続している。
 吸入弁体138aは、図3(b)で拡大図示するように、基部側で所定間隔を保ち、平行に配置された一対のアーム部138a1と、これら一対のアーム部138a1の先端側に配置された吸入弁部138a2とを有し、吸入弁部138a2の先端から設置線L0に沿って突出する1つの開度規制片138a3を備えている。
 さらに、吸入弁体138aは、一対のアーム部138a1の長手方向の中間部間を架橋する剛性補強部138a4を備えており、この剛性補強部138a4を挟んで基部側に吐出用貫通孔138a5が形成され、吸入弁部138a2側に吸入用貫通孔138a6が形成されている。
 ここで、吸入弁部138a2は、バルブプレート103の吸入孔103aを覆うように形成され、先端部の開度規制片138a3を除く周縁が吸入孔103aの周囲に形成された環状溝103d内に対向されている。
 また、吐出用貫通孔138a5は、例えば吐出孔103bの半径より大きい半径の半円形部とこの半円形部に連結する長方形部とで吐出孔103bを露出させ、且つ吐出孔103bの断面積より大きな断面積に形成されている。
 さらに、吸入用貫通孔138a6は、吸入孔103aの窪み部103a3に対向し、円弧状孔部103a1及び一対の拡張孔部103a2に囲まれる領域に、図3(a)で見て上辺が下辺に比べて短い等脚台形状に形成されている。
 ここで、図3(b)に示すように、吸入孔103aの円弧状孔部103a1と前記一対の拡張孔部103a2とで囲まれる領域に対向する吸入用貫通孔138a6の周縁は、正面から見て吸入孔103aの周囲に形成された環状溝103d内に配置されている。
 そして、前述したように、図2(b)における幅方向線L3上の拡張孔部103a2間の幅W1が拡張孔部103a2の幅方向線L3上の幅W2より広く設定されている。このため、図3(b)に示すように、吸入用貫通孔138a6の幅方向線L3上の脚部間の幅W3を同じく幅方向線L3上の拡張孔部103a2の幅W2より広く設定することができる。したがって、吸入用貫通孔138a6の断面積を大きくすることができ、冷媒の吸入量を増加させることができる。
 また、吸入用貫通孔138a6の上辺部が吸入孔103aの窪み部103a3の周囲の環状溝103dに配置されているので、吸入用貫通孔138a6の側辺部と拡張孔部103a2との対向領域を長くすることができ、円弧状孔部103a1及び拡張孔部103a2から吸入される冷媒が吸入用貫通孔138a6を通り易くなる。
 さらに、シリンダボア101aには、図4(a)に示すように、吸入弁体138aの開度規制片138a3と対向する端部を開度規制片138a3の形状に合わせて切り欠いて吸入弁開度規制部101bが形成されている。この吸入弁開度規制部101bは、内部に吸入弁体138aの開度規制片138a3を収容し、開度規制片138a3が底部に当接した状態でそれ以上の吸入弁体138aの移動を規制する。この吸入弁体138aの最大開度は、例えば吸入孔103aの円弧状孔部103a1の中心位置で0.5~1.0mm程度に設定されている。
 そして、吸入弁体138aとバルブプレート103の吸入孔103aの周囲に形成される弁座103eとでリード弁形式の吸入弁が構成されている。
 次に、上記第1の実施形態の吸入弁の動作を説明する。
 先ず、空調システムが停止し駆動軸110の回転が停止した状態では、吸入弁は、図4(a)に示すように、吸入弁体138aの吸入弁部138a2がバルブプレート103の吸入孔103aの周囲の弁座103eに接触して吸入孔103aを閉塞している。このとき、吸入用貫通孔138a6は、図3(b)及び図4(a)に示すように、円弧状孔部103a1及び一対の拡張孔部103a2によって囲まれる領域の周縁が、弁座103eを囲む環状溝103d内に配置されている。
 この状態で、空調システムが作動状態となると、駆動軸110が回転駆動されるとともに、制御弁300で連通路145の開度を調整し、クランク室140への吐出ガス導入量を制御し、クランク室140の圧力を変化させることにより、斜板111の傾角が変化し、斜板111の傾角に応じて、ピストン136のストロークが調整されて冷媒の吸入量及び吐出量が調整される。
 斜板111の回転によってシリンダボア101a内のピストン136が上死点にある状態から下死点側に移動を開始すると、シリンダボア101aの吸入弁側の圧力が低下することにより、吸入室141との圧力差で、吸入弁体138aが図4(b)及び(c)に示すように開かれる。
 このとき、吸入弁部138a2の先端側の周縁が弁座103eを規定する環状溝103d内に配置されているとともに、吸入孔103aの円弧状孔部103a1と一対の拡張孔部103a2とで囲まれる領域に対向して形成されている吸入用貫通孔138a6の周縁も、環状溝103d内に配置されているので、吸入弁体138aがバルブプレート103から離れ易くなっており、吸入弁体138aを通じる冷媒のシリンダボア101a内へ吸入開始を迅速に行なうことが可能となる。
 因みに、吸入弁体138aが環状溝103dを全て覆ってしまう場合には、吸入弁体138aがバルブプレート103に張り付いてしまって離れにくくなり、冷媒の吸入遅れが発生するおそれがある。
 吸入弁体138aの開度は開度規制片138a3が吸入弁開度規制部101bの底部に当接することにより、それ以上の開度が規制され、最大開度となる。
 このように、吸入弁体138aが吸入孔103aの周囲の弁座103eから離間すると、吸入孔103aが開放されて、図4(c)に示すように、吸入弁体138aの吸入弁体138a2の周囲の隙間を通って吸入孔103aから冷媒がシリンダボア101a内に吸入されるだけでなく、吸入用貫通孔138a6を通ってシリンダボア101a内に吸入される。この吸入用貫通孔138a6の両側には、一対の拡張孔部103a2が配置されているので、円弧状孔部103a1からの冷媒のみならず、拡張孔部103a2からの冷媒も吸入用貫通孔138a6を通ってシリンダボア101a内に吸入される。
 さらに、バルブプレート103に形成された吸入孔103aが図2(a)及び(b)に示すように、円弧状孔部103a1とこの円弧状孔部103a1の円周方向の両端から吐出孔103b側に延長する一対の拡張孔部103a2が形成されているため、吸入孔103aの断面積を、円弧状孔部103a1を形成するのみ場合に比較して大きくすることができる。したがって、シリンダヘッド104の吸入室141からシリンダボア101aへの冷媒の吸入量を多くすることができる。
 しかも、一対の拡張孔部103a2を吐出用貫通孔138a5側に延長させているので、図2(b)における吸入孔103aの設置線L0に直交する幅方向線L1に沿う幅すなわち横長方向の幅を拡張することなく断面積を増加させることができる。
 このように、吸入孔103aの断面積の増加によるバルブプレート103を通る冷媒の吸入量を増加させると、これに応じてバルブプレート103から吸入弁を通過してシリンダボア101aに吸入する冷媒量も増加させる必要がある。
 本実施形態では、舌状の吸入弁体138aの吸入弁部138a2に隣接し、正面から見て吸入孔103aの円弧状孔部103a1と一対の拡張孔部103a2とに囲まれる領域に、吸入用貫通孔138a6を形成している。このため、吸入用貫通孔138a6には、円弧状孔部103a1及び拡張孔部103a2からの冷媒が吸入されることになる。したがって、一対の拡張孔部103a2による冷媒吸入量の増加分を、吸入用貫通孔138a6を通過する冷媒量で受け持つことが可能となる。
 そして、ピストン136が下死点に達すると、次いで上死点までストロークする圧縮工程に移行する。この圧縮工程では、ピストンに136の移動に伴ってシリンダボア101a内の圧力が高くなり、これに応じて吸入弁体138aは閉弁位置に復帰する。シリンダボア101a内の圧力が吐出室142の圧力より高くなると吐出弁体106aが吐出孔103bを開放し、シリンダボア101a内の冷媒が吸入弁体138aの吐出用貫通孔138a5、バルブプレート103の吐出孔103bを通じてシリンダヘッド104の吐出室142へ吐出され、この吐出室142から吐出通路104cを通じて空調システムの吐出側外部冷媒回路へ吐出される。
 そして、ピストン136が上死点に達すると、上述した吸入工程に移行し、空調システムが動作している間、吸入工程と圧縮工程とを繰り返す。
 この間に、吸入弁体138aは、吸入弁部138a2がバルブプレート103の吸入孔103aを閉塞している閉弁状態と、吸入弁部138a2が吸入孔103aを開放して開度規制片138a3が吸入弁開度規制部101bの底部に当接する開弁状態との間で基部を中心とする弾性変形を繰り返すことになる。
 吸入弁体138aは、基部と先端側の吸入弁部138a2との間を連結する一対の平行アーム部138a1間を連結する剛性補強部138a4を備えている。このため、吸入弁体138aの剛性を高めることができ、繰り返しの弾性変形に対する強度を確保することができる。これと同時に、捩じり剛性も高めることができることから、閉弁状態から開弁状態に又はその逆に移行する際に、吸入弁体138aが捩じれることなく、安定した姿勢で動作させることができる。吸入弁体138aを通る冷媒に偏りが生じることなく安定した冷媒流を得ることができる。
 次に、本発明に係る圧縮機の第2の実施形態について図5を伴って説明する。
 この第2の実施形態では、前述した第1の実施形態のように、バルブプレートに形成する吸入孔の一対の拡張部を円弧状孔部の延長上に形成したものである。
 すなわち、第2の実施形態では、前述した第1の実施形態におけるバルブプレート103に形成した吸入孔103aを、図5(a)に示すように、主孔部となる円弧状孔部103a1の曲率半径を小さくし、この円弧状孔部103a1の両端に円弧状孔部103a1の延長方向に連続して吐出孔103b側に向かう一対の拡張孔部103a2を設けるようにしたものである。
 これに応じて、吸入弁体138aの吸入用貫通孔138a6の形状を、図5(b)に示すように、等脚台形状から蒲鉾形状に変更している。その他の構成については上述した第1の実施形態と同様の構成を有する。
 この第2の実施形態によると、吸入弁体138aに剛性補強部138a4を形成していることから前述した第1の実施形態と同様の作用効果を得ることができるとともに、バルブプレート103の吸入孔103aの形状が円弧状孔部103a1とその両端に連続する一対の拡張孔部103a2とによって単純な円弧状に形成されているので、バルブプレート103の製作を容易に行うことができる。
 なお、上記第1及び第2の実施形態では、バルブプレート103の吸入孔103aを円弧状孔部103a1と一対の拡張孔部103a2とで形成する場合について説明したが、これに限定されるものではない。例えば、図6に示すように、円弧状孔部103a1に代えて設置線L0に直交する幅方向線L1に沿って延長する主孔部となる矩形状孔部103a4を形成し、この矩形状孔部103a4の両端部から吐出孔103b側に延長する一対の拡張孔部103a5を形成するようにしてもよい。これに応じて、吸入弁体138aについても等脚台形状の吸入用貫通孔138a6に代えて吸入孔103aの円弧状孔部103a1と一対の拡張孔部103a2とに囲まれる領域に対向させて長方形状の吸入用貫通孔138a7を形成すればよい。
 次に、本発明に係る圧縮機の第3の実施形態について図7を伴って説明する。
 この第3の実施形態では、前述した第1の実施形態の構成において、吸入工程での冷媒の吸入流路を増加させるようにしたものである。
 すなわち、第3の実施形態では、図7(a)に示すように、前述した第1の実施形態の構成において、バルブプレート103の吸入弁体形成板138を固定する接合面に、吸入弁体138aの吸入用貫通孔138a6の中央部に対向する位置から吐出孔103bに達する0.5mm程度の深さの連結溝103fを形成している。
 したがって、吸入弁体138aの閉弁状態で、図7(b)に示すように、吸入用貫通孔138a6が連結溝103fを介して吐出用貫通孔138a5に連結される。
 その他の構成については前述した第1の実施形態と同様の構成を有する。
 この第3の実施形態によると、バルブプレート103に吸入用貫通孔138a6と吐出用貫通孔138a5とを連結する連結溝103fが形成されているので、前述した吸入工程で、吸入孔103aから吸入用貫通孔138a6に向かう冷媒の流れは連結溝103fを介して吐出用貫通孔138a5からもシリンダボア101a内に流入するため、連結溝103fを付加することによって、第1の実施形態よりシリンダボア101aに流入する冷媒量を増加することができる。
 なお、連結溝103fの形状についてはテーパー状に限らず平行でもよく冷媒の通過が可能であれば任意の形状とすることができる。
 次に、本発明に係る圧縮機の第4の実施形態について図8を伴って説明する。
 この第4の実施形態では、吸入弁体の開度を規制する開度規制片を複数設けるようにしたものである。
 すわなち、第4の実施形態では、図8に示すように、バルブプレート103に形成する吸入孔103aを横長の長円形状としている。これに応じて、吸入弁体138aの吸入用貫通孔138a6を、図8に示すように、吸入孔103aに隣接して沿う長方形状としている。そして、吸入弁部138a2には斜め外側に突出する2つの開度規制片138a3が形成されている。したがって、シリンダボア101aにも各開度規制片138a3に対向する位置に2つの吸入弁開度規制部101bが夫々形成されている。
 その他の構成については前述した第1の実施形態と同様の構成を有する。 この第4の実施形態によると、吸入弁体138aが閉弁状態から開弁状態となったときに、吸入弁体138aの2つの開度規制片138a3が夫々シリンダボア101aに形成された吸入弁開度規制部101bの底部に当接する。このため、吸入弁体138aの開弁状態で、吸入弁体138aが捩じれることなく安定した姿勢を保つことができ、冷媒の吸入を安定して行なうことができる。
 以上、本発明の第1~第4の実施形態について説明してきたが、本発明はこれらに限定されずに種々の変更、改良を行うことができる。
 例えば、上記第1~第4の実施形態では、シリンダヘッド104の中心側に吸入室141を設け、この吸入室141の外側に吐出室142を形成しているが、本発明はこれに限定されるものではなく、吐出室142を中心側に設け、その外側に吸入室141を設けるようにしてもよい。
 また、第1~第4の実施形態では、バルブプレート103の吸入孔103a及び吐出孔103bの中心を通る設置線L0がバルブプレート103の中心を通る場合について説明したが、これに限定されるものではなく、吸入孔103a及び吐出孔103bの中心を通る設置線L0がバルブプレート103の中心から離れた位置を通るように傾斜させるようにしてもよい。これに応じて、吸入弁体138aの中央線を吸入弁体形成板138の中心から外れた位置を通るように傾斜させればよい。要は、シリンダボア101aの開口縁内に吸入孔103a及び吐出孔103bと吸入弁体138aとが配置されていればよい。
 また、上記第1~第4の実施形態では、本発明を可変容量圧縮機に適用した場合について説明したが、これに限定されるものではなく、固定容量の圧縮機にも本発明を適用することができる。
 さらに、上記実施形態では、本発明を車輛の空調システムに使用する圧縮機に適用する場合について説明したが、これに限定されるものではなく、リード弁形式の吸入弁を採用する他のシステムに使用する圧縮機に本発明を適用することができる。
Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, there may be a case where the dimensional relationships and ratios are different between the drawings.
Further, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, The layout is not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
[First Embodiment]
First, a first embodiment of a compressor according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, one aspect of the compressor according to the present invention is a variable capacity compressor 100 used in a refrigeration apparatus constituting a vehicle air conditioning system, for example. The variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101 a formed on the same circumference, a front housing 102 provided at one end of the cylinder block 101, and a valve plate 103 at the other end of the cylinder block 101. And a cylinder head 104 provided via the cylinder.
A drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the center thereof. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the inclination angle can be changed along the drive shaft 110.
The link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122. The link arm 121 is movably connected and the other end side is rotatably connected to the second arm 111a via the second connection pin 123.
The through hole 111b of the swash plate 111 is shaped so that the swash plate 111 can tilt within the range of the maximum inclination angle and the minimum inclination angle. An inclination angle restricting portion is formed. When the inclination angle of the swash plate 111 when the swash plate 111 is orthogonal to the drive shaft 110 is set to 0 °, the minimum inclination restriction portion of the through hole 111b is formed so that the inclination of the swash plate 111 can be displaced to almost 0 °. Has been.
Between the rotor 112 and the swash plate 111, an inclination reduction spring 114 that urges the swash plate 111 toward the minimum inclination angle to reach the minimum inclination angle is mounted, and between the swash plate 111 and the spring support member 116. An inclination increasing spring 115 is attached to urge the swash plate 111 in an increasing direction. Since the urging force of the inclination increasing spring 115 is set to be larger than the urging force of the inclination decreasing spring 114 at the minimum inclination angle, the swash plate 111 has the inclination decreasing spring 114 and the inclination increasing spring 115 when the drive shaft 110 is not rotating. It is located at an inclination angle that balances the urging force.
One end of the drive shaft 110 extends through the inside of the boss portion 102a protruding to the outside of the front housing 102, and is connected to a power transmission device (not shown). A shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the inside and the outside. The drive shaft 110 and the rotor 112 are supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction. The clearance between the thrust plate 134 abutting portion of the drive shaft 110 and the thrust plate 134 is adjusted to a predetermined clearance by an adjustment screw 135. Therefore, the power from the external drive source is transmitted to the power transmission device, and the drive shaft 110 can rotate in synchronization with the power transmission device.
A piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140. The swash plate 111 includes a pair of shoes 137. Via the piston 136. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111 by the drive shaft 110.
In the cylinder head 104, a suction chamber 141 defined by an annular partition 104a and a discharge chamber 142 surrounding the suction chamber 141 in a ring shape with the partition 104a interposed therebetween are formed at the center. The suction chamber 141 communicates with the cylinder bore 101a through a suction hole 103a provided in the valve plate 103 and a suction valve body 138a formed in the suction valve body forming plate 138 (FIG. 4A). ~ (C)). The discharge chamber 142 communicates with the cylinder bore 101 a through a discharge valve body 106 a formed on the discharge valve body forming plate 106 and a discharge hole 103 b provided in the valve plate 103.
Front housing 102, center gasket (not shown), cylinder block 101, cylinder gasket (not shown), intake valve body forming plate 138, valve plate 103, discharge valve body forming plate 106, head gasket (not shown), The cylinder head 104 is joined in this order and fastened by a plurality of through bolts 105 to form a compressor housing.
The cylinder head 104 is formed with a suction passage 104b communicating the suction side external refrigerant circuit and the suction chamber 141, whereby the suction chamber 141 is connected to the suction side external refrigerant circuit of the air conditioning system. The discharge chamber 142 is connected to a discharge-side external refrigerant circuit of the air conditioning system via the discharge passage 104c.
The cylinder head 104 is further provided with a control valve 300. The control valve 300 adjusts the opening of the communication passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140. The refrigerant in the crank chamber 140 flows to the suction chamber 141 via the communication path 146 including the orifice 103 c formed in the valve plate 103.
Therefore, the discharge capacity of the variable capacity compressor 100 can be variably controlled by changing the pressure of the crank chamber 140 by the control valve 300 and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136. When the air conditioning system is in operation, that is, when the variable capacity compressor 100 is in an operating state, the energization amount of the solenoid built in the control valve 300 is adjusted based on the external signal, and the discharge capacity is adjusted so that the pressure in the suction chamber 141 becomes a predetermined value. Is variably controlled. The control valve 300 can optimally control the suction pressure according to the external environment.
Next, the structure of the valve plate 103 and the suction valve body forming plate 138 constituting the suction mechanism will be described with reference to FIGS.
First, the structure of the valve plate 103 will be described. As shown in FIG. 2, the valve plate 103 is a disk-shaped thick metal plate (thickness of about 2 to 3 mm), and the suction hole 103a and the discharge hole 103b are located at positions facing the cylinder bores 101a when viewed from the front. Is formed through. As for these suction holes 103a and discharge holes 103b, for example, a suction hole 103a is formed on the center side of the valve plate 103 on the installation line L0 passing through the center of the valve plate, and a discharge hole 103b is formed on the outer peripheral side.
Here, as shown in an enlarged view in FIG. 2B, the suction hole 103a is an arc-shaped hole that becomes a main hole formed in an arc shape along the opening edge of the cylinder bore 101a shown in a dashed line when viewed from the front. Part 103a1 and a pair of extended hole parts 103a2 extending in parallel to each other from both ends of the arcuate hole part 103a1 toward the discharge hole 103b, and inside the arcuate hole part 103a1 and a pair of extended hole parts 103a2. A recess 103a3 is formed between the two.
And the width direction intermediate | middle of the width direction line L1 orthogonal to the installation line L0 which passes along the inner surface of this hollow part 103a3, and the width direction line L2 parallel to the width direction line L1 which passes along the outer side inner surface of a pair of expansion hole part 103a2 When the line is L3, the width W1 between the expansion hole portions 103a2 on the intermediate width direction line L3 is set wider than the width W2 of each expansion hole portion 103a2 on the intermediate width direction line L3. Thus, by setting the width W1 between the expansion hole portions 103a2 wider than the width W2 of the expansion hole portion 103a2, the cross-sectional area of the suction through hole 138a6 formed in the suction valve body 138a described later can be increased. It becomes possible.
Further, the discharge hole 103b is formed in a circular shape as shown in an enlarged view in FIG.
An annular groove 103d is formed around the suction hole 103a along the inner peripheral surface of the suction hole 103a so as to leave a valve seat 103e having a narrow edge.
A suction valve body forming plate 138 is joined to the cylinder bore 101 a side of the valve plate 103. The intake valve body forming plate 138 is a disk-shaped metal thin plate (plate thickness of about 0.3 to 0.5 mm). The intake valve body forming plate 138 is formed by extending a reed valve type intake valve body 138a from the outer peripheral side to the inner peripheral side in the radial direction at a position facing each of the suction holes 103a and the discharge holes 103b of the valve plate 103. ing. The suction valve body 138 a is formed by a substantially U-shaped punching hole 138 a 0 that is punched into the suction valve body forming plate 138 and has an outer peripheral base that is continuous with the suction valve body forming plate 138. .
As shown in an enlarged view in FIG. 3 (b), the suction valve body 138a is arranged at a base portion side at a predetermined interval and in parallel with a pair of arm portions 138a1 and at the distal end side of the pair of arm portions 138a1. And an opening restricting piece 138a3 projecting from the tip of the suction valve portion 138a2 along the installation line L0.
Further, the suction valve body 138a includes a rigid reinforcing portion 138a4 that bridges between the longitudinal intermediate portions of the pair of arm portions 138a1, and a discharge through hole 138a5 is formed on the base side with the rigid reinforcing portion 138a4 interposed therebetween. In addition, a suction through hole 138a6 is formed on the suction valve portion 138a2.
Here, the suction valve portion 138a2 is formed so as to cover the suction hole 103a of the valve plate 103, and the peripheral edge except for the opening degree restricting piece 138a3 at the tip portion is opposed to an annular groove 103d formed around the suction hole 103a. Has been.
The discharge through-hole 138a5 exposes the discharge hole 103b, for example, by a semicircular portion having a radius larger than the radius of the discharge hole 103b and a rectangular portion connected to the semicircular portion, and is larger than the cross-sectional area of the discharge hole 103b. The cross-sectional area is formed.
Furthermore, the suction through-hole 138a6 is opposed to the recess 103a3 of the suction hole 103a and is located in a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 with the upper side at the lower side as viewed in FIG. It is formed in a shorter isosceles trapezoidal shape.
Here, as shown in FIG. 3B, the periphery of the suction through hole 138a6 facing the region surrounded by the arc-shaped hole 103a1 of the suction hole 103a and the pair of expansion holes 103a2 is viewed from the front. And disposed in an annular groove 103d formed around the suction hole 103a.
As described above, the width W1 between the expansion hole portions 103a2 on the width direction line L3 in FIG. 2B is set wider than the width W2 on the width direction line L3 of the expansion hole portions 103a2. Therefore, as shown in FIG. 3B, the width W3 between the leg portions on the width direction line L3 of the suction through hole 138a6 is set wider than the width W2 of the expansion hole portion 103a2 on the width direction line L3. be able to. Therefore, the cross-sectional area of the suction through hole 138a6 can be increased, and the amount of refrigerant sucked can be increased.
Further, since the upper side portion of the suction through hole 138a6 is disposed in the annular groove 103d around the recess portion 103a3 of the suction hole 103a, the opposing region between the side portion of the suction through hole 138a6 and the expansion hole portion 103a2 is formed. The refrigerant that is sucked from the arcuate hole 103a1 and the expansion hole 103a2 can easily pass through the suction through-hole 138a6.
Further, as shown in FIG. 4 (a), the cylinder bore 101a is cut out at the end facing the opening restriction piece 138a3 of the intake valve body 138a in accordance with the shape of the opening restriction piece 138a3, thereby opening the intake valve opening. A restricting portion 101b is formed. The intake valve opening restriction portion 101b accommodates an opening restriction piece 138a3 of the intake valve body 138a therein, and restricts further movement of the intake valve body 138a in a state where the opening restriction piece 138a3 is in contact with the bottom. To do. The maximum opening of the suction valve body 138a is set to about 0.5 to 1.0 mm at the center position of the arcuate hole 103a1 of the suction hole 103a, for example.
The suction valve body 138a and the valve seat 103e formed around the suction hole 103a of the valve plate 103 constitute a reed valve type suction valve.
Next, the operation of the suction valve of the first embodiment will be described.
First, in a state where the air conditioning system is stopped and the rotation of the drive shaft 110 is stopped, the intake valve is configured such that the intake valve portion 138a2 of the intake valve body 138a is connected to the intake hole 103a of the valve plate 103, as shown in FIG. The suction hole 103a is closed in contact with the surrounding valve seat 103e. At this time, as shown in FIGS. 3B and 4A, the suction through-hole 138a6 has a peripheral edge of a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 as the valve seat 103e. It arrange | positions in the surrounding annular groove 103d.
In this state, when the air conditioning system is activated, the drive shaft 110 is driven to rotate, the opening of the communication passage 145 is adjusted by the control valve 300, and the amount of discharge gas introduced into the crank chamber 140 is controlled. By changing the pressure in the chamber 140, the inclination angle of the swash plate 111 changes, and the stroke of the piston 136 is adjusted according to the inclination angle of the swash plate 111, thereby adjusting the intake amount and the discharge amount of the refrigerant.
When the piston 136 in the cylinder bore 101a starts moving from the top dead center side to the bottom dead center side due to the rotation of the swash plate 111, the pressure on the suction valve side of the cylinder bore 101a decreases, so that the pressure with the suction chamber 141 is reduced. As a result, the suction valve body 138a is opened as shown in FIGS. 4 (b) and 4 (c).
At this time, the peripheral edge of the suction valve portion 138a2 on the front end side is disposed in the annular groove 103d that defines the valve seat 103e, and is surrounded by the arc-shaped hole portion 103a1 of the suction hole 103a and the pair of expansion hole portions 103a2. Since the peripheral edge of the suction through hole 138a6 formed so as to face the region is also disposed in the annular groove 103d, the suction valve body 138a is easily separated from the valve plate 103, and passes through the suction valve body 138a. The refrigerant can be quickly started to be sucked into the cylinder bore 101a.
Incidentally, when the suction valve body 138a covers the entire annular groove 103d, the suction valve body 138a sticks to the valve plate 103 and becomes difficult to separate, and there is a possibility that a refrigerant suction delay may occur.
The opening degree of the intake valve body 138a is restricted by the opening degree restricting piece 138a3 coming into contact with the bottom part of the intake valve opening degree restricting part 101b, and becomes the maximum opening degree.
Thus, when the suction valve body 138a is separated from the valve seat 103e around the suction hole 103a, the suction hole 103a is opened, and the suction valve body 138a2 of the suction valve body 138a is opened as shown in FIG. The refrigerant is not only sucked into the cylinder bore 101a from the suction hole 103a through the peripheral gap, but is also sucked into the cylinder bore 101a through the through hole 138a6. Since a pair of expansion hole portions 103a2 are disposed on both sides of the suction through-hole 138a6, not only the refrigerant from the arc-shaped hole portion 103a1 but also the refrigerant from the expansion hole portion 103a2 passes through the suction through-hole 138a6. And is sucked into the cylinder bore 101a.
Further, as shown in FIGS. 2A and 2B, the suction hole 103a formed in the valve plate 103 has an arcuate hole 103a1 and both ends of the arcuate hole 103a1 in the circumferential direction from the discharge hole 103b side. Since the pair of extended hole portions 103a2 extending in the direction is formed, the cross-sectional area of the suction hole 103a can be increased as compared with the case where only the arc-shaped hole portion 103a1 is formed. Therefore, the amount of refrigerant sucked from the suction chamber 141 of the cylinder head 104 into the cylinder bore 101a can be increased.
Moreover, since the pair of extended hole portions 103a2 are extended toward the discharge through hole 138a5, the width along the width direction line L1 orthogonal to the installation line L0 of the suction hole 103a in FIG. The cross-sectional area can be increased without expanding.
As described above, when the amount of refrigerant sucked through the valve plate 103 is increased due to an increase in the cross-sectional area of the suction hole 103a, the amount of refrigerant that passes through the suction valve from the valve plate 103 and sucks into the cylinder bore 101a is increased accordingly. It is necessary to let
In the present embodiment, the suction valve body 138a is adjacent to the suction valve portion 138a2 and is located in a region surrounded by the arc-shaped hole portion 103a1 and the pair of expansion hole portions 103a2 of the suction hole 103a when viewed from the front. A through hole 138a6 is formed. For this reason, the refrigerant from the arcuate hole 103a1 and the expansion hole 103a2 is sucked into the suction through hole 138a6. Therefore, the increase in the refrigerant suction amount by the pair of expansion hole portions 103a2 can be handled by the refrigerant amount passing through the suction through-hole 138a6.
Then, when the piston 136 reaches the bottom dead center, the process proceeds to a compression process in which the piston 136 strokes to the top dead center. In this compression step, the pressure in the cylinder bore 101a increases as the piston 136 moves, and the suction valve body 138a returns to the valve closing position accordingly. When the pressure in the cylinder bore 101a becomes higher than the pressure in the discharge chamber 142, the discharge valve body 106a opens the discharge hole 103b, and the refrigerant in the cylinder bore 101a becomes the discharge through hole 138a5 of the suction valve body 138a and the discharge hole 103b of the valve plate 103. Is discharged to the discharge chamber 142 of the cylinder head 104, and discharged from the discharge chamber 142 to the discharge-side external refrigerant circuit of the air conditioning system through the discharge passage 104c.
When the piston 136 reaches top dead center, the process proceeds to the above-described suction process, and the suction process and the compression process are repeated while the air conditioning system is operating.
During this time, the suction valve body 138a is in a closed state where the suction valve portion 138a2 closes the suction hole 103a of the valve plate 103, and the suction valve portion 138a2 opens the suction hole 103a and the opening restriction piece 138a3 is sucked. The elastic deformation centering on the base portion is repeated between the valve opening state in contact with the bottom of the valve opening restriction portion 101b.
The suction valve body 138a includes a rigidity reinforcing portion 138a4 that connects a pair of parallel arm portions 138a1 that connect the base portion and the suction valve portion 138a2 on the distal end side. For this reason, the rigidity of the suction valve body 138a can be increased, and the strength against repeated elastic deformation can be ensured. At the same time, since the torsional rigidity can be increased, the intake valve body 138a can be operated in a stable posture without being twisted when shifting from the closed state to the open state or vice versa. it can. A stable refrigerant flow can be obtained without causing a bias in the refrigerant passing through the intake valve body 138a.
Next, a second embodiment of the compressor according to the present invention will be described with reference to FIG.
In the second embodiment, as in the first embodiment described above, a pair of expansion portions of the suction hole formed in the valve plate is formed on the extension of the arc-shaped hole portion.
That is, in the second embodiment, the suction hole 103a formed in the valve plate 103 in the first embodiment described above is replaced with the curvature of the arcuate hole 103a1 serving as the main hole as shown in FIG. The radius is reduced, and a pair of extended hole portions 103a2 are provided at both ends of the arc-shaped hole portion 103a1 so as to continue to the discharge hole 103b side in the extending direction of the arc-shaped hole portion 103a1.
Accordingly, the shape of the suction through hole 138a6 of the suction valve body 138a is changed from an isosceles trapezoidal shape to a bowl shape as shown in FIG. 5 (b). About another structure, it has the same structure as 1st Embodiment mentioned above.
According to the second embodiment, since the rigidity reinforcing portion 138a4 is formed in the suction valve body 138a, the same effect as that of the first embodiment described above can be obtained, and the suction hole of the valve plate 103 can be obtained. Since the shape of 103a is formed in a simple arc shape by the arc-shaped hole portion 103a1 and a pair of extended hole portions 103a2 continuous at both ends thereof, the valve plate 103 can be easily manufactured.
In the first and second embodiments, the case where the suction hole 103a of the valve plate 103 is formed by the arcuate hole 103a1 and the pair of expansion holes 103a2 has been described. However, the present invention is not limited to this. Absent. For example, as shown in FIG. 6, instead of the arc-shaped hole 103a1, a rectangular hole 103a4 serving as a main hole extending along the width direction line L1 orthogonal to the installation line L0 is formed. You may make it form a pair of expansion hole part 103a5 extended from the both ends of part 103a4 to the discharge hole 103b side. Accordingly, the suction valve body 138a is also rectangular so as to face a region surrounded by the arc-shaped hole 103a1 and the pair of expansion holes 103a2 of the suction hole 103a instead of the isosceles trapezoidal suction through hole 138a6. The suction through hole 138a7 may be formed.
Next, a third embodiment of the compressor according to the present invention will be described with reference to FIG.
In the third embodiment, in the configuration of the first embodiment described above, the refrigerant suction flow path in the suction step is increased.
That is, in the third embodiment, as shown in FIG. 7A, in the configuration of the first embodiment described above, the suction valve body is attached to the joint surface that fixes the suction valve body forming plate 138 of the valve plate 103. A connecting groove 103f having a depth of about 0.5 mm reaching the discharge hole 103b from a position facing the central portion of the suction through hole 138a6 of 138a is formed.
Therefore, when the suction valve body 138a is closed, as shown in FIG. 7B, the suction through hole 138a6 is connected to the discharge through hole 138a5 via the connection groove 103f.
Other configurations are the same as those of the first embodiment described above.
According to the third embodiment, since the connecting groove 103f for connecting the suction through hole 138a6 and the discharge through hole 138a5 is formed in the valve plate 103, the suction hole 103a is used for suction through the suction step described above. Since the refrigerant flow toward the through hole 138a6 also flows into the cylinder bore 101a from the discharge through hole 138a5 through the connecting groove 103f, the refrigerant flows into the cylinder bore 101a from the first embodiment by adding the connecting groove 103f. The amount of refrigerant can be increased.
Note that the shape of the connecting groove 103f is not limited to a tapered shape, and may be a parallel shape as long as the refrigerant can pass therethrough.
Next, a fourth embodiment of the compressor according to the present invention will be described with reference to FIG.
In the fourth embodiment, a plurality of opening degree restricting pieces for restricting the opening degree of the intake valve body are provided.
That is, in the fourth embodiment, as shown in FIG. 8, the suction hole 103a formed in the valve plate 103 has a horizontally long oval shape. Accordingly, the suction through hole 138a6 of the suction valve body 138a has a rectangular shape adjacent to the suction hole 103a as shown in FIG. The suction valve portion 138a2 is formed with two opening restriction pieces 138a3 that project obliquely outward. Accordingly, the cylinder bore 101a is also formed with two intake valve opening restriction portions 101b at positions facing the opening restriction pieces 138a3.
Other configurations are the same as those of the first embodiment described above. According to the fourth embodiment, when the suction valve body 138a is changed from the closed state to the opened state, the two opening restriction pieces 138a3 of the suction valve body 138a are formed in the cylinder bore 101a, respectively. It contacts the bottom of the degree restricting portion 101b. For this reason, when the suction valve body 138a is in the open state, the suction valve body 138a can be maintained in a stable posture without being twisted, and the refrigerant can be sucked stably.
Although the first to fourth embodiments of the present invention have been described above, the present invention is not limited to these, and various changes and improvements can be made.
For example, in the first to fourth embodiments, the suction chamber 141 is provided on the center side of the cylinder head 104 and the discharge chamber 142 is formed outside the suction chamber 141. However, the present invention is not limited to this. Instead of this, the discharge chamber 142 may be provided on the center side, and the suction chamber 141 may be provided outside thereof.
In the first to fourth embodiments, the case where the installation line L0 passing through the centers of the suction hole 103a and the discharge hole 103b of the valve plate 103 passes through the center of the valve plate 103 has been described. However, the present invention is not limited to this. Instead, the installation line L0 passing through the centers of the suction hole 103a and the discharge hole 103b may be inclined so as to pass through a position away from the center of the valve plate 103. In response to this, the center line of the suction valve body 138a may be inclined so as to pass through a position off the center of the suction valve body forming plate 138. In short, the suction hole 103a, the discharge hole 103b, and the suction valve body 138a may be disposed in the opening edge of the cylinder bore 101a.
In the first to fourth embodiments, the case where the present invention is applied to a variable capacity compressor has been described. However, the present invention is not limited to this, and the present invention is also applied to a fixed capacity compressor. be able to.
Further, in the above embodiment, the case where the present invention is applied to a compressor used in a vehicle air conditioning system has been described. However, the present invention is not limited to this, and other systems that employ a reed valve type intake valve are used. The present invention can be applied to a compressor to be used.
 100…可変容量圧縮機、101…シリンダブロック、101a…シリンダボア、102…フロントハウジング、103…バルブプレート、103a…吸入孔、103a1…円弧状孔部、103a4…矩形状孔部、103a2,103a5…拡張孔部、103b…吐出孔、103f…連結溝、104…シリンダヘッド、110…駆動軸、111…斜板、112…ロータ、120…リンク機構、136…ピストン、137…シュー、138…吸入弁体形成板、138a…吸入弁体、138a1…アーム部、138a2…吸入弁部、138a3…開度規制片、138a4…剛性補強部、138a5…吐出用貫通孔、138a6,138a7…吸入用貫通孔、141…吸入室、142…吐出室 DESCRIPTION OF SYMBOLS 100 ... Variable capacity compressor, 101 ... Cylinder block, 101a ... Cylinder bore, 102 ... Front housing, 103 ... Valve plate, 103a ... Suction hole, 103a1 ... Arc-shaped hole, 103a4 ... Rectangular hole, 103a2, 103a5 ... Expansion Hole 103b ... Discharge hole 103f ... Connecting groove 104 ... Cylinder head 110 ... Drive shaft 111 ... Swash plate 112 ... Rotor 120 ... Link mechanism 136 ... Piston 137 ... Shoe 138 ... Suction valve body Forming plate, 138a ... suction valve body, 138a1 ... arm part, 138a2 ... suction valve part, 138a3 ... opening restriction piece, 138a4 ... rigid reinforcement part, 138a5 ... discharge through hole, 138a6, 138a7 ... suction through hole, 141 ... Suction chamber, 142 ... Discharge chamber

Claims (7)

  1.  複数のシリンダボアを形成したシリンダブロックと、
     該シリンダブロックの一端側に配置され、冷媒が吸入される吸入室と、前記シリンダボアで圧縮された冷媒が吐出される吐出室とが形成されたシリンダヘッドと、
     前記シリンダブロック及び前記シリンダヘッド間に配置され、前記シリンダボアと前記吸入室とを連通する吸入孔と、前記シリンダボアと前記吐出室とを連通する吐出孔とが半径方向に形成されたバルブプレートと、
     前記バルブプレートに接合された吸入弁体形成板に可撓性を持たせて形成され、前記吸入孔を開閉する吸入弁体と、
     前記吐出孔を開閉する吐出弁体とを備え、
     前記吸入弁体は、先端側に形成された前記吸入孔を覆う吸入弁部と、前記シリンダボアに形成された吸入弁開度規制部に当接する前記吸入弁部から突出した開度規制片と、基部側に形成された前記吐出孔に連通する吐出用貫通孔と、前記吸入弁部の前記吐出用貫通孔側に形成された吸入用貫通孔と、前記吐出用貫通孔及び前記吸入用貫通孔間に形成された剛性補強部とを備えていることを特徴とする圧縮機。
    A cylinder block having a plurality of cylinder bores;
    A cylinder head disposed on one end side of the cylinder block, in which a suction chamber into which refrigerant is sucked and a discharge chamber into which refrigerant compressed by the cylinder bore is discharged;
    A valve plate disposed between the cylinder block and the cylinder head, the suction hole communicating with the cylinder bore and the suction chamber, and the discharge hole communicating with the cylinder bore and the discharge chamber;
    A suction valve body formed by giving flexibility to a suction valve body forming plate joined to the valve plate, and opening and closing the suction hole;
    A discharge valve body for opening and closing the discharge hole,
    The suction valve body includes a suction valve portion that covers the suction hole formed on the distal end side, and an opening restriction piece that protrudes from the suction valve portion that contacts the suction valve opening restriction portion formed in the cylinder bore, A discharge through hole communicating with the discharge hole formed on the base side, a suction through hole formed on the discharge through hole side of the suction valve section, the discharge through hole, and the suction through hole A compressor comprising a rigid reinforcing portion formed therebetween.
  2.  前記開度規制片は、前記吐出用貫通孔及び前記吸入用貫通孔の中心を通る設置線上に1つだけ突出形成されていることを特徴とする請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein only one of the opening restriction pieces protrudes from an installation line passing through the centers of the discharge through hole and the suction through hole.
  3.  前記バルブプレートは、前記吸入弁体形成板と接触する面に前記吸入用貫通孔と前記吐出用貫通孔とを連結する連結溝が形成されていることを特徴とする請求項1又は2に記載の圧縮機。 The connection groove | channel which connects the said through-hole for suction | inhalation and the said through-hole for discharge is formed in the said valve plate in the surface which contacts the said suction-valve body formation board, The Claim 1 or 2 characterized by the above-mentioned. Compressor.
  4.  前記バルブプレートの吸入孔は、シリンダボアの開口縁に沿う円弧状孔部と、該円弧状孔部の両端側から前記吐出孔側に延びる一対の拡張孔部とで構成されていることを特徴とする請求項1から3の何れか1項に記載の圧縮機。 The suction hole of the valve plate is composed of an arc-shaped hole along the opening edge of the cylinder bore, and a pair of expansion holes extending from both ends of the arc-shaped hole to the discharge hole. The compressor according to any one of claims 1 to 3.
  5.  前記吸入用貫通孔は、前記吸入孔の円弧状孔部と前記一対の拡張部とで囲まれる領域に対向して形成されていることを特徴とする請求項4に記載の圧縮機。 The compressor according to claim 4, wherein the suction through-hole is formed to face a region surrounded by the arc-shaped hole portion of the suction hole and the pair of expansion portions.
  6.  前記吸入用貫通孔の先端部を通る幅方向線上における前記一対の拡張部の内壁間の幅が前記幅方向線上の個々の拡張部の幅より広く設定されていることを特徴とする請求項5に記載の圧縮機。 6. The width between the inner walls of the pair of extension portions on a width direction line passing through the distal end portion of the suction through-hole is set wider than the width of each extension portion on the width direction line. The compressor described in 1.
  7.  前記吸入孔の周囲には前記吸入弁部が当接する弁座を規定する環状溝が形成されており、前記吸入孔の円弧状孔部と前記一対の拡張部とで囲まれる領域に対向して形成されている前記吸入用貫通孔の周縁は、前記環状溝内に配置されていることを特徴とする請求項5に記載の圧縮機。 An annular groove defining a valve seat with which the suction valve portion abuts is formed around the suction hole, and is opposed to a region surrounded by the arc-shaped hole portion of the suction hole and the pair of expansion portions. The compressor according to claim 5, wherein a peripheral edge of the formed through-hole for suction is disposed in the annular groove.
PCT/JP2017/033169 2016-09-21 2017-09-07 Compressor WO2018056153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780057814.0A CN109715946A (en) 2016-09-21 2017-09-07 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184717 2016-09-21
JP2016184717A JP2018048597A (en) 2016-09-21 2016-09-21 Compressor

Publications (1)

Publication Number Publication Date
WO2018056153A1 true WO2018056153A1 (en) 2018-03-29

Family

ID=61689553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033169 WO2018056153A1 (en) 2016-09-21 2017-09-07 Compressor

Country Status (3)

Country Link
JP (1) JP2018048597A (en)
CN (1) CN109715946A (en)
WO (1) WO2018056153A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941603U (en) * 1972-07-17 1974-04-12
JPS592996U (en) * 1982-06-29 1984-01-10 株式会社東芝 compressor suction valve
JPH0589876U (en) * 1992-05-06 1993-12-07 株式会社豊田自動織機製作所 Intake reed valve mechanism of piston type compressor
JP2001221161A (en) * 2000-02-10 2001-08-17 Zexel Valeo Climate Control Corp Reciprocating type refrigerant compressor
JP2007291881A (en) * 2006-04-21 2007-11-08 Sanden Corp Compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452544B1 (en) * 2002-05-31 2004-10-14 삼성광주전자 주식회사 Valve for hermetic compressor
JP5325041B2 (en) * 2009-07-30 2013-10-23 サンデン株式会社 Reciprocating compressor
EP2865893B1 (en) * 2013-09-23 2021-04-28 Halla Visteon Climate Control Corp. Valve assembly for variable swash plate compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941603U (en) * 1972-07-17 1974-04-12
JPS592996U (en) * 1982-06-29 1984-01-10 株式会社東芝 compressor suction valve
JPH0589876U (en) * 1992-05-06 1993-12-07 株式会社豊田自動織機製作所 Intake reed valve mechanism of piston type compressor
JP2001221161A (en) * 2000-02-10 2001-08-17 Zexel Valeo Climate Control Corp Reciprocating type refrigerant compressor
JP2007291881A (en) * 2006-04-21 2007-11-08 Sanden Corp Compressor

Also Published As

Publication number Publication date
CN109715946A (en) 2019-05-03
JP2018048597A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5633520B2 (en) Compressor
WO2012120964A1 (en) Valve device for compressor
KR101935805B1 (en) Intake checking valve
EP2354548A1 (en) Variable displacement type reciprocating compressor
WO2018056153A1 (en) Compressor
JP3982697B2 (en) Compressor
JP5783354B2 (en) Compressor
JP6063150B2 (en) Variable capacity compressor
JP2005105975A (en) Valve structure of compressor
KR101259676B1 (en) Valve plate for compressor of vehicle
JP7160001B2 (en) piston compressor
JP5984414B2 (en) Compressor
JP6618343B2 (en) Compressor
JP4595942B2 (en) Compressor
KR100515285B1 (en) Variable displacement swash plate type compressor with double guide
JP2006112394A (en) Compressor
JP3940808B2 (en) Compressor
JP5391376B2 (en) Variable capacity reciprocating compressor
WO2013179928A1 (en) Variable capacity compressor
JP2006242120A (en) Variable displacement type swash plate compressor
JP2014139417A (en) Variable displacement compressor
JP2005083296A (en) Compressor
JP2021032237A (en) Piston type compressor
KR101348899B1 (en) Compressor
JP2021032236A (en) Piston type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852930

Country of ref document: EP

Kind code of ref document: A1