WO2018056096A1 - Insulating container - Google Patents

Insulating container Download PDF

Info

Publication number
WO2018056096A1
WO2018056096A1 PCT/JP2017/032690 JP2017032690W WO2018056096A1 WO 2018056096 A1 WO2018056096 A1 WO 2018056096A1 JP 2017032690 W JP2017032690 W JP 2017032690W WO 2018056096 A1 WO2018056096 A1 WO 2018056096A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
spacer
inner container
calcium silicate
heat insulating
Prior art date
Application number
PCT/JP2017/032690
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 義治
秀斗 大澤
Original Assignee
象印マホービン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 象印マホービン株式会社 filed Critical 象印マホービン株式会社
Priority to JP2018540971A priority Critical patent/JP6518018B2/en
Publication of WO2018056096A1 publication Critical patent/WO2018056096A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J41/00Thermally-insulated vessels, e.g. flasks, jugs, jars
    • A47J41/02Vacuum-jacket vessels, e.g. vacuum bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose

Definitions

  • the present invention relates to a heat insulating container, and in particular, to a heat insulating container made of glass.
  • This heat insulating container is incorporated in an exterior case, for example, and has a structure in which the opening is closed with a lid member, and is used for products that maintain the temperature of contents such as hot water at a desired temperature for a long time (for example, patents) Reference 1).
  • Patent Document 2 discloses a glass vacuum insulation in which a space between a glass inner container and an outer container is evacuated to form a vacuum heat insulating layer, and a pad (spacer) is disposed between the inner container and the outer container.
  • a container is disclosed.
  • the spacer is preferably made of a material having low thermal conductivity.
  • the spacer needs to be buffered. In other words, the spacer needs to have a buffer property to prevent the container from being damaged by an impact such as a product drop by the user during use.
  • the present inventors have studied the spacer in detail.
  • the spacer should be made of a material that is soft to some extent, such as requiring buffering properties when the heat insulating container is used. Therefore, the calcium silicate-based material that has been known as a building material has a low thermal conductivity, and thus has a possibility of being applied to a heat insulating container.
  • calcium silicate-based materials have been considered unpreferable for application to spacers in insulated containers because they are harder than conventional spacers.
  • This invention is made
  • the present invention is as follows.
  • a glass inner container An outer container made of glass surrounding the outer side with respect to the inner container and connected by an opening;
  • a spacer disposed between the inner container and the outer container so as to contact both containers;
  • a heat-insulating container in which a space defined by the inner container and the outer container is evacuated,
  • the spacer is made of a calcium silicate-based material and the contact surface in contact with the inner container and the outer container is smoothed. It is an insulated container.
  • the spacer has a surface roughness of the contact surface of 20 to 50 ⁇ m in terms of arithmetic average height Sa.
  • the spacer has a load required to compress 0.5 mm at a compression speed of 0.1 mm / min is 1500 N or more.
  • the calcium silicate material is subjected to dehydration molding of a slurry composed of a uniform mixture of the following (A) to (D), and the resulting molding is steamed with pressurized steam of 6 kg / cm 2 or more to obtain a silicic acid raw material. After reacting with the lime raw material, it was obtained by heating to 330 ° C. or higher under atmospheric pressure to remove water released from the molded product.
  • A 100 parts by weight of a mixture of lime raw material and silicic acid raw material having a CaO / SiO 2 molar ratio of 0.6 to 1.2
  • B 50 to 170 parts by weight of zonotlite obtained by hydrothermal synthesis
  • C fiber Wollastonite 15-150 parts by weight
  • D Water 2-8 times the total solids
  • FIG. 3 is an enlarged schematic cross-sectional view of a portion along the line AA shown in FIG. 2. It is a figure which shows the measurement area
  • FIGS. 1 is a vertical cross-sectional view of the main part of the heat insulating container cut perpendicularly (axial direction) at an angle of 120 degrees with respect to the axial center (center axis) CL
  • FIG. 2 is a perspective view of the spacer.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the surface of the spacer.
  • a heat insulating container 1 includes a glass inner container 2, a glass outer container 3 that surrounds the outer side of the inner container 2 and is connected by an opening 1 h, and an inner container 2. And a spacer 10 disposed so as to be in contact with both the containers. A space 4 defined by the inner container 2 and the outer container 3 is evacuated.
  • the heat insulating container 1 is formed so that a space 4 between the two containers can be formed by connecting the inner container 2 and the outer container 3 made of glass. Thereafter, the space 4 between the two containers is exhausted from an exhaust part 3e provided on the bottom side of the outer container 3, and the exhaust part 3e is closed to be evacuated.
  • the spacer 10 is bonded to the outer surface of the bottom portion 1a of the inner container 2 via an adhesive prior to overlapping the two containers 2 and 3 together.
  • Three spacers 10 are arranged so as to surround the axial center CL of the inner container 2 at equal intervals, and form a space 4 between the outer container 3 and the inner container 2. And after arrange
  • the heat insulating container 1 manufactured in this way is generally used in a state of being appropriately incorporated in the outer case 20.
  • the number of the spacers 10 can be appropriately changed according to the size of the heat insulating container, preferably 2 or more, more preferably 3 to 10, and still more preferably 3 to 5. Particularly preferably, the number is 3, and the relative position between the inner container 2 and the outer container 3 is highly stable, while the number of places where heat conduction occurs can be reduced as much as possible.
  • the spacer 10 has a predetermined thickness d2, and is configured as a columnar member having circular contact surfaces 10s on the front and back sides.
  • the contact surface 10 s is disposed so as to contact the inner container 2 and the outer container 3.
  • an adhesive is applied to one or both surfaces of the contact surface 10 s so as to adhere to the inner container 2, and is disposed between the bottom surface 1 b of the outer container 3.
  • the spacer 10 is made of a calcium silicate-based material, and a load necessary for compressing 0.1 mm at a compression speed of 0.1 mm / min is 175 N or less.
  • the load necessary to compress the spacer 10 by 0.1 mm at a compression speed of 0.1 mm / min is preferably 10N or more and 175N or less, more preferably 45N or more and 175N or less, and 45N or more and 120N or less. More preferably.
  • the calcium silicate-based material in the present invention is a material containing calcium silicate, and is a material containing a hydrate of a compound in which calcium oxide (CaO) and silicic acid (SiO 2 ) are combined.
  • Calcium silicate contains, for example, zonotolite, tobermorite, wollastonite, other calcium silicate hydrates and mixtures thereof.
  • the calcium silicate-based material in the present invention is a calcium silicate-based material described in JP-A No. 55-167167, and a slurry comprising a homogeneous mixture of the following (A) to (D) is dehydrated and molded.
  • the obtained molded product was steamed with 6 kg / cm 2 or more of pressurized steam to react the silicic acid raw material and the lime raw material, and then heated to 330 ° C. or higher under atmospheric pressure to remove water released from the molded product. It was obtained by removing.
  • A 100 parts by weight of a mixture of a lime raw material and a silicic acid raw material having a CaO / SiO 2 molar ratio of 0.6 to 1.2
  • B 50 to 170 parts by weight of zonotlite obtained by hydrothermal synthesis
  • C fiber Wollastonite 15-150 parts by weight
  • D Water 2-8 times the total solids
  • Examples of the lime raw material, silicic acid raw material, zonotlite, and fibrous wollastonite include those described in JP-A No. 55-167167, and preferable ones are also the same.
  • the calcium silicate-based material can be obtained according to the method of JP-A-55-167167.
  • the calcium silicate-based material may further contain reinforcing fibers, additives, and the like.
  • the spacer 10 can be formed into a desired shape by cutting or punching a plate-like calcium silicate material.
  • the plate-like calcium silicate material Lumi board, Ecolux, NAlux, Hilac, Mitsubishi Hishitaka, Chiyodacera board, etc. are commercially available as calcium silicate plates.
  • the spacer 10 has a cylindrical shape, and the diameter is preferably 6.6 to 7.0 mm, and preferably 6.7 to 6.9 mm. More preferred.
  • the thickness (height) of the spacer 10 is preferably 3.6 to 4.2 mm, and more preferably 3.7 to 4.0 mm. By doing so, the spacer 10 can tolerate a displacement amount with respect to compression of 0.05 mm or more. Therefore, even when the space between the inner container 2 and the outer container 3 is narrowed by 0.05 mm or more due to heat treatment such as annealing, for example, at the time of manufacturing the heat insulating container, the spacer 10 is not destroyed. The inner container 2 and / or the outer container 3 can be prevented from being damaged.
  • the spacer 10 has a contact surface 10s of at least one of the surfaces in contact with the inner container 2 and the outer container 3 smoothed (even if both contact surfaces are smoothed). Good).
  • the spacer 10 can be smoothed by machining or punching.
  • the calcium silicate plate may be smoothed after being machined or punched.
  • a smooth surface having a desired roughness can be obtained by a polishing process using sandpaper (eg, No. 120, No. 80, preferably No. 30).
  • This smoothing process may be a pressure process using a pressure roller or the like in addition to a polishing process for shaving the surface.
  • the convex portion 11t of the contact surface 10s is scraped or crushed to reduce the level difference of the unevenness. Further, the recesses 11b, the pores, and the grooves 10g of the contact surface 10s are filled with fine powder 10p of shaving powder or crushed powder. Since the calcium silicate-based material is porous, when an adhesive is applied when the spacer 10 is bonded to the inner container 2 or the outer container 3, a part of the adhesive component of the spacer 10 is caused by capillary action. It penetrates inside and affects the adhesive strength.
  • the adhesive When the adhesive is applied to the smoothed contact surface 10s, the penetration of the adhesive component into the inside of the spacer 10 of the adhesive is suppressed as compared with the case where the smoothing is not performed, and the adhesive is bonded to the adhesive surface 10s. Uniformly applied. As a result, the adhesive strength is increased, the strength of supporting the container by the spacer 10 is increased, and a heat insulating container having excellent impact strength is obtained.
  • the surface roughness of the contact surface 10 s is more preferably 20 to 50 ⁇ m in arithmetic mean height Sa, and further preferably 20 to 45 ⁇ m. If the surface roughness of the contact surface 10s is the arithmetic average height Sa within the above range, a sufficient buffering function is exhibited when the spacer adhered to the inner container and the outer container come into contact with each other when the heat insulating container is manufactured. .
  • the arithmetic average height Sa is obtained by extending the arithmetic average roughness Ra, which is a two-dimensional roughness parameter, to three dimensions, and is a three-dimensional roughness parameter (three-dimensional height direction parameter).
  • the arithmetic average height can be calculated by the method described in the ISO standard (ISO 25178) from surface shape data measured by a laser microscope or the like.
  • the surface roughness Ra of at least one of the contact surfaces 10s contacting the inner container 2 or the outer container 3 is preferably 20 to 200 ⁇ m, and more preferably 25 to 50 ⁇ m.
  • the surface roughness Ra is an arithmetic average roughness determined in accordance with JIS B0601: 2013.
  • the maximum height Rz is preferably 70 to 250 ⁇ m, and more preferably 130 to 230 ⁇ m.
  • the maximum peak height Rp is preferably 30 to 200 ⁇ m, more preferably 35 to 150 ⁇ m, and even more preferably 45 to 120 ⁇ m.
  • the maximum valley depth Rv is preferably 30 to 200 ⁇ m, more preferably 35 to 170 ⁇ m, and even more preferably 40 to 150 ⁇ m.
  • the average height Rt is preferably 60 to 300 ⁇ m, preferably 100 to 250 ⁇ m, and more preferably 130 to 230 ⁇ m.
  • the ten-point average roughness RzJIS is preferably 50 to 150 ⁇ m, and more preferably 60 to 120 ⁇ m.
  • the maximum height Sz is preferably 150 to 300 ⁇ m, and more preferably 170 to 300 ⁇ m.
  • the aspect ratio Str of the surface property is preferably 0.1 to 0.35, and more preferably 0.1 to 0.3.
  • the Spc which is the arithmetic mean music at the peak of the mountain, is preferably 4.0 to 7.0 (1 / mm), and more preferably 5.0 to 6.5 (1 / mm).
  • the developed area ratio Sdr of the interface is preferably 0.01 to 0.1, and more preferably 0.02 to 0.05.
  • the maximum height Rz, the maximum mountain height Rp, the maximum valley depth Rv, the average height Rt, and the ten-point average roughness RzJIS are obtained in accordance with JIS B0601: 2013. Further, the maximum height Sz, the aspect ratio Str of the surface property, Spc which is the arithmetic mean music of the peak of the mountain, and the developed area ratio Sdr of the interface can be obtained in accordance with ISO 25178.
  • the spacer 10 preferably has a load required to compress 0.5 mm at a compression speed of 0.1 mm / min, preferably 1500 N or more, and more preferably 1800 N or more and 2200 N or less.
  • a load required to compress 0.5 mm at a compression speed of 0.1 mm / min preferably 1500 N or more, and more preferably 1800 N or more and 2200 N or less.
  • the heat insulating container when the heat insulating container is damaged by an impact such as dropping, it is caused by the support form of the inner container 2. That is, when the heat insulating container 1 is dropped, the mass of the contents W in the container (inside the inner container 2) is supported by the inner container 2, and the inner container 2 is connected to the connecting portion 6 with the outer container 3 and Since it is supported by the spacer 10 on the bottom 1 b opposite to the connection portion 6, the stress accompanying the drop tends to concentrate on the connection portion 6 of the inner container 2 with the outer container 3.
  • the spacer 10 is hard, the contact portion between the spacer 10 and the inner container 2 may be damaged, and a relatively soft material has been considered preferable.
  • the spacer 10 is made of a soft material, the amount of elastic deformation becomes large at the time of dropping, and the stress concentration of the connecting portion 6 cannot be suppressed, and in many cases, the connecting portion 6 seems to be damaged. Since the spacer 10 of the present embodiment has a hardness equal to or higher than a specific numerical value, the stress concentration of the connection portion 6 can be suppressed and a heat insulating container excellent in impact strength can be obtained.
  • the spacer 10 of the present embodiment is made of a calcium silicate-based material, and the contact surface 10 s is smoothed so that the adhesive force between the inner container or the outer container and the spacer 10 is strong.
  • the container supporting strength by the spacer 10 is increased, and a heat insulating container excellent in impact strength can be provided.
  • Examples 1-1 to 1-10 Conform to the surface roughness (JIS B0601: 2013 and ISO 25178) and For the region of the arrows connecting the marks, the surface roughness Ra, the maximum height Rz, the maximum peak height Rp, the maximum valley depth Rv, the average height Rt, the ten-point average roughness RzJIS;
  • the arithmetic average height Sa, the maximum height Sz, the surface texture aspect ratio Str, the arithmetic average music Spc at the top of the mountain, and the developed area ratio Sdr of the interface were determined and listed in Table 1.
  • a non-contact 3D measuring machine manufactured by Keyence Corporation, VR-3000 was used.
  • Calcium silicate material spacers (7) were prepared in the same manner as above except that the calcium silicate plate was processed without polishing, and the surface roughness was determined for 10 of them (samples 2-1 to 2-10). It described in Table 1. In addition, 3D images of each sample and measurement data of contour curves are shown in FIGS.
  • Example 1 A heat insulating container made of glass was manufactured using the spacer (1) of the calcium silicate material.
  • the spacer (1) used in the following examples has a shape shown in FIG. 2 in which a calcium silicate plate prepared according to the method of Japanese Patent Laid-Open No. 55-167167 is punched after polishing with # 24 file. The size was 6.8 mm in diameter and 3.8 mm in thickness.
  • test condition 1 the load necessary to compress 0.1 mm at a compression speed of 0.1 mm / min was about 100 N.
  • Compression speed 0.1 mm / min Compression distance: From test sample contact to 0.2 mm Compression contact position: Test jig starting test from a position where 1N is applied to the test sample: Load cell: 5000N Jig: Diameter 100mm x 25mm
  • the heat insulating container shown in FIG. 1 has a height dimension (H) of 180 mm, a maximum diameter (D1) of 160 mm, an opening inner diameter (D2) of 45 mm, an opening outer diameter (D3) of 65 mm, and a container glass thickness (D4).
  • H height dimension
  • D1 maximum diameter
  • D2 opening inner diameter
  • D3 opening outer diameter
  • D4 container glass thickness
  • ) was 1.5 mm, and 1319 pieces were manufactured. Place three spacers of the spacer (1) in advance on the bottom of the inner container, put the inner container in the outer container, and in this state, narrow down the opening while connecting and heating the opening. Then, the exhaust part was exhausted, and the exhaust part was heated and welded to produce a heat insulating container. An adhesive was used to fix the spacer, and 0.015 g was applied to one side of the spacer. Of the 1319 insulated containers, 3 were broken.
  • a drop test was performed under the following conditions using the five heat-insulated containers manufactured above.
  • the outer case is made of metal, with the opening closed with a lid, with 2.2 liters of water as the contents, and the bottom of the finished product container facing the floor from a height of 0.5 m Then, it was dropped on a Lauan plate having a thickness of 30 mm laid on a concrete floor.
  • 0 were damaged by the drop test.
  • Examples 2 to 4, Comparative Examples 1 to 3 Except that the spacers were changed to those shown in Table 2, the insulated containers of Examples 2 to 4 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1 and subjected to a drop test.
  • the spacer has a specific hardness, there is no particular limitation on the size and shape, the number and positions of the installation, and the like, as long as the heat insulation is not affected.
  • the spacer is a cylinder, but it may not be a cylinder.
  • the shape of the heat insulating container is not limited to the shape shown in FIG.

Abstract

Provided is an insulating container which is made of glass, is damaged less during production, and exhibits excellent impact strength. This insulating container 1 is provided with: a glass inner container 2; a glass outer container 3 which surrounds the outside of the inner container 2, and which is connected at an opening 1h; and spacers 10 which are disposed between the inner container 2 and the outer container 3. The spacers 10 comprise a calcium silicate-based material. Contact surfaces 10s of the spacers 10 which are in contact with the inner container 2 and the outer container 3 have been subjected to smoothing processing.

Description

断熱容器Insulated container
 本発明は、断熱容器に関し、特に、ガラス製の断熱容器に関する。 The present invention relates to a heat insulating container, and in particular, to a heat insulating container made of glass.
 従来、ガラス製の容器を用いた断熱容器がある。この断熱容器は、例えば外装ケース内に組み込まれると共に、開口部を蓋部材にて閉じる構造で、お湯等の内容物の温度を長時間所望の温度に保つ製品に使用されている(例えば、特許文献1)。 Conventionally, there is an insulated container using a glass container. This heat insulating container is incorporated in an exterior case, for example, and has a structure in which the opening is closed with a lid member, and is used for products that maintain the temperature of contents such as hot water at a desired temperature for a long time (for example, patents) Reference 1).
 また、特許文献2には、ガラス製の内容器と外容器との空間を真空排気して真空断熱層とし、内容器と外容器の間にはパッド(スペーサ)が配置されたガラス製真空断熱容器が開示されている。
 スペーサは、熱伝導率の低い材料が好ましいことは当然である。またこれに加えて、スペーサは、緩衝性が必要であると考えられてきた。つまりスペーサは、使用時においては、ユーザによる製品落下等の衝撃に対する容器の破損を防止する緩衝性を有している必要があった。
Patent Document 2 discloses a glass vacuum insulation in which a space between a glass inner container and an outer container is evacuated to form a vacuum heat insulating layer, and a pad (spacer) is disposed between the inner container and the outer container. A container is disclosed.
Naturally, the spacer is preferably made of a material having low thermal conductivity. In addition to this, it has been considered that the spacer needs to be buffered. In other words, the spacer needs to have a buffer property to prevent the container from being damaged by an impact such as a product drop by the user during use.
日本国特開2000-201834号公報Japanese Unexamined Patent Publication No. 2000-201834 日本国特開2002-58605号公報Japanese Unexamined Patent Publication No. 2002-58605
 そのようなスペーサを改良するため、本発明者らはスペーサについて詳細に検討を重ねた。すなわちスペーサは、断熱容器の使用時の緩衝性を必要とするなど、ある程度柔らかい素材が良いと考えられていた。したがって、建築材料としては従前より知られるケイ酸カルシウム系材料は、熱伝導率が低いため、断熱容器への適用の可能性があった。ところが、ケイ酸カルシウム系材料は、従来のスペーサと比較すると硬いという理由から、断熱容器のスペーサへの適用には好ましくないとされてきた。
 しかしながら、発明者らの鋭意検討の結果、上記課題を解決できることを見出し本発明を完成するに至った。
 本発明は前述した事情に鑑みてなされたものであり、衝撃強度に優れたガラス製の断熱容器を提供することを目的とする。
In order to improve such a spacer, the present inventors have studied the spacer in detail. In other words, it was considered that the spacer should be made of a material that is soft to some extent, such as requiring buffering properties when the heat insulating container is used. Therefore, the calcium silicate-based material that has been known as a building material has a low thermal conductivity, and thus has a possibility of being applied to a heat insulating container. However, calcium silicate-based materials have been considered unpreferable for application to spacers in insulated containers because they are harder than conventional spacers.
However, as a result of intensive studies by the inventors, it was found that the above problems can be solved, and the present invention has been completed.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the insulated container made from glass excellent in impact strength.
 上記課題は下記手段により達成することができる。すなわち、本発明は下記の通りである。
〔1〕
 ガラス製の内容器と、
 前記内容器に対して外側を囲むと共に開口部で接続されたガラス製の外容器と、
 前記内容器と前記外容器との間に両容器に接するように配置されたスペーサと、
を備え、前記内容器と前記外容器とにより画成された空間が真空にされた断熱容器であって、
 前記スペーサは、ケイ酸カルシウム系材料からなると共に前記内容器及び前記外容器と接する接触面が平滑化処理された、
断熱容器である。
 〔2〕 〔1〕に記載の断熱容器において、
 前記スペーサは、前記接触面の表面粗さが算術平均高さSaで20~50μmである。
 〔3〕
 〔1〕又は〔2〕に記載の断熱容器において、
 前記スペーサは、圧縮速度0.1mm/minで0.5mm圧縮するのに必要な荷重が1500N以上である。
 〔4〕
 〔1〕~〔3〕の何れか1項に記載の断熱容器において、
 前記ケイ酸カルシウム系材料が、下記(A)~(D)の均一混合物からなるスラリーを脱水成形し、得られた成形物を6kg/cm以上の加圧水蒸気で蒸熱処理してケイ酸原料と石灰原料とを反応させた後、大気圧下330℃以上に加熱して成形物より離脱する水を除去することにより得られたものである。
(A)CaO/SiOモル比が0.6~1.2である石灰原料及びケイ酸原料の混合物100重量部
(B)水熱合成により得られたゾノトライト  50~170重量部
(C)繊維状ウオラストナイト  15~150重量部
(D)水    全固形物の2~8倍量
The said subject can be achieved by the following means. That is, the present invention is as follows.
[1]
A glass inner container,
An outer container made of glass surrounding the outer side with respect to the inner container and connected by an opening;
A spacer disposed between the inner container and the outer container so as to contact both containers;
A heat-insulating container in which a space defined by the inner container and the outer container is evacuated,
The spacer is made of a calcium silicate-based material and the contact surface in contact with the inner container and the outer container is smoothed.
It is an insulated container.
[2] In the heat insulating container according to [1],
The spacer has a surface roughness of the contact surface of 20 to 50 μm in terms of arithmetic average height Sa.
[3]
In the heat insulating container according to [1] or [2],
The spacer has a load required to compress 0.5 mm at a compression speed of 0.1 mm / min is 1500 N or more.
[4]
In the heat insulating container according to any one of [1] to [3],
The calcium silicate material is subjected to dehydration molding of a slurry composed of a uniform mixture of the following (A) to (D), and the resulting molding is steamed with pressurized steam of 6 kg / cm 2 or more to obtain a silicic acid raw material. After reacting with the lime raw material, it was obtained by heating to 330 ° C. or higher under atmospheric pressure to remove water released from the molded product.
(A) 100 parts by weight of a mixture of lime raw material and silicic acid raw material having a CaO / SiO 2 molar ratio of 0.6 to 1.2 (B) 50 to 170 parts by weight of zonotlite obtained by hydrothermal synthesis (C) fiber Wollastonite 15-150 parts by weight (D) Water 2-8 times the total solids
 本発明によれば、衝撃強度に優れた断熱容器を提供することができる。 According to the present invention, it is possible to provide a heat insulating container having excellent impact strength.
本発明の実施形態の断熱容器の要部断面図である。It is principal part sectional drawing of the heat insulation container of embodiment of this invention. 図1に示すスペーサの斜視図である。It is a perspective view of the spacer shown in FIG. 図2に示すA-A線に沿った部分の断面拡大模式図である。FIG. 3 is an enlarged schematic cross-sectional view of a portion along the line AA shown in FIG. 2. スペーサの表面粗さの測定領域を示す図である。It is a figure which shows the measurement area | region of the surface roughness of a spacer. スペーサの表面粗さの測定領域を示す図である。It is a figure which shows the measurement area | region of the surface roughness of a spacer. スペーサ(1)の3D画像及び輪郭曲線の測定データである。It is the measurement data of the 3D image and the contour curve of the spacer (1). スペーサ(1)の3D画像及び輪郭曲線の測定データである。It is the measurement data of the 3D image and the contour curve of the spacer (1). スペーサ(7)の3D画像及び輪郭曲線の測定データである。It is the measurement data of the 3D image and contour curve of the spacer (7). スペーサ(7)の3D画像及び輪郭曲線の測定データである。It is the measurement data of the 3D image and contour curve of the spacer (7).
 以下、本発明の一実施形態について、図1~図3を参照して説明する。なお、図1は、断熱容器を軸心(中心軸)CLに対して120度の角度で垂直(軸心方向)に切断した要部の垂直断面図、図2は、スペーサの斜視図である、また、図3は、スペーサの表面を模式的に示す拡大断面図である。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 is a vertical cross-sectional view of the main part of the heat insulating container cut perpendicularly (axial direction) at an angle of 120 degrees with respect to the axial center (center axis) CL, and FIG. 2 is a perspective view of the spacer. FIG. 3 is an enlarged cross-sectional view schematically showing the surface of the spacer.
 図1に示すように、断熱容器1は、ガラス製の内容器2と、この内容器2に対して外側を囲むと共に開口部1hで接続されたガラス製の外容器3と、内容器2と外容器3との間に両容器に接するように配置されたスペーサ10と、を備えている。そして、内容器2と外容器3とにより画成された空間4が真空にされている。 As shown in FIG. 1, a heat insulating container 1 includes a glass inner container 2, a glass outer container 3 that surrounds the outer side of the inner container 2 and is connected by an opening 1 h, and an inner container 2. And a spacer 10 disposed so as to be in contact with both the containers. A space 4 defined by the inner container 2 and the outer container 3 is evacuated.
 断熱容器1は、その製造において、ガラス製の内容器2と外容器3とを接続して両容器間の空間4ができるように成形される。その後、両容器間の空間4を外容器3の底側に設けられた排気部3eから排気し、該排気部3eを閉じて真空にする。 The heat insulating container 1 is formed so that a space 4 between the two containers can be formed by connecting the inner container 2 and the outer container 3 made of glass. Thereafter, the space 4 between the two containers is exhausted from an exhaust part 3e provided on the bottom side of the outer container 3, and the exhaust part 3e is closed to be evacuated.
 ここで、両容器2,3を重ね合せるに先立って、内容器2の底部1aの外表面に接着剤を介してスペーサ10が接着される。スペーサ10は、内容器2の軸心CLを均等間隔で囲むように3つが配置され、外容器3と内容器2との空間4を形成する。そして、外容器3が内容器2を覆うようにして配置した後、適宜加熱しながら内容器2に沿う態様で絞り込むようにして成型する。その後、排気部3eから排気し、排気部3eを加熱溶着して空間4の真空を維持する。このようにして製造された断熱容器1は、一般的には、適宜外装ケース20に組み込まれた状態で使用される。
 スペーサ10の数は、断熱容器のサイズに合わせて適宜変更でき、2個以上が好ましく、3~10個がより好ましく、更に好ましくは3~5個である。特に好ましくは3個であり、内容器2と外容器3との相対的な位置の安定性が高い一方で、熱伝導が生じる箇所をできるだけ少なくできるためである。
Here, the spacer 10 is bonded to the outer surface of the bottom portion 1a of the inner container 2 via an adhesive prior to overlapping the two containers 2 and 3 together. Three spacers 10 are arranged so as to surround the axial center CL of the inner container 2 at equal intervals, and form a space 4 between the outer container 3 and the inner container 2. And after arrange | positioning so that the outer container 3 may cover the inner container 2, it shape | molds so that it may narrow down in the aspect along the inner container 2, heating suitably. Then, the exhaust part 3e is exhausted, and the exhaust part 3e is heat-welded to maintain the vacuum in the space 4. The heat insulating container 1 manufactured in this way is generally used in a state of being appropriately incorporated in the outer case 20.
The number of the spacers 10 can be appropriately changed according to the size of the heat insulating container, preferably 2 or more, more preferably 3 to 10, and still more preferably 3 to 5. Particularly preferably, the number is 3, and the relative position between the inner container 2 and the outer container 3 is highly stable, while the number of places where heat conduction occurs can be reduced as much as possible.
 このスペーサ10は、図2に示すように、所定の厚みd2を有しており、表裏に円形の接触面10sを備えた円柱状の部材として構成されている。そして、この接触面10sが内容器2と外容器3に当接するように配置される。接触面10sには、上述のとおりその一方面或いは両面に接着剤が塗着されて内容器2に接着され、外容器3の底部1bとの間に配置される。 As shown in FIG. 2, the spacer 10 has a predetermined thickness d2, and is configured as a columnar member having circular contact surfaces 10s on the front and back sides. The contact surface 10 s is disposed so as to contact the inner container 2 and the outer container 3. As described above, an adhesive is applied to one or both surfaces of the contact surface 10 s so as to adhere to the inner container 2, and is disposed between the bottom surface 1 b of the outer container 3.
 スペーサ10は、ケイ酸カルシウム系材料からなり、圧縮速度0.1mm/minで0.1mm圧縮するのに必要な荷重が175N以下である。スペーサ10の圧縮速度0.1mm/minで0.1mm圧縮するのに必要な荷重は、10N以上175N以下であることが好ましく、45N以上175N以下であることがより好ましく、45N以上120N以下であることが更に好ましい。
 本発明におけるケイ酸カルシウム系材料とは、ケイ酸カルシウムを含有する材料であり、酸化カルシウム(CaO)とケイ酸(SiO)が結合した化合物の水和物を含有する材料である。ケイ酸カルシウムは、例えば、ゾノトライト、トバモライト、ウオラストナイト、他のケイ酸カルシウム水和物及びそれらの混合物を含有する。
The spacer 10 is made of a calcium silicate-based material, and a load necessary for compressing 0.1 mm at a compression speed of 0.1 mm / min is 175 N or less. The load necessary to compress the spacer 10 by 0.1 mm at a compression speed of 0.1 mm / min is preferably 10N or more and 175N or less, more preferably 45N or more and 175N or less, and 45N or more and 120N or less. More preferably.
The calcium silicate-based material in the present invention is a material containing calcium silicate, and is a material containing a hydrate of a compound in which calcium oxide (CaO) and silicic acid (SiO 2 ) are combined. Calcium silicate contains, for example, zonotolite, tobermorite, wollastonite, other calcium silicate hydrates and mixtures thereof.
 本発明におけるケイ酸カルシウム系材料としてより好ましくは、特開昭55-167167号公報に記載のケイ酸カルシウム系材料であり、下記(A)~(D)の均一混合物からなるスラリーを脱水成形し、得られた成形物を6kg/cm以上の加圧水蒸気で蒸熱処理してケイ酸原料と石灰原料とを反応させた後、大気圧下330℃以上に加熱して成形物より離脱する水を除去することにより得られたものである。
(A)CaO/SiOモル比が0.6~1.2である石灰原料及びケイ酸原料の混合物100重量部
(B)水熱合成により得られたゾノトライト  50~170重量部
(C)繊維状ウオラストナイト  15~150重量部
(D)水    全固形物の2~8倍量
More preferably, the calcium silicate-based material in the present invention is a calcium silicate-based material described in JP-A No. 55-167167, and a slurry comprising a homogeneous mixture of the following (A) to (D) is dehydrated and molded. The obtained molded product was steamed with 6 kg / cm 2 or more of pressurized steam to react the silicic acid raw material and the lime raw material, and then heated to 330 ° C. or higher under atmospheric pressure to remove water released from the molded product. It was obtained by removing.
(A) 100 parts by weight of a mixture of a lime raw material and a silicic acid raw material having a CaO / SiO 2 molar ratio of 0.6 to 1.2 (B) 50 to 170 parts by weight of zonotlite obtained by hydrothermal synthesis (C) fiber Wollastonite 15-150 parts by weight (D) Water 2-8 times the total solids
 石灰原料、ケイ酸原料、ゾノトライト、及び繊維状ウオラストナイトは、特開昭55-167167号公報号公報に記載されているものが挙げられ、好ましいものも同様である。ケイ酸カルシウム系材料は、特開昭55-167167号公報の方法に準じて得ることができる。 Examples of the lime raw material, silicic acid raw material, zonotlite, and fibrous wollastonite include those described in JP-A No. 55-167167, and preferable ones are also the same. The calcium silicate-based material can be obtained according to the method of JP-A-55-167167.
 ケイ酸カルシウム系材料は、更に強化繊維や添加剤等を含有してもよい。
 スペーサ10は、例えば、板状のケイ酸カルシウム系材料を、削り出し加工あるいは打ち抜き加工により所望の形状に成形することができる。板状のケイ酸カルシウム系材料としてはルミボード、エコラックス、NAラックス、ハイラック、三菱ヒシタイカ、チヨダセラボード等がケイ酸カルシウム板として市販されている。
The calcium silicate-based material may further contain reinforcing fibers, additives, and the like.
For example, the spacer 10 can be formed into a desired shape by cutting or punching a plate-like calcium silicate material. As the plate-like calcium silicate material, Lumi board, Ecolux, NAlux, Hilac, Mitsubishi Hishitaka, Chiyodacera board, etc. are commercially available as calcium silicate plates.
 スペーサ10の形状に特に制限はないが、本実施形態においてはスペーサ10は円柱形状であり、直径は6.6~7.0mmであることが好ましく、6.7~6.9mmであることがより好ましい。また、スペーサ10の厚み(高さ)は3.6~4.2mmであることが好ましく、3.7~4.0mmであることがより好ましい。こうすることにより、スペーサ10が0.05mm以上の圧縮に対する変位量を許容することができる。したがって、断熱容器の製造時において、たとえばアニール処理等の熱処理によって内容器2と外容器3との間の間隔が0.05mm以上狭まるようなことがあっても、スペーサ10が破壊されることなく、内容器2および/または外容器3の破損を抑制することができる。 Although the shape of the spacer 10 is not particularly limited, in the present embodiment, the spacer 10 has a cylindrical shape, and the diameter is preferably 6.6 to 7.0 mm, and preferably 6.7 to 6.9 mm. More preferred. The thickness (height) of the spacer 10 is preferably 3.6 to 4.2 mm, and more preferably 3.7 to 4.0 mm. By doing so, the spacer 10 can tolerate a displacement amount with respect to compression of 0.05 mm or more. Therefore, even when the space between the inner container 2 and the outer container 3 is narrowed by 0.05 mm or more due to heat treatment such as annealing, for example, at the time of manufacturing the heat insulating container, the spacer 10 is not destroyed. The inner container 2 and / or the outer container 3 can be prevented from being damaged.
 スペーサ10は、図3に示すように、内容器2と外容器3と接触する面のうち少なくとも一方の面の接触面10sが平滑化処理されている(両接触面が平滑化処理されてもよい)。
 ケイ酸カルシウム板を平滑化処理した後、削り出し加工または打ち抜き加工により平滑化処理されたスペーサ10とすることができる。ケイ酸カルシウム板を削り出し加工または打ち抜き加工した後に平滑化処理してもよい。平滑化処理は、紙やすり(例えば120番、80番、好ましくは30番)等を用いた研磨処理により所望の粗さの平滑面とすることができる。この平滑化処理は、表面を削る研磨処理の他に、加圧ローラー等による加圧処理でも良い。
As shown in FIG. 3, the spacer 10 has a contact surface 10s of at least one of the surfaces in contact with the inner container 2 and the outer container 3 smoothed (even if both contact surfaces are smoothed). Good).
After the calcium silicate plate is smoothed, the spacer 10 can be smoothed by machining or punching. The calcium silicate plate may be smoothed after being machined or punched. In the smoothing process, a smooth surface having a desired roughness can be obtained by a polishing process using sandpaper (eg, No. 120, No. 80, preferably No. 30). This smoothing process may be a pressure process using a pressure roller or the like in addition to a polishing process for shaving the surface.
 内容器2及び外容器3と接する接触面10sが平滑化処理されると、図3に示すように、接触面10sの凸部11tが削り取られるか若しくは潰されて凹凸の高低差が小さくなる。また、接触面10sの凹部11bや細孔や溝10gは、削り粉や潰れ粉の微粉10pによって埋められる。
 ケイ酸カルシウム系材料は多孔質であるため、スペーサ10と、内容器2又は外容器3とを接着する際に接着剤が塗布されると、接着剤成分の一部が毛細管現象によりスペーサ10の内部に浸透し接着力に影響を及ぼす。
 平滑化処理された接触面10sに接着剤が塗布されると、平滑化処理をしない場合に比べて接着剤のスペーサ10の内部への接着剤成分の浸透が抑制され、接着剤が接着面10sに均一に塗布される。この結果、接着力が強くなってスペーサ10による容器を支持する強度が増し、衝撃強度に優れた断熱容器が得られる。
When the contact surface 10s in contact with the inner container 2 and the outer container 3 is smoothed, as shown in FIG. 3, the convex portion 11t of the contact surface 10s is scraped or crushed to reduce the level difference of the unevenness. Further, the recesses 11b, the pores, and the grooves 10g of the contact surface 10s are filled with fine powder 10p of shaving powder or crushed powder.
Since the calcium silicate-based material is porous, when an adhesive is applied when the spacer 10 is bonded to the inner container 2 or the outer container 3, a part of the adhesive component of the spacer 10 is caused by capillary action. It penetrates inside and affects the adhesive strength.
When the adhesive is applied to the smoothed contact surface 10s, the penetration of the adhesive component into the inside of the spacer 10 of the adhesive is suppressed as compared with the case where the smoothing is not performed, and the adhesive is bonded to the adhesive surface 10s. Uniformly applied. As a result, the adhesive strength is increased, the strength of supporting the container by the spacer 10 is increased, and a heat insulating container having excellent impact strength is obtained.
 接触面10sの表面粗さは、算術平均高さSaで20~50μmであることがより好ましく、20~45μmであることが更に好ましい。
 接触面10sの表面粗さが算術平均高さSaで上記の範囲であれば、断熱容器の製造時に内容器に接着したスペーサと、外容器とが接触する際に十分な緩衝機能が発揮される。
 算術平均高さSaとは、2次元の粗さパラメータである算術平均粗さRaを3次元に拡張したものであり、3次元粗さパラメータ(3次元高さ方向パラメータ)である。算術平均高さは、レーザ顕微鏡等によって測定した表面形状のデータから、ISO規格(ISO 25178)に記載の方法で算出できる。
The surface roughness of the contact surface 10 s is more preferably 20 to 50 μm in arithmetic mean height Sa, and further preferably 20 to 45 μm.
If the surface roughness of the contact surface 10s is the arithmetic average height Sa within the above range, a sufficient buffering function is exhibited when the spacer adhered to the inner container and the outer container come into contact with each other when the heat insulating container is manufactured. .
The arithmetic average height Sa is obtained by extending the arithmetic average roughness Ra, which is a two-dimensional roughness parameter, to three dimensions, and is a three-dimensional roughness parameter (three-dimensional height direction parameter). The arithmetic average height can be calculated by the method described in the ISO standard (ISO 25178) from surface shape data measured by a laser microscope or the like.
 スペーサ10において、内容器2または外容器3に接触する接触面10sの少なくとも一方の表面粗さRaは20~200μmであることが好ましく、25~50μmであることがより好ましい。
 表面粗さRaは、JIS B0601:2013に準拠して求められる算術平均粗さである。
 また、最大高さRzは70~250μmであることが好ましく、130~230μmであることがより好ましい。
 最大山高さRpは30~200μmであることが好ましく、35~150μmであることがより好ましく、45~120μmであることがより好ましい。
 最大谷深さRvは30~200μmであることが好ましく、35~170μmであることがより好ましく、40~150μmであることがより好ましい。
 平均高さRtは60~300μmであることが好ましく、100~250μmであることが好ましく、130~230μmであることがより好ましい。
 十点平均粗さRzJISは50~150μmであることが好ましく、60~120μmであることがより好ましい。
 最大高さSzは150~300μmであることが好ましく、170~300μmであることがより好ましい。
 表面性状のアスペクト比Strは0.1~0.35であることが好ましく、0.1~0.3であることがより好ましい。
 山頂点の算術平均曲であるSpcは4.0~7.0(1/mm)であることが好ましく、5.0~6.5(1/mm)であることがより好ましい。
 界面の展開面積比Sdrは0.01~0.1であることが好ましく、0.02~0.05であることがより好ましい。
In the spacer 10, the surface roughness Ra of at least one of the contact surfaces 10s contacting the inner container 2 or the outer container 3 is preferably 20 to 200 μm, and more preferably 25 to 50 μm.
The surface roughness Ra is an arithmetic average roughness determined in accordance with JIS B0601: 2013.
The maximum height Rz is preferably 70 to 250 μm, and more preferably 130 to 230 μm.
The maximum peak height Rp is preferably 30 to 200 μm, more preferably 35 to 150 μm, and even more preferably 45 to 120 μm.
The maximum valley depth Rv is preferably 30 to 200 μm, more preferably 35 to 170 μm, and even more preferably 40 to 150 μm.
The average height Rt is preferably 60 to 300 μm, preferably 100 to 250 μm, and more preferably 130 to 230 μm.
The ten-point average roughness RzJIS is preferably 50 to 150 μm, and more preferably 60 to 120 μm.
The maximum height Sz is preferably 150 to 300 μm, and more preferably 170 to 300 μm.
The aspect ratio Str of the surface property is preferably 0.1 to 0.35, and more preferably 0.1 to 0.3.
The Spc, which is the arithmetic mean music at the peak of the mountain, is preferably 4.0 to 7.0 (1 / mm), and more preferably 5.0 to 6.5 (1 / mm).
The developed area ratio Sdr of the interface is preferably 0.01 to 0.1, and more preferably 0.02 to 0.05.
 最大高さRz、最大山高さRp、最大谷深さRv、平均高さRt、十点平均粗さRzJISはJIS B0601:2013に準拠して求められる。また、最大高さSz、表面性状のアスペクト比Str、山頂点の算術平均曲であるSpc、及び界面の展開面積比Sdrは、ISO 25178に準拠して求めることができる。 The maximum height Rz, the maximum mountain height Rp, the maximum valley depth Rv, the average height Rt, and the ten-point average roughness RzJIS are obtained in accordance with JIS B0601: 2013. Further, the maximum height Sz, the aspect ratio Str of the surface property, Spc which is the arithmetic mean music of the peak of the mountain, and the developed area ratio Sdr of the interface can be obtained in accordance with ISO 25178.
 スペーサ10は、圧縮速度0.1mm/minで0.5mm圧縮するのに必要な荷重が1500N以上であることが好ましく、1800N以上2200N以下であることがより好ましい。圧縮速度0.1mm/minで0.5mm圧縮するのに必要な荷重を1500N以上にすることで、衝撃強度がより優れた断熱容器とすることができる。落下等の大きな衝撃が断熱容器に加わった際に、内容器2と外容器3の接続部に大きな変形を伴うことなく衝撃吸収ができ、この結果、例えば内容器2と外容器3の接続部6の破損防止効果が発揮される。 The spacer 10 preferably has a load required to compress 0.5 mm at a compression speed of 0.1 mm / min, preferably 1500 N or more, and more preferably 1800 N or more and 2200 N or less. By setting the load necessary for compressing 0.5 mm at a compression speed of 0.1 mm / min to 1500 N or more, it is possible to obtain a heat-insulated container with more excellent impact strength. When a large impact such as a drop is applied to the heat insulating container, the connection between the inner container 2 and the outer container 3 can be absorbed without significant deformation. As a result, for example, the connection between the inner container 2 and the outer container 3 No. 6 damage prevention effect is exhibited.
 断熱容器が落下等の衝撃により破損する場合、内容器2の支持形態に起因すると推測できる。すなわち、断熱容器1の落下時等において、容器内(内容器2の内側)の内容物Wの質量は内容器2によって支えられ、また、内容器2は、外容器3との接続部6と該接続部6とは反対側の底部1bのスペーサ10とで支えられているため、落下に伴う応力は内容器2の外容器3との接続部6に集中し易い。ここで、従来、スペーサ10が硬いと、スペーサ10と内容器2の接触箇所の破損が危惧され、比較的柔らかい材料が好ましいと考えられていた。しかしながら、スペーサ10が柔らかい材料であると、落下時において弾性変形量が大きくなり、接続部6の応力集中を抑制できず、多くの場合、接続部6が破損すると思われる。本実施形態のスペーサ10は特定数値以上の硬さを有していることで、接続部6の応力集中を抑制でき衝撃強度に優れた断熱容器とすることができる。 It can be inferred that when the heat insulating container is damaged by an impact such as dropping, it is caused by the support form of the inner container 2. That is, when the heat insulating container 1 is dropped, the mass of the contents W in the container (inside the inner container 2) is supported by the inner container 2, and the inner container 2 is connected to the connecting portion 6 with the outer container 3 and Since it is supported by the spacer 10 on the bottom 1 b opposite to the connection portion 6, the stress accompanying the drop tends to concentrate on the connection portion 6 of the inner container 2 with the outer container 3. Here, conventionally, if the spacer 10 is hard, the contact portion between the spacer 10 and the inner container 2 may be damaged, and a relatively soft material has been considered preferable. However, if the spacer 10 is made of a soft material, the amount of elastic deformation becomes large at the time of dropping, and the stress concentration of the connecting portion 6 cannot be suppressed, and in many cases, the connecting portion 6 seems to be damaged. Since the spacer 10 of the present embodiment has a hardness equal to or higher than a specific numerical value, the stress concentration of the connection portion 6 can be suppressed and a heat insulating container excellent in impact strength can be obtained.
 以上述べたように、本実施形態のスペーサ10は、ケイ酸カルシウム系材料からなり、接触面10sが平滑化処理されたことで、内容器、又は外容器とスペーサ10との接着力が強固になり、スペーサ10による容器支持強度が増し、衝撃強度に優れた断熱容器を提供できる。 As described above, the spacer 10 of the present embodiment is made of a calcium silicate-based material, and the contact surface 10 s is smoothed so that the adhesive force between the inner container or the outer container and the spacer 10 is strong. Thus, the container supporting strength by the spacer 10 is increased, and a heat insulating container excellent in impact strength can be provided.
 以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
 〔表面粗さ〕
 特開昭55-167167号公報に記載の方法に準じて作成したケイ酸カルシウム板を、#24番手のヤスリで研磨後打ち抜き加工した図2に示す形状のケイ酸カルシウム系材料のスペーサ(1)を用意した。サイズは、直径6.8mm、厚さ3.8mmとした。用意したケイ酸カルシウム系材料のスペーサ(1)のうち10個(サンプル1-1~1-10)について表面粗さ(JIS B0601:2013、及びISO 25178に準拠し、図4の2点の×印の間を結ぶ矢印の領域について、表面粗さRa、最大高さRz、最大山高さRp、最大谷深さRv、平均高さRt、十点平均粗さRzJIS;図5の領域1について、算術平均高さSa、最大高さSz、表面性状のアスペクト比Str、山頂点の算術平均曲であるSpc、及び界面の展開面積比Sdr)を求め、表1に記載した。
 測定には、非接触式3D測定機(キーエンス社製、VR-3000)を用いた。
 ケイ酸カルシウム板を研磨せずに加工した以外は上記と同様にケイ酸カルシウム系材料のスペーサ(7)を用意し、そのうち10個(サンプル2-1~2-10)について表面粗さを求め表1に記載した。
 また、各サンプルの3D画像、及び輪郭曲線の測定データを図6~9に示す。
〔Surface roughness〕
A calcium silicate material spacer having the shape shown in FIG. 2 in which a calcium silicate plate prepared according to the method described in JP-A-55-167167 is polished with a # 24 file and stamped (1) Prepared. The size was 6.8 mm in diameter and 3.8 mm in thickness. Four of the prepared calcium silicate material spacers (1) (samples 1-1 to 1-10) conform to the surface roughness (JIS B0601: 2013 and ISO 25178) and For the region of the arrows connecting the marks, the surface roughness Ra, the maximum height Rz, the maximum peak height Rp, the maximum valley depth Rv, the average height Rt, the ten-point average roughness RzJIS; The arithmetic average height Sa, the maximum height Sz, the surface texture aspect ratio Str, the arithmetic average music Spc at the top of the mountain, and the developed area ratio Sdr of the interface were determined and listed in Table 1.
For the measurement, a non-contact 3D measuring machine (manufactured by Keyence Corporation, VR-3000) was used.
Calcium silicate material spacers (7) were prepared in the same manner as above except that the calcium silicate plate was processed without polishing, and the surface roughness was determined for 10 of them (samples 2-1 to 2-10). It described in Table 1.
In addition, 3D images of each sample and measurement data of contour curves are shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 〔実施例1〕
 ケイ酸カルシウム系材料のスペーサ(1)を用いてガラス製の断熱容器を製造した。
 下記実施例に用いたスペーサ(1)は、特開昭55-167167号公報の方法に準じて作成したケイ酸カルシウム板を#24番手のヤスリで研磨後打ち抜き加工した図2に示す形状のもので、サイズは、直径6.8mm、厚さ3.8mmとした。
 スペーサ(1)の圧縮弾性試験(試験条件1)の結果、圧縮速度0.1mm/minで0.1mm圧縮するのに必要な荷重は約100Nであった。
(圧縮弾性試験装置及び試験条件1)
試験機:ミネベア(株)社製 テクノグラフ TG-10kN
圧縮速度:0.1mm/min
圧縮距離:試験サンプル接触から0.2mmまで圧縮
接触位置:試験サンプルに1Nのかかる位置から試験開始としている
試験治具:
     ロードセル:5000N
     治具:直径100mm×25mm
[Example 1]
A heat insulating container made of glass was manufactured using the spacer (1) of the calcium silicate material.
The spacer (1) used in the following examples has a shape shown in FIG. 2 in which a calcium silicate plate prepared according to the method of Japanese Patent Laid-Open No. 55-167167 is punched after polishing with # 24 file. The size was 6.8 mm in diameter and 3.8 mm in thickness.
As a result of the compression elasticity test (test condition 1) of the spacer (1), the load necessary to compress 0.1 mm at a compression speed of 0.1 mm / min was about 100 N.
(Compression elasticity test equipment and test condition 1)
Testing machine: Technograph TG-10kN manufactured by Minebea Co., Ltd.
Compression speed: 0.1 mm / min
Compression distance: From test sample contact to 0.2 mm Compression contact position: Test jig starting test from a position where 1N is applied to the test sample:
Load cell: 5000N
Jig: Diameter 100mm x 25mm
 また、スペーサ(1)の圧縮弾性試験(試験条件2)の結果、圧縮速度0.1mm/minで0.5mm圧縮するのに必要な荷重は1500Nであった。
(圧縮弾性試験装置及び試験条件2)
試験機:ミネベア(株)社製 テクノグラフ TG-10kN
圧縮速度:0.1mm/min
圧縮距離:試験サンプル接触から1.0mmまで圧縮
接触位置:試験サンプルに1Nのかかる位置から試験開始としている
試験治具:
     ロードセル:5000N
     治具:直径100mm×25mm
Further, as a result of the compression elasticity test (test condition 2) of the spacer (1), the load necessary for 0.5 mm compression at a compression speed of 0.1 mm / min was 1500 N.
(Compression elasticity test equipment and test condition 2)
Testing machine: Technograph TG-10kN manufactured by Minebea Co., Ltd.
Compression speed: 0.1 mm / min
Compression distance: From test sample contact to 1.0 mm Compression contact position: Test jig starting test from a position where 1N is applied to the test sample:
Load cell: 5000N
Jig: Diameter 100mm x 25mm
 断熱容器は図1に示すもので、高さ寸法(H)は180mm、最大直径(D1)は160mm、開口部内径(D2)は45mm、開口部外径(D3)65mm、容器ガラス厚み(D4)は1.5mmとし、1319個製造した。
 スペーサ(1)のスペーサ3個を予め内容器の底面に接着して置き、該内容器を外容器の中に入れ、この状態で、開口部を加熱しながら接続と共に該開口部を絞り込むようにして成型し、排気部から排気し、該排気部を加熱溶着して断熱容器を製造した。
 スペーサの固定には接着剤を使用し、スペーサの片面に0.015gずつ塗着した。
  1319個製造した断熱容器のうち、破損したのは3個であった。
The heat insulating container shown in FIG. 1 has a height dimension (H) of 180 mm, a maximum diameter (D1) of 160 mm, an opening inner diameter (D2) of 45 mm, an opening outer diameter (D3) of 65 mm, and a container glass thickness (D4). ) Was 1.5 mm, and 1319 pieces were manufactured.
Place three spacers of the spacer (1) in advance on the bottom of the inner container, put the inner container in the outer container, and in this state, narrow down the opening while connecting and heating the opening. Then, the exhaust part was exhausted, and the exhaust part was heated and welded to produce a heat insulating container.
An adhesive was used to fix the spacer, and 0.015 g was applied to one side of the spacer.
Of the 1319 insulated containers, 3 were broken.
 上記で製造した断熱容器5個を用いて下記の条件にて落下試験を行った。
 外装ケースは、金属製とし、開口部を蓋で閉じた状態で、内容物として水を2.2リットル入れた状態で、0.5mの高さから完成品容器の底が床に当る向きで、コンクリートの床の上に敷いた厚さ30mmのラワン板上に落下させた。
 本発明にかかる5個の断熱容器のうち、落下試験により破損したのは0個であった。
A drop test was performed under the following conditions using the five heat-insulated containers manufactured above.
The outer case is made of metal, with the opening closed with a lid, with 2.2 liters of water as the contents, and the bottom of the finished product container facing the floor from a height of 0.5 m Then, it was dropped on a Lauan plate having a thickness of 30 mm laid on a concrete floor.
Of the five heat insulating containers according to the present invention, 0 were damaged by the drop test.
 〔実施例2~4、比較例1~3〕
 スペーサを表2に記載のものに変更した以外は実施例1と同様に実施例2~4、比較例1~3の断熱容器を製造し、落下試験を行った。
[Examples 2 to 4, Comparative Examples 1 to 3]
Except that the spacers were changed to those shown in Table 2, the insulated containers of Examples 2 to 4 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1 and subjected to a drop test.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 以上、本発明の一実施形態について説明したが、本発明はこれに限るものではなく、適宜変更できる。スペーサは特定の硬さを有するものであれば、断熱性に影響を与えない限り、サイズや形状、設置の個数及び位置等に特に制限はない。例えば、前掲の実施形態においては、スペーサを円柱としたが、円柱でなくてもよい。また、断熱容器の形状においても、図1に示す形状に何ら制限されるものではない。 As mentioned above, although one Embodiment of this invention was described, this invention is not restricted to this, It can change suitably. As long as the spacer has a specific hardness, there is no particular limitation on the size and shape, the number and positions of the installation, and the like, as long as the heat insulation is not affected. For example, in the embodiment described above, the spacer is a cylinder, but it may not be a cylinder. Further, the shape of the heat insulating container is not limited to the shape shown in FIG.
 本発明によれば、衝撃強度に優れた断熱容器を提供することができる。 According to the present invention, it is possible to provide a heat insulating container having excellent impact strength.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年9月26日出願の日本特許出願(特願2016-187514)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2016-187514) filed on Sep. 26, 2016, the contents of which are incorporated herein by reference.
 1   断熱容器
 2   内容器
 3   外容器
 4   空間
 6   接続部
 10  スペーサ
 10g 溝
 10s 接触面
 10p 微粉
 11b 凹部
 11t 凸部
 CL  中心軸
 W   内容物
 
DESCRIPTION OF SYMBOLS 1 Heat insulation container 2 Inner container 3 Outer container 4 Space 6 Connection part 10 Spacer 10g Groove 10s Contact surface 10p Fine powder 11b Concave part 11t Convex part CL Center axis W Contents

Claims (4)

  1.  ガラス製の内容器と、
     前記内容器に対して外側を囲むと共に開口部で接続されたガラス製の外容器と、
     前記内容器と前記外容器との間に両容器に接するように配置されたスペーサと、
    を備え、前記内容器と前記外容器とにより画成された空間が真空にされた断熱容器であって、
     前記スペーサは、ケイ酸カルシウム系材料からなると共に前記内容器及び前記外容器と接する接触面が平滑化処理された、
    断熱容器。
    A glass inner container,
    An outer container made of glass surrounding the outer side with respect to the inner container and connected by an opening;
    A spacer disposed between the inner container and the outer container so as to contact both containers;
    A heat-insulating container in which a space defined by the inner container and the outer container is evacuated,
    The spacer is made of a calcium silicate-based material and the contact surface in contact with the inner container and the outer container is smoothed.
    Insulated container.
  2.  前記スペーサは、前記接触面の表面粗さが算術平均高さSaで20~50μmである。
    請求項1に記載の断熱容器。
    The spacer has a surface roughness of the contact surface of 20 to 50 μm in terms of arithmetic average height Sa.
    The heat insulating container according to claim 1.
  3.  前記スペーサは、圧縮速度0.1mm/minで0.5mm圧縮するのに必要な荷重が1500N以上である、
    請求項1又は2に記載の断熱容器。
    The spacer has a load necessary to compress 0.5 mm at a compression speed of 0.1 mm / min, 1500 N or more.
    The heat insulation container according to claim 1 or 2.
  4.  前記ケイ酸カルシウム系材料が、下記(A)~(D)の均一混合物からなるスラリーを脱水成形し、得られた成形物を6kg/cm以上の加圧水蒸気で蒸熱処理してケイ酸原料と石灰原料とを反応させた後、大気圧下330℃以上に加熱して成形物より離脱する水を除去することにより得られたものである、
    請求項1~3のいずれか1項に記載の断熱容器。
    (A)CaO/SiOモル比が0.6~1.2である石灰原料及びケイ酸原料の混合物100重量部
    (B)水熱合成により得られたゾノトライト  50~170重量部
    (C)繊維状ウオラストナイト  15~150重量部
    (D)水    全固形物の2~8倍量
    The calcium silicate material is subjected to dehydration molding of a slurry composed of a uniform mixture of the following (A) to (D), and the resulting molding is steamed with pressurized steam of 6 kg / cm 2 or more to obtain a silicic acid raw material. After reacting with the lime raw material, it is obtained by removing water released from the molded product by heating to 330 ° C. or higher under atmospheric pressure,
    The heat insulating container according to any one of claims 1 to 3.
    (A) 100 parts by weight of a mixture of lime raw material and silicic acid raw material having a CaO / SiO 2 molar ratio of 0.6 to 1.2 (B) 50 to 170 parts by weight of zonotlite obtained by hydrothermal synthesis (C) fiber Wollastonite 15-150 parts by weight (D) Water 2-8 times the total solids
PCT/JP2017/032690 2016-09-26 2017-09-11 Insulating container WO2018056096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540971A JP6518018B2 (en) 2016-09-26 2017-09-11 Heat insulation container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187514 2016-09-26
JP2016-187514 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056096A1 true WO2018056096A1 (en) 2018-03-29

Family

ID=61691003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032690 WO2018056096A1 (en) 2016-09-26 2017-09-11 Insulating container

Country Status (2)

Country Link
JP (1) JP6518018B2 (en)
WO (1) WO2018056096A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002976A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Spacer and multi-layered glass
WO2023002975A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Spacer and multi-layered glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1961403A (en) * 1931-07-15 1934-06-05 American Thermos Bottle Co Double-walled vacuum bottle
JPS4320426B1 (en) * 1965-06-02 1968-09-02
JPS55167167A (en) * 1979-05-15 1980-12-26 Nippon Asbestos Co Ltd Manufacture of calcium silicate heat resistant material
JPS56119219A (en) * 1980-02-25 1981-09-18 Zojirushi Vacuum Bottle Co Magic bottle made of stailess steel and method
JP2015136852A (en) * 2014-01-22 2015-07-30 株式会社コスモテック Heat insulation cover body, and injection molding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1961403A (en) * 1931-07-15 1934-06-05 American Thermos Bottle Co Double-walled vacuum bottle
JPS4320426B1 (en) * 1965-06-02 1968-09-02
JPS55167167A (en) * 1979-05-15 1980-12-26 Nippon Asbestos Co Ltd Manufacture of calcium silicate heat resistant material
JPS56119219A (en) * 1980-02-25 1981-09-18 Zojirushi Vacuum Bottle Co Magic bottle made of stailess steel and method
JP2015136852A (en) * 2014-01-22 2015-07-30 株式会社コスモテック Heat insulation cover body, and injection molding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002976A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Spacer and multi-layered glass
WO2023002975A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Spacer and multi-layered glass

Also Published As

Publication number Publication date
JP6518018B2 (en) 2019-05-22
JPWO2018056096A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018056096A1 (en) Insulating container
USRE45450E1 (en) Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
CN109699187B (en) Sound-absorbing board
US20160185068A1 (en) Insulating member and its attaching method
EP2850254B1 (en) Insulating composite product comprising mineral wool and material with superior insulating properties
RU2680443C2 (en) Mineral fiber batting for manufacture of thermally insulation composite
WO2018056095A1 (en) Insulating container
JP2008019137A (en) Crucible protective sheet
JP2005106090A (en) Vacuum insulating panel and its manufacturing method
EP3332073B1 (en) Multilayer laminate panel
WO2020100460A1 (en) Heat-insulating sheet and manufacturing method therefor
JP3676643B2 (en) Insulated corner panel and manufacturing method thereof
KR101303440B1 (en) Refrigerator
JP2015134695A (en) Plate glass cutting method
CN207017524U (en) A kind of light composite wall partition panel
JP2020153602A (en) Door for refrigerating showcase
JP2006220214A (en) Vacuum heat-insulating material
JP4591288B2 (en) Manufacturing method of vacuum insulation
JP6518019B2 (en) Liquid container
JP2019127901A (en) Oil pan of engine
JP7369914B2 (en) Manufacturing method of insulation sheet
CN212765068U (en) High-density artificial stone plate structure
JP2008019138A (en) Crucible protective sheet
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method
KR200189716Y1 (en) Honeycomb panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018540971

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852873

Country of ref document: EP

Kind code of ref document: A1