WO2018056055A1 - Rubber composition and transmission belt using same - Google Patents

Rubber composition and transmission belt using same Download PDF

Info

Publication number
WO2018056055A1
WO2018056055A1 PCT/JP2017/032093 JP2017032093W WO2018056055A1 WO 2018056055 A1 WO2018056055 A1 WO 2018056055A1 JP 2017032093 W JP2017032093 W JP 2017032093W WO 2018056055 A1 WO2018056055 A1 WO 2018056055A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
mass
rubber
parts
content
Prior art date
Application number
PCT/JP2017/032093
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 土屋
正吾 小林
圭一郎 松尾
奥野 茂樹
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2017548082A priority Critical patent/JP6271823B1/en
Publication of WO2018056055A1 publication Critical patent/WO2018056055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a rubber composition and a transmission belt using the same.
  • Patent Document 1 discloses that a tire is formed of a rubber composition in which cellulose nanofibers are dispersed and contained in a rubber component such as chloroprene rubber.
  • the present invention is a rubber composition in which cellulose nanofibers and carbon black are dispersed in a rubber component mainly composed of chloroprene rubber or ethylene- ⁇ -olefin elastomer, and the content of the cellulose nanofiber is 100 masses of the rubber component. 1 part by mass or more and 20 parts by mass or less with respect to parts, and the content of the carbon black is 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the present invention is a transmission belt in which at least a part of the belt body is formed of the rubber composition of the present invention.
  • the rubber composition according to the embodiment includes chloroprene rubber (hereinafter referred to as “CR”) or a rubber component mainly composed of ethylene- ⁇ -olefin elastomer, cellulose nanofiber (hereinafter referred to as “CNF”), and carbon black. (Hereinafter referred to as “CB”) in which the uncrosslinked rubber composition in which the rubber component is dispersed is heated and pressurized to crosslink the rubber component.
  • the CNF content is 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component
  • the CB content is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component. .
  • CNF and CB are dispersed in the rubber component mainly composed of CR or ethylene- ⁇ -olefin elastomer, and the content of CNF is 100 parts by mass of the rubber component. 1 to 20 parts by mass and the content of CB is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
  • the dependency is small, so that the difference in deformation due to the temperature change is small, the loss tangent is small, so that heat generation can be suppressed, and excellent wear resistance can be obtained.
  • the rubber component is mainly CR or ethylene- ⁇ -olefin elastomer.
  • the content of CR or ethylene- ⁇ -olefin elastomer in the rubber component is more than 50% by mass, reducing the difference in deformation due to temperature change in dynamic use, suppressing heat generation, and excellent wear resistance From the viewpoint of obtaining the above, it is preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
  • the rubber component may contain ethylene- ⁇ -olefin elastomer, hydrogenated nitrile rubber (H-NBR), styrene butadiene rubber (SBR), and the like.
  • the main component is an ethylene- ⁇ -olefin elastomer
  • the rubber component may contain CR, hydrogenated nitrile rubber (H—NBR), styrene butadiene rubber (SBR), or the like.
  • CR examples include G-type sulfur-modified CR, W-type mercaptan-modified CR, A-type high crystal CR, low-viscosity CR, carboxylated CR, and the like.
  • the CR of the rubber component preferably contains one or more of these, and the difference in deformation due to temperature change in dynamic use is reduced and heat is generated. It is more preferable to contain sulfur-modified CR, more preferably sulfur-modified CR as a main component, and still more preferably only sulfur-modified CR. From the same viewpoint, the rubber component is more preferably composed only of sulfur-modified CR.
  • ethylene- ⁇ -olefin elastomer examples include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (hereinafter referred to as “EPDM”), ethylene / octene copolymer, and ethylene / butene copolymer.
  • EPR ethylene / propylene copolymer
  • EPDM ethylene / propylene / diene terpolymer
  • ethylene / octene copolymer examples include ethylene / butene copolymer.
  • the main component of the rubber component is an ethylene- ⁇ -olefin elastomer
  • the ethylene- ⁇ -olefin elastomer of the rubber component preferably contains one or more of these, more preferably contains EPDM, and EPDM Is more preferable as a main component.
  • the ethylene content is preferably 45 to 60% by mass, more preferably 50 to 55% by mass.
  • examples of the diene component include ethylidene nobornene (ENB), dicyclopentadiene, 1,4-hexadiene, and the like.
  • the diene component is preferably ethylidene nobornene.
  • the ENB content is preferably 5.0% by mass to 10% by mass, more preferably 7.0% by mass to 9.0%. It is below mass%.
  • CNF is composed of a skeletal component of the plant cell wall obtained by finely loosening plant fibers.
  • Examples of the CNF raw material pulp include pulps of wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed, and the like. Of these, wood pulp is preferred.
  • CNF examples include TEMPO oxidized CNF and mechanical defibrated CNF.
  • CNF preferably includes one or two of these, preferably includes TEMPO-oxidized CNF, preferably includes TEMPO-oxidized CNF as a main component, and more preferably includes only TEMPO-oxidized CNF. .
  • TEMPO-oxidized CNF selectively oxidizes the hydroxyl group at the C6-position in the cellulose molecule to a carboxyl group by acting a co-oxidant on cellulose contained in the raw material pulp using an N-oxyl compound as a catalyst. It is CNF obtained by making it fine.
  • N-oxyl compound include 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) free radical and 4-acetamido-TEMPO.
  • co-oxidant include hypohalous acid and its salt, halous acid and its salt, perhalogenic acid and its salt, hydrogen peroxide, perorganic acid and the like.
  • Mechanical defibrating CNF is CNF obtained by pulverizing raw material pulp using a kneading machine such as a twin-screw kneader, a high-pressure homogenizer, a grinder, a bead mill, or the like.
  • a kneading machine such as a twin-screw kneader, a high-pressure homogenizer, a grinder, a bead mill, or the like.
  • the fiber diameter of TEMPO oxidized CNF is, for example, 1 nm or more and 10 nm, and its distribution is narrow.
  • the fiber diameter of mechanical defibrating CNF is several tens to several hundreds nm, and its distribution is wide. Therefore, TEMPO-oxidized CNF and mechanically crushed CNF can be clearly distinguished by the size of the fiber diameter and its distribution.
  • CNF may contain hydrophobized CNF that has been hydrophobized.
  • hydrophobized CNF include CNF in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and CNF that has been hydrophobized and surface-treated with a surface treatment agent.
  • hydrophobization for obtaining CNF in which part or all of the hydroxyl groups of cellulose are substituted with a hydrophobic group include amination, esterification, alkylation, tosylation, epoxidation, arylation and the like. Of these, amination is preferred.
  • the aminated hydrophobized CNF is CNF in which the carboxyl group of TEMPO-oxidized CNF is aminated.
  • the surface treatment agent for obtaining CNF hydrophobized with the surface treatment agent include a silane coupling agent.
  • the content (A) of CNF in the rubber composition according to the embodiment is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component, and the difference in the magnitude of deformation accompanying a temperature change in dynamic use. From the viewpoint of suppressing heat generation and obtaining excellent wear resistance, it is preferably 3 parts by mass or more and 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less.
  • CB examples include channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, and N-234; thermal black such as FT and MT; acetylene Black etc. are mentioned.
  • CB preferably includes one or more of these, more preferably includes FEF, further preferably includes FEF as a main component, and more preferably includes only FEF.
  • the content (B) of CB in the rubber composition according to the embodiment is 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the rubber component, and the difference in deformation due to temperature change in dynamic use is determined. From the viewpoint of reducing heat generation and obtaining excellent wear resistance, it is preferably 10 parts by mass or more and 40 parts by mass or less, more preferably 10 parts by mass or more and 30 parts by mass or less.
  • the sum (A + B) of the CNF content (A) and the CB content (B) in the rubber composition according to the embodiment is preferably 15 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 60 mass parts or less, More preferably, it is 40 mass parts or less.
  • the ratio (A / B) of the CNF content (A) to the CB content (B) in the rubber composition according to the embodiment is preferably 0.050 or more and 2.0 or less, more preferably 1.0 or less. More preferably, it is 0.5 or less.
  • the content (A) of CNF with respect to 100 parts by mass of the rubber component in the rubber composition according to the embodiment reduces the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppresses heat generation and has excellent wear resistance. From the viewpoint of obtaining properties, the content is preferably less than the CB content (B).
  • the rubber composition according to the embodiment may contain dispersed short fibers.
  • short fibers include para-aramid short fibers, meta-aramid short fibers, nylon 6 short fibers, nylon 6,6 short fibers, nylon 4,6 short fibers, polyethylene terephthalate short fibers, polyethylene naphthalate short fibers, and the like. Can be mentioned.
  • the short fibers preferably include one or more of these, more preferably include para-aramid short fibers, preferably include para-aramid short fibers as a main component, and para-aramid short fibers. It is still more preferable that it is comprised only by.
  • Para-aramid short fibers include polyparaphenylene terephthalamide short fibers (for example, DuPont Kevlar, Teijin Twaron) and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers ( For example, Teijin's Technora).
  • the para-aramid short fibers preferably contain one or two of these, more preferably contain copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers, and copolyparaphenylene- It is more preferable to mainly include short fibers of 3,4'-oxydiphenylene terephthalamide, and it is even more preferable that the short fibers of copolyparaphenylene-3,4'-oxydiphenylene terephthalamide are used alone.
  • the fiber length of the short fibers is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm.
  • the fiber diameter of the short fiber is preferably 5.0 ⁇ m or more and 70 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the content (C) of the short fiber in the rubber composition according to the embodiment is from the viewpoint of reducing the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppressing heat generation and obtaining excellent wear resistance.
  • the amount is preferably 3 parts by mass or more and 25 parts by mass or less, more preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the sum (A + C) of the CNF content (A) and the short fiber content (C) in the rubber composition according to the embodiment reduces the difference in deformation due to temperature change in dynamic use.
  • the amount is preferably 15 parts by weight or more and 40 parts by weight or less, more preferably 25 parts by weight or less with respect to 100 parts by weight of the rubber component.
  • the sum (A + B + C) of the CNF content (A), the CB content (B), and the short fiber content (C) in the rubber composition according to the embodiment is the deformation due to temperature change in dynamic use.
  • it is preferably 30 parts by mass or more and 90 parts by mass or less, more preferably 60 parts by mass or less, with respect to 100 parts by mass of the rubber component. More preferably, it is 40 parts by mass or less.
  • the ratio (A / C) of the CNF content (A) to the short fiber content (C) in the rubber composition according to the embodiment reduces the difference in deformation due to temperature change in dynamic use.
  • it is preferably 0.050 or more and 1.3 or less, and more preferably 0.40 or less.
  • the content (A) of CNF with respect to 100 parts by mass of the rubber component in the rubber composition according to the embodiment reduces the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppresses heat generation and has excellent wear resistance.
  • the content is preferably less than the short fiber content (C).
  • a crosslinking agent of CR or ethylene- ⁇ -olefin elastomer is blended.
  • CR crosslinking agents include metal oxides such as zinc oxide and magnesium oxide.
  • the cross-linking agent is preferably used in combination with zinc oxide and magnesium oxide.
  • the compounding amount of zinc oxide is preferably 3 parts by mass or more and 7 parts by mass or less, more preferably 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the compounding amount of magnesium oxide is preferably 3 parts by mass or more and 7 parts by mass or less, and more preferably 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • crosslinking agent for the ethylene- ⁇ -olefin elastomer examples include organic peroxides and sulfur.
  • organic peroxide may be used, sulfur may be used, and furthermore, they may be used in combination.
  • the compounding quantity of an organic peroxide or sulfur is 1 mass part or more and 5 mass parts or less with respect to 100 mass parts of rubber components.
  • the rubber composition according to the embodiment may further contain rubber compounding agents such as a plasticizer, a processing aid, a vulcanization acceleration aid, and a vulcanization accelerator.
  • rubber compounding agents such as a plasticizer, a processing aid, a vulcanization acceleration aid, and a vulcanization accelerator.
  • the rubber hardness measured using a type A durometer based on JISK6253: 2012 in the rubber composition according to the embodiment is preferably A80 or more and A95 or less.
  • the tensile strength measured in line with JISK6251: 2010 is preferably 20.0 MPa or more and 35.0 MPa or less, more preferably 25.0 MPa or more and 30.0 MPa or less.
  • the elongation at break measured in accordance with JISK6251: 2010 is preferably 10% or more and 40% or less, more preferably 15% or more and 30% or less.
  • the storage elastic modulus (E ′) in the reverse direction at 25 ° C. measured as a dynamic strain of 1.0% and a frequency of 10 Hz is preferably It is 10.0 MPa or more and 70.0 MPa or less, More preferably, it is 15.0 MPa or more and 40.0 MPa or less.
  • the storage elastic modulus in the reverse direction at 100 ° C. is preferably 10.0 MPa or more and 55.0 MPa or less, more preferably 13.0 MPa or more and 25.0 MPa or less.
  • the ratio of the warp elastic modulus in the anti-row direction at 100 ° C. to the warp elastic modulus at 25 ° C. is preferably 0.70 or more, more preferably 0.80 or more, and still more preferably Is 0.90 or more.
  • the loss tangent (tan ⁇ ) in the reverse direction at 25 ° C. measured as a dynamic strain of 1.0% and a frequency of 10 Hz is preferably 0.17 or less. More preferably, it is 0.10 or less.
  • the loss tangent in the reverse direction at 100 ° C. is preferably 0.13 or less, more preferably 0.080 or less.
  • a master batch in which CNF is dispersed in CR is prepared by mixing CNF into CR latex and removing the solvent.
  • An uncrosslinked rubber composition is obtained by mixing and kneading a rubber compounding agent containing CB with a master batch or a rubber component such as CR kneaded and diluted in the master batch. It can be obtained by crosslinking the rubber component by heating and pressurizing the rubber composition.
  • ethylene- ⁇ -olefin elastomer When ethylene- ⁇ -olefin elastomer is mainly used as a rubber component, a dispersion in which hydrophobic CNF is dispersed in a solvent such as toluene and an ethylene- ⁇ -olefin elastomer are dissolved in a solvent such as toluene.
  • a masterbatch in which CNF is dispersed in an ethylene- ⁇ -olefin elastomer is prepared by mixing with the solution and removing the solvent, and the masterbatch may be used.
  • the rubber composition according to the embodiment forms at least a part of a belt body of a transmission belt, in particular, a transmission belt, because the difference in the magnitude of deformation due to temperature change in dynamic use can be reduced and heat generation can be suppressed. It can use suitably as a material to do.
  • FIG. 1A shows a single cogged V-belt B1 as an example of a transmission belt.
  • the single cogged V-belt B1 is used as a transmission belt for a small scooter or an agricultural machine, for example.
  • the single cogged V-belt B1 has a trapezoidal cross-sectional shape in which a compression rubber layer 11 on the belt inner peripheral side, an extended rubber layer 12 on the belt outer peripheral side, and an adhesive rubber layer 13 therebetween are laminated and integrated. It has a rubber belt body 10.
  • a core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 13 so as to form a spiral having a pitch in the belt width direction.
  • An inner reinforcing cloth 15 is affixed to the surface of the compressed rubber layer 11 constituting the inner peripheral surface of the belt, and an outer reinforcing cloth 16 is affixed to the surface of the stretched rubber layer 12 constituting the outer peripheral surface of the belt.
  • An inner cog 17 is disposed at a constant pitch in the belt length direction on the belt inner peripheral side, while a flat belt back surface is formed on the belt outer peripheral side.
  • FIG. 1B shows a double cogged V-belt B2 as another example of a transmission belt.
  • This double cogged V-belt B2 is used, for example, as a transmission belt for a large buggy or a large scooter.
  • the double cogged V-belt B2 includes a belt body 10 composed of a compression rubber layer 11, an extended rubber layer 12, and an adhesive rubber layer 13, a core wire 14 embedded in the adhesive rubber layer 13, and a belt. It has the inner side reinforcement cloth 15 stuck on the inner peripheral surface and the outer side reinforcement cloth 16 stuck on the outer peripheral surface of the belt.
  • An inner cog 17 and an outer cog 18 are disposed at a constant pitch in the belt length direction on the belt inner peripheral side and the belt outer peripheral side, respectively.
  • the winding diameter on the pulley is fluctuated and violently bent. At this time, heat is generated by bending, but if the deformation of the belt increases as the temperature rises, it is difficult to maintain a stable speed change operation, and if the heat generation itself is large, it causes energy loss. This leads to a decrease in power transmission efficiency.
  • the single cogged V belt B1 and the double cogged belt B2 using the rubber composition according to the embodiment since the difference in deformation due to a temperature change is small in dynamic use such as bending, a stable speed change operation is achieved. Since it can maintain and heat generation is suppressed, the fall of power transmission efficiency can be suppressed small.
  • high wear resistance is required for the friction transmission belts such as the single cogged V belt B1 and the double cogged belt B2, but if the rubber composition according to the embodiment is used, excellent wear resistance can be obtained.
  • the single cogged V belt B1 and the double cogged belt B2 are shown as the transmission belt in which at least a part of the belt main body is formed of the rubber composition according to the embodiment.
  • the belt is not particularly limited to this.
  • a flat belt, V belt, V-ribbed belt, toothed belt, or the like may be used.
  • the rubber composition according to the embodiment is not limited to the transmission belt, and can be used for rubber products such as tires and hoses.
  • Rubber composition Rubber compositions of Examples 1 to 15 and Comparative Examples 1 to 3 were prepared. Their configurations are also shown in Tables 1A and B.
  • Example 1 The sulfur-modified CR latex (manufactured by Tosoh Corporation) is mixed with 10 parts by mass of TEMPO-oxidized CNF (fiber diameter 3 nm to 4 nm) with respect to 100 parts by mass of the sulfur-modified CR of the rubber component therein, and the solvent is removed to remove sulfur.
  • TEMPO-oxidized CNF fiber diameter 3 nm to 4 nm
  • Example 1 A rubber composition obtained by crosslinking the rubber component by heating and pressurizing the uncrosslinked rubber composition was referred to as Example 1.
  • Example 2 A rubber composition having the same configuration as that of Example 1 was used in Example 2, except that the amount of TEMPO-oxidized CNF was 1 part by mass with respect to 100 parts by mass of the rubber component.
  • Example 3 A rubber composition having the same configuration as that of Example 1 was obtained as Example 3 except that the amount of TEMPO-oxidized CNF was 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4 A rubber composition having the same configuration as that of Example 1 was used in Example 4 except that the amount of TEMPO-oxidized CNF was 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 5 A rubber composition having the same structure as Example 1 was used in Example 5 except that mercaptan-modified CR latex (B-30 manufactured by Tosoh Corporation) was used instead of sulfur-modified CR latex.
  • B-30 manufactured by Tosoh Corporation
  • Example 6 A rubber composition having the same configuration as that of Example 1 was determined as Example 6 except that the amount of FEF was 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 7 A rubber composition having the same configuration as that of Example 1 was used in Example 7 except that the amount of FEF was 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 8 A rubber composition having the same configuration as that of Example 1 was used in Example 8 except that the amount of FEF was 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 9 A rubber composition having the same configuration as that of Example 1 was used in Example 9, except that the amount of FEF was 60 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 10 A rubber composition having the same configuration as that of Example 1 was used in Example 10 except that ISAF (Seat 600 manufactured by Tokai Carbon Co., Ltd.) was used instead of FEF.
  • ISAF Silicone 600 manufactured by Tokai Carbon Co., Ltd.
  • Example 11 A rubber composition having the same structure as that of Example 1 was used in Example 11 except that SRF (Seast 9 manufactured by Tokai Carbon Co., Ltd.) was used instead of FEF.
  • SRF east 9 manufactured by Tokai Carbon Co., Ltd.
  • Example 12 A rubber composition having the same structure as that of Example 1 was used in Example 12 except that mechanical defibrated CNF (fiber diameter of several tens to several hundreds of nm) was blended in place of TEMPO-oxidized CNF.
  • mechanical defibrated CNF fiber diameter of several tens to several hundreds of nm
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl radical
  • NaBr 2,2,6,6-tetramethylpiperidine-1-oxyl radical
  • an aqueous sodium hypochlorite solution was added to the pulp mixture, pH was adjusted, and stirring was continued. And the obtained pulp liquid mixture was filtered, and the residue was fully wash
  • a dispersion obtained by dispersing the hydrophobic CNF thus obtained in toluene and a toluene solution of EPDM (EP33, manufactured by JSR Corporation, ethylene content: 52% by mass, ENB content: 8.1% by mass) are used as EPDM100 as a rubber component.
  • EPDM EP33, manufactured by JSR Corporation, ethylene content: 52% by mass, ENB content: 8.1% by mass
  • Mixing was performed so that the content of hydrophobized CNF relative to 5 parts by mass was 5 parts by mass, and toluene was removed to prepare a master batch in which hydrophobized CNF was dispersed in EPDM.
  • Example 14 A rubber composition having the same configuration as that of Example 13 except that the blending amount of hydrophobic CNF and the blending amount of FEF were 10 parts by mass and 35 parts by mass with respect to 100 parts by mass of the rubber component, respectively. did.
  • Example 15 A rubber composition having the same configuration as Example 13 except that the blending amount of hydrophobic CNF and the blending amount of FEF were 20 parts by mass and 15 parts by mass with respect to 100 parts by mass of the rubber component, respectively. did.
  • Comparative Example 1 Implemented except that hydrogenated nitrile rubber latex (ZLX-B manufactured by Nippon Zeon Co., Ltd.) was used instead of sulfur-modified CR latex, and 3 parts by weight of organic peroxide crosslinking agent was blended with respect to 100 parts by weight of rubber component.
  • a rubber composition having the same configuration as in Example 1 was referred to as Comparative Example 1.
  • ⁇ Comparative example 2> Implemented except that styrene butadiene rubber latex (manufactured by J-9049 JSR) was used instead of sulfur-modified CR latex and that 0.3 parts by weight of organic peroxide crosslinking agent was blended with respect to 100 parts by weight of rubber component.
  • a rubber composition having the same configuration as in Example 1 was referred to as Comparative Example 2.
  • Comparative Example 3 A rubber composition having the same configuration as that of Example 1 except that FEF was not blended was designated as Comparative Example 3.
  • FIG. 2 shows a belt running test machine 20 for evaluating crack resistance.
  • the belt running test machine 20 includes a drive pulley 21 having a pulley diameter of 40 mm and a driven pulley 22 having a pulley diameter of 40 mm provided on the right side thereof.
  • the driven pulley 22 is movably provided to the left and right so that an axial load (dead weight DW) can be applied.
  • the single cogged V-belt B1 using each of Examples 1 to 15 and Comparative Examples 1 to 3 is wound between the drive pulley 21 and the driven pulley 22 of the belt running test machine 20 and is moved to the right side with respect to the driven pulley 22.
  • a belt tension was applied by applying an axial load of 600 N, and the driving pulley 21 was rotated at a rotational speed of 3000 rpm under an ambient temperature of 100 ° C. to run the belt. Then, the belt running was periodically stopped to visually check for the occurrence of cracks.
  • the belt running time until the occurrence of cracks was confirmed was defined as the crack life.
  • the maximum belt running time was 240 hours.
  • FIG. 3 shows a belt running test machine 30 for evaluating wear resistance.
  • the belt running test machine 30 includes a driving pulley 31 having a pulley diameter of ⁇ 60 mm and a driven pulley 32 having a pulley diameter of 100 mm provided on the left side thereof.
  • the driven pulley 32 is movably provided to the left and right so that an axial load (dead weight DW) can be applied.
  • the belt is wound between the driving pulley 31 and the driven pulley 32 of the belt running test machine 30, and the driven pulley
  • a belt load is applied by applying a shaft load of 700 N to the left side of the belt 32, a rotational load of 10 N ⁇ m is applied to the driven pulley 32, and the drive pulley 31 is rotated at a rotational speed of 4200 rpm at an ambient temperature of 50 ° C.
  • the belt was rotated for 200 hours.
  • the maximum temperature on the back of the belt during belt running was recorded as the belt temperature using a non-contact type thermometer.
  • the belt mass was measured again after running the belt.
  • the belt mass after subtracting the belt mass from the belt mass before running the belt and dividing it by the belt mass before running the belt is calculated as the belt wear rate, and the wear index is calculated using the belt wear rate of Example 1 as 100. did.
  • Tables 2A and B show the test results.
  • the ratio of the elastic modulus is as high as 0.75 or more, so that the temperature dependence of the freshly stored elastic modulus is small. Therefore, it is expected that the difference in the magnitude of deformation with temperature change is small, and the loss tangent at 25 ° C. is 0. .16 or less and the loss tangent at 100 ° C. is as low as 0.13 or less, and therefore heat generation in dynamic use is expected to be small.
  • the crack-resistant life is as long as 86.4 hours or longer, and the wear index is as low as 100 or less except in Examples 6, 7, and 11 to 15. Furthermore, it can be seen that the belt temperature during belt running is as low as 100 ° C. or less, and therefore heat generation is small.
  • the crack resistance life is as short as 42 hours and 31 hours, respectively, and the wear index is as high as 103 and 195.
  • the belt temperatures during the belt running are as high as 102 ° C. and 104 ° C., respectively, and thus the heat generation is large.
  • the present invention is useful in the technical field of rubber compositions and transmission belts using the rubber compositions.

Abstract

In the rubber composition according to the present invention, cellulose nanofibers and carbon black are dispersed in a rubber component having chloroprene rubber or an ethylene-α-olefin elastomer as the main component thereof. The cellulose nanofiber content is 1-20 parts by mass with respect to 100 parts by mass of the rubber component, and the carbon black content is 5-60 parts by mass with respect to 100 parts by mass of the rubber component.

Description

ゴム組成物及びそれを用いた伝動ベルトRubber composition and power transmission belt using the same
 本発明は、ゴム組成物及びそれを用いた伝動ベルトに関する。 The present invention relates to a rubber composition and a transmission belt using the same.
 セルロースナノファイバは、化学的に安定で且つ物理的に強固な材料として注目を集めている。特許文献1には、クロロプレンゴム等のゴム成分にセルロースナノファイバが分散して含有されたゴム組成物でタイヤを形成することが開示されている。 Cellulose nanofibers are attracting attention as chemically stable and physically strong materials. Patent Document 1 discloses that a tire is formed of a rubber composition in which cellulose nanofibers are dispersed and contained in a rubber component such as chloroprene rubber.
特開2014-088503号公報JP 2014-088503 A
 本発明は、クロロプレンゴム又はエチレン-α-オレフィンエラストマーを主体とするゴム成分に、セルロースナノファイバ及びカーボンブラックが分散したゴム組成物であって、前記セルロースナノファイバの含有量が前記ゴム成分100質量部に対して1質量部以上20質量部以下であり、且つ前記カーボンブラックの含有量が前記ゴム成分100質量部に対して5質量部以上60質量部以下である。 The present invention is a rubber composition in which cellulose nanofibers and carbon black are dispersed in a rubber component mainly composed of chloroprene rubber or ethylene-α-olefin elastomer, and the content of the cellulose nanofiber is 100 masses of the rubber component. 1 part by mass or more and 20 parts by mass or less with respect to parts, and the content of the carbon black is 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the rubber component.
 本発明は、ベルト本体の少なくとも一部が本発明のゴム組成物で形成された伝動ベルトである。 The present invention is a transmission belt in which at least a part of the belt body is formed of the rubber composition of the present invention.
シングルコグドVベルトの一片の斜視図である。It is a perspective view of one piece of a single cogged V belt. ダブルコグドVベルトの一片の斜視図である。It is a perspective view of one piece of a double cogged V belt. 耐クラック性評価用ベルト走行試験機のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the belt running test machine for crack resistance evaluation. 耐摩耗性評価用ベルト走行試験機のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the belt running test machine for abrasion resistance evaluation.
 以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.
 実施形態に係るゴム組成物は、クロロプレンゴム(以下、「CR」という。)又はエチレン-α-オレフィンエラストマーを主体とするゴム成分に、セルロースナノファイバ(以下、「CNF」という。)及びカーボンブラック(以下、「CB」という。)が分散した未架橋ゴム組成物が加熱及び加圧されてゴム成分が架橋したものである。そして、CNFの含有量がゴム成分100質量部に対して1質量部以上20質量部以下であり、且つCBの含有量がゴム成分100質量部に対して5質量部以上60質量部以下である。 The rubber composition according to the embodiment includes chloroprene rubber (hereinafter referred to as “CR”) or a rubber component mainly composed of ethylene-α-olefin elastomer, cellulose nanofiber (hereinafter referred to as “CNF”), and carbon black. (Hereinafter referred to as “CB”) in which the uncrosslinked rubber composition in which the rubber component is dispersed is heated and pressurized to crosslink the rubber component. The CNF content is 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and the CB content is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component. .
 このような実施形態に係るゴム組成物によれば、CR又はエチレン-α-オレフィンエラストマーを主体とするゴム成分に、CNF及びCBが分散し、CNFの含有量がゴム成分100質量部に対して1質量部以上20質量部以下であり、且つCBの含有量がゴム成分100質量部に対して5質量部以上60質量部以下であることにより、動的使用において、貯蔵たて弾性係数の温度依存性が小さく、そのため温度変化に伴う変形の大きさの差が小さく、損失正接が小さく、そのため発熱を抑制することができ、しかも優れた耐摩耗性を得ることができる。 According to the rubber composition according to such an embodiment, CNF and CB are dispersed in the rubber component mainly composed of CR or ethylene-α-olefin elastomer, and the content of CNF is 100 parts by mass of the rubber component. 1 to 20 parts by mass and the content of CB is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component. The dependency is small, so that the difference in deformation due to the temperature change is small, the loss tangent is small, so that heat generation can be suppressed, and excellent wear resistance can be obtained.
 ここで、ゴム成分は、CR又はエチレン-α-オレフィンエラストマーを主体とする。ゴム成分におけるCR又はエチレン-α-オレフィンエラストマーの含有量は50質量%よりも多く、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、好ましくは80質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。なお、ゴム成分は、主体がCRの場合、それ以外にエチレン-α-オレフィンエラストマー、水素化ニトリルゴム(H-NBR)やスチレンブタジエンゴム(SBR)等を含んでいてもよい。また、ゴム成分は、主体がエチレン-α-オレフィンエラストマーの場合、それ以外にCR、水素化ニトリルゴム(H-NBR)やスチレンブタジエンゴム(SBR)等を含んでいてもよい。 Here, the rubber component is mainly CR or ethylene-α-olefin elastomer. The content of CR or ethylene-α-olefin elastomer in the rubber component is more than 50% by mass, reducing the difference in deformation due to temperature change in dynamic use, suppressing heat generation, and excellent wear resistance From the viewpoint of obtaining the above, it is preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass. In the case where the main component is CR, the rubber component may contain ethylene-α-olefin elastomer, hydrogenated nitrile rubber (H-NBR), styrene butadiene rubber (SBR), and the like. Further, when the main component is an ethylene-α-olefin elastomer, the rubber component may contain CR, hydrogenated nitrile rubber (H—NBR), styrene butadiene rubber (SBR), or the like.
 CRとしては、例えば、Gタイプの硫黄変性CR、Wタイプのメルカプタン変性CR、Aタイプの高結晶CR、低粘度CR、カルボキシル化CR等が挙げられる。ゴム成分の主体がCRの場合、ゴム成分のCRは、これらのうちの1種又は2種以上を含むことが好ましく、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、硫黄変性CRを含むことがより好ましく、硫黄変性CRを主体として含むことが更に好ましく、硫黄変性CRのみで構成されることがより更に好ましい。ゴム成分は、同様の観点から、硫黄変性CRのみで構成されることがより一層好ましい。 Examples of CR include G-type sulfur-modified CR, W-type mercaptan-modified CR, A-type high crystal CR, low-viscosity CR, carboxylated CR, and the like. When the main rubber component is CR, the CR of the rubber component preferably contains one or more of these, and the difference in deformation due to temperature change in dynamic use is reduced and heat is generated. It is more preferable to contain sulfur-modified CR, more preferably sulfur-modified CR as a main component, and still more preferably only sulfur-modified CR. From the same viewpoint, the rubber component is more preferably composed only of sulfur-modified CR.
 エチレン-α-オレフィンエラストマーとしては、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(以下、「EPDM」という。)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマー等が挙げられる。ゴム成分の主体がエチレン-α-オレフィンエラストマーの場合、ゴム成分のエチレン-α-オレフィンエラストマーは、これらのうちの1種又は2種以上を含むことが好ましく、EPDMを含むことがより好ましく、EPDMを主体として含むことが更に好ましい。 Examples of the ethylene-α-olefin elastomer include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (hereinafter referred to as “EPDM”), ethylene / octene copolymer, and ethylene / butene copolymer. When the main component of the rubber component is an ethylene-α-olefin elastomer, the ethylene-α-olefin elastomer of the rubber component preferably contains one or more of these, more preferably contains EPDM, and EPDM Is more preferable as a main component.
 ゴム成分の主体がエチレン-α-オレフィンエラストマーの場合、そのエチレン含量は、好ましくは45質量%以上60質量%以下、より好ましくは50質量%以上55質量%以下である。ゴム成分の主体がEPDMの場合、そのジエン成分としては、例えば、エチリデンノボルネン(ENB)、ジシクロペンタジエン、1,4-ヘキサジエン等が挙げられる。ジエン成分は、これらのうちのエチリデンノボルネンが好ましい。ゴム成分がEPDMであり且つそのジエン成分がエチリデンノボルネンである場合には、そのENB含量は、好ましくは5.0質量%以上10質量%以下、より好ましくは7.0質量%以上9.0質量%以下である。 When the main rubber component is an ethylene-α-olefin elastomer, the ethylene content is preferably 45 to 60% by mass, more preferably 50 to 55% by mass. When the main rubber component is EPDM, examples of the diene component include ethylidene nobornene (ENB), dicyclopentadiene, 1,4-hexadiene, and the like. The diene component is preferably ethylidene nobornene. When the rubber component is EPDM and the diene component is ethylidene nobornene, the ENB content is preferably 5.0% by mass to 10% by mass, more preferably 7.0% by mass to 9.0%. It is below mass%.
 CNFは、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されている。CNFの原料パルプとしては、例えば、木材、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等のパルプが挙げられる。これらのうち木材パルプが好ましい。 CNF is composed of a skeletal component of the plant cell wall obtained by finely loosening plant fibers. Examples of the CNF raw material pulp include pulps of wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed, and the like. Of these, wood pulp is preferred.
 CNFとしては、TEMPO酸化CNF及び機械解繊CNFが挙げられる。CNFは、これらのうちの1種又は2種を含むことが好ましく、TEMPO酸化CNFを含むことが好ましく、TEMPO酸化CNFを主体として含むことが好ましく、TEMPO酸化CNFのみで構成されることが更に好ましい。 Examples of CNF include TEMPO oxidized CNF and mechanical defibrated CNF. CNF preferably includes one or two of these, preferably includes TEMPO-oxidized CNF, preferably includes TEMPO-oxidized CNF as a main component, and more preferably includes only TEMPO-oxidized CNF. .
 TEMPO酸化CNFは、原料パルプに含まれるセルロースにN-オキシル化合物を触媒として共酸化剤を作用させることにより、セルロース分子中のC6位の水酸基を選択的にカルボキシル基に酸化し、それを機械的に微細化して得られるCNFである。N-オキシル化合物としては、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)のフリーラジカルや4-アセトアミド-TEMPO等が挙げられる。共酸化剤としては、例えば、次亜ハロゲン酸及びその塩、亜ハロゲン酸及びその塩、過ハロゲン酸及びその塩、過酸化水素、並びに過有機酸等が挙げられる。機械解繊CNFは、原料パルプを、例えば、二軸混練機などの混練機、高圧ホモジナイザー、グラインダー、ビーズミル等の解繊装置により粉砕して得られるCNFである。 TEMPO-oxidized CNF selectively oxidizes the hydroxyl group at the C6-position in the cellulose molecule to a carboxyl group by acting a co-oxidant on cellulose contained in the raw material pulp using an N-oxyl compound as a catalyst. It is CNF obtained by making it fine. Examples of the N-oxyl compound include 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) free radical and 4-acetamido-TEMPO. Examples of the co-oxidant include hypohalous acid and its salt, halous acid and its salt, perhalogenic acid and its salt, hydrogen peroxide, perorganic acid and the like. Mechanical defibrating CNF is CNF obtained by pulverizing raw material pulp using a kneading machine such as a twin-screw kneader, a high-pressure homogenizer, a grinder, a bead mill, or the like.
 TEMPO酸化CNFの繊維径は例えば1nm以上10nmであり、また、その分布が狭い。一方、機械解繊CNFの繊維径は数十nm乃至数百nmであり、その分布が広い。従って、TEMPO酸化CNF及び機械解砕CNFは、このような繊維径の大きさ及びその分布により明確に区別することができる。 The fiber diameter of TEMPO oxidized CNF is, for example, 1 nm or more and 10 nm, and its distribution is narrow. On the other hand, the fiber diameter of mechanical defibrating CNF is several tens to several hundreds nm, and its distribution is wide. Therefore, TEMPO-oxidized CNF and mechanically crushed CNF can be clearly distinguished by the size of the fiber diameter and its distribution.
 CNFは、疎水化処理された疎水化CNFを含んでいてもよい。疎水化CNFとしては、セルロースの水酸基の一部又は全部が疎水性基に置換されたCNF、及び表面処理剤によって疎水化表面処理されたCNFが挙げられる。セルロースの水酸基の一部又は全部が疎水性基に置換されたCNFを得るための疎水化としては、例えば、アミン化、エステル化、アルキル化、トシル化、エポキシ化、アリール化等が挙げられる。これらのうちアミン化が好ましい。具体的には、アミン化された疎水化CNFは、TEMPO酸化CNFのカルボキシル基がアミン化されたCNFである。表面処理剤によって疎水化表面処理されたCNFを得るための表面処理剤としては、例えば、シランカップリング剤等が挙げられる。 CNF may contain hydrophobized CNF that has been hydrophobized. Examples of hydrophobized CNF include CNF in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and CNF that has been hydrophobized and surface-treated with a surface treatment agent. Examples of the hydrophobization for obtaining CNF in which part or all of the hydroxyl groups of cellulose are substituted with a hydrophobic group include amination, esterification, alkylation, tosylation, epoxidation, arylation and the like. Of these, amination is preferred. Specifically, the aminated hydrophobized CNF is CNF in which the carboxyl group of TEMPO-oxidized CNF is aminated. Examples of the surface treatment agent for obtaining CNF hydrophobized with the surface treatment agent include a silane coupling agent.
 実施形態に係るゴム組成物におけるCNFの含有量(A)は、ゴム成分100質量部に対して1質量部以上20質量部以下であり、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、好ましくは3質量部以上15質量部以下、より好ましくは5質量部以上10質量部以下である。 The content (A) of CNF in the rubber composition according to the embodiment is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component, and the difference in the magnitude of deformation accompanying a temperature change in dynamic use. From the viewpoint of suppressing heat generation and obtaining excellent wear resistance, it is preferably 3 parts by mass or more and 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less.
 CBとしては、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。CBは、これらのうちの1種又は2種以上を含むことが好ましく、FEFを含むことがより好ましく、FEFを主体として含むことが更に好ましく、FEFのみで構成されることがより更に好ましい。 Examples of CB include channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, and N-234; thermal black such as FT and MT; acetylene Black etc. are mentioned. CB preferably includes one or more of these, more preferably includes FEF, further preferably includes FEF as a main component, and more preferably includes only FEF.
 実施形態に係るゴム組成物におけるCBの含有量(B)はゴム成分100質量部に対して5質量部以上60質量部以下であり、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、好ましくは10質量部以上40質量部以下、より好ましくは10質量部以上30質量部以下である。実施形態に係るゴム組成物におけるCNFの含有量(A)とCBの含有量(B)との和(A+B)は、ゴム成分100質量部に対して、好ましくは15質量部以上70質量部以下、より好ましくは60質量部以下、更に好ましくは40質量部以下である。 The content (B) of CB in the rubber composition according to the embodiment is 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the rubber component, and the difference in deformation due to temperature change in dynamic use is determined. From the viewpoint of reducing heat generation and obtaining excellent wear resistance, it is preferably 10 parts by mass or more and 40 parts by mass or less, more preferably 10 parts by mass or more and 30 parts by mass or less. The sum (A + B) of the CNF content (A) and the CB content (B) in the rubber composition according to the embodiment is preferably 15 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 60 mass parts or less, More preferably, it is 40 mass parts or less.
 実施形態に係るゴム組成物におけるCNFの含有量(A)のCBの含有量(B)に対する比(A/B)は、好ましくは0.050以上2.0以下、より好ましくは1.0以下、更に好ましくは0.5以下である。実施形態に係るゴム組成物におけるゴム成分100質量部に対するCNFの含有量(A)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、CBの含有量(B)よりも少ないことが好ましい。 The ratio (A / B) of the CNF content (A) to the CB content (B) in the rubber composition according to the embodiment is preferably 0.050 or more and 2.0 or less, more preferably 1.0 or less. More preferably, it is 0.5 or less. The content (A) of CNF with respect to 100 parts by mass of the rubber component in the rubber composition according to the embodiment reduces the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppresses heat generation and has excellent wear resistance. From the viewpoint of obtaining properties, the content is preferably less than the CB content (B).
 実施形態に係るゴム組成物は、短繊維が分散して含有されていてもよい。短繊維としては、例えば、パラ系アラミド短繊維、メタ系アラミド短繊維、ナイロン6短繊維、ナイロン6,6短繊維、ナイロン4,6短繊維、ポリエチレンテレフタレート短繊維、ポリエチレンナフタレート短繊維等が挙げられる。短繊維は、これらのうちの1種又は2種以上を含むことが好ましく、パラ系アラミド短繊維を含むことがより好ましく、パラ系アラミド短繊維を主体として含むことが好ましく、パラ系アラミド短繊維のみで構成されることがより更に好ましい。 The rubber composition according to the embodiment may contain dispersed short fibers. Examples of short fibers include para-aramid short fibers, meta-aramid short fibers, nylon 6 short fibers, nylon 6,6 short fibers, nylon 4,6 short fibers, polyethylene terephthalate short fibers, polyethylene naphthalate short fibers, and the like. Can be mentioned. The short fibers preferably include one or more of these, more preferably include para-aramid short fibers, preferably include para-aramid short fibers as a main component, and para-aramid short fibers. It is still more preferable that it is comprised only by.
 パラ系アラミド短繊維としては、ポリパラフェニレンテレフタルアミドの短繊維(例えば、デュポン社製のケブラー、帝人社製のトワロン)及びコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミドの短繊維(例えば帝人社製のテクノーラ)が挙げられる。パラ系アラミド短繊維は、これらのうちの1種又は2種を含むことが好ましく、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミドの短繊維を含むことがより好ましく、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミドの短繊維を主体として含むことが更に好ましく、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミドの短繊維のみで構成されることがより更に好ましい。 Para-aramid short fibers include polyparaphenylene terephthalamide short fibers (for example, DuPont Kevlar, Teijin Twaron) and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers ( For example, Teijin's Technora). The para-aramid short fibers preferably contain one or two of these, more preferably contain copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers, and copolyparaphenylene- It is more preferable to mainly include short fibers of 3,4'-oxydiphenylene terephthalamide, and it is even more preferable that the short fibers of copolyparaphenylene-3,4'-oxydiphenylene terephthalamide are used alone.
 短繊維の繊維長は、好ましくは0.5.0mm以上5.0mm以下、より好ましくは1.0mm以上3.0mm以下である。短繊維の繊維径は、好ましくは5.0μm以上70μm以下、より好ましくは10μm以上50μm以下である。 The fiber length of the short fibers is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm. The fiber diameter of the short fiber is preferably 5.0 μm or more and 70 μm or less, more preferably 10 μm or more and 50 μm or less.
 実施形態に係るゴム組成物における短繊維の含有量(C)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは3質量部以上25質量部以下、より好ましくは5質量部以上20質量部以下である。実施形態に係るゴム組成物におけるCNFの含有量(A)と短繊維の含有量(C)との和(A+C)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは15質量部以上40質量部以下、より好ましくは25質量部以下である。実施形態に係るゴム組成物におけるCNFの含有量(A)とCBの含有量(B)と短繊維の含有量(C)との和(A+B+C)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは30質量部以上90質量部以下、より好ましくは60質量部以下、更に好ましくは40質量部以下である。 The content (C) of the short fiber in the rubber composition according to the embodiment is from the viewpoint of reducing the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppressing heat generation and obtaining excellent wear resistance. The amount is preferably 3 parts by mass or more and 25 parts by mass or less, more preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component. The sum (A + C) of the CNF content (A) and the short fiber content (C) in the rubber composition according to the embodiment reduces the difference in deformation due to temperature change in dynamic use. From the viewpoint of suppressing heat generation and obtaining excellent wear resistance, the amount is preferably 15 parts by weight or more and 40 parts by weight or less, more preferably 25 parts by weight or less with respect to 100 parts by weight of the rubber component. The sum (A + B + C) of the CNF content (A), the CB content (B), and the short fiber content (C) in the rubber composition according to the embodiment is the deformation due to temperature change in dynamic use. From the viewpoint of reducing the difference in size and suppressing heat generation and obtaining excellent wear resistance, it is preferably 30 parts by mass or more and 90 parts by mass or less, more preferably 60 parts by mass or less, with respect to 100 parts by mass of the rubber component. More preferably, it is 40 parts by mass or less.
 実施形態に係るゴム組成物におけるCNFの含有量(A)の短繊維の含有量(C)に対する比(A/C)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、好ましくは0.050以上1.3以下、より好ましくは0.40以下である。実施形態に係るゴム組成物におけるゴム成分100質量部に対するCNFの含有量(A)は、動的使用における温度変化に伴う変形の大きさの差を小さくすると共に発熱を抑制し且つ優れた耐摩耗性を得る観点から、短繊維の含有量(C)よりも少ないことが好ましい。 The ratio (A / C) of the CNF content (A) to the short fiber content (C) in the rubber composition according to the embodiment reduces the difference in deformation due to temperature change in dynamic use. In addition, from the viewpoint of suppressing heat generation and obtaining excellent wear resistance, it is preferably 0.050 or more and 1.3 or less, and more preferably 0.40 or less. The content (A) of CNF with respect to 100 parts by mass of the rubber component in the rubber composition according to the embodiment reduces the difference in the magnitude of deformation accompanying temperature change in dynamic use and suppresses heat generation and has excellent wear resistance. From the viewpoint of obtaining properties, the content is preferably less than the short fiber content (C).
 実施形態に係るゴム組成物を形成する未架橋ゴム組成物には、CR又はエチレン-α-オレフィンエラストマーの架橋剤が配合されている。CRの架橋剤としては、例えば、酸化亜鉛、酸化マグネシウム等の金属酸化物が挙げられる。架橋剤は、酸化亜鉛及び酸化マグネシウムを併用することが好ましい。酸化亜鉛の配合量は、ゴム成分100質量部に対して、好ましくは3質量部以上7質量部以下、より好ましくは4質量部以上6質量部以下である。酸化マグネシウムの配合量は、ゴム成分100質量部に対して、好ましくは3質量部以上7質量部以下、より好ましくは4質量部以上6質量部以下である。エチレン-α-オレフィンエラストマーの架橋剤としては、例えば、有機過酸化物及び硫黄が挙げられる。架橋剤は、有機過酸化物を用いてもよく、また、硫黄を用いてもよく、さらには、それらを併用してもよい。有機過酸化物又は硫黄の配合量は、ゴム成分100質量部に対して例えば1質量部以上5質量部以下である。 In the uncrosslinked rubber composition forming the rubber composition according to the embodiment, a crosslinking agent of CR or ethylene-α-olefin elastomer is blended. Examples of CR crosslinking agents include metal oxides such as zinc oxide and magnesium oxide. The cross-linking agent is preferably used in combination with zinc oxide and magnesium oxide. The compounding amount of zinc oxide is preferably 3 parts by mass or more and 7 parts by mass or less, more preferably 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component. The compounding amount of magnesium oxide is preferably 3 parts by mass or more and 7 parts by mass or less, and more preferably 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component. Examples of the crosslinking agent for the ethylene-α-olefin elastomer include organic peroxides and sulfur. As the crosslinking agent, an organic peroxide may be used, sulfur may be used, and furthermore, they may be used in combination. The compounding quantity of an organic peroxide or sulfur is 1 mass part or more and 5 mass parts or less with respect to 100 mass parts of rubber components.
 実施形態に係るゴム組成物は、その他に、可塑剤、加工助剤、加硫促進助剤、加硫促進剤等のゴム配合剤を含有していてもよい。 The rubber composition according to the embodiment may further contain rubber compounding agents such as a plasticizer, a processing aid, a vulcanization acceleration aid, and a vulcanization accelerator.
 実施形態に係るゴム組成物におけるJISK6253:2012に基づいてタイプAデュロメータを用いて測定されるゴム硬さは、好ましくはA80以上A95以下である。 The rubber hardness measured using a type A durometer based on JISK6253: 2012 in the rubber composition according to the embodiment is preferably A80 or more and A95 or less.
 実施形態に係るゴム組成物におけるJISK6251:2010に基づいて測定される列理方向の引張強さは、好ましくは20.0MPa以上35.0MPa以下、より好ましくは25.0MPa以上30.0MPa以下である。実施形態に係るゴム組成物におけるJISK6251:2010に基づいて測定される列理方向の切断時伸びは、好ましくは10%以上40%以下、より好ましくは15%以上30%以下である。 In the rubber composition according to the embodiment, the tensile strength measured in line with JISK6251: 2010 is preferably 20.0 MPa or more and 35.0 MPa or less, more preferably 25.0 MPa or more and 30.0 MPa or less. . In the rubber composition according to the embodiment, the elongation at break measured in accordance with JISK6251: 2010 is preferably 10% or more and 40% or less, more preferably 15% or more and 30% or less.
 実施形態に係るゴム組成物におけるJISK6394:2007に基づいて、動歪1.0%及び周波数10Hzとして測定される25℃での反列理方向の貯蔵たて弾性係数(E’)は、好ましくは10.0MPa以上70.0MPa以下、より好ましくは15.0MPa以上40.0MPa以下である。100℃での反列理方向の貯蔵たて弾性係数は、好ましくは10.0MPa以上55.0MPa以下、より好ましくは13.0MPa以上25.0MPa以下である。25℃での反列理方向の貯蔵たて弾性係数に対する100℃での反列理方向の貯蔵たて弾性係数の比は、好ましくは0.70以上、より好ましくは0.80以上、更に好ましくは0.90以上である。 Based on JISK6394: 2007 in the rubber composition according to the embodiment, the storage elastic modulus (E ′) in the reverse direction at 25 ° C. measured as a dynamic strain of 1.0% and a frequency of 10 Hz is preferably It is 10.0 MPa or more and 70.0 MPa or less, More preferably, it is 15.0 MPa or more and 40.0 MPa or less. The storage elastic modulus in the reverse direction at 100 ° C. is preferably 10.0 MPa or more and 55.0 MPa or less, more preferably 13.0 MPa or more and 25.0 MPa or less. The ratio of the warp elastic modulus in the anti-row direction at 100 ° C. to the warp elastic modulus at 25 ° C. is preferably 0.70 or more, more preferably 0.80 or more, and still more preferably Is 0.90 or more.
 実施形態に係るゴム組成物におけるJISK6394:2007に基づいて、動歪1.0%及び周波数10Hzとして測定される25℃での反列理方向の損失正接(tanδ)は、好ましくは0.17以下、より好ましくは0.10以下である。100℃での反列理方向の損失正接は、好ましくは0.13以下、より好ましくは0.080以下である。 Based on JISK6394: 2007 in the rubber composition according to the embodiment, the loss tangent (tan δ) in the reverse direction at 25 ° C. measured as a dynamic strain of 1.0% and a frequency of 10 Hz is preferably 0.17 or less. More preferably, it is 0.10 or less. The loss tangent in the reverse direction at 100 ° C. is preferably 0.13 or less, more preferably 0.080 or less.
 以上の構成の実施形態に係るゴム組成物は、CRをゴム成分の主体とする場合、CRラテックスにCNFを混合し、溶媒を除去することによりCRにCNFが分散したマスターバッチを作製し、そのマスターバッチに、或いは、そのマスターバッチにCR等のゴム成分を混練して希釈したものに、CBを含むゴム配合剤を配合して混練することにより未架橋ゴム組成物を得て、その未架橋ゴム組成物を加熱及び加圧してゴム成分を架橋させることにより得ることができる。また、エチレン-α-オレフィンエラストマーをゴム成分の主体とする場合には、疎水性CNFをトルエン等の溶剤に分散させた分散液と、エチレン-α-オレフィンエラストマーをトルエン等の溶剤に溶解させた溶液とを混合し、溶剤を除去することによりエチレン-α-オレフィンエラストマーにCNFが分散したマスターバッチを作製し、そのマスターバッチを用いればよい。 In the rubber composition according to the embodiment having the above-described configuration, when CR is mainly used as a rubber component, a master batch in which CNF is dispersed in CR is prepared by mixing CNF into CR latex and removing the solvent. An uncrosslinked rubber composition is obtained by mixing and kneading a rubber compounding agent containing CB with a master batch or a rubber component such as CR kneaded and diluted in the master batch. It can be obtained by crosslinking the rubber component by heating and pressurizing the rubber composition. When ethylene-α-olefin elastomer is mainly used as a rubber component, a dispersion in which hydrophobic CNF is dispersed in a solvent such as toluene and an ethylene-α-olefin elastomer are dissolved in a solvent such as toluene. A masterbatch in which CNF is dispersed in an ethylene-α-olefin elastomer is prepared by mixing with the solution and removing the solvent, and the masterbatch may be used.
 実施形態に係るゴム組成物は、動的使用における温度変化に伴う変形の大きさの差を小さいと共に発熱を抑制するができることから、伝動ベルト、特には変速ベルトのベルト本体の少なくとも一部を形成する材料として好適に用いることができる。 The rubber composition according to the embodiment forms at least a part of a belt body of a transmission belt, in particular, a transmission belt, because the difference in the magnitude of deformation due to temperature change in dynamic use can be reduced and heat generation can be suppressed. It can use suitably as a material to do.
 図1Aは、伝動ベルトの一例のシングルコグドVベルトB1を示す。このシングルコグドVベルトB1は、例えば小型スクーターや農業機械の変速ベルトとして用いられる。 FIG. 1A shows a single cogged V-belt B1 as an example of a transmission belt. The single cogged V-belt B1 is used as a transmission belt for a small scooter or an agricultural machine, for example.
 シングルコグドVベルトB1は、ベルト内周側の圧縮ゴム層11、ベルト外周側の伸張ゴム層12、及びそれらの間の接着ゴム層13が積層されて一体となって構成された断面形状が台形のゴム製のベルト本体10を有する。接着ゴム層13の厚さ方向の中間部には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線14が埋設されている。ベルト内周面を構成する圧縮ゴム層11の表面には内側補強布15が貼設されており、また、ベルト外周面を構成する伸張ゴム層12の表面には外側補強布16が貼設されている。そして、ベルト内周側にはベルト長さ方向に一定ピッチで内側コグ17が配設されている一方、ベルト外周側は平坦なベルト背面が構成されている。 The single cogged V-belt B1 has a trapezoidal cross-sectional shape in which a compression rubber layer 11 on the belt inner peripheral side, an extended rubber layer 12 on the belt outer peripheral side, and an adhesive rubber layer 13 therebetween are laminated and integrated. It has a rubber belt body 10. A core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 13 so as to form a spiral having a pitch in the belt width direction. An inner reinforcing cloth 15 is affixed to the surface of the compressed rubber layer 11 constituting the inner peripheral surface of the belt, and an outer reinforcing cloth 16 is affixed to the surface of the stretched rubber layer 12 constituting the outer peripheral surface of the belt. ing. An inner cog 17 is disposed at a constant pitch in the belt length direction on the belt inner peripheral side, while a flat belt back surface is formed on the belt outer peripheral side.
 図1Bは、伝動ベルトの他の一例のダブルコグドVベルトB2を示す。このダブルコグドVベルトB2は、例えば大型バギーや大型スクーターの変速ベルトとして用いられる。 FIG. 1B shows a double cogged V-belt B2 as another example of a transmission belt. This double cogged V-belt B2 is used, for example, as a transmission belt for a large buggy or a large scooter.
 ダブルコグドVベルトB2は、シングルコグドVベルトB1と同様、圧縮ゴム層11、伸張ゴム層12、及び接着ゴム層13で構成されたベルト本体10、接着ゴム層13に埋設された心線14、並びにベルト内周面に貼設された内側補強布15及びベルト外周面に貼設された外側補強布16を有する。そして、ベルト内周側及びベルト外周側には、ベルト長さ方向に一定ピッチでそれぞれ内側コグ17及び外側コグ18が配設されている。 Similar to the single cogged V-belt B1, the double cogged V-belt B2 includes a belt body 10 composed of a compression rubber layer 11, an extended rubber layer 12, and an adhesive rubber layer 13, a core wire 14 embedded in the adhesive rubber layer 13, and a belt. It has the inner side reinforcement cloth 15 stuck on the inner peripheral surface and the outer side reinforcement cloth 16 stuck on the outer peripheral surface of the belt. An inner cog 17 and an outer cog 18 are disposed at a constant pitch in the belt length direction on the belt inner peripheral side and the belt outer peripheral side, respectively.
 これらのシングルコグドVベルトB1及びダブルコグドベルトB2において、ベルト本体10の少なくとも一部、特に圧縮ゴム層11が実施形態に係るゴム組成物で形成されていることが好ましい。 In these single cogged V-belt B1 and double cogged belt B2, it is preferable that at least a part of the belt main body 10, particularly the compressed rubber layer 11, is formed of the rubber composition according to the embodiment.
 変速用途に用いられるシングルコグドVベルトB1及びダブルコグドベルトB2では、プーリへの巻き掛かり径が変動しつつ激しく屈曲される。このとき、屈曲による発熱が生じるが、昇温に伴ってベルトの変形が大きくなると、安定した変速動作を維持することが困難であり、また、発熱自体が大きいと、それがエネルギーロスとなるため、動力伝達効率の低下を招くことになる。しかしながら、実施形態に係るゴム組成物を用いたシングルコグドVベルトB1及びダブルコグドベルトB2では、屈曲のような動的使用において、温度変化に伴う変形の大きさの差が小さいので、安定した変速動作を維持することができ、且つ発熱が抑制されるので、動力伝達効率の低下を小さく抑えることができる。また、シングルコグドVベルトB1及びダブルコグドベルトB2のような摩擦伝動ベルトでは高い耐摩耗性が求められるが、実施形態に係るゴム組成物を用いれば、優れた耐摩耗性をも得ることができる。 In the single cogged V-belt B1 and double cogged belt B2 used for speed change applications, the winding diameter on the pulley is fluctuated and violently bent. At this time, heat is generated by bending, but if the deformation of the belt increases as the temperature rises, it is difficult to maintain a stable speed change operation, and if the heat generation itself is large, it causes energy loss. This leads to a decrease in power transmission efficiency. However, in the single cogged V belt B1 and the double cogged belt B2 using the rubber composition according to the embodiment, since the difference in deformation due to a temperature change is small in dynamic use such as bending, a stable speed change operation is achieved. Since it can maintain and heat generation is suppressed, the fall of power transmission efficiency can be suppressed small. In addition, high wear resistance is required for the friction transmission belts such as the single cogged V belt B1 and the double cogged belt B2, but if the rubber composition according to the embodiment is used, excellent wear resistance can be obtained.
 なお、上記実施形態では、ベルト本体の少なくとも一部が実施形態に係るゴム組成物で形成された伝動ベルトとして、シングルコグドVベルトB1及びダブルコグドベルトB2を示したが、特にこれに限定されるものではなく、平ベルト、Vベルト、Vリブドベルト、歯付ベルト等であってもよい。また、実施形態に係るゴム組成物は、伝動ベルトに限定されず、例えばタイヤやホース等のゴム製品にも用いることができる。 In the above embodiment, the single cogged V belt B1 and the double cogged belt B2 are shown as the transmission belt in which at least a part of the belt main body is formed of the rubber composition according to the embodiment. However, the belt is not particularly limited to this. Alternatively, a flat belt, V belt, V-ribbed belt, toothed belt, or the like may be used. Further, the rubber composition according to the embodiment is not limited to the transmission belt, and can be used for rubber products such as tires and hoses.
 (ゴム組成物)
 実施例1~15及び比較例1~3のゴム組成物を作製した。それらの構成については表1A及びBにも示す。
(Rubber composition)
Rubber compositions of Examples 1 to 15 and Comparative Examples 1 to 3 were prepared. Their configurations are also shown in Tables 1A and B.
 <実施例1>
 硫黄変性CRラテックス(東ソー社製)に、その中のゴム成分の硫黄変性CR100質量部に対してTEMPO酸化CNF(繊維径3nm乃至4nm)10質量部を混合し、溶媒を除去することにより硫黄変性CRにTEMPO酸化CNFが分散したマスターバッチを作製した。そして、このマスターバッチに、ゴム成分の硫黄変性CR100質量部に対して、FEF(シーストSO 東海カーボン社製)22質量部、パラ系アラミド短繊維(テクノーラ 帝人社製、繊維長3.0mm及び繊維径約12μm)16質量部、可塑剤5質量部、ステアリン酸1質量部、酸化亜鉛5質量部、及び酸化マグネシウム5質量部を配合して混練することにより未架橋ゴム組成物を得て、その未架橋ゴム組成物を加熱及び加圧してゴム成分を架橋させたゴム組成物を実施例1とした。
<Example 1>
The sulfur-modified CR latex (manufactured by Tosoh Corporation) is mixed with 10 parts by mass of TEMPO-oxidized CNF (fiber diameter 3 nm to 4 nm) with respect to 100 parts by mass of the sulfur-modified CR of the rubber component therein, and the solvent is removed to remove sulfur. A master batch in which TEMPO-oxidized CNF was dispersed in CR was prepared. And in this masterbatch, with respect to 100 parts by mass of sulfur-modified CR of the rubber component, 22 parts by mass of FEF (manufactured by Seast SO Tokai Carbon Co.), para-aramid short fibers (manufactured by Technora Teijin Ltd., fiber length of 3.0 mm and fibers) An uncrosslinked rubber composition was obtained by blending and kneading 16 parts by mass), 5 parts by mass of plasticizer, 1 part by mass of stearic acid, 5 parts by mass of zinc oxide, and 5 parts by mass of magnesium oxide. A rubber composition obtained by crosslinking the rubber component by heating and pressurizing the uncrosslinked rubber composition was referred to as Example 1.
 <実施例2>
 TEMPO酸化CNFの配合量をゴム成分100質量部に対して1質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例2とした。
<Example 2>
A rubber composition having the same configuration as that of Example 1 was used in Example 2, except that the amount of TEMPO-oxidized CNF was 1 part by mass with respect to 100 parts by mass of the rubber component.
 <実施例3>
 TEMPO酸化CNFの配合量をゴム成分100質量部に対して5質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例3とした。
<Example 3>
A rubber composition having the same configuration as that of Example 1 was obtained as Example 3 except that the amount of TEMPO-oxidized CNF was 5 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4>
 TEMPO酸化CNFの配合量をゴム成分100質量部に対して20質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例4とした。
<Example 4>
A rubber composition having the same configuration as that of Example 1 was used in Example 4 except that the amount of TEMPO-oxidized CNF was 20 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例5>
 硫黄変性CRラテックスに代えてメルカプタン変性CRラテックス(B-30 東ソー社製)を用いたことを除いて実施例1と同一構成のゴム組成物を実施例5とした。
<Example 5>
A rubber composition having the same structure as Example 1 was used in Example 5 except that mercaptan-modified CR latex (B-30 manufactured by Tosoh Corporation) was used instead of sulfur-modified CR latex.
 <実施例6>
 FEFの配合量をゴム成分100質量部に対して5質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例6とした。
<Example 6>
A rubber composition having the same configuration as that of Example 1 was determined as Example 6 except that the amount of FEF was 5 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例7>
 FEFの配合量をゴム成分100質量部に対して10質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例7とした。
<Example 7>
A rubber composition having the same configuration as that of Example 1 was used in Example 7 except that the amount of FEF was 10 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例8>
 FEFの配合量をゴム成分100質量部に対して40質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例8とした。
<Example 8>
A rubber composition having the same configuration as that of Example 1 was used in Example 8 except that the amount of FEF was 40 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例9>
 FEFの配合量をゴム成分100質量部に対して60質量部としたことを除いて実施例1と同一構成のゴム組成物を実施例9とした。
<Example 9>
A rubber composition having the same configuration as that of Example 1 was used in Example 9, except that the amount of FEF was 60 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例10>
 FEFに代えてISAF(シースト600 東海カーボン社製)を配合したことを除いて実施例1と同一構成のゴム組成物を実施例10とした。
<Example 10>
A rubber composition having the same configuration as that of Example 1 was used in Example 10 except that ISAF (Seat 600 manufactured by Tokai Carbon Co., Ltd.) was used instead of FEF.
 <実施例11>
 FEFに代えてSRF(シースト9 東海カーボン社製)を配合したことを除いて実施例1と同一構成のゴム組成物を実施例11とした。
<Example 11>
A rubber composition having the same structure as that of Example 1 was used in Example 11 except that SRF (Seast 9 manufactured by Tokai Carbon Co., Ltd.) was used instead of FEF.
 <実施例12>
 TEMPO酸化CNFに代えて機械解繊CNF(繊維径数十~数百nm)を配合したことを除いて実施例1と同一構成のゴム組成物を実施例12とした。
<Example 12>
A rubber composition having the same structure as that of Example 1 was used in Example 12 except that mechanical defibrated CNF (fiber diameter of several tens to several hundreds of nm) was blended in place of TEMPO-oxidized CNF.
 <実施例13>
 -TEMPO触媒酸化-ソフトブリーチクラフトパルプを塩酸及びイオン交換水で十分に洗浄した後、イオン交換水と混合し、それに2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル(TEMPO)及びNaBrを添加して撹拌した。次いで、そのパルプ混合液に次亜塩素酸ナトリウム水溶液を加え、pH調整して撹拌を継続した。そして、得られたパルプ混合液を濾過し、濾物をイオン交換水で十分に洗浄した。このTEMPO触媒酸化処理により、パルプに含まれるセルロース分子中のC6位の水酸基を選択的にカルボキシル基に酸化した。
<Example 13>
-TEMPO catalyzed oxidation-soft bleached kraft pulp thoroughly washed with hydrochloric acid and ion-exchanged water, then mixed with ion-exchanged water, and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and NaBr was added and stirred. Next, an aqueous sodium hypochlorite solution was added to the pulp mixture, pH was adjusted, and stirring was continued. And the obtained pulp liquid mixture was filtered, and the residue was fully wash | cleaned with ion-exchange water. By this TEMPO catalytic oxidation treatment, the hydroxyl group at the C6 position in the cellulose molecule contained in the pulp was selectively oxidized to a carboxyl group.
 -プロトン化-得られたTEMPO触媒酸化したパルプをイオン交換水と混合して撹拌した。次いで、そのパルプ混合液に塩酸を滴下した。そして、得られたパルプ混合液を濾過し、濾物をイオン交換水で十分に洗浄した。このプロトン化処理により、TEMPO触媒酸化により導入したカルボキシル基をプロトン化した。 -Protonation-The obtained TEMPO catalyst oxidized pulp was mixed with ion-exchanged water and stirred. Next, hydrochloric acid was added dropwise to the pulp mixture. And the obtained pulp liquid mixture was filtered, and the residue was fully wash | cleaned with ion-exchange water. By this protonation treatment, the carboxyl group introduced by TEMPO catalytic oxidation was protonated.
 -アミン化-得られたプロトン化したパルプをイオン交換水と混合して撹拌した。次いで、そのパルプ混合液にヘキサデシルトリメチルアンモニウムヒドロキシド水溶液を滴下した。そして、得られたパルプ混合液を濾過し、濾物をイオン交換水で十分に洗浄した後に乾燥させた。このアミン化処理により、TEMPO触媒酸化により導入し且つプロトン化処理によりプロトン化したカルボキシル基をヘキサデシルトリメチルアンモニウムヒドロキシドで中和して塩を形成し、つまり、第4級アンモニウム化合物のヘキサデシルトリメチルアンモニウムヒドロキシドによりアミン化した。 -Amination-The protonated pulp obtained was mixed with ion-exchanged water and stirred. Subsequently, the hexadecyl trimethyl ammonium hydroxide aqueous solution was dripped at the pulp liquid mixture. And the obtained pulp liquid mixture was filtered, and it dried, after washing | cleaning the residue sufficiently with ion-exchange water. By this amination treatment, a carboxyl group introduced by TEMPO catalytic oxidation and protonated by protonation treatment is neutralized with hexadecyltrimethylammonium hydroxide to form a salt, that is, hexadecyltrimethyl of a quaternary ammonium compound. Aminated with ammonium hydroxide.
 -解繊-乾燥させたパルプをトルエンに添加してビーズミルで分散させた後、ジェットミル(常光社製)を用いて、得られた分散液に含まれるパルプを解繊させた。この解繊処理により、第4級アンモニウム化合物のヘキサデシルトリメチルアンモニウムヒドロキシドでアミン化された疎水化CNF(繊維径3nm乃至4nm)がトルエンに分散した分散液を調製した。 -Defibration-After the dried pulp was added to toluene and dispersed with a bead mill, the pulp contained in the obtained dispersion was defibrated using a jet mill (manufactured by Joko). By this defibrating treatment, a dispersion was prepared in which hydrophobic CNF (fiber diameter 3 nm to 4 nm) aminated with hexadecyltrimethylammonium hydroxide, a quaternary ammonium compound, was dispersed in toluene.
 この得られた疎水性CNFをトルエンに分散させた分散液と、EPDM(EP33 JSR社製、エチレン含量:52質量%、ENB含量:8.1質量%)のトルエン溶液とを、ゴム成分のEPDM100質量部に対する疎水化CNFの含有量が5質量部となるように混合し、トルエンを除去することによりEPDMに疎水化CNFが分散したマスターバッチを作製した。そして、このマスターバッチに、ゴム成分のEPDM100質量部に対して、FEF50質量部、パラ系アラミド短繊維16質量部、可塑剤5質量部、ステアリン酸1質量部、酸化亜鉛5質量部、共架橋剤(精工化学社製 ハイクロスM)10質量部、有機過酸化物架橋剤(パークミルD 日本油脂社製)6質量部を配合して混練することにより未架橋ゴム組成物を得て、その未架橋ゴム組成物を加熱及び加圧してゴム成分を架橋させたゴム組成物を実施例13とした。 A dispersion obtained by dispersing the hydrophobic CNF thus obtained in toluene and a toluene solution of EPDM (EP33, manufactured by JSR Corporation, ethylene content: 52% by mass, ENB content: 8.1% by mass) are used as EPDM100 as a rubber component. Mixing was performed so that the content of hydrophobized CNF relative to 5 parts by mass was 5 parts by mass, and toluene was removed to prepare a master batch in which hydrophobized CNF was dispersed in EPDM. And in this master batch, 50 parts by mass of FEF, 16 parts by mass of para-aramid short fiber, 5 parts by mass of plasticizer, 1 part by mass of stearic acid, 5 parts by mass of zinc oxide, co-crosslinking with respect to 100 parts by mass of EPDM of rubber component An uncrosslinked rubber composition was obtained by blending and kneading 10 parts by weight of an agent (Seiko Chemical Co., Ltd. High Cloth M) and 6 parts by weight of an organic peroxide crosslinking agent (Park Mill D, manufactured by Nippon Oil & Fats Co., Ltd.). A rubber composition obtained by heating and pressurizing the crosslinked rubber composition to crosslink the rubber component was designated as Example 13.
 <実施例14>
 疎水化CNFの配合量及びFEFの配合量を、それぞれゴム成分100質量部に対して10質量部及び35質量部としたことを除いて実施例13と同一構成のゴム組成物を実施例14とした。
<Example 14>
A rubber composition having the same configuration as that of Example 13 except that the blending amount of hydrophobic CNF and the blending amount of FEF were 10 parts by mass and 35 parts by mass with respect to 100 parts by mass of the rubber component, respectively. did.
 <実施例15>
 疎水化CNFの配合量及びFEFの配合量を、それぞれゴム成分100質量部に対して20質量部及び15質量部としたことを除いて実施例13と同一構成のゴム組成物を実施例15とした。
<Example 15>
A rubber composition having the same configuration as Example 13 except that the blending amount of hydrophobic CNF and the blending amount of FEF were 20 parts by mass and 15 parts by mass with respect to 100 parts by mass of the rubber component, respectively. did.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <比較例1>
 硫黄変性CRラテックスに代えて水素化ニトリルゴムラテックス(ZLX-B 日本ゼオン社製)を用いると共に、有機過酸化物架橋剤をゴム成分100質量部に対して3質量部配合したことを除いて実施例1と同一構成のゴム組成物を比較例1とした。
<Comparative Example 1>
Implemented except that hydrogenated nitrile rubber latex (ZLX-B manufactured by Nippon Zeon Co., Ltd.) was used instead of sulfur-modified CR latex, and 3 parts by weight of organic peroxide crosslinking agent was blended with respect to 100 parts by weight of rubber component. A rubber composition having the same configuration as in Example 1 was referred to as Comparative Example 1.
 <比較例2>
 硫黄変性CRラテックスに代えてスチレンブタジエンゴムラテックス(J-9049 JSR社製)を用いると共に、有機過酸化物架橋剤をゴム成分100質量部に対して0.3質量部配合したことを除いて実施例1と同一構成のゴム組成物を比較例2とした。
<Comparative example 2>
Implemented except that styrene butadiene rubber latex (manufactured by J-9049 JSR) was used instead of sulfur-modified CR latex and that 0.3 parts by weight of organic peroxide crosslinking agent was blended with respect to 100 parts by weight of rubber component. A rubber composition having the same configuration as in Example 1 was referred to as Comparative Example 2.
 <比較例3>
 FEFを配合していないことを除いて実施例1と同一構成のゴム組成物を比較例3とした。
<Comparative Example 3>
A rubber composition having the same configuration as that of Example 1 except that FEF was not blended was designated as Comparative Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (試験方法)
 <ゴム硬さ>
 実施例1~15及び比較例1~3のそれぞれについて、JISK6253:2012に基づいて、タイプAデュロメータを用いてゴム硬さを測定した。
(Test method)
<Rubber hardness>
For each of Examples 1 to 15 and Comparative Examples 1 to 3, rubber hardness was measured using a type A durometer based on JIS K6253: 2012.
 <引張特性>
 実施例1~15及び比較例1~3のそれぞれについて、JISK6251:2010に基づいて、列理方向の引張強さ及び切断時伸びを測定した。
<Tensile properties>
For each of Examples 1 to 15 and Comparative Examples 1 to 3, the tensile strength and the elongation at break were measured in the line direction based on JISK6251: 2010.
 <粘弾性特性>
 実施例1~15及び比較例1~3のそれぞれについて、JISK6394:2007に基づいて、25℃及び100℃における反列理方向の貯蔵たて弾性係数(E’)及び損失正接(tanδ)を測定した。測定条件は、動歪1.0%及び周波数10Hzとした。また、25℃における貯蔵たて弾性係数に対する100℃における貯蔵たて弾性係数の比を算出した。
<Viscoelastic properties>
For each of Examples 1 to 15 and Comparative Examples 1 to 3, the storage elastic modulus (E ′) and loss tangent (tan δ) in the anti-reverse direction at 25 ° C. and 100 ° C. were measured based on JISK6394: 2007. did. The measurement conditions were a dynamic strain of 1.0% and a frequency of 10 Hz. Further, the ratio of the freshly stored elastic modulus at 100 ° C to the freshly stored elastic modulus at 25 ° C was calculated.
 <ベルト特性>
 実施例1~15及び比較例1~3のそれぞれを反列理方向がベルト長さ方向となるようにベルト本体の圧縮ゴム層を形成するゴム組成物として用いた図1Aに示すのと同様の構成のシングルコグドVベルトB1を作製した。
<Belt characteristics>
Each of Examples 1 to 15 and Comparative Examples 1 to 3 was used as a rubber composition for forming a compressed rubber layer of the belt body so that the reverse direction is the belt length direction. A single cogged V-belt B1 having a configuration was produced.
 -耐クラック性-
 図2は、耐クラック性評価用のベルト走行試験機20を示す。
-Crack resistance-
FIG. 2 shows a belt running test machine 20 for evaluating crack resistance.
 このベルト走行試験機20は、プーリ径φ40mmの駆動プーリ21とその右側方に設けられたプーリ径40mmの従動プーリ22とを備える。従動プーリ22は、軸荷重(デッドウェイトDW)を負荷できるように左右に可動に設けられている。 The belt running test machine 20 includes a drive pulley 21 having a pulley diameter of 40 mm and a driven pulley 22 having a pulley diameter of 40 mm provided on the right side thereof. The driven pulley 22 is movably provided to the left and right so that an axial load (dead weight DW) can be applied.
 実施例1~15及び比較例1~3のそれぞれを用いたシングルコグドVベルトB1について、ベルト走行試験機20の駆動プーリ21及び従動プーリ22間に巻き掛けると共に、従動プーリ22に対して右側方に600Nの軸荷重を負荷してベルト張力を与え、100℃の雰囲気温度下において駆動プーリ21を3000rpmの回転数で回転させてベルト走行させた。そして、定期的にベルト走行を停止してクラックの発生の有無を目視確認した。クラックの発生が確認されるまでのベルト走行時間を耐クラック寿命とした。なお、ベルト走行時間の最長を240時間とした。 The single cogged V-belt B1 using each of Examples 1 to 15 and Comparative Examples 1 to 3 is wound between the drive pulley 21 and the driven pulley 22 of the belt running test machine 20 and is moved to the right side with respect to the driven pulley 22. A belt tension was applied by applying an axial load of 600 N, and the driving pulley 21 was rotated at a rotational speed of 3000 rpm under an ambient temperature of 100 ° C. to run the belt. Then, the belt running was periodically stopped to visually check for the occurrence of cracks. The belt running time until the occurrence of cracks was confirmed was defined as the crack life. The maximum belt running time was 240 hours.
 -耐摩耗性・ベルト温度―
 図3は、耐摩耗性評価用のベルト走行試験機30を示す。
-Wear resistance and belt temperature-
FIG. 3 shows a belt running test machine 30 for evaluating wear resistance.
 このベルト走行試験機30は、プーリ径φ60mmの駆動プーリ31とその左側方に設けられたプーリ径100mmの従動プーリ32とを備える。従動プーリ32は、軸荷重(デッドウェイトDW)を負荷できるように左右に可動に設けられている。 The belt running test machine 30 includes a driving pulley 31 having a pulley diameter of φ60 mm and a driven pulley 32 having a pulley diameter of 100 mm provided on the left side thereof. The driven pulley 32 is movably provided to the left and right so that an axial load (dead weight DW) can be applied.
 実施例1~15及び比較例1~3のそれぞれを用いたシングルコグドVベルトB1について、ベルト質量を測定した後、ベルト走行試験機30の駆動プーリ31及び従動プーリ32間に巻き掛けると共に、従動プーリ32に対して左側方に700Nの軸荷重を負荷してベルト張力を与え、且つ従動プーリ32に10N・mの回転負荷を与え、50℃の雰囲気温度下において駆動プーリ31を4200rpmの回転数で回転させて200時間ベルト走行させた。そして、非接触型温度計を用いてベルト走行時のベルト背面の最高温度をベルト温度として記録した。また、ベルト走行後に再びベルト質量を測定した。ベルト走行前のベルト質量からベルト走行後のベルト質量を減じ、それをベルト走行前のベルト質量で除した百分率をベルト摩耗率として算出し、実施例1のベルト摩耗率を100として摩耗指数を算出した。 For the single cogged V-belt B1 using each of Examples 1 to 15 and Comparative Examples 1 to 3, after measuring the belt mass, the belt is wound between the driving pulley 31 and the driven pulley 32 of the belt running test machine 30, and the driven pulley A belt load is applied by applying a shaft load of 700 N to the left side of the belt 32, a rotational load of 10 N · m is applied to the driven pulley 32, and the drive pulley 31 is rotated at a rotational speed of 4200 rpm at an ambient temperature of 50 ° C. The belt was rotated for 200 hours. The maximum temperature on the back of the belt during belt running was recorded as the belt temperature using a non-contact type thermometer. Further, the belt mass was measured again after running the belt. The belt mass after subtracting the belt mass from the belt mass before running the belt and dividing it by the belt mass before running the belt is calculated as the belt wear rate, and the wear index is calculated using the belt wear rate of Example 1 as 100. did.
 (試験結果)
 表2A及びBは試験結果を示す。
(Test results)
Tables 2A and B show the test results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2A及びBによれば、CR又はEPDMに所定量のCNF及びFEFを配合した実施例1~15では、反列理方向の25℃における貯蔵たて弾性係数に対する100℃における貯蔵たて弾性係数の比が0.75以上と高いので、貯蔵たて弾性係数の温度依存性が小さく、従って、温度変化に伴う変形の大きさの差が小さいことが予想され、且つ25℃の損失正接が0.16以下並びに100℃の損失正接が0.13以下と低く、従って、動的使用における発熱が小さいことが予想される。また、ベルト特性では、耐クラック寿命が86.4時間以上と長く且つ実施例6、7、及び11~15を除いて摩耗指数が100以下と低いことが分かる。更に、ベルト走行時のベルト温度が100℃以下と低く、従って、発熱が小さいことが分かる。 According to Tables 2A and B, in Examples 1 to 15 in which predetermined amounts of CNF and FEF were blended with CR or EPDM, the storage elastic modulus at 100 ° C. with respect to the storage elastic modulus at 25 ° C. in the reverse direction. The ratio of the elastic modulus is as high as 0.75 or more, so that the temperature dependence of the freshly stored elastic modulus is small. Therefore, it is expected that the difference in the magnitude of deformation with temperature change is small, and the loss tangent at 25 ° C. is 0. .16 or less and the loss tangent at 100 ° C. is as low as 0.13 or less, and therefore heat generation in dynamic use is expected to be small. Further, in the belt characteristics, it can be seen that the crack-resistant life is as long as 86.4 hours or longer, and the wear index is as low as 100 or less except in Examples 6, 7, and 11 to 15. Furthermore, it can be seen that the belt temperature during belt running is as low as 100 ° C. or less, and therefore heat generation is small.
 一方、ゴム成分を水素化ニトリルゴムとした比較例1及びゴム成分をスチレンブタジエンゴムとした比較例2では、反列理方向の25℃における貯蔵たて弾性係数に対する100℃における貯蔵たて弾性係数の比がいずれも0.60と低いので、貯蔵たて弾性係数の温度依存性が大きく、従って、温度変化に伴う変形の大きさの差が大きいことが予想され、且つ25℃の損失正接がいずれも0.18並びに100℃の損失正接がそれぞれ0.14及び0.15と高く、従って、動的使用における発熱が大きいことが予想される。また、ベルト特性では、耐クラック寿命がそれぞれ42時間及び31時間と短く且つ摩耗指数が103及び195と高いことが分かる。更に、ベルト走行時のベルト温度がそれぞれ102℃及び104℃と高い、従って、発熱が大きいことが分かる。 On the other hand, in Comparative Example 1 in which the rubber component is hydrogenated nitrile rubber and Comparative Example 2 in which the rubber component is styrene butadiene rubber, the storage elastic modulus at 100 ° C. relative to the storage elastic modulus at 25 ° C. in the reverse direction. The ratios of the two are low at 0.60, so the temperature dependence of the freshly stored elastic modulus is large, and therefore, it is expected that the difference in the magnitude of deformation with temperature change is large, and the loss tangent at 25 ° C. In both cases, the loss tangent at 0.18 and 100 ° C. is as high as 0.14 and 0.15, respectively. Further, in the belt characteristics, it can be seen that the crack resistance life is as short as 42 hours and 31 hours, respectively, and the wear index is as high as 103 and 195. Further, it can be seen that the belt temperatures during the belt running are as high as 102 ° C. and 104 ° C., respectively, and thus the heat generation is large.
 FEFを配合していない比較例3では、反列理方向の25℃における貯蔵たて弾性係数に対する100℃における貯蔵たて弾性係数の比が0.71と実施例1~15に比べるとやや低い程度であり、また、25℃及び100℃の損失正接がそれぞれ0.069及び0.049と低く、従って、動的使用における発熱が小さいことが予想され、更に、ベルト特性については、耐クラック寿命が82.4時間と実施例1~15よりもやや短い程度であり、また、ベルト走行時のベルト温度が84℃と実施例1~15と同等レベルであることが分かる。しかしながら、摩耗指数が205と著しく高いことが分かる。 In Comparative Example 3 in which no FEF was blended, the ratio of the fresh elastic modulus at 100 ° C. to the fresh elastic modulus at 25 ° C. in the reverse direction was 0.71, which is slightly lower than those in Examples 1 to 15. In addition, the loss tangent at 25 ° C. and 100 ° C. is as low as 0.069 and 0.049, respectively. Therefore, it is expected that the heat generation in dynamic use is small. Is 82.4 hours, which is slightly shorter than Examples 1 to 15, and the belt temperature during belt running is 84 ° C., which is the same level as in Examples 1 to 15. However, it can be seen that the wear index is as high as 205.
 本発明は、ゴム組成物及びそれを用いた伝動ベルトの技術分野について有用である。 The present invention is useful in the technical field of rubber compositions and transmission belts using the rubber compositions.
B1 シングルコグドVベルト
B2 ダブルコグドVベルト
10 ベルト本体
11 圧縮ゴム層
12 伸張ゴム層
13 接着ゴム層
14 心線
15 内側補強布
16 外側補強布
17 内側コグ
18 外側コグ
20,30 ベルト走行試験機
21,31 駆動プーリ
22,32 従動プーリ
B1 Single cogged V-belt B2 Double cogged V-belt 10 Belt body 11 Compression rubber layer 12 Stretch rubber layer 13 Adhesive rubber layer 14 Core wire 15 Inner reinforcing cloth 16 Outer reinforcing cloth 17 Inner cog 18 Outer cogs 20, 30 Belt running test machines 21, 31 Drive pulley 22, 32 Drive pulley

Claims (15)

  1.  クロロプレンゴム又はエチレン-α-オレフィンエラストマーを主体とするゴム成分に、セルロースナノファイバ及びカーボンブラックが分散したゴム組成物であって、
     前記セルロースナノファイバの含有量が前記ゴム成分100質量部に対して1質量部以上20質量部以下であり、且つ前記カーボンブラックの含有量が前記ゴム成分100質量部に対して5質量部以上60質量部以下であるゴム組成物。
    A rubber composition in which cellulose nanofibers and carbon black are dispersed in a rubber component mainly composed of chloroprene rubber or ethylene-α-olefin elastomer,
    The cellulose nanofiber content is 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and the carbon black content is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component. A rubber composition having a mass part or less.
  2.  請求項1に記載されたゴム組成物において、
     前記ゴム成分の主体が硫黄変性クロロプレンゴムであるゴム組成物。
    The rubber composition according to claim 1, wherein
    A rubber composition wherein the main component of the rubber component is sulfur-modified chloroprene rubber.
  3.  請求項1に記載されたゴム組成物において、
     前記ゴム成分の主体がエチレン・プロピレン・ジエンターポリマーであるゴム組成物。
    The rubber composition according to claim 1, wherein
    A rubber composition in which a main component of the rubber component is an ethylene / propylene / diene terpolymer.
  4.  請求項1乃至3のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバがTEMPO酸化セルロースナノファイバを含むゴム組成物。
    The rubber composition according to any one of claims 1 to 3,
    A rubber composition in which the cellulose nanofibers include TEMPO-oxidized cellulose nanofibers.
  5.  請求項1乃至4のいずれかに記載されたゴム組成物において、
     前記カーボンブラックがFEFを含むゴム組成物。
    In the rubber composition according to any one of claims 1 to 4,
    A rubber composition in which the carbon black contains FEF.
  6.  請求項1乃至5のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量と前記カーボンブラックの含有量との和が、前記ゴム成分100質量部に対して15質量部以上70質量部以下であるゴム組成物。
    The rubber composition according to any one of claims 1 to 5,
    The rubber composition whose sum of content of the said cellulose nanofiber and content of the said carbon black is 15 mass parts or more and 70 mass parts or less with respect to 100 mass parts of said rubber components.
  7.  請求項1乃至6のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量の前記カーボンブラックの含有量に対する比が0.050以上2.0以下であるゴム組成物。
    In the rubber composition according to any one of claims 1 to 6,
    The rubber composition whose ratio with respect to content of the said carbon black of content of the said cellulose nanofiber is 0.050 or more and 2.0 or less.
  8.  請求項1乃至7のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量が前記カーボンブラックの含有量よりも少ないゴム組成物。
    The rubber composition according to any one of claims 1 to 7,
    A rubber composition having a cellulose nanofiber content less than the carbon black content.
  9.  請求項1乃至8のいずれかに記載されたゴム組成物において、
     短繊維が更に分散して含有されたゴム組成物。
    The rubber composition according to any one of claims 1 to 8,
    A rubber composition in which short fibers are further dispersed.
  10.  請求項9に記載されたゴム組成物において、
     前記短繊維がパラ系アラミド短繊維を含むゴム組成物。
    The rubber composition according to claim 9, wherein
    A rubber composition in which the short fibers include para-aramid short fibers.
  11.  請求項9又は10に記載されたゴム組成物において、
     前記セルロースナノファイバの含有量と前記短繊維の含有量との和が、前記ゴム成分100質量部に対して15質量部以上40質量部以下であるゴム組成物。
    In the rubber composition according to claim 9 or 10,
    The rubber composition whose sum of content of the said cellulose nanofiber and content of the said short fiber is 15 to 40 mass parts with respect to 100 mass parts of said rubber components.
  12.  請求項9乃至11のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量と前記カーボンブラックの含有量と前記短繊維の含有量との和が、前記ゴム成分100質量部に対して30質量部以上90質量部以下であるゴム組成物。
    The rubber composition according to any one of claims 9 to 11,
    The rubber composition whose sum of content of the said cellulose nanofiber, content of the said carbon black, and content of the said short fiber is 30 to 90 mass parts with respect to 100 mass parts of said rubber components.
  13.  請求項9乃至12のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量の前記短繊維の含有量に対する比が0.050以上1.3以下であるゴム組成物。
    The rubber composition according to any one of claims 9 to 12,
    The rubber composition whose ratio with respect to content of the said short fiber of content of the said cellulose nanofiber is 0.050 or more and 1.3 or less.
  14.  請求項9乃至13のいずれかに記載されたゴム組成物において、
     前記セルロースナノファイバの含有量が前記短繊維の含有量よりも少ないゴム組成物。
    The rubber composition according to any one of claims 9 to 13,
    A rubber composition in which the content of the cellulose nanofiber is less than the content of the short fiber.
  15.  ベルト本体の少なくとも一部が請求項1乃至14のいずれかに記載されたゴム組成物で形成された伝動ベルト。 A transmission belt in which at least a part of the belt body is formed of the rubber composition according to any one of claims 1 to 14.
PCT/JP2017/032093 2016-09-26 2017-09-06 Rubber composition and transmission belt using same WO2018056055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548082A JP6271823B1 (en) 2016-09-26 2017-09-06 Rubber composition and power transmission belt using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187562 2016-09-26
JP2016187562 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056055A1 true WO2018056055A1 (en) 2018-03-29

Family

ID=61689962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032093 WO2018056055A1 (en) 2016-09-26 2017-09-06 Rubber composition and transmission belt using same

Country Status (2)

Country Link
TW (1) TWI738877B (en)
WO (1) WO2018056055A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075996A (en) * 2018-11-07 2020-05-21 バンドー化学株式会社 Rubber composition for transmission belt, method for producing the same and transmission belt using the same
WO2020246187A1 (en) * 2019-06-07 2020-12-10 バンドー化学株式会社 Raw edge v-belt
WO2021100608A1 (en) * 2019-11-19 2021-05-27 東ソー株式会社 Rubber composition and production method therefor
CN116348542A (en) * 2021-07-07 2023-06-27 阪东化学株式会社 Crosslinked rubber composition and friction transmission belt using same
CN114729161B (en) * 2019-11-19 2024-05-10 东曹株式会社 Rubber composition and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6942663B2 (en) * 2018-03-23 2021-09-29 バンドー化学株式会社 Crosslinked rubber composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103920A (en) * 1998-07-31 2000-04-11 Yamauchi Corp Ultralow-hardness rubber vibration isolating material
JP2003192843A (en) * 2001-12-26 2003-07-09 Sumitomo Rubber Ind Ltd Rubber composition for studless tire
JP2003192844A (en) * 2001-12-27 2003-07-09 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2008105878A1 (en) * 2007-03-01 2008-09-04 Prs Mediterranean Ltd. High performance geosynthetic article
JP2009191197A (en) * 2008-02-15 2009-08-27 Bridgestone Corp Rubber composition and method for producing the same
JP2009191198A (en) * 2008-02-15 2009-08-27 Bridgestone Corp Rubber composition and method for producing the same
JP2009249449A (en) * 2008-04-03 2009-10-29 Bridgestone Corp Rubber composition and its manufacturing method
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
JP2015031315A (en) * 2013-07-31 2015-02-16 バンドー化学株式会社 Flat belt
JP2017128663A (en) * 2016-01-20 2017-07-27 日本製紙株式会社 Rubber composition for oil seal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865063B2 (en) * 2011-12-22 2016-02-17 三菱化学株式会社 Method for producing rubber composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103920A (en) * 1998-07-31 2000-04-11 Yamauchi Corp Ultralow-hardness rubber vibration isolating material
JP2003192843A (en) * 2001-12-26 2003-07-09 Sumitomo Rubber Ind Ltd Rubber composition for studless tire
JP2003192844A (en) * 2001-12-27 2003-07-09 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2008105878A1 (en) * 2007-03-01 2008-09-04 Prs Mediterranean Ltd. High performance geosynthetic article
JP2009191197A (en) * 2008-02-15 2009-08-27 Bridgestone Corp Rubber composition and method for producing the same
JP2009191198A (en) * 2008-02-15 2009-08-27 Bridgestone Corp Rubber composition and method for producing the same
JP2009249449A (en) * 2008-04-03 2009-10-29 Bridgestone Corp Rubber composition and its manufacturing method
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
JP2015031315A (en) * 2013-07-31 2015-02-16 バンドー化学株式会社 Flat belt
JP2017128663A (en) * 2016-01-20 2017-07-27 日本製紙株式会社 Rubber composition for oil seal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075996A (en) * 2018-11-07 2020-05-21 バンドー化学株式会社 Rubber composition for transmission belt, method for producing the same and transmission belt using the same
WO2020246187A1 (en) * 2019-06-07 2020-12-10 バンドー化学株式会社 Raw edge v-belt
JP6887061B1 (en) * 2019-06-07 2021-06-16 バンドー化学株式会社 Low edge V belt
CN113994122A (en) * 2019-06-07 2022-01-28 阪东化学株式会社 Edge cutting V-shaped belt
CN113994122B (en) * 2019-06-07 2022-07-15 阪东化学株式会社 Edge cutting V-shaped belt
WO2021100608A1 (en) * 2019-11-19 2021-05-27 東ソー株式会社 Rubber composition and production method therefor
CN114729161A (en) * 2019-11-19 2022-07-08 东曹株式会社 Rubber composition and method for producing same
CN114729161B (en) * 2019-11-19 2024-05-10 东曹株式会社 Rubber composition and method for producing same
CN116348542A (en) * 2021-07-07 2023-06-27 阪东化学株式会社 Crosslinked rubber composition and friction transmission belt using same
CN116348542B (en) * 2021-07-07 2023-12-15 阪东化学株式会社 Crosslinked rubber composition and friction transmission belt using same

Also Published As

Publication number Publication date
TWI738877B (en) 2021-09-11
TW201815940A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2018056055A1 (en) Rubber composition and transmission belt using same
JP6487124B1 (en) Transmission belt
JP4745789B2 (en) V-ribbed belt and method for manufacturing V-ribbed belt
JP6427302B1 (en) Transmission belt
JP4133595B2 (en) Transmission belt
JP6529327B2 (en) Transmission belt
JP2008291205A (en) Rubber composition for belt, rubber belt, and toothed belt for driving motorcycle
CN107532681B (en) Transmission belt
KR20220125679A (en) V-ribbed belt
JP6271823B1 (en) Rubber composition and power transmission belt using the same
JP2011064257A (en) Transmission belt
JP2007092991A (en) Transmission belt and its manufacturing method
JP2016205565A (en) Transmission belt
JP5243834B2 (en) Power transmission belt
JP6918047B2 (en) Transmission belt
JP6950094B2 (en) Transmission belt
JP6884280B1 (en) Transmission belt
CN113994123B (en) Large V-belt
WO2020246188A1 (en) Large v-belt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017548082

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852832

Country of ref document: EP

Kind code of ref document: A1