WO2018055844A1 - Lens unit - Google Patents

Lens unit Download PDF

Info

Publication number
WO2018055844A1
WO2018055844A1 PCT/JP2017/021369 JP2017021369W WO2018055844A1 WO 2018055844 A1 WO2018055844 A1 WO 2018055844A1 JP 2017021369 W JP2017021369 W JP 2017021369W WO 2018055844 A1 WO2018055844 A1 WO 2018055844A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
holding ring
lens unit
barrel
annular
Prior art date
Application number
PCT/JP2017/021369
Other languages
French (fr)
Japanese (ja)
Inventor
智成 増沢
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018055844A1 publication Critical patent/WO2018055844A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • This disclosure relates to a lens unit.
  • the lens unit may be configured to hold the lens in the lens barrel by press-fitting the lens into the lens holding ring and fitting the lens holding ring inside the lens barrel (for example, Japanese Patent Application Laid-Open No. 2014-2014). No. 170123).
  • the lens is held in the lens barrel via the lens holding ring in this way, the lens is affected by the lens barrel via the lens holding ring.
  • the lens expands due to heat
  • the force from the lens barrel may act on the lens holding ring and the lens, and stress may be generated in the lens to cause distortion.
  • the present disclosure is based on the above facts, and is capable of suppressing the distortion of the lens accommodated in the lens barrel and easily positioning the lens holding ring and the lens barrel in the optical axis direction.
  • the purpose is to provide.
  • the lens unit according to the first aspect is cylindrical, and is arranged with a gap between the lens barrel having a receiving portion arranged in a direction intersecting the cylinder axis direction in the cylinder and the inner periphery of the lens barrel.
  • a lens holding ring that is supported in the barrel of the lens barrel in a state where the supported portion and the receiving portion are in close contact with each other.
  • the lens holding ring is supported by the lens barrel in a state in which the receiving portion arranged in the direction intersecting the tube axis direction and the supported portion of the lens holding ring are in close contact with each other.
  • the lens holding ring can be easily positioned in the cylinder axis direction with respect to the cylinder.
  • there is a gap between the annular portion of the lens holding ring and the inner periphery of the lens barrel even if the lens fitted to the inner periphery of the annular portion expands due to heat, it is difficult to receive the force from the lens barrel. can do.
  • a gap is formed between the outer peripheral surface of the lens holding ring and the inner peripheral surface of the lens barrel to allow the lens holding ring to move radially outward over the entire optical axis direction. ing.
  • the lens holding ring can move radially outward over the entire optical axis direction, the influence of the force from the lens barrel due to the thermal expansion of the lens can be further reduced.
  • the lens barrel has a large diameter portion and a small diameter portion having a smaller diameter than the large diameter portion, and the receiving portion is formed by a step between the large diameter portion and the small diameter portion.
  • the receiving portion can be easily formed by forming the large diameter portion and the small diameter portion in the lens barrel and forming the receiving portion by the step between the large diameter portion and the small diameter portion. .
  • the annular portion includes a first annular portion disposed on the radially inner side of the large diameter portion, and a second smaller diameter than the first annular portion disposed on the radially inner side of the small diameter portion.
  • the supported part is formed by a step between the first annular part and the second annular part.
  • the first annular portion and the second annular portion are formed respectively corresponding to the large diameter portion and the small diameter portion of the lens barrel, and the first annular portion and the second annular portion to which the lens is fitted are formed.
  • a resin lens is fitted in the annular portion.
  • the thermal expansion coefficient of the resin is relatively large, it is easy to receive a force from the lens barrel when the lens is thermally expanded.
  • the outer periphery of the annular portion into which the resin lens is fitted is separated from the inner periphery of the lens barrel, even if the resin lens expands due to heat, It can make it difficult to receive power.
  • the lens holding ring has a fitting portion that fits into the inner periphery of the lens barrel.
  • the lens unit according to the sixth aspect has the fitting portion, the holding force of the lens holding ring in the lens barrel can be increased.
  • the lens unit according to a seventh aspect is the lens unit according to the sixth aspect, wherein the lens barrel has a large diameter portion and a small diameter portion having a smaller diameter than the large diameter portion, and the receiving portion includes the large diameter portion and the small diameter. It is formed by the level difference of the part.
  • the receiving portion can be easily formed by forming the large diameter portion and the small diameter portion in the lens barrel and forming the receiving portion by the step between the large diameter portion and the small diameter portion. .
  • the annular portion is disposed radially inside the large diameter portion
  • the fitting portion is disposed radially inside the small diameter portion
  • the supported portion is the annular portion and the fitting portion. It is formed by the level
  • the annular portion and the fitting portion are formed respectively corresponding to the large diameter portion and the small diameter portion of the lens barrel, and the outer circumferential step between the annular portion and the fitting portion is supported.
  • the supported part can be easily formed.
  • the fitting portions are formed at both ends of the annular portion in the optical axis direction.
  • the annular portion spaced from the inner periphery of the lens barrel is disposed between the fitting portions that fit into the lens barrel, so that the lens can be held in a balanced manner. it can.
  • a glass lens is fitted to the inner periphery of the fitting portion, and a resin lens is fitted to the inner periphery of the annular portion.
  • a glass lens having a relatively low coefficient of thermal expansion is accommodated in a fitting portion in which movement of the lens holding ring to the outside in the radial direction is restricted by the lens barrel. Therefore, the force received from the lens barrel due to the thermal expansion of the lens can be made relatively small.
  • the outer periphery of the annular portion to which the resin lens is fitted is separated from the inner periphery of the lens barrel, even if the resin lens expands due to heat, it is difficult to receive the force from the lens barrel. it can.
  • the lens holding ring is made of a material whose thermal expansion coefficient in the optical axis direction is smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
  • the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the influence on the resolution reduction.
  • the lens holding ring is formed of an inorganic fiber-containing resin.
  • the strength of the lens holding ring can be increased by forming the lens holding ring with the inorganic fiber-containing resin, and the thermal expansion coefficient is made anisotropic by the orientation of the inorganic fibers. You can have it.
  • the inner periphery of the lens holding ring and the outer periphery of the lens are in contact with each other at three or more locations in the circumferential direction.
  • the lens unit of the thirteenth aspect since the outer periphery of the lens is in contact with the inner periphery of the lens holding ring at three or more locations in the circumferential direction, it is easy to ensure the positional accuracy of the lens. Further, when the lens is thermally expanded, even if stress is concentrated on the contact portion between the lens and the lens holding ring, it is possible to make it difficult to receive a force from the lens barrel.
  • the inner peripheral surface of the lens holding ring is polygonal when viewed from the optical axis direction.
  • the contact between the outer periphery of the lens and the inner periphery of the lens holding ring is a line contact in the optical axis direction.
  • a plurality of lenses are fitted in the lens holding ring.
  • the number of parts can be reduced as compared with the case where a lens holding ring is provided for each lens.
  • the lens barrel is made of metal.
  • the thermal expansion coefficient of metal is relatively small, even if the lens is thermally expanded, it does not expand following the thermal expansion, and a force from the lens barrel is easily applied to the lens.
  • the lens unit according to the sixteenth aspect since the outer periphery of the annular portion is separated from the inner periphery of the lens barrel, even if the lens fitted to the inner periphery of the annular portion expands due to heat, the lens is removed from the lens barrel. The force received can be reduced.
  • the lens unit according to the seventeenth aspect is an in-vehicle or monitoring lens unit.
  • the lens unit according to the seventeenth aspect has the outer periphery of the annular portion spaced from the inner periphery of the lens barrel. Therefore, even if the lens fitted to the inner periphery of the annular portion is exposed to a high temperature and expands due to heat, it is difficult to receive a force from the lens barrel.
  • the lens unit of the present disclosure it is possible to suppress the distortion of the lens accommodated in the lens barrel and to easily position the lens holding ring and the lens barrel in the optical axis direction.
  • FIG. 2 is a cross-sectional view of the lens holding ring of the first embodiment taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view of the lens holding ring of the first embodiment taken along line BB in FIG.
  • FIG. 2 is a cross-sectional view taken along the line CC of FIG. 1 of the lens holding ring of the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. 1 of a modification of the lens holding ring of the first embodiment.
  • FIG. 6 is a cross-sectional view taken along line BB of FIG.
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 6 is a cross-sectional view of the lens holding ring according to the second embodiment, taken along the line DD in FIG. 4. It is a half longitudinal cross-sectional view of the lens unit which concerns on 3rd Embodiment.
  • FIG. 9 is a cross-sectional view of the lens holding ring according to the third embodiment, taken along line EE of FIG.
  • the lens unit 10 includes a lens barrel 40, a lens holding ring 20, a cap 16, a spacing ring 14, and a lens group 30.
  • the left side in the figure is the object side
  • the right side in the figure is the image side.
  • An imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor is disposed on the image side of the lens unit 10.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the lens group 30 includes a first lens 32, a second lens 34, a third lens 36, and a fourth lens 38, which are arranged in order from the object side.
  • the first lens 32 is formed in a substantially circular shape when viewed from the optical axis direction, and is curved so as to be convex on the object side.
  • the image side of the first lens 32 is curved so that the center is concave, and a flat portion 32F is formed on the outer edge facing the image side.
  • the first lens 32 has a groove 32A formed on the outer periphery on the image side, and an O-ring 32B is attached to the groove 32A.
  • an outer peripheral portion 32C is formed on the outer periphery on the object side of the groove 32A.
  • the first lens 32 is fitted into a large diameter portion 42 of a lens barrel 40 described later.
  • the first lens 32 is made of glass.
  • the second lens 34 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is convex, and a flat portion 34E is formed on the outer edge facing the object side.
  • the flat portion 34E is in contact with the flat portion 32F of the first lens 32.
  • the image side of the second lens 34 is curved so that the center is concave, and a flat portion 34F is formed on the outer edge facing the image side.
  • the second lens 34 has a smaller diameter than the first lens 32, and an outer peripheral portion 34 ⁇ / b> C is formed on the outer periphery of the second lens 34.
  • the second lens 34 is fitted into the first annular portion 22 of the lens holding ring 20 described later.
  • the second lens 34 is made of resin.
  • the third lens 36 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is concave, and a flat portion 36E is formed on the outer edge facing the object side.
  • the flat portion 36E is in contact with the flat portion 34F of the second lens 34.
  • the image side of the third lens 36 is curved so that the center is convex, and a flat portion 36F is formed on the outer edge facing the image side.
  • the flat portion 36F is in contact with an end face 14E of the interval ring 14 described later.
  • the third lens 36 has a smaller diameter than the second lens 34, and an outer peripheral portion 36 ⁇ / b> C is formed on the outer periphery of the third lens 36.
  • the third lens 36 is fitted into the second annular portion 24 of the lens holding ring 20 described later.
  • the third lens 36 is made of glass.
  • the fourth lens 38 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is convex, and a flat portion 38E is formed on the outer edge facing the object side.
  • the flat portion 38E is in contact with a flat portion 14F of the interval ring 14 described later.
  • the image side of the fourth lens 38 is curved so that the center is convex, and a flat portion 38F is formed on the outer edge facing the image side.
  • the fourth lens 38 has a slightly smaller diameter than the third lens 36, and an outer peripheral portion 38 ⁇ / b> C is formed on the outer periphery of the fourth lens 38.
  • the fourth lens 38 is fitted into a third annular portion 26 of the lens holding ring 20 described later.
  • the fourth lens 38 is made of resin.
  • the spacing ring 14 is an annular member as viewed in the optical axis direction, the object-side end surface 14E is in contact with the flat portion 36F of the third lens 36, and the image-side flat portion 14F is the flat portion 38E of the fourth lens 38. In contact with.
  • the spacing ring 14 determines the spacing in the optical axis direction between the third lens 36 and the fourth lens 38.
  • the spacing ring 14 is made of resin.
  • the lens barrel 40 is formed in a cylindrical shape, and is arranged so that the optical axis S coincides with the cylinder axis.
  • the lens barrel 40 has a large diameter portion 42 disposed on the object side and a small diameter portion 44 disposed on the image side.
  • the inner peripheral surfaces of the large-diameter portion 42 and the small-diameter portion 44 are circular when viewed from the optical axis direction.
  • the image side end of the large diameter portion 42 and the object side end of the small diameter portion 44 are connected by a receiving portion 43.
  • the receiving portion 43 forms a step between the large-diameter portion 42 and the small-diameter portion 44, is disposed in the radial direction so as to be orthogonal to the cylinder axis, and has a flat surface facing the object side.
  • the receiving portion 43 receives a supported portion 23 of the lens holding ring 20 described later in the optical axis direction.
  • the first lens 32 is fitted to the inner peripheral surface of the object side end of the large diameter portion 42.
  • a space between the first lens 32 and the inner peripheral surface of the large diameter portion 42 is sealed with an O-ring 32B.
  • On the image-side end of the small diameter portion 44 a protruding line 44A protruding from the inner peripheral surface is formed.
  • a male screw 42 ⁇ / b> A is formed on the outer periphery of the large-diameter portion 42.
  • a cap 16 described later is screwed onto the male screw 42A.
  • the lens barrel 40 can be made of metal as an example. Since the thermal expansion coefficient of the metal is relatively small, even if the lens is thermally expanded, it does not expand following the thermal expansion, and the force from the lens barrel 40 is easily applied to the lens. Thus, when the lens barrel 40 is made of metal, it can be suitably used to reduce the force that the lens receives from the lens barrel 40.
  • the lens barrel 40 can also be made of resin using the same material as the lens holding ring 20 described later.
  • the cap 16 is annular and is disposed on the outer periphery of the large-diameter portion 42 of the lens barrel 40.
  • the cap 16 has a pressing portion 16 ⁇ / b> B formed at the end on the object side.
  • the pressing portion 16B is configured by a ridge protruding inward in the radial direction. The outer edge of the first lens 32 on the object side is pressed by the pressing portion 16B, and the detachment of the first lens 32 from the lens barrel 40 is restricted.
  • the outer diameter of the cap 16 is larger than the outer diameter of the lens barrel 40.
  • a female screw 16A is formed on the inner peripheral surface of the cap 16, and is screwed with a male screw 42A formed on the outer periphery of the large-diameter portion 42 of the lens barrel 40.
  • the cap 16 can be formed of metal as an example.
  • the lens holding ring 20 has a cylindrical shape with both ends in the optical axis direction opened, and is formed by resin molding.
  • the lens holding ring 20 is disposed so that the cylinder axis coincides with the optical axis of the lens unit 10.
  • the lens holding ring 20 can be made of a resin containing inorganic fibers.
  • the mechanical strength is increased.
  • the resin used include polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, and polyether.
  • the fiber glass fiber, carbon fiber, fiber reinforced plastic, inorganic filler, or the like can be used.
  • the lens holding ring 20 preferably has a thermal expansion coefficient in the optical axis direction smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis. This is because the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the effect on resolution reduction.
  • the thermal expansion coefficient in the optical axis direction can be made smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
  • the lens holding ring 20 has a first annular portion 22, a second annular portion 24, and a third annular portion 26 in order from the object side.
  • the outer diameter of the first annular portion 22 is set smaller than the inner diameter of the large diameter portion 42 of the lens barrel 40 and larger than the inner diameter of the small diameter portion 44.
  • the first annular portion 22 is disposed on the radially inner side of the large diameter portion 42.
  • a flange portion 21 that extends radially outward is formed at the object-side end of the first annular portion 22.
  • a flat surface 21 ⁇ / b> E is formed on the object side of the flange portion 21.
  • An outer peripheral surface 21 ⁇ / b> A is formed on the radially outer end surface of the flange portion 21.
  • the flat surface 21E and the flat portion 32F of the first lens 32 are separated from each other. Further, the outer peripheral surface 21A and the inner peripheral surface of the large diameter portion 42 of the lens barrel 40 are separated from each other.
  • An outer peripheral surface 22 ⁇ / b> A facing outward in the radial direction is formed on the outer periphery on the image side of the flange portion 21 of the first annular portion 22.
  • the outer peripheral surface 22A and the inner peripheral surface of the large diameter portion 42 of the lens barrel 40 are separated from each other.
  • the outer diameter of the second annular portion 24 is set smaller than the inner diameter of the small diameter portion 44 of the lens barrel 40, and the inner diameter of the second annular portion 24 is set smaller than the inner diameter of the first annular portion 22.
  • a flat portion 24 ⁇ / b> E is formed on the object-side end surface of the second annular portion 24.
  • an outer peripheral surface 24A facing outward in the radial direction is formed on the outer periphery of the second annular portion 24.
  • the second annular portion 24 is disposed on the radially inner side of the small diameter portion 44. 24 A of outer peripheral surfaces and the internal peripheral surface of the small diameter part 44 of the lens-barrel 40 are spaced apart.
  • a supported portion 23 is formed between the image side end portion of the first annular portion 22 and the object side end portion of the second annular portion 24.
  • the supported portion 23 is arranged to extend in the radial direction so as to be orthogonal to the cylinder axis, and is a step toward the image side.
  • the supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40, and the lens holding ring 20 is held by the lens barrel 40 at the supported portion 23.
  • the outer diameter of the third annular portion 26 is set smaller than the outer diameter of the second annular portion 24, and the inner diameter of the third annular portion 26 is set smaller than the inner diameter of the second annular portion 24.
  • an outer peripheral surface 26A facing outward in the radial direction is formed on the outer periphery of the third annular portion 26.
  • the third annular portion 26 is disposed on the radially inner side of the small diameter portion 44.
  • the outer peripheral surface 26A is separated from the inner periphery of the small-diameter portion 44 of the lens barrel 40 and the inner periphery of the protrusion 44A.
  • a ridge 26D protruding inward in the radial direction is formed on the image-side end of the third annular portion 26 .
  • the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are: It is formed in a polygonal shape as viewed from the optical axis direction, and in the present embodiment, as an example, it is formed in a substantially regular dodecagonal shape as viewed from the optical axis direction.
  • Each of the 12 surfaces constituting the inner peripheral surfaces 22B, 24B, and 26B is a straight flat surface when viewed from the optical axis direction.
  • Each flat surface constituting the inner peripheral surface 22B is defined as a flat surface 22C
  • each flat surface constituting the inner peripheral surface 24B is defined as a flat surface 24C
  • each flat surface constituting the inner peripheral surface 26B is defined as a flat surface 26C.
  • a second lens 34 is fitted on the inner periphery of the first annular portion 22.
  • the outer peripheral part 34C is linearly hold
  • the flat portion 34F of the second lens 34 and the flat portion 24E of the second annular portion 24 are separated (see FIG. 1).
  • a third lens 36 is fitted on the inner periphery of the second annular portion 24.
  • the outer periphery 36C of the third lens 36 is linearly held in the optical axis direction by each of the flat surfaces 24C.
  • a spacing ring 14 is fitted to the inner side of the second annular portion 24 on the image side of the third lens 36.
  • the spacing ring 14 has an outer peripheral portion 14C that is linearly held in the optical axis direction by each of the flat surfaces 24C.
  • a fourth lens 38 is fitted on the inner periphery of the third annular portion 26. In the fourth lens, the outer peripheral portion 38C is held linearly in the optical axis direction by each of the flat surfaces 26C.
  • outer peripheral surface (outer peripheral surfaces 21A, 22A, 24A, 26A) facing the radially outer side of the lens holding ring 20 is separated from the inner peripheral surface of the lens barrel 40.
  • the lens holding ring 20 is supported by the lens barrel 40 when the supported portion 23 of the lens holding ring 20 is in close contact with the receiving portion 43 of the lens barrel 40. Therefore, it is possible to easily position the lens holding ring 20 with respect to the lens barrel 40 in the optical axis direction. Further, since the entire outer peripheral surface (the outer peripheral surfaces 21A, 22A, 24A, 26A) of the lens holding ring 20 is separated from the inner peripheral surface of the lens barrel 40, it is fitted to the inner periphery of the lens holding ring 20. Even if the lenses (the second lens 34, the third lens 36, and the fourth lens 38) expand due to heat, the lens holding ring 20 as a whole can also move radially outward. Therefore, it is possible to make the lens (second lens 34, third lens 36, and fourth lens 38) less susceptible to force from the lens barrel 40.
  • the second lens 34 and the fourth lens 38 are made of resin and have a relatively large coefficient of thermal expansion. Since a gap is formed between the portion 22 and the third annular portion 26 and the inner periphery of the lens barrel 40, the force from the lens barrel 40 can be made difficult to receive.
  • the lens barrel 40 is provided with the large-diameter portion 42 and the small-diameter portion 44, and the receiving portion 43 is configured by the step between the large-diameter portion 42 and the small-diameter portion 44. Can be formed.
  • the lens holding ring 20 is also provided with the first annular portion 22 and the second annular portion 24, and the supported portion 23 is configured by the step between the first annular portion 22 and the second annular portion 24. The supported portion 23 can be easily formed.
  • the inner peripheral surface (inner peripheral surfaces 22B, 24B, 26B) of the lens holding ring 20 of the lens unit 10 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer periphery of the lens (the outer peripheral portions 34C, 36C, and 38C) and the inner peripheral surface of the lens holding ring 20 is a line contact in the optical axis direction. Thereby, compared with the structure of the surface contact which receives the outer periphery of a lens with a curved surface, the resistance at the time of an assembly
  • the lenses (second lens 34, third lens 36, and fourth lens 38) fitted to the inner periphery of the lens holding ring 20 are thermally expanded, stress concentrates on the holding position by the lens holding ring 20.
  • the force from the lens barrel 40 can be made difficult to receive.
  • each lens is supported at multiple points of three or more points, it is easy to ensure the positional accuracy of each lens.
  • the lens unit 10 of the present embodiment holds a plurality of lenses by the lens holding ring 20, the number of parts can be reduced as compared with the case where the lens holding ring is provided for each lens.
  • the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are substantially positive when viewed from the optical axis direction.
  • it is formed in a dodecagonal shape, it is not necessarily a regular dodecagonal shape, and may be a regular hexagonal shape, a regular octagonal shape, or a circular shape when viewed from the optical axis direction.
  • the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are provided.
  • the lens receiving portions 22G, 24G, and 26G that protrude radially inward may be formed.
  • the lens receiving portions 22G protrude radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 22B, and the lens receiving portions 24G radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 24B.
  • the lens receiving portion 26G protrudes radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 26B.
  • the second lens 34 is held by the lens receiver 22G
  • the third lens 36 is held by the lens receiver 24G
  • the fourth lens 38 is held by the lens receiver 26G.
  • each lens is supported by multiple points of three or more points, so it is easy to ensure the positional accuracy of each lens.
  • the lens is thermally expanded, even if stress is concentrated on the contact portion between the lens and the lens holding ring 20, it is possible to make it difficult to receive the force from the lens barrel 40.
  • the lens unit 48 of the second embodiment will be described.
  • symbol same as 1st Embodiment is attached
  • the lens unit 48 of the present embodiment is different from the first embodiment in the configuration of the lens holding ring, and the other configurations are the same as those in the first embodiment.
  • the lens unit 48 of this embodiment includes a lens holding ring 50.
  • the lens holding ring 50 has a cylindrical shape with both ends in the optical axis direction opened, and is formed by resin molding.
  • the lens holding ring 50 is disposed so that the cylinder axis coincides with the optical axis of the lens unit 48.
  • the lens holding ring 50 can be formed of the same material as the lens holding ring 20 of the first embodiment.
  • the lens holding ring 50 preferably has a thermal expansion coefficient in the optical axis direction smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis. This is because the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the effect on resolution reduction.
  • the thermal expansion coefficient in the optical axis direction can be made smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
  • the lens holding ring 50 has a first annular portion 22 and a third annular portion 26 similar to the lens holding ring 20 of the first embodiment, and has a fitting portion 54 instead of the second annular portion 24.
  • the outer diameter of the fitting portion 54 is substantially the same as the inner diameter of the small diameter portion 44 of the lens barrel 40, and is set so as to be fitted to the inner periphery of the small diameter portion 44.
  • the inner diameter of the fitting portion 54 is set smaller than the inner diameter of the first annular portion 22.
  • a flat portion 54 ⁇ / b> E is formed on the object-side end surface of the fitting portion 54.
  • the flat portion 54E is separated from the flat portion 34F of the second lens 34.
  • an outer peripheral surface 54A facing outward in the radial direction is formed on the outer periphery of the fitting portion 54.
  • the fitting portion 54 is disposed on the radially inner side of the small diameter portion 44.
  • the outer peripheral surface 54 ⁇ / b> A is in close contact with the inner periphery of the small diameter portion 44 of the lens barrel 40, and the fitting portion 54 is fitted to the small diameter portion 44.
  • a supported portion 23 is formed between the image side end portion of the first annular portion 22 and the object side end portion of the fitting portion 54.
  • the supported portion 23 is arranged to extend in the radial direction so as to be orthogonal to the cylinder axis, and is a step toward the image side.
  • the supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40, and the lens holding ring 50 is held by the lens barrel 40 at the supported portion 23.
  • the inner peripheral surface 54B of the fitting portion 54 is formed in a polygonal shape when viewed from the optical axis direction. It is formed into a shape.
  • Each of the 12 surfaces constituting the inner peripheral surface 54B is a straight flat surface as viewed from the optical axis direction.
  • Each flat surface constituting the inner peripheral surface 54B is defined as a flat surface 54C.
  • the third lens 36 is fitted on the inner periphery of the fitting portion 54.
  • the outer periphery 36C of the third lens 36 is held linearly in the optical axis direction by each of the flat surfaces 54C.
  • the spacing ring 14 is fitted to the inner periphery of the fitting portion 54 on the image side of the third lens 36.
  • the spacing ring 14 has an outer peripheral portion 14 ⁇ / b> C linearly held in the optical axis direction by each of the flat surfaces 54 ⁇ / b> C.
  • Outer peripheral surfaces 21A, 22A, and 26A among the outer peripheral surfaces facing the radially outer side of the lens holding ring 20 are separated from the inner peripheral surface of the lens barrel 40.
  • the shape of the inner peripheral surface 54B can be made equivalent to each modification of the first embodiment.
  • the supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40 and the fitting portion 54 is fitted into the small diameter portion 44 of the lens barrel 40, so that the lens holding ring 50 is formed. It is supported by the lens barrel 40. Therefore, the lens holding ring 50 can be easily positioned in the optical axis direction with respect to the lens barrel 40 and the holding force of the lens holding ring 50 in the lens barrel 40 can be increased.
  • the second lens 34 and the fourth lens 38 are made of resin and have a relatively large coefficient of thermal expansion. Since a gap is formed between the portion 22 and the third annular portion 26 and the inner periphery of the lens barrel 40, the force from the lens barrel 40 can be made difficult to receive.
  • the third lens 36 made of glass is fitted in the inner periphery of the fitting portion 54. Since the thermal expansion coefficient of the glass-made third lens 36 is smaller than that of the resin-made lens, the force received from the lens barrel 40 due to the thermal expansion of the lens can be made relatively small.
  • the lens holding ring 50 is provided with the first annular portion 22 and the fitting portion 54, and the supported portion 23 is configured by a step between the first annular portion 22 and the fitting portion 54. Therefore, the supported portion 23 can be easily formed.
  • the inner peripheral surface 54B of the fitting portion 54 of the lens holding ring 50 of the lens unit 48 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer peripheral portion 36C of the third lens 36 and the inner peripheral surface of the lens holding ring 50 is a line contact in the optical axis direction.
  • attachment reduces and it is easy to assemble
  • the third lens 36 fitted to the inner periphery of the lens holding ring 50 is thermally expanded, even if stress is concentrated on the holding position by the lens holding ring 50, it is difficult to receive the force from the lens barrel 40. be able to.
  • the lens unit 48 of the present embodiment holds a plurality of lenses by the lens holding ring 50, the number of parts can be reduced as compared with the case where the lens holding ring is provided for each lens.
  • the lens unit 58 of the third embodiment will be described.
  • symbol same as 1st, 2nd embodiment is attached
  • the lens unit 58 of this embodiment is different from the second embodiment in the configuration of the image side of the lens barrel and the lens holding ring, and the other configurations are the same as those in the second embodiment.
  • a protrusion 44 ⁇ / b> A is formed on the image side of the lens barrel 40.
  • the protrusion 44 ⁇ / b> A extends longer to the image side than the protrusion 44 ⁇ / b> A of the first embodiment.
  • a second fitting portion 56 is formed on the image side of the ridge 26D.
  • the second fitting portion 56 is annular, the outer diameter is larger than the outer diameter of the third annular portion 26, and the inner diameter is smaller than the inner diameter of the third annular portion 26.
  • An outer peripheral portion 56 ⁇ / b> A is formed on the radially outer side of the second fitting portion 56.
  • the outer peripheral portion 56A is in close contact with the inner periphery of the ridge 44A.
  • the inner peripheral surface 56B of the second fitting portion 56 is formed in a polygonal shape as viewed from the optical axis direction.
  • the inner peripheral surface 56B is formed in a substantially regular dodecagonal shape as viewed from the optical axis direction.
  • Each of the 12 surfaces constituting the inner peripheral surface 56B is a straight flat surface as viewed from the optical axis direction.
  • Each flat surface constituting the inner peripheral surface 56B is defined as a flat surface 56C.
  • the fifth lens 39 is fitted to the inner periphery of the second fitting portion 56.
  • the fifth lens 39 is formed in a substantially circular shape when viewed from the optical axis direction, and is curved so that both the object side and the image side are convex.
  • the fifth lens 39 has a smaller diameter than the fourth lens 38, and an outer peripheral portion 39 ⁇ / b> C is formed on the outer periphery of the fifth lens 39.
  • the outer periphery 39C of the fifth lens 39 is linearly held in the optical axis direction by each of the flat surfaces 56C.
  • the fifth lens 39 is made of glass.
  • the shape of the inner peripheral surface 56B may be the same as that of each modification of the first embodiment.
  • the same components as in the second embodiment can achieve the same effects as those of the lens unit 48 according to the second embodiment.
  • the holding force of the lens holding ring 50 in the lens barrel 40 is increased. be able to.
  • the 3rd annular part 26 spaced apart from the inner periphery of the lens-barrel 40 is arrange
  • the fourth lens 38 can be held.
  • the fifth lens 39 made of glass is fitted on the inner periphery of the second fitting portion 56. Since the thermal expansion coefficient of the glass-made fifth lens 39 is smaller than that of the resin-made lens, the force received from the lens barrel 40 due to thermal expansion of the lens can be made relatively small.
  • the inner peripheral surface 56B of the second fitting portion 56 of the lens holding ring 50 of the lens unit 58 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer peripheral portion 39C of the fifth lens 39 and the inner peripheral surface of the lens holding ring 50 is a line contact in the optical axis direction.
  • attachment reduces and it is easy to assemble
  • the fifth lens 39 fitted to the inner periphery of the lens holding ring 50 is thermally expanded, even if stress is concentrated on the holding position by the lens holding ring 50, it is difficult to receive the force from the lens barrel 40. be able to.
  • the lens units according to the first to third embodiments can reduce performance deterioration even when used in an environment where it is difficult to maintain imaging performance, such as exposure to high temperatures. Therefore, it is suitable for those that may be exposed to high temperatures, such as surveillance cameras and in-vehicle cameras.
  • the monitoring lens unit is a lens unit that is provided in a building or the like and captures images of surrounding objects.
  • the in-vehicle lens unit is a lens unit that is provided in a vehicle (mainly in a vehicle interior) and captures an image of an object or the like outside the vehicle.
  • lens unit 14 spacing ring, 14C outer peripheral part, 14E end face, 14F flat part 16 cap, 16B pressing part, 20 Lens holding ring 21 Flange, 21A Outer peripheral surface, 21E Flat surface, 22 1st annular part (annular part), 22A outer peripheral surface, 22B inner peripheral surface, 22C flat surface 22G lens receiving part 23 supported part 24 2nd annular part (annular part), 24A outer peripheral surface, 24B inner peripheral surface, 24C Flat surface 24E Flat portion, 24G Lens receiving portion 26 Third annular portion (annular portion), 26A Outer peripheral surface, 26B Inner peripheral surface, 26C Flat surface 26D Convex, 26G Lens receiving portion 30 Lens group 32 First lens, 32A Groove , 32B O-ring, 32C outer peripheral portion 32F flat portion 34 second lens (lens, resin lens), 34C outer peripheral portion 34E, 34F flat portion 36 third lens (glass lens), 36C outer peripheral portion 36E, 36F flat portion 38 Fourth lens (lens, resin lens), 38C outer peripheral portion 38E

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

This lens unit 10 has a cylindrical lens barrel 40 having a receiving part 43, the receiving part 43 being positioned inside the cylinder in a direction orthogonal to the axial direction of the cylinder. A lens retaining ring 20 is positioned inside the cylinder of the lens barrel 40. The lens retaining ring 20 comprises a first annular part 22, a second annular part 24, and a third annular part 26 which are positioned in such a manner that a gap is formed with the inner periphery of the lens barrel 40, and a supported part 23 facing the receiving part 43 in the axial direction of the cylinder. The lens retaining ring 20 is supported within the cylinder of the lens barrel 40 by the close fitting of the supported part 23 and the receiving part 43. A second lens 34, third lens 36 and fourth lens 38 are fitted to the inner periphery of the lens retaining ring 20, and housed inside the lens barrel 40.

Description

レンズユニットLens unit
 本開示は、レンズユニットに関する。 This disclosure relates to a lens unit.
 レンズユニットでは、レンズをレンズ保持環に圧入し、このレンズ保持環を鏡筒の内側に嵌合させることにより、レンズを鏡筒内に保持する構造をとる場合がある(例えば、特開2014-170123号公報参照)。このようにレンズ保持環を介して鏡筒内にレンズを保持する場合、レンズは、レンズ保持環を介して鏡筒からの影響を受ける。例えば、熱によりレンズが膨張した場合、レンズ保持環も熱により膨張すれば、鏡筒からの力がレンズ保持環及びレンズに作用し、レンズにも応力が発生して歪むことが考えられる。また、レンズの位置精度を確保するため、鏡筒とレンズ保持環との光軸方向の位置決めを行う必要もある。 The lens unit may be configured to hold the lens in the lens barrel by press-fitting the lens into the lens holding ring and fitting the lens holding ring inside the lens barrel (for example, Japanese Patent Application Laid-Open No. 2014-2014). No. 170123). When the lens is held in the lens barrel via the lens holding ring in this way, the lens is affected by the lens barrel via the lens holding ring. For example, when the lens expands due to heat, if the lens holding ring also expands due to heat, the force from the lens barrel may act on the lens holding ring and the lens, and stress may be generated in the lens to cause distortion. Further, in order to ensure the positional accuracy of the lens, it is necessary to position the lens barrel and the lens holding ring in the optical axis direction.
 本開示は、上記事実を考慮したものであり、鏡筒内に収容されるレンズの歪みを抑制すると共に、レンズ保持環と鏡筒との光軸方向の位置決めを容易に行うことができるレンズユニットを提供することを目的とする。 The present disclosure is based on the above facts, and is capable of suppressing the distortion of the lens accommodated in the lens barrel and easily positioning the lens holding ring and the lens barrel in the optical axis direction. The purpose is to provide.
 第1態様に係るレンズユニットは、筒状とされ、筒内に筒軸方向と交差する方向に配置された受部を有する鏡筒と、鏡筒の内周との間に隙間をあけて配置された環状の環状部と、筒軸方向で受部と対向する被支持部と、を有し、被支持部と受部とが密着した状態で鏡筒の筒内に支持されたレンズ保持環と、レンズ保持環の環状部の内周に嵌合して鏡筒内に収容されたレンズと、を備えている。 The lens unit according to the first aspect is cylindrical, and is arranged with a gap between the lens barrel having a receiving portion arranged in a direction intersecting the cylinder axis direction in the cylinder and the inner periphery of the lens barrel. A lens holding ring that is supported in the barrel of the lens barrel in a state where the supported portion and the receiving portion are in close contact with each other. And a lens fitted in the inner periphery of the annular portion of the lens holding ring and accommodated in the lens barrel.
 第1態様に係るレンズユニットでは、筒軸方向と交差する方向に配置された受部とレンズ保持環の被支持部が密着した状態で、レンズ保持環が鏡筒に支持されているので、鏡筒に対するレンズ保持環の筒軸方向の位置決めを容易に行うことができる。また、レンズ保持環の環状部と鏡筒の内周との間に隙間があるので、環状部の内周に嵌合されたレンズが熱により膨張しても、鏡筒からの力を受けにくくすることができる。 In the lens unit according to the first aspect, the lens holding ring is supported by the lens barrel in a state in which the receiving portion arranged in the direction intersecting the tube axis direction and the supported portion of the lens holding ring are in close contact with each other. The lens holding ring can be easily positioned in the cylinder axis direction with respect to the cylinder. In addition, since there is a gap between the annular portion of the lens holding ring and the inner periphery of the lens barrel, even if the lens fitted to the inner periphery of the annular portion expands due to heat, it is difficult to receive the force from the lens barrel. can do.
 第2態様に係るレンズユニットは、レンズ保持環の外周面と鏡筒の内周面との間には、レンズ保持環の光軸方向全域にわたる径方向外側への移動を許容する隙間が形成されている。 In the lens unit according to the second aspect, a gap is formed between the outer peripheral surface of the lens holding ring and the inner peripheral surface of the lens barrel to allow the lens holding ring to move radially outward over the entire optical axis direction. ing.
 第2態様に係るレンズユニットでは、レンズ保持環が光軸方向全域にわたって径方向外側へ移動できるので、レンズの熱膨張による鏡筒からの力の影響を、より少なくすることができる。 In the lens unit according to the second aspect, since the lens holding ring can move radially outward over the entire optical axis direction, the influence of the force from the lens barrel due to the thermal expansion of the lens can be further reduced.
 第3態様に係るレンズユニットは、鏡筒は、大径部と、大径部よりも小径の小径部とを有し、受部は、大径部と小径部の段差により形成されている。 In the lens unit according to the third aspect, the lens barrel has a large diameter portion and a small diameter portion having a smaller diameter than the large diameter portion, and the receiving portion is formed by a step between the large diameter portion and the small diameter portion.
 第3態様に係るレンズユニットでは、鏡筒に大径部及び小径部を形成して、大径部と小径部の段差により受部を形成することにより、受部を簡易に形成することができる。 In the lens unit according to the third aspect, the receiving portion can be easily formed by forming the large diameter portion and the small diameter portion in the lens barrel and forming the receiving portion by the step between the large diameter portion and the small diameter portion. .
 第4態様に係るレンズユニットは、環状部は、大径部の径方向内側に配置される第1環状部と、小径部の径方向内側に配置される第1環状部よりも小径の第2環状部とを有し、被支持部は、第1環状部と第2環状部との段差により形成されている。 In the lens unit according to the fourth aspect, the annular portion includes a first annular portion disposed on the radially inner side of the large diameter portion, and a second smaller diameter than the first annular portion disposed on the radially inner side of the small diameter portion. The supported part is formed by a step between the first annular part and the second annular part.
 第4態様に係るレンズユニットでは、鏡筒の大径部と小径部に対応させて、レンズを嵌合させる第1環状部と第2環状部を各々形成し、第1環状部と第2環状部との段差を被支持部とすることにより、被支持部を簡易に形成することができる。 In the lens unit according to the fourth aspect, the first annular portion and the second annular portion are formed respectively corresponding to the large diameter portion and the small diameter portion of the lens barrel, and the first annular portion and the second annular portion to which the lens is fitted are formed. By making the step with the part a supported part, the supported part can be easily formed.
 第5態様に係るレンズユニットは、環状部には、樹脂製レンズが嵌合されている。 In the lens unit according to the fifth aspect, a resin lens is fitted in the annular portion.
 樹脂の熱膨張係数は比較的大きいため、レンズが熱膨張すると鏡筒からの力を受けやすい。第5態様に係るレンズユニットでは、樹脂製レンズが嵌合されている環状部の外周は鏡筒の内周から離間しているので、樹脂製レンズが熱により膨張しても、鏡筒からの力を受けにくくすることができる。 Since the thermal expansion coefficient of the resin is relatively large, it is easy to receive a force from the lens barrel when the lens is thermally expanded. In the lens unit according to the fifth aspect, since the outer periphery of the annular portion into which the resin lens is fitted is separated from the inner periphery of the lens barrel, even if the resin lens expands due to heat, It can make it difficult to receive power.
 第6態様に係るレンズユニットは、レンズ保持環は、鏡筒の内周に嵌合する嵌合部を有する。 In the lens unit according to the sixth aspect, the lens holding ring has a fitting portion that fits into the inner periphery of the lens barrel.
 第6態様に係るレンズユニットは、嵌合部を有しているので、鏡筒内でのレンズ保持環の保持力を高めることができる。 Since the lens unit according to the sixth aspect has the fitting portion, the holding force of the lens holding ring in the lens barrel can be increased.
 第7態様に係るレンズユニットは、第6態様に係るレンズユニットにおいて、鏡筒は、大径部と、大径部よりも小径の小径部とを有し、受部は、大径部と小径部の段差により形成されている。 The lens unit according to a seventh aspect is the lens unit according to the sixth aspect, wherein the lens barrel has a large diameter portion and a small diameter portion having a smaller diameter than the large diameter portion, and the receiving portion includes the large diameter portion and the small diameter. It is formed by the level difference of the part.
 第7態様に係るレンズユニットでは、鏡筒に大径部及び小径部を形成して、大径部と小径部の段差により受部を形成することにより、受部を簡易に形成することができる。 In the lens unit according to the seventh aspect, the receiving portion can be easily formed by forming the large diameter portion and the small diameter portion in the lens barrel and forming the receiving portion by the step between the large diameter portion and the small diameter portion. .
 第8態様に係るレンズユニットは、環状部は、大径部の径方向内側に配置され、嵌合部は、小径部の径方向内側に配置され、被支持部は、環状部と嵌合部の外周の段差により形成されている。 In the lens unit according to the eighth aspect, the annular portion is disposed radially inside the large diameter portion, the fitting portion is disposed radially inside the small diameter portion, and the supported portion is the annular portion and the fitting portion. It is formed by the level | step difference of the outer periphery.
 第8態様に係るレンズユニットでは、鏡筒の大径部と小径部に対応させて、環状部と嵌合部を各々形成し、環状部と嵌合部との間の外周の段差を被支持部とすることにより、被支持部を簡易に形成することができる。 In the lens unit according to the eighth aspect, the annular portion and the fitting portion are formed respectively corresponding to the large diameter portion and the small diameter portion of the lens barrel, and the outer circumferential step between the annular portion and the fitting portion is supported. By using the part, the supported part can be easily formed.
 第9態様に係るレンズユニットは、嵌合部は、環状部の光軸方向の両端に形成されている。 In the lens unit according to the ninth aspect, the fitting portions are formed at both ends of the annular portion in the optical axis direction.
 第9態様に係るレンズユニットでは、鏡筒の筒内に嵌合する嵌合部の間に、鏡筒の内周から離間した環状部が配置されているので、バランス良くレンズを保持することができる。 In the lens unit according to the ninth aspect, the annular portion spaced from the inner periphery of the lens barrel is disposed between the fitting portions that fit into the lens barrel, so that the lens can be held in a balanced manner. it can.
 第10態様に係るレンズユニットは、嵌合部の内周にはガラス製レンズが嵌合され、環状部の内周には樹脂製レンズが嵌合されている。 In the lens unit according to the tenth aspect, a glass lens is fitted to the inner periphery of the fitting portion, and a resin lens is fitted to the inner periphery of the annular portion.
 第10態様に係るレンズユニットでは、レンズ保持環の径方向外側への移動が鏡筒により規制された嵌合部に、熱膨張率の比較的小さいガラス製レンズが収容されている。したがって、レンズが熱膨張することにより鏡筒から受ける力を、比較的小さくすることができる。また、樹脂製レンズが嵌合されている環状部の外周は鏡筒の内周から離間しているので、樹脂製レンズが熱により膨張しても、鏡筒からの力を受けにくくすることができる。 In the lens unit according to the tenth aspect, a glass lens having a relatively low coefficient of thermal expansion is accommodated in a fitting portion in which movement of the lens holding ring to the outside in the radial direction is restricted by the lens barrel. Therefore, the force received from the lens barrel due to the thermal expansion of the lens can be made relatively small. In addition, since the outer periphery of the annular portion to which the resin lens is fitted is separated from the inner periphery of the lens barrel, even if the resin lens expands due to heat, it is difficult to receive the force from the lens barrel. it can.
 第11態様に係るレンズユニットは、レンズ保持環は、光軸方向の熱膨張係数が光軸と直交する方向の熱膨張係数よりも小さい材料で構成されている。 In the lens unit according to the eleventh aspect, the lens holding ring is made of a material whose thermal expansion coefficient in the optical axis direction is smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
 第11態様に係るレンズユニットによれば、熱膨張による光軸方向の変化量を小さくして解像度低下への影響を小さくすることができる。 According to the lens unit of the eleventh aspect, the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the influence on the resolution reduction.
 第12態様に係るレンズユニットは、レンズ保持環は、無機繊維含有樹脂で形成されている。 In the lens unit according to the twelfth aspect, the lens holding ring is formed of an inorganic fiber-containing resin.
 第12態様に係るレンズユニットによれば、レンズ保持環を無機繊維含有樹脂で形成することにより、レンズ保持環の強度を上げることができると共に、無機繊維の配向により熱膨張率に異方性を持たせることができる。 According to the lens unit of the twelfth aspect, the strength of the lens holding ring can be increased by forming the lens holding ring with the inorganic fiber-containing resin, and the thermal expansion coefficient is made anisotropic by the orientation of the inorganic fibers. You can have it.
 第13態様に係るレンズユニットは、レンズ保持環の内周とレンズの外周とは、周方向の三カ所以上で当接されている。 In the lens unit according to the thirteenth aspect, the inner periphery of the lens holding ring and the outer periphery of the lens are in contact with each other at three or more locations in the circumferential direction.
 第13態様に係るレンズユニットによれば、レンズの外周がレンズ保持環の内周に周方向の三カ所以上で当接されているので、レンズの位置精度を確保し易い。また、レンズが熱膨張した際に、レンズとレンズ保持環の当接箇所に応力が集中しても、鏡筒からの力を受けにくくすることができる。 According to the lens unit of the thirteenth aspect, since the outer periphery of the lens is in contact with the inner periphery of the lens holding ring at three or more locations in the circumferential direction, it is easy to ensure the positional accuracy of the lens. Further, when the lens is thermally expanded, even if stress is concentrated on the contact portion between the lens and the lens holding ring, it is possible to make it difficult to receive a force from the lens barrel.
 第14態様に係るレンズユニットは、レンズ保持環の内周面は、光軸方向から見て多角形状とされている。 In the lens unit according to the fourteenth aspect, the inner peripheral surface of the lens holding ring is polygonal when viewed from the optical axis direction.
 第14態様に係るレンズユニットによれば、レンズ保持環の内周面が多角形状であるので、レンズの外周とレンズ保持環の内周との当接が光軸方向に線接触となる。これにより、レンズの外周を曲面で受ける面接触の構造と比較して、組み付け時の抵抗が減り、レンズの組付けを行いやすい。また、レンズが熱膨張した際に、レンズとレンズ保持環の当接箇所に応力が集中しても、鏡筒からの力を受けにくくすることができる。 According to the lens unit of the fourteenth aspect, since the inner peripheral surface of the lens holding ring is polygonal, the contact between the outer periphery of the lens and the inner periphery of the lens holding ring is a line contact in the optical axis direction. Thereby, compared with the structure of the surface contact which receives the outer periphery of a lens with a curved surface, the resistance at the time of an assembly | attachment reduces and it is easy to assemble | attach a lens. Further, when the lens is thermally expanded, even if stress is concentrated on the contact portion between the lens and the lens holding ring, it is possible to make it difficult to receive a force from the lens barrel.
 第15態様に係るレンズユニットは、レンズ保持環には、複数のレンズが嵌合されている。 In the lens unit according to the fifteenth aspect, a plurality of lenses are fitted in the lens holding ring.
 第15態様に係るレンズユニットによれば、レンズ保持環をレンズ毎に設ける場合と比較して、部品点数を少なくすることができる。 According to the lens unit of the fifteenth aspect, the number of parts can be reduced as compared with the case where a lens holding ring is provided for each lens.
 第16態様に係るレンズユニットは、鏡筒は、金属で形成されている。 In the lens unit according to the sixteenth aspect, the lens barrel is made of metal.
 金属の熱膨張係数は、比較的小さいため、レンズが熱膨張しても、その熱膨張に追従して膨張せず、レンズに対して鏡筒からの力が加わりやすい。第16態様に係るレンズユニットでは、環状部の外周が鏡筒の内周から離間しているので、環状部の内周に嵌合されたレンズが熱により膨張しても、レンズが鏡筒から受ける力を小さくすることができる。 Since the thermal expansion coefficient of metal is relatively small, even if the lens is thermally expanded, it does not expand following the thermal expansion, and a force from the lens barrel is easily applied to the lens. In the lens unit according to the sixteenth aspect, since the outer periphery of the annular portion is separated from the inner periphery of the lens barrel, even if the lens fitted to the inner periphery of the annular portion expands due to heat, the lens is removed from the lens barrel. The force received can be reduced.
 第17態様に係るレンズユニットは、レンズユニットは、車載用又は監視用のレンズユニットである。 The lens unit according to the seventeenth aspect is an in-vehicle or monitoring lens unit.
 車載用や監視用のレンズユニットは、高温に晒される場合があるが、第17態様に係るレンズユニットは、環状部の外周が鏡筒の内周から離間している。したがって、高温に晒されて、環状部の内周に嵌合されたレンズが熱により膨張しても、鏡筒からの力を受けにくくすることができる。 Although the on-vehicle and monitoring lens units may be exposed to high temperatures, the lens unit according to the seventeenth aspect has the outer periphery of the annular portion spaced from the inner periphery of the lens barrel. Therefore, even if the lens fitted to the inner periphery of the annular portion is exposed to a high temperature and expands due to heat, it is difficult to receive a force from the lens barrel.
 本開示のレンズユニットによれば、鏡筒内に収容されるレンズの歪みを抑制すると共に、レンズ保持環と鏡筒との光軸方向の位置決めを容易に行うことができる。 According to the lens unit of the present disclosure, it is possible to suppress the distortion of the lens accommodated in the lens barrel and to easily position the lens holding ring and the lens barrel in the optical axis direction.
第1実施形態に係るレンズユニットの半縦断面図である。It is a semi-longitudinal sectional view of the lens unit concerning a 1st embodiment. 第1実施形態のレンズ保持環の図1のA-A線の断面図である。FIG. 2 is a cross-sectional view of the lens holding ring of the first embodiment taken along line AA in FIG. 第1実施形態のレンズ保持環の図1のB-B線の断面図である。FIG. 3 is a cross-sectional view of the lens holding ring of the first embodiment taken along line BB in FIG. 第1実施形態のレンズ保持環の図1のC-C線の断面図である。FIG. 2 is a cross-sectional view taken along the line CC of FIG. 1 of the lens holding ring of the first embodiment. 第1実施形態のレンズ保持環の変形例の図1のA-A線の断面図である。FIG. 6 is a cross-sectional view taken along the line AA in FIG. 1 of a modification of the lens holding ring of the first embodiment. 第1実施形態のレンズ保持環の変形例の図1のB-B線の断面図である。FIG. 6 is a cross-sectional view taken along line BB of FIG. 第1実施形態のレンズ保持環の変形例の図1のC-C線の断面図である。FIG. 6 is a cross-sectional view taken along the line CC of FIG. 第2実施形態に係るレンズユニットの半縦断面図である。It is a half longitudinal cross-sectional view of the lens unit which concerns on 2nd Embodiment. 第2実施形態に係るレンズ保持環の、図4のD-D線の断面図である。FIG. 6 is a cross-sectional view of the lens holding ring according to the second embodiment, taken along the line DD in FIG. 4. 第3実施形態に係るレンズユニットの半縦断面図である。It is a half longitudinal cross-sectional view of the lens unit which concerns on 3rd Embodiment. 第3実施形態に係るレンズ保持環の、図6のE-E線の断面図である。FIG. 9 is a cross-sectional view of the lens holding ring according to the third embodiment, taken along line EE of FIG.
 [第1実施形態]
 以下、図面を参照しながら第1実施形態を説明する。なお、図面において同一機能を有する構成要素には同一符号を付し、説明を適宜省略する。また、各図において適宜示されるSは、光軸を示すものであり、光軸Sに沿った方向を光軸方向と記載する。
[First embodiment]
Hereinafter, a first embodiment will be described with reference to the drawings. In the drawings, components having the same function are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Moreover, S shown suitably in each figure shows an optical axis, and the direction along the optical axis S is described as an optical axis direction.
 図1に示されるように、本実施形態に係るレンズユニット10は、鏡筒40、レンズ保持環20、キャップ16、間隔環14、及び、レンズ群30を有している。図1において、図中左側が物体側であり、図中右側が像側である。レンズユニット10よりも像側には、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサなどの撮像素子(不図示)が配置されている。  As shown in FIG. 1, the lens unit 10 according to this embodiment includes a lens barrel 40, a lens holding ring 20, a cap 16, a spacing ring 14, and a lens group 30. In FIG. 1, the left side in the figure is the object side, and the right side in the figure is the image side. An imaging element (not shown) such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor is disposed on the image side of the lens unit 10. *
 <レンズ>
 レンズ群30は、物体側から順に配置された、第1レンズ32、第2レンズ34、第3レンズ36、及び、第4レンズ38を有している。
<Lens>
The lens group 30 includes a first lens 32, a second lens 34, a third lens 36, and a fourth lens 38, which are arranged in order from the object side.
 第1レンズ32は、光軸方向から見て略円形に形成されており、物体側は凸となるように湾曲されている。第1レンズ32の像側は、中央が凹となるように湾曲され、像側を向く外縁に平坦部32Fが形成されている。また、第1レンズ32には、像側の外周に溝32Aが形成されており、溝32AにOリング32Bが取り付けられている。第1レンズ32には、溝32Aよりも物体側の外周に外周部32Cが形成されている。第1レンズ32は、後述する鏡筒40の大径部42に嵌合される。第1レンズ32は、一例として、ガラス製である。 The first lens 32 is formed in a substantially circular shape when viewed from the optical axis direction, and is curved so as to be convex on the object side. The image side of the first lens 32 is curved so that the center is concave, and a flat portion 32F is formed on the outer edge facing the image side. The first lens 32 has a groove 32A formed on the outer periphery on the image side, and an O-ring 32B is attached to the groove 32A. In the first lens 32, an outer peripheral portion 32C is formed on the outer periphery on the object side of the groove 32A. The first lens 32 is fitted into a large diameter portion 42 of a lens barrel 40 described later. As an example, the first lens 32 is made of glass.
 第2レンズ34は、光軸方向から見て略円形に形成されており、物体側は中央が凸となるように湾曲され、物体側を向く外縁に平坦部34Eが形成されている。平坦部34Eは、第1レンズ32の平坦部32Fに当接されている。第2レンズ34の像側は中央が凹となるように湾曲され、像側を向く外縁に平坦部34Fが形成されている。第2レンズ34は、第1レンズ32よりも小径とされ、第2レンズ34の外周に外周部34Cが形成されている。第2レンズ34は、後述するレンズ保持環20の第1環状部22に嵌合される。第2レンズ34は、樹脂製となっている。 The second lens 34 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is convex, and a flat portion 34E is formed on the outer edge facing the object side. The flat portion 34E is in contact with the flat portion 32F of the first lens 32. The image side of the second lens 34 is curved so that the center is concave, and a flat portion 34F is formed on the outer edge facing the image side. The second lens 34 has a smaller diameter than the first lens 32, and an outer peripheral portion 34 </ b> C is formed on the outer periphery of the second lens 34. The second lens 34 is fitted into the first annular portion 22 of the lens holding ring 20 described later. The second lens 34 is made of resin.
 第3レンズ36は、光軸方向から見て略円形に形成されており、物体側は中央が凹となるように湾曲され、物体側を向く外縁に平坦部36Eが形成されている。平坦部36Eは、第2レンズ34の平坦部34Fに当接されている。第3レンズ36の像側は中央が凸となるように湾曲され、像側を向く外縁に平坦部36Fが形成されている。平坦部36Fは、後述する間隔環14の端面14Eに当接されている。第3レンズ36は、第2レンズ34よりも小径とされ、第3レンズ36の外周に外周部36Cが形成されている。第3レンズ36は、後述するレンズ保持環20の第2環状部24に嵌合される。第3レンズ36は、ガラス製となっている。 The third lens 36 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is concave, and a flat portion 36E is formed on the outer edge facing the object side. The flat portion 36E is in contact with the flat portion 34F of the second lens 34. The image side of the third lens 36 is curved so that the center is convex, and a flat portion 36F is formed on the outer edge facing the image side. The flat portion 36F is in contact with an end face 14E of the interval ring 14 described later. The third lens 36 has a smaller diameter than the second lens 34, and an outer peripheral portion 36 </ b> C is formed on the outer periphery of the third lens 36. The third lens 36 is fitted into the second annular portion 24 of the lens holding ring 20 described later. The third lens 36 is made of glass.
 第4レンズ38は、光軸方向から見て略円形に形成されており、物体側は中央が凸となるように湾曲され、物体側を向く外縁に平坦部38Eが形成されている。平坦部38Eは、後述する間隔環14の平坦部14Fに当接されている。第4レンズ38の像側は中央が凸となるように湾曲され、像側を向く外縁に平坦部38Fが形成されている。第4レンズ38は、第3レンズ36よりも僅かに小径とされ、第4レンズ38の外周に外周部38Cが形成されている。第4レンズ38は、後述するレンズ保持環20の第3環状部26に嵌合される。第4レンズ38は、樹脂製となっている。 The fourth lens 38 is formed in a substantially circular shape when viewed from the optical axis direction, the object side is curved so that the center is convex, and a flat portion 38E is formed on the outer edge facing the object side. The flat portion 38E is in contact with a flat portion 14F of the interval ring 14 described later. The image side of the fourth lens 38 is curved so that the center is convex, and a flat portion 38F is formed on the outer edge facing the image side. The fourth lens 38 has a slightly smaller diameter than the third lens 36, and an outer peripheral portion 38 </ b> C is formed on the outer periphery of the fourth lens 38. The fourth lens 38 is fitted into a third annular portion 26 of the lens holding ring 20 described later. The fourth lens 38 is made of resin.
 <間隔環>
 間隔環14は、光軸方向に見て環状の部材であり、物体側の端面14Eが第3レンズ36の平坦部36Fと接触し、像側の平坦部14Fが第4レンズ38の平坦部38Eと接触している。間隔環14は、第3レンズ36と第4レンズ38との光軸方向の間隔を決めている。間隔環14は、樹脂製とされている。
<Interval ring>
The spacing ring 14 is an annular member as viewed in the optical axis direction, the object-side end surface 14E is in contact with the flat portion 36F of the third lens 36, and the image-side flat portion 14F is the flat portion 38E of the fourth lens 38. In contact with. The spacing ring 14 determines the spacing in the optical axis direction between the third lens 36 and the fourth lens 38. The spacing ring 14 is made of resin.
 <鏡筒>
 図1に示すように、鏡筒40は、筒状に形成されており、光軸Sが筒軸と一致するように配置されている。鏡筒40は、物体側に配置された大径部42と、像側に配置された小径部44を有している。大径部42及び小径部44の内周面は光軸方向から見て円形とされている。大径部42の像側端部と小径部44の物体側端部との間は、受部43により連結されている。受部43は、大径部42と小径部44の間の段差を構成しており、筒軸と直交するように径方向に配置され、物体側を向いた平坦面を有している。受部43は、後述するレンズ保持環20の被支持部23を、光軸方向で受ける。
<Tube>
As shown in FIG. 1, the lens barrel 40 is formed in a cylindrical shape, and is arranged so that the optical axis S coincides with the cylinder axis. The lens barrel 40 has a large diameter portion 42 disposed on the object side and a small diameter portion 44 disposed on the image side. The inner peripheral surfaces of the large-diameter portion 42 and the small-diameter portion 44 are circular when viewed from the optical axis direction. The image side end of the large diameter portion 42 and the object side end of the small diameter portion 44 are connected by a receiving portion 43. The receiving portion 43 forms a step between the large-diameter portion 42 and the small-diameter portion 44, is disposed in the radial direction so as to be orthogonal to the cylinder axis, and has a flat surface facing the object side. The receiving portion 43 receives a supported portion 23 of the lens holding ring 20 described later in the optical axis direction.
 大径部42の物体側端部の内周面には、第1レンズ32が嵌合されている。第1レンズ32と大径部42の内周面との間は、Oリング32Bによりシールされている。小径部44の像側端部には、内周面から突出した凸条44Aが形成されている。 The first lens 32 is fitted to the inner peripheral surface of the object side end of the large diameter portion 42. A space between the first lens 32 and the inner peripheral surface of the large diameter portion 42 is sealed with an O-ring 32B. On the image-side end of the small diameter portion 44, a protruding line 44A protruding from the inner peripheral surface is formed.
 大径部42の外周には、雄ねじ42Aが形成されている。雄ねじ42Aには、後述するキャップ16が螺合される。 A male screw 42 </ b> A is formed on the outer periphery of the large-diameter portion 42. A cap 16 described later is screwed onto the male screw 42A.
 鏡筒40は、一例として金属製とすることができる。金属の熱膨張係数は、比較的小さいため、レンズが熱膨張しても、その熱膨張に追従して膨張せず、レンズに対して鏡筒40からの力が加わりやすい。このように、鏡筒40を金属製にする場合には、レンズが鏡筒40から受ける力を小さくするために、好適に用いることができる。なお、鏡筒40は、後述するレンズ保持環20と同様の材料を用いた樹脂製とすることもできる。 The lens barrel 40 can be made of metal as an example. Since the thermal expansion coefficient of the metal is relatively small, even if the lens is thermally expanded, it does not expand following the thermal expansion, and the force from the lens barrel 40 is easily applied to the lens. Thus, when the lens barrel 40 is made of metal, it can be suitably used to reduce the force that the lens receives from the lens barrel 40. The lens barrel 40 can also be made of resin using the same material as the lens holding ring 20 described later.
 <キャップ>
 キャップ16は、環状とされ、鏡筒40の大径部42の外周に配置されている。キャップ16には、物体側の端部に押さえ部16Bが形成されている。押さえ部16Bは、径方向内側に突出する凸条で構成されている。押さえ部16Bにより、第1レンズ32の物体側の外縁が押さえられ、第1レンズ32の鏡筒40内からの脱離が規制されている。
<Cap>
The cap 16 is annular and is disposed on the outer periphery of the large-diameter portion 42 of the lens barrel 40. The cap 16 has a pressing portion 16 </ b> B formed at the end on the object side. The pressing portion 16B is configured by a ridge protruding inward in the radial direction. The outer edge of the first lens 32 on the object side is pressed by the pressing portion 16B, and the detachment of the first lens 32 from the lens barrel 40 is restricted.
 キャップ16の外径は、鏡筒40の外径よりも大径とされている。キャップ16の内周面には、雌ねじ16Aが形成されており、鏡筒40の大径部42の外周に形成された雄ねじ42Aと螺合されている。キャップ16は、一例として金属で形成することができる。 The outer diameter of the cap 16 is larger than the outer diameter of the lens barrel 40. A female screw 16A is formed on the inner peripheral surface of the cap 16, and is screwed with a male screw 42A formed on the outer periphery of the large-diameter portion 42 of the lens barrel 40. The cap 16 can be formed of metal as an example.
 <レンズ保持環>
 図1に示すように、レンズ保持環20は、光軸方向の両端部が開口された筒状とされ、樹脂成形により形成されている。レンズ保持環20は、筒軸がレンズユニット10の光軸と一致するように配置されている。
<Lens holding ring>
As shown in FIG. 1, the lens holding ring 20 has a cylindrical shape with both ends in the optical axis direction opened, and is formed by resin molding. The lens holding ring 20 is disposed so that the cylinder axis coincides with the optical axis of the lens unit 10.
 ここで、レンズ保持環20は、一例として、無機繊維含有の樹脂で構成することができる。レンズ保持環20を無機繊維等を含有する、所謂繊維強化プラスチック製とすることにより、機械的強度が高くなる。使用する樹脂としては、例えば、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、シンジオタクチックポリスチレン、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、アクリロニトリルブダジエンスチレン、ポリオレフィン及び各々の変性ポリマーからなる群より選択される少なくとも一種、又は当該群から選択される少なくとも一種を含むポリマーアロイなどを用いることができる。繊維としては、ガラス繊維や炭素繊維、繊維強化プラスチック、無機フィラー等を用いることができる。 Here, as an example, the lens holding ring 20 can be made of a resin containing inorganic fibers. By making the lens holding ring 20 made of a so-called fiber reinforced plastic containing inorganic fibers or the like, the mechanical strength is increased. Examples of the resin used include polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, and polyether. It is possible to use at least one selected from the group consisting of imide, polyether ether ketone, acrylonitrile budadiene styrene, polyolefin and each modified polymer, or a polymer alloy containing at least one selected from the group. As the fiber, glass fiber, carbon fiber, fiber reinforced plastic, inorganic filler, or the like can be used.
 また、レンズ保持環20は、光軸方向の熱膨張係数が光軸と直交する方向の熱膨張係数よりも小さいことが好ましい。熱膨張による光軸方向の変化量を小さくして解像度低下への影響を小さくすることができるためである。上記の繊維の配向方向を、光軸に沿った方向とすることにより、光軸方向の熱膨張係数を光軸と直交する方向の熱膨張係数よりも小さくすることができる。 The lens holding ring 20 preferably has a thermal expansion coefficient in the optical axis direction smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis. This is because the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the effect on resolution reduction. By making the above-mentioned fiber orientation direction along the optical axis, the thermal expansion coefficient in the optical axis direction can be made smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
 レンズ保持環20は、物体側から順に、第1環状部22、第2環状部24、及び第3環状部26を有している。第1環状部22の外径は、鏡筒40の大径部42の内径よりも小さく、且つ、小径部44の内径よりも大きく設定されている。第1環状部22は、大径部42の径方向内側に配置されている。第1環状部22の物体側端部には、径方向外側へ延びるフランジ部21が形成されている。フランジ部21の物体側には、平坦面21Eが形成されている。フランジ部21の径方向外側端面には、外周面21Aが形成されている。平坦面21Eと第1レンズ32の平坦部32Fとは離間されている。また、外周面21Aと鏡筒40の大径部42の内周面とは離間されている。第1環状部22のフランジ部21よりも像側の外周には、径方向外側を向く外周面22Aが形成されている。外周面22Aと鏡筒40の大径部42の内周面とは離間されている。 The lens holding ring 20 has a first annular portion 22, a second annular portion 24, and a third annular portion 26 in order from the object side. The outer diameter of the first annular portion 22 is set smaller than the inner diameter of the large diameter portion 42 of the lens barrel 40 and larger than the inner diameter of the small diameter portion 44. The first annular portion 22 is disposed on the radially inner side of the large diameter portion 42. A flange portion 21 that extends radially outward is formed at the object-side end of the first annular portion 22. A flat surface 21 </ b> E is formed on the object side of the flange portion 21. An outer peripheral surface 21 </ b> A is formed on the radially outer end surface of the flange portion 21. The flat surface 21E and the flat portion 32F of the first lens 32 are separated from each other. Further, the outer peripheral surface 21A and the inner peripheral surface of the large diameter portion 42 of the lens barrel 40 are separated from each other. An outer peripheral surface 22 </ b> A facing outward in the radial direction is formed on the outer periphery on the image side of the flange portion 21 of the first annular portion 22. The outer peripheral surface 22A and the inner peripheral surface of the large diameter portion 42 of the lens barrel 40 are separated from each other.
 第2環状部24の外径は、鏡筒40の小径部44の内径よりも小さく設定され、第2環状部24の内径は、第1環状部22の内径よりも小さく設定されている。第2環状部24の物体側端面には、平坦部24Eが形成されている。第2環状部24の外周には、径方向外側を向く外周面24Aが形成されている。第2環状部24は、小径部44の径方向内側に配置されている。外周面24Aと鏡筒40の小径部44の内周面とは離間されている。 The outer diameter of the second annular portion 24 is set smaller than the inner diameter of the small diameter portion 44 of the lens barrel 40, and the inner diameter of the second annular portion 24 is set smaller than the inner diameter of the first annular portion 22. A flat portion 24 </ b> E is formed on the object-side end surface of the second annular portion 24. On the outer periphery of the second annular portion 24, an outer peripheral surface 24A facing outward in the radial direction is formed. The second annular portion 24 is disposed on the radially inner side of the small diameter portion 44. 24 A of outer peripheral surfaces and the internal peripheral surface of the small diameter part 44 of the lens-barrel 40 are spaced apart.
第1環状部22の像側端部と第2環状部24の物体側端部との間には、被支持部23が形成されている。被支持部23は、筒軸と直交するように径方向に延びて配置されており、像側を向いた段差とされている。被支持部23は、鏡筒40の受部43に密着されており、被支持部23で、レンズ保持環20が鏡筒40に保持されている。 A supported portion 23 is formed between the image side end portion of the first annular portion 22 and the object side end portion of the second annular portion 24. The supported portion 23 is arranged to extend in the radial direction so as to be orthogonal to the cylinder axis, and is a step toward the image side. The supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40, and the lens holding ring 20 is held by the lens barrel 40 at the supported portion 23.
 第3環状部26の外径は、第2環状部24の外径よりも小さく設定され、第3環状部26の内径は、第2環状部24の内径よりも小さく設定されている。第3環状部26の外周には、径方向外側を向く外周面26Aが形成されている。第3環状部26は、小径部44の径方向内側に配置されている。外周面26Aと、鏡筒40の小径部44の内周及び凸条44Aの内周とは離間されている。第3環状部26の像側端部には、径方向内側に突出した凸条26Dが形成されている。 The outer diameter of the third annular portion 26 is set smaller than the outer diameter of the second annular portion 24, and the inner diameter of the third annular portion 26 is set smaller than the inner diameter of the second annular portion 24. On the outer periphery of the third annular portion 26, an outer peripheral surface 26A facing outward in the radial direction is formed. The third annular portion 26 is disposed on the radially inner side of the small diameter portion 44. The outer peripheral surface 26A is separated from the inner periphery of the small-diameter portion 44 of the lens barrel 40 and the inner periphery of the protrusion 44A. On the image-side end of the third annular portion 26, a ridge 26D protruding inward in the radial direction is formed.
 図2A、図2B、及び図2Cに示されるように、第1環状部22の内周面22B、第2環状部24の内周面24B、及び第3環状部26の内周面26Bは、光軸方向から見て多角形状に形成されており、本実施形態では一例として、光軸方向から見て略正12角形状に形成されている。内周面22B、24B、26Bを構成する各々の12面は、光軸方向から見て直線状の平坦面とされている。内周面22Bを構成する各平坦面を平坦面22C、内周面24Bを構成する各平坦面を平坦面24C、内周面26Bを構成する各平坦面を平坦面26Cとする。なお、図2A、図2B、及び図2Cでは、レンズ保持環20と、その内周に嵌合される第2レンズ34、第2レンズ36、及び第3レンズ38以外の部材は省略している。 2A, 2B, and 2C, the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are: It is formed in a polygonal shape as viewed from the optical axis direction, and in the present embodiment, as an example, it is formed in a substantially regular dodecagonal shape as viewed from the optical axis direction. Each of the 12 surfaces constituting the inner peripheral surfaces 22B, 24B, and 26B is a straight flat surface when viewed from the optical axis direction. Each flat surface constituting the inner peripheral surface 22B is defined as a flat surface 22C, each flat surface constituting the inner peripheral surface 24B is defined as a flat surface 24C, and each flat surface constituting the inner peripheral surface 26B is defined as a flat surface 26C. 2A, 2B, and 2C, members other than the lens holding ring 20 and the second lens 34, the second lens 36, and the third lens 38 that are fitted to the inner periphery thereof are omitted. .
 第1環状部22の内周には、第2レンズ34が嵌合されている。第2レンズ34は、外周部34Cが平坦面22Cの各々によって光軸方向に直線状に保持されている。第2レンズ34の平坦部34Fと第2環状部24の平坦部24Eとは離間されている(図1参照)。 A second lens 34 is fitted on the inner periphery of the first annular portion 22. As for the 2nd lens 34, the outer peripheral part 34C is linearly hold | maintained by each of the flat surfaces 22C in the optical axis direction. The flat portion 34F of the second lens 34 and the flat portion 24E of the second annular portion 24 are separated (see FIG. 1).
第2環状部24の内周には、第3レンズ36が嵌合されている。第3レンズ36は、外周部36Cが平坦面24Cの各々によって光軸方向に直線状に保持されている。また、第2環状部24の内周には、第3レンズ36の像側に間隔環14が嵌合されている。間隔環14は、外周部14Cが平坦面24Cの各々によって光軸方向に直線状に保持されている。第3環状部26の内周には、第4レンズ38が嵌合されている。第4レンズは、外周部38Cが平坦面26Cの各々によって光軸方向に直線状に保持されている。 A third lens 36 is fitted on the inner periphery of the second annular portion 24. The outer periphery 36C of the third lens 36 is linearly held in the optical axis direction by each of the flat surfaces 24C. A spacing ring 14 is fitted to the inner side of the second annular portion 24 on the image side of the third lens 36. The spacing ring 14 has an outer peripheral portion 14C that is linearly held in the optical axis direction by each of the flat surfaces 24C. A fourth lens 38 is fitted on the inner periphery of the third annular portion 26. In the fourth lens, the outer peripheral portion 38C is held linearly in the optical axis direction by each of the flat surfaces 26C.
レンズ保持環20の径方向外側を向く外周面の全体(外周面21A、22A、24A、26A)は、鏡筒40の内周面から離間されている。 The entire outer peripheral surface (outer peripheral surfaces 21A, 22A, 24A, 26A) facing the radially outer side of the lens holding ring 20 is separated from the inner peripheral surface of the lens barrel 40.
(作用及び効果)
 次に、本実施形態の作用及び効果について説明する。
(Function and effect)
Next, the operation and effect of this embodiment will be described.
 本実施形態のレンズユニット10では、鏡筒40の受部43にレンズ保持環20の被支持部23が密着することにより、レンズ保持環20が鏡筒40に支持されている。したがって、鏡筒40に対するレンズ保持環20の光軸方向の位置決めを容易に行うことができる。また、レンズ保持環20の外周面の全体(外周面21A、22A、24A、26A)が、鏡筒40の内周面から離間されているので、レンズ保持環20の内周に嵌合されたレンズ(第2レンズ34、第3レンズ36、第4レンズ38)が熱により膨張しても、レンズ保持環20も全体として径方向外側に移動することができる。したがって、レンズ(第2レンズ34、第3レンズ36、第4レンズ38)に対して、鏡筒40からの力を受けにくくすることができる。 In the lens unit 10 of the present embodiment, the lens holding ring 20 is supported by the lens barrel 40 when the supported portion 23 of the lens holding ring 20 is in close contact with the receiving portion 43 of the lens barrel 40. Therefore, it is possible to easily position the lens holding ring 20 with respect to the lens barrel 40 in the optical axis direction. Further, since the entire outer peripheral surface (the outer peripheral surfaces 21A, 22A, 24A, 26A) of the lens holding ring 20 is separated from the inner peripheral surface of the lens barrel 40, it is fitted to the inner periphery of the lens holding ring 20. Even if the lenses (the second lens 34, the third lens 36, and the fourth lens 38) expand due to heat, the lens holding ring 20 as a whole can also move radially outward. Therefore, it is possible to make the lens (second lens 34, third lens 36, and fourth lens 38) less susceptible to force from the lens barrel 40.
 また、本実施形態では、第2レンズ34及び第4レンズ38は樹脂製であり、熱膨張係数が比較的大きいため、レンズが熱膨張すると鏡筒40からの力を受けやすいが、第1環状部22及び第3環状部26と鏡筒40の内周との間には隙間が形成されているので、鏡筒40からの力を受けにくくすることができる。 In the present embodiment, the second lens 34 and the fourth lens 38 are made of resin and have a relatively large coefficient of thermal expansion. Since a gap is formed between the portion 22 and the third annular portion 26 and the inner periphery of the lens barrel 40, the force from the lens barrel 40 can be made difficult to receive.
 また、本実施形態では、鏡筒40に大径部42と小径部44を設け、大径部42と小径部44の間の段差で受部43を構成しているので、受部43を簡易に形成することができる。また、レンズ保持環20についても、第1環状部22と第2環状部24を設け、第1環状部22と第2環状部24の間の段差で被支持部23を構成しているので、被支持部23を簡易に形成することができる。 In the present embodiment, the lens barrel 40 is provided with the large-diameter portion 42 and the small-diameter portion 44, and the receiving portion 43 is configured by the step between the large-diameter portion 42 and the small-diameter portion 44. Can be formed. Further, the lens holding ring 20 is also provided with the first annular portion 22 and the second annular portion 24, and the supported portion 23 is configured by the step between the first annular portion 22 and the second annular portion 24. The supported portion 23 can be easily formed.
 また、本実施形態のレンズユニット10のレンズ保持環20の内周面(内周面22B、24B、26B)は、光軸方向から見て多角形状に形成されている。したがって、レンズの外周(外周部34C、36C、38C)とレンズ保持環20の内周面との当接が光軸方向に線接触となる。これにより、レンズの外周を曲面で受ける面接触の構造と比較して、組み付け時の抵抗が減り、レンズの組付けを行いやすい。また、レンズ保持環20の内周に嵌合されたレンズ(第2レンズ34、第3レンズ36、第4レンズ38)が熱膨張した際に、レンズ保持環20による保持箇所に応力が集中しても、鏡筒40からの力を受けにくくすることができる。また、各レンズが3点以上の多点支持となるので、各レンズの位置精度を確保し易い。 Further, the inner peripheral surface (inner peripheral surfaces 22B, 24B, 26B) of the lens holding ring 20 of the lens unit 10 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer periphery of the lens (the outer peripheral portions 34C, 36C, and 38C) and the inner peripheral surface of the lens holding ring 20 is a line contact in the optical axis direction. Thereby, compared with the structure of the surface contact which receives the outer periphery of a lens with a curved surface, the resistance at the time of an assembly | attachment reduces and it is easy to assemble | attach a lens. Further, when the lenses (second lens 34, third lens 36, and fourth lens 38) fitted to the inner periphery of the lens holding ring 20 are thermally expanded, stress concentrates on the holding position by the lens holding ring 20. However, the force from the lens barrel 40 can be made difficult to receive. Further, since each lens is supported at multiple points of three or more points, it is easy to ensure the positional accuracy of each lens.
 また、本実施形態のレンズユニット10は、レンズ保持環20で複数のレンズを保持しているので、レンズ保持環をレンズ毎に設ける場合と比較して、部品点数を少なくすることができる。 Further, since the lens unit 10 of the present embodiment holds a plurality of lenses by the lens holding ring 20, the number of parts can be reduced as compared with the case where the lens holding ring is provided for each lens.
なお、本実施形態では、第1環状部22の内周面22B、第2環状部24の内周面24B、及び第3環状部26の内周面26Bは、光軸方向から見て略正12角形状に形成されているが、必ずしも正12角形状である必要はなく、正6角形状や、正8角形状などでもよいし、光軸方向から見て円形状であってもよい。 In the present embodiment, the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are substantially positive when viewed from the optical axis direction. Although it is formed in a dodecagonal shape, it is not necessarily a regular dodecagonal shape, and may be a regular hexagonal shape, a regular octagonal shape, or a circular shape when viewed from the optical axis direction.
また、図3A、図3B、及び図3Cに示されるように、第1環状部22の内周面22B、第2環状部24の内周面24B、及び第3環状部26の内周面26Bに、径方向内側に突出するレンズ受部22G、24G、26Gを各々形成してもよい。レンズ受部22Gは、内周面22Bの周方向に等間隔の3カ所から径方向内側へ突出され、レンズ受部24Gは、内周面24Bの周方向に等間隔の3カ所から径方向内側へ突出され、レンズ受部26Gは、内周面26Bの周方向に等間隔の3カ所から径方向内側へ突出されている。この場合には、第2レンズ34は、レンズ受部22Gにより保持され、第3レンズ36は、レンズ受部24Gにより保持され、第4レンズ38は、レンズ受部26Gにより保持される。この場合でも、各レンズが3点以上の多点支持となるので、各レンズの位置精度を確保し易い。また、レンズが熱膨張した際に、レンズとレンズ保持環20の当接箇所に応力が集中しても、鏡筒40からの力を受けにくくすることができる。 3A, 3B, and 3C, the inner peripheral surface 22B of the first annular portion 22, the inner peripheral surface 24B of the second annular portion 24, and the inner peripheral surface 26B of the third annular portion 26 are provided. In addition, the lens receiving portions 22G, 24G, and 26G that protrude radially inward may be formed. The lens receiving portions 22G protrude radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 22B, and the lens receiving portions 24G radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 24B. The lens receiving portion 26G protrudes radially inward from three equally spaced locations in the circumferential direction of the inner peripheral surface 26B. In this case, the second lens 34 is held by the lens receiver 22G, the third lens 36 is held by the lens receiver 24G, and the fourth lens 38 is held by the lens receiver 26G. Even in this case, each lens is supported by multiple points of three or more points, so it is easy to ensure the positional accuracy of each lens. In addition, when the lens is thermally expanded, even if stress is concentrated on the contact portion between the lens and the lens holding ring 20, it is possible to make it difficult to receive the force from the lens barrel 40.
 [第2実施形態]
 次に、第2実施形態のレンズユニット48について説明する。なお、第1実施形態と同一の構成については、第1実施形態と同一の符号を付して説明を省略する。本実施形態のレンズユニット48は、レンズ保持環の構成が第1実施形態と異なり、その他の構成は第1実施形態と同様である。
[Second Embodiment]
Next, the lens unit 48 of the second embodiment will be described. In addition, about the structure same as 1st Embodiment, the code | symbol same as 1st Embodiment is attached | subjected and description is abbreviate | omitted. The lens unit 48 of the present embodiment is different from the first embodiment in the configuration of the lens holding ring, and the other configurations are the same as those in the first embodiment.
 図4に示すように、本実施形態のレンズユニット48は、レンズ保持環50を備えている。レンズ保持環50は、光軸方向の両端部が開口された筒状とされ、樹脂成形により形成されている。レンズ保持環50は、筒軸がレンズユニット48の光軸と一致するように配置されている。レンズ保持環50は、第1実施形態のレンズ保持環20と同様の材料で形成することができる。また、レンズ保持環50は、光軸方向の熱膨張係数が光軸と直交する方向の熱膨張係数よりも小さいことが好ましい。熱膨張による光軸方向の変化量を小さくして解像度低下への影響を小さくすることができるためである。上記の繊維の配向方向を、光軸に沿った方向とすることにより、光軸方向の熱膨張係数を光軸と直交する方向の熱膨張係数よりも小さくすることができる。 As shown in FIG. 4, the lens unit 48 of this embodiment includes a lens holding ring 50. The lens holding ring 50 has a cylindrical shape with both ends in the optical axis direction opened, and is formed by resin molding. The lens holding ring 50 is disposed so that the cylinder axis coincides with the optical axis of the lens unit 48. The lens holding ring 50 can be formed of the same material as the lens holding ring 20 of the first embodiment. The lens holding ring 50 preferably has a thermal expansion coefficient in the optical axis direction smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis. This is because the amount of change in the optical axis direction due to thermal expansion can be reduced to reduce the effect on resolution reduction. By making the above-mentioned fiber orientation direction along the optical axis, the thermal expansion coefficient in the optical axis direction can be made smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis.
 レンズ保持環50は、第1実施形態のレンズ保持環20と同様の、第1環状部22、第3環状部26を有し、第2環状部24に代えて嵌合部54を有している。嵌合部54の外径は、鏡筒40の小径部44の内径と略同一とされ、小径部44の内周に嵌合可能となるように設定されている。嵌合部54の内径は、第1環状部22の内径よりも小さく設定されている。嵌合部54の物体側端面には、平坦部54Eが形成されている。平坦部54Eは、第2レンズ34の平坦部34Fと離間されている。嵌合部54の外周には、径方向外側を向く外周面54Aが形成されている。嵌合部54は、小径部44の径方向内側に配置されている。外周面54Aは鏡筒40の小径部44の内周と密着されており、嵌合部54は小径部44に嵌合されている。 The lens holding ring 50 has a first annular portion 22 and a third annular portion 26 similar to the lens holding ring 20 of the first embodiment, and has a fitting portion 54 instead of the second annular portion 24. Yes. The outer diameter of the fitting portion 54 is substantially the same as the inner diameter of the small diameter portion 44 of the lens barrel 40, and is set so as to be fitted to the inner periphery of the small diameter portion 44. The inner diameter of the fitting portion 54 is set smaller than the inner diameter of the first annular portion 22. A flat portion 54 </ b> E is formed on the object-side end surface of the fitting portion 54. The flat portion 54E is separated from the flat portion 34F of the second lens 34. On the outer periphery of the fitting portion 54, an outer peripheral surface 54A facing outward in the radial direction is formed. The fitting portion 54 is disposed on the radially inner side of the small diameter portion 44. The outer peripheral surface 54 </ b> A is in close contact with the inner periphery of the small diameter portion 44 of the lens barrel 40, and the fitting portion 54 is fitted to the small diameter portion 44.
第1環状部22の像側端部と嵌合部54の物体側端部との間には、被支持部23が形成されている。被支持部23は、筒軸と直交するように径方向に延びて配置されており、像側を向いた段差とされている。被支持部23は、鏡筒40の受部43に密着されており、被支持部23で、レンズ保持環50が鏡筒40に保持されている。 A supported portion 23 is formed between the image side end portion of the first annular portion 22 and the object side end portion of the fitting portion 54. The supported portion 23 is arranged to extend in the radial direction so as to be orthogonal to the cylinder axis, and is a step toward the image side. The supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40, and the lens holding ring 50 is held by the lens barrel 40 at the supported portion 23.
 図5に示されるように、嵌合部54の内周面54Bは、光軸方向から見て多角形状に形成されており、本実施形態では一例として、光軸方向から見て略正12角形状に形成されている。内周面54Bを構成する各々の12面は、光軸方向から見て直線状の平坦面とされている。内周面54Bを構成する各平坦面を平坦面54Cとする。嵌合部54の内周には、第3レンズ36が嵌合されている。第3レンズ36は、外周部36Cが平坦面54Cの各々によって光軸方向に直線状に保持されている。また、嵌合部54の内周には、第3レンズ36の像側に間隔環14が嵌合されている。間隔環14は、外周部14Cが平坦面54Cの各々によって光軸方向に直線状に保持されている。 As shown in FIG. 5, the inner peripheral surface 54B of the fitting portion 54 is formed in a polygonal shape when viewed from the optical axis direction. It is formed into a shape. Each of the 12 surfaces constituting the inner peripheral surface 54B is a straight flat surface as viewed from the optical axis direction. Each flat surface constituting the inner peripheral surface 54B is defined as a flat surface 54C. The third lens 36 is fitted on the inner periphery of the fitting portion 54. The outer periphery 36C of the third lens 36 is held linearly in the optical axis direction by each of the flat surfaces 54C. The spacing ring 14 is fitted to the inner periphery of the fitting portion 54 on the image side of the third lens 36. The spacing ring 14 has an outer peripheral portion 14 </ b> C linearly held in the optical axis direction by each of the flat surfaces 54 </ b> C.
レンズ保持環20の径方向外側を向く外周面のうち、外周面21A、22A、26Aは、鏡筒40の内周面から離間されている。 Outer peripheral surfaces 21A, 22A, and 26A among the outer peripheral surfaces facing the radially outer side of the lens holding ring 20 are separated from the inner peripheral surface of the lens barrel 40.
なお、内周面54Bの形状は、第1実施形態の各変形例と同等にすることもできる。 In addition, the shape of the inner peripheral surface 54B can be made equivalent to each modification of the first embodiment.
(作用及び効果)
 次に、本実施形態の作用及び効果について説明する。
(Function and effect)
Next, the operation and effect of this embodiment will be described.
 本実施形態のレンズユニット48では、鏡筒40の受部43に被支持部23が密着すると共に、鏡筒40の小径部44に嵌合部54が嵌合することにより、レンズ保持環50が鏡筒40に支持されている。したがって、鏡筒40に対するレンズ保持環50の光軸方向の位置決めを容易に行うことができると共に、鏡筒40でのレンズ保持環50の保持力を高めることができる。 In the lens unit 48 of the present embodiment, the supported portion 23 is in close contact with the receiving portion 43 of the lens barrel 40 and the fitting portion 54 is fitted into the small diameter portion 44 of the lens barrel 40, so that the lens holding ring 50 is formed. It is supported by the lens barrel 40. Therefore, the lens holding ring 50 can be easily positioned in the optical axis direction with respect to the lens barrel 40 and the holding force of the lens holding ring 50 in the lens barrel 40 can be increased.
 また、本実施形態では、第2レンズ34及び第4レンズ38は樹脂製であり、熱膨張係数が比較的大きいため、レンズが熱膨張すると鏡筒40からの力を受けやすいが、第1環状部22及び第3環状部26と鏡筒40の内周との間には隙間が形成されているので、鏡筒40からの力を受けにくくすることができる。 In the present embodiment, the second lens 34 and the fourth lens 38 are made of resin and have a relatively large coefficient of thermal expansion. Since a gap is formed between the portion 22 and the third annular portion 26 and the inner periphery of the lens barrel 40, the force from the lens barrel 40 can be made difficult to receive.
 また、本実施形態では、嵌合部54の内周に嵌合されているのは、ガラス製の第3レンズ36である。ガラス製の第3レンズ36の熱膨張係数は、樹脂製のレンズと比較して小さいため、レンズが熱膨張することにより鏡筒40から受ける力を、比較的小さくすることができる。 In the present embodiment, the third lens 36 made of glass is fitted in the inner periphery of the fitting portion 54. Since the thermal expansion coefficient of the glass-made third lens 36 is smaller than that of the resin-made lens, the force received from the lens barrel 40 due to the thermal expansion of the lens can be made relatively small.
 また、本実施形態では、レンズ保持環50に、第1環状部22と嵌合部54を設け、第1環状部22と嵌合部54の間の段差で被支持部23を構成しているので、被支持部23を簡易に形成することができる。 In the present embodiment, the lens holding ring 50 is provided with the first annular portion 22 and the fitting portion 54, and the supported portion 23 is configured by a step between the first annular portion 22 and the fitting portion 54. Therefore, the supported portion 23 can be easily formed.
 また、本実施形態のレンズユニット48のレンズ保持環50の嵌合部54での内周面54Bは、光軸方向から見て多角形状に形成されている。したがって、第3レンズ36の外周部36Cとレンズ保持環50の内周面との当接が光軸方向に線接触となる。これにより、レンズの外周を曲面で受ける面接触の構造と比較して、組み付け時の抵抗が減り、レンズの組付けを行いやすい。また、レンズ保持環50の内周に嵌合された第3レンズ36が熱膨張した際に、レンズ保持環50による保持箇所に応力が集中しても、鏡筒40からの力を受けにくくすることができる。 Further, the inner peripheral surface 54B of the fitting portion 54 of the lens holding ring 50 of the lens unit 48 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer peripheral portion 36C of the third lens 36 and the inner peripheral surface of the lens holding ring 50 is a line contact in the optical axis direction. Thereby, compared with the structure of the surface contact which receives the outer periphery of a lens with a curved surface, the resistance at the time of an assembly | attachment reduces and it is easy to assemble | attach a lens. Further, when the third lens 36 fitted to the inner periphery of the lens holding ring 50 is thermally expanded, even if stress is concentrated on the holding position by the lens holding ring 50, it is difficult to receive the force from the lens barrel 40. be able to.
 また、本実施形態のレンズユニット48は、レンズ保持環50で複数のレンズを保持しているので、レンズ保持環をレンズ毎に設ける場合と比較して、部品点数を少なくすることができる。 Further, since the lens unit 48 of the present embodiment holds a plurality of lenses by the lens holding ring 50, the number of parts can be reduced as compared with the case where the lens holding ring is provided for each lens.
 [第3実施形態]
 次に、第3実施形態のレンズユニット58について説明する。なお、第1、第2実施形態と同一の構成については、第1、第2実施形態と同一の符号を付して説明を省略する。本実施形態のレンズユニット58は、鏡筒及びレンズ保持環の像側の構成が第2実施形態と異なり、その他の構成は第2実施形態と同様である。
[Third embodiment]
Next, the lens unit 58 of the third embodiment will be described. In addition, about the structure same as 1st, 2nd embodiment, the code | symbol same as 1st, 2nd embodiment is attached | subjected, and description is abbreviate | omitted. The lens unit 58 of this embodiment is different from the second embodiment in the configuration of the image side of the lens barrel and the lens holding ring, and the other configurations are the same as those in the second embodiment.
 図6に示すように、鏡筒40の像側には、凸条44Aが形成されている、凸条44Aは、第1実施形態の凸条44Aよりも像側に長く延出されている。レンズ保持環50には、凸条26Dよりも像側に、第2嵌合部56が形成されている。第2嵌合部56は、環状で、外径は第3環状部26の外径よりも大径とされ、内径は第3環状部26の内径よりも小径とされている。第2嵌合部56の径方向外側には、外周部56Aが形成されている。外周部56Aは、凸条44Aの内周と密着されている。第2嵌合部56の内周面56Bは、光軸方向から見て多角形状に形成されており、本実施形態では一例として、光軸方向から見て略正12角形状に形成されている。内周面56Bを構成する各々の12面は、光軸方向から見て直線状の平坦面とされている。内周面56Bを構成する各平坦面を平坦面56Cとする。 As shown in FIG. 6, a protrusion 44 </ b> A is formed on the image side of the lens barrel 40. The protrusion 44 </ b> A extends longer to the image side than the protrusion 44 </ b> A of the first embodiment. In the lens holding ring 50, a second fitting portion 56 is formed on the image side of the ridge 26D. The second fitting portion 56 is annular, the outer diameter is larger than the outer diameter of the third annular portion 26, and the inner diameter is smaller than the inner diameter of the third annular portion 26. An outer peripheral portion 56 </ b> A is formed on the radially outer side of the second fitting portion 56. The outer peripheral portion 56A is in close contact with the inner periphery of the ridge 44A. The inner peripheral surface 56B of the second fitting portion 56 is formed in a polygonal shape as viewed from the optical axis direction. In the present embodiment, as an example, the inner peripheral surface 56B is formed in a substantially regular dodecagonal shape as viewed from the optical axis direction. . Each of the 12 surfaces constituting the inner peripheral surface 56B is a straight flat surface as viewed from the optical axis direction. Each flat surface constituting the inner peripheral surface 56B is defined as a flat surface 56C.
 第2嵌合部56の内周には、第5レンズ39が嵌合されている。第5レンズ39は、光軸方向から見て略円形に形成されており、物体側及び像側の両方が凸となるように湾曲されている。第5レンズ39は、第4レンズ38よりも小径とされ、第5レンズ39の外周に外周部39Cが形成されている。第5レンズ39は、外周部39Cが平坦面56Cの各々によって光軸方向に直線状に保持されている。第5レンズ39は、ガラス製となっている。 The fifth lens 39 is fitted to the inner periphery of the second fitting portion 56. The fifth lens 39 is formed in a substantially circular shape when viewed from the optical axis direction, and is curved so that both the object side and the image side are convex. The fifth lens 39 has a smaller diameter than the fourth lens 38, and an outer peripheral portion 39 </ b> C is formed on the outer periphery of the fifth lens 39. The outer periphery 39C of the fifth lens 39 is linearly held in the optical axis direction by each of the flat surfaces 56C. The fifth lens 39 is made of glass.
なお、内周面56Bの形状は、第1実施形態の各変形例と同じにすることもできる。 Note that the shape of the inner peripheral surface 56B may be the same as that of each modification of the first embodiment.
(作用及び効果)
 次に、本実施形態の作用及び効果について説明する。
(Function and effect)
Next, the operation and effect of this embodiment will be described.
 本実施形態のレンズユニット58では、第2実施形態と同様の構成部分については、第2実施形態に係るレンズユニット48と同様の効果を奏することができる。 In the lens unit 58 of the present embodiment, the same components as in the second embodiment can achieve the same effects as those of the lens unit 48 according to the second embodiment.
 本実施形態のレンズユニット58では、鏡筒40の凸条44Aにレンズ保持環50の第2嵌合部56が嵌合しているので、鏡筒40でのレンズ保持環50の保持力を高めることができる。 In the lens unit 58 of the present embodiment, since the second fitting portion 56 of the lens holding ring 50 is fitted to the protrusion 44A of the lens barrel 40, the holding force of the lens holding ring 50 in the lens barrel 40 is increased. be able to.
 また、鏡筒40の内周に嵌合する嵌合部54と第2嵌合部56の間に、鏡筒40の内周から離間した第3環状部26が配置されているので、バランス良く第4レンズ38を保持することができる。 Moreover, since the 3rd annular part 26 spaced apart from the inner periphery of the lens-barrel 40 is arrange | positioned between the fitting part 54 fitted to the inner periphery of the lens-barrel 40, and the 2nd fitting part 56, it is in good balance The fourth lens 38 can be held.
 また、本実施形態では、第2嵌合部56の内周に嵌合されているのは、ガラス製の第5レンズ39である。ガラス製の第5レンズ39の熱膨張係数は、樹脂製のレンズと比較して小さいため、レンズが熱膨張することにより鏡筒40から受ける力を、比較的小さくすることができる。 In the present embodiment, the fifth lens 39 made of glass is fitted on the inner periphery of the second fitting portion 56. Since the thermal expansion coefficient of the glass-made fifth lens 39 is smaller than that of the resin-made lens, the force received from the lens barrel 40 due to thermal expansion of the lens can be made relatively small.
 また、本実施形態のレンズユニット58のレンズ保持環50の第2嵌合部56での内周面56Bは、光軸方向から見て多角形状に形成されている。したがって、第5レンズ39の外周部39Cとレンズ保持環50の内周面との当接が光軸方向に線接触となる。これにより、レンズの外周を曲面で受ける面接触の構造と比較して、組み付け時の抵抗が減り、レンズの組付けを行いやすい。また、レンズ保持環50の内周に嵌合された第5レンズ39が熱膨張した際に、レンズ保持環50による保持箇所に応力が集中しても、鏡筒40からの力を受けにくくすることができる。 Further, the inner peripheral surface 56B of the second fitting portion 56 of the lens holding ring 50 of the lens unit 58 of the present embodiment is formed in a polygonal shape when viewed from the optical axis direction. Therefore, the contact between the outer peripheral portion 39C of the fifth lens 39 and the inner peripheral surface of the lens holding ring 50 is a line contact in the optical axis direction. Thereby, compared with the structure of the surface contact which receives the outer periphery of a lens with a curved surface, the resistance at the time of an assembly | attachment reduces and it is easy to assemble | attach a lens. Further, when the fifth lens 39 fitted to the inner periphery of the lens holding ring 50 is thermally expanded, even if stress is concentrated on the holding position by the lens holding ring 50, it is difficult to receive the force from the lens barrel 40. be able to.
 また、上記第1~第3実施形態に係るレンズユニットは、高温に晒されるなど結像性能の維持が難しい環境下で用いられる場合でも、性能劣化を少なくできる。したがって、監視用カメラや車載用カメラなどの高温に晒される可能性があるものに好適である。なお、監視用のレンズユニットとは、建物などに設けられ、周囲の物体などの画像を取り込むためのレンズユニットである。車載用のレンズユニットとは、車両(主に車室内)に設けられて車両の外部の物体などの画像を取り込むためのレンズユニットである。 In addition, the lens units according to the first to third embodiments can reduce performance deterioration even when used in an environment where it is difficult to maintain imaging performance, such as exposure to high temperatures. Therefore, it is suitable for those that may be exposed to high temperatures, such as surveillance cameras and in-vehicle cameras. The monitoring lens unit is a lens unit that is provided in a building or the like and captures images of surrounding objects. The in-vehicle lens unit is a lens unit that is provided in a vehicle (mainly in a vehicle interior) and captures an image of an object or the like outside the vehicle.
 2016年9月23日に出願された日本国特許出願2016-185881の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 
The disclosure of Japanese Patent Application No. 2016-185881 filed on September 23, 2016 is hereby incorporated by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
10 レンズユニット
14 間隔環、  14C 外周部、 14E 端面、  14F 平坦部
16 キャップ、 16B 押さえ部、 
20 レンズ保持環
21 フランジ部、 21A 外周面、 21E 平坦面、
22 第1環状部(環状部)、 22A 外周面、 22B 内周面、 22C 平坦面
22G レンズ受部
23 被支持部
24 第2環状部(環状部)、 24A 外周面、 24B 内周面、 24C 平坦面
24E 平坦部、 24G レンズ受部
26 第3環状部(環状部)、 26A 外周面、 26B 内周面、 26C 平坦面
26D 凸条、  26G レンズ受部
30 レンズ群
32 第1レンズ、  32A 溝、  32B Oリング、 32C 外周部
32F 平坦部
34 第2レンズ(レンズ、樹脂製レンズ)、 34C 外周部
34E、34F 平坦部
36 第3レンズ(ガラス製レンズ)、 36C 外周部
36E、36F 平坦部
38 第4レンズ(レンズ、樹脂製レンズ)、 38C 外周部
38E、38F 平坦部
39 第5レンズ(ガラス製レンズ)、  39C 外周部
40 鏡筒、 42 大径部、 43 受部、 44 小径部、 44A 凸条
48 レンズユニット
50 レンズ保持環
54 嵌合部、 54A 外周面、 54B 内周面、 54C 平坦面
54E 平坦部
56 第2嵌合部(嵌合部)、 56A 外周面、 56B 内周面、 56C 平坦面
58 レンズユニット
S 光軸
10 lens unit 14 spacing ring, 14C outer peripheral part, 14E end face, 14F flat part 16 cap, 16B pressing part,
20 Lens holding ring 21 Flange, 21A Outer peripheral surface, 21E Flat surface,
22 1st annular part (annular part), 22A outer peripheral surface, 22B inner peripheral surface, 22C flat surface 22G lens receiving part 23 supported part 24 2nd annular part (annular part), 24A outer peripheral surface, 24B inner peripheral surface, 24C Flat surface 24E Flat portion, 24G Lens receiving portion 26 Third annular portion (annular portion), 26A Outer peripheral surface, 26B Inner peripheral surface, 26C Flat surface 26D Convex, 26G Lens receiving portion 30 Lens group 32 First lens, 32A Groove , 32B O-ring, 32C outer peripheral portion 32F flat portion 34 second lens (lens, resin lens), 34C outer peripheral portion 34E, 34F flat portion 36 third lens (glass lens), 36C outer peripheral portion 36E, 36F flat portion 38 Fourth lens (lens, resin lens), 38C outer peripheral portion 38E, 38F flat portion 39 fifth lens (glass lens), 39C outer peripheral portion 40 lens barrel, 42 large-diameter portion, 43 receiving portion, 44 small-diameter portion, 44A convex ridge 48 lens unit 50 lens holding ring 54 fitting portion, 54A outer peripheral surface, 54B inner peripheral surface, 54C flat surface 54E flat portion 56 second fitting portion ( Fitting portion), 56A outer peripheral surface, 56B inner peripheral surface, 56C flat surface 58 lens unit S optical axis

Claims (17)

  1.  筒状とされ、筒内に筒軸方向と交差する方向に配置された受部を有する鏡筒と、
     前記鏡筒の内周との間に隙間をあけて配置された環状の環状部と、前記筒軸方向で前記受部と対向する被支持部と、を有し、前記被支持部と前記受部とが密着した状態で前記鏡筒の筒内に支持されたレンズ保持環と、
     前記レンズ保持環の前記環状部の内周に嵌合して前記鏡筒内に収容されたレンズと、
     を備えたレンズユニット。
    A lens barrel having a receiving portion arranged in a direction intersecting the cylinder axis direction in a cylinder
    An annular annular portion disposed with a gap between the inner periphery of the lens barrel and a supported portion that faces the receiving portion in the tube axis direction, and the supported portion and the receiving portion A lens holding ring supported in the barrel of the lens barrel in a state in which the portion is in close contact,
    A lens fitted in the inner periphery of the annular portion of the lens holding ring and accommodated in the lens barrel;
    Lens unit equipped with.
  2.  前記レンズ保持環の外周面と前記鏡筒の内周面との間には、前記レンズ保持環の光軸方向全域にわたる径方向外側への移動を許容する隙間が形成されている、請求項1に記載のレンズユニット。 2. A gap is formed between the outer peripheral surface of the lens holding ring and the inner peripheral surface of the lens barrel to allow the lens holding ring to move radially outward over the entire optical axis direction. The lens unit described in 1.
  3.  前記鏡筒は、大径部と、前記大径部よりも小径の小径部とを有し、前記受部は、前記大径部と前記小径部の段差により形成されている、請求項2に記載のレンズユニット。 The lens barrel has a large-diameter portion and a small-diameter portion having a smaller diameter than the large-diameter portion, and the receiving portion is formed by a step between the large-diameter portion and the small-diameter portion. The lens unit described.
  4.  前記環状部は、前記大径部の径方向内側に配置される第1環状部と、前記小径部の径方向内側に配置される前記第1環状部よりも小径の第2環状部とを有し、前記被支持部は、前記第1環状部と前記第2環状部との段差により形成されている、請求項3に記載のレンズユニット。 The annular portion includes a first annular portion disposed on the radially inner side of the large diameter portion and a second annular portion having a smaller diameter than the first annular portion disposed on the radially inner side of the small diameter portion. The lens unit according to claim 3, wherein the supported portion is formed by a step between the first annular portion and the second annular portion.
  5.  前記環状部には、樹脂製レンズが嵌合されている、請求項1~請求項4のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 4, wherein a resin lens is fitted into the annular portion.
  6.  前記レンズ保持環は、前記鏡筒の内周に嵌合する嵌合部を有する、請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein the lens holding ring has a fitting portion that fits into an inner periphery of the lens barrel.
  7.  前記鏡筒は、大径部と、前記大径部よりも小径の小径部とを有し、前記受部は、前記大径部と前記小径部の段差により形成されている、請求項6に記載のレンズユニット。 The lens barrel has a large diameter portion and a small diameter portion smaller in diameter than the large diameter portion, and the receiving portion is formed by a step between the large diameter portion and the small diameter portion. The lens unit described.
  8.  前記環状部は、前記大径部の径方向内側に配置され、前記嵌合部は、前記小径部の径方向内側に配置され、前記被支持部は、前記環状部と前記嵌合部の段差により形成されている、請求項7に記載のレンズユニット。 The annular portion is disposed radially inside the large diameter portion, the fitting portion is disposed radially inside the small diameter portion, and the supported portion is a step between the annular portion and the fitting portion. The lens unit according to claim 7, formed by:
  9.  前記嵌合部は、前記環状部の光軸方向の両端に形成されている、請求項6または請求項7に記載のレンズユニット。 The lens unit according to claim 6 or 7, wherein the fitting portion is formed at both ends of the annular portion in the optical axis direction.
  10.  前記嵌合部の内周にはガラス製レンズが嵌合され、前記環状部の内周には樹脂製レンズが嵌合されている、請求項6~請求項9のいずれか1項に記載のレンズユニット。 The glass lens according to any one of claims 6 to 9, wherein a glass lens is fitted to the inner periphery of the fitting portion, and a resin lens is fitted to the inner periphery of the annular portion. Lens unit.
  11.  前記レンズ保持環は、光軸方向の熱膨張係数が光軸と直交する方向の熱膨張係数よりも小さい材料で構成されている、請求項1~請求項10のいずれか1項に記載のレンズユニット。 The lens according to any one of claims 1 to 10, wherein the lens holding ring is made of a material whose thermal expansion coefficient in the optical axis direction is smaller than the thermal expansion coefficient in the direction orthogonal to the optical axis. unit.
  12.  前記レンズ保持環は、無機繊維含有樹脂で形成されている、請求項1~請求項11のいずれか1項に記載のレンズユニット。 12. The lens unit according to claim 1, wherein the lens holding ring is made of an inorganic fiber-containing resin.
  13.  前記レンズ保持環の内周と前記レンズの外周とは、周方向の三カ所以上で当接されている、請求項1~請求項12のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 12, wherein an inner periphery of the lens holding ring and an outer periphery of the lens are in contact with each other at three or more locations in the circumferential direction.
  14.  前記レンズ保持環の内周面は、光軸方向から見て多角形状とされている、請求項1~請求項13のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 13, wherein an inner peripheral surface of the lens holding ring has a polygonal shape when viewed from the optical axis direction.
  15.  前記レンズ保持環には、複数の前記レンズが嵌合されている、請求項1~請求項14のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 14, wherein a plurality of the lenses are fitted into the lens holding ring.
  16.  前記鏡筒は、金属で形成されている、請求項1~請求項15のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 15, wherein the lens barrel is made of metal.
  17.  前記レンズユニットは、車載用又は監視用、であることを特徴とする、請求項1~請求項16のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 16, wherein the lens unit is for vehicle use or for monitoring.
PCT/JP2017/021369 2016-09-23 2017-06-08 Lens unit WO2018055844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016185881A JP2019203907A (en) 2016-09-23 2016-09-23 Lens unit
JP2016-185881 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018055844A1 true WO2018055844A1 (en) 2018-03-29

Family

ID=61689922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021369 WO2018055844A1 (en) 2016-09-23 2017-06-08 Lens unit

Country Status (2)

Country Link
JP (1) JP2019203907A (en)
WO (1) WO2018055844A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160993A (en) * 1996-11-27 1998-06-19 Canon Inc Lens assembly adjusting method, lens adjusting mechanism, lens barrel and optical equipment
JP2003161868A (en) * 2001-11-26 2003-06-06 Ricoh Co Ltd Eccentricity adjusting mechanism for optical unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160993A (en) * 1996-11-27 1998-06-19 Canon Inc Lens assembly adjusting method, lens adjusting mechanism, lens barrel and optical equipment
JP2003161868A (en) * 2001-11-26 2003-06-06 Ricoh Co Ltd Eccentricity adjusting mechanism for optical unit

Also Published As

Publication number Publication date
JP2019203907A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6479282B2 (en) Lens unit
US10656366B2 (en) Lens unit
JP6150535B2 (en) Lens unit and lens unit manufacturing method
CN104704412B (en) Optical unit, imaging apparatus, and movable body
JP6564936B2 (en) Lens unit
JP6054819B2 (en) Lens unit, imaging device, and moving body
JP2018018013A (en) Optical unit
JP2010078920A (en) Lens holder
CN111448500B (en) Lens unit and camera module
JP6499608B2 (en) Lens unit
JP7252074B2 (en) lens unit
JP6941471B2 (en) Lens unit
WO2018055844A1 (en) Lens unit
WO2017168960A1 (en) Lens unit
US11269238B2 (en) Camera module
JP2012215712A (en) Lens unit and imaging unit
JP2014115304A (en) Lens unit and imaging unit
WO2018055897A1 (en) Lens unit
WO2020189285A1 (en) Lens unit
JP2020030334A (en) Lens unit
JP6872405B2 (en) Lens unit
JP7201543B2 (en) LENS UNIT AND MANUFACTURING METHOD THEREOF
JP2020154119A (en) Lens unit
JP2007240941A (en) Lens unit
JP2020030335A (en) Lens unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP