WO2018055771A1 - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
WO2018055771A1
WO2018055771A1 PCT/JP2016/078289 JP2016078289W WO2018055771A1 WO 2018055771 A1 WO2018055771 A1 WO 2018055771A1 JP 2016078289 W JP2016078289 W JP 2016078289W WO 2018055771 A1 WO2018055771 A1 WO 2018055771A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
laser light
measurement point
laser beam
Prior art date
Application number
PCT/JP2016/078289
Other languages
French (fr)
Japanese (ja)
Inventor
智夫 五明
尚也 藤本
廉士 澤田
大史 野上
伸友 森田
文弥 中島
Original Assignee
愛知時計電機株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知時計電機株式会社, 国立大学法人九州大学 filed Critical 愛知時計電機株式会社
Priority to PCT/JP2016/078289 priority Critical patent/WO2018055771A1/en
Priority to JP2018540599A priority patent/JP6908245B2/en
Publication of WO2018055771A1 publication Critical patent/WO2018055771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Definitions

  • the technology disclosed in this specification relates to a measurement device.
  • the laser Doppler type measuring device includes a laser light irradiation device, a light receiving device, and a processing device.
  • the laser beam irradiation apparatus irradiates laser light toward a moving measurement object.
  • the laser light emitted from the laser light irradiation device is scattered when it hits a moving measurement object to generate scattered light.
  • the light receiving device receives the scattered light generated at that time.
  • the processing device calculates the velocity of the measurement object based on the frequency of the scattered light.
  • the processing device calculates the speed of the measurement object by a known calculation method based on a Doppler shift.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-662266 discloses a measuring device including a laser light irradiation device that irradiates laser light from two different directions toward a moving measurement object.
  • the measuring device of Patent Document 1 includes a laser light irradiation device, a light receiving device, and a processing device.
  • the laser beam irradiation apparatus irradiates the first laser beam and the second laser beam toward the moving measurement object.
  • the first laser light and the second laser light are emitted from different directions toward the measurement object.
  • the first laser light and the second laser light irradiated from the laser light irradiation device are scattered when they hit the moving measurement object, and each scattered light is generated.
  • the light receiving device receives each scattered light generated at that time.
  • the light-receiving device is provided with a condensing lens, and various scattered light is condensed and received by this condensing lens.
  • the processing device calculates the velocity of the measurement object based on the frequency of each scattered light.
  • the processing device calculates the speed of the measurement object by a known calculation method based on a Doppler shift.
  • the speed of particles in a fluid flowing through a flow path may be measured. That is, the measurement object may be particles in the fluid. As the particles in the fluid, for example, red blood cells in blood can be considered.
  • the measuring device measures the velocity of red blood cells in the blood flowing through the flow path. Thereby, the blood flow rate can be known.
  • innumerable particles include, for example, particles that pass through the central portion of the flow channel and particles that pass through the peripheral portion of the flow channel. Also, the speed of countless particles in the fluid varies. Some particles are fast, others are slow.
  • the first laser light and the second laser light are directed from the laser light irradiation device toward an arbitrary measurement point in the flow path. Irradiate with laser light.
  • the first laser beam and the second laser beam are irradiated from different directions toward the measurement point in the flow path.
  • the first laser light and the second laser light irradiated from the laser light irradiation device are scattered when they hit the particles passing through the measurement point, and each scattered light is generated.
  • the light receiving device receives each scattered light generated at that time.
  • the light receiving device condenses and receives various scattered light by a condensing lens. Then, based on the frequency of each scattered light received by the light receiving device, the processing device calculates the velocity of the particles passing through the measurement point.
  • each laser beam is applied only to the measurement point when the first laser beam and the second laser beam are irradiated from the laser beam irradiation device toward the measurement point. Irradiation is sufficient. Then, only the scattered light generated when the first laser light and the second laser light hit only the particles passing through the measurement point and each laser light hits the particles can be taken out. Therefore, ideally, when the first laser beam and the second laser beam are irradiated, it is preferable to irradiate the first laser beam and the second laser beam so as to overlap only at the measurement point.
  • the first laser beam and the second laser beam are also distributed around the measurement point by light diffusion or the like.
  • Laser light will be irradiated. That is, the first laser beam and the second laser beam are irradiated so as to overlap each other around the measurement point due to light diffusion or the like. Then, when the first laser light and the second laser light irradiated from the laser light irradiation device hit the particles and scatter, the particles pass not only the particles passing through the measurement point but also passing around the measurement point. In addition, the first laser beam and the second laser beam hit and scatter.
  • the processing apparatus calculates the velocity of the particles based on various scattered light frequencies, and it becomes difficult to accurately measure the velocity of the particles in the fluid flowing through the flow path.
  • the processing device calculates the velocity of the particles based on the frequency of the various scattered light. It will be. As a result, it becomes difficult to accurately measure the velocity of the particles in the fluid flowing through the flow path.
  • the measuring apparatus of Patent Document 1 not only scattered light generated by particles passing through the measurement point but also excess scattered light is received, making it difficult to accurately measure the velocity of the particles. Become.
  • the measuring device of Patent Document 1 has no problem when the speed of the measurement object is uniform, but causes a problem when the speed is various, such as particles in a fluid. Therefore, the present specification provides a technique capable of suppressing the reception of excess scattered light.
  • the measuring device disclosed in this specification is a device for measuring the velocity of particles in a fluid flowing through a flow path.
  • This measuring device includes a laser beam irradiation device and a light receiving device.
  • the laser beam irradiation device includes a first laser beam that travels toward a measurement point in the flow path and a second laser beam that travels toward a measurement point in the flow path from a different direction from the first laser light. Irradiate.
  • the light receiving device receives scattered light respectively generated when the first laser light and the second laser light irradiated from the laser light irradiation device hit the particles passing through the measurement point.
  • the light receiving device includes a light receiving element and a hollow light passage hole formed between the light receiving element and the measurement point. The light passage hole extends in a direction from the measurement point toward the light receiving element, and scattered light generated by particles passing through the measurement point passes through the light passage hole and enters the light receiving element.
  • the first laser beam and the second laser beam are irradiated from the laser beam irradiation device, the first laser beam and the second laser beam are irradiated not only at the measurement point but also around the measurement point. May end up. Then, scattered light is generated not only by the particles passing through the measurement point but also by particles passing around the measurement point.
  • the light passage hole is provided, it can suppress that the scattered light produced by the particle
  • the scattered light generated by the particles passing through the measurement point is reflected in the light passage hole.
  • the scattered light generated by the particles passing around the measurement point is less likely to enter the light receiving element due to the presence of the light passage hole. Accordingly, it is possible to suppress receiving excessive scattered light. Therefore, the velocity of particles in the fluid flowing through the flow path can be accurately measured.
  • FIG. 1 It is a figure which shows schematic structure of the measuring device which concerns on an Example. It is an enlarged view of the principal part II of FIG. It is a figure which shows schematic structure of the light-receiving device based on an Example. It is a block diagram of a measuring device concerning an example. It is a figure which shows schematic structure of the measuring device which concerns on another Example. It is sectional drawing which shows an example of a light passage hole. It is sectional drawing which shows another example of a light passage hole. It is sectional drawing which shows another example of a light passage hole. It is a figure which shows schematic structure of the light-receiving device which concerns on another Example.
  • a laser beam irradiation apparatus includes a light emitting element that emits laser light, a laser beam emitted from the light emitting element, a first laser beam, and a second laser beam that travels in a direction different from the first laser beam. You may provide the diffraction grating divided into.
  • the laser beam irradiation device is a first transmission / reflection surface on which the first laser beam divided by the diffraction grating is incident, and a part of the incident first laser beam is transmitted and the other part is transmitted. May be provided, and the reflected first laser light may be provided with a first transmission / reflection surface that travels toward the measurement point.
  • the laser beam irradiation device is a second transmitting / reflecting surface on which the second laser beam divided by the diffraction grating is incident, transmits a part of the incident second laser beam, and the other part.
  • the second transmission / reflection surface may be provided in which the reflected second laser light travels toward the measurement point.
  • a part of the first laser light (component transmitted through the first transmission / reflection surface) can be removed, and the other part (component reflected by the first transmission / reflection surface). ) Only travels toward the measurement point, so that it is possible to narrow the spread of the strong light of the first laser beam traveling toward the measurement point.
  • a part of the second laser light (component transmitted by the second transmission / reflection surface) can be removed, and only the other part (component reflected by the second transmission / reflection surface) is measured. Therefore, it is possible to narrow the spread of the strong light of the second laser beam traveling toward the measurement point.
  • the first laser beam and the second laser beam spread around the measurement point when the first laser beam and the second laser beam are irradiated toward the measurement point. Can be suppressed. Therefore, it can suppress that scattered light arises with the particle
  • the incident angle of the optical axis of the first laser beam incident on the first transmission / reflection surface may be smaller than the critical angle of the first transmission / reflection surface.
  • the incident angle of the optical axis of the second laser light incident on the second transmission / reflection surface may be smaller than the critical angle of the second transmission / reflection surface.
  • the intensity of light can be reduced.
  • the measuring device may further include a moving device that changes the distance between the diffraction grating and the first transmission / reflection surface and the second transmission / reflection surface.
  • the positions where the first laser light and the second laser light separated by the diffraction grating are incident on the first transmission / reflection surface and the second transmission / reflection surface can be changed.
  • the position where the first laser light and the second laser light are irradiated can be changed, and the position of the measurement point in the flow path can be changed.
  • the diffraction grating may be a reflection type diffraction grating.
  • the light emitting element may be disposed between the diffraction grating, the first transmission / reflection surface, and the second transmission / reflection surface.
  • the laser beam emitted from the light emitting element may be divided into a first laser beam and a second laser beam by reflection by a diffraction grating.
  • the measuring device can be made compact. If the diffraction grating is a transmission type diffraction grating, the light emitting element must be disposed on the opposite side of the first transmission reflection surface and the second transmission reflection surface with respect to the diffraction grating, and the measuring device is large. It will become.
  • the measuring apparatus 1 As shown in FIG. 1, the measuring apparatus 1 according to the embodiment is used by being fixed to a tube 61 by a fixture 62. A flow path 60 is formed in the tube 61.
  • the measuring device 1 is a device that measures the velocity v of the particle R in the fluid F flowing through the flow path 60. Thereby, the flow rate of the fluid F can be known.
  • Innumerable particles R exist in the fluid F flowing through the flow path 60. Innumerable particles R are diffused in the fluid F. Therefore, among the countless particles R, for example, there are particles R that pass through the central portion of the flow channel 60 and particles R that pass through the peripheral portion of the flow channel 60. In addition, the speed of the countless particles R varies. Some particles R have a high speed and some particles R have a low speed. When measuring the velocity v of the particle R in the fluid F flowing through the flow channel 60, the velocity v of the particle R may be measured by focusing on a specific measurement point 10 in the flow channel 60. The position of the measurement point 10 in the flow channel 60 is not particularly limited.
  • the velocity v of the particle R passing through the central portion of the flow channel 60 is measured using the central portion of the flow channel 60 as the measurement point 10. can do.
  • the flow velocity of the fluid F flowing through the central portion of the flow channel 60 corresponds to twice the average flow velocity of the fluid F flowing through the entire flow channel 60.
  • Examples of the fluid F flowing through the flow path 60 include blood.
  • Examples of the particles R in the fluid F include red blood cells.
  • the measuring device 1 can measure the velocity of red blood cells in the blood. Thereby, the blood flow rate can be known.
  • extracorporeal circulation may be performed in which blood flowing through a patient's body is sent out of the body and the blood sent out of the body is sent back into the body again.
  • the extracorporeal circulation tube is connected to the patient's blood vessel, the blood flowing through the patient's blood vessel flows into the extracorporeal circulation tube, and the blood flowing through the extracorporeal circulation tube is returned to the patient's blood vessel again. It is.
  • the velocity v of red blood cells (particles R) in blood (fluid F) flowing through the extracorporeal circulation tube 61 can be measured by the measuring device 1 shown in FIG.
  • the measuring device 1 includes a laser light irradiation device 2, a light receiving device 3, and a processing device 9.
  • the laser light irradiation device 2 includes a light emitting element 21, a collimator lens 22, a diffraction grating 23, and a light guide 24.
  • the light emitting element 21 is, for example, a laser diode (LD).
  • the light emitting element 21 is disposed so as to face the collimator lens 22.
  • the light emitting element 21 emits laser light toward the collimator lens 22.
  • Laser light emitted from the light emitting element 21 enters the collimator lens 22.
  • the light emitting element 21 emits laser light on the side opposite to the light guide 24.
  • the light emitting element 21 is disposed between the diffraction grating 23 and the light guide 24.
  • the collimator lens 22 is disposed between the light emitting element 21 and the diffraction grating 23.
  • the collimator lens 22 emits the laser light L emitted from the light emitting element 21 as parallel light.
  • Laser light L (parallel light) emitted from the collimator lens 22 enters the diffraction grating 23.
  • the diffraction grating 23 is disposed so as to face the collimator lens 22.
  • the diffraction grating 23 is movable, and the diffraction grating 23 can be moved by the moving device 25.
  • the moving device 25 can change the distance between the diffraction grating 23 and the light guide 24.
  • the moving device 25 is, for example, a mechanical device, and can move the diffraction grating 23 up and down by turning a bolt. By changing the position of the diffraction grating 23, the position of the measurement point 10 in the flow path 60 can be changed.
  • the diffraction grating 23 divides the laser light L incident on the diffraction grating 23 into the first laser light L1 and the second laser light L2 using light diffraction.
  • the diffraction grating 23 is a reflection type diffraction grating.
  • the laser beam L incident on the diffraction grating 23 is reflected by the diffraction grating 23, it is divided into a first laser beam L1 and a second laser beam L2.
  • the laser beam L emitted from the light emitting element 21 is reflected by the diffraction grating 23 to be divided into a first laser beam L1 and a second laser beam L2.
  • the first laser beam L1 and the second laser beam L2 generated by the diffraction grating 23 travel in different directions. Both the first laser beam L1 and the second laser beam L2 travel toward the light guide 24, but travel so as to be line-symmetric with respect to the line connecting the light emitting element 21 and the collimator lens 22. In the example shown in FIG. 1, the first laser light L1 travels diagonally upward to the right, and the second laser light L2 travels diagonally upward to the left.
  • the wavelength of the first laser light L1 and the wavelength of the second laser light L2 are the same wavelength. Further, the frequency of the first laser light L1 and the frequency of the second laser light L2 are the same frequency.
  • the light guide 24 is disposed between the diffraction grating 23 and the tube 61.
  • the first laser beam L1 and the second laser beam L2 generated by the diffraction grating 23 enter the light guide 24.
  • the light guide 24 is formed of, for example, a rectangular parallelepiped transparent glass block.
  • the light guide 24 includes an entrance surface 41, an exit surface 42, a first side surface 43, and a second side surface 44.
  • the incident surface 41 is disposed so as to face the diffraction grating 23.
  • the first laser beam L1 and the second laser beam L2 are incident from the incident surface 41.
  • the first laser light L 1 incident from the incident surface 41 travels toward the first side surface 43.
  • the first laser beam L1 is incident on the first side surface 43.
  • the second laser light L 2 incident from the incident surface 41 travels toward the second side surface 44.
  • the second laser beam L2 is incident on the second side surface 44.
  • the first side surface 43 and the second side surface 44 are disposed between the incident surface 41 and the output surface 42.
  • the first side surface 43 is a transmission / reflection surface that transmits and reflects the first laser beam L1.
  • the first side surface may be referred to as a first transmission / reflection surface.
  • the first side surface may be referred to as a first half mirror.
  • the first laser light L1 reflected by the first transmission / reflection surface 43 travels toward the emission surface 42 and is emitted from the emission surface 42.
  • the second side surface 44 is a transmission reflection surface that transmits and reflects the second laser light L2.
  • the second side surface may be referred to as a second transmission / reflection surface.
  • the second side surface may be referred to as a second half mirror.
  • the second laser light L2 reflected by the second transmission / reflection surface 44 travels toward the emission surface 42 and is emitted from the emission surface 42.
  • the emission surface 42 is disposed so as to face the tube 61.
  • the first laser beam L1 and the second laser beam L2 are emitted from the emission surface 42.
  • the first laser light L1 and the second laser light L2 emitted from the emission surface 42 enter the tube 61.
  • the first laser light L1 and the second laser light L2 travel toward the measurement point 10 in the flow path 60.
  • the first laser beam L1 is preferably parallel light, but actually has a certain extent as shown in FIG. Therefore, the first laser light L1 incident on the first transmission / reflection surface 43 includes a component having a large incident angle to the first transmission / reflection surface 43 as indicated by ⁇ 1, and the first laser light L1 as indicated by ⁇ 1. There is also a component with a small incident angle to the transmission / reflection surface 43.
  • the optical axis X1 of the first laser light L1 is incident on the first transmission / reflection surface 43 at an incident angle ⁇ i.
  • the incident angle ⁇ i of the optical axis X1 of the first laser beam L1 is smaller than the critical angle ⁇ r in the first transmission / reflection surface 43.
  • the first laser light L 1 incident on the first transmission / reflection surface 43 a component having an incident angle smaller than the critical angle ⁇ r is transmitted through the first transmission / reflection surface 43.
  • a component having an incident angle larger than the critical angle ⁇ r is reflected by the first transmission / reflection surface 43.
  • the incident angle ⁇ i of the optical axis X1 of the first laser beam L1 is reduced, the component with the incident angle smaller than the critical angle ⁇ r increases, and the component transmitted through the first transmission / reflection surface 43 increases (the component to be reflected is smaller).
  • the incident angle ⁇ i of the optical axis X1 of the first laser light L1 is increased, the incident angle is larger than the critical angle ⁇ r, and the component reflected by the first transmitting / reflecting surface 43 is increased (the transmitted component is smaller). Less.
  • the second laser beam L2 is the same as the first laser beam L1.
  • the second laser light L2 is preferably parallel light, but actually has a certain extent as shown in FIG. Therefore, the second laser light L2 incident on the second transmission / reflection surface 44 includes a component having a large incident angle to the second transmission / reflection surface 44 as indicated by ⁇ 2, and the second laser light L2 as indicated by ⁇ 2. There is also a component with a small incident angle to the transmission / reflection surface 44.
  • the optical axis X2 of the second laser beam L2 is incident on the second transmission / reflection surface 44 at an incident angle ⁇ i.
  • the incident angle ⁇ i of the optical axis X2 of the second laser light L2 is smaller than the critical angle ⁇ r in the second transmission / reflection surface 44.
  • the incident angle ⁇ i of the optical axis X2 of the second laser light L2 is the same as the incident angle ⁇ i of the optical axis X1 of the first laser light L1.
  • the critical angle ⁇ r in the second transmission / reflection surface 44 is the same as the critical angle ⁇ r in the first transmission / reflection surface 43.
  • a component having an incident angle smaller than the critical angle ⁇ r transmits through the second transmission / reflection surface 44.
  • a component having an incident angle larger than the critical angle ⁇ r is reflected by the second transmission / reflection surface 44.
  • the incident angle ⁇ i of the optical axis X2 of the second laser beam L2 When the incident angle ⁇ i of the optical axis X2 of the second laser beam L2 is reduced, the component with the incident angle smaller than the critical angle ⁇ r increases, and the component transmitted through the second transmission / reflection surface 44 increases (the component to be reflected is smaller). Less.) When the incident angle ⁇ i of the optical axis X2 of the second laser beam L2 is increased, the incident angle is larger than the critical angle ⁇ r, and the component reflected by the second transmission / reflection surface 44 is increased (the transmitted component is smaller). Less.)
  • the first laser light L ⁇ b> 1 and the second laser light L ⁇ b> 2 emitted from the emission surface 42 of the light guide 24 travel toward the measurement point 10 in the flow path 60.
  • the first laser beam L1 and the second laser beam L2 travel toward the measurement point 10 from different directions. That is, the first laser beam L1 and the second laser beam L2 are irradiated from the laser beam irradiation device 2 toward the measurement point 10 in the channel 60 from different directions.
  • the first laser light L1 travels from the downstream side of the flow path 60 toward the measurement point 10.
  • the second laser light L2 travels from the upstream side of the flow path 60 toward the measurement point 10.
  • the first laser beam L1 and the second laser beam L2 are interfered and overlapped at the measurement point 10 in the flow path 60.
  • the fluid F flows through the flow path 60, and innumerable particles R (for example, red blood cells) exist in the fluid F.
  • innumerable particles R for example, red blood cells
  • the first laser light L1 and the second laser light L2 strike the particle R passing through the measurement point 10
  • the first laser light L1 and the second laser light L2 are scattered.
  • the first laser beam L1 and the second laser beam L2 strike the particle R from different directions.
  • the first laser light L1 hits the particle R from the downstream side of the flow path 60. That is, the first laser light L1 strikes the particle R from the traveling direction side of the particle R.
  • the second laser light L2 hits the particle R from the upstream side of the flow path 60.
  • the second laser light L2 strikes the particle R from the side opposite to the traveling direction of the particle R. Scattered light is generated when the first laser light L1 and the second laser light L2 strike the particle R and are scattered.
  • the first scattered light P1 is generated when the first laser light L1 strikes the particle R and is scattered.
  • the second scattered light P2 is generated when the second laser light L2 hits the particle R and is scattered.
  • the first scattered light P ⁇ b> 1 and the second scattered light P ⁇ b> 2 generated by scattering travel in various directions around the measurement point 10. Among these, there are first scattered light P1 and second scattered light P2 that travel from the measurement point 10 toward the light receiving device 3.
  • the light receiving device 3 receives the first scattered light P1 and the second scattered light P2.
  • the frequency f1 of the first scattered light P1 generated by the scattering of the first laser light L1 is a frequency different from the frequency of the first laser light L1.
  • the frequency f2 of the second scattered light P2 generated by the scattering of the second laser light L2 is a frequency different from the frequency of the second laser light L2.
  • the frequency f1 of the first scattered light P1 and the frequency f2 of the second scattered light P2 are different from each other.
  • the light receiving device 3 is disposed between the tube 61 and the laser beam irradiation device 2.
  • the light receiving device 3 is disposed so as to face the flow path 60.
  • the light receiving device 3 is fixed to the light guide 24 of the laser light irradiation device 2.
  • the light receiving device 3 includes a light receiving element 31 and a cylindrical body 32.
  • the cylindrical body 32 is disposed between the tube 61 and the light receiving element 31.
  • the cylindrical body 32 is fixed to the light receiving element 31.
  • the cylinder 32 is cylindrical.
  • the inside of the cylindrical body 32 is hollow.
  • a light passage hole 35 is formed in the cylindrical body 32.
  • the light passage hole 35 includes an entrance port 36 and an exit port 37.
  • the light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31.
  • the light passage hole 35 is formed between the measurement point 10 and the light receiving element 31.
  • the first scattered light P ⁇ b> 1 and the second scattered light P ⁇ b> 2 generated by the particles R passing through the measurement point 10 enter the light passage hole 35 from the incident port 36.
  • the first scattered light P1 and the second scattered light P2 traveling from the measurement point 10 toward the light receiving element 31 pass through the light passage hole 35.
  • the first scattered light P ⁇ b> 1 and the second scattered light P ⁇ b> 2 that have passed through the light passage hole 35 are emitted from the emission port 37 and enter the light receiving element 31.
  • the outer peripheral surface of the cylindrical body 32 is covered with a light-shielding cover 312. Light does not enter the light passage hole 35 from the outer peripheral surface of the cylindrical body 32.
  • Light P3 traveling in the direction intersecting the axial direction of the light passage hole 35 from the side of the cylindrical body 32 is blocked by the cover 312 and does not enter the light passage hole 35.
  • Scattered light P ⁇ b> 1 and P ⁇ b> 2 traveling in the axial direction of the light passage hole 35 enter the light passage hole 35.
  • the axial length of the light passage hole 35 is at least twice the diameter of the incident port 36.
  • the light receiving element 31 receives the first scattered light P1 and the second scattered light P2 that have passed through the light passage hole 35.
  • the light receiving element 31 is, for example, a photodiode (PD).
  • PD photodiode
  • the light receiving element 31 faces the emission port 37 of the light passage hole 35.
  • the other parts are covered with a cover 312. Scattered light P ⁇ b> 1 and P ⁇ b> 2 emitted from the emission port 37 enter the light receiving element 31.
  • Light P4 traveling from the side of the light receiving element 31 toward the light receiving element 31 is blocked by the cover 312 and does not enter the light receiving element 31.
  • the processing device 9 is electrically connected to the light emitting element 21 and the light receiving element 31. Based on the laser light L emitted from the light emitting element 21 and the first scattered light P1 and the second scattered light P2 received by the light receiving element 31, the processing device 9 uses the velocity v of the particle R passing through the measurement point 10. Is calculated. The processing device 9 calculates the velocity v of the particle R by a calculation method based on the Doppler shift. The velocity v of the particle R passing through the measurement point 10 can be calculated by the following equation (1).
  • F is a Doppler frequency of light received by the light receiving device 3 (light in which the first scattered light P1 and the second scattered light P2 interfere).
  • is an angle between the first laser beam L1 traveling toward the measurement point 10 and the line connecting the measurement point 10 and the light receiving device 3 (or the second laser beam traveling toward the measurement point 10). L2 and an angle formed by a line connecting measurement point 10 and light receiving device 3). ⁇ is the wavelength of the laser light (first laser light L1 and second laser light L2). Since the method for calculating the velocity v of the particle R is known, a detailed description thereof will be omitted.
  • the measuring device 1 of the embodiment is a device that measures the velocity v of the particle R in the fluid F flowing through the flow path 60, and includes the first laser light L1 and the second laser.
  • a laser light irradiation device 2 that irradiates the light L2 and a light receiving device 3 that receives the first scattered light P1 and the second scattered light P2 are provided.
  • the first laser light L1 and the second laser light L2 travel from different directions toward the measurement point 10 in the flow path 60.
  • the first laser light L1 hits the particle R passing through the measurement point 10
  • the first scattered light P1 is generated.
  • the second laser beam L2 hits the particle R passing through the measurement point 10
  • the second scattered light P2 is generated.
  • the light receiving device 3 receives the first scattered light P1 and the second scattered light P2.
  • the light receiving device 3 includes a light receiving element 31 and a hollow light passage hole 35 formed between the light receiving element 31 and the measurement point 10.
  • the light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31.
  • the first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10 pass through the light passage hole 35 and enter the light receiving element 31.
  • the light receiving device 3 receives the first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10. Based on the frequency f1 of the first scattered light P1 and the frequency f2 of the second scattered light P2 received by the light receiving device 3, the velocity v of the particle R passing through the measurement point 10 can be calculated.
  • the first measurement point 10 when the first laser beam L 1 and the second laser beam L 2 are irradiated from the laser beam irradiation device 2, the first measurement point 10 only is measured. It is preferable to irradiate the laser beam L1 and the second laser beam L2.
  • the first laser is also applied to the periphery of the measurement point 10 due to light diffusion or the like.
  • the light L1 and the second laser light L2 are irradiated.
  • the first laser light L1 and the second laser light L2 irradiated from the laser light irradiation device 2 hit the particles R in the fluid F and scatter, they only hit the particles R passing through the measurement point 10 and scatter. In other words, the light hits the particle R passing around the measurement point 10 and is scattered.
  • the light passing hole 35 since the light passing hole 35 is provided, only scattered light generated by the particle R passing through the measurement point 10 can be received and generated by the particle R passing around the measurement point 10. Receiving scattered light can be suppressed. That is, according to the above configuration, the light passing hole 35 extends between the measurement point 10 and the light receiving element 31 in the direction from the measurement point 10 toward the light receiving element 31, and thus is generated by the particles R passing through the measurement point 10. The scattered light passes through the light passage hole 35 and enters the light receiving element 31. However, the scattered light generated by the particles R passing around the measurement point 10 enters the light receiving element 31 due to the presence of the light passage hole 35. It becomes difficult. Accordingly, it is possible to suppress receiving excessive scattered light.
  • the laser beam irradiation apparatus 2 is the light emitting element 21 which light-emits the laser beam L, and the laser beam L which the light emitting element 21 light-emitted is 1st laser beam L1 and 2nd laser beam L2.
  • a diffraction grating 23 is provided.
  • the first laser light L1 and the second laser light L2 separated by the diffraction grating 23 travel in different directions.
  • the laser light irradiation device 2 includes a first transmission / reflection surface 43 on which the first laser light L1 divided by the diffraction grating 23 is incident and a second transmission / reflection surface 44 on which the second laser light L2 is incident. It has.
  • the first transmission / reflection surface 43 On the first transmission / reflection surface 43, a part of the incident first laser light L1 is transmitted, the other part is reflected, and the reflected first laser light L1 travels toward the measurement point 10.
  • the second transmitting / reflecting surface 44 transmits part of the incident second laser light L2 and reflects the other part, and the reflected second laser light L2 travels toward the measurement point 10.
  • the first transmission / reflection surface 43 is constituted by the first side surface 43 of the light guide 24 and may be referred to as a first half mirror 43 that transmits and reflects the first laser light L1.
  • the second transmission / reflection surface 44 is constituted by the second side surface 44 of the light guide 24 and may be referred to as a second half mirror 44 that transmits and reflects the second laser light L2.
  • the intensity of the first laser beam L1 traveling toward the measurement point 10 can be reduced.
  • the transmitted component of the second laser light L2 incident on the second transmission / reflection surface 44 can be removed, and only the reflected component travels toward the measurement point 10.
  • the intensity of the second laser light L2 that travels toward can be reduced.
  • the incident angle ⁇ i of the optical axis X1 of the first laser light L1 incident on the first transmission / reflection surface 43 is smaller than the critical angle ⁇ r of the first transmission / reflection surface 43.
  • the incident angle ⁇ i of the optical axis X2 of the second laser light L2 incident on the second transmission / reflection surface 44 is smaller than the critical angle ⁇ r of the second transmission / reflection surface 44.
  • strength of the 1st laser beam L1 and the 2nd laser beam L2 which advance toward the measurement point 10 can be made weak. Therefore, when the first laser beam L1 and the second laser beam L2 are irradiated toward the measurement point 10, the first laser beam L1 and the second laser beam L2 spread around the measurement point 10. Can be suppressed.
  • the measuring device 1 includes a moving device 25 that changes the distance between the diffraction grating 23 and the first transmission / reflection surface 43 and the second transmission / reflection surface 44.
  • a moving device 25 that changes the distance between the diffraction grating 23 and the first transmission / reflection surface 43 and the second transmission / reflection surface 44.
  • the diffraction grating 23 is a reflective diffraction grating.
  • the light emitting element 21 is disposed between the diffraction grating 23, the first transmission / reflection surface 43, and the second transmission / reflection surface 44, and the laser light L emitted from the light emitting element 21 is reflected by the diffraction grating 23.
  • the laser beam is divided into a first laser beam L1 and a second laser beam L2. According to such a configuration, since the light emitting element 21 can be accommodated between the diffraction grating 23 and the light guide 24, the measuring device 1 can be made compact.
  • the first transmission / reflection surface 43 and the second transmission / reflection surface 44 are formed on the single light guide 24, but the present invention is not limited to this configuration.
  • the laser light irradiation device 2 may include a first light guide 241 and a second light guide 242 that are separated.
  • a first transmission / reflection surface 43 is formed on the first light guide 241
  • a second transmission / reflection surface 44 is formed on the second light guide 242.
  • the shape of the light passage hole 35 is not particularly limited.
  • the cross-sectional shape of the light passage hole 35 may be circular.
  • the cross-sectional shape of the light passage hole 35 may be a polygonal shape.
  • the several light passage hole 35 may be formed in slit shape.
  • the light receiving device 3 may include a light receiving element 31 and a light shielding box 38.
  • the light receiving element 31 is disposed in the box 38.
  • the box 38 includes a front wall 38a, a rear wall 38b, and a pair of side walls 38c and 38c.
  • the front wall 38 a is disposed between the tube 61 and the light receiving element 31.
  • the rear wall 38 b is disposed between the light receiving element 31 and the laser light irradiation device 2.
  • the pair of side walls 38c, 38c are disposed between the front wall 38a and the rear wall 38b.
  • the light receiving element 31 is fixed to the rear wall 38b of the box 38.
  • the front wall 38 a of the box 38 is disposed at a position away from the light receiving element 31.
  • a light passage hole 35 is formed in the front wall 38a.
  • the light passage hole 35 includes an entrance port 36 and an exit port 37.
  • the light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31.
  • the first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10 pass through the light passage hole 35 and enter the light receiving element 31.
  • Light P4 traveling from the side of the box 38 toward the light receiving element 31 is blocked by the box 38 and does not enter the light receiving element 31.
  • the light receiving element 31 can be prevented from receiving excess light.
  • Measurement device 2 Laser beam irradiation device 3: Light receiving device 9: Processing device 10: Measurement point 21: Light emitting element 22: Collimator lens 23: Diffraction grating 24: Light guide 25: Moving device 31: Light receiving device 32: Cylindrical body 35: Light passage hole 36: Entrance port 37: Outlet port 38: Box body 41: Entrance surface 42: Exit surface 43: First side surface (first transmission / reflection surface) 44: Second side surface (second transmission / reflection surface) 60: channel 61: tube 62: fixture 241: first light guide 242: second light guide 312: cover F: fluid L: laser light L1: first laser light L2: second laser Light P1: First scattered light P2: Second scattered light R: Particle X1: Optical axis X2 of the first laser light: Optical axis of the second laser light

Abstract

A measuring device 1 is provided with a laser light radiating device 2 and a light receiving device 3. The laser light radiating device 2 radiates first laser light L1 traveling toward a measuring point 10 inside a flow passage 60, and second laser light L2 traveling toward the measuring point 10 inside the flow passage 60 from a different direction to the first laser light L1. The light receiving device 3 receives first scattered light P1 and second scattered light P2 generated when the first laser light L1 and the second laser light L2 radiated from the laser light radiating device 2 strike a particle R passing through the measuring point 10. The light receiving device 3 is provided with a light receiving element 31 and a hollow light transmitting hole 35 formed between the light receiving element 31 and the measuring point 10. The light transmitting hole 35 extends in a direction from the measuring point 10 toward the light receiving element 31, and the first scattered light P1 and the second scattered light P2 generated by the particle R which is passing through the measuring point 10 pass through the light transmitting hole 35 and enter the light receiving element 31.

Description

計測装置Measuring device
 本明細書に開示する技術は、計測装置に関する。 The technology disclosed in this specification relates to a measurement device.
 従来から、計測対象物の速度を計測するレーザードップラー式の計測装置が知られている。レーザードップラー式の計測装置は、レーザー光照射装置と受光装置と処理装置を備えている。レーザー光照射装置は、移動する計測対象物に向かってレーザー光を照射する。レーザー光照射装置から照射されたレーザー光は、移動する計測対象物に当たったときに散乱して散乱光が生じる。そのときに生じた散乱光を受光装置が受光する。受光装置が散乱光を受光すると、処理装置がその散乱光の周波数に基づいて計測対象物の速度を演算する。処理装置は、公知のドップラーシフトに基づく演算方法によって計測対象物の速度を演算する。 Conventionally, a laser Doppler type measuring device for measuring the speed of an object to be measured is known. The laser Doppler type measuring device includes a laser light irradiation device, a light receiving device, and a processing device. The laser beam irradiation apparatus irradiates laser light toward a moving measurement object. The laser light emitted from the laser light irradiation device is scattered when it hits a moving measurement object to generate scattered light. The light receiving device receives the scattered light generated at that time. When the light receiving device receives the scattered light, the processing device calculates the velocity of the measurement object based on the frequency of the scattered light. The processing device calculates the speed of the measurement object by a known calculation method based on a Doppler shift.
 特許文献1(日本国特開平5-66226号公報)には、移動する計測対象物に向かって異なる2方向からレーザー光を照射するレーザー光照射装置を備えている計測装置が開示されている。特許文献1の計測装置は、レーザー光照射装置と受光装置と処理装置を備えている。レーザー光照射装置は、移動する計測対象物に向かって第1のレーザー光と第2のレーザー光を照射する。第1のレーザー光と第2のレーザー光は、計測対象物に向かって互いに異なる方向から照射される。レーザー光照射装置から照射された第1のレーザー光と第2のレーザー光は、移動する計測対象物に当たったときに散乱し、それぞれの散乱光が生じる。そのときに生じたそれぞれの散乱光を受光装置が受光する。また、特許文献1の計測装置では、受光装置が集光レンズを備えており、この集光レンズによって様々な散乱光を集光して受光する。受光装置が第1のレーザー光と第2のレーザー光の散乱光を受光すると、処理装置がそれぞれの散乱光の周波数に基づいて計測対象物の速度を演算する。処理装置は、公知のドップラーシフトに基づく演算方法によって計測対象物の速度を演算する。 Patent Document 1 (Japanese Patent Laid-Open No. 5-66226) discloses a measuring device including a laser light irradiation device that irradiates laser light from two different directions toward a moving measurement object. The measuring device of Patent Document 1 includes a laser light irradiation device, a light receiving device, and a processing device. The laser beam irradiation apparatus irradiates the first laser beam and the second laser beam toward the moving measurement object. The first laser light and the second laser light are emitted from different directions toward the measurement object. The first laser light and the second laser light irradiated from the laser light irradiation device are scattered when they hit the moving measurement object, and each scattered light is generated. The light receiving device receives each scattered light generated at that time. Moreover, in the measuring apparatus of patent document 1, the light-receiving device is provided with a condensing lens, and various scattered light is condensed and received by this condensing lens. When the light receiving device receives the scattered light of the first laser light and the second laser light, the processing device calculates the velocity of the measurement object based on the frequency of each scattered light. The processing device calculates the speed of the measurement object by a known calculation method based on a Doppler shift.
 計測対象物の速度を計測する計測装置では、流路を流れる流体中の粒子の速度を計測することがある。つまり、計測対象物が流体中の粒子であることがある。流体中の粒子としては、例えば、血液中の赤血球等が考えられる。計測装置が流路を流れる血液中の赤血球の速度を計測することになる。これによって、血液の流速を知ることができる。 In a measuring device that measures the speed of a measurement object, the speed of particles in a fluid flowing through a flow path may be measured. That is, the measurement object may be particles in the fluid. As the particles in the fluid, for example, red blood cells in blood can be considered. The measuring device measures the velocity of red blood cells in the blood flowing through the flow path. Thereby, the blood flow rate can be known.
 一般的に流路を流れる流体中には無数の粒子が存在している。例えば、血液中には無数の赤血球が存在している。無数の粒子は流体中に拡散して存在している。そのため、無数の粒子の中には、例えば、流路の中心部を通過する粒子もあれば、流路の周縁部を通過する粒子もある。また、流体中の無数の粒子の速度は様々である。速度が速い粒子もあれば、速度が遅い粒子もある。 Generally, countless particles exist in the fluid flowing through the flow path. For example, there are countless red blood cells in the blood. Innumerable particles are diffused in the fluid. Therefore, innumerable particles include, for example, particles that pass through the central portion of the flow channel and particles that pass through the peripheral portion of the flow channel. Also, the speed of countless particles in the fluid varies. Some particles are fast, others are slow.
 特許文献1の計測装置を用いて流路を流れる流体中の粒子の速度を計測する場合は、レーザー光照射装置から流路内の任意の計測点に向かって第1のレーザー光と第2のレーザー光を照射する。第1のレーザー光と第2のレーザー光は、流路内の計測点に向かって互いに異なる方向から照射される。レーザー光照射装置から照射された第1のレーザー光と第2のレーザー光は、計測点を通過する粒子に当たったときに散乱し、それぞれの散乱光が生じる。そのときに生じたそれぞれの散乱光を受光装置が受光する。受光装置は、集光レンズによって様々な散乱光を集光して受光する。そして、受光装置が受光したそれぞれの散乱光の周波数に基づいて、処理装置が計測点を通過する粒子の速度を演算する。 When measuring the velocity of particles in the fluid flowing through the flow path using the measurement device of Patent Document 1, the first laser light and the second laser light are directed from the laser light irradiation device toward an arbitrary measurement point in the flow path. Irradiate with laser light. The first laser beam and the second laser beam are irradiated from different directions toward the measurement point in the flow path. The first laser light and the second laser light irradiated from the laser light irradiation device are scattered when they hit the particles passing through the measurement point, and each scattered light is generated. The light receiving device receives each scattered light generated at that time. The light receiving device condenses and receives various scattered light by a condensing lens. Then, based on the frequency of each scattered light received by the light receiving device, the processing device calculates the velocity of the particles passing through the measurement point.
 計測点を通過する粒子の速度を計測するためには、レーザー光照射装置から計測点に向かって第1のレーザー光と第2のレーザー光を照射する際に、各レーザー光を計測点のみに照射すればよい。そうすれば、計測点を通過する粒子のみに第1のレーザー光と第2のレーザー光が当たり、各レーザー光がその粒子に当たったときに生じる散乱光のみを取り出すことができる。したがって理想的には、第1のレーザー光と第2のレーザー光を照射する際に、第1のレーザー光と第2のレーザー光が計測点のみで重なり合うように照射することが好ましい。しかしながら現実的には、第1のレーザー光と第2のレーザー光を計測点のみに照射することは困難であり、光の拡散等によって計測点の周辺にも第1のレーザー光と第2のレーザー光が照射されてしまう。つまり、第1のレーザー光と第2のレーザー光が、光の拡散等によって計測点及びその周辺で重なり合うように照射されてしまう。そうすると、レーザー光照射装置から照射された第1のレーザー光と第2のレーザー光が粒子に当たって散乱するときに、計測点を通過する粒子に当たって散乱するだけでなく、計測点の周辺を通過する粒子にも第1のレーザー光と第2のレーザー光が当たって散乱してしまう。そのため、計測点を通過する粒子によって生じた散乱光だけでなく、計測点の周辺を通過する粒子によって生じた散乱光も取り出してしまうことになる。そうすると、流体中の無数の粒子の速度が様々であるので、様々な速度の粒子によって生じた様々な散乱光を受光装置が受光することになる。その結果、処理装置が様々な散乱光の周波数に基づいて粒子の速度を演算することになってしまい、流路を流れる流体中の粒子の速度を正確に計測することが困難になる。また、特許文献1の計測装置では、受光装置が集光レンズによって様々な散乱光を集光して受光しているので、処理装置が様々な散乱光の周波数に基づいて粒子の速度を演算することになる。その結果、流路を流れる流体中の粒子の速度を正確に計測することが困難になる。このように、特許文献1の計測装置では、計測点を通過する粒子によって生じた散乱光だけでなく、余分な散乱光も受光してしまうので、粒子の速度を正確に計測することが困難になる。特許文献1の計測装置は、計測対象物の速度が均一である場合は問題無いが、流体中の粒子のように速度が様々である場合は問題が生じてしまう。そこで本明細書は、余分な散乱光を受光することを抑制できる技術を提供する。 In order to measure the velocity of particles passing through the measurement point, each laser beam is applied only to the measurement point when the first laser beam and the second laser beam are irradiated from the laser beam irradiation device toward the measurement point. Irradiation is sufficient. Then, only the scattered light generated when the first laser light and the second laser light hit only the particles passing through the measurement point and each laser light hits the particles can be taken out. Therefore, ideally, when the first laser beam and the second laser beam are irradiated, it is preferable to irradiate the first laser beam and the second laser beam so as to overlap only at the measurement point. However, in reality, it is difficult to irradiate only the measurement point with the first laser beam and the second laser beam, and the first laser beam and the second laser beam are also distributed around the measurement point by light diffusion or the like. Laser light will be irradiated. That is, the first laser beam and the second laser beam are irradiated so as to overlap each other around the measurement point due to light diffusion or the like. Then, when the first laser light and the second laser light irradiated from the laser light irradiation device hit the particles and scatter, the particles pass not only the particles passing through the measurement point but also passing around the measurement point. In addition, the first laser beam and the second laser beam hit and scatter. Therefore, not only scattered light generated by particles passing through the measurement point but also scattered light generated by particles passing around the measurement point are extracted. Then, since the speed of countless particles in the fluid is various, the light receiving device receives various scattered lights generated by the particles having various speeds. As a result, the processing apparatus calculates the velocity of the particles based on various scattered light frequencies, and it becomes difficult to accurately measure the velocity of the particles in the fluid flowing through the flow path. Moreover, in the measuring apparatus of patent document 1, since the light receiving device collects and receives various scattered light by the condensing lens, the processing device calculates the velocity of the particles based on the frequency of the various scattered light. It will be. As a result, it becomes difficult to accurately measure the velocity of the particles in the fluid flowing through the flow path. As described above, in the measuring apparatus of Patent Document 1, not only scattered light generated by particles passing through the measurement point but also excess scattered light is received, making it difficult to accurately measure the velocity of the particles. Become. The measuring device of Patent Document 1 has no problem when the speed of the measurement object is uniform, but causes a problem when the speed is various, such as particles in a fluid. Therefore, the present specification provides a technique capable of suppressing the reception of excess scattered light.
 本明細書に開示する計測装置は、流路を流れる流体中の粒子の速度を計測するための装置である。この計測装置は、レーザー光照射装置と受光装置を備えている。レーザー光照射装置は、流路内の計測点に向かって進行する第1のレーザー光と、第1のレーザー光と異なる方向から流路内の計測点に向かって進行する第2のレーザー光を照射する。受光装置は、レーザー光照射装置から照射された第1のレーザー光と第2のレーザー光が計測点を通過する粒子に当たったときにそれぞれ生じる散乱光を受光する。受光装置は、受光素子と、受光素子と計測点の間に形成されている中空の光通過孔を備えている。光通過孔は、計測点から受光素子に向かう方向に延びており、計測点を通過する粒子によって生じた散乱光が光通過孔を通過して受光素子に入射する。 The measuring device disclosed in this specification is a device for measuring the velocity of particles in a fluid flowing through a flow path. This measuring device includes a laser beam irradiation device and a light receiving device. The laser beam irradiation device includes a first laser beam that travels toward a measurement point in the flow path and a second laser beam that travels toward a measurement point in the flow path from a different direction from the first laser light. Irradiate. The light receiving device receives scattered light respectively generated when the first laser light and the second laser light irradiated from the laser light irradiation device hit the particles passing through the measurement point. The light receiving device includes a light receiving element and a hollow light passage hole formed between the light receiving element and the measurement point. The light passage hole extends in a direction from the measurement point toward the light receiving element, and scattered light generated by particles passing through the measurement point passes through the light passage hole and enters the light receiving element.
 このような構成によれば、計測点を通過する粒子によって生じた散乱光のみが光通過孔を通過して受光素子に入射する。レーザー光照射装置から第1のレーザー光と第2のレーザー光が照射されたときに、計測点だけでなく、計測点の周辺にも第1のレーザー光と第2のレーザー光が照射されてしまうことがある。そうすると、計測点を通過する粒子だけでなく、計測点の周辺を通過する粒子によっても散乱光が生じてしまう。しかしながら、上記の構成によれば、光通過孔を備えているので、計測点の周辺を通過する粒子によって生じた散乱光が受光素子に入射することを抑制できる。すなわち、上記の構成によれば、計測点と受光素子の間で光通過孔が計測点から受光素子に向かう方向に延びているので、計測点を通過する粒子によって生じた散乱光は光通過孔を通過して受光素子に入射するが、計測点の周辺を通過する粒子によって生じた散乱光は、光通過孔の存在によって受光素子に入射しにくくなる。これによって、余分な散乱光を受光することを抑制できる。そのため、流路を流れる流体中の粒子の速度を正確に計測することができる。 According to such a configuration, only scattered light generated by particles passing through the measurement point passes through the light passage hole and enters the light receiving element. When the first laser beam and the second laser beam are irradiated from the laser beam irradiation device, the first laser beam and the second laser beam are irradiated not only at the measurement point but also around the measurement point. May end up. Then, scattered light is generated not only by the particles passing through the measurement point but also by particles passing around the measurement point. However, according to said structure, since the light passage hole is provided, it can suppress that the scattered light produced by the particle | grains which pass the circumference | surroundings of a measurement point injects into a light receiving element. That is, according to the above configuration, since the light passage hole extends in the direction from the measurement point to the light receiving element between the measurement point and the light receiving element, the scattered light generated by the particles passing through the measurement point is reflected in the light passage hole. However, the scattered light generated by the particles passing around the measurement point is less likely to enter the light receiving element due to the presence of the light passage hole. Accordingly, it is possible to suppress receiving excessive scattered light. Therefore, the velocity of particles in the fluid flowing through the flow path can be accurately measured.
実施例に係る計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the measuring device which concerns on an Example. 図1の要部IIの拡大図である。It is an enlarged view of the principal part II of FIG. 実施例に係る受光装置の概略構成を示す図である。It is a figure which shows schematic structure of the light-receiving device based on an Example. 実施例に係る計測装置のブロック図である。It is a block diagram of a measuring device concerning an example. 他の実施例に係る計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the measuring device which concerns on another Example. 光通過孔の一例を示す断面図である。It is sectional drawing which shows an example of a light passage hole. 光通過孔の他の一例を示す断面図である。It is sectional drawing which shows another example of a light passage hole. 光通過孔の更に他の一例を示す断面図である。It is sectional drawing which shows another example of a light passage hole. 他の実施例に係る受光装置の概略構成を示す図である。It is a figure which shows schematic structure of the light-receiving device which concerns on another Example.
 以下に説明する実施例の主要な特徴を列記する。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものである。 The main features of the embodiment described below are listed. Note that the technical elements described below are independent technical elements, and exhibit technical usefulness alone or in various combinations.
 (特徴1)レーザー光照射装置は、レーザー光を発光する発光素子と、発光素子が発光したレーザー光を第1のレーザー光と、第1のレーザー光と異なる方向に進行する第2のレーザー光に分ける回折格子を備えていてもよい。また、レーザー光照射装置は、回折格子によって分けられた第1のレーザー光が入射する第1の透過反射面であって、入射した第1のレーザー光の一部が透過し、他の一部が反射し、反射した第1のレーザー光が計測点に向かって進行する第1の透過反射面を備えていてもよい。また、レーザー光照射装置は、回折格子によって分けられた第2のレーザー光が入射する第2の透過反射面であって、入射した第2のレーザー光の一部を透過し、他の一部を反射し、反射された第2のレーザー光が計測点に向かって進行する第2の透過反射面を備えていてもよい。 (Characteristic 1) A laser beam irradiation apparatus includes a light emitting element that emits laser light, a laser beam emitted from the light emitting element, a first laser beam, and a second laser beam that travels in a direction different from the first laser beam. You may provide the diffraction grating divided into. The laser beam irradiation device is a first transmission / reflection surface on which the first laser beam divided by the diffraction grating is incident, and a part of the incident first laser beam is transmitted and the other part is transmitted. May be provided, and the reflected first laser light may be provided with a first transmission / reflection surface that travels toward the measurement point. The laser beam irradiation device is a second transmitting / reflecting surface on which the second laser beam divided by the diffraction grating is incident, transmits a part of the incident second laser beam, and the other part. The second transmission / reflection surface may be provided in which the reflected second laser light travels toward the measurement point.
 このような構成によれば、第1のレーザー光の一部(第1の透過反射面で透過する成分)を除去することができ、他の一部(第1の透過反射面で反射する成分)のみが計測点に向かって進行するので、計測点に向かって進行する第1のレーザー光の強度の強い光の広がりを絞ることができる。同様に、第2のレーザー光の一部(第2の透過反射面で透過する成分)を除去することができ、他の一部(第2の透過反射面で反射する成分)のみが計測点に向かって進行するので、計測点に向かって進行する第2のレーザー光の強度の強い光の広がりを絞ることができる。強度を弱くすることによって、計測点に向かって第1のレーザー光と第2のレーザー光が照射されたときに、第1のレーザー光と第2のレーザー光が計測点の周辺に広がることを抑制することができる。そのため、計測点の周辺を通過する粒子によって散乱光が生じることを抑制することができる。したがって、余分な散乱光を受光することを抑制できる。 According to such a configuration, a part of the first laser light (component transmitted through the first transmission / reflection surface) can be removed, and the other part (component reflected by the first transmission / reflection surface). ) Only travels toward the measurement point, so that it is possible to narrow the spread of the strong light of the first laser beam traveling toward the measurement point. Similarly, a part of the second laser light (component transmitted by the second transmission / reflection surface) can be removed, and only the other part (component reflected by the second transmission / reflection surface) is measured. Therefore, it is possible to narrow the spread of the strong light of the second laser beam traveling toward the measurement point. By reducing the intensity, the first laser beam and the second laser beam spread around the measurement point when the first laser beam and the second laser beam are irradiated toward the measurement point. Can be suppressed. Therefore, it can suppress that scattered light arises with the particle | grains which pass the circumference | surroundings of a measurement point. Therefore, it is possible to suppress receiving excessive scattered light.
 (特徴2)第1の透過反射面に入射する第1のレーザー光の光軸の入射角が、第1の透過反射面における臨界角より小さくてもよい。第2の透過反射面に入射する第2のレーザー光の光軸の入射角が、第2の透過反射面における臨界角より小さくてもよい。 (Feature 2) The incident angle of the optical axis of the first laser beam incident on the first transmission / reflection surface may be smaller than the critical angle of the first transmission / reflection surface. The incident angle of the optical axis of the second laser light incident on the second transmission / reflection surface may be smaller than the critical angle of the second transmission / reflection surface.
 このような構成によれば、第1の透過反射面に入射する第1のレーザー光のうち、透過する成分を多くすることができる(反射する成分を少なくすることができる)。同様に、第2の透過反射面に入射する第2のレーザー光のうち、透過する成分を多くすることができる(反射する成分を少なくすることができる)。これによって、第1の透過反射面で反射して計測点に向かって進行する第1のレーザー光の強度と、第2の透過反射面で反射して計測点に向かって進行する第2のレーザー光の強度を弱くすることができる。強度を弱くすることによって、計測点に向かって第1のレーザー光と第2のレーザー光が照射されたときに、第1のレーザー光と第2のレーザー光が計測点の周辺に広がることを抑制することができる。 According to such a configuration, it is possible to increase the amount of the transmitted component in the first laser light incident on the first transmission / reflection surface (the number of the reflected component can be decreased). Similarly, in the second laser light incident on the second transmitting / reflecting surface, it is possible to increase the transmitted component (reducing the reflected component). As a result, the intensity of the first laser beam that is reflected by the first transmission / reflection surface and travels toward the measurement point, and the second laser that is reflected by the second transmission / reflection surface and travels toward the measurement point The intensity of light can be reduced. By reducing the intensity, the first laser beam and the second laser beam spread around the measurement point when the first laser beam and the second laser beam are irradiated toward the measurement point. Can be suppressed.
 (特徴3)計測装置は、回折格子と第1の透過反射面及び第2の透過反射面の間の距離を変える移動装置を更に備えていてもよい。 (Feature 3) The measuring device may further include a moving device that changes the distance between the diffraction grating and the first transmission / reflection surface and the second transmission / reflection surface.
 このような構成によれば、回折格子によって分けられた第1のレーザー光と第2のレーザー光が第1の透過反射面と第2の透過反射面に入射する位置を変えることができる。これによって、第1のレーザー光と第2のレーザー光が照射される位置を変えることができ、流路内の計測点の位置を変えることができる。 According to such a configuration, the positions where the first laser light and the second laser light separated by the diffraction grating are incident on the first transmission / reflection surface and the second transmission / reflection surface can be changed. Thereby, the position where the first laser light and the second laser light are irradiated can be changed, and the position of the measurement point in the flow path can be changed.
 (特徴4)回折格子が、反射型の回折格子であってもよい。発光素子が、回折格子と第1の透過反射面と第2の透過反射面の間に配置されていてもよい。発光素子が発光したレーザー光が回折格子で反射することによって第1のレーザー光と第2のレーザー光に分かれる構成であってもよい。 (Feature 4) The diffraction grating may be a reflection type diffraction grating. The light emitting element may be disposed between the diffraction grating, the first transmission / reflection surface, and the second transmission / reflection surface. The laser beam emitted from the light emitting element may be divided into a first laser beam and a second laser beam by reflection by a diffraction grating.
 このような構成によれば、計測装置をコンパクトにすることができる。なお、回折格子が透過型の回折格子であると、発光素子を回折格子に対して第1の透過反射面と第2の透過反射面の反対側に配置しなければならず、計測装置が大型化してしまう。 According to such a configuration, the measuring device can be made compact. If the diffraction grating is a transmission type diffraction grating, the light emitting element must be disposed on the opposite side of the first transmission reflection surface and the second transmission reflection surface with respect to the diffraction grating, and the measuring device is large. It will become.
 以下に実施例について添付図面を参照して説明する。図1に示すように、実施例に係る計測装置1は、固定具62によって管61に固定されて使用される。管61内に流路60が形成されている。計測装置1は、流路60を流れる流体F中の粒子Rの速度vを計測する装置である。これによって、流体Fの流速を知ることができる。 Embodiments will be described below with reference to the accompanying drawings. As shown in FIG. 1, the measuring apparatus 1 according to the embodiment is used by being fixed to a tube 61 by a fixture 62. A flow path 60 is formed in the tube 61. The measuring device 1 is a device that measures the velocity v of the particle R in the fluid F flowing through the flow path 60. Thereby, the flow rate of the fluid F can be known.
 流路60を流れる流体F中には無数の粒子Rが存在している。無数の粒子Rは流体F中に拡散して存在している。したがって、無数の粒子Rの中には、例えば、流路60の中心部を通過する粒子Rもあれば、流路60の周縁部を通過する粒子Rもある。また、無数の粒子Rの速度は様々である。速度が速い粒子Rもあれば、速度が遅い粒子Rもある。流路60を流れる流体F中の粒子Rの速度vを計測する際に、流路60内の特定の計測点10に絞って粒子Rの速度vを計測することがある。流路60内の計測点10の位置は特に限定されるものではないが、例えば、流路60の中心部を計測点10として、流路60の中心部を通過する粒子Rの速度vを計測することができる。一般的に、流路60の中心部を流れる流体Fの流速は、流路60の全体を流れる流体Fの平均流速の2倍に相当することが知られている。 Innumerable particles R exist in the fluid F flowing through the flow path 60. Innumerable particles R are diffused in the fluid F. Therefore, among the countless particles R, for example, there are particles R that pass through the central portion of the flow channel 60 and particles R that pass through the peripheral portion of the flow channel 60. In addition, the speed of the countless particles R varies. Some particles R have a high speed and some particles R have a low speed. When measuring the velocity v of the particle R in the fluid F flowing through the flow channel 60, the velocity v of the particle R may be measured by focusing on a specific measurement point 10 in the flow channel 60. The position of the measurement point 10 in the flow channel 60 is not particularly limited. For example, the velocity v of the particle R passing through the central portion of the flow channel 60 is measured using the central portion of the flow channel 60 as the measurement point 10. can do. In general, it is known that the flow velocity of the fluid F flowing through the central portion of the flow channel 60 corresponds to twice the average flow velocity of the fluid F flowing through the entire flow channel 60.
 流路60を流れる流体Fとしては、例えば血液が挙げられる。流体F中の粒子Rとしては、例えば赤血球が挙げられる。計測装置1によって血液中の赤血球の速度を計測することができる。これによって、血液の流速を知ることができる。医療現場では、患者の体内を流れる血液を体外に送り出し、体外に送り出した血液を再び体内に送り戻す体外循環が行われることがある。この体外循環では、体外循環用の管が患者の血管に接続され、患者の血管を流れる血液が体外循環用の管に流入し、体外循環用の管を流れた血液が再び患者の血管に戻される。図1に示す計測装置1によって体外循環用の管61を流れる血液(流体F)中の赤血球(粒子R)の速度vを計測することができる。 Examples of the fluid F flowing through the flow path 60 include blood. Examples of the particles R in the fluid F include red blood cells. The measuring device 1 can measure the velocity of red blood cells in the blood. Thereby, the blood flow rate can be known. In a medical field, extracorporeal circulation may be performed in which blood flowing through a patient's body is sent out of the body and the blood sent out of the body is sent back into the body again. In this extracorporeal circulation, the extracorporeal circulation tube is connected to the patient's blood vessel, the blood flowing through the patient's blood vessel flows into the extracorporeal circulation tube, and the blood flowing through the extracorporeal circulation tube is returned to the patient's blood vessel again. It is. The velocity v of red blood cells (particles R) in blood (fluid F) flowing through the extracorporeal circulation tube 61 can be measured by the measuring device 1 shown in FIG.
 図1に示すように、計測装置1は、レーザー光照射装置2と、受光装置3と、処理装置9を備えている。レーザー光照射装置2は、発光素子21と、コリメーターレンズ22と、回折格子23と、導光体24を備えている。発光素子21は、例えばレーザーダイオード(LD)である。発光素子21は、コリメーターレンズ22と対向するように配置されている。発光素子21は、コリメーターレンズ22に向けてレーザー光を発光する。発光素子21が発光したレーザー光がコリメーターレンズ22に入射する。発光素子21は、導光体24とは反対側にレーザー光を発光する。発光素子21は、回折格子23と導光体24の間に配置されている。 As shown in FIG. 1, the measuring device 1 includes a laser light irradiation device 2, a light receiving device 3, and a processing device 9. The laser light irradiation device 2 includes a light emitting element 21, a collimator lens 22, a diffraction grating 23, and a light guide 24. The light emitting element 21 is, for example, a laser diode (LD). The light emitting element 21 is disposed so as to face the collimator lens 22. The light emitting element 21 emits laser light toward the collimator lens 22. Laser light emitted from the light emitting element 21 enters the collimator lens 22. The light emitting element 21 emits laser light on the side opposite to the light guide 24. The light emitting element 21 is disposed between the diffraction grating 23 and the light guide 24.
 コリメーターレンズ22は、発光素子21と回折格子23の間に配置されている。コリメーターレンズ22は、発光素子21が発光したレーザー光Lを平行光にして出射する。コリメーターレンズ22から出射したレーザー光L(平行光)は、回折格子23に入射する。 The collimator lens 22 is disposed between the light emitting element 21 and the diffraction grating 23. The collimator lens 22 emits the laser light L emitted from the light emitting element 21 as parallel light. Laser light L (parallel light) emitted from the collimator lens 22 enters the diffraction grating 23.
 回折格子23は、コリメーターレンズ22と対向するように配置されている。回折格子23は、可動式になっており、移動装置25によって回折格子23を移動させることができる。移動装置25は、回折格子23と導光体24の間の距離を変えることができる。移動装置25は、例えば機械式の装置であり、ボルトを回すことによって回折格子23を上下動させることができる。回折格子23の位置を変えることによって、流路60内の計測点10の位置を変えることができる。回折格子23は、光の回折を利用して回折格子23に入射したレーザー光Lを第1のレーザー光L1と第2のレーザー光L2に分ける。回折格子23は、反射型の回折格子である。回折格子23に入射したレーザー光Lが回折格子23で反射するときに第1のレーザー光L1と第2のレーザー光L2に分かれる。発光素子21が発光したレーザー光Lが回折格子23で反射することによって第1のレーザー光L1と第2のレーザー光L2に分かれる。 The diffraction grating 23 is disposed so as to face the collimator lens 22. The diffraction grating 23 is movable, and the diffraction grating 23 can be moved by the moving device 25. The moving device 25 can change the distance between the diffraction grating 23 and the light guide 24. The moving device 25 is, for example, a mechanical device, and can move the diffraction grating 23 up and down by turning a bolt. By changing the position of the diffraction grating 23, the position of the measurement point 10 in the flow path 60 can be changed. The diffraction grating 23 divides the laser light L incident on the diffraction grating 23 into the first laser light L1 and the second laser light L2 using light diffraction. The diffraction grating 23 is a reflection type diffraction grating. When the laser beam L incident on the diffraction grating 23 is reflected by the diffraction grating 23, it is divided into a first laser beam L1 and a second laser beam L2. The laser beam L emitted from the light emitting element 21 is reflected by the diffraction grating 23 to be divided into a first laser beam L1 and a second laser beam L2.
 回折格子23によって生じた第1のレーザー光L1と第2のレーザー光L2は、異なる方向に進行する。第1のレーザー光L1と第2のレーザー光L2は、共に導光体24に向かって進行するが、発光素子21とコリメーターレンズ22を結ぶ線に関して線対称になるように進行する。図1に示す例では、第1のレーザー光L1が右斜め上方に向かって進行し、第2のレーザー光L2が左斜め上方に向かって進行する。第1のレーザー光L1の波長と第2のレーザー光L2の波長は同じ波長である。また、第1のレーザー光L1の周波数と第2のレーザー光L2の周波数は同じ周波数である。 The first laser beam L1 and the second laser beam L2 generated by the diffraction grating 23 travel in different directions. Both the first laser beam L1 and the second laser beam L2 travel toward the light guide 24, but travel so as to be line-symmetric with respect to the line connecting the light emitting element 21 and the collimator lens 22. In the example shown in FIG. 1, the first laser light L1 travels diagonally upward to the right, and the second laser light L2 travels diagonally upward to the left. The wavelength of the first laser light L1 and the wavelength of the second laser light L2 are the same wavelength. Further, the frequency of the first laser light L1 and the frequency of the second laser light L2 are the same frequency.
 導光体24は、回折格子23と管61の間に配置されている。回折格子23によって生じた第1のレーザー光L1と第2のレーザー光L2が導光体24に入射する。導光体24は、例えば直方体形状の透明なガラスブロックによって形成されている。導光体24は、入射面41、出射面42、第1の側面43および第2の側面44を備えている。入射面41は、回折格子23と対向するように配置されている。入射面41から第1のレーザー光L1と第2のレーザー光L2が入射する。入射面41から入射した第1のレーザー光L1は、第1の側面43に向かって進行する。第1の側面43に第1のレーザー光L1が入射する。また、入射面41から入射した第2のレーザー光L2は、第2の側面44に向かって進行する。第2の側面44に第2のレーザー光L2が入射する。 The light guide 24 is disposed between the diffraction grating 23 and the tube 61. The first laser beam L1 and the second laser beam L2 generated by the diffraction grating 23 enter the light guide 24. The light guide 24 is formed of, for example, a rectangular parallelepiped transparent glass block. The light guide 24 includes an entrance surface 41, an exit surface 42, a first side surface 43, and a second side surface 44. The incident surface 41 is disposed so as to face the diffraction grating 23. The first laser beam L1 and the second laser beam L2 are incident from the incident surface 41. The first laser light L 1 incident from the incident surface 41 travels toward the first side surface 43. The first laser beam L1 is incident on the first side surface 43. In addition, the second laser light L 2 incident from the incident surface 41 travels toward the second side surface 44. The second laser beam L2 is incident on the second side surface 44.
 第1の側面43と第2の側面44は、入射面41と出射面42の間に配置されている。第1の側面43では、入射した第1のレーザー光L1の一部が透過し、他の一部が反射する。すなわち、第1の側面43は、第1のレーザー光L1を透過及び反射する透過反射面になっている。以下では、第1の側面を第1の透過反射面と呼ぶ場合がある。あるいは、第1の側面を第1のハーフミラーと呼ぶ場合もある。第1の透過反射面43(第1の側面43あるいは第1のハーフミラー43)で反射した第1のレーザー光L1は、出射面42に向かって進行して出射面42から出射する。同様に、第2の側面44では、入射した第2のレーザー光L2の一部が透過し、他の一部が反射する。すなわち、第2の側面44は、第2のレーザー光L2を透過及び反射する透過反射面になっている。以下では、第2の側面を第2の透過反射面と呼ぶ場合がある。あるいは、第2の側面を第2のハーフミラーと呼ぶ場合もある。第2の透過反射面44(第2の側面44あるいは第2のハーフミラー44)で反射した第2のレーザー光L2は、出射面42に向かって進行して出射面42から出射する。 The first side surface 43 and the second side surface 44 are disposed between the incident surface 41 and the output surface 42. In the first side face 43, a part of the incident first laser light L1 is transmitted and the other part is reflected. That is, the first side surface 43 is a transmission / reflection surface that transmits and reflects the first laser beam L1. Hereinafter, the first side surface may be referred to as a first transmission / reflection surface. Alternatively, the first side surface may be referred to as a first half mirror. The first laser light L1 reflected by the first transmission / reflection surface 43 (the first side surface 43 or the first half mirror 43) travels toward the emission surface 42 and is emitted from the emission surface 42. Similarly, on the second side surface 44, a part of the incident second laser light L2 is transmitted and the other part is reflected. That is, the second side surface 44 is a transmission reflection surface that transmits and reflects the second laser light L2. Hereinafter, the second side surface may be referred to as a second transmission / reflection surface. Alternatively, the second side surface may be referred to as a second half mirror. The second laser light L2 reflected by the second transmission / reflection surface 44 (the second side surface 44 or the second half mirror 44) travels toward the emission surface 42 and is emitted from the emission surface 42.
 出射面42は、管61と対向するように配置されている。出射面42から第1のレーザー光L1と第2のレーザー光L2が出射する。出射面42から出射した第1のレーザー光L1と第2のレーザー光L2は、管61内に入射する。第1のレーザー光L1と第2のレーザー光L2は、流路60内の計測点10に向かって進行する。 The emission surface 42 is disposed so as to face the tube 61. The first laser beam L1 and the second laser beam L2 are emitted from the emission surface 42. The first laser light L1 and the second laser light L2 emitted from the emission surface 42 enter the tube 61. The first laser light L1 and the second laser light L2 travel toward the measurement point 10 in the flow path 60.
 第1のレーザー光L1は、平行光であることが好ましいが、現実的には図2に示すようにある程度の広がりを有している。そのため、第1の透過反射面43に入射する第1のレーザー光L1では、α1で示すように第1の透過反射面43への入射角が大きい成分もあれば、β1で示すように第1の透過反射面43への入射角が小さい成分もある。第1のレーザー光L1の光軸X1は、第1の透過反射面43に入射角θiで入射する。第1のレーザー光L1の光軸X1の入射角θiは、第1の透過反射面43における臨界角θrより小さい。第1の透過反射面43に入射する第1のレーザー光L1のうち、入射角が臨界角θrより小さい成分が第1の透過反射面43を透過する。一方、第1の透過反射面43に入射する第1のレーザー光L1のうち、入射角が臨界角θrより大きい成分が第1の透過反射面43で反射する。第1のレーザー光L1の光軸X1の入射角θiを小さくすると、入射角が臨界角θrより小さい成分が多くなり、第1の透過反射面43を透過する成分が多くなる(反射する成分が少なくなる。)。第1のレーザー光L1の光軸X1の入射角θiを大きくすると、入射角が臨界角θrより大きい成分が多くなり、第1の透過反射面43で反射する成分が多くなる(透過する成分が少なくなる。)。 The first laser beam L1 is preferably parallel light, but actually has a certain extent as shown in FIG. Therefore, the first laser light L1 incident on the first transmission / reflection surface 43 includes a component having a large incident angle to the first transmission / reflection surface 43 as indicated by α1, and the first laser light L1 as indicated by β1. There is also a component with a small incident angle to the transmission / reflection surface 43. The optical axis X1 of the first laser light L1 is incident on the first transmission / reflection surface 43 at an incident angle θi. The incident angle θi of the optical axis X1 of the first laser beam L1 is smaller than the critical angle θr in the first transmission / reflection surface 43. Of the first laser light L 1 incident on the first transmission / reflection surface 43, a component having an incident angle smaller than the critical angle θr is transmitted through the first transmission / reflection surface 43. On the other hand, of the first laser light L 1 incident on the first transmission / reflection surface 43, a component having an incident angle larger than the critical angle θr is reflected by the first transmission / reflection surface 43. When the incident angle θi of the optical axis X1 of the first laser beam L1 is reduced, the component with the incident angle smaller than the critical angle θr increases, and the component transmitted through the first transmission / reflection surface 43 increases (the component to be reflected is smaller). Less.) When the incident angle θi of the optical axis X1 of the first laser light L1 is increased, the incident angle is larger than the critical angle θr, and the component reflected by the first transmitting / reflecting surface 43 is increased (the transmitted component is smaller). Less.)
 第2のレーザー光L2についても第1のレーザー光L1と同様である。第2のレーザー光L2は、平行光であることが好ましいが、現実的には図2に示すようにある程度の広がりを有している。そのため、第2の透過反射面44に入射する第2のレーザー光L2では、α2で示すように第2の透過反射面44への入射角が大きい成分もあれば、β2で示すように第2の透過反射面44への入射角が小さい成分もある。第2のレーザー光L2の光軸X2は、第2の透過反射面44に入射角θiで入射する。第2のレーザー光L2の光軸X2の入射角θiは、第2の透過反射面44における臨界角θrより小さい。本実施例では、第2のレーザー光L2の光軸X2の入射角θiは、第1のレーザー光L1の光軸X1の入射角θiと同じ入射角である。また、第2の透過反射面44における臨界角θrは、第1の透過反射面43における臨界角θrと同じ臨界角である。第2の透過反射面44に入射する第2のレーザー光L2のうち、入射角が臨界角θrより小さい成分が第2の透過反射面44を透過する。一方、第2の透過反射面44に入射する第2のレーザー光L2のうち、入射角が臨界角θrより大きい成分が第2の透過反射面44で反射する。第2のレーザー光L2の光軸X2の入射角θiを小さくすると、入射角が臨界角θrより小さい成分が多くなり、第2の透過反射面44を透過する成分が多くなる(反射する成分が少なくなる。)。第2のレーザー光L2の光軸X2の入射角θiを大きくすると、入射角が臨界角θrより大きい成分が多くなり、第2の透過反射面44で反射する成分が多くなる(透過する成分が少なくなる。)。 The second laser beam L2 is the same as the first laser beam L1. The second laser light L2 is preferably parallel light, but actually has a certain extent as shown in FIG. Therefore, the second laser light L2 incident on the second transmission / reflection surface 44 includes a component having a large incident angle to the second transmission / reflection surface 44 as indicated by α2, and the second laser light L2 as indicated by β2. There is also a component with a small incident angle to the transmission / reflection surface 44. The optical axis X2 of the second laser beam L2 is incident on the second transmission / reflection surface 44 at an incident angle θi. The incident angle θi of the optical axis X2 of the second laser light L2 is smaller than the critical angle θr in the second transmission / reflection surface 44. In the present embodiment, the incident angle θi of the optical axis X2 of the second laser light L2 is the same as the incident angle θi of the optical axis X1 of the first laser light L1. The critical angle θr in the second transmission / reflection surface 44 is the same as the critical angle θr in the first transmission / reflection surface 43. Of the second laser light L 2 incident on the second transmission / reflection surface 44, a component having an incident angle smaller than the critical angle θr transmits through the second transmission / reflection surface 44. On the other hand, of the second laser light L 2 incident on the second transmission / reflection surface 44, a component having an incident angle larger than the critical angle θr is reflected by the second transmission / reflection surface 44. When the incident angle θi of the optical axis X2 of the second laser beam L2 is reduced, the component with the incident angle smaller than the critical angle θr increases, and the component transmitted through the second transmission / reflection surface 44 increases (the component to be reflected is smaller). Less.) When the incident angle θi of the optical axis X2 of the second laser beam L2 is increased, the incident angle is larger than the critical angle θr, and the component reflected by the second transmission / reflection surface 44 is increased (the transmitted component is smaller). Less.)
 図1に示すように、導光体24の出射面42から出射した第1のレーザー光L1と第2のレーザー光L2は、流路60内の計測点10に向かって進行する。第1のレーザー光L1と第2のレーザー光L2は、互いに異なる方向から計測点10に向かって進行する。すなわち、レーザー光照射装置2から流路60内の計測点10に向かって第1のレーザー光L1と第2のレーザー光L2が互いに異なる方向から照射される。第1のレーザー光L1は、流路60の下流側から計測点10に向かって進行する。第2のレーザー光L2は、流路60の上流側から計測点10に向かって進行する。第1のレーザー光L1と第2のレーザー光L2は、流路60内の計測点10で干渉して重なり合う。 As shown in FIG. 1, the first laser light L <b> 1 and the second laser light L <b> 2 emitted from the emission surface 42 of the light guide 24 travel toward the measurement point 10 in the flow path 60. The first laser beam L1 and the second laser beam L2 travel toward the measurement point 10 from different directions. That is, the first laser beam L1 and the second laser beam L2 are irradiated from the laser beam irradiation device 2 toward the measurement point 10 in the channel 60 from different directions. The first laser light L1 travels from the downstream side of the flow path 60 toward the measurement point 10. The second laser light L2 travels from the upstream side of the flow path 60 toward the measurement point 10. The first laser beam L1 and the second laser beam L2 are interfered and overlapped at the measurement point 10 in the flow path 60.
 流路60には流体F(例えば血液)が流れており、流体F中には無数の粒子R(例えば赤血球)が存在している。無数の粒子Rのうち、流路60内の計測点10を通過する粒子Rが存在する。計測点10を通過する粒子Rに第1のレーザー光L1と第2のレーザー光L2が当たると、第1のレーザー光L1と第2のレーザー光L2が散乱する。第1のレーザー光L1と第2のレーザー光L2は、異なる方向から粒子Rに当たる。第1のレーザー光L1は、流路60の下流側から粒子Rに当たる。すなわち、第1のレーザー光L1は、粒子Rの進行方向側から粒子Rに当たる。一方、第2のレーザー光L2は、流路60の上流側から粒子Rに当たる。すなわち、第2のレーザー光L2は、粒子Rの進行方向と反対側から粒子Rに当たる。第1のレーザー光L1と第2のレーザー光L2が粒子Rに当たって散乱したときに散乱光が生じる。第1のレーザー光L1が粒子Rに当たって散乱することによって第1の散乱光P1が生じる。また、第2のレーザー光L2が粒子Rに当たって散乱することによって第2の散乱光P2が生じる。散乱によって生じた第1の散乱光P1と第2の散乱光P2は計測点10の周囲の様々な方向に向かって進行する。そのうち、計測点10から受光装置3に向かって進行する第1の散乱光P1と第2の散乱光P2が存在する。受光装置3が第1の散乱光P1と第2の散乱光P2を受光する。 The fluid F (for example, blood) flows through the flow path 60, and innumerable particles R (for example, red blood cells) exist in the fluid F. Among the countless particles R, there are particles R that pass through the measurement point 10 in the flow path 60. When the first laser light L1 and the second laser light L2 strike the particle R passing through the measurement point 10, the first laser light L1 and the second laser light L2 are scattered. The first laser beam L1 and the second laser beam L2 strike the particle R from different directions. The first laser light L1 hits the particle R from the downstream side of the flow path 60. That is, the first laser light L1 strikes the particle R from the traveling direction side of the particle R. On the other hand, the second laser light L2 hits the particle R from the upstream side of the flow path 60. That is, the second laser light L2 strikes the particle R from the side opposite to the traveling direction of the particle R. Scattered light is generated when the first laser light L1 and the second laser light L2 strike the particle R and are scattered. The first scattered light P1 is generated when the first laser light L1 strikes the particle R and is scattered. Further, the second scattered light P2 is generated when the second laser light L2 hits the particle R and is scattered. The first scattered light P <b> 1 and the second scattered light P <b> 2 generated by scattering travel in various directions around the measurement point 10. Among these, there are first scattered light P1 and second scattered light P2 that travel from the measurement point 10 toward the light receiving device 3. The light receiving device 3 receives the first scattered light P1 and the second scattered light P2.
 第1のレーザー光L1と第2のレーザー光L2が粒子Rに当たって散乱するときにそれぞれの周波数が変化する。ドップラーシフトによって周波数が変化する。第1のレーザー光L1の散乱によって生じた第1の散乱光P1の周波数f1は、第1のレーザー光L1の周波数と異なる周波数である。また、第2のレーザー光L2の散乱によって生じた第2の散乱光P2の周波数f2は、第2のレーザー光L2の周波数と異なる周波数である。また、第1の散乱光P1の周波数f1と第2の散乱光P2の周波数f2は、互いに異なる周波数である。 When the first laser beam L1 and the second laser beam L2 strike the particle R and scatter, the respective frequencies change. The frequency changes due to the Doppler shift. The frequency f1 of the first scattered light P1 generated by the scattering of the first laser light L1 is a frequency different from the frequency of the first laser light L1. Further, the frequency f2 of the second scattered light P2 generated by the scattering of the second laser light L2 is a frequency different from the frequency of the second laser light L2. The frequency f1 of the first scattered light P1 and the frequency f2 of the second scattered light P2 are different from each other.
 受光装置3は、管61とレーザー光照射装置2の間に配置されている。受光装置3は、流路60と対向するように配置されている。受光装置3は、レーザー光照射装置2の導光体24に固定されている。受光装置3は、受光素子31と筒体32を備えている。 The light receiving device 3 is disposed between the tube 61 and the laser beam irradiation device 2. The light receiving device 3 is disposed so as to face the flow path 60. The light receiving device 3 is fixed to the light guide 24 of the laser light irradiation device 2. The light receiving device 3 includes a light receiving element 31 and a cylindrical body 32.
 筒体32は、管61と受光素子31の間に配置されている。筒体32は、受光素子31に固定されている。筒体32は、円筒状である。図3に示すように、筒体32内は中空である。筒体32内には光通過孔35が形成されている。光通過孔35は、入射口36と出射口37を備えている。光通過孔35は、計測点10から受光素子31に向かう方向に延びている。光通過孔35は、計測点10と受光素子31の間に形成されている。計測点10を通過する粒子Rによって生じた第1の散乱光P1と第2の散乱光P2が入射口36から光通過孔35に入射する。計測点10から受光素子31に向かって進行する第1の散乱光P1と第2の散乱光P2が光通過孔35を通過する。光通過孔35を通過した第1の散乱光P1と第2の散乱光P2が出射口37から出射して受光素子31に入射する。筒体32の外周面は、遮光性のカバー312に覆われている。筒体32の外周面から光通過孔35には光が入射しない。筒体32の側方から光通過孔35の軸方向と交差する方向に進行する光P3は、カバー312によって遮断されて光通過孔35に入射しない。光通過孔35の軸方向に進行する散乱光P1、P2が光通過孔35に入射する。光通過孔35の軸方向の長さは、入射口36の直径の2倍以上である。 The cylindrical body 32 is disposed between the tube 61 and the light receiving element 31. The cylindrical body 32 is fixed to the light receiving element 31. The cylinder 32 is cylindrical. As shown in FIG. 3, the inside of the cylindrical body 32 is hollow. A light passage hole 35 is formed in the cylindrical body 32. The light passage hole 35 includes an entrance port 36 and an exit port 37. The light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31. The light passage hole 35 is formed between the measurement point 10 and the light receiving element 31. The first scattered light P <b> 1 and the second scattered light P <b> 2 generated by the particles R passing through the measurement point 10 enter the light passage hole 35 from the incident port 36. The first scattered light P1 and the second scattered light P2 traveling from the measurement point 10 toward the light receiving element 31 pass through the light passage hole 35. The first scattered light P <b> 1 and the second scattered light P <b> 2 that have passed through the light passage hole 35 are emitted from the emission port 37 and enter the light receiving element 31. The outer peripheral surface of the cylindrical body 32 is covered with a light-shielding cover 312. Light does not enter the light passage hole 35 from the outer peripheral surface of the cylindrical body 32. Light P3 traveling in the direction intersecting the axial direction of the light passage hole 35 from the side of the cylindrical body 32 is blocked by the cover 312 and does not enter the light passage hole 35. Scattered light P <b> 1 and P <b> 2 traveling in the axial direction of the light passage hole 35 enter the light passage hole 35. The axial length of the light passage hole 35 is at least twice the diameter of the incident port 36.
 受光素子31は、光通過孔35を通過した第1の散乱光P1と第2の散乱光P2を受光する。受光素子31は、例えばフォトダイオード(PD)である。受光素子31は、光通過孔35の出射口37と対向している。それ以外の部分は、カバー312に覆われている。出射口37から出射した散乱光P1、P2が受光素子31に入射する。受光素子31の側方から受光素子31に向かって進行する光P4は、カバー312によって遮断されて受光素子31に入射しない。 The light receiving element 31 receives the first scattered light P1 and the second scattered light P2 that have passed through the light passage hole 35. The light receiving element 31 is, for example, a photodiode (PD). The light receiving element 31 faces the emission port 37 of the light passage hole 35. The other parts are covered with a cover 312. Scattered light P <b> 1 and P <b> 2 emitted from the emission port 37 enter the light receiving element 31. Light P4 traveling from the side of the light receiving element 31 toward the light receiving element 31 is blocked by the cover 312 and does not enter the light receiving element 31.
 図4に示すように、処理装置9は、発光素子21と受光素子31に電気的に接続されている。処理装置9は、発光素子21が発光するレーザー光Lと、受光素子31が受光する第1の散乱光P1と第2の散乱光P2に基づいて、計測点10を通過する粒子Rの速度vを演算する。処理装置9は、ドップラーシフトに基づく演算方法によって粒子Rの速度vを演算する。計測点10を通過する粒子Rの速度vは、下記の式(1)によって演算することができる。式(1)において、Fは、受光装置3が受光する光(第1の散乱光P1と第2の散乱光P2が干渉した光)のドップラー周波数である。θは、計測点10に向かって進行する第1のレーザー光L1と、計測点10と受光装置3を結んだ線とのなす角度(あるいは、計測点10に向かって進行する第2のレーザー光L2と、計測点10と受光装置3を結んだ線とのなす角度)である。λは、レーザー光(第1のレーザー光L1と第2のレーザー光L2)の波長である。粒子Rの速度vを演算する方法については公知であるので詳細な説明を省略する。
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 4, the processing device 9 is electrically connected to the light emitting element 21 and the light receiving element 31. Based on the laser light L emitted from the light emitting element 21 and the first scattered light P1 and the second scattered light P2 received by the light receiving element 31, the processing device 9 uses the velocity v of the particle R passing through the measurement point 10. Is calculated. The processing device 9 calculates the velocity v of the particle R by a calculation method based on the Doppler shift. The velocity v of the particle R passing through the measurement point 10 can be calculated by the following equation (1). In the formula (1), F is a Doppler frequency of light received by the light receiving device 3 (light in which the first scattered light P1 and the second scattered light P2 interfere). θ is an angle between the first laser beam L1 traveling toward the measurement point 10 and the line connecting the measurement point 10 and the light receiving device 3 (or the second laser beam traveling toward the measurement point 10). L2 and an angle formed by a line connecting measurement point 10 and light receiving device 3). λ is the wavelength of the laser light (first laser light L1 and second laser light L2). Since the method for calculating the velocity v of the particle R is known, a detailed description thereof will be omitted.
Figure JPOXMLDOC01-appb-M000001
 以上の説明から明らかなように、実施例の計測装置1は、流路60を流れる流体F中の粒子Rの速度vを計測する装置であって、第1のレーザー光L1と第2のレーザー光L2を照射するレーザー光照射装置2と、第1の散乱光P1と第2の散乱光P2を受光する受光装置3を備えている。第1のレーザー光L1と第2のレーザー光L2は、互いに異なる方向から流路60内の計測点10に向かって進行する。第1のレーザー光L1が計測点10を通過する粒子Rに当たったときに第1の散乱光P1が生じる。第2のレーザー光L2が計測点10を通過する粒子Rに当たったときに第2の散乱光P2が生じる。第1の散乱光P1と第2の散乱光P2を受光装置3が受光する。受光装置3は、受光素子31と、受光素子31と計測点10の間に形成されている中空の光通過孔35を備えている。光通過孔35は、計測点10から受光素子31に向かう方向に延びている。計測点10を通過する粒子Rによって生じた第1の散乱光P1と第2の散乱光P2が光通過孔35を通過して受光素子31に入射する。 As is clear from the above description, the measuring device 1 of the embodiment is a device that measures the velocity v of the particle R in the fluid F flowing through the flow path 60, and includes the first laser light L1 and the second laser. A laser light irradiation device 2 that irradiates the light L2 and a light receiving device 3 that receives the first scattered light P1 and the second scattered light P2 are provided. The first laser light L1 and the second laser light L2 travel from different directions toward the measurement point 10 in the flow path 60. When the first laser light L1 hits the particle R passing through the measurement point 10, the first scattered light P1 is generated. When the second laser beam L2 hits the particle R passing through the measurement point 10, the second scattered light P2 is generated. The light receiving device 3 receives the first scattered light P1 and the second scattered light P2. The light receiving device 3 includes a light receiving element 31 and a hollow light passage hole 35 formed between the light receiving element 31 and the measurement point 10. The light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31. The first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10 pass through the light passage hole 35 and enter the light receiving element 31.
 上記の構成によれば、計測点10を通過する粒子Rによって生じた第1の散乱光P1と第2の散乱光P2を受光装置3が受光する。受光装置3が受光した第1の散乱光P1の周波数f1と第2の散乱光P2の周波数f2に基づいて、計測点10を通過する粒子Rの速度vを演算することができる。計測点10を通過する粒子Rの速度vを計測するためには、レーザー光照射装置2から第1のレーザー光L1と第2のレーザー光L2を照射する際に、計測点10のみに第1のレーザー光L1と第2のレーザー光L2を照射することが好ましい。しかしながら現実的には、計測点10のみに第1のレーザー光L1と第2のレーザー光L2を照射することは困難であり、光の拡散等によって、計測点10の周辺にも第1のレーザー光L1と第2のレーザー光L2が照射されてしまう。そうすると、レーザー光照射装置2から照射された第1のレーザー光L1と第2のレーザー光L2が流体F中の粒子Rに当たって散乱するときに、計測点10を通過する粒子Rに当たって散乱するだけでなく、計測点10の周辺を通過する粒子Rにも当たって散乱してしまう。その結果、計測点10を通過する粒子Rによって散乱光が生じるだけでなく、計測点10の周辺を通過する粒子Rによっても散乱光が生じてしまう。しかしながら上記の構成では、光通過孔35を備えているので、計測点10を通過する粒子Rによって生じた散乱光のみを受光することができ、計測点10の周辺を通過する粒子Rによって生じた散乱光を受光することを抑制できる。すなわち、上記の構成によれば、計測点10と受光素子31の間で光通過孔35が計測点10から受光素子31に向かう方向に延びているので、計測点10を通過する粒子Rによって生じた散乱光は光通過孔35を通過して受光素子31に入射するが、計測点10の周辺を通過する粒子Rによって生じた散乱光は、光通過孔35の存在によって受光素子31に入射しにくくなる。これによって、余分な散乱光を受光することを抑制できる。 According to the above configuration, the light receiving device 3 receives the first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10. Based on the frequency f1 of the first scattered light P1 and the frequency f2 of the second scattered light P2 received by the light receiving device 3, the velocity v of the particle R passing through the measurement point 10 can be calculated. In order to measure the velocity v of the particle R passing through the measurement point 10, when the first laser beam L 1 and the second laser beam L 2 are irradiated from the laser beam irradiation device 2, the first measurement point 10 only is measured. It is preferable to irradiate the laser beam L1 and the second laser beam L2. However, in reality, it is difficult to irradiate only the measurement point 10 with the first laser light L1 and the second laser light L2, and the first laser is also applied to the periphery of the measurement point 10 due to light diffusion or the like. The light L1 and the second laser light L2 are irradiated. Then, when the first laser light L1 and the second laser light L2 irradiated from the laser light irradiation device 2 hit the particles R in the fluid F and scatter, they only hit the particles R passing through the measurement point 10 and scatter. In other words, the light hits the particle R passing around the measurement point 10 and is scattered. As a result, not only scattered light is generated by the particles R passing through the measurement point 10 but also scattered light is generated by the particles R passing around the measurement point 10. However, in the above configuration, since the light passing hole 35 is provided, only scattered light generated by the particle R passing through the measurement point 10 can be received and generated by the particle R passing around the measurement point 10. Receiving scattered light can be suppressed. That is, according to the above configuration, the light passing hole 35 extends between the measurement point 10 and the light receiving element 31 in the direction from the measurement point 10 toward the light receiving element 31, and thus is generated by the particles R passing through the measurement point 10. The scattered light passes through the light passage hole 35 and enters the light receiving element 31. However, the scattered light generated by the particles R passing around the measurement point 10 enters the light receiving element 31 due to the presence of the light passage hole 35. It becomes difficult. Accordingly, it is possible to suppress receiving excessive scattered light.
 流路60を流れる流体F中には無数の粒子Rが存在しており、無数の粒子Rの速度は様々である。そのため、様々な速度の粒子Rによって生じた散乱光を受光装置3が受光すると、処理装置9が粒子Rの速度を正確に演算することができなくなる。しかしながら、上記の構成によれば、余分な散乱光を受光することを抑制できるので、粒子Rの速度を正確に演算することができる。 An infinite number of particles R exist in the fluid F flowing through the flow path 60, and the speed of the infinite number of particles R varies. For this reason, when the light receiving device 3 receives scattered light generated by the particles R having various speeds, the processing device 9 cannot accurately calculate the speed of the particles R. However, according to the above configuration, it is possible to suppress the reception of excess scattered light, so that the speed of the particle R can be accurately calculated.
 また、上記の計測装置1では、レーザー光照射装置2が、レーザー光Lを発光する発光素子21と、発光素子21が発光したレーザー光Lを第1のレーザー光L1と第2のレーザー光L2に分ける回折格子23を備えている。回折格子23によって分けられた第1のレーザー光L1と第2のレーザー光L2は、異なる方向に進行する。また、レーザー光照射装置2は、回折格子23によって分けられた第1のレーザー光L1が入射する第1の透過反射面43と、第2のレーザー光L2が入射する第2の透過反射面44を備えている。第1の透過反射面43では、入射した第1のレーザー光L1の一部が透過し、他の一部が反射し、反射した第1のレーザー光L1が計測点10に向かって進行する。第2の透過反射面44では、入射した第2のレーザー光L2の一部を透過し、他の一部を反射し、反射された第2のレーザー光L2が計測点10に向かって進行する。第1の透過反射面43は、導光体24の第1の側面43によって構成されており、第1のレーザー光L1を透過および反射する第1のハーフミラー43と呼ぶ場合もある。また、第2の透過反射面44は、導光体24の第2の側面44によって構成されており、第2のレーザー光L2を透過および反射する第2のハーフミラー44と呼ぶ場合もある。 Moreover, in said measuring apparatus 1, the laser beam irradiation apparatus 2 is the light emitting element 21 which light-emits the laser beam L, and the laser beam L which the light emitting element 21 light-emitted is 1st laser beam L1 and 2nd laser beam L2. A diffraction grating 23 is provided. The first laser light L1 and the second laser light L2 separated by the diffraction grating 23 travel in different directions. Further, the laser light irradiation device 2 includes a first transmission / reflection surface 43 on which the first laser light L1 divided by the diffraction grating 23 is incident and a second transmission / reflection surface 44 on which the second laser light L2 is incident. It has. On the first transmission / reflection surface 43, a part of the incident first laser light L1 is transmitted, the other part is reflected, and the reflected first laser light L1 travels toward the measurement point 10. The second transmitting / reflecting surface 44 transmits part of the incident second laser light L2 and reflects the other part, and the reflected second laser light L2 travels toward the measurement point 10. . The first transmission / reflection surface 43 is constituted by the first side surface 43 of the light guide 24 and may be referred to as a first half mirror 43 that transmits and reflects the first laser light L1. Further, the second transmission / reflection surface 44 is constituted by the second side surface 44 of the light guide 24 and may be referred to as a second half mirror 44 that transmits and reflects the second laser light L2.
 このような構成によれば、第1の透過反射面43に入射する第1のレーザー光L1のうち、透過する成分を除去することができ、反射する成分のみが計測点10に向かって進行するので、計測点10に向かって進行する第1のレーザー光L1の強度を弱くすることができる。同様に、第2の透過反射面44に入射する第2のレーザー光L2のうち、透過する成分を除去することができ、反射する成分のみが計測点10に向かって進行するので、計測点10に向かって進行する第2のレーザー光L2の強度を弱くすることができる。強度を弱くすることによって、計測点10に向かって第1のレーザー光L1と第2のレーザー光L2が照射されたときに、第1のレーザー光L1と第2のレーザー光L2が計測点10の周辺に広がることを抑制することができる。そのため、計測点10の周辺を通過する粒子によって散乱光が生じることを抑制することができる。したがって、余分な散乱光を受光することを抑制できる。なお、特許文献1に開示されている計測装置では、導光体の側面に入射するレーザー光が全反射するので、透過する成分が存在しない。そのため、レーザー光の強度を弱くすることができない。 According to such a configuration, it is possible to remove the transmitted component of the first laser light L1 incident on the first transmission / reflection surface 43, and only the reflected component travels toward the measurement point 10. Therefore, the intensity of the first laser beam L1 traveling toward the measurement point 10 can be reduced. Similarly, the transmitted component of the second laser light L2 incident on the second transmission / reflection surface 44 can be removed, and only the reflected component travels toward the measurement point 10. The intensity of the second laser light L2 that travels toward can be reduced. By reducing the intensity, when the first laser beam L1 and the second laser beam L2 are irradiated toward the measurement point 10, the first laser beam L1 and the second laser beam L2 are measured at the measurement point 10. It is possible to suppress spreading around the area. Therefore, it is possible to suppress scattered light from being generated by particles passing around the measurement point 10. Therefore, it is possible to suppress receiving excessive scattered light. In the measuring device disclosed in Patent Document 1, since the laser light incident on the side surface of the light guide body is totally reflected, there is no component to be transmitted. For this reason, the intensity of the laser beam cannot be reduced.
 また、上記の計測装置1では、第1の透過反射面43に入射する第1のレーザー光L1の光軸X1の入射角θiが、第1の透過反射面43における臨界角θrより小さい。また、第2の透過反射面44に入射する第2のレーザー光L2の光軸X2の入射角θiが、第2の透過反射面44における臨界角θrより小さい。このような構成によれば、第1の透過反射面43に入射する第1のレーザー光L1のうち、透過する成分を多くすることができる(反射する成分を少なくすることができる)。同様に、第2の透過反射面44に入射する第2のレーザー光L2のうち、透過する成分を多くすることができる(反射する成分を少なくすることができる)。これによって、計測点10に向かって進行する第1のレーザー光L1と第2のレーザー光L2の強度を弱くすることができる。そのため、計測点10に向かって第1のレーザー光L1と第2のレーザー光L2が照射されたときに、第1のレーザー光L1と第2のレーザー光L2が計測点10の周辺に広がることを抑制することができる。 In the measuring apparatus 1 described above, the incident angle θi of the optical axis X1 of the first laser light L1 incident on the first transmission / reflection surface 43 is smaller than the critical angle θr of the first transmission / reflection surface 43. Further, the incident angle θi of the optical axis X2 of the second laser light L2 incident on the second transmission / reflection surface 44 is smaller than the critical angle θr of the second transmission / reflection surface 44. According to such a configuration, it is possible to increase the transmitted component of the first laser light L1 incident on the first transmitting / reflecting surface 43 (reducing the reflected component). Similarly, in the second laser light L2 incident on the second transmitting / reflecting surface 44, the transmitted component can be increased (the reflected component can be decreased). Thereby, the intensity | strength of the 1st laser beam L1 and the 2nd laser beam L2 which advance toward the measurement point 10 can be made weak. Therefore, when the first laser beam L1 and the second laser beam L2 are irradiated toward the measurement point 10, the first laser beam L1 and the second laser beam L2 spread around the measurement point 10. Can be suppressed.
 また、上記の計測装置1は、回折格子23と第1の透過反射面43及び第2の透過反射面44の間の距離を変える移動装置25を備えている。このような構成によれば、回折格子23によって分けられた第1のレーザー光L1と第2のレーザー光L2が第1の透過反射面43と第2の透過反射面44に入射する位置を変えることができる。これによって、第1のレーザー光L1と第2のレーザー光L2が照射される位置を変えることができ、流路60内の計測点10の位置を変えることができる。 The measuring device 1 includes a moving device 25 that changes the distance between the diffraction grating 23 and the first transmission / reflection surface 43 and the second transmission / reflection surface 44. According to such a configuration, the positions at which the first laser light L1 and the second laser light L2 separated by the diffraction grating 23 are incident on the first transmission / reflection surface 43 and the second transmission / reflection surface 44 are changed. be able to. Thereby, the position irradiated with the first laser light L1 and the second laser light L2 can be changed, and the position of the measurement point 10 in the flow path 60 can be changed.
 また、上記の計測装置1では、回折格子23が、反射型の回折格子である。また、発光素子21が、回折格子23と第1の透過反射面43と第2の透過反射面44の間に配置されており、発光素子21が発光したレーザー光Lが回折格子23で反射することによって第1のレーザー光L1と第2のレーザー光L2に分かれる。このような構成によれば、発光素子21を回折格子23と導光体24の間に収めることができるので、計測装置1をコンパクトにすることができる。 Further, in the measurement apparatus 1 described above, the diffraction grating 23 is a reflective diffraction grating. The light emitting element 21 is disposed between the diffraction grating 23, the first transmission / reflection surface 43, and the second transmission / reflection surface 44, and the laser light L emitted from the light emitting element 21 is reflected by the diffraction grating 23. As a result, the laser beam is divided into a first laser beam L1 and a second laser beam L2. According to such a configuration, since the light emitting element 21 can be accommodated between the diffraction grating 23 and the light guide 24, the measuring device 1 can be made compact.
 以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上述の説明における構成と同様の構成については同一の符号を付して説明を省略する。 As mentioned above, although one Example was described, a specific aspect is not limited to the said Example. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted.
 上記の実施例では、単一の導光体24に第1の透過反射面43と第2の透過反射面44が形成されていたが、この構成に限定されるものでない。他の実施例では、図5に示すように、レーザー光照射装置2が、分離されている第1の導光体241と第2の導光体242を備えていてもよい。第1の導光体241に第1の透過反射面43が形成されており、第2の導光体242に第2の透過反射面44が形成されている。このような構成でも、第1の透過反射面43に入射した第1のレーザー光L1の一部が透過し、他の一部が反射する。また、第2の透過反射面44に入射した第2のレーザー光L2の一部が透過し、他の一部が反射する。 In the above embodiment, the first transmission / reflection surface 43 and the second transmission / reflection surface 44 are formed on the single light guide 24, but the present invention is not limited to this configuration. In another embodiment, as shown in FIG. 5, the laser light irradiation device 2 may include a first light guide 241 and a second light guide 242 that are separated. A first transmission / reflection surface 43 is formed on the first light guide 241, and a second transmission / reflection surface 44 is formed on the second light guide 242. Even in such a configuration, a part of the first laser light L1 incident on the first transmitting / reflecting surface 43 is transmitted and the other part is reflected. In addition, a part of the second laser light L2 incident on the second transmitting / reflecting surface 44 is transmitted and the other part is reflected.
 また、光通過孔35の形状は特に限定されるものではない。例えば、図6に示すように、光通過孔35の断面形状が円形状であってもよい。または、図7に示すように、光通過孔35の断面形状が多角形状であってもよい。また、図8に示すように、複数の光通過孔35がスリット状に形成されていてもよい。 Further, the shape of the light passage hole 35 is not particularly limited. For example, as shown in FIG. 6, the cross-sectional shape of the light passage hole 35 may be circular. Or as shown in FIG. 7, the cross-sectional shape of the light passage hole 35 may be a polygonal shape. Moreover, as shown in FIG. 8, the several light passage hole 35 may be formed in slit shape.
 また、受光装置3の構成は上記の実施例に限定されるものではない。他の実施例では、図9に示すように、受光装置3が、受光素子31と、遮光性の箱体38を備えていてもよい。箱体38内に受光素子31が配置されている。箱体38は、前壁38aと、後壁38bと、一対の側壁38c、38cを備えている。前壁38aは、管61と受光素子31の間に配置されている。後壁38bは、受光素子31とレーザー光照射装置2の間に配置されている。一対の側壁38c、38cは、前壁38aと後壁38bの間に配置されている。箱体38の後壁38bに受光素子31が固定されている。箱体38の前壁38aは受光素子31から離れた位置に配置されている。前壁38aには光通過孔35が形成されている。光通過孔35は、入射口36と出射口37を備えている。光通過孔35は、計測点10から受光素子31に向かう方向に延びている。計測点10を通過する粒子Rによって生じた第1の散乱光P1と第2の散乱光P2が光通過孔35を通過して受光素子31に入射する。箱体38の側方から受光素子31に向かって進行する光P4は、箱体38によって遮断されて受光素子31に入射しない。また、光通過孔35に向かって光通過孔35の軸方向と交差する方向に進行する光P5は、光通過孔35を通過して箱体38内に入射したとしても、箱体38の側壁38cに向かって進行するので、受光素子31に入射しにくい。そのため、受光素子31が余分な光を受光することを抑制できる。 Further, the configuration of the light receiving device 3 is not limited to the above embodiment. In another embodiment, as shown in FIG. 9, the light receiving device 3 may include a light receiving element 31 and a light shielding box 38. The light receiving element 31 is disposed in the box 38. The box 38 includes a front wall 38a, a rear wall 38b, and a pair of side walls 38c and 38c. The front wall 38 a is disposed between the tube 61 and the light receiving element 31. The rear wall 38 b is disposed between the light receiving element 31 and the laser light irradiation device 2. The pair of side walls 38c, 38c are disposed between the front wall 38a and the rear wall 38b. The light receiving element 31 is fixed to the rear wall 38b of the box 38. The front wall 38 a of the box 38 is disposed at a position away from the light receiving element 31. A light passage hole 35 is formed in the front wall 38a. The light passage hole 35 includes an entrance port 36 and an exit port 37. The light passage hole 35 extends in a direction from the measurement point 10 toward the light receiving element 31. The first scattered light P1 and the second scattered light P2 generated by the particles R passing through the measurement point 10 pass through the light passage hole 35 and enter the light receiving element 31. Light P4 traveling from the side of the box 38 toward the light receiving element 31 is blocked by the box 38 and does not enter the light receiving element 31. Even if the light P5 traveling in the direction crossing the axial direction of the light passage hole 35 toward the light passage hole 35 passes through the light passage hole 35 and enters the box body 38, the side wall of the box body 38 Since it advances toward 38c, it is difficult to enter the light receiving element 31. Therefore, the light receiving element 31 can be prevented from receiving excess light.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
1   :計測装置
2   :レーザー光照射装置
3   :受光装置
9   :処理装置
10  :計測点
21  :発光素子
22  :コリメーターレンズ
23  :回折格子
24  :導光体
25  :移動装置
31  :受光素子
32  :筒体
35  :光通過孔
36  :入射口
37  :出射口
38  :箱体
41  :入射面
42  :出射面
43  :第1の側面(第1の透過反射面)
44  :第2の側面(第2の透過反射面)
60  :流路
61  :管
62  :固定具
241 :第1の導光体
242 :第2の導光体
312 :カバー
F   :流体
L   :レーザー光
L1  :第1のレーザー光
L2  :第2のレーザー光
P1  :第1の散乱光
P2  :第2の散乱光
R   :粒子
X1  :第1のレーザー光の光軸
X2  :第2のレーザー光の光軸
1: Measurement device 2: Laser beam irradiation device 3: Light receiving device 9: Processing device 10: Measurement point 21: Light emitting element 22: Collimator lens 23: Diffraction grating 24: Light guide 25: Moving device 31: Light receiving device 32: Cylindrical body 35: Light passage hole 36: Entrance port 37: Outlet port 38: Box body 41: Entrance surface 42: Exit surface 43: First side surface (first transmission / reflection surface)
44: Second side surface (second transmission / reflection surface)
60: channel 61: tube 62: fixture 241: first light guide 242: second light guide 312: cover F: fluid L: laser light L1: first laser light L2: second laser Light P1: First scattered light P2: Second scattered light R: Particle X1: Optical axis X2 of the first laser light: Optical axis of the second laser light

Claims (5)

  1.  流路を流れる流体中の粒子の速度を計測するための計測装置であって、
     前記流路内の計測点に向かって進行する第1のレーザー光と、第1のレーザー光と異なる方向から前記流路内の前記計測点に向かって進行する第2のレーザー光を照射するレーザー光照射装置と、
     前記レーザー光照射装置から照射された第1のレーザー光と第2のレーザー光が前記計測点を通過する粒子に当たったときにそれぞれ生じる散乱光を受光する受光装置を備えており、
     前記受光装置が、受光素子と、前記受光素子と前記計測点の間に形成されている中空の光通過孔を備えており、
     前記光通過孔が、前記計測点から前記受光素子に向かう方向に延びており、前記計測点を通過する粒子によって生じた散乱光が前記光通過孔を通過して前記受光素子に入射する、計測装置。
    A measuring device for measuring the velocity of particles in a fluid flowing through a flow path,
    A laser that irradiates a first laser beam traveling toward the measurement point in the flow path and a second laser beam traveling toward the measurement point in the flow path from a direction different from the first laser light. A light irradiation device;
    A light receiving device that receives scattered light generated when the first laser light and the second laser light irradiated from the laser light irradiation device hit the particles passing through the measurement point, respectively;
    The light receiving device includes a light receiving element and a hollow light passage hole formed between the light receiving element and the measurement point;
    The light passage hole extends in a direction from the measurement point toward the light receiving element, and the scattered light generated by particles passing through the measurement point passes through the light passage hole and enters the light receiving element. apparatus.
  2.  前記レーザー光照射装置は、
     レーザー光を発光する発光素子と、
     前記発光素子が発光したレーザー光を第1のレーザー光と、第1のレーザー光と異なる方向に進行する第2のレーザー光に分ける回折格子と、
     前記回折格子によって分けられた第1のレーザー光が入射する第1の透過反射面であって、入射した第1のレーザー光の一部が透過し、他の一部が反射し、反射した第1のレーザー光が前記計測点に向かって進行する前記第1の透過反射面と、
     前記回折格子によって分けられた第2のレーザー光が入射する第2の透過反射面であって、入射した第2のレーザー光の一部を透過し、他の一部を反射し、反射された第2のレーザー光が前記計測点に向かって進行する前記第2の透過反射面を備えている、請求項1に記載の計測装置。
    The laser beam irradiation device is
    A light emitting element that emits laser light;
    A diffraction grating that divides the laser light emitted from the light emitting element into a first laser light and a second laser light that travels in a different direction from the first laser light;
    A first transmitting / reflecting surface on which the first laser light divided by the diffraction grating is incident, wherein a part of the incident first laser light is transmitted and the other part is reflected and reflected; The first transmission / reflection surface in which one laser beam travels toward the measurement point;
    A second transmitting / reflecting surface on which the second laser light divided by the diffraction grating is incident, which transmits a part of the incident second laser light and reflects and reflects the other part The measurement apparatus according to claim 1, comprising the second transmission / reflection surface in which a second laser beam travels toward the measurement point.
  3.  前記第1の透過反射面に入射する第1のレーザー光の光軸の入射角が、前記第1の透過反射面における臨界角より小さく、
     前記第2の透過反射面に入射する第2のレーザー光の光軸の入射角が、前記第2の透過反射面における臨界角より小さい、請求項2に記載の計測装置。
    The incident angle of the optical axis of the first laser light incident on the first transmission / reflection surface is smaller than the critical angle of the first transmission / reflection surface;
    The measuring apparatus according to claim 2, wherein an incident angle of an optical axis of the second laser light incident on the second transmission / reflection surface is smaller than a critical angle of the second transmission / reflection surface.
  4.  前記回折格子と前記第1の透過反射面及び前記第2の透過反射面との間の距離を変える移動装置を更に備えている、請求項2から3のいずれか一項に記載の計測装置。 4. The measuring apparatus according to claim 2, further comprising a moving device that changes a distance between the diffraction grating and the first transmission / reflection surface and the second transmission / reflection surface.
  5.  前記回折格子が、反射型の回折格子であり、
     前記発光素子が、前記回折格子と第1の透過反射面及び第2の透過反射面との間に配置されており、前記発光素子が発光したレーザー光が前記回折格子で反射することによって第1のレーザー光と第2のレーザー光に分かれる、請求項2から4のいずれか一項に記載の計測装置。
    The diffraction grating is a reflective diffraction grating,
    The light emitting element is disposed between the diffraction grating and the first transmission / reflection surface and the second transmission / reflection surface, and the laser light emitted from the light emitting element is reflected by the diffraction grating to be the first. The measuring device according to claim 2, wherein the measuring device is divided into a laser beam and a second laser beam.
PCT/JP2016/078289 2016-09-26 2016-09-26 Measuring device WO2018055771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/078289 WO2018055771A1 (en) 2016-09-26 2016-09-26 Measuring device
JP2018540599A JP6908245B2 (en) 2016-09-26 2016-09-26 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078289 WO2018055771A1 (en) 2016-09-26 2016-09-26 Measuring device

Publications (1)

Publication Number Publication Date
WO2018055771A1 true WO2018055771A1 (en) 2018-03-29

Family

ID=61690804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078289 WO2018055771A1 (en) 2016-09-26 2016-09-26 Measuring device

Country Status (2)

Country Link
JP (1) JP6908245B2 (en)
WO (1) WO2018055771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188916A (en) * 2019-05-21 2020-11-26 愛知時計電機株式会社 Measurement apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230886A (en) * 1990-05-21 1992-08-19 Canon Inc Speedometer
JPH0566226A (en) * 1991-09-06 1993-03-19 Canon Inc Displacement-information detecting apparatus and speedometer
WO2009139029A1 (en) * 2008-05-12 2009-11-19 パイオニア株式会社 Self-luminous sensor device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230886A (en) * 1990-05-21 1992-08-19 Canon Inc Speedometer
JPH0566226A (en) * 1991-09-06 1993-03-19 Canon Inc Displacement-information detecting apparatus and speedometer
WO2009139029A1 (en) * 2008-05-12 2009-11-19 パイオニア株式会社 Self-luminous sensor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188916A (en) * 2019-05-21 2020-11-26 愛知時計電機株式会社 Measurement apparatus
JP7244351B2 (en) 2019-05-21 2023-03-22 愛知時計電機株式会社 measuring device

Also Published As

Publication number Publication date
JPWO2018055771A1 (en) 2019-07-04
JP6908245B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US10018725B2 (en) LIDAR imaging system
US8149402B2 (en) Optical system for a flow cytometer
RU2015116588A (en) SPECTROSCOPIC MEASURING DEVICE
JP2012128425A (en) Illumination optical system and three-dimensional image acquisition device having the same
JP5828440B1 (en) Fine particle measuring device
WO2010038645A1 (en) Optical distance measuring device
CN108700500A (en) Systems for optical inspection for particle
US9752926B2 (en) Scanning module, detection device using Bessel beam, detection probe, and probe type detection device
WO2018055771A1 (en) Measuring device
KR20140130250A (en) Scanning module and apparatus for detecting foreign material using bessel beam
JP6735463B2 (en) Measuring device
EP3332277B1 (en) Backscatter reductant anamorphic beam sampler
WO2016132512A1 (en) Flow rate measurement device and tube for using therefor
JP6901089B2 (en) Measuring device
JP5800472B2 (en) Light source device
WO2018173290A1 (en) Measurement device
JP2004219131A (en) Oil mist detector
JP7311718B2 (en) rangefinder
JP2595315B2 (en) Light scattering measuring device
KR101698910B1 (en) Detection probe and probe-type detection apparatus
WO2015132878A1 (en) Measurement device and measurement method
JP2013037926A (en) Light irradiation device
JP6955058B2 (en) Measuring device and measuring method
KR102654872B1 (en) Optical apparatus using reflection geometry
JP2011053096A (en) Neutron optical element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540599

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916838

Country of ref document: EP

Kind code of ref document: A1