WO2018054384A1 - 无线指标测试方法、装置及系统和计算机存储介质 - Google Patents

无线指标测试方法、装置及系统和计算机存储介质 Download PDF

Info

Publication number
WO2018054384A1
WO2018054384A1 PCT/CN2017/103505 CN2017103505W WO2018054384A1 WO 2018054384 A1 WO2018054384 A1 WO 2018054384A1 CN 2017103505 W CN2017103505 W CN 2017103505W WO 2018054384 A1 WO2018054384 A1 WO 2018054384A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
test
wireless indicator
starting position
source
Prior art date
Application number
PCT/CN2017/103505
Other languages
English (en)
French (fr)
Inventor
王雷
Original Assignee
上海中兴软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中兴软件有限责任公司 filed Critical 上海中兴软件有限责任公司
Publication of WO2018054384A1 publication Critical patent/WO2018054384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communications, and in particular to a wireless indicator testing method, apparatus and system, and computer storage medium.
  • the Narrow Band Internet of Things (NB_IOT) in the related art is an Internet of Things protocol.
  • China Mobile, China Unicom and China Telecom have proposed laboratory test plans and field planning. Therefore, automated wireless indicator testing is especially critical.
  • the method of automated wireless indicator testing generally involves sinking a known signal of a fixed period into a signal source, and the signal source periodically transmits the signal, and the network side analyzes the signal to complete the indicator test.
  • the 3.75k single carrier of the NB_IOT has a period of 32ms per resource unit (Resource Unit, referred to as RU), and the current signal source on the market can only support 10ms data source alignment.
  • the related test method is to use 32ms data. Repeated 5 times to form a 160ms data sinking signal source, and then the network side obtains the 160ms data by the method of counting, finds the starting position of the signal source transmission, and adjusts the frame number of the network side starting parsing to complete the test.
  • the embodiment of the invention provides a wireless index testing method, device and system, so as to at least solve the technical problem that the related technology is too low in automation when performing wireless index testing.
  • a wireless index testing method including: generating a first signal of an integer multiple of a preset length by replicating a standard signal of a signal source, wherein the preset length and the signal source Corresponding to the bandwidth; adding a detection header to the header of the first signal to obtain a second signal, wherein the detection header is used to identify a starting position of the first signal; and sending the second signal to a network side pair
  • the signal source performs a wireless indicator test.
  • the detection head carries a ZC sequence signal containing a special scrambling code, the ZC sequence signal being used to identify a starting position of the first signal.
  • the data length of the detection head is an integer multiple of 10 ms.
  • the first signal generating an integer multiple of the preset length by copying the standard signal of the signal source comprises one of: a narrowband physical uplink shared channel NB-PUSCH channel replicating each resource unit RU
  • the standard signal generates a first signal having an integer multiple of 10 ms length; the narrowband physical random access channel NB-PRACH channel replicates the standard signal of each resource unit RU to generate a first signal, the length of the first signal is not 10 ms
  • the first signal is complemented by an integer multiple of 10 ms; wherein the length of the standard signal of the RU is 32 ms.
  • another wireless indicator testing method including: receiving a test signal of a signal source, wherein the test signal includes a detecting head, and the detecting head is used to identify the starting of the test signal a start position; parsing the test signal to obtain a transmission start position of the signal source; and performing a wireless index test on the signal source according to the start position.
  • performing wireless indicator testing on the signal source according to the starting position includes: performing channel processing on a sending period and a repetition number of the test signal from the starting position to implement the wireless Indicator test.
  • the detection head carries a ZC sequence signal containing a special scrambling code for identifying a starting position of the test signal.
  • the data length of the detection head is an integer multiple of 10 ms.
  • a wireless indicator testing apparatus includes: a generating module, configured to generate a first signal of an integer multiple of a preset length by copying a standard signal of a signal source, wherein the preset The length is corresponding to the bandwidth of the signal source; the adding module is configured to add a detection header to the head of the first signal to obtain a second signal, where the detection header is used to identify a starting position of the first signal; And a sending module, configured to send the second signal to the network side to perform wireless indicator testing on the signal source.
  • the detection head carries a ZC sequence signal containing a special scrambling code, the ZC sequence signal being used to identify a starting position of the first signal.
  • the generating module includes: a first generating unit, configured to use a narrowband physical uplink shared channel NB-PUSCH channel to copy a standard signal of each resource unit RU to generate a first signal having an integer multiple of 10 ms length; a second generating unit, configured to generate a first signal by using a standard signal of each resource unit RU for the narrowband physical random access channel NB-PRACH channel, and by adding 0 when the length of the first signal is not an integer multiple of 10 ms length The first signal is padded to an integer multiple of 10 ms; wherein the standard signal of the RU is 32 ms in length.
  • another wireless indicator testing apparatus comprising: a receiving module, configured to receive a test signal of a signal source, wherein the test signal includes a detecting head, and the detecting head is used to identify a starting position of the test signal, a parsing module, configured to parse the test signal to obtain a sending start position of the signal source, and a testing module, configured to perform a wireless index test on the signal source according to the starting position .
  • the test module includes: a test unit, configured to perform channel processing on a transmission period and a repetition number of the test signal from the starting position to implement the wireless indicator test.
  • a wireless indicator testing system includes a transmitting end and a receiving end, and the sending end includes: a generating module, configured to generate a preset length by copying a standard signal of a signal source An integer multiple of the first signal, wherein the preset length corresponds to a bandwidth of the signal source; and an adding module, configured to add a detection head to obtain a second signal at a header of the first signal, where the detection head a sending module, configured to send the second signal to the network side to perform wireless indicator testing on the signal source;
  • the receiving end includes: a receiving module, configured to receive a test signal of a signal source, where the test signal includes a detecting head, the detecting head is used to identify a starting position of the test signal; and a parsing module is configured to parse The test signal obtains a sending start position of the signal source; and a test module, configured to perform a wireless indicator test on the signal source according to the starting position.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the first signal of the preset length is generated by copying the standard signal of the signal source, wherein the preset length corresponds to the bandwidth of the signal source; and the first signal is added to the first signal.
  • the detecting head obtains a second signal, wherein the detecting head is used to identify a starting position of the first signal; and the second signal is sent to a network side to perform wireless indicator testing on the signal source. Since the detection head is added to the detection signal, the network side can automatically search and align the signal transmission signal, instead of manually aligning the adjustment start position, the technical solution provided by the embodiment of the present invention can solve the related technology in wireless operation. Technical problems with low levels of automation when testing indicators.
  • FIG. 1 is a flowchart of a wireless indicator test method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of another wireless indicator testing method according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a wireless indicator testing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of another wireless indicator testing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a wireless indicator test system according to an embodiment of the present invention.
  • FIG. 6 is a format diagram of a data source for an automated wireless indicator test in a NB_IOT system uplink NB-PUSCH channel single RU single repetition in an embodiment of the present invention
  • FIG. 7 is an automatic search for an uplink NB-PUSCH signal in the NB_IOT system according to an embodiment of the present invention. Flow chart of 10ms test head and automated wireless indicator test;
  • FIG. 8 is a format diagram of a data source for an automated wireless indicator test in an NB_IOT system uplink NB-PRACH channel twice in an embodiment of the present invention
  • FIG. 9 is a flowchart of an automatic search for a 10 ms detection head and an automated wireless indicator test for an uplink NB-PRACH signal in the NB_IOT system according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for testing a wireless indicator according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 Generate a first signal of an integer multiple of a preset length by copying a standard signal of the signal source, where the preset length corresponds to a bandwidth of the signal source;
  • Step S104 adding a detection head to the head of the first signal to obtain a second signal, where the detection header is used to identify a starting position of the first signal;
  • Step S106 Send the second signal to the network side to perform wireless indicator test on the signal source.
  • the first signal of the preset length is generated by copying the standard signal of the signal source, wherein the preset length corresponds to the bandwidth of the signal source; and the detecting head is added to the head of the first signal Obtaining a second signal, wherein the detecting head is configured to identify a starting position of the first signal; and sending the second signal to a network side to perform wireless indicator testing on the signal source. Since the detection head is added to the detection signal, the network side can automatically search and align the signal transmission signal, instead of manually aligning the adjustment start position, so that the related art can be solved to be less automated when performing wireless index test. technical problem.
  • the execution body of the foregoing step is the tested end, or the transmitting end of the device under test, and may be a terminal, such as a mobile phone, a transmitter, a radio frequency module, etc., but the execution subject is not limited thereto.
  • the detection head carries a ZC (Zadoff-Chu) sequence signal containing a special scrambling code for identifying the starting position of the first signal.
  • the data length of the detecting head is an integer multiple of 10 ms, such as 10 ms.
  • generating the first signal by an integer multiple of the preset length by copying the standard signal of the signal source may include the following implementation scenarios:
  • Narrow Band Physical Uplink Shared Channel (NB-PUSCH) channel replication standard signal of each resource unit RU generates a first integer length of 10ms length signal
  • the Narrow Band Physical Random Access Channel (NB-PRACH) channel copies the standard signal of each resource unit RU to generate a first signal, and the first signal is passed when the length of the first signal is not an integer multiple of 10 ms. Complement 0 to fill the first signal to an integer multiple of 10ms;
  • the length of the standard signal of the RU is 32 ms.
  • FIG. 2 is a flowchart of another wireless indicator test method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving a test signal of a signal source, where the test signal includes a detection head, and the detection head is used to identify a starting position of the test signal;
  • Step S204 parsing the test signal to obtain a transmission start position of the signal source
  • Step S206 performing a wireless indicator test on the signal source according to the starting position.
  • performing wireless indicator testing on the signal source according to the starting position includes: performing channel processing on the transmission period and the number of repetitions of the test signal from the starting position to implement the wireless indicator test.
  • the detection head carries a ZC sequence signal containing a special scrambling code, and the ZC sequence signal is used to identify the starting position of the test signal.
  • the data length of the detection head is an integer multiple of 10ms, such as 10ms.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a wireless indicator testing device and a system are provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a wireless indicator testing apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
  • the generating module 30 is configured to generate a first signal of an integer multiple of a preset length by copying a standard signal of the signal source, where the preset length corresponds to a bandwidth of the signal source;
  • the adding module 32 is configured to add a second signal to the head of the first signal, where the detecting head is used to identify a starting position of the first signal;
  • the sending module 34 is configured to send the second signal to the network side to perform wireless indicator testing on the signal source.
  • the detection head carries a ZC sequence signal containing a special scrambling code, and the ZC sequence signal is used. To identify the starting position of the first signal.
  • the generating module includes: a first generating unit, configured to use a narrowband physical uplink shared channel NB-PUSCH channel to copy a standard signal of each resource unit RU to generate a first signal having an integer multiple of 10 ms length; a generating unit, configured to generate a first signal by using a standard signal of each resource unit RU in a narrowband physical random access channel NB-PRACH channel, and to generate a first signal by adding 0 when the length of the first signal is not an integer multiple of 10 ms length Complemented to an integer multiple of 10ms; where the standard signal length of the RU is 32ms.
  • FIG. 4 is a structural block diagram of another wireless indicator testing apparatus according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the receiving module 40 is configured to receive a test signal of the signal source, where the test signal includes a detecting head, and the detecting head is used to identify a starting position of the test signal;
  • the parsing module 42 is configured to parse the test signal to obtain a sending start position of the signal source
  • the test module 44 is configured to perform a wireless indicator test on the signal source according to the starting position.
  • the test module includes: a test unit, configured to perform channel processing on the transmission period and the number of repetitions of the test signal from the starting position to implement the wireless indicator test.
  • FIG. 5 is a structural block diagram of a wireless indicator testing system according to an embodiment of the present invention.
  • the wireless indicator testing system includes: a transmitting end 50 and a receiving end 52.
  • the sending end 50 includes: a generating module 500. Generating, by the standard signal of the copy signal source, a first signal of an integral multiple of the preset length, wherein the preset length corresponds to the bandwidth of the signal source; and the adding module 502 is configured to add the detecting head to the head of the first signal to obtain the second signal. a signal, wherein the detecting head is used to identify a starting position of the first signal; the sending module 504 is configured to send the second signal to the network side to perform wireless indicator testing on the signal source;
  • the receiving end 52 includes: a receiving module 520, configured to receive a test signal of a signal source, where the test signal includes a detecting head, the detecting head is used to identify a starting position of the test signal, and the parsing module 522 is configured to parse the test signal to obtain a signal source.
  • the sending start position; the test module 524 is configured to perform a wireless indicator test on the signal source according to the starting position.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail in conjunction with a specific scenario:
  • This embodiment is a 3.75k subcarrier automatic wireless indicator test method under the NB_IOT system.
  • the method uses the uplink signal of the NB-IOT system, and is received by the base station to complete the wireless indicator test. Since the general signal source can only support the 10ms clock alignment with the network side, it is impossible to directly perform the index test of the single RU of the 3.75k subcarrier of the uplink NB-PUSCH channel in the NB_IOT system for the 32ms periodic signal, and the same cannot directly directly report the NB-PRACH signal.
  • the single repetition is an indicator test of the 5.6ms periodic signal.
  • the present invention proposes a method for performing an automated wireless indicator test of an uplink NB-PUSCH channel and an NB-PRACH channel in the NB_IOT system.
  • each RU is a signal of 32 ms, which needs to be generated (RU* repetition times *5*32) ms.
  • the signal for example, for a 32 ms signal that is repeated 1 time for 1 RU, it is necessary to generate a signal of 160 ms by copying 5 times, and for 10 RUs, 128 times of the 40960 ms signal repeated, it is necessary to generate a signal of 204800 ms by copying 5 times.
  • the RRACH channel after completing the data source according to the number of repetitions, it is added to the integer multiple of 10ms by the method of adding 0, as shown in Table 1:
  • the source signal generated in the first step is added to the detection header of the 10 ms.
  • the 10 ms detection header contains the ZC sequence signal of the special scrambling code, and the network side continuously detects whether the ZC sequence signal of the special scrambling code is contained within 10 ms. Find the starting position of the source to send data, and then align with the starting position sent by the source.
  • the base station side after the base station side finds the starting position of the signal source transmission, it can perform normal channel processing according to the transmission period and the repetition number of the source data, and complete the wireless indicator test.
  • the entire wireless indicator test process does not require manual participation.
  • the generated signal source guarantees an integer multiple of 10ms length and adds 10ms header.
  • the network side uses the search head algorithm to automatically complete the alignment with the source sending start position.
  • the method of the embodiment can perform the wireless indicator test in the NB_IOT system by using the signal source, and the entire wireless indicator test process does not need manual participation, and the network side automatic search and the signal source send signal are aligned.
  • the focus of this embodiment is to generate a signal of integer multiple of 10ms period for the NB-PUSCH channel by copying the signal source, and generate a RU*5*32ms signal for the signal of 32ms for each RU of 3.75k, for example: for 1
  • the RU repeats the 32ms signal once, and replicates 5 times to generate the 160ms data source signal. For 10 RUs, 128 repetitions of the 40960ms signal, copying 5 times produces a 204800ms data source signal.
  • the data source is constructed according to the number of repetitions, it is added to the integer multiple of 10 ms by the method of adding 0 later.
  • the data source signal is prepended to the 10 ms detection head, and the 10 ms detection header contains a special scrambling code ZC sequence signal.
  • the network side continuously detects whether the ZC sequence signal of the special scrambling code is included within 10ms to find the starting position of the data source transmission data, and then aligns with the starting position of the signal source transmission.
  • the data source signals may be NB-PUSCH and NB-PRACH signals.
  • the 3.75k subcarrier signal of the NB-PUSCH is taken as an example.
  • the data source is generated:
  • a detection header signal of 10 ms is generated, wherein a 5.6-ms NB-PRACH signal generated according to the NB_IOT protocol is placed at the forefront, and the 5.6-ms NB-PRACH signal synchronization codeword index value is fixedly set to 1, and then The 4.4ms data bit is filled with 0;
  • a data source signal to be tested is generated.
  • the single repetition period is 32ms, and the 32ms data needs to be repeated 5 times to make 160ms.
  • the 10 ms detection head signal is placed in front, followed by the 160 ms data source signal, so that the source data is 170 ms of data
  • FIG. 6 is a single repetition of the NB_IOT system uplink NB-PUSCH channel single RU in the embodiment of the present invention.
  • the formula for the data length is 170 ms, as shown in Figure 6.
  • the 170ms data is placed in the SMU200A signal source and sent periodically using the SMU200A (Signal Transmitter) signal source.
  • FIG. 7 is a flowchart of an automatic search 10 ms detection head and an automated wireless indicator test for an uplink NB-PUSCH signal in the NB_IOT system according to an embodiment of the present invention, as shown in FIG. 7, first, the base station side turns on the automatic detection switch to enter an automatic manner. In the detection process, the NB-PRACH signal is detected at the starting position of 10 ms, and the detection algorithm is the same as the NB-PRACH detection algorithm in the NB_IOT system, including codeword generation, fixed 1/2 subcarrier frequency offset compensation, time domain Correlation and detection decision several steps.
  • the automatic detection flag is cleared and the detected radio frame number SFN is output, and the base station side enters the wireless indicator test state; if no fixed detection is detected;
  • the NB-PRACH signal with a codeword of 1 detects the next 10 ms data.
  • the scheduling start position and period of the uplink NB-PUSCH are generated according to the number of RUs and the number of repetitions of the NB-PUSCH source data, and the start position frame number is SFN+1, and the period is 170 ms.
  • NB-PRACH wireless indicator test method The following examples of data sources are NB-PRACH, Cyclic Prefix (CP), and two repeated wireless indicator automated test methods.
  • the data source is generated:
  • a detection header signal of 10 ms is generated, wherein a 5.6-ms NB-PRACH signal generated according to the NB_IOT protocol is placed at the forefront, and the 5.6-ms NB-PRACH signal synchronization codeword index value is fixedly set to 1, and then The 4.4ms data bit is filled with 0;
  • the data source signal to be tested is generated. Since the synchronization codeword index value of the NB-PRACH signal of the detection head is 1, the synchronization codeword index value of the NB-PRACH to be tested needs to be configured to be non-1.
  • the data source of NB-PRACH is short CP, and the period of 2 repetitions is 11.2 ms. It is necessary to fill the 11.2 ms data with 8.8 ms of 0 and make 20 ms.
  • the 10 ms detection head signal is placed in front, followed by the 20 ms data source signal, so that the source data is 30 ms of data, and FIG. 8 is used in the NB_IOT system uplink NB-PRACH channel twice in the embodiment of the present invention.
  • the format diagram of the data source of the automated wireless indicator test data, the formula of the data length is 30ms, as shown in Figure 8.
  • the 30ms data is placed in the SMU200A signal source and sent periodically using the SMU200A signal source.
  • FIG. 9 is a flowchart of an automatic search for a 10 ms detection head and an automated wireless indicator test for an uplink NB-PRACH signal in the NB_IOT system according to an embodiment of the present invention.
  • the base station side turns on the automatic detection switch to enter an automatic manner.
  • the NB-PRACH signal is detected at the starting position of 10 ms, and the detection algorithm is the same as the NB-PRACH detection algorithm in the NB_IOT system, including codeword generation, fixed 1/2 subcarrier frequency offset compensation, time domain Correlation and detection are performed in several steps.
  • the automatic detection flag is cleared and the detected system frame number (SFN) is transmitted.
  • SFN system frame number
  • the scheduling start position and period of the NB-PRACH are generated according to the repetition times of the NB-PRACH source data, and the start position frame number is SFN+1, and the period is 30 ms.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be arranged to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk. And other media that can store program code.
  • the processor executes, according to the stored program code in the storage medium, a first signal that generates an integer multiple of a preset length by a standard signal of the copy signal source, wherein the preset length and the signal source Corresponding to the bandwidth;
  • the processor performs a second signal by adding a detection header to the header of the first signal according to the stored program code in the storage medium, wherein the detection header is used to identify the first signal. starting point;
  • the processor performs the wireless indicator test on the signal source by transmitting the second signal to the network side according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented in program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different than this
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the technical solution provided by the embodiment of the present invention can be applied to the field of communications. Since the detection head is added to the detection signal, the network side can automatically search and align the signal transmission signal, instead of manually aligning the adjustment start position, the technical solution provided by the embodiment of the present invention can solve the related technology in wireless operation. Technical problems with low levels of automation when testing indicators.

Abstract

本公开涉及一种无线指标测试方法、装置及系统和计算机存储介质,其中,该方法包括:通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;将所述第二信号发送给网络侧对所述信号源进行无线指标测试。本公开提供的技术方案解决了相关技术在进行无线指标测试时自动化程度过低的技术问题。 (图1)

Description

无线指标测试方法、装置及系统和计算机存储介质 技术领域
本公开涉及通信领域,具体而言,涉及一种无线指标测试方法、装置及系统和计算机存储介质。
背景技术
相关技术中的基于蜂窝的窄带物联网(Narrow Band Internet of Things,简称为NB_IOT)是一项物联网协议,中国移动,中国联通,中国电信三大运营商都提出了实验室测试计划以及外场规划,因此自动化无线指标测试尤为关键。
自动化无线指标测试的方法一般是将固定周期的已知信号灌入信号源内,信号源周期发送该信号,网络侧通过解析这个信号来完成指标测试。
相关技术中的NB_IOT的3.75k单载波每个资源单元(Resource Unit,简称为RU)的周期是32ms,而目前市面上的信号源,只能支持10ms数据源对齐,相关测试方法是将32ms数据重复5次组成160ms数据灌入信号源,然后网络侧通过采数的方法获取这160ms数据,找到信号源发送的起始位置后调整网络侧起始解析的帧号来完成测试。这种方式有2个缺点:1、这种方法人工参与度太高,无法做到自动化测试;2、对于多RU,多重复次数的测试就需要产生很长周期的信号,这样人工对准调整起始位置难度比较大。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种无线指标测试方法、装置及系统,以至少解决相关技术在进行无线指标测试时自动化程度过低的技术问题。
根据本发明的一个实施例,提供了一种无线指标测试方法,包括:通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
根据一个示例性实施例,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述第一信号的起始位置。
根据一个示例性实施例,所述检测头的数据长度为10ms的整数倍。
根据一个示例性实施例,通过复制信号源的标准信号产生预设长度的整数倍的第一信号包括以下之一:窄带物理上行共享信道NB-PUSCH信道复制每个资源单元RU 的标准信号产生长度为10ms长度整数倍的第一信号;窄带物理随机接入信道NB-PRACH信道复制每个资源单元RU的标准信号产生第一信号,在所述第一信号的长度不为10ms长度整数倍时,通过补0将所述第一信号补齐到10ms的整数倍;其中,所述RU的标准信号的长度为32ms。
根据本发明的一个实施例,提供了另一种无线指标测试方法,包括:接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;解析所述测试信号得到所述信号源的发送起始位置;根据所述起始位置对所述信号源进行无线指标测试。
根据一个示例性实施例,根据所述起始位置对所述信号源进行无线指标测试包括:从所述起始位置开始对所述测试信号的发送周期和重复次数做信道处理以实现所述无线指标测试。
根据一个示例性实施例,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述测试信号的起始位置。
根据一个示例性实施例,所述检测头的数据长度为10ms的整数倍。
根据本发明的另一个实施例,提供了一种无线指标测试装置,包括:生成模块,用于通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;添加模块,用于在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;发送模块,用于将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
根据一个示例性实施例,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述第一信号的起始位置。
根据一个示例性实施例,所述生成模块包括:第一生成单元,用于窄带物理上行共享信道NB-PUSCH信道复制每个资源单元RU的标准信号产生长度为10ms长度整数倍的第一信号;第二生成单元,用于窄带物理随机接入信道NB-PRACH信道复制每个资源单元RU的标准信号产生第一信号,在所述第一信号的长度不为10ms长度整数倍时,通过补0将所述第一信号补齐到10ms的整数倍;其中,所述RU的标准信号的长度为32ms。
根据本发明的另一个实施例,提供了另一种无线指标测试装置,包括:接收模块,用于接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;解析模块,用于解析所述测试信号得到所述信号源的发送起始位置;测试模块,用于根据所述起始位置对所述信号源进行无线指标测试。
根据一个示例性实施例,所述测试模块包括:测试单元,用于从所述起始位置开始对所述测试信号的发送周期和重复次数做信道处理以实现所述无线指标测试。
根据本发明的又一个实施例,提供了一种无线指标测试系统,包括发送端、接收端,所述发送端包括:生成模块,用于通过复制信号源的标准信号产生预设长度的 整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;添加模块,用于在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;发送模块,用于将所述第二信号发送给网络侧对所述信号源进行无线指标测试;
所述接收端包括:接收模块,用于接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;解析模块,用于解析所述测试信号得到所述信号源的发送起始位置;测试模块,用于根据所述起始位置对所述信号源进行无线指标测试。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
在本发明实施例中通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;将所述第二信号发送给网络侧对所述信号源进行无线指标测试。由于在检测信号中加入了检测头,网络侧可以自动搜索和信号源发送信号对齐,替代了人工对准调整起始位置的操作,因此本发明实施例提供的技术方案可以解决相关技术在进行无线指标测试时自动化程度过低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种无线指标测试方法的流程图;
图2是根据本发明实施例的另一种无线指标测试方法的流程图;
图3是根据本发明实施例的一种无线指标测试装置的结构框图;
图4是根据本发明实施例的另一种无线指标测试装置的结构框图;
图5是根据本发明实施例的一种无线指标测试系统的结构框图;
图6是本发明实施例NB_IOT制式上行NB-PUSCH信道单RU单次重复下用于自动化无线指标测试数据源的格式图;
图7是本发明实施例在NB_IOT制式下对上行NB-PUSCH信号进行的自动搜索 10ms检测头和自动化无线指标测试的流程图;
图8是本发明实施例NB_IOT制式上行NB-PRACH信道2次重复下用于自动化无线指标测试数据源的格式图;
图9是本发明实施例在NB_IOT制式下对上行NB-PRACH信号进行的自动搜索10ms检测头和自动化无线指标测试的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种无线指标测试方法,图1是根据本发明实施例的一种无线指标测试方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,预设长度与信号源的带宽对应;
步骤S104,在第一信号的首部加入检测头得到第二信号,其中,检测头用于标识第一信号的起始位置;
步骤S106,将第二信号发送给网络侧对信号源进行无线指标测试。
通过上述步骤,通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;将所述第二信号发送给网络侧对所述信号源进行无线指标测试。由于在检测信号中加入了检测头,网络侧可以自动搜索和信号源发送信号对齐,替代了人工对准调整起始位置的操作,因此可以解决相关技术在进行无线指标测试时自动化程度过低的技术问题。
根据一个示例性实施例,上述步骤的执行主体为被测试端,或者被测试设备的发送端,可以为终端,如手机、发射机、射频模块等,但执行主体不限于此。
根据一个示例性实施例,检测头携带含有特殊扰码的ZC(Zadoff-Chu)序列信号,ZC序列信号用于标识第一信号的起始位置。可选的,检测头的数据长度为10ms的整数倍,如10ms等。
根据一个示例性实施例,通过复制信号源的标准信号产生预设长度的整数倍的第一信号可以包括以下实现场景:
窄带物理上行共享信道(Narrow Band Physical Uplink Shared Channel,简称为NB-PUSCH)信道复制每个资源单元RU的标准信号产生长度为10ms长度整数倍的第一 信号;
窄带物理随机接入信道(Narrow Band Physical Random Access Channel,简称为NB-PRACH)信道复制每个资源单元RU的标准信号产生第一信号,在第一信号的长度不为10ms长度整数倍时,通过补0将第一信号补齐到10ms的整数倍;
其中,RU的标准信号的长度为32ms。
在本实施例中提供了另一种无线指标测试方法,图2是根据本发明实施例的另一种无线指标测试方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收信号源的测试信号,其中,测试信号包括检测头,检测头用于标识测试信号的起始位置;
步骤S204,解析测试信号得到信号源的发送起始位置;
步骤S206,根据起始位置对信号源进行无线指标测试。
根据一个示例性实施例,根据起始位置对信号源进行无线指标测试包括:从起始位置开始对测试信号的发送周期和重复次数做信道处理以实现无线指标测试。
在本实施例中,检测头携带含有特殊扰码的ZC序列信号,ZC序列信号用于标识测试信号的起始位置。检测头的数据长度为10ms的整数倍,如10ms等。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种无线指标测试装置、系统,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的一种无线指标测试装置的结构框图,如图3所示,该装置包括:
生成模块30,用于通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,预设长度与信号源的带宽对应;
添加模块32,用于在第一信号的首部加入检测头得到第二信号,其中,检测头用于标识第一信号的起始位置;
发送模块34,用于将第二信号发送给网络侧对信号源进行无线指标测试。
根据一个示例性实施例,检测头携带含有特殊扰码的ZC序列信号,ZC序列信号用 于标识第一信号的起始位置。
根据一个示例性实施例,生成模块包括:第一生成单元,用于窄带物理上行共享信道NB-PUSCH信道复制每个资源单元RU的标准信号产生长度为10ms长度整数倍的第一信号;第二生成单元,用于窄带物理随机接入信道NB-PRACH信道复制每个资源单元RU的标准信号产生第一信号,在第一信号的长度不为10ms长度整数倍时,通过补0将第一信号补齐到10ms的整数倍;其中,RU的标准信号的长度为32ms。
图4是根据本发明实施例的另一种无线指标测试装置的结构框图,如图4所示,包括:
接收模块40,用于接收信号源的测试信号,其中,测试信号包括检测头,检测头用于标识测试信号的起始位置;
解析模块42,用于解析测试信号得到信号源的发送起始位置;
测试模块44,用于根据起始位置对信号源进行无线指标测试。
根据一个示例性实施例,测试模块包括:测试单元,用于从起始位置开始对测试信号的发送周期和重复次数做信道处理以实现无线指标测试。
图5是根据本发明实施例的一种无线指标测试系统的结构框图,如图5所示,该无线指标测试系统包括:发送端50、接收端52,发送端50包括:生成模块500,用于通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,预设长度与信号源的带宽对应;添加模块502,用于在第一信号的首部加入检测头得到第二信号,其中,检测头用于标识第一信号的起始位置;发送模块504,用于将第二信号发送给网络侧对信号源进行无线指标测试;
接收端52包括:接收模块520,用于接收信号源的测试信号,其中,测试信号包括检测头,检测头用于标识测试信号的起始位置;解析模块522,用于解析测试信号得到信号源的发送起始位置;测试模块524,用于根据起始位置对信号源进行无线指标测试。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于结合具体场景对本申请进行详细说明:
本实施例为NB_IOT制式下3.75k子载波自动化无线指标测试方法。该方法利用灌入信号源NB-IOT制式的上行信号,由基站进行接收来完成无线指标测试。由于一般信号源只能支持和网络侧10ms时钟对齐,无法直接进行NB_IOT制式下上行NB-PUSCH信道的3.75k子载波单个RU为32ms周期信号的指标测试,同样的也无法直接对NB-PRACH信号,单次重复为5.6ms周期信号的指标测试。本发明提出了一种方法可以完成NB_IOT制式下上行NB-PUSCH信道和NB-PRACH信道的自动化无线指标测试。
本实施例包括:
第一步,需要通过复制信号源的方法产生10ms周期整数倍的信号,对于3.75k的NB-PUSCH信道,每个RU为32ms的信号,则需要产生(RU*重复次数*5*32)ms信号,例如:对于1个RU 1次重复的32ms信号,需要通过复制5次产生160ms的信号,对于10个RU,128次重复的40960ms信号,需要通过复制5次产生204800ms的信号。对于RRACH信道,根据重复次数构造完成数据源后,通过后面补0的方法补齐到10ms的整数倍,如表1所示:
表1
Figure PCTCN2017103505-appb-000001
第二步,将第一步产生的源信号前面加入10ms的检测头,这10ms的检测头含有特殊扰码的ZC序列信号,网络侧通过不断检测10ms内是否含有特殊扰码的ZC序列信号来找到信号源发送数据的起始位置,进而和信号源发送的起始位置对齐。
第三步,基站侧找到信号源发送的起始位置之后,就可以根据源数据的发送周期和重复次数做正常的信道处理,完成无线指标测试。
整个无线指标测试过程不需要人工参与,生成的信号源保证10ms长度整数倍并加上10ms的头,网络侧利用搜头算法自动完成与信号源发送起始位置的对齐。
本实施例的方法可以利用信号源进行NB_IOT制式下的无线指标测试,并且整个无线指标测试过程不需要人工参与,网络侧自动搜索和信号源发送信号对齐。
本实施例的重点在于:对于NB-PUSCH信道通过复制信号源的方法产生10ms周期整数倍的信号,对于3.75k的每个RU为32ms的信号,产生RU*5*32ms信号,例如:对于1个RU 1次重复的32ms信号,复制5次产生160ms的数据源信号,对于10个RU,128次重复的40960ms信号,复制5次产生204800ms的数据源信号。
对于NB-PRACH信道,根据重复次数构造完成数据源后,通过后面补0的方法补齐到10ms的整数倍。
将数据源信号前面加入10ms的检测头,这10ms的检测头含有特殊扰码的ZC序列信号。
网络侧不断检测10ms内是否含有特殊扰码的ZC序列信号来找到信号源发送数据的起始位置,进而和信号源发送的起始位置对齐。
本实施例还包括两个具体实例:
实例1
数据源信号可以是NB-PUSCH和NB-PRACH信号。这里以NB-PUSCH的3.75k子载波信号为例。NB-PUSCH的3.75k子载波,单RU,单次重复的无线指标自动化测试方法。
数据源产生:
第一步,生成10ms的检测头信号,其中按照NB_IOT协议生成标准的5.6ms的NB-PRACH信号放在最前面,这5.6ms的NB-PRACH信号同步码字索引值固定设置为1,接下来的4.4ms数据位填0;
第二步,产生待测的数据源信号。NB-PUSCH的3.75k子载波的单个RU,单次重复的周期是32ms,需要将这32ms数据重复5次,凑成160ms。
第三步,将10ms的检测头信号放在前面,后面接着160ms的数据源信号,这样源数据就是170ms的数据,图6是本发明实施例NB_IOT制式上行NB-PUSCH信道单RU单次重复下用于自动化无线指标测试数据源的格式图,数据长度的公式是170ms,见附图6所示。将这170ms的数据放到SMU200A信号源里面,利用SMU200A(信号发射器)信号源周期性发送。
自动检测10ms头:
图7是本发明实施例在NB_IOT制式下对上行NB-PUSCH信号进行的自动搜索10ms检测头和自动化无线指标测试的流程图,见附图7所示,首先,基站侧打开自动检测开关进入自动检测流程,在10ms的起始位置进行NB-PRACH信号的检测,检测的算法与NB_IOT制式下的NB-PRACH的检测算法相同,包括码字生成,固定1/2子载波频偏补偿,时域相关和检测判决几个步骤,当检测到固定码字为1的NB-PRACH信号之后,清除自动检测标志并输出检测到的无线帧号SFN,基站侧进入无线指标测试状态;如果没有检测到固定码字为1的NB-PRACH信号,则对下一个10ms数据进行检测。
无线指标测试:
基站进入无线指标测试状态后,根据NB-PUSCH源数据的RU个数和重复次数来制作上行NB-PUSCH的调度起始位置和周期,起始位置帧号是SFN+1,周期是170ms。
实例2
NB-PRACH的无线指标测试方法。下面举例数据源是NB-PRACH,短循环前缀(Cyclic Prefix,简称为CP),2次重复的无线指标自动化测试方法。
数据源产生:
第一步,生成10ms的检测头信号,其中按照NB_IOT协议生成标准的5.6ms的NB-PRACH信号放在最前面,这5.6ms的NB-PRACH信号同步码字索引值固定设置为1,接下来的4.4ms数据位填0;
第二步,产生待测的数据源信号,由于检测头的NB-PRACH信号的同步码字索引值是1,那么待测的NB-PRACH的同步码字索引值需要配置成非1。NB-PRACH的数据源短CP,2次重复的周期是11.2ms,需要将这11.2ms数据后面填充8.8ms的0,凑成20ms。
第三步,将10ms的检测头信号放在前面,后面接着20ms的数据源信号,这样源数据就是30ms的数据,图8是本发明实施例NB_IOT制式上行NB-PRACH信道2次重复下用于自动化无线指标测试数据源的格式图,数据长度的公式是30ms,见附图8所示。将这30ms的数据放到SMU200A信号源里面,利用SMU200A信号源周期性发送。
自动检测10ms头:
图9是本发明实施例在NB_IOT制式下对上行NB-PRACH信号进行的自动搜索10ms检测头和自动化无线指标测试的流程图,见附图9所示,首先,基站侧打开自动检测开关进入自动检测流程,在10ms的起始位置进行NB-PRACH信号的检测,检测的算法与NB_IOT制式下的NB-PRACH的检测算法相同,包括码字生成,固定1/2子载波频偏补偿,时域相关和检测判决几个步骤,当检测到固定码字为1的NB-PRACH信号之后,清除自动检测标志并输出检测到的无线帧号系统帧号(System Frame Number,简称为SFN),基站侧进入无线指标测试状态;如果没有检测到固定码字为1的NB-PRACH信号,则对下一个10ms数据进行检测。
无线指标测试:
基站进入无线指标测试状态后,根据NB-PRACH源数据的重复次数来制作NB-PRACH的调度起始位置和周期,起始位置帧号是SFN+1,周期是30ms。
实施例4
本发明的实施例还提供了一种存储介质。根据一示例性实施例,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
S2,在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
S3,将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
根据一示例性实施例,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
根据一示例性实施例,处理器根据存储介质中已存储的程序代码执行通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
根据一示例性实施例,处理器根据存储介质中已存储的程序代码执行在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
根据一示例性实施例,处理器根据存储介质中已存储的程序代码执行将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
根据一个示例性实施例,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,根据一示例性实施例,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的技术方案可以应用于通讯领域。由于在检测信号中加入了检测头,网络侧可以自动搜索和信号源发送信号对齐,替代了人工对准调整起始位置的操作,因此本发明实施例提供的技术方案可以解决相关技术在进行无线指标测试时自动化程度过低的技术问题。

Claims (15)

  1. 一种无线指标测试方法,包括:
    通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
    在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
    将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
  2. 根据权利要求1所述的方法,其中,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述第一信号的起始位置。
  3. 根据权利要求1所述的方法其中,所述检测头的数据长度为10ms的整数倍。
  4. 根据权利要求1所述的方法,其中,通过复制信号源的标准信号产生预设长度的整数倍的第一信号包括以下之一:
    窄带物理上行共享信道NB-PUSCH信道复制每个资源单元RU的标准信号产生长度为10ms长度整数倍的第一信号;
    窄带物理随机接入信道NB-PRACH信道复制每个资源单元RU的标准信号产生第一信号,在所述第一信号的长度不为10ms长度整数倍时,通过补0将所述第一信号补齐到10ms的整数倍;
    其中,所述RU的标准信号的长度为32ms。
  5. 一种无线指标测试方法,包括:
    接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;
    解析所述测试信号得到所述信号源的发送起始位置;
    根据所述起始位置对所述信号源进行无线指标测试。
  6. 根据权利要求5所述的方法,其中,根据所述起始位置对所述信号源进行无线指标测试包括:
    从所述起始位置开始对所述测试信号的发送周期和重复次数做信道处理以实现所述无线指标测试。
  7. 根据权利要求5所述的方法,其中,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述测试信号的起始位置。
  8. 根据权利要求5所述的方法,其特征在于,所述检测头的数据长度为10ms的整数倍。
  9. 一种无线指标测试装置,包括:
    生成模块,设置为通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
    添加模块,设置为在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
    发送模块,设置为将所述第二信号发送给网络侧对所述信号源进行无线指标测试。
  10. 根据权利要求9所述的装置,其中,所述检测头携带含有特殊扰码的ZC序列信号,所述ZC序列信号用于标识所述第一信号的起始位置。
  11. 根据权利要求9所述的装置,其中,所述生成模块包括:
    第一生成单元,设置为窄带物理上行共享信道NB-PUSCH信道复制每个资源单元RU的标准信号产生长度为10ms长度整数倍的第一信号;
    第二生成单元,设置为窄带物理随机接入信道NB-PRACH信道复制每个资源单元RU的标准信号产生第一信号,在所述第一信号的长度不为10ms长度整数倍时,通过补0将所述第一信号补齐到10ms的整数倍;
    其中,所述RU的标准信号的长度为32ms。
  12. 一种无线指标测试装置,包括:
    接收模块,设置为接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;
    解析模块,设置为解析所述测试信号得到所述信号源的发送起始位置;
    测试模块,设置为根据所述起始位置对所述信号源进行无线指标测试。
  13. 根据权利要求12所述的装置,其中,所述测试模块包括:
    测试单元,设置为从所述起始位置开始对所述测试信号的发送周期和重复次数做信道处理以实现所述无线指标测试。
  14. 一种无线指标测试系统,包括发送端、接收端,其中,
    所述发送端包括:
    生成模块,设置为通过复制信号源的标准信号产生预设长度的整数倍的第一信号,其中,所述预设长度与所述信号源的带宽对应;
    添加模块,设置为在所述第一信号的首部加入检测头得到第二信号,其中,所述检测头用于标识所述第一信号的起始位置;
    发送模块,设置为将所述第二信号发送给网络侧对所述信号源进行无线指标测试;
    所述接收端包括:
    接收模块,设置为接收信号源的测试信号,其中,所述测试信号包括检测头,所述检测头用于标识所述测试信号的起始位置;
    解析模块,设置为解析所述测试信号得到所述信号源的发送起始位置;
    测试模块,设置为根据所述起始位置对所述信号源进行无线指标测试。
  15. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或 多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如根据权利要求1-8中任一项所述的无线指标测试方法。
PCT/CN2017/103505 2016-09-26 2017-09-26 无线指标测试方法、装置及系统和计算机存储介质 WO2018054384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610852548.8 2016-09-26
CN201610852548.8A CN107872812A (zh) 2016-09-26 2016-09-26 无线指标测试方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018054384A1 true WO2018054384A1 (zh) 2018-03-29

Family

ID=61690811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103505 WO2018054384A1 (zh) 2016-09-26 2017-09-26 无线指标测试方法、装置及系统和计算机存储介质

Country Status (2)

Country Link
CN (1) CN107872812A (zh)
WO (1) WO2018054384A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956852B1 (en) * 1999-06-25 2005-10-18 Cisco Technology Inc. Multi-function high-speed network interface
CN102158890A (zh) * 2011-02-16 2011-08-17 中国联合网络通信集团有限公司 测试数据的发送、接收方法、设备和系统
CN102946616A (zh) * 2012-11-21 2013-02-27 山东中创软件商用中间件股份有限公司 一种物联网中间件性能测试系统和测试方法
CN103139126A (zh) * 2011-12-02 2013-06-05 上海无线通信研究中心 实现无线通信测试平台收发同步的通用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956852B1 (en) * 1999-06-25 2005-10-18 Cisco Technology Inc. Multi-function high-speed network interface
CN102158890A (zh) * 2011-02-16 2011-08-17 中国联合网络通信集团有限公司 测试数据的发送、接收方法、设备和系统
CN103139126A (zh) * 2011-12-02 2013-06-05 上海无线通信研究中心 实现无线通信测试平台收发同步的通用方法
CN102946616A (zh) * 2012-11-21 2013-02-27 山东中创软件商用中间件股份有限公司 一种物联网中间件性能测试系统和测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RHODE ET AL.: "Narrowband Internet of Things , White Paper", 8 August 2016 (2016-08-08), pages 9 - 38 *

Also Published As

Publication number Publication date
CN107872812A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
KR101852891B1 (ko) 동기 신호 반송 방법 및 사용자 장비
WO2015172506A1 (zh) 发送时间确定方法、终端、基站、系统和存储介质
US9980239B2 (en) Signal processing method, base station, terminal, and system
CN109474403B (zh) 一种传输方法、装置、终端、基站及存储介质
CN107070608B (zh) 支持harq的无线通信方法、用户设备和基站
AU2011267625B2 (en) Method, apparatus and system for updating metadata files
WO2019129209A1 (en) Method and device for controlling a wireless router and an led lighting device
RU2013148159A (ru) Перекрестное планирование для ответа о произвольном доступе
CN109076516A (zh) 用于控制信号发送的方法和装置
RU2008136410A (ru) Сигнализация с непрозрачными опознавателями ue
CN105101392B (zh) 用于d2d系统中的sa信息传输的方法和装置
RU2758106C1 (ru) Способ передачи данных, терминальное устройство и сетевое устройство
WO2019157905A1 (zh) 参考信号的发送及接收方法、基站、终端、可读介质
JP2021511734A5 (zh)
WO2017194004A1 (zh) 一种资源确定方法、相关设备及系统
WO2016004560A1 (zh) 一种数据传输方法及设备
WO2015176211A1 (zh) 一种基站设备、用户设备及信道状态信息的上报方法
CN111867050B (zh) 一种信息传输的方法、装置、节点和服务器
US20210167919A1 (en) Aperiodic zp csi-rs resource set determination and configuration methods and devices, storage medium, user equipment, and network end
US20140269582A1 (en) Method and apparatus for transmitting multi-subframe scheduling signaling
US20220039069A1 (en) Data sending and receiving method, device, system, terminal, base station, and storage medium
WO2018054384A1 (zh) 无线指标测试方法、装置及系统和计算机存储介质
CN109040947A (zh) 定位远距离干扰源的方法、装置和计算机可读存储介质
US20210274457A1 (en) Method for determining synchronization source and terminal
WO2018028428A1 (zh) 接入子带的方法、装置及存储媒介

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17852451

Country of ref document: EP

Kind code of ref document: A1