WO2018054188A1 - 数据发送方法、数据接收方法、设备及系统、存储介质 - Google Patents

数据发送方法、数据接收方法、设备及系统、存储介质 Download PDF

Info

Publication number
WO2018054188A1
WO2018054188A1 PCT/CN2017/098288 CN2017098288W WO2018054188A1 WO 2018054188 A1 WO2018054188 A1 WO 2018054188A1 CN 2017098288 W CN2017098288 W CN 2017098288W WO 2018054188 A1 WO2018054188 A1 WO 2018054188A1
Authority
WO
WIPO (PCT)
Prior art keywords
end device
streams
transmit diversity
processed
spatial streams
Prior art date
Application number
PCT/CN2017/098288
Other languages
English (en)
French (fr)
Inventor
吴晔
葛士斌
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17852257.9A priority Critical patent/EP3503424B1/en
Publication of WO2018054188A1 publication Critical patent/WO2018054188A1/zh
Priority to US16/361,193 priority patent/US20190222373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data sending method, a data receiving method, a device and system, and a storage medium.
  • the transmitting end device may be a user equipment (English: User equipment; abbreviated as: UE), and the receiving end device may be a base station, and the base station may schedule multiple UEs to perform data transmission by using a corresponding transmission scheme.
  • UE User equipment
  • the base station may schedule multiple UEs to perform data transmission by using a corresponding transmission scheme.
  • the base station can schedule the UE to use the Open Loop Transmit Diversity (OLTD) transmission scheme for data transmission, and the OLTD transmission scheme can form a cell-level signal coverage, which is a UE adopting the OLTD transmission scheme. Provide reliable signal quality.
  • OLTD Open Loop Transmit Diversity
  • the OLTD transmission scheme is a transmission scheme of cell-level signal coverage, and the data of the UE using the OLTD transmission scheme easily interferes with data of other UEs, resulting in multiple
  • the UE cannot perform space division multiplexing of time-frequency resources, which affects the throughput of the system.
  • the embodiment of the present application provides a data sending method, a data receiving method, a device and a system, and a storage medium.
  • the technical solution is as follows:
  • the data transmission system may include a transmitting end device and a receiving end device, and the transmitting end device establishes a communication connection with the receiving end device.
  • the transmitting end device may be a base station or a UE, and the receiving end device may also be a base station or a UE.
  • the transmitting end device is a base station
  • the receiving end device is a UE.
  • the transmitting end device is a UE
  • the receiving end device is a base station
  • the receiving end device is a base station.
  • the application embodiment is described by taking a transmitting end device UE and a receiving end device as a base station as an example.
  • a data sending method comprising:
  • At least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream, so that multiple UEs can perform space division multiplexing of time-frequency resources.
  • the problem that multiple UEs cannot perform space division multiplexing of time-frequency resources, affecting the throughput of the system, and achieving the effect of improving the throughput of the system is solved.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, and space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • each transmit diversity process or the transmit diversity-based space division multiplexing process may also correspond to one
  • the transmission scheme can therefore enable the transmitting device to use different transmission schemes for data transmission.
  • the at least two first pre-processed spatial streams are pre-coded to obtain a plurality of pre-coded data streams, including:
  • the at least two first pre-processed spatial streams are pre-coded by using an identity matrix to obtain a plurality of pre-coded data streams, and the column vector of the identity matrix is a pre-coding vector of at least two first pre-processed spatial streams.
  • precoding the at least two first pre-processed spatial streams by using the unit matrix is actually equivalent to not pre-coding the at least two first pre-processed spatial streams, and the unit matrix is adopted.
  • Precoding the at least two first pre-processed spatial streams is generally applicable to a transmitting end device having a small number of transmitting antenna elements.
  • different first pre-processed spatial streams in the at least two first pre-processed spatial streams correspond to different pre-coding vectors, and each pre-coding vector corresponds to one demodulation reference signal DMRS port, and different pre-coding vectors correspond to The DMRS ports are different, or the DMRS ports corresponding to the at least two precoding vectors are the same, and the DMRS sequences corresponding to the precoding vectors of the same DMRS port are different;
  • the method also includes:
  • a plurality of precoded demodulation reference signals are transmitted.
  • the data sending method provided by the embodiment of the present application obtains a plurality of precoding demodulation reference signals by precoding the demodulation reference signals of the at least two first preconditioned spatial streams, and transmits the multiple precoding demodulation reference signals.
  • the receiving end device can facilitate recovery of the first original spatial stream.
  • a data receiving method comprising:
  • the plurality of spatial streams including at least two first preprocessed spatial streams, and at least two first preprocessed spatial streams Is obtained by preprocessing the first original spatial stream;
  • the space division multiplexing of resources solves the problem that multiple UEs cannot perform space division multiplexing of time-frequency resources, affecting the throughput of the system, and achieves the effect of improving the throughput of the system.
  • other spatial streams in the plurality of spatial streams may be unpreconditioned, thus solving the problem of low scheduling flexibility; achieving the effect of improving scheduling flexibility.
  • the at least two first pre-processed spatial streams are from the first transmitting end device.
  • the plurality of spatial streams further includes: at least two second pre-processed spatial streams, the at least two second pre-processed spatial streams are obtained by pre-processing the second original spatial stream, and the second original spatial stream is derived from the Two transmitting devices,
  • the method also includes:
  • the plurality of spatial streams further includes at least one original spatial stream, and the at least one original spatial stream is from the third transmitting device.
  • the method also includes:
  • At least one original spatial stream is recovered from the plurality of precoded data streams.
  • the at least two first pre-processed spatial streams are from the first transmitting end device
  • the at least two second pre-processed spatial streams are from the second transmitting end device
  • the at least one original spatial stream is from the first Three transmitter devices
  • different spatial streams can correspond to different transmission schemes. Therefore, multiple transmitter devices can use different transmission schemes for data transmission, which solves the problem of low scheduling flexibility; Flexibility Effect.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, or space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • each transmit diversity process or space diversity multiplexing process based on transmit diversity may also correspond to one.
  • the transmission scheme can therefore enable different transmitter devices to use different transmission schemes for data transmission, which solves the problem of low scheduling flexibility; and achieves the effect of improving scheduling flexibility.
  • different spatial streams in the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS resource, and different precoding vectors correspond to different DMRS resources.
  • the method also includes:
  • Recovering at least two first pre-processed spatial streams from the plurality of pre-coded data streams including:
  • the receiving end device can facilitate recovery of the first original spatial stream by the receiving end device by receiving multiple precoding demodulation reference signals.
  • the DMRS resource includes: at least one of a DMRS port and a specified sequence.
  • the DMRS resource includes: at least one of a DMRS port and a specified sequence, which can facilitate different transmitter devices to use the same DMRS port to send data.
  • a third aspect provides a transmitting end device, where the transmitting end device includes at least one module, and the at least one module is configured to implement a data transmitting method provided by implementing the foregoing first aspect or any of the foregoing aspects.
  • a fourth aspect provides a receiving end device, where the receiving end device includes at least one module, and the at least one module is configured to implement a data receiving method provided by implementing the second aspect or the second aspect.
  • a fifth aspect provides a data transmission system, where the data transmission system includes: a transmitting end device provided by the third aspect; and a receiving end device provided by the fourth aspect.
  • a sixth aspect provides a transmitting end device, where the transmitting end device includes: a processor, a transmitter, and a network interface, where the processor, the transmitter, and the network interface are connected by using a bus;
  • the processor includes one or more processing cores, and the processor executes various functional applications and data processing by running software programs and units;
  • the network interface may be multiple, and the network interface is used for the transmitting end device to communicate with other storage devices or network devices;
  • the processor and transmitter are configured to cooperate to perform the data transmission method provided by any of the above first aspect or any of the alternative aspects of the first aspect.
  • the seventh aspect provides a receiving end device, where the receiving end device includes: a receiver, a processor, and a network interface, and the receiver, the processor, and the network interface are connected by using a bus;
  • the processor includes one or more processing cores, and the processor executes various functional applications and data processing by running software programs and units;
  • the network interface may be multiple, and the network interface is used for the receiving end device to communicate with other storage devices or network devices;
  • the receiver and processor are configured to cooperate to perform the second aspect or any of the alternatives of the second aspect described above Data transmission method.
  • a data transmission system includes: a transmitting end device provided by the fifth aspect; and a receiving end device provided by the sixth aspect.
  • a ninth aspect a computer readable storage medium having stored therein instructions for causing a computer to perform any of the first aspect or the first aspect when the computer readable storage medium is run on a computer
  • the data transmission method provided by the optional method.
  • a tenth aspect a computer readable storage medium having stored therein instructions for causing a computer to perform any of the second aspect or the second aspect when the computer readable storage medium is run on a computer
  • the data receiving method provided by the optional method.
  • a computer program product comprising instructions for causing a computer to perform the data transmission method provided by the first aspect or any of the alternatives of the first aspect, when the computer program product is run on a computer.
  • a computer program product comprising instructions for causing a computer to perform the data receiving method provided by the second aspect or the second aspect of the second aspect when the computer program product is run on a computer.
  • the data sending method, the data receiving method, the device and the system, and the storage medium provided by the embodiments of the present application obtain a plurality of pre-coded data streams by at least two first pre-processed spatial streams, and at least two first pre-
  • the processing spatial stream is obtained by pre-processing the first original spatial stream, and transmitting multiple pre-coded data streams, so that multiple UEs can perform space division multiplexing of time-frequency resources, which helps solve multiple UEs in the prior art.
  • the space division multiplexing of time-frequency resources cannot be performed, which affects the throughput of the system and improves the throughput of the system.
  • FIG. 1 is a schematic diagram of an implementation environment involved in various embodiments of the present application.
  • FIG. 2 is a flowchart of a method for sending data according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for receiving data according to an embodiment of the present application.
  • 4-1 is a flowchart of a method for data transmission according to an embodiment of the present application.
  • 4-2 is a schematic diagram of a data transmission method provided by the prior art
  • 4-3 is a schematic diagram of another data transmission method provided by the prior art.
  • 4-4 is a schematic diagram of a data transmission method according to an embodiment of the present application.
  • 5-1 is a block diagram of a transmitting end device according to an embodiment of the present application.
  • FIG. 5-2 is a block diagram of another transmitting device according to an embodiment of the present disclosure.
  • 6-1 is a block diagram of a receiving end device according to an embodiment of the present application.
  • FIG. 6-2 is a block diagram of another receiving device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a transmitting end device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a data transmission system according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an implementation environment involved in various embodiments of the present application.
  • the implementation environment provides a data transmission system, which may be a wireless communication system, and may specifically be a MIMO system.
  • the implementation environment may include: a base station 01 and a plurality of UEs.
  • the implementation environment is described by taking multiple UEs including UE-02, UE-03, and UE-04 as an example.
  • each of the base station 01 and the multiple UEs may be a transmitting end device or a receiving end device.
  • the base station 01 is a receiving end device.
  • the multiple UEs are the receiving end devices.
  • the present embodiment and the following embodiments all use a plurality of UEs as the transmitting end devices, and the base station 01 is the receiving end device as an example.
  • the transmitting device may pre-code at least two first pre-processed spatial streams to obtain multiple pre-coded data streams and transmit the multiple pre-coded data streams.
  • the at least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream
  • the receiving end device (for example, the base station 01) may receive a plurality of pre-encoded data streams, where the plurality of pre-encoded data streams may be Obtaining a plurality of spatial streams
  • the plurality of spatial streams may include at least two first pre-processed spatial streams from a first transmitting end device (eg, UE-02), from the second transmitting end device (eg, At least two second pre-processed spatial streams of UE-03) and at least one original spatial stream from a third transmitting device (eg, UE-04), the at least two first pre-conditioned spatial streams being the first original
  • the pre-processed spatial stream is obtained by pre-processing the second original spatial stream, and the receiving
  • the transmitting end device obtains at least two first pre-processed spatial streams by pre-processing the first original spatial stream, so that multiple UEs perform space division multiplexing of time-frequency resources, thereby improving system throughput.
  • FIG. 2 is a flowchart of a method for transmitting data according to an embodiment of the present application.
  • the data sending method is applied to the transmitting end device for illustration.
  • the transmitting end device may be any UE (for example, UE-02) in the implementation environment shown in FIG. 1 .
  • the method can include:
  • Step 201 Precoding at least two first pre-processed spatial streams to obtain a plurality of pre-encoded data streams, where at least two first pre-processed spatial streams are pre-processed for the first original spatial stream.
  • Step 202 Transmit a plurality of precoded data streams.
  • the data sending method obtains a plurality of pre-coded data streams and transmits the plurality of pre-coded data streams by at least two pre-coding spatial streams, at least two
  • the first pre-processed spatial stream is obtained by pre-processing the first original spatial stream, so that multiple UEs can perform space division multiplexing of time-frequency resources, which helps to solve the problem that multiple UEs cannot perform time-frequency resources in the prior art.
  • the space division multiplexing affects the throughput of the system and improves the throughput of the system.
  • FIG. 3 is a flowchart of a method for receiving data according to an embodiment of the present application.
  • the data receiving method is applied to the receiving end device for illustration.
  • the receiving end device may be the base station 01 in the implementation environment shown in FIG. Referring to Figure 3, the method can include:
  • Step 301 Receive a plurality of pre-coded data streams, where the plurality of pre-coded data streams are pre-coded, where the plurality of spatial streams include at least two first pre-processed spatial streams, and at least two first pre-streams.
  • the processing spatial stream is obtained by preprocessing the first original spatial stream.
  • Step 302 Restore at least two first pre-processed spatial streams from the plurality of pre-coded data streams.
  • Step 303 Restore the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the data receiving method provided by the embodiment of the present application recovers at least two first pre-processed spatial streams from a plurality of pre-coded data streams by receiving a plurality of pre-coded data streams, according to at least two first The pre-processed spatial stream recovers the first original spatial stream. Since at least two first pre-processed spatial streams are pre-processed for the first original spatial stream, multiple UEs may perform space division multiplexing of time-frequency resources. It can help solve the problem that the multiple UEs in the prior art cannot perform space division multiplexing of time-frequency resources, affect the throughput of the system, and improve the throughput of the system.
  • FIG. 4-1 is a flowchart of a method for data transmission provided by an embodiment of the present application.
  • the data transmission method is applied to a system consisting of a first transmitting end device, a second transmitting end device, a third transmitting end device, and a receiving end device.
  • the first transmitting end device may be as shown in FIG. 1 .
  • the second transmitting device may be the UE-03 in the implementation environment shown in FIG. 1
  • the third transmitting device may be the UE-04 in the implementation environment shown in FIG.
  • the receiving end device may be the base station 01 in the implementation environment shown in FIG. 1. See Figure 4-1, the data transmission method may include:
  • Step 401 The first transmitting end device pre-codes at least two first pre-processed spatial streams to obtain a plurality of pre-encoded data streams, where at least two first pre-processed spatial streams are pre-processed to obtain the first original spatial stream. of.
  • the first original spatial stream may be a spatial stream obtained after layer mapping.
  • the embodiment of the present application introduces an original spatial stream (for example, a first original spatial stream) by using an LTE system as an example.
  • the processing of the physical channel may generally include: scrambling, modulation mapping, layer mapping, precoding, resource granular mapping, and orthogonal frequency division multiplexing (OFDM: OFDM) signal generation.
  • OFDM orthogonal frequency division multiplexing
  • the processing object of the physical channel is usually a codeword
  • the codeword may be a bitstream subjected to an encoding process (including at least a channel coding process), and the bitstream may be scrambled to obtain a scrambled bitstream, and the scrambled bitstream may be subjected to a modulation map.
  • a modulation symbol stream is obtained, and the modulation symbol stream is subjected to layer mapping to obtain a plurality of symbol layers (the symbol layer is also referred to as a spatial stream or a spatial layer), and the symbol layer is precoded to obtain a plurality of precoded symbol streams, and the precoded symbol stream passes through the resource.
  • a granular element (English: Resource Element; RE: abbreviation) is mapped onto a plurality of resource particles, which are then subjected to an OFDM signal generation stage to obtain an OFDM symbol stream, and the OFDM symbol stream is transmitted through an antenna port.
  • the OFDM signal generation stage may be an OFDM symbol stream by using an Inverse Fast Fourier Transform (IFFT).
  • IFFT Inverse Fast Fourier Transform
  • the original spatial stream in the embodiment of the present application may be a spatial stream obtained through layer mapping. It is to be noted that, in order to more clearly describe the technical solution provided by the embodiment of the present application, the embodiment of the present application describes the original spatial stream in the embodiment of the present application by using the spatial stream obtained by the layer mapping in the existing LTE standard. It should be understood by those skilled in the art that the original spatial stream in the embodiment of the present application may also generally refer to any modulation symbol stream obtained after being processed by modulation or the like, in addition to the spatial stream obtained after layer mapping in the LTE standard.
  • the first transmitting end device may pre-code at least two first pre-processed spatial streams to obtain a plurality of pre-encoded data streams, and the at least two first pre-processing spaces
  • the flow is obtained by the first transmitting end device pre-processing the first original spatial stream, and the pre-processing may include: a transmit diversity process or a transmit diversity based space division multiplexing process.
  • the transmit diversity process improves transmission reliability by redundantly transmitting original spatial streams (eg, first original spatial streams) in time, frequency, space (eg, antenna), or various combinations of the above three dimensions.
  • the number of redundant transmissions may be set according to a channel model or a channel quality
  • the redundantly transmitted object may be the original spatial stream itself or a processed original spatial stream
  • the processing may include but not It is limited to delay, negation, conjugate, rotation, etc., and the processing obtained by deriving, evolving, and combining the various processes described above.
  • the commonly used transmit diversity processing may include, but is not limited to, space-time transmission diversity (English: Space-Time Transmit Diversity; STTD) processing, space-frequency transmission diversity (English: Space-Frequency Transmit Diversity; SFTD) processing, time Switching Transmit Diversity (English: Time Switched Transmit Diversity; TSTD) processing, frequency switching transmit diversity (English: Frequency Switch Transmit Diversity; FSTD) processing, orthogonal transmit diversity (English: Orthogonal Transmit Diversity; ODT) Processing, cyclic delay diversity (English: Cyclic delay diversity; CDD) processing, and the above-mentioned various transmit diversity processing are derived, evolved, and combined to obtain the transmit diversity processing.
  • the LTE standard adopts transmit time diversity processing such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • the transmit diversity process may include any one of space time transmit diversity processing, space frequency transmit diversity processing, space time frequency transmit diversity processing, cyclic delay transmit diversity processing, and open loop transmit diversity processing, and the foregoing Various forms of diversity processing.
  • the spatial diversity multiplexing process based on transmit diversity may be a precoding process for large scale delayed CDD.
  • the transmission scheme of simultaneously pre-processing and pre-coding the original spatial stream may be referred to as a beam.
  • Transmission scheme of Forming Transmit Diversity English: Beamed Transmit Diversity; BTD for short
  • the transmission scheme of preprocessing and precoding the original spatial stream at the same time may be called open loop Open-Loop Spatial Multiplexing (OLSM) transmission scheme, when the transmit diversity processing is open-loop transmit diversity processing, the original spatial stream is simultaneously pre-processed and pre-coded.
  • OLSM Open-Loop Spatial Multiplexing
  • the transmission scheme of the code (the precoding matrix is a unit matrix) may be referred to as an Open Loop Transmit Diversity (OLTD) transmission scheme.
  • OLTD Open Loop Transmit Diversity
  • the transmission scheme in which the original spatial stream is simultaneously pre-processed and pre-coded may be referred to as a large-scale delay CDD transmission scheme; the transmission scheme in which only the original spatial stream is pre-coded may be referred to as closed-loop spatial multiplexing (English: Closed-Loop Spatial Multiplexing) Abbreviation: CLSM) transmission scheme.
  • the transmit diversity process includes other implementation manners in addition to the above examples. Therefore, the above description should not be construed as limiting the technical solution of the present application.
  • the technical solution of the present application should be understood as a solution applicable to various possible transmit diversity processes; in addition, the pre-processing described in the present application is merely exemplary. In practical applications, the pre-processing includes, but is not limited to, the above-described transmit diversity processing and the transmit diversity-based spatial division multiplexing process. Therefore, those skilled in the art should understand that the transmit diversity processing described in the present application and based on the above examples are based on The spatial division multiplexing process of transmit diversity is not intended to limit the pre-processing described in this application.
  • the first transmitting end device may precode at least two first preconditioned spatial streams by using a precoding technique, and the precoding technology processes the spatial stream by using a precoding matrix matched with the channel attributes, so that the precoding is performed.
  • the spatial stream is adapted to the channel, and the precoding matrix may include a plurality of precoding vectors, where the precoding vector is usually a column vector of the precoding matrix, and the number of precoding vectors and the receiving end device corresponding to the precoding matrix
  • the number of spatial streams is the same, each of the at least two first pre-processed spatial streams may correspond to one pre-coding vector, and the first first pre-processing in the at least two first pre-processed spatial streams
  • the spatial streams correspond to different precoding vectors, and the first transmitting end device may precode at least two first preconditioned spatial streams by using at least two precoding vectors.
  • the precoding of the first pre-processed spatial stream can optimize the data transmission process, and the received signal quality is improved.
  • the received signal quality is, for example, Signal to Interference plus Noise Ratio (SINR). Signal-to-noise ratio (English: signal-to-noise ratio; SNR), signal receiving power, etc.
  • SINR Signal to Interference plus Noise Ratio
  • the first transmitting end device may pre-code at least two first pre-processed spatial streams by using an identity matrix, where the column vector of the identity matrix is the at least two first pre-processing spaces.
  • a precoding vector of the stream in other words, a column vector of the unit matrix is in one-to-one correspondence with precoding vectors of the at least two first pre-processed spatial streams, a dimension of the unit matrix and the at least two first The number of preprocessed spatial streams is equal.
  • the unit matrix is a matrix with the elements on the main diagonal line being 1, and the remaining elements are all 0.
  • Precoding the at least two first preconditioned spatial streams by using the unit matrix is actually equivalent to not having at least two The first pre-processed spatial stream is pre-coded, and the pre-coding of the at least two first pre-processed spatial streams by using the unit matrix is generally applicable to a transmitting end device having a small number of transmitting antenna elements.
  • the three pre-processed spatial streams include the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed spatial stream 13, for example, the unit The matrix can be:
  • the unit matrix A includes column vectors with The column vector A1 may be a precoding vector of the first preprocessed spatial stream 11, the column vector A2 may be a precoding vector of the first preprocessed spatial stream 12, and the column vector A3 may be a preprocessed first preprocessed spatial stream 13
  • the first transmitting end device may precode the first preconditioned spatial stream 11 by using the column vector A1, precoding the first preconditioned spatial stream 12 by using the column vector A2, and using the column vector A3 for the first preprocessing.
  • the spatial stream 13 is pre-coded.
  • the specific implementation process of the pre-coding may be referred to the related art.
  • the transmission scheme of performing open-loop transmit diversity processing on the original spatial stream and pre-coding the processed spatial stream by using the unit matrix may be referred to as an OLTD transmission scheme.
  • the first transmitting end device uses the unit matrix to pre-code at least two first pre-processed spatial streams as an example.
  • the first transmitting end device may also adopt The precoding matrix whose elements on the main diagonal are not 0 and the remaining elements are 0 precodes at least two first preprocessed spatial streams, so that the main diagonal of the precoding matrix can be If the partial element is greater than 1, and the partial element is less than 1 and greater than 0, then at least two first pre-processing spaces may be implemented in the pre-coding process of the at least two first pre-processed spatial streams by using the pre-coding matrix. Amplification or reduction of a portion of the preprocessed spatial stream in the stream.
  • the precoding matrix can be:
  • the precoding matrix B includes a column vector with The column vector B1 may be a precoding vector of the first preprocessed spatial stream 11, the column vector B2 may be a precoding vector of the first preprocessed spatial stream 12, and the column vector B3 may be a preprocessed first preprocessed spatial stream 13
  • the first transmitting end device may precode the first preconditioned spatial stream 11 by using the column vector B1, so that the first preconditioned spatial stream 11 is amplified, and the first preprocessed spatial stream 12 is precoded by using the column vector B2.
  • the first pre-processed spatial stream 13 is pre-coded by the column vector B3, so that the first pre-processed spatial stream 13 is reduced.
  • the specific implementation process of the pre-coding can refer to the prior art. The embodiments of the present application are not described herein again.
  • the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed spatial stream 13 may be a space-time transmit diversity process performed by the first transmitting end device on the first original spatial stream 1 Obtained by the space-frequency transmit diversity processing or the space-time-frequency transmit diversity processing, or may be obtained by the first transmitting end device performing cyclic delay transmit diversity processing on the first original spatial stream 1, or may be the first transmitting end device pair
  • the original spatial stream 1 is subjected to open-loop transmit diversity processing, and may be obtained by the first transmitting end device performing spatial diversity multiplexing processing based on transmit diversity on the first original spatial stream 1.
  • the first transmitting end device When the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed spatial stream 13 are the first transmitting end device performing space-time transmit diversity processing, space-frequency transmit diversity processing, or When the space-time-frequency transmit diversity processing is performed, the first transmitting end device may be a device that uses a BTD transmission scheme for data transmission, when the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed space.
  • the stream 13 is obtained by the first transmitting end device performing cyclic delay transmit diversity processing on the first original spatial stream 1.
  • the first transmitting end device may be a device for data transmission by using an OLSM transmission scheme, when the first preconditioned spatial stream is used.
  • the first pre-processing spatial stream 12 and the first pre-processed spatial stream 13 are obtained by the first transmitting end device performing open-loop transmit diversity processing on the first original spatial stream 1, and the first transmitting end device may be an OLTD.
  • a device for transmitting data by the transmission scheme when the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed spatial stream 13 are the first transmitting end device, the first original spatial stream is Transmit diversity based on space division multiplexing obtained, the first device may be a transmitting end using a large-scale transmission delay CDD scheme of data transmission equipment.
  • the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-processed spatial stream 13 are obtained by the first transmitting end device performing space-time transmit diversity processing on the first original spatial stream 1
  • the first transmitting end device is a device that performs data transmission by using a BTD transmission scheme.
  • the base station may indicate a transmission scheme to the UE by using downlink signaling, so that the UE can perform data transmission by using a corresponding transmission scheme.
  • the base station 01 indicates that the UE-02 uses the BTD transmission scheme to perform data transmission by using the downlink signaling, where the base station may use the format of the downlink signaling to indicate the transmission scheme, or may use the content of the downlink signaling to use the transmission scheme.
  • the instructions are not limited in this embodiment of the present application. It should be noted that the transmission scheme is generally described above by way of example, and those skilled in the art should understand that, in addition to the above examples, the transmission scheme includes other multiple transmission schemes, and therefore, the above description should not be understood. To limit the technical solution of the present application.
  • the first transmitting end device pre-codes the first pre-processed spatial stream 11 to obtain a pre-encoded data stream 110, and pre-encodes the first pre-processed spatial stream 12 to obtain a pre-encoded data stream 120.
  • the first pre-processed spatial stream 13 is precoded to obtain a precoded data stream 130.
  • the precoded data stream obtained by precoding a spatial stream is labeled as a precoded data stream, such as the precoded data stream 110, the precoded data stream 120, and the precoded data stream 130.
  • a spatial stream is precoded to obtain a plurality of precoded data streams.
  • the specific number of precoded data streams is related to the number of physical antennas or the number of antenna ports. Therefore, the precoded data stream 110 is known.
  • the precoded data stream 120 and the precoded data stream 130 each refer to a set of precoded data streams whose number of precoded data streams is related to the number of physical antennas or the number of antenna ports, wherein the set of precoded data streams
  • Each precoded data stream is transmitted via a corresponding one of the physical antennas or antenna ports, and the precoded data stream transmitted through the physical antenna or the antenna port can be regarded as a corresponding preprocessed spatial stream transmitted on the physical antenna or antenna port.
  • the data transmission method provided by the embodiment of the present application may be applicable to a MIMO system, and the MIMO system generally uses a precoding technology to implement space division multiplexing, so as to simultaneously transmit multiple spaces between the transmitting end device and the receiving end device.
  • Streaming increasing system throughput.
  • a MIMO system usually includes a single-user MIMO (Single-user MIMO; SU-MIMO) scenario and a multi-user MIMO (Multi-user MIMO; MU-MIMO) scenario.
  • the spatial streams of the spatial multiplexing are from the same transmitting device.
  • multiple spatial streams that are spatially multiplexed are from at least two transmitting devices.
  • precoding technology has been adopted by various wireless communication standards, such as but not limited to the LTE standard.
  • precoding generally refers to processing a transmitted signal based on a specific matrix. Therefore, precoding in the LTE standard includes not only Precoding for space division multiplexing, including precoding for transmit diversity, and the like.
  • the precoding involved in the technical solution provided by the embodiment of the present application refers only to precoding of spatial streams by a precoding matrix based on space division multiplexing purposes, and does not include for transmitting diversity. Precoding.
  • the precoding involved in the technical solution provided by the embodiment of the present application may be precoding not based on channel state information, which is also called open loop precoding, which is similar to, for example but not limited to, the LTE standard.
  • channel state information which is also called open loop precoding, which is similar to, for example but not limited to, the LTE standard.
  • the precoding of the uncombined CDD and the precoding of the CDD for the large-scale delay, in addition, the precoding involved in the technical solution provided by the embodiment of the present application may be precoding based on channel state information, such precoding Also known as closed loop precoding, which is similar to, for example but not limited to, closed loop space division multiplexing in the LTE standard.
  • closed loop precoding which is similar to, for example but not limited to, closed loop space division multiplexing in the LTE standard.
  • the embodiment of the present application does not limit this.
  • MIMO Single Input Single Output
  • SISO Single Input Multiple Output
  • MISO Multiple Input Single Output
  • MIMO as described herein should be understood to encompass various application forms of multi-antenna technology including, for example but not limited to, the SISO system, SIMO system, MISO system, and MIMO system described above.
  • Y represents a precoded data stream
  • F1 represents precoding
  • S represents The original spatial stream.
  • the original spatial stream is pre-coded to obtain a pre-coded data stream, where Y denotes a pre-coded data stream, F2 denotes a pre-processing, F1 denotes a pre-coding, and S denotes an original spatial stream, which is not described herein again.
  • Step 402 The first transmitting end device transmits a plurality of precoded data streams to the receiving end device.
  • the first transmitting device may send the multiple pre-coded data streams to the receiving device, where the first transmitting device may be UE-02 in the implementation environment shown in FIG.
  • the end device may be the base station 01 in the implementation environment shown in FIG.
  • the first transmitting device transmits a precoded data stream 110, a precoded data stream 120, and a precoded data stream 130 to the sink device.
  • the first transmitting end device may send a plurality of pre-coded data streams to the receiving end device through the antenna port.
  • Step 403 The first transmitting end device performs precoding on the demodulation reference signals of the at least two first preconditioned spatial streams. A plurality of precoded demodulation reference signals are obtained.
  • each of the at least two first pre-processed spatial streams corresponds to one demodulation reference signal
  • the first transmitting end device may be configured for at least two first pre-processed spatial streams.
  • the demodulation reference signal is precoded to obtain a plurality of precoded demodulation reference signals.
  • the first transmitting end device may precode the demodulation reference signals of the at least two first preconditioned spatial streams by using the same precoding vector as that precoding the at least two first preconditioned spatial streams. So that the receiving end device can demodulate the at least two first pre-processed spatial streams by means of demodulation reference signals of the at least two first pre-processed spatial streams.
  • Each of the at least two precodings corresponding to the at least two first pre-processed spatial streams may correspond to a demodulation reference signal (English: Demodulation Reference Signal; DMRS) port, and the at least two The DMRS ports corresponding to different precoding vectors in the precoding are different, or the DMRS ports corresponding to at least two precoding vectors are the same, and the DMRS sequences of the precoding vectors (or spatial streams) corresponding to the same DMRS port are different, and different DMRS sequences are different. It may be a DMRS sequence obtained by applying different displacements to the same root sequence, or a DMRS sequence obtained according to different root sequences. In other words, different DMRS port numbers can be used to distinguish different DMRSs.
  • DMRS Demodulation Reference Signal
  • the different DMRS sequences may be DMRS sequences obtained by applying different displacements to the same root sequence (for example, ZC sequences), or DMRS sequences obtained according to different root sequences. Whether it is a DMRS port number or a DMRS sequence, it needs to be specified by the base station for the UE, for example, by downlink signaling (such as but not limited to DCI).
  • the DMRS can be used for channel (i.e., precoded channel) demodulation because the precoding vector used for precoding each first preprocessed spatial stream and the DMRS corresponding to the first preprocessed spatial stream are pre-
  • the precoding vectors used for encoding are the same, but DMRS does not require preprocessing.
  • the first preconditioned spatial streams are associated with respective DMRSs, and the DMRSs may be different.
  • the receiving end device may demodulate the received pre-coded data stream according to the DMRS corresponding to the DMRS port to obtain the first pre-processed spatial stream.
  • DMRS port may be used by the same UE, and the same DMRS port may be used.
  • different DMRS sequences may be used to correspond.
  • Demodulation reference signals are distinguished; different UEs may use different DMRS ports or the same DMRS port.
  • Different DMRS sequences may be used to distinguish corresponding demodulation reference signals when different UEs use the same DMRS port. This embodiment of the present application does not limit this.
  • At least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream by the first transmitting end device, and the receiving end device obtains the at least two at the demodulation.
  • the first original spatial stream is recovered according to the at least two first pre-processed spatial streams according to the pre-processing manner of the first transmitting end device.
  • the demodulation reference signal corresponding to the first pre-processed spatial stream 11 is S11
  • the demodulation reference signal corresponding to the first pre-processed spatial stream 12 is S12
  • the demodulation reference signal corresponding to the first pre-processed spatial stream 13 is S13
  • the first transmitting end device pre-codes the demodulation reference signal S11 to obtain a pre-coded demodulation reference signal S110
  • the demodulation reference signal S12 to obtain a pre-coded demodulation reference signal S120
  • the demodulation reference signal S13 Precoding is performed to obtain a precoded demodulation reference signal S130.
  • the precoding demodulation reference signal S110, the precoding demodulation reference signal S120, and the precoding demodulation reference signal S130 are a set of precoding demodulation reference signals, and the precoding solution thereof
  • the number of tuning reference signals is related to the number of physical antennas or the number of antenna ports, wherein each precoding demodulation reference signal in the set of precoding demodulation reference signals is transmitted via a corresponding physical antenna or antenna port, through the physical
  • the precoding demodulation reference signal transmitted by the antenna or the antenna port can be regarded as the transmission component of the corresponding demodulation reference signal on the physical antenna or the antenna port.
  • Z represents a pre- The coded demodulation reference signal
  • F1 represents precoding
  • X represents demodulation reference signal.
  • step 401 and the step 403 in the embodiment of the present application may be performed at the same time, which is not limited by the embodiment of the present application.
  • Step 404 The first transmitting end device transmits multiple precoding demodulation reference signals to the receiving end device.
  • the first transmitting end device may transmit a plurality of precoding demodulation reference signals to the receiving end device.
  • the first transmitting end device may be the UE-02 in the implementation environment shown in FIG. 1, and the receiving end device may be the base station 01 in the implementation environment shown in FIG.
  • the first transmitting end device transmits a precoding demodulation reference signal S120, a precoding demodulation reference signal S110, and a precoding demodulation reference signal S130 to the receiving end device.
  • the first transmitting end device may be a UE, and the receiving end device is a base station, and the at least two first pre-processed spatial streams are the first transmitting end device performing the first original spatial stream.
  • the pre-processed data stream and the pre-coded data stream need to be demodulated by means of DMRS. Therefore, the first transmitting end device needs to know the pre-processing mode and the DMRS resource to complete the data transmission. Then, before the first transmitting end device transmits data, the receiving end device (base station) can specify a preprocessing mode and allocate DMRS resources for the first transmitting end device by using downlink signaling.
  • the DMRS resource includes, but is not limited to, a DMRS port (for identifying a DMRS), a specified sequence (for example, a ZC sequence), and the like.
  • the specified sequence has a one-to-one correspondence with the transmitting device and the DMRS, and the receiving device The specified sequence may be sent to the first transmitting end device, and after receiving the DMRS, determine the DMRS transmitted by the first transmitting end device according to the one-to-one correspondence between the specified sequence and the transmitting end device and the DMRS.
  • the pre-processing may be a transmit diversity process or a space diversity multiplexing process based on transmit diversity
  • the transmit diversity process includes but is not limited to: space-time transmit diversity processing, space-frequency transmit diversity processing, space-time-frequency transmit diversity processing, and cyclic delay diversity.
  • the spatial diversity multiplexing process based on transmit diversity may be a pre-coding process for large-scale delayed CDD.
  • the following is an example in which the first transmitting end device is the UE-02 and the receiving end device is the base station 01.
  • the receiving end device may send, by using downlink signaling, information (such as a port number and a specified sequence) of the DMRS resource allocated to the first transmitting end device to the information of the preprocessing mode specified by the first transmitting end device.
  • the first transmitting end device may preprocess the first original spatial stream according to a preprocessing manner indicated by the received preprocessing mode information to obtain at least two first preconditioned spatial streams, and then at least two The first pre-processed spatial stream is pre-coded to obtain a plurality of pre-coded data streams, and the plurality of pre-coded data streams are transmitted to the receiving end device by the DMRS resources allocated by the receiving end device.
  • the receiving end device (the base station 01) can send the DMRS resource information and the pre-processing mode information to the first transmitting end device (UE-02) in the following manners.
  • the information of the DMRS resource may be Including at least one of a DMRS port and a specified sequence, the DMRS port may be identified by a port number, each DMRS port may have multiple resources, each resource may be identified by a specified sequence, and the same specified sequence may indicate different DMRSs.
  • Resources on the port :
  • the receiving device sends the information of the DMRS resource of the DMRS corresponding to each first pre-processed spatial stream and the information of the pre-processing mode corresponding to the first original spatial stream to the first transmitting end device by using the downlink signaling.
  • the information of the pre-processing mode corresponding to the first original spatial stream is the information of the pre-processing mode used by the receiving end device to pre-process the first original spatial stream specified by the first transmitting end device.
  • the base station 01 instructs the UE-02 to transmit data by using the resource identified by the specified sequence A on the DMRS port with the port number x+1 and the DMRS port with the port number x, and indicates that the UE-02 uses space time.
  • the transmit diversity process performs pre-processing on the first original spatial stream; for example, the base station 01 indicates, by downlink signaling, that the UE-02 adopts the DMRS port with the port number x+2 and the DMRS port with the port number x on the specified sequence B.
  • the identified resource sends data, and indicates that the UE-02 performs pre-processing on the first original spatial stream by using a transmit diversity-based space division multiplexing process; for example, the base station 01 indicates, by using downlink signaling, that the UE-02 adopts the port number y.
  • the DMRS port and the DMRS port whose port number is x transmit data by the resource identified by the specified sequence C, and indicate that the UE-02 uses the cyclic delay transmit diversity process to stream the first original space.
  • Line preprocessing when the base station 01 indicates the UE-02 preprocessing mode by using the downlink signaling, the terminal may be allocated a fixed number of bits (Chinese: bits) to specify the preprocessing mode.
  • the 2 bit indication preprocessing mode may be used, and the 2 bits may indicate 4 in total.
  • the preprocessing mode for example, 00 represents space-time transmit diversity processing, 01 represents space-frequency transmit diversity processing, 10 represents space-time-frequency transmit diversity processing, and 11 represents ring-delay transmit diversity processing.
  • base station 01 may also indicate by other means.
  • the pre-processing manner is not limited in this embodiment of the present application.
  • the receiving end device sends the information of the DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams to the first transmitting end device by using the downlink signaling, and the DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams
  • the information uniquely corresponds to a pre-processing method.
  • the information about the DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams (for example, the identifier of the DMRS resource or the number of DMRS resources, and the identifier of the DMRS resource may be composed of the port number and the specified sequence)
  • the information of the DMRS resource has a mapping relationship with the pre-processing mode, and the information of the DMRS resource of the DMRS corresponding to the at least two first pre-processing spatial streams uniquely corresponds to a pre-processing mode, and the first transmitting device can
  • the preprocessing mode is determined according to the information of the DMRS resource and the mapping relationship.
  • the mapping relationship is: the data transmitted by the specified sequence A on the DMRS port with the port number x+1 and the DMRS port with the port number x must be transmitted using space-time transmit diversity, or two DMRSs are used. Ports must be processed using space-time transmit diversity. Then, when the UE-02 obtains the DMRS resource information of the DMRS corresponding to the at least two first pre-processed spatial streams, the DMRS port with the port number x+1 and the DMRS port with the port number x are specified by the sequence A. When the resource is identified, the UE-02 may determine, according to the mapping relationship, that the base station 01 performs the diversity processing when the pre-processing specified by the base station is null.
  • Manner 3 The receiving end device sends the information of the pre-processing manner corresponding to the first original spatial stream to the first transmitting end device by using the downlink signaling, where the pre-processing manner corresponding to the first original spatial stream uniquely corresponds to information of a group of DMRS resources.
  • the pre-processing mode information may be an identifier of the pre-processing mode, and the receiving end device may indicate the pre-processing mode for the first transmitting end device by using one or more bits.
  • the pre-processing manner corresponding to the first original spatial stream may indicate the information of the DMRS resource, and the mapping between the pre-processing mode and the information of the DMRS resource may have a mapping relationship, and the pre-processing manner used by the first original spatial stream may uniquely correspond
  • the UE-02 may determine the information of the DMRS resource according to the pre-processing manner and the mapping relationship, and further determine the DMRS resource according to the information of the DMRS resource.
  • the base station 01 instructs the UE-02 to perform pre-processing on the first original spatial stream by using space-time transmit diversity processing by using downlink signaling.
  • the mapping relationship is: using the space-time transmit diversity processing, the pre-processing must use the port number x+1.
  • the DMRS port and the DMRS port with the port number of x are sent by the resource identified by the specified sequence A.
  • the UE-02 can know that the DMRS resource information is: the port number.
  • the receiving end device sends, by using downlink signaling, the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams (such as the number of DMRS ports) to the first transmitting end device, where the at least two first pre-processing
  • the number of DMRS resources corresponding to the spatial stream uniquely corresponds to one preprocessing mode and one set of DMRS resources.
  • the receiving device indicates, by using the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams, a pre-processing manner used by the first transmitting end device to pre-process the first original spatial stream, and at least
  • the DMRS resources corresponding to the two first pre-processed spatial streams have a mapping relationship between the pre-processing mode, the number of DMRS resources, and the DMRS resources, and the number of DMRS resources corresponding to the DMRS corresponding to the at least two first pre-processed spatial streams uniquely corresponds to one
  • the first transmitting end device may determine, according to the number of DMRS resources and the mapping relationship, a pre-processing mode and a DMRS resource specified by the receiving end device as the first transmitting end device.
  • the base station 01 indicates, by using the downlink signaling, that the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams of the UE -02 is 2, and the mapping relationship is that the use of the two DMRS resources must be performed by using space-time transmit diversity processing.
  • the DMRS corresponding to the pre-processing and spatial streams must use the DMRS port with port number x+1 and the DMRS port with port number x to send data on the resource identified by the specified sequence A.
  • the UE-02 may determine, according to the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams indicated by the base station 01, and the mapping relationship, that the pre-processing mode used for pre-processing the first original spatial stream is null-time transmission.
  • Diversity processing, and the DMRS resources corresponding to the at least two first pre-processed spatial streams are DMRS ports with port number x+1 And the resource identified by the specified sequence A on the DMRS port with port number x.
  • the receiving device sends, by using downlink signaling, the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams and the pre-processing mode corresponding to the first original spatial stream to the first transmitting end device, at least two The number of DMRS resources of the DMRS corresponding to the first pre-processed spatial stream and the pre-processing manner corresponding to the first original spatial stream uniquely correspond to a set of DMRS resources.
  • the receiving device indicates the at least two first pre-processed spatial streams by using the number of DMRS resources of the DMRS corresponding to the at least two first pre-processed spatial streams and the pre-processing manner corresponding to the first original spatial stream.
  • the DMRS resource of the DMRS, the preprocessing mode, the number of DMRS resources, and the DMRS resource have a mapping relationship, and the number of DMRS resources of the DMRS corresponding to the at least two first preprocessed spatial streams and the preprocessing mode corresponding to the first original spatial stream Unique to a group of DMRS resources.
  • the first transmitting end device may determine the DMRS resource according to the number of DMRS resources indicated by the receiving end device and the preprocessing manner corresponding to the first original spatial stream and the mapping relationship.
  • the base station 01 indicates, by using downlink signaling, that the pre-processing mode corresponding to the first original spatial stream of the UE-02 is null-time transmit diversity processing and the number of DMRS resources is 2, and the mapping relationship is: the pre-processing mode is null-time transmit diversity processing.
  • the spatial stream with the number of DMRS resources of 2 must use the DMRS port with port number x+1 and the DMRS port with port number x to send data on the resource identified by the specified sequence A.
  • the downlink signaling in the embodiment of the present application may be the downlink control information (English: Downlink Control Information; DCI) in the LTE standard, and the UE may be in the physical downlink control channel (English: Physical Downlink Control Channel; The abbreviated as follows: PDCCH)
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the blind detection DCI is used to receive the DMRS resource information and the information of the pre-processing mode. The specific blind detection process is clearly described in the prior art, and details are not described herein again.
  • the precoding process of the preprocessed spatial stream and the precoding process of demodulating the reference signal may be performed together, for example, it may be understood as inserting the demodulation reference signal into the corresponding preprocessing.
  • the demodulation reference signal is mixed with the pre-processed spatial stream to precode the demodulation reference signal along with the pre-processed spatial stream.
  • the precoding result includes both the precoded data stream and the precoded demodulation reference signal, and the two are transmitted together.
  • the precoding process and the transmission process of the spatial stream and the demodulation reference signal can refer to the prior art, and the above process is clearly and completely described in the technology, and therefore will not be described herein.
  • the precoding process of the preprocessed spatial stream and the precoding process of the demodulation reference signal are separately described in FIG. 4-1, and the transmission process of the precoded spatial stream obtained after precoding and the transmission process of the precoding demodulation reference signal are performed. Separately described, the purpose is only to clearly describe the processing of the preprocessed spatial stream and the demodulation reference signal, and the processing order thereof is not limited to the present application.
  • Step 405 The second transmitting end device pre-codes at least two second pre-processed spatial streams to obtain a plurality of pre-encoded data streams, where at least two second pre-processed spatial streams are pre-processed to obtain the second original spatial stream. of.
  • the second transmitting end device may be the UE-03 in the implementation environment shown in FIG. 1 , which is similar to the first original spatial stream in step 401 , and the second original spatial stream may be a space obtained through layer mapping.
  • the flow of the second original spatial stream may also refer to any modulation symbol stream obtained after being processed by a modulation process. For the description of the process, reference may be made to step 401, which is not described herein again.
  • the second transmitting end device may pre-code at least two second pre-processed spatial streams to obtain a plurality of pre-encoded data streams, and the at least two second pre-processing spaces.
  • the stream is obtained by pre-processing the second original spatial stream by the second transmitting end device, and the pre-processing may include: a transmit diversity process or a space diversity multiplexing process based on transmit diversity.
  • the transmit diversity process and the transmit diversity-based space division multiplexing process reference may be made to step 401, which is not described herein again.
  • the second transmitting end device may precode at least two second preconditioned spatial streams by using a precoding technique, and each of the at least two second preconditioned spatial streams may correspond to one precoding.
  • a vector, and different second pre-processed spatial streams in the at least two second pre-processed spatial streams correspond to different pre-coding vectors, and the second transmitting end device may use at least two pre-coding vector pairs to at least two second pre-processing spaces
  • the stream is precoded.
  • the second transmitting end device may adopt the unit matrix or the elements on the main diagonal are not 0, and the remaining elements are all
  • the at least two second pre-processed spatial streams are pre-coded by the pre-coding matrix of 0.
  • the specific implementation process may refer to the process of pre-coding the at least two first pre-processed spatial streams by the first transmitting end device in step 401.
  • the embodiments of the present application are not described herein again.
  • the at least two second pre-processed spatial streams include a second pre-processed spatial stream 21 and a second pre-processed spatial stream 22, and the second pre-processed spatial stream 21 and the second pre-processed space are taken as an example.
  • the stream 22 may be obtained by the second transmitting end device performing space-time transmit diversity processing, space-frequency transmit diversity processing, or space-time-frequency transmit diversity processing on the second original spatial stream 2, or may be the second transmitting end device pair second original
  • the spatial stream 2 is subjected to cyclic delay transmit diversity processing, and may be obtained by the second transmitting end device performing open-loop transmit diversity processing on the second original spatial stream 2, or may be the second transmitting end device pairing the second original spatial stream.
  • the second transmitting end device may be a device that uses a BTD transmission scheme for data transmission.
  • the second pre-processed spatial stream 21 and the second pre-processed spatial stream 22 are the second transmitting end device, the second original spatial stream 2 is performed.
  • the second transmit end device may be a device that uses the OLSM transmission scheme for data transmission, and when the second preprocessed spatial stream 21 and the second preprocessed spatial stream 22 are the second transmit end device pair.
  • the second transmitting end device may be a device for data transmission by using an OLTD transmission scheme, when the second pre-processed spatial stream 21 and the second pre-processed spatial stream 22
  • the second transmitting end device may adopt a large-scale delay CDD transmission.
  • the second pre-processed spatial stream 21 and the second pre-processed spatial stream 22 are obtained by the second transmitting end device performing spatial diversity multiplexing processing based on transmit diversity on the second original spatial stream 2, as an example. Therefore, the second transmitting device is a device for data transmission of a large-scale delayed CDD transmission scheme.
  • the base station may indicate a transmission scheme to the UE by using downlink signaling, so that the UE can perform data transmission by using a corresponding transmission scheme.
  • the base station 01 indicates that the UE-03 uses a large-scale delay CDD transmission scheme for data transmission by using downlink signaling, where the base station may use a downlink signaling format to indicate a transmission scheme, or may use downlink signaling content.
  • the transmission scheme is instructed, and the embodiment of the present application does not limit this.
  • the second transmitting end device pre-codes the second pre-processed spatial stream 21 to obtain a pre-encoded data stream 210, and pre-encodes the second pre-processed spatial stream 22 to obtain a pre-encoded data stream 220.
  • a precoded data stream obtained by precoding a spatial stream is marked as a precoded data stream, for example, the precoded data stream 210 and The data stream 220 is precoded.
  • a spatial stream is precoded to obtain a plurality of precoded data streams.
  • the specific number of precoded data streams is related to the number of physical antennas or the number of antenna ports. Therefore, the precoded data stream 210 is known.
  • precoded data stream 220 each refers to a set of precoded data streams whose number of precoded data streams is related to the number of physical antennas or the number of antenna ports, wherein each precoded data stream in the set of precoded data streams Transmitting through a corresponding physical antenna or antenna port, the pre-coded data stream transmitted through the physical antenna or the antenna port can be regarded as a transmission component of the corresponding pre-processed spatial stream on the physical antenna or the antenna port, and the content is It is clearly described in the prior art, and the embodiments of the present application are not described herein again.
  • Step 406 The second transmitting end device transmits multiple precoded data streams to the receiving end device.
  • the second transmitting device may send the multiple pre-coded data streams to the receiving device, where the second transmitting device may be UE-03 in the implementation environment shown in FIG.
  • the end device may be the base station 01 in the implementation environment shown in FIG.
  • the second transmitting device transmits the precoded data stream 210 and the precoded data stream 220 to the receiving end device.
  • the second transmitting end device may send a plurality of pre-coded data streams to the receiving end device through the antenna port.
  • Step 407 The second transmitting end device pre-codes the demodulation reference signals of the at least two second pre-processed spatial streams to obtain a plurality of pre-coded demodulation reference signals.
  • each of the at least two second pre-processed spatial streams corresponds to one second pre-processed spatial stream.
  • the second transmitting end device may pre-code the demodulation reference signals of the at least two second pre-processed spatial streams to obtain a plurality of pre-coded demodulation reference signals.
  • the demodulation reference signal corresponding to the second pre-processed spatial stream 21 is S21
  • the demodulation reference signal corresponding to the second pre-processed spatial stream 22 is S22
  • the second transmitting end device pre-demodulates the demodulation reference signal S21.
  • the coded precoded demodulation reference signal S210 is obtained, and the demodulation reference signal S22 is precoded to obtain a precoded demodulation reference signal S220.
  • the specific implementation process of the second transmitting end device precoding the demodulation reference signal of the at least two second pre-processed spatial streams may refer to the first transmitting end device in the foregoing step 403 to the at least two first pre-processed spatial streams.
  • the demodulation reference signal is subjected to precoding.
  • the precoding demodulation reference signal S210 and the precoding demodulation reference signal S220 are a set of precoding solutions. Adjusting the reference signal, the number of precoding demodulation reference signals being related to the number of physical antennas or the number of antenna ports, wherein each precoding demodulation reference signal in the set of precoding demodulation reference signals is via a corresponding physical antenna Or the antenna port transmits, and the precoding demodulation reference signal transmitted through the physical antenna or the antenna port can be regarded as a transmission component of the corresponding demodulation reference signal on the physical antenna or the antenna port, which is in the prior art.
  • the embodiments of the present application are not described herein again.
  • step 405 and the step 407 in the embodiment of the present application may be performed at the same time, which is not limited by the embodiment of the present application.
  • Step 408 The second transmitting end device transmits multiple precoding demodulation reference signals to the receiving end device.
  • the second transmitting end device may transmit a plurality of precoding demodulation reference signals to the receiving end device.
  • the second transmitting end device may be the UE-03 in the implementation environment shown in FIG. 1, and the receiving end device may be the base station 01 in the implementation environment shown in FIG.
  • the second transmitting end device transmits a precoding demodulation reference signal S210 and a precoding demodulation reference signal S220 to the receiving end device.
  • the second transmitting end device may be a UE, and the receiving end device is a base station, and the at least two second pre-processed spatial streams are the second transmitting end device performing the second original spatial stream.
  • the pre-processed data stream and the pre-coded data stream to be transmitted need to be demodulated by means of DMRS. Therefore, the second transmitting end device needs to know the pre-processing mode and the DMRS resource to complete the data transmission. Then, before the second transmitting end device transmits data, the receiving end device (base station) can specify a preprocessing mode and allocate DMRS resources for the second transmitting end device by using downlink signaling.
  • the specific implementation process of the receiving end device specifying the preprocessing mode and allocating the DMRS resource by using the downlink signaling may refer to the foregoing step 404, the receiving end device may specify the preprocessing mode for the first transmitting end device by using the downlink signaling, and The specific implementation process of allocating DMRS resources is not described here.
  • Step 409 The third transmitting end device pre-codes the at least one original spatial stream to obtain a plurality of pre-encoded data streams.
  • the third transmitting end device may be the UE-04 in the implementation environment shown in FIG. 1 , which is the same as the first original spatial stream in step 401.
  • Each original spatial stream in the at least one original spatial stream may be The spatial stream obtained after the layer mapping, and the original spatial stream may also refer to any modulation symbol stream obtained after the processing of the modulation. For the specific description, refer to step 401, which is not described herein again.
  • the third transmitting end device may perform precoding on at least one original spatial stream to obtain a plurality of precoded data streams.
  • the third transmitting end device may precode the at least one original spatial stream by using a precoding technique, and each of the at least one original spatial stream may correspond to one precoding vector, and at least one of the original spatial streams is different.
  • the original spatial stream corresponds to different precoding vectors, and the third transmitting device may precode at least one original spatial stream by using at least one precoding vector.
  • the third transmitting end device may precode at least one original spatial stream by using a precoding matrix in which the element matrix or the elements on the main diagonal are not 0 and the remaining elements are 0.
  • a precoding matrix in which the element matrix or the elements on the main diagonal are not 0 and the remaining elements are 0.
  • the at least one original spatial stream includes the original spatial stream 3 and the original spatial stream 4, and the original spatial stream 3 and the original spatial stream 4 may be obtained by layer mapping by the third transmitting end device.
  • the third transmitting device may be a device that uses a CLSM transmission scheme for data transmission.
  • the base station may indicate a transmission scheme to the UE by using downlink signaling, so that the UE can adopt the corresponding transmission scheme for data transmission. lose.
  • the base station 01 indicates that the UE-04 uses the CLSM transmission scheme to perform data transmission by using the downlink signaling, where the base station may use the format of the downlink signaling to indicate the transmission scheme, or may use the content of the downlink signaling to use the transmission scheme.
  • the instructions are not limited in this embodiment of the present application.
  • the third transmitting end device pre-encodes the original spatial stream 3 to obtain a pre-encoded data stream 30, and pre-encodes the original spatial stream 4 to obtain a pre-encoded data stream 40.
  • a precoded data stream obtained by precoding a spatial stream is marked as a precoded data stream, for example, the precoded data stream 30 and Precoded data stream 40.
  • a spatial stream is precoded to obtain a plurality of precoded data streams.
  • the specific number of precoded data streams is related to the number of physical antennas or the number of antenna ports. Therefore, the precoded data stream 30 is known.
  • precoded data stream 40 each refers to a set of precoded data streams whose number of precoded data streams is related to the number of physical antennas or the number of antenna ports, wherein each precoded data stream in the set of precoded data streams Transmitting through a corresponding physical antenna or antenna port, the pre-coded data stream transmitted through the physical antenna or the antenna port can be regarded as a transmission component of the corresponding pre-processed spatial stream on the physical antenna or the antenna port, and the content is It is clearly described in the prior art, and the embodiments of the present application are not described herein again.
  • Step 410 The third transmitting end device transmits multiple precoded data streams to the receiving end device.
  • the third transmitting device may send the multiple pre-coded data streams to the receiving device, where the third transmitting device may be UE-04 in the implementation environment shown in FIG.
  • the end device may be the base station 01 in the implementation environment shown in FIG.
  • the third transmitting device transmits the precoded data stream 30 and the precoded data stream 40 to the receiving end device.
  • the third transmitting device can transmit a plurality of pre-coded data streams to the receiving device through the antenna port.
  • Step 411 The third transmitting end device performs precoding on the demodulation reference signal of the at least one original spatial stream to obtain a plurality of precoding demodulation reference signals.
  • each of the at least one original spatial stream corresponds to one demodulation reference signal
  • the third transmitting device may pre-code the demodulation reference signal of the at least one original spatial stream to obtain multiple Precoding demodulation reference signal.
  • the demodulation reference signal corresponding to the original spatial stream 3 is S3, and the demodulation reference signal corresponding to the original spatial stream 4 is S4, and the third transmitting end device pre-codes the demodulation reference signal S3 to obtain precoding demodulation.
  • the reference signal S30 is precoded with the demodulation reference signal S4 to obtain a precoded demodulation reference signal S40.
  • the specific implementation process of the third transmitting end device precoding the demodulation reference signal of the at least one original spatial stream may refer to the demodulation reference of the first transmitting end device to the at least two first preconditioned spatial streams in the foregoing step 403.
  • the precoding demodulation reference signal S30 and the precoding demodulation reference signal S40 are a set of precoding demodulation reference signals.
  • the number of precoding demodulation reference signals is related to the number of physical antennas or the number of antenna ports, wherein each precoding demodulation reference signal in the set of precoding demodulation reference signals is transmitted via a corresponding physical antenna or antenna port.
  • the precoding demodulation reference signal transmitted through the physical antenna or the antenna port may be regarded as a transmission component of the corresponding demodulation reference signal on the physical antenna or the antenna port, which is clearly described in the prior art. The application examples are not described herein again.
  • step 409 and the step 411 in the embodiment of the present application may be performed at the same time, which is not limited by the embodiment of the present application.
  • Step 412 The third transmitting end device transmits a plurality of precoding demodulation reference signals to the receiving end device.
  • the third transmitting end device may transmit multiple precoding demodulation reference signals to the receiving end device.
  • the third transmitting end device may be the UE-04 in the implementation environment shown in FIG. 1, and the receiving end device may be the base station 01 in the implementation environment shown in FIG.
  • the third transmitting end device transmits a precoding demodulation reference signal S30 and a precoding demodulation reference signal S40 to the receiving end device.
  • the third transmitting end device may be the UE, the receiving end device is the base station, and the third transmitting end device needs to transmit the precoded data stream to the receiving end device by using the DMRS resource, and the pre-transmitted data stream Number of codes According to the flow, the DMRS needs to be demodulated. Therefore, the third transmitting device needs to know the DMRS resources to complete the transmission of the data. Then, before the third transmitting end device transmits the data, the receiving end device (base station) can allocate the DMRS resource to the third transmitting end device by using the downlink signaling, and the receiving end device can allocate the DMRS resource to the third transmitting end device by using the downlink signaling.
  • base station can allocate the DMRS resource to the third transmitting end device by using the downlink signaling
  • the receiving end device can allocate the DMRS resource to the third transmitting end device by using the downlink signaling.
  • first transmitting end device, the second transmitting end device, and the third transmitting end device are multiple devices that are simultaneously scheduled in the same scheduling period in the MU-MIMO scenario, and the data transmission process is performed simultaneously, and is not
  • the order of the sequence shown in FIG. 4-1, the sequence described in FIG. 4-1 is designed for the convenience of description, and is not intended to limit the scope of the technical solutions of the present application.
  • technical details when the first transmitting end device, the second transmitting end device, and the third transmitting end device perform data transmission in the MU-MIMO scenario may refer to the prior art, and related content has been clearly defined in the prior art. Description, so I won't go into details here.
  • Step 413 The receiving end device receives a plurality of pre-coded data streams, where the plurality of pre-coded data streams are pre-coded, and the plurality of spatial streams includes at least two first pre-processed spatial streams, at least two. A second pre-processed spatial stream and at least one original spatial stream.
  • the receiving end device may receive multiple pre-coded data streams, where the multiple pre-coded data streams may be obtained by pre-coding multiple spatial streams by different transmitting end devices, and the multiple spatial streams may include at least two first pre-streams. Processing a spatial stream, at least two second pre-processed spatial streams, and at least one original spatial stream, the at least two first pre-processed spatial streams being pre-processed for the first original spatial stream, and at least two second pre-conditioned spaces The flow is obtained by pre-processing the second original spatial stream.
  • the at least two first pre-processed spatial streams are from the first transmitting device (for example, UE-02), and the at least two second pre- The processing spatial stream is from a second transmitting device (e.g., UE-03), the at least one original spatial stream coming from a third transmitting device (e.g., UE-04).
  • the receiving end device receives the precoded data stream 110, the precoded data stream 120, and the precoded data stream 130 transmitted by the first transmitting end device, and the receiving end device receives the precoded data stream 210 and the preamble transmitted by the second transmitting end device.
  • the encoded data stream 220, the receiving end device receives the precoded data stream 30 and the precoded data stream 40 transmitted by the third transmitting end device.
  • the receiving device can receive the multiple pre-coded data streams by using the antenna port.
  • the pre-coded data stream received by the receiving end device is not pre-coded by the transmitting end device.
  • the data stream is a pre-coded data stream that is transmitted by the transmitting device and propagated through the channel.
  • the precoded data stream is affected by the channel during the propagation process, and the precoded data stream received by the receiving end device is different from the precoded data stream sent by the transmitting end device.
  • the same name and number are used to indicate the precoded data stream sent by the transmitting end device and the precoded data stream received by the receiving end device.
  • Step 414 The receiving end device receives a plurality of precoding demodulation reference signals, and the plurality of precoding demodulation reference signals are obtained by precoding the demodulation reference signals of the plurality of spatial streams.
  • the receiving end device may receive multiple precoding demodulation reference signals, and each of the plurality of spatial streams corresponds to one demodulation reference signal, and the multiple precoding demodulation reference signals may be different to multiple transmitting device pairs.
  • the demodulation reference signal corresponding to the spatial stream is precoded.
  • the precoding vector used for precoding each spatial stream is the same as the precoding vector used for precoding the demodulation reference signal of each spatial stream.
  • the receiving end device receives the precoding demodulation reference signal S110, the precoding demodulation reference signal S120, and the precoding demodulation reference signal S130 transmitted by the first transmitting end device, and the receiving end device receives the preamble transmitted by the second transmitting end device.
  • the code demodulation reference signal S210 and the precoding demodulation reference signal S220, the receiving end device receives the precoding demodulation reference signal S30 and the precoding demodulation reference signal S40 transmitted by the third transmitting end device.
  • the receiving device can receive the multiple precoding demodulation reference signals by using the antenna port.
  • step 413 and the step 144 in the embodiment of the present application may be performed at the same time, which is not limited by the embodiment of the present application.
  • Step 415 The receiving end device recovers at least two first pre-processed spatial streams, at least two second pre-processed spatial streams, and at least one original spatial stream from the plurality of pre-coded data streams.
  • the receiving end device may recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-encoded demodulation reference signals of the at least two first pre-processed spatial streams, according to at least two And precoding the demodulated reference signal of the preprocessed spatial stream to recover at least two second preconditioned spatial streams from the plurality of precoded data streams, and precoding from the plurality of precoded demodulation reference signals according to the at least one original spatial stream At least one original spatial stream is recovered from the data stream.
  • each of the at least two first pre-processed spatial streams, the at least two second pre-processed spatial streams, and the at least one original spatial stream correspond to different pre-coding vectors, each pre-coding vector.
  • the DMRS resources corresponding to different precoding vectors are different, and the DMRS resource may be at least one of a DMRS port and a specified sequence (for example, a ZC sequence), and the DMRS may be used for a channel (ie, a precoded channel) Demodulation, because the precoding vector used for precoding each spatial stream (the first pre-processed spatial stream, the second pre-processed spatial stream, or at least one of the original spatial streams) is pre-coded
  • the precoding used by the DMRS corresponding to the spatial stream for precoding uses the same, but the DMRS does not need to be preprocessed.
  • each pre-processed spatial stream (the first pre-processed spatial stream or the second pre-processed spatial stream) and the unprocessed original spatial stream are associated with respective DMRSs
  • the DMRSs are different from each other, and the receiving device can demodulate the received precoded data stream according to the DMRS corresponding to the DMRS port to obtain a spatial stream.
  • the receiving end device recovers the first preprocessed spatial stream 11 according to the precoding demodulation reference signal S110, and recovers the first preprocessed spatial stream 12 according to the precoding demodulation reference signal S120, according to the precoding demodulation reference signal S130.
  • the tone reference signal S30 recovers the original spatial stream 3, and recovers the first pre-processed spatial stream 4 according to the pre-coded demodulation reference signal S40, wherein the pre-coded channel is estimated according to the demodulation reference signal and the space is recovered based on the channel
  • Step 416 The receiving end device recovers the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the receiving end device After the receiving end device recovers the at least two first pre-processed spatial streams from the plurality of pre-coded data streams, the at least two first pre-processed spatial streams are pre-processed by the first transmitting end device for the first original spatial stream.
  • the receiving device can recover the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the receiving end device may first determine a pre-processing manner corresponding to the at least two first pre-processed spatial streams, and further perform pre-processing according to the at least two first pre-processed spatial streams and the at least two first pre-processed spatial streams. The mode restores the first original spatial stream.
  • the pre-processing manner corresponding to the at least two first pre-processing spatial streams is that the receiving end device is specified by the first transmitting end device, and therefore, the receiving end device can perform the first transmitting end according to itself.
  • the designation of the device determines a pre-processing manner corresponding to at least two first pre-processed spatial streams.
  • the pre-processing manner corresponding to the at least two first pre-processed spatial streams may be space-time transmit diversity processing, and the receiving end device according to the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the first pre-predetermined The spatial stream 13 and the space-time transmit diversity process are processed to recover the first original spatial stream 1.
  • Step 417 The receiving end device recovers the second original spatial stream according to the at least two second pre-processed spatial streams.
  • the receiving end device After the receiving end device recovers the at least two second pre-processed spatial streams from the plurality of pre-coded data streams, the at least two second pre-processed spatial streams are pre-processed by the second transmitting end device for the second original spatial stream.
  • the receiving device can recover the second original spatial stream according to the at least two second preconditioned spatial streams.
  • the receiving end device may first determine a pre-processing manner corresponding to the at least two second pre-processed spatial streams, and further perform pre-processing according to the at least two second pre-processed spatial streams and the at least two second pre-processed spatial streams. The mode restores the second original spatial stream.
  • the pre-processing manner corresponding to the at least two second pre-processing spatial streams is that the receiving end device specifies the second transmitting end device, and therefore, the receiving end device can perform the second transmitting end according to itself. Designation of equipment, And determining a preprocessing manner corresponding to the at least two second preconditioned spatial streams.
  • the preprocessing manner corresponding to the at least two second pre-processed spatial streams may be a spatial diversity multiplexing processing based on transmit diversity, and the receiving end device according to the second pre-processed spatial stream 21 and the second pre-processed spatial stream 22 And the space-time transmit diversity process recovers the second original spatial stream 2.
  • the transmitting end device pre-codes at least two first pre-processed spatial streams to obtain a plurality of pre-coded data streams and transmits the multiple pre-coded data streams, at least two.
  • the first pre-processed spatial stream is obtained by pre-processing the first original spatial stream
  • the receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams, according to at least two first pre-
  • the processing space stream recovers the first original spatial stream
  • the at least two first pre-processed spatial streams are pre-processed for the first original spatial stream, so that multiple UEs can perform space division multiplexing of time-frequency resources. It can help solve the problem that the multiple UEs in the prior art cannot perform space division multiplexing of time-frequency resources, affect the throughput of the system, and improve the throughput of the system.
  • the number of antennas of the transmitting device and the number of antennas of the receiving device continue to grow rapidly, and the increase in the number of antennas can provide higher spatial freedom, which provides an uplink diversity transmission scheme.
  • the data transmission method provided by the embodiment of the present application is based on the uplink diversity transmission scheme, so that different UEs use different transmission schemes for data transmission, which improves scheduling flexibility and enables different UEs to perform time-frequency resources. Space division multiplexing.
  • the beamforming (Chinese: beamforming) gain of the transmitting end device and/or the receiving end device can be improved by performing preprocessing and precoding on the original spatial stream at the same time.
  • FIG. 4 is a schematic diagram of a data transmission method provided by the prior art
  • FIG. 4-3 is a schematic diagram of another data transmission method provided by the prior art
  • FIG. 4-4 is a schematic diagram of the data transmission method provided by the embodiment of the present application.
  • the base station 01 schedules the UE-02 (not shown in FIG. 4-2) to perform data transmission using the OLTD transmission scheme
  • the OLTD transmission scheme forms a cell-level signal coverage, resulting in UE-02.
  • the beam b of the base station 01 is exclusive (for example, the UE-02 can use the beam b for cell-level or sector-level coverage), and the UE served by the base station 01 cannot use the beam b except for the UE -02.
  • the different UEs served by the base station 01 cannot perform space division multiplexing of the time-frequency resources, the utilization of the time-frequency resources is low, and the spectrum efficiency is low, which affects the system. Throughput.
  • the base station 01 has a beam b1, a beam b2, a beam b3, a beam b4, a beam b5, and a beam b6 (the beam b1, the beam b2, the beam b3, the beam b4, the beam b5, and the beam b6)
  • It may be a beam formed by precoding, that is, each of the beam b1, the beam b2, the beam b3, the beam b4, the beam b5, and the beam b6 may correspond to one precoding vector, and the base station 01 may also have a port.
  • the base station 01 can schedule the UE-02, UE-03, and UE-04 to use the transmission scheme for data transmission. .
  • the base station 01 schedules UE-02, UE-03, and UE-04 to use the same transmission scheme for data transmission, and allocates DMRS ports for each UE.
  • base station 01 schedules UE-02, UE-03, and UE-04 to use the CLSM transmission scheme for data transmission and allocates DMRS ports with port numbers x and x+1 to UE-02, and the port number is x+2.
  • DMRS port of x+3 is allocated to UE-03
  • DMRS port with port number is x+4,...,y is allocated to UE-04
  • base station 01 schedules UE and allocates DMRS port for each UE
  • the transmission scheme carries out data transmission.
  • the base station 01 and the UE-02, the UE-03, and the UE-04 both use the CLSM transmission scheme for data transmission, and the UE-02 occupies the beam b1 and the beam b2 of the base station 01, and the UE-03 occupies the beam b3 of the base station 01 and Beam b4, UE-04 occupies beam b5 and beam b6 of base station 01.
  • Base station 01 schedules UE-02, UE-03
  • the UE-04 uses the CLSM transmission scheme for data transmission
  • space division multiplexing of time-frequency resources can be implemented to improve the spectrum efficiency of the system.
  • the CLSM transmission scheme performs data transmission. Therefore, the flexibility of the base station 01 scheduling is low, and when the channel environment is diversified, the optimal scheduling result cannot be achieved, which affects the spectrum efficiency.
  • the base station 01 has a beam b1, a beam b2, a beam b3, a beam b4, a beam b5, and a beam b6 (the beam b1, the beam b2, the beam b3, the beam b4, the beam b5, and The beam b6 may be a pre-coded beam, that is, each of the beam b1, the beam b2, the beam b3, the beam b4, the beam b5, and the beam b6 may correspond to one precoding vector, and the base station 01 may also With a DMRS port with port numbers x, x+1, ..., y (typically, the port number in the standard is continuous), the base station 01 can indicate UE-02, UE-03, and UE-04 through downlink signaling.
  • DMRS port with port numbers x, x+1, ..., y
  • the data transmission is performed by using the corresponding transmission scheme, and the base station 01 can allocate a DMRS port to each UE.
  • the base station 01 can use the format of the downlink signaling to indicate the transmission scheme, or the content of the downlink signaling to indicate the transmission scheme. For example, the base station 01 indicates, by using the downlink signaling, that the UE-02 uses the BTD transmission scheme for data transmission, and allocates the DMRS port with the port number x and x+1 to the UE-02, and the base station 01 indicates that the UE-03 is based on the downlink signaling.
  • the CDD space division multiplexing transmission scheme performs data transmission and allocates DMRS ports with port numbers x and x+2 to UE-03, and base station 01 instructs UE-04 to use the CLSM transmission scheme for data transmission and port through downlink signaling.
  • the DMRS ports numbered x and y are allocated to UE-04, and the UE can use the corresponding transmission scheme for data transmission.
  • the base station 01 and the UE-02 use the BTD transmission scheme for data transmission to occupy the beam b1 and the beam b2 of the base station 01
  • the base station 01 and the UE-03 use the CDD-based space division multiplexing transmission scheme for data transmission occupation.
  • the beam b3 and the beam 4 of the base station 01, and the data transmission between the base station 01 and the UE-04 using the CLSM transmission scheme occupy the beam b5 and the beam b6 of the base station 01. Since UE-02, UE-03, and UE-04 use different transmission schemes for data transmission, base station 01 has higher scheduling flexibility, and when the channel environment is diversified, optimal scheduling results can be achieved, and spectrum efficiency is improved. .
  • the corresponding transmitting end device needs to preprocess the original spatial stream, so, in order to facilitate the UE -02 and UE-03 pre-process the original spatial stream, and the base station 01 also needs to indicate the corresponding pre-processing manner to the UE-02 and the UE-03 by using downlink signaling.
  • the base station indicates to the UE-02 by using downlink signaling.
  • SFBC indicating CDD to UE-03.
  • the DMRS port whose port number is x exists in the DMRS port allocated by the base station 01 for the UE-02, the UE-03, and the UE-04, that is, the UE- 02, UE-03 and UE-04 use the same DMRS port for data transmission.
  • pilots (DMRS) of different UEs can be distinguished by a specified sequence.
  • a specific sequence such as a ZC sequence
  • a specific process may be referred to the prior art, and details are not described herein again.
  • FIG. 5-1 is a block diagram of a transmitting end device 500 provided by an embodiment of the present application.
  • the transmitting device 500 can be implemented as part or all of any UE (for example, UE-02) in the implementation environment shown in FIG. 1 by software, hardware, or a combination of both.
  • the transmitting device 500 can include but is not limited to:
  • the first pre-encoding module 510 is configured to pre-code at least two first pre-processed spatial streams to obtain a plurality of pre-encoded data streams, where at least two first pre-processed spatial streams are pre-processed for the first original spatial stream. owned;
  • the first transmitting module 520 is configured to transmit a plurality of precoded data streams.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, and space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • the first pre-coding module 510 is configured to perform pre-coding on the at least two first pre-processed spatial streams by using an identity matrix to obtain multiple pre-coded data streams, where the column vector of the identity matrix is at least two first pre-preparations.
  • different first pre-processed spatial streams in the at least two first pre-processed spatial streams correspond to different pre-coding vectors, and each pre-coding vector corresponds to one demodulation reference signal DMRS port, and different pre-coding vectors correspond to The DMRS ports are different, or the DMRS ports corresponding to the at least two precoding vectors are the same, and the DMRS sequences corresponding to the precoding vectors of the same DMRS port are different;
  • FIG. 5-2 is a block diagram of another transmitting device 500 provided by the embodiment of the present application.
  • the transmitting device 500 further includes:
  • the second pre-encoding module 530 is configured to pre-code the demodulation reference signals of the at least two first pre-processed spatial streams to obtain a plurality of pre-coding demodulation reference signals, each of the at least two first pre-processed spatial streams.
  • the first pre-processed spatial stream corresponds to a demodulation reference signal;
  • the second transmitting module 540 is configured to transmit a plurality of precoding demodulation reference signals.
  • the transmitting end device obtains a plurality of pre-encoded data streams by precoding at least two first pre-processed spatial streams, and at least two first pre-processed spatial streams are A pre-processed original spatial stream is used to transmit a plurality of pre-coded data streams, so that multiple UEs can perform space-division multiplexing of time-frequency resources, which helps to solve the problem that multiple UEs cannot perform time-frequency resources in the prior art.
  • Space division multiplexing affects the throughput of the system and improves the throughput of the system.
  • FIG. 6-1 is a block diagram of a receiving end device 600 provided by an embodiment of the present application.
  • the receiving end device 600 can be implemented as part or all of the base station 01 in the implementation environment shown in FIG. 1 by software, hardware or a combination of both.
  • the transmitting device 600 can include but is not limited to:
  • the first receiving module 610 is configured to receive a plurality of pre-coded data streams, where the plurality of pre-coded data streams are pre-coded, and the plurality of spatial streams include at least two first pre-processed spatial streams, at least The two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream;
  • the first recovery module 620 is configured to recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams;
  • the second recovery module 630 is configured to recover the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the at least two first pre-processed spatial streams are from the first transmitting end device.
  • the plurality of spatial streams further includes: at least two second pre-processed spatial streams, the at least two second pre-processed spatial streams are obtained by pre-processing the second original spatial stream, and the second original spatial stream is derived from the Two transmitting devices,
  • FIG. 6-2 is a block diagram of another receiving device 600 provided by the embodiment of the present application.
  • the receiving device 600 further includes:
  • a third recovery module 640 configured to recover at least two second pre-processed spatial streams from the plurality of pre-coded data streams
  • the fourth recovery module 650 is configured to recover the second original spatial stream according to the at least two second pre-processed spatial streams.
  • the plurality of spatial streams further includes at least one original spatial stream, and the at least one original spatial stream is from the third transmitting end device.
  • the receiving end device 600 further includes:
  • the fifth recovery module 660 is configured to recover at least one original spatial stream from the plurality of precoded data streams.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, or space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • the receiving device 600 further includes:
  • the second receiving module 670 is configured to receive multiple precoding demodulation reference signals, where the plurality of precoding demodulation reference signals are precoded by demodulating reference signals of multiple spatial streams, and each of the plurality of spatial streams Each spatial stream corresponds to a demodulation reference signal;
  • the first recovery module 620 is configured to recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-coded demodulation reference signals of the at least two first pre-processed spatial streams;
  • a third recovery module 640 configured to recover at least two second pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-coded demodulation reference signals of the at least two second pre-processed spatial streams;
  • the fifth recovery module 660 is configured to recover at least one original spatial stream from the plurality of precoded data streams according to the precoded demodulation reference signal of the at least one original spatial stream.
  • the DMRS resource includes: at least one of a DMRS port and a specified sequence.
  • the receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams by receiving a plurality of pre-coded data streams, according to at least two first The pre-processed spatial stream recovers the first original spatial stream. Since at least two first pre-processed spatial streams are pre-processed for the first original spatial stream, multiple UEs may perform space division multiplexing of time-frequency resources. It can help solve the problem that the multiple UEs in the prior art cannot perform space division multiplexing of time-frequency resources, affect the throughput of the system, and improve the throughput of the system.
  • the transmitting end device and the receiving end device provided by the foregoing embodiments only use the division of the foregoing functional modules when transmitting data.
  • the foregoing functions may be assigned different functions according to needs.
  • the module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the embodiments of the transmitting end device, the receiving end device, and the data transmission method provided by the foregoing embodiments are in the same concept, and the specific implementation process is described in the method embodiment, and details are not described herein again.
  • FIG. 7 is a block diagram of a transmitting end device 700 provided by an embodiment of the present application.
  • the transmitting device 700 may be any UE (for example, UE-02) in the implementation environment shown in FIG. 1 for performing part of the method provided by the embodiment shown in FIG. 4-1 and the embodiment provided in FIG. All methods.
  • the transmitting device 700 can include a processor 710, a transmitter 720, a memory 730, and a network interface 740.
  • the processor 710, the transmitter 720, the memory 730, and the network interface 740 are connected by a bus 750.
  • Processor 710 includes one or more processing cores.
  • the processor 710 executes various functional applications and data processing by running software programs and units.
  • the transmitting device 700 may be multiple network interfaces 740 for the transmitting device 700 to communicate with other storage devices or network devices.
  • the network interface 740 is optional.
  • the transmitting device 700 can communicate with other storage devices or network devices through the transmitter 720. Therefore, the network device can be omitted in the transmitting device 700. This is not limited.
  • the processor 710 is configured to pre-code the at least two first pre-processed spatial streams to obtain a plurality of pre-coded data streams, where the at least two first pre-processed spatial streams are pre-processed by the first original spatial stream;
  • the transmitter 720 is configured to transmit a plurality of precoded data streams.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, and space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • the processor 710 is configured to perform precoding on the at least two first pre-processed spatial streams by using an identity matrix to obtain multiple pre-coded data streams, where the column vector of the identity matrix is at least two first pre-processed spatial streams. Precoding vector.
  • different first pre-processed spatial streams in the at least two first pre-processed spatial streams correspond to different pre-coding vectors, and each pre-coding vector corresponds to one demodulation reference signal DMRS port, and different pre-coding vectors correspond to The DMRS ports are different, or the DMRS ports corresponding to the at least two precoding vectors are the same, and the DMRS sequences corresponding to the precoding vectors of the same DMRS port are different;
  • the processor 710 is configured to pre-code the demodulation reference signals of the at least two first pre-processed spatial streams to obtain a plurality of pre-coding demodulation reference signals, each of the at least two first pre-processed spatial streams.
  • the preprocessed spatial stream corresponds to a demodulation reference signal;
  • the transmitter 720 is configured to transmit a plurality of precoding demodulation reference signals.
  • the transmitting end device obtains a plurality of pre-encoded data streams by precoding at least two first pre-processed spatial streams, and at least two first pre-processed spatial streams are A pre-processed original spatial stream is used to transmit a plurality of pre-coded data streams, so that multiple UEs can perform space-division multiplexing of time-frequency resources, which helps to solve the problem that multiple UEs cannot perform time-frequency resources in the prior art.
  • Space division multiplexing affects the throughput of the system and improves the throughput of the system.
  • FIG. 8 is a block diagram of a receiving end device 800 provided by an embodiment of the present application.
  • the receiving end device 800 can be the base station 01 in the implementation environment shown in FIG. 1 for performing the partial methods provided by the embodiment shown in FIG. 4-1 and all the methods provided by the embodiment shown in FIG.
  • the receiving device 800 can include a receiver 810, a processor 820, a memory 830, and a network interface 840.
  • the receiver 810, the processor 820, the memory 830, and the network interface 840 are connected by a bus 850.
  • Processor 820 includes one or more processing cores.
  • the processor 820 executes various functional applications and data processing by running software programs and units.
  • the network interface 840 may be multiple network interfaces 840 for the receiving end device 800 to communicate with other storage devices or network devices.
  • the network interface 840 is optional.
  • the receiving device 800 can communicate with other storage devices or network devices through the receiver 810. Therefore, the receiving device 800 can have no network interface. This is not limited.
  • the receiver 810 is configured to receive a plurality of precoded data streams, where the plurality of precoded data streams are precoded, and the plurality of spatial streams include at least two first preprocessed spatial streams, at least two The first pre-processed spatial stream is obtained by pre-processing the first original spatial stream;
  • the processor 820 is configured to recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams;
  • the processor 820 is configured to recover the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the at least two first pre-processed spatial streams are from the first transmitting end device.
  • the plurality of spatial streams further includes: at least two second pre-processed spatial streams, the at least two second pre-processed spatial streams are obtained by pre-processing the second original spatial stream, and the second original spatial stream is derived from the Two transmitting devices,
  • the processor 820 is configured to recover at least two second pre-processed spatial streams from the plurality of pre-coded data streams;
  • the processor 820 is configured to recover the second original spatial stream according to the at least two second pre-processed spatial streams.
  • the plurality of spatial streams further includes at least one original spatial stream, and the at least one original spatial stream is from the third transmitting device.
  • the processor 820 is configured to recover at least one original spatial stream from the plurality of precoded data streams.
  • the pre-processing includes a transmit diversity process.
  • the transmit diversity process includes any one of space time transmit diversity processing, space frequency transmit diversity processing, or space time frequency transmit diversity processing.
  • the transmit diversity process includes a cyclic delay transmit diversity process.
  • the transmit diversity process includes an open loop transmit diversity process.
  • the pre-processing includes a spatial diversity multiplexing process based on transmit diversity.
  • different spatial streams in the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS resource, and different precoding vectors correspond to different DMRS resources.
  • the receiver 810 is configured to receive a plurality of precoding demodulation reference signals, where the plurality of precoding demodulation reference signals are precoded by demodulating reference signals of multiple spatial streams, and each of the plurality of spatial streams The stream corresponds to a demodulation reference signal;
  • the processor 820 is configured to recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-coded demodulation reference signals of the at least two first pre-processed spatial streams;
  • the processor 820 is configured to recover at least two second pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-encoded demodulation reference signals of the at least two second pre-processed spatial streams;
  • the processor 820 is configured to recover at least one original spatial stream from the plurality of precoded data streams according to the precoded demodulation reference signal of the at least one original spatial stream.
  • the DMRS resource includes: at least one of a DMRS port and a specified sequence.
  • the receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams by receiving a plurality of pre-coded data streams, according to at least two first The pre-processed spatial stream recovers the first original spatial stream. Since at least two first pre-processed spatial streams are pre-processed for the first original spatial stream, multiple UEs may perform space division multiplexing of time-frequency resources. It can help solve the problem that the multiple UEs in the prior art cannot perform space division multiplexing of time-frequency resources, affect the throughput of the system, and improve the throughput of the system.
  • FIG. 9 is a schematic structural diagram of a data transmission system 900 provided by an embodiment of the present application.
  • the data transmission system 900 can include: a transmitting device 910 and a receiving device 920.
  • the transmitting end device 910 is the transmitting end device 500 shown in FIG. 5-1 or FIG. 5-2; the receiving end device 920 is the receiving end shown in FIG. 6-1 or FIG. 6-2. Device 600;
  • the transmitting end device 910 is the transmitting end device 700 shown in FIG. 7; the receiving end device 920 is the receiving end device 800 shown in FIG. 8.
  • the transmitting device pre-codes at least two first pre-processed spatial streams to obtain a plurality of pre-coded data streams and transmits the plurality of pre-coded data streams, at least two.
  • the first pre-processed spatial stream is obtained by pre-processing the first original spatial stream
  • the receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams, according to at least two first pre-
  • the processing space stream recovers the first original spatial stream
  • the at least two first pre-processed spatial streams are pre-processed for the first original spatial stream, so that multiple UEs can perform space division multiplexing of time-frequency resources. It can help solve the problem that the multiple UEs in the prior art cannot perform space division multiplexing of time-frequency resources, affect the throughput of the system, and improve the throughput of the system.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, when the computer readable storage medium is run on a computer, causing the computer to execute the embodiment provided in the embodiment shown in FIG.
  • the embodiment of the present application further provides a computer readable storage medium having instructions stored therein, when the computer readable storage medium is run on a computer, causing the computer to execute the embodiment provided in the embodiment shown in FIG.
  • the embodiment of the present application further provides a computer program product including instructions, when the computer program product is run on a computer, causing the computer to execute the data sending method provided by the embodiment shown in FIG. 2 and the embodiment shown in FIG. 4-1.
  • the relevant steps of the provided data transfer method are described in detail below.
  • the embodiment of the present application further provides a computer program product including instructions, when the computer program product is in a calculation When running on the machine, the computer is caused to perform the steps of the data receiving method provided by the embodiment shown in FIG. 3 and the data transmitting method provided by the embodiment shown in FIG. 4-1.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据发送方法、数据接收方法、设备及系统、存储介质,属于通信技术领域。该方法包括:对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;发射多个预编码数据流。本申请有助于解决多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,有助于多个UE可以进行时频资源的空分复用,提高系统的吞吐量。本申请用于数据传输。

Description

数据发送方法、数据接收方法、设备及系统、存储介质
本申请要求于2016年9月21日提交中国专利局、申请号为201610839205.8、发明名称为“数据发送方法、数据接收方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种数据发送方法、数据接收方法、设备及系统、存储介质。
背景技术
长期演进(英文:Long Term Evolution;简称:LTE)或先进长期演进(英文:Long term evolution-advanced;简称:LTE-A)系统采用多输入多输出(英文:Multiple Input Multiple Output;简称:MIMO)技术,MIMO技术通过在发射端设备和接收端设备上部署多根天线来提高LTE或LTE-A系统的性能。示例地,发射端设备可以为用户设备(英文:User equipment;简称:UE),接收端设备可以为基站,基站可以调度多个UE采用相应的传输方案进行数据传输。
现有技术中,基站可以调度UE采用开环发射分集(英文:Open Loop Transmit Diversity;简称:OLTD)传输方案进行数据传输,OLTD传输方案可以形成小区级的信号覆盖,为采用OLTD传输方案的UE提供可靠的信号质量。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:OLTD传输方案为小区级信号覆盖的传输方案,采用OLTD传输方案的UE的数据容易对其他UE的数据产生干扰,导致多个UE无法进行时频资源的空分复用,影响系统的吞吐量。
发明内容
为了解决多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,本申请实施例提供了一种数据发送方法、数据接收方法、设备及系统、存储介质。所述技术方案如下:
数据传输系统可以包括发射端设备和接收端设备,发射端设备与接收端设备建立有通信连接。该发射端设备可以为基站或UE,该接收端设备也可以为基站或UE,当发射端设备为基站时,接收端设备为UE,当发射端设备为UE时,接收端设备为基站,本申请实施例以发射端设备UE,接收端设备为基站为例进行说明。
第一方面,提供一种数据发送方法,该方法包括:
对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
发射多个预编码数据流。
本申请实施例提供的数据发送方法,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,这样一来,多个UE可以进行时频资源的空分复用,解决了多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,达到了提高系统的吞吐量的效果。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理和空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
本申请实施例提供的数据发送方法,由于预处理包括不同的发射分集处理或基于发射分集的空分复用处理,每种发射分集处理或基于发射分集的空分复用处理也可以对应一种传输方案,因此,可以使发射端设备可以采用不同的传输方案进行数据传输。
可选地,对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,包括:
采用单位矩阵对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,单位矩阵的列向量为至少两个第一预处理空间流的预编码向量。
本申请实施例提供的数据发送方法,采用单位矩阵对至少两个第一预处理空间流进行预编码实际上相当于并未对至少两个第一预处理空间流进行预编码,该采用单位矩阵对至少两个第一预处理空间流进行预编码一般适用于发射天线阵子数较少的发射端设备。
可选地,至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量的DMRS序列不同;
该方法还包括:
对至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,至少两个第一预处理空间流中的每个第一预处理空间流对应一个解调参考信号;
发射多个预编码解调参考信号。
本申请实施例提供的数据发送方法,通过对至少两个第一预处理空间流的解调参考信号进行预编码得到多个预编码解调参考信号,并发射该多个预编码解调参考信号,可以便于接收端设备对第一原始空间流的恢复。
第二方面,提供一种数据接收方法,该方法包括:
接收多个预编码数据流,多个预编码数据流是对多个空间流进行预编码得到的,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
从多个预编码数据流中恢复出至少两个第一预处理空间流;
根据至少两个第一预处理空间流恢复出第一原始空间流。
本申请实施例提供的数据接收方法,由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,这样一来,多个UE可以进行时频资源的空分复用,解决了多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,达到了提高系统的吞吐量的效果。此外,该多个空间流中的其他空间流可以是未经过预处理的,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,至少两个第一预处理空间流来自第一发射端设备。
可选地,多个空间流还包括:至少两个第二预处理空间流,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,第二原始空间流来自第二发射端设备,
该方法还包括:
从多个预编码数据流中恢复出至少两个第二预处理空间流;
根据至少两个第二预处理空间流恢复出第二原始空间流。
可选地,多个空间流还包括至少一个原始空间流,至少一个原始空间流来自第三发射端设备,
该方法还包括:
从多个预编码数据流中恢复出至少一个原始空间流。
本申请实施例提供的数据接收送方法,至少两个第一预处理空间流来自第一发射端设备,至少两个第二预处理空间流来自第二发射端设备,至少一个原始空间流来自第三发射端设备,且不同的空间流可以对应不同的传输方案,所以,可以使多个发射端设备采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性 的效果。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理或空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
本申请实施例提供的数据接收方法,由于预处理包括不同的发射分集处理或基于发射分集的空分复用处理,每种发射分集处理或基于发射分集的空分复用处理也可以对应一种传输方案,因此,可以使不同的发射端设备可以采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS资源,不同的预编码向量对应的DMRS资源不同,
该方法还包括:
接收多个预编码解调参考信号,多个预编码解调参考信号是对多个空间流的解调参考信号进行预编码得到的,多个空间流中的每个空间流对应一个解调参考信号;
从多个预编码数据流中恢复出至少两个第一预处理空间流,包括:
根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流。
本申请实施例提供的数据接收方法,接收端设备通过接收多个预编码解调参考信号,可以便于接收端设备对第一原始空间流的恢复。
可选地,该DMRS资源包括:DMRS端口和指定序列中的至少一种。
本申请实施例提供的数据接收方法,DMRS资源包括:DMRS端口和指定序列中的至少一种,可以便于不同的发射端设备采用同一DMRS端口发送数据。
第三方面,提供一种发射端设备,该发射收端设备包括至少一个模块,该至少一个模块用于实现实现上述第一方面或第一方面的任一可选方式所提供的数据发送方法。
第四方面,提供一种接收端设备,该接收端设备包括至少一个模块,该至少一个模块用于实现实现上述第二方面或第二方面的任一可选方式所提供的数据接收方法。
第五方面,提供一种数据传输系统,该数据传输系统包括:第三方面提供的发射端设备;和,第四方面提供的接收端设备。
第六方面,提供一种发射端设备,该发射端设备包括:处理器、发射机和网络接口,处理器、发射机和网络接口之间通过总线连接;
处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;
网络接口可以为多个,该网络接口用于该发射端设备与其它存储设备或者网络设备进行通信;
处理器和发射机被配置为协作完成上述第一方面或第一方面的任一可选方式所提供的数据发送方法。
第七方面,提供一种接收端设备,该接收端设备包括:接收机、处理器、和网络接口,接收机、处理器和网络接口之间通过总线连接;
处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;
网络接口可以为多个,该网络接口用于该接收端设备与其它存储设备或者网络设备进行通信;
接收机和处理器被配置为协作完成上述第二方面或第二方面的任一可选方式所提供的 数据发送方法。
第八方面,提供一种数据传输系统,该数据传输系统包括:第五方面提供的发射端设备;和,第六方面提供的接收端设备。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行第一方面或第一方面的任一可选方式所提供的数据发送方法。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行第二方面或第二方面的任一可选方式所提供的数据接收方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第一方面或第一方面的任一可选方式所提供的数据发送方法。
第十二方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第二方面或第二方面的任一可选方式所提供的数据接收方法。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的数据发送方法、数据接收方法、设备及系统、存储介质,通过对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,发射多个预编码数据流,使得多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
附图说明
图1是本申请各个实施例所涉及的一种实施环境的示意图;
图2是本申请实施例提供的一种数据发送方法的方法流程图;
图3是本申请实施例提供的一种数据接收方法的方法流程图;
图4-1是本申请实施例提供的一种数据传输方法的方法流程图;
图4-2是现有技术提供的一种数据传输方法的示意图;
图4-3是现有技术提供的另一种数据传输方法的示意图;
图4-4是本申请实施例提供的一种数据传输方法的示意图;
图5-1是本申请实施例提供的一种发射端设备的框图;
图5-2是本申请实施例提供的另一种发射端设备的框图;
图6-1是本申请实施例提供的一种接收端设备的框图;
图6-2是本申请实施例提供的另一种接收端设备的框图;
图7是本申请实施例提供的一种发射端设备的结构示意图;
图8是本申请实施例提供的一种接收端设备的结构示意图;
图9是本申请实施例提供的一种数据传输系统的结构示意图。
具体实施方式
请参考图1,其示出了本申请各个实施例所涉及一种实施环境的示意图,该实施环境提供一种数据传输系统,该数据传输系统可以为无线通信系统,具体可以为MIMO系统,参见图1,该实施环境可以包括:基站01和多个UE。示例地,如图1所示,本实施环境以多个UE包括UE-02、UE-03和UE-04为例进行说明。
在本实施环境中,基站01和多个UE中的每个UE都可以为发射端设备,也可以为接收端设备,示例地,当多个UE为发射端设备时,基站01为接收端设备,当基站01为发射端设备时,多个UE为接收端设备,本实施环境以及下述实施例均以多个UE为发射端设备,基站01为接收端设备为例进行说明。
在本申请实施例中,发射端设备(例如,UE-02)可以对至少两个第一预处理空间流进行预编码,得到多个预编码数据流并发射该多个预编码数据流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备(例如,基站01)可以接收多个预编码数据流,该多个预编码数据流可以是是对多个空间流进行预编码得到的,该多个空间流可以包括来自第一发射端设备(例如,UE-02)的至少两个第一预处理空间流,来自第二发射端设备(例如,UE-03)的至少两个第二预处理空间流和来自第三发射端设备(例如,UE-04)的至少一个原始空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,接收端设备接收多个预编码数据流后,可以从该多个预编码数据流中恢复出至少两个第一预处理空间流、至少两个第二预处理空间流和至少一个原始空间流,然后根据该至少两个第一预处理空间流恢复出第一原始空间流,根据该至少两个第二预处理空间流恢复出第二原始空间流。发射端设备通过对第一原始空间流进行预处理得到至少两个第一预处理空间流,可以使多个UE进行时频资源的空分复用,提高系统的吞吐量。
请参考图2,其示出了本申请实施例提供的一种数据发送方法的方法流程图。本实施例以该数据发送方法应用于发射端设备来进行举例说明,该发射端设备可以为图1所示实施环境中的任一UE(例如,UE-02)。参见图2,该方法可以包括:
步骤201、对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
步骤202、发射多个预编码数据流。
综上所述,本申请实施例提供的数据发送方法,通过对至少两个第一预处理空间流进行预编码,得到多个预编码数据流并发射该多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,使得多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
请参考图3,其示出了本申请实施例提供的一种数据接收方法的方法流程图。本实施例以该数据接收方法应用于接收端设备来进行举例说明,该接收端设备可以为图1所示实施环境中的基站01。参见图3,该方法可以包括:
步骤301、接收多个预编码数据流,多个预编码数据流是对多个空间流进行预编码得到的,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
步骤302、从多个预编码数据流中恢复出至少两个第一预处理空间流。
步骤303、根据至少两个第一预处理空间流恢复出第一原始空间流。
综上所述,本申请实施例提供的数据接收方法,通过接收多个预编码数据流,从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流,由于至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,因此,多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
请参考图4-1,其示出了本申请实施例提供的一种数据传输方法的方法流程图。本实施例以该数据传输方法应用于第一发射端设备、第二发射端设备、第三发射端设备和接收端设备组成的系统中来进行举例说明,该第一发射端设备可以为图1所示实施环境中的UE-02,该第二发射端设备可以为图1所示实施环境中的UE-03,该第三发射端设备可以为图1所示实施环境中的UE-04,该接收端设备可以为图1所示实施环境中的基站01。参见 图4-1,该数据传输方法可以包括:
步骤401、第一发射端设备对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
在本申请实施例中,第一原始空间流可以是经过层映射后得到的空间流。本申请实施例以LTE系统为例对原始空间流(例如,第一原始空间流)进行介绍。在LTE系统中,物理信道的处理过程通常可以包括:加扰、调制映射、层映射、预编码、资源粒映射、正交频分复用(英文:Orthogonal Frequency Division Multiplexing;简称:OFDM)信号生成,物理信道的处理对象通常为码字,码字可以是经过编码处理(至少包括信道编码处理)的比特流,该比特流经过加扰可以得到加扰比特流,加扰比特流经过调制映射可以得到调制符号流,调制符号流经过层映射可以得到多个符号层(符号层也称为空间流或空间层),符号层经过预编码可以得到多个预编码符号流,预编码符号流经过资源粒(英文:Resource Element;简称:RE)映射,被映射到多个资源粒上,这些资源粒随后经过OFDM信号生成阶段得到OFDM符号流,OFDM符号流通过天线端口进行发射。其中,OFDM信号生成阶段可以采用快速傅里叶逆变换(英文:Inverse Fast Fourier Transform;简称:IFFT)得到OFDM符号流,本申请实施例中的原始空间流可以是经过层映射得到的空间流。需要注意的是,为了更加清晰的描述本申请实施例提供的技术方案,本申请实施例借助现有LTE标准中层映射后获得的空间流来描述本申请实施例中的原始空间流,然而,本领域技术人员应当明白,除LTE标准中层映射后获得的空间流之外,本申请实施例中的原始空间流还可以泛指任何经过调制等处理后获得的调制符号流。
在本申请实施例中,第一发射端设备(例如,UE-02)可以对至少两个第一预处理空间流进行预编码得到多个预编码数据流,该至少两个第一预处理空间流是第一发射端设备对第一原始空间流进行预处理得到的,该预处理可以包括:发射分集处理或基于发射分集的空分复用处理。
其中,发射分集处理通过在时间、频率、空间(例如天线)或者上述三个维度的各种组合上对原始空间流(例如第一原始空间流)进行冗余传输来提高传输可靠性。在具体实现过程中,冗余传输的数量可以根据信道模型或者信道质量进行设置,冗余传输的对象可以是原始空间流本身,也可以是经过处理的原始空间流,这种处理可以包括但不限于延迟、取反、共轭、旋转等,以及上述各种处理经过衍生、演进以及组合后获得的处理。目前常用的发射分集处理可以包括但不限于空时发射分集(英文:Space-Time Transmit Diversity;简称:STTD)处理、空频发射分集(英文:Space-Frequency Transmit Diversity;简称:SFTD)处理、时间切换发射分集(英文:Time Switched Transmit Diversity;简称:TSTD)处理、频率切换发射分集(英文:Frequency Switch Transmit Diversity;简称:FSTD)处理、正交发射分集(英文:Orthogonal Transmit Diversity;简称:OTD)处理、循环延迟分集(英文:Cyclic delay diversity;简称:CDD)处理、以及上述各种发射分集处理经过衍生、演进以及组合后获得的发射分集处理。例如,LTE标准采用了空时块编码(英文:Space Time Block Coding;简称:STBC)、空频块编码(英文:Space Frequency Block Coding;简称:SFBC)和CDD等发射分集处理。在本申请实施例中,发射分集处理可以包括空时发射分集处理、空频发射分集处理、空时频发射分集处理、循环延迟发射分集处理和开环发射分集处理中的任意一种,以及上述各种形式的分集处理。基于发射分集的空分复用处理可以为大尺度延迟CDD的预编码处理。在本申请实施例中,当发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理时,对原始空间流同时进行预处理和预编码的传输方案可以称为波束赋形发射分集(英文:Beamformed Transmit Diversity;简称:BTD)传输方案;当发射分集处理为循环延迟发射分集处理时,对原始空间流同时进行预处理和预编码的传输方案可以称为开环空分复用(英文:Open-Loop Spatial Multiplexing;简称:OLSM)传输方案,当发射分集处理为开环发射分集处理时,对原始空间流同时进行预处理和预编 码(预编码矩阵为单位矩阵)的传输方案可以称为开环发射分集(英文:Open Loop Transmit Diversity;简称:OLTD)传输方案,当预处理为基于发射分集的空分复用处理时,对原始空间流同时进行预处理和预编码的传输方案可以称为大尺度延迟CDD传输方案;只对原始空间流进行预编码的传输方案可以称为闭环空分复用(英文:Closed-Loop Spatial Multiplexing;简称:CLSM)传输方案。需要说明的是,上文以举例的形式对本申请实施例中的发射分集处理进行了概括性的描述,本领域技术人员应当明白,除上述实例外,发射分集处理还包括其他多种实现方式,因此,上述介绍不应理解为对本申请技术方案的限制,本申请技术方案应理解为适用于各种可能的发射分集处理的方案;此外,本申请中所述的预处理仅是示例性的,实际应用中,预处理包括但不限于上述发射分集处理以及基于发射分集的空分复用处理,因此,本领域技术人员应当明白,除上述实例外,本申请中所述的发射分集处理和基于发射分集的空分复用处理并不能用以限制本申请中所述的预处理。
其中,第一发射端设备可以采用预编码技术对至少两个第一预处理空间流进行预编码,预编码技术借助与信道属性相匹配的预编码矩阵来对空间流进行处理,使得经过预编码的空间流与信道相适配,预编码矩阵中可以包括多个预编码向量,该预编码向量通常为预编码矩阵的列向量,预编码向量的个数与预编码矩阵所对应的接收端设备的空间流的数量相同,至少两个第一预处理空间流中的每个第一预处理空间流可以对应一个预编码向量,且至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,第一发射端设备可以采用至少两个预编码向量对至少两个第一预处理空间流进行预编码。其中,对第一预处理空间流进行预编码可以使数据传输过程得到优化,接收信号质量得以提升,该接收信号质量例如信干噪比(英文:Signal to Interference plus Noise Ratio;简称:SINR)、信噪比(英文:signal-to-noise ratio;简称:SNR)、信号接收功率等。
可选地,在本申请实施例中,第一发射端设备可以采用单位矩阵对至少两个第一预处理空间流进行预编码,该单位矩阵的列向量为该至少两个第一预处理空间流的预编码向量,换句话来讲,该单位矩阵的列向量与该至少两个第一预处理空间流的预编码向量一一对应,该单位矩阵的维数与该至少两个第一预处理空间流的数量相等。其中,单位矩阵为主对角线上的元素都为1,其余元素都为0的矩阵,采用单位矩阵对至少两个第一预处理空间流进行预编码实际上相当于并未对至少两个第一预处理空间流进行预编码,该采用单位矩阵对至少两个第一预处理空间流进行预编码一般适用于发射天线阵子数较少的发射端设备。示例地,以至少两个第一预处理空间流包括第一预处理空间流11、第一预处理空间流12和第一预处理空间流13这三个预处理空间流为例,则该单位矩阵可以为:
Figure PCTCN2017098288-appb-000001
该单位矩阵A中包括列向量
Figure PCTCN2017098288-appb-000002
Figure PCTCN2017098288-appb-000003
其中,列向量A1可以为第一预处理空间流11的预编码向量,列向量A2可以为第一预处理空间流12的预编码向量,列向量A3可以为第一预处理空间流13的预编码向量,第一发射端设备可以采用列向量A1对第一预处理空间流11进行预编码,采用列向量A2对第一预处理空间流12进行预编码,采用列向量A3对第一预处理空间流13进行预编码,预编码的具体实现过程可以参考相关现有技术,本申请实施例在此不再赘述。需要说明的是,在本申请实施例中,对原始空间流进行开环发射分集处理并采用单位矩阵对处理后的空间流进行预编码的传输方案可以称为OLTD传输方案。
需要说明的是,本申请实施例是以第一发射端设备采用单位矩阵对至少两个第一预处理空间流进行预编码为例进行说明的,实际应用中,第一发射端设备还可以采用主对角线 上的元素都不为0,其余元素都为0的预编码矩阵对至少两个第一预处理空间流进行预编码,这样一来,该预编码矩阵的主对角线上可以存在部分元素大于1,而部分元素小于1且大于0,则在采用该预编码矩阵对该至少两个第一预处理空间流进行预编码过程中,可以实现对至少两个第一预处理空间流中的部分预处理空间流的放大或缩小。示例地,继续以至少两个第一预处理空间流包括第一预处理空间流11、第一预处理空间流12和第一预处理空间流13这三个预处理空间流为例,则该预编码矩阵可以为:
Figure PCTCN2017098288-appb-000004
该预编码矩阵B中包括列向量
Figure PCTCN2017098288-appb-000005
Figure PCTCN2017098288-appb-000006
其中,列向量B1可以为第一预处理空间流11的预编码向量,列向量B2可以为第一预处理空间流12的预编码向量,列向量B3可以为第一预处理空间流13的预编码向量,第一发射端设备可以采用列向量B1对第一预处理空间流11进行预编码,使得第一预处理空间流11放大,采用列向量B2对第一预处理空间流12进行预编码使得第一预处理空间流12保持不变,采用列向量B3对第一预处理空间流13进行预编码使得第一预处理空间流13缩小,其中,预编码的具体实现过程可以参考现有技术,本申请实施例在此不再赘述。
在本申请实施例中,第一预处理空间流11、第一预处理空间流12和第一预处理空间流13可以是第一发射端设备对第一原始空间流1进行空时发射分集处理、空频发射分集处理或空时频发射分集处理得到的,也可以是第一发射端设备对第一原始空间流1进行循环延迟发射分集处理得到的,还可以是第一发射端设备对第一原始空间流1进行开环发射分集处理得到的,还可以是第一发射端设备对第一原始空间流1进行基于发射分集的空分复用处理得到的。当第一预处理空间流11、第一预处理空间流12和第一预处理空间流13是第一发射端设备对第一原始空间流1进行空时发射分集处理、空频发射分集处理或空时频发射分集处理得到的时,该第一发射端设备可以是采用BTD传输方案进行数据传输的设备,当第一预处理空间流11、第一预处理空间流12和第一预处理空间流13是第一发射端设备对第一原始空间流1进行循环延迟发射分集处理得到的时,该第一发射端设备可以是采用OLSM传输方案进行数据传输的设备,当第一预处理空间流11、第一预处理空间流12和第一预处理空间流13是第一发射端设备对第一原始空间流1进行开环发射分集处理得到的时,该第一发射端设备可以是采用OLTD传输方案进行数据传输的设备,当第一预处理空间流11、第一预处理空间流12和第一预处理空间流13是第一发射端设备对第一原始空间流1进行基于发射分集的空分复用处理得到的时,该第一发射端设备可以是采用大尺度延迟CDD传输方案进行数据传输的设备。本申请实施例以第一预处理空间流11、第一预处理空间流12和第一预处理空间流13是第一发射端设备对第一原始空间流1进行空时发射分集处理得到的为例进行说明,因此,该第一发射端设备是采用BTD传输方案进行数据传输的设备。本申请实施例中,当发射端设备是UE时,基站可以通过下行信令向UE指示传输方案,以使得UE能够采用相应的传输方案进行数据传输。示例地,基站01通过下行信令指示UE-02采用BTD传输方案进行数据传输,其中,基站可以采用下行信令的格式来对传输方案进行指示,也可以采用下行信令的内容来对传输方案进行指示,本申请实施例对此不作限定。需要说明的是,上文以举例的方式对传输方案进行了概括性的描述,本领域技术人员应当明白,除上述实例外,传输方案还包括其他多种传输方案,因此,上述介绍不应理解为对本申请技术方案的限制。
在本申请实施例中,假设第一发射端设备对第一预处理空间流11进行预编码得到预编码数据流110,对第一预处理空间流12进行预编码得到预编码数据流120,对第一预处理空间流13进行预编码得到预编码数据流130。但是需要注意的是,本申请实施例中为了便于描 述,将一个空间流经过预编码得到的预编码数据流标记为一个预编码数据流,例如上述预编码数据流110、预编码数据流120和预编码数据流130。然而,在实际应用中,一个空间流经过预编码往往可以得到多个预编码数据流,预编码数据流的具体数量与物理天线数量或者天线端口数量有关,由此可知,上述预编码数据流110、预编码数据流120和预编码数据流130均指代一组预编码数据流,其预编码数据流的个数与物理天线数量或者天线端口数量有关,其中这一组预编码数据流中的每个预编码数据流经由对应的一个物理天线或者天线端口进行发射,经过该物理天线或者天线端口发射的预编码数据流可以视为对应的预处理空间流在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
需要说明的是,本申请实施例提供的数据传输方法可以适用于MIMO系统,MIMO系统通常使用预编码技术来实现空分复用,以便在发射端设备和接收端设备之间同时传输多个空间流,提高系统吞吐量。MIMO系统通常包括单用户MIMO(英文:Single-user MIMO;简称:SU-MIMO)场景和多用户MIMO(英文:Multi-user MIMO;简称:MU-MIMO)场景,在SU-MIMO场景下,进行空分复用的多个空间流来自同一发射端设备,在MU-MIMO场景下,进行空分复用的多个空间流来自至少两个发射端设备。目前,预编码技术已经被多种无线通信标准所采纳,例如但不限于LTE标准,在LTE标准中,预编码泛指基于特定矩阵对发射信号进行处理,因此,LTE标准中的预编码不仅包括用于空分复用的预编码,还包括用于发射分集的预编码等。然而,如无特别说明,本申请实施例提供的技术方案中涉及的预编码仅指代基于空分复用目的、通过预编码矩阵对空间流进行的预编码,而不包括用于发射分集的预编码。此外,本申请实施例提供的技术方案中涉及的预编码既可以是不基于信道状态信息的预编码,这种预编码又称为开环预编码,其类似于,例如但不限于,LTE标准中的未结合CDD的预编码和用于大尺度延迟的CDD的预编码,此外,本申请实施例提供的技术方案中涉及的预编码又可以是基于信道状态信息的预编码,这种预编码又称为闭环预编码,其类似于,例如但不限于,LTE标准中的闭环空分复用。对于预编码的具体形式和种类,本申请实施例对此不作限定。
应当理解的是,尽管越来越多的通信系统在发射端设备和接收端设备上部署了多根天线,但是本领域的技术人员应当明白,除MIMO系统外,这样的通信系统也可以用于实现单入单出(英文:Single Input Single Output;简称:SISO)系统、单入多出(英文:Single Input Multiple output;简称:SIMO)系统和多入单出(英文:Multiple Input Single Output;简称:MISO)系统,因此本文描述的MIMO应理解为包含多天线技术的各种应用形式,包括例如但不限于上文所述的SISO系统、SIMO系统、MISO系统和MIMO系统。
还需要说明的是,在本申请实施例中,可以采用Y=F1(S)对原始空间流进行预编码得到预编码数据流,其中,Y表示预编码数据流,F1表示预编码,S表示原始空间流。如果把对原始空间流进行预处理也视为一种预编码,则本申请实施例相当于对原始空间流进行了两级预编码,此时,可以采用Y=F1(F2(S))对原始空间流进行预编码得到预编码数据流,其中,Y表示预编码数据流,F2表示预处理,F1表示预编码,S表示原始空间流,本申请实施例在此不再赘述。
步骤402、第一发射端设备向接收端设备发射多个预编码数据流。
第一发射端设备得到多个预编码数据流后,可以向接收端设备发射该多个预编码数据流,该第一发射端设备可以为图1所示实施环境中的UE-02,该接收端设备可以为图1所示实施环境中的基站01。示例地,第一发射端设备向接收端设备发射预编码数据流110、预编码数据流120和预编码数据流130。其中,第一发射端设备可以通过天线端口向接收端设备发射多个预编码数据流,具体的发射过程在现有技术中已清楚描述,本申请实施例在此不再赘述。
步骤403、第一发射端设备对至少两个第一预处理空间流的解调参考信号进行预编码, 得到多个预编码解调参考信号。
在本申请实施例中,至少两个第一预处理空间流中的每个第一预处理空间流对应一个解调参考信号,第一发射端设备可以对至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。优选地,第一发射端设备可以使用与对至少两个第一预处理空间流进行预编码相同的预编码向量来对该至少两个第一预处理空间流的解调参考信号进行预编码,以使得接收端设备可以借助该至少两个第一预处理空间流的解调参考信号对该至少两个第一预处理空间流进行解调。
其中,至少两个第一预处理空间流对应的至少两个预编码中的每个预编码向量可以对应一个解调参考信号(英文:Demodulation Reference Signal;简称:DMRS)端口,且该至少两个预编码中不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量(或者空间流)的DMRS序列不同,不同的DMRS序列可以是对同一根序列施加不同的位移获得的DMRS序列,或者根据不同的根序列获得的DMRS序列。换句话说,可以使用不同的DMRS端口号来区分不同的DMRS,在DMRS端口号相同的情况下(为不同的空间流(即不同的预编码向量)分配相同的DMRS端口号),也可以为不同的DMRS使用不同的DMRS序列。在这里,不同的DMRS序列可以是对同一根序列(例如ZC序列)施加不同的位移获得的DMRS序列,或者根据不同的根序列获得的DMRS序列。无论是DMRS端口号还是DMRS序列,都需要由基站为UE指定,例如通过下行信令(例如但不限于DCI)进行指定。DMRS可以用于信道(即预编码后的信道)解调,这是因为对每个第一预处理空间流进行预编码使用的预编码向量和对该第一预处理空间流对应的DMRS进行预编码使用的预编码向量相同,但是DMRS不需要进行预处理。换句话说,第一原始空间流在经过预处理得到至少两个第一预处理空间流后,这些第一预处理空间流与各自DMRS相关联,这些DMRS可以不同。接收端设备可以根据DMRS端口对应的DMRS对接收到的预编码数据流进行解调得到第一预处理空间流。有关DMRS的相关内容,例如但不限于,DMRS端口、DMRS序列以及DMRS与空间流之间的关系,可以参考现有技术。相关内容在现有技术中已经进行了清楚的描述,因此此处不再赘述。需要说明的是,在本申请实施例中,同一UE可以使用不同的DMRS端口,也可以使用相同的DMRS端口,在同一UE使用相同的DMRS端口的情况下,可以使用不同的DMRS序列来对相应的解调参考信号进行区分;不同UE可以使用不同的DMRS端口,也可以使用相同DMRS端口,在不同UE使用相同DMRS端口的情况下,可以使用不同的DMRS序列对相应的解调参考信号进行区分,本申请实施例对此不作限定。
需要说明的是,在本申请实施例中,至少两个第一预处理空间流是第一发射端设备对第一原始空间流进行预处理得到的,则接收端设备在解调获得上述至少两个第一预处理空间流后,还需要根据第一发射端设备的预处理方式,根据上述至少两个第一预处理空间流恢复出第一原始空间流。
示例地,假设第一预处理空间流11对应的解调参考信号为S11,第一预处理空间流12对应的解调参考信号为S12,第一预处理空间流13对应的解调参考信号为S13,则第一发射端设备对解调参考信号S11进行预编码得到预编码解调参考信号S110,对解调参考信号S12进行预编码得到预编码解调参考信号S120,对解调参考信号S13进行预编码得到预编码解调参考信号S130。与上文描述的预编码数据流类似,上述预编码解调参考信号S110、预编码解调参考信号S120和预编码解调参考信号S130均为一组预编码解调参考信号,其预编码解调参考信号的个数与物理天线数量或者天线端口数量有关,其中这一组预编码解调参考信号中的每个预编码解调参考信号经由一个对应的物理天线或者天线端口发射,经过该物理天线或者天线端口发射的预编码解调参考信号可以视为对应的解调参考信号在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
需要说明的是,第一发射端设备可以采用Z=F1(X)对至少两个第一预处理空间流对应的解调参考信号进行预编码得到预编码解调参考信号,其中,Z表示预编码解调参考信号,F1表示预编码,X表示解调参考信号,具体的预编码过程在现有技术中均已清楚描述,本申请实施例在此不再赘述。
还需要说明的是,实际应用中,本申请实施例中的步骤401和步骤403可以是同时进行的,本申请实施例对此不作限定。
步骤404、第一发射端设备向接收端设备发射多个预编码解调参考信号。
第一发射端设备得到多个预编码解调参考信号后,可以向接收端设备发射多个预编码解调参考信号。该第一发射端设备可以为图1所示实施环境中的UE-02,该接收端设备可以为图1所示实施环境中的基站01。示例地,第一发射端设备向接收端设备发射预编码解调参考信号S120、预编码解调参考信号S110和预编码解调参考信号S130。
需要说明的是,在本申请实施例中,第一发射端设备可以为UE,接收端设备为基站,由于至少两个第一预处理空间流是第一发射端设备对第一原始空间流进行预处理得到的,且发射的预编码数据流需要借助DMRS进行解调,因此,第一发射端设备需要获知预处理方式以及DMRS资源才能完成对数据的发射。那么,在第一发射端设备发射数据之前,接收端设备(基站)可以通过下行信令为第一发射端设备指定预处理方式并分配DMRS资源。其中,DMRS资源包括但不限于DMRS端口(用于标识DMRS)、指定序列(例如Z-C序列)等,在接收端设备中,指定序列与发射端设备以及DMRS具有一一对应的关系,接收端设备可以向第一发射端设备发送指定序列,并在接收到DMRS后,根据指定序列与发射端设备以及DMRS的一一对应关系确定第一发射端设备发射的DMRS。其中,预处理可以为发射分集处理或基于发射分集的空分复用处理,发射分集处理包括但不限于:空时发射分集处理、空频发射分集处理、空时频发射分集处理、循环延迟分集处理或开环发射分集处理,基于发射分集的空分复用处理可以为大尺度延迟CDD的预编码处理。以下以第一发射端设备为UE-02,接收端设备为基站01为例进行说明。
具体地,接收端设备可以将分配给第一发射端设备的DMRS资源的信息(比如端口号和指定序列)和为第一发射端设备指定的预处理方式的信息一起通过下行信令发送给第一发射端设备,第一发射端设备可以根据接收到的预处理方式的信息指示的预处理方式对第一原始空间流进行预处理得到至少两个第一预处理空间流,然后对至少两个第一预处理空间流进行预编码得到多个预编码数据流并通过接收端设备为其分配的DMRS资源向接收端设备发射该多个预编码数据流。其中,接收端设备(基站01)可以通过以下几种方式向第一发射端设备(UE-02)发送DMRS资源的信息和预处理方式的信息,在本申请实施例中,DMRS资源的信息可以包括DMRS端口和指定序列中的至少一种,DMRS端口可以采用端口号进行标识,每个DMRS端口上可以具有多个资源,每个资源可以采用指定序列进行标识,且同一指定序列可以指示不同DMRS端口上的资源:
方式一、接收端设备通过下行信令向第一发射端设备发送每个第一预处理空间流对应的DMRS的DMRS资源的信息和第一原始空间流对应的预处理方式的信息。其中,第一原始空间流对应的预处理方式的信息也即是接收端设备为第一发射端设备指定的在对第一原始空间流进行预处理时所采用的预处理方式的信息。
例如,基站01通过下行信令指示UE-02采用端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源发送数据,同时指示UE-02采用空时发射分集处理对第一原始空间流进行预处理;再例如,基站01通过下行信令指示UE-02采用端口号为x+2的DMRS端口和端口号为x的DMRS端口上由指定序列B所标识的资源发送数据,同时指示UE-02采用基于发射分集的空分复用处理对第一原始空间流进行预处理;再例如,基站01通过下行信令指示UE-02采用端口号为y的DMRS端口和端口号为x的DMRS端口上由指定序列C所标识的资源发送数据,同时指示UE-02采用循环延迟发射分集处理对第一原始空间流进 行预处理。可选地,基站01通过下行信令指示UE-02预处理方式时,可以固定分配几个bit(中文:比特)来指定预处理方式,例如,采用2bit指示预处理方式,2bit共可以指示4种预处理方式,例如,00表示空时发射分集处理,01表示空频发射分集处理,10表示空时频发射分集处理、11表示环延迟发射分集处理,当然,基站01也可以采用其他方式指示预处理方式,本申请实施例对此不作限定。
方式二、接收端设备通过下行信令向第一发射端设备发送至少两个第一预处理空间流对应的DMRS的DMRS资源的信息,至少两个第一预处理空间流对应的DMRS的DMRS资源信息唯一对应一种预处理方式。
在该方式二中,至少两个第一预处理空间流对应的DMRS的DMRS资源的信息(例如,DMRS资源的标识或DMRS资源的数量,DMRS资源的标识可以由端口号和指定序列构成)可以指示预处理方式,DMRS资源的信息与预处理方式之间具有映射关系,至少两个第一预处理空间流对应的DMRS的DMRS资源的信息唯一对应一种预处理方式,第一发射端设备可以根据DMRS资源的信息和该映射关系确定预处理方式。例如,该映射关系为:使用端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源发送数据必须使用空时发射分集处理,或者,使用两个DMRS端口必须使用空时发射分集处理。那么,当UE-02获取到至少两个第一预处理空间流对应的DMRS的DMRS资源的信息为:端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源时,UE-02根据该映射关系可以确定基站01为其指定的预处理为空时发射分集处理。
方式三、接收端设备通过下行信令向第一发射端设备发送第一原始空间流对应的预处理方式的信息,该第一原始空间流对应的预处理方式唯一对应一组DMRS资源的信息。
其中,预处理方式的信息可以为预处理方式的标识,接收端设备可以通过一个或多个bit来为第一发射端设备指示预处理方式。在该方式三中,第一原始空间流对应的预处理方式可以指示DMRS资源的信息,预处理方式和DMRS资源的信息之间具有映射关系,第一原始空间流使用的预处理方式可以唯一对应一组DMRS资源的信息,UE-02可以根据预处理方式和该映射关系确定DMRS资源的信息,进而根据DMRS资源的信息确定DMRS资源。例如,基站01通过下行信令指示UE-02采用空时发射分集处理对第一原始空间流进行预处理,该映射关系为:使用空时发射分集处理进行预处理必须使用端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源发送数据,那么根据基站01指示的预处理方式和该映射关系,UE-02可以获知DMRS资源的信息为:端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源。
方式四、接收端设备通过下行信令向第一发射端设备发送至少两个第一预处理空间流对应的DMRS的DMRS资源的数量(如DMRS端口的数量),该至少两个第一预处理空间流对应的DMRS资源的数量唯一对应一种预处理方式和一组DMRS资源。
在该方式四中,接收端设备通过至少两个第一预处理空间流对应的DMRS的DMRS资源的数量指示第一发射端设备对第一原始空间流进行预处理所采用的预处理方式以及至少两个第一预处理空间流对应的DMRS资源,预处理方式、DMRS资源的数量和DMRS资源之间具有映射关系,至少两个第一预处理空间流对应的DMRS的DMRS资源的数量唯一对应一种预处理方式和一组DMRS资源,第一发射端设备可以根据DMRS资源的数量和该映射关系确定接收端设备为第一发射端设备指定的预处理方式和DMRS资源。例如,基站01通过下行信令指示UE-02至少两个第一预处理空间流对应的DMRS的DMRS资源的数量为2,该映射关系为:使用2个DMRS资源必须使用空时发射分集处理进行预处理以及空间流对应的DMRS必须使用端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源发送数据。UE-02可以根据基站01指示的至少两个第一预处理空间流对应的DMRS的DMRS资源的数量和该映射关系,确定对第一原始空间流进行预处理采用的预处理方式为空时发射分集处理,且至少两个第一预处理空间流对应的DMRS资源为端口号为x+1的DMRS端口 和端口号为x的DMRS端口上由指定序列A所标识的资源。
方式五、接收端设备通过下行信令向第一发射端设备发送至少两个第一预处理空间流对应的DMRS的DMRS资源的数量和第一原始空间流对应的预处理方式的信息,至少两个第一预处理空间流对应的DMRS的DMRS资源的数量和第一原始空间流对应的预处理方式唯一对应一组DMRS资源。
在该方式五中,接收端设备通过至少两个第一预处理空间流对应的DMRS的DMRS资源的数量和第一原始空间流对应的预处理方式指示至少两个第一预处理空间流对应的DMRS的DMRS资源,预处理方式、DMRS资源的数量和DMRS资源之间具有映射关系,至少两个第一预处理空间流对应的DMRS的DMRS资源的数量和第一原始空间流对应的预处理方式唯一对应一组DMRS资源。第一发射端设备可以根据接收端设备指示的DMRS资源的数量和第一原始空间流对应的预处理方式以及该映射关系,确定DMRS资源。例如,基站01通过下行信令指示UE-02第一原始空间流对应的预处理方式为空时发射分集处理且DMRS资源的数量为2,该映射关系为:预处理方式为空时发射分集处理且DMRS资源的数量为2的空间流必须使用端口号为x+1的DMRS端口和端口号为x的DMRS端口上由指定序列A所标识的资源发送数据。
需要说明的是,本申请实施例中的下行信令可以如LTE标准中的下行控制信息(英文:Downlink Control Information;简称:DCI),UE可以在物理下行控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)上盲检测DCI来接收基站发送DMRS资源的信息和预处理方式的信息,具体的盲检测过程在现有技术中已经清楚描述,本申请实施例在此不再赘述。
应注意,在具体实现过程中,预处理空间流的预编码过程与解调参考信号的预编码过程可以是合并在一起进行的,例如,可以理解为将解调参考信号插入到对应的预处理空间流中,或者,将解调参考信号与预处理空间流进行混合,以便将解调参考信号与预处理空间流一同进行预编码。如此一来,预编码的结果中既包含预编码数据流,也包含预编码解调参考信号,二者一同发射。应注意,有关空间流与解调参考信号的预编码过程和发射过程可参考现有技术,现在技术对上述过程进行进行了清楚完整的描述,因此本文不再赘述。图4-1中将预处理空间流的预编码过程和解调参考信号的预编码过程分开描述,并且将预编码后获得的预编码空间流的发射过程和预编码解调参考信号的发射过程分开描述,目的仅仅是清楚表现预处理空间流和解调参考信号的处理过程,其处理顺序对本申请不构成限定。
步骤405、第二发射端设备对至少两个第二预处理空间流进行预编码,得到多个预编码数据流,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的。
其中,该第二发射端设备可以为图1所示实施环境中的UE-03,与步骤401中的第一原始空间流同理,该第二原始空间流可以是经过层映射后得到的空间流,且该第二原始空间流还可以泛指任何经过调制等处理后获得的调制符号流,具体描述过程可以参考步骤401,本申请实施例在此不再赘述。
在本申请实施例中,第二发射端设备(例如,UE-03)可以对至少两个第二预处理空间流进行预编码得到多个预编码数据流,该至少两个第二预处理空间流是第二发射端设备对第二原始空间流进行预处理得到的,该预处理可以包括:发射分集处理或基于发射分集的空分复用处理。关于发射分集处理和基于发射分集的空分复用处理的相关描述均可以参考步骤401,本实施例在此不再赘述。
其中,第二发射端设备可以采用预编码技术对至少两个第二预处理空间流进行预编码,至少两个第二预处理空间流中的每个第二预处理空间流可以对应一个预编码向量,且至少两个第二预处理空间流中不同的第二预处理空间流对应不同的预编码向量,第二发射端设备可以采用至少两个预编码向量对至少两个第二预处理空间流进行预编码。可选地,在本申请实施例中,第二发射端设备可以采用单位矩阵或主对角线上的元素都不为0其余元素都 为0的预编码矩阵对至少两个第二预处理空间流进行预编码,具体的实现过程可以参考步骤401中第一发射端设备对至少两个第一预处理空间流进行预编码的过程,本申请实施例在此不再赘述。
在本申请实施例中,以至少两个第二预处理空间流包括第二预处理空间流21和第二预处理空间流22为例,该第二预处理空间流21和第二预处理空间流22可以是第二发射端设备对第二原始空间流2进行空时发射分集处理、空频发射分集处理或空时频发射分集处理得到的,也可以是第二发射端设备对第二原始空间流2进行循环延迟发射分集处理得到的,还可以是第二发射端设备对第二原始空间流2进行开环发射分集处理得到的,还可以是第二发射端设备对第二原始空间流2进行基于发射分集的空分复用处理得到的。当第二预处理空间流21和第二预处理空间流22是第二发射端设备对第二原始空间流2进行空时发射分集处理、空频发射分集处理或空时频发射分集处理得到的时,该第二发射端设备可以是采用BTD传输方案进行数据传输的设备,当第二预处理空间流21和第二预处理空间流22是第二发射端设备对第二原始空间流2进行循环延迟发射分集处理得到的时,该第二发射端设备可以是采用OLSM传输方案进行数据传输的设备,当第二预处理空间流21和第二预处理空间流22是第二发射端设备对第二原始空间流2进行开环发射分集处理得到的时,该第二发射端设备可以是采用OLTD传输方案进行数据传输的设备,当第二预处理空间流21和第二预处理空间流22是第二发射端设备对第二原始空间流2进行基于发射分集的空分复用处理得到的时,该第二发射端设备可以是采用大尺度延迟CDD传输方案进行数据传输的设备。本申请实施例以第二预处理空间流21和第二预处理空间流22是第二发射端设备对第二原始空间流2进行基于发射分集的空分复用处理得到的为例进行说明,因此,该第二发射端设备是大尺度延迟CDD传输方案进行数据传输的设备。本申请实施例中,当发射端设备是UE时,基站可以通过下行信令向UE指示传输方案,以使得UE能够采用相应的传输方案进行数据传输。示例地,基站01通过下行信令指示UE-03采用大尺度延迟CDD传输方案进行数据传输,其中,基站可以采用下行信令的格式来对传输方案进行指示,也可以采用下行信令的内容来对传输方案进行指示,本申请实施例对此不作限定。
在本申请实施例中,假设第二发射端设备对第二预处理空间流21进行预编码得到预编码数据流210,对第二预处理空间流22进行预编码得到预编码数据流220。但是需要注意的是,与步骤401同理,在该步骤405中为了便于描述,将一个空间流经过预编码得到的预编码数据流标记为一个预编码数据流,例如上述预编码数据流210和预编码数据流220。然而,在实际应用中,一个空间流经过预编码往往可以得到多个预编码数据流,预编码数据流的具体数量与物理天线数量或者天线端口数量有关,由此可知,上述预编码数据流210和预编码数据流220均指代一组预编码数据流,其预编码数据流的个数与物理天线数量或者天线端口数量有关,其中这一组预编码数据流中的每个预编码数据流经由对应的一个物理天线或者天线端口进行发射,经过该物理天线或者天线端口发射的预编码数据流可以视为对应的预处理空间流在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
步骤406、第二发射端设备向接收端设备发射多个预编码数据流。
第二发射端设备得到多个预编码数据流后,可以向接收端设备发射该多个预编码数据流,该第二发射端设备可以为图1所示实施环境中的UE-03,该接收端设备可以为图1所示实施环境中的基站01。示例地,第二发射端设备向接收端设备发射预编码数据流210和预编码数据流220。其中,第二发射端设备可以通过天线端口向接收端设备发射多个预编码数据流,具体的发射过程在现有技术中已清楚描述,本申请实施例在此不再赘述。
步骤407、第二发射端设备对至少两个第二预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。
在本申请实施例中,至少两个第二预处理空间流中的每个第二预处理空间流对应一个 解调参考信号,第二发射端设备可以对至少两个第二预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。
示例地,假设第二预处理空间流21对应的解调参考信号为S21,第二预处理空间流22对应的解调参考信号为S22,则第二发射端设备对解调参考信号S21进行预编码得到预编码解调参考信号S210,对解调参考信号S22进行预编码得到预编码解调参考信号S220。其中,第二发射端设备对至少两个第二预处理空间流的解调参考信号进行预编码的具体实现过程可以参考上述步骤403中第一发射端设备对至少两个第一预处理空间流的解调参考信号进行预编码的过程,需要说明的是,与上文描述的预编码数据流类似,上述预编码解调参考信号S210和预编码解调参考信号S220均为一组预编码解调参考信号,其预编码解调参考信号的个数与物理天线数量或者天线端口数量有关,其中这一组预编码解调参考信号中的每个预编码解调参考信号经由一个对应的物理天线或者天线端口发射,经过该物理天线或者天线端口发射的预编码解调参考信号可以视为对应的解调参考信号在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
还需要说明的是,实际应用中,本申请实施例中的步骤405和步骤407可以是同时进行的,本申请实施例对此不作限定。
步骤408、第二发射端设备向接收端设备发射多个预编码解调参考信号。
第二发射端设备得到多个预编码解调参考信号后,可以向接收端设备发射多个预编码解调参考信号。该第二发射端设备可以为图1所示实施环境中的UE-03,该接收端设备可以为图1所示实施环境中的基站01。示例地,第二发射端设备向接收端设备发射预编码解调参考信号S210和预编码解调参考信号S220。
需要说明的是,在本申请实施例中,第二发射端设备可以为UE,接收端设备为基站,由于至少两个第二预处理空间流是第二发射端设备对第二原始空间流进行预处理得到的,且发射的预编码数据流需要借助DMRS进行解调,因此,第二发射端设备需要获知预处理方式以及DMRS资源才能完成对数据的发射。那么,在第二发射端设备发射数据之前,接收端设备(基站)可以通过下行信令为第二发射端设备指定预处理方式并分配DMRS资源。接收端设备通过下行信令为第二发射端设备指定预处理方式并分配DMRS资源的具体实现过程可以参考上述步骤404中接收端设备可以通过下行信令为第一发射端设备指定预处理方式并分配DMRS资源的具体实现过程,本申请实施例在此不再赘述。
步骤409、第三发射端设备对至少一个原始空间流进行预编码,得到多个预编码数据流。
其中,该第三发射端设备可以为图1所示实施环境中的UE-04,与步骤401中的第一原始空间流同理,该至少一个原始空间流中的每个原始空间流可以是经过层映射后得到的空间流,且该每个原始空间流还可以泛指任何经过调制等处理后获得的调制符号流,具体描述过程可以参考步骤401,本申请实施例在此不再赘述。
在本申请实施例中,第三发射端设备(例如,UE-04)可以对至少一个原始空间流进行预编码得到多个预编码数据流。其中,第三发射端设备可以采用预编码技术对至少一个原始空间流进行预编码,至少一个原始空间流中的每个原始空间流可以对应一个预编码向量,且至少一个原始空间流中不同的原始空间流对应不同的预编码向量,第三发射端设备可以采用至少一个预编码向量对至少一个原始空间流进行预编码。可选地,在本申请实施例中,第三发射端设备可以采用单位矩阵或主对角线上的元素都不为0其余元素都为0的预编码矩阵对至少一个原始空间流进行预编码,具体的实现过程可以参考步骤401中第一发射端设备对至少两个第一预处理空间流进行预编码的过程,本申请实施例在此不再赘述。
在本申请实施例中,以至少一个原始空间流包括原始空间流3和原始空间流4为例,该原始空间流3和原始空间流4可以是第三发射端设备经过层映射得到的,该第三发射端设备可以是采用CLSM传输方案进行数据传输的设备。本申请实施例中,当发射端设备是UE时,基站可以通过下行信令向UE指示传输方案,以使得UE能够采用相应的传输方案进行数据传 输。示例地,基站01通过下行信令指示UE-04采用CLSM传输方案进行数据传输,其中,基站可以采用下行信令的格式来对传输方案进行指示,也可以采用下行信令的内容来对传输方案进行指示,本申请实施例对此不作限定。
在本申请实施例中,假设第三发射端设备对原始空间流3进行预编码得到预编码数据流30,对原始空间流4进行预编码得到预编码数据流40。但是需要注意的是,与步骤401同理,在该步骤409中为了便于描述,将一个空间流经过预编码得到的预编码数据流标记为一个预编码数据流,例如上述预编码数据流30和预编码数据流40。然而,在实际应用中,一个空间流经过预编码往往可以得到多个预编码数据流,预编码数据流的具体数量与物理天线数量或者天线端口数量有关,由此可知,上述预编码数据流30和预编码数据流40均指代一组预编码数据流,其预编码数据流的个数与物理天线数量或者天线端口数量有关,其中这一组预编码数据流中的每个预编码数据流经由对应的一个物理天线或者天线端口进行发射,经过该物理天线或者天线端口发射的预编码数据流可以视为对应的预处理空间流在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
步骤410、第三发射端设备向接收端设备发射多个预编码数据流。
第三发射端设备得到多个预编码数据流后,可以向接收端设备发射该多个预编码数据流,该第三发射端设备可以为图1所示实施环境中的UE-04,该接收端设备可以为图1所示实施环境中的基站01。示例地,第三发射端设备向接收端设备发射预编码数据流30和预编码数据流40。其中,第三发射端设备可以通过天线端口向接收端设备发射多个预编码数据流,具体的发射过程在现有技术中已清楚描述,本申请实施例在此不再赘述。
步骤411、第三发射端设备对至少一个原始空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。
在本申请实施例中,至少一个原始空间流中的每个原始空间流对应一个解调参考信号,第三发射端设备可以对至少一个原始空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。
示例地,假设原始空间流3对应的解调参考信号为S3,原始空间流4对应的解调参考信号为S4,则第三发射端设备对解调参考信号S3进行预编码得到预编码解调参考信号S30,对解调参考信号S4进行预编码得到预编码解调参考信号S40。其中,第三发射端设备对至少一个原始空间流的解调参考信号进行预编码的具体实现过程可以参考上述步骤403中第一发射端设备对至少两个第一预处理空间流的解调参考信号进行预编码的过程,需要说明的是,与上文描述的预编码数据流类似,上述预编码解调参考信号S30和预编码解调参考信号S40均为一组预编码解调参考信号,其预编码解调参考信号的个数与物理天线数量或者天线端口数量有关,其中这一组预编码解调参考信号中的每个预编码解调参考信号经由一个对应的物理天线或者天线端口发射,经过该物理天线或者天线端口发射的预编码解调参考信号可以视为对应的解调参考信号在该物理天线或者天线端口上的发射分量,此部分内容在现有技术中已清楚描述,本申请实施例在此不再赘述。
需要说明的是,实际应用中,本申请实施例中的步骤409和步骤411可以是同时进行的,本申请实施例对此不作限定。
步骤412、第三发射端设备向接收端设备发射多个预编码解调参考信号。
第三发射端设备得到多个预编码解调参考信号后,可以向接收端设备发射多个预编码解调参考信号。该第三发射端设备可以为图1所示实施环境中的UE-04,该接收端设备可以为图1所示实施环境中的基站01。示例地,第三发射端设备向接收端设备发射预编码解调参考信号S30和预编码解调参考信号S40。
需要说明的是,在本申请实施例中,第三发射端设备可以为UE,接收端设备为基站,第三发射端设备需要通过DMRS资源向接收端设备发射预编码数据流,且发射的预编码数 据流需要借助DMRS进行解调,因此,第三发射端设备需要获知DMRS资源才能完成对数据的发射。那么,在第三发射端设备发射数据之前,接收端设备(基站)可以通过下行信令为第三发射端设备分配DMRS资源,接收端设备可以通过下行信令为第三发射端设备分配DMRS资源的具体实现方式可以参考现有技术,本申请实施例在此不再赘述。
应注意,上述第一发射端设备、第二发射端设备和第三发射端设备为MU-MIMO场景下同一调度周期中同时调度的多个设备,其数据传输过程是同时进行的,并不受图4-1所示顺序的限制,图4-1中描述的顺序仅仅是出于便于描述的原因而设计的,其并非用于限制本申请技术方案的范围。此外,第一发射端设备、第二发射端设备和第三发射端设备在MU-MIMO场景下进行数据传输时的技术细节可以参考现有技术,相关内容在现有技术中已经进行了清楚的描述,因此此处不再赘述。
步骤413、接收端设备接收多个预编码数据流,多个预编码数据流是对多个空间流进行预编码得到的,多个空间流包括至少两个第一预处理空间流、至少两个第二预处理空间流和至少一个原始空间流。
接收端设备可以接收多个预编码数据流,该多个预编码数据流可以是不同的发射端设备对多个空间流进行预编码得到的,该多个空间流可以包括至少两个第一预处理空间流、至少两个第二预处理空间流和至少一个原始空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,根据上文可知,该至少两个第一预处理空间流来自第一发射端设备(例如,UE-02),该至少两个第二预处理空间流来自第二发射端设备(例如,UE-03),该至少一个原始空间流来自第三发射端设备(例如,UE-04)。
示例地,接收端设备接收第一发射端设备发射的预编码数据流110、预编码数据流120和预编码数据流130,接收端设备接收第二发射端设备发射的预编码数据流210和预编码数据流220,接收端设备接收第三发射端设备发射的预编码数据流30和预编码数据流40。其中,接收端设备可以通过天线端口接收发射端设备发射多个预编码数据流,具体的接收过程在现有技术中已清楚描述,本申请实施例在此不再赘述。
需要注意的是,本领域的技术人员应当明白,实际应用中,上述预编码数据流在经过传播到达接收端设备时,接收端设备接收到的预编码数据流已并非发射端设备发出的预编码数据流,而是发射端设备发出且经过信道传播后的预编码数据流。预编码数据流在传播过程中,受到了信道的影响,导致接收端设备收到的预编码数据流不同于发射端设备发出的预编码数据流。然而,为了简化描述,本文在对本申请进行描述的过程中,使用相同的名称和编号来表示发射端设备发出的预编码数据流和接收端设备接收到的预编码数据流。
步骤414、接收端设备接收多个预编码解调参考信号,多个预编码解调参考信号是对多个空间流的解调参考信号进行预编码得到的。
接收端设备可以接收多个预编码解调参考信号,多个空间流中的每个空间流对应一个解调参考信号,该多个预编码解调参考信号可以是不同的发射端设备对多个空间流对应的解调参考信号进行预编码得到的。其中,对每个空间流进行预编码使用的预编码向量与对每个空间流的解调参考信号进行预编码使用的预编码向量相同。
示例地,接收端设备接收第一发射端设备发射的预编码解调参考信号S110、预编码解调参考信号S120和预编码解调参考信号S130,接收端设备接收第二发射端设备发射的预编码解调参考信号S210和预编码解调参考信号S220,接收端设备接收第三发射端设备发射的预编码解调参考信号S30和预编码解调参考信号S40。其中,接收端设备可以通过天线端口接收发射端设备发射多个预编码解调参考信号,具体的接收过程在现有技术中已清楚描述,本申请实施例在此不再赘述。
需要说明的是,实际应用中,本申请实施例中的步骤413和步骤144可以是同时进行的,本申请实施例对此不作限定。
步骤415、接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流、至少两个第二预处理空间流和至少一个原始空间流。
可选地,接收端设备可以根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第二预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第二预处理空间流,根据至少一个原始空间流的预编码解调参考信号从多个预编码数据流中恢复出至少一个原始空间流。
在本申请实施例中,至少两个第一预处理空间流、至少两个第二预处理空间流和至少一个原始空间流中的每个空间流对应不同的预编码向量,每个预编码向量对应一个DMRS资源,不同的预编码向量对应的DMRS资源不同,该DMRS资源可以为DMRS端口和指定序列(例如Z-C序列)中的至少一种,DMRS可以用于信道(即预编码后的信道)解调,这是因为对每个空间流(第一预处理空间流、第二预处理空间流或至少一个原始空间流中的任一原始空间流)进行预编码使用的预编码向量和对该空间流对应的DMRS进行预编码使用的预编码向量相同,但是DMRS不需要进行预处理。换句话说,经过预处理得到的预处理空间流(第一预处理空间流或第二预处理空间流)以及未经过预处理的原始空间流中的每个空间流与各自的DMRS相关联,这些DMRS彼此不同,接收端设备可以根据DMRS端口对应的DMRS对接收到的预编码数据流进行解调得到空间流。
示例地,接收端设备根据预编码解调参考信号S110恢复出第一预处理空间流11,根据预编码解调参考信号S120恢复出第一预处理空间流12,根据预编码解调参考信号S130恢复出第一预处理空间流13,根据预编码解调参考信号S210恢复出第一预处理空间流21,根据预编码解调参考信号S220恢复出第一预处理空间流22,根据预编码解调参考信号S30恢复出原始空间流3,根据预编码解调参考信号S40恢复出第一预处理空间流4,其中,有关根据解调参考信号估计经过预编码的信道并基于该信道恢复出空间流的具体技术细节可参考现有技术,相关内容在现有技术中已经进行了清楚的描述,本申请实施例在此不再赘述。
步骤416、接收端设备根据至少两个第一预处理空间流恢复出第一原始空间流。
接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流后,由于该至少两个第一预处理空间流是第一发射端设备对第一原始空间流进行预处理得到的,因此,接收端设备可以根据该至少两个第一预处理空间流恢复出第一原始空间流。具体地,接收端设备可以先确定至少两个第一预处理空间流对应的预处理方式,进而根据至少两个第一预处理空间流和该至少两个第一预处理空间流对应的预处理方式恢复出第一原始空间流。其中,根据步骤404中的描述可知,至少两个第一预处理空间流对应的预处理方式是接收端设备为第一发射端设备指定的,因此,接收端设备可以根据自身对第一发射端设备的指定,来确定至少两个第一预处理空间流对应的预处理方式。可选地,该至少两个第一预处理空间流对应的预处理方式可以为空时发射分集处理,接收端设备根据第一预处理空间流11、第一预处理空间流12、第一预处理空间流13和空时发射分集处理,恢复出第一原始空间流1。
步骤417、接收端设备根据至少两个第二预处理空间流恢复出第二原始空间流。
接收端设备从多个预编码数据流中恢复出至少两个第二预处理空间流后,由于该至少两个第二预处理空间流是第二发射端设备对第二原始空间流进行预处理得到的,因此,接收端设备可以根据该至少两个第二预处理空间流恢复出第二原始空间流。具体地,接收端设备可以先确定至少两个第二预处理空间流对应的预处理方式,进而根据至少两个第二预处理空间流和该至少两个第二预处理空间流对应的预处理方式恢复出第二原始空间流。其中,根据步骤405中的描述可知,至少两个第二预处理空间流对应的预处理方式是接收端设备为第二发射端设备指定的,因此,接收端设备可以根据自身对第二发射端设备的指定, 来确定至少两个第二预处理空间流对应的预处理方式。可选地,该至少两个第二预处理空间流对应的预处理方式可以为基于发射分集的空分复用处理,接收端设备根据第二预处理空间流21、第二预处理空间流22和空时发射分集处理,恢复出第二原始空间流2。
需要补充说明的是,本申请实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减、合并、分割等,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的数据传输方法,发射端设备对至少两个第一预处理空间流进行预编码得到多个预编码数据流并发射该多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流,由于至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,因此,多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
在LTE或者LTE-A中,发射端设备的天线数量与接收端设备的天线数量都在继续快速增长中,天线数量的增长可以提供更高的空间自由度,这为上行的多样性传输方案提供了可能性,本申请实施例提供的数据传输方法,基于上行的多样性传输方案,使不同UE采用不同的传输方案进行数据传输,提高了调度的灵活性,且可以使不同UE进行时频资源的空分复用。
本申请实施例提供的数据传输方法,通过同时对原始空间流进行预处理和预编码,可以提高发射端设备和/或接收端设备的beamforming(中文:波束赋形)增益。
以下结合图4-2至图4-4对现有技术中提供的数据传输方法与本申请实施例提供的数据传输方法的区别进行简单说明。其中,图4-2是现有技术提供的一种数据传输方法的示意图,图4-3是现有技术提供的另一种数据传输方法的示意图,图4-4是本申请实施例提供的一种数据传输方法的示意图。
参见图4-2,现有技术中,基站01调度UE-02(图4-2中未示出)采用OLTD传输方案进行数据传输时,OLTD传输方案形成小区级的信号覆盖,导致UE-02独占了基站01的波束b(例如,UE-02可以采用波束b进行小区级或扇区级覆盖),进而导致基站01所服务的UE中除该UE-02之外的UE无法使用该波束b,因此,UE-02采用OLTD传输方案进行数据传输时,基站01所服务的不同UE无法进行时频资源的空分复用,时频资源的利用率较低,频谱效率较低,影响系统的吞吐量。
参见图4-3,现有技术中,基站01具有波束b1、波束b2、波束b3、波束b4、波束b5和波束b6(该波束b1、波束b2、波束b3、波束b4、波束b5和波束b6可以是预编码形成的波束,也即是,该波束b1、波束b2、波束b3、波束b4、波束b5和波束b6中的每个波束可以对应一个预编码向量),且基站01还可以具有端口号分别为x,x+1,…,y的DMRS端口(典型的,标准中的端口号为连续的),基站01可以调度UE-02、UE-03和UE-04采用传输方案进行数据传输。现有技术中,基站01调度UE-02、UE-03和UE-04采用相同的传输方案进行数据传输,并为各个UE分配DMRS端口。例如,基站01调度UE-02、UE-03和UE-04都采用CLSM传输方案进行数据传输并将端口号为x和x+1的DMRS端口分配给UE-02,将端口号为x+2和x+3的DMRS端口分配给UE-03,将端口号为x+4,…,y的DMRS端口分配给UE-04,基站01调度UE并为各个UE分配DMRS端口后,各个UE采用相同的传输方案进行数据传输。示例地,基站01与UE-02、UE-03和UE-04都采用CLSM传输方案进行数据传输,且UE-02占用基站01的波束b1和波束b2,UE-03占用基站01的波束b3和波束b4,UE-04占用基站01的波束b5和波束b6。基站01调度UE-02、UE-03 和UE-04都采用CLSM传输方案进行数据传输时,可以实现时频资源的空分复用,提高系统的频谱效率,但是,由于基站01调度UE-02、UE-03和UE-04都采用CLSM传输方案进行数据传输,因此,基站01调度的灵活性较低,且当信道环境多样化时,无法达到最佳调度结果,影响频谱效率。
参见图4-4,在本申请实施例中,基站01具有波束b1、波束b2、波束b3、波束b4、波束b5和波束b6(该波束b1、波束b2、波束b3、波束b4、波束b5和波束b6可以是预编码形成的波束,也即是,该波束b1、波束b2、波束b3、波束b4、波束b5和波束b6中的每个波束可以对应一个预编码向量),且基站01还可以具有端口号分别为x,x+1,…,y的DMRS端口(典型的,标准中的端口号为连续的),基站01可以通过下行信令指示UE-02、UE-03和UE-04采用相应的传输方案进行数据传输,且基站01可以为各个UE分配DMRS端口,其中,基站01可以采用下行信令的格式指示传输方案,也可以采用下行信令的内容指示传输方案。例如,基站01通过下行信令指示UE-02采用BTD传输方案进行数据传输并将端口号为x和x+1的DMRS端口分配给UE-02,基站01通过下行信令指示UE-03采用基于CDD的空分复用传输方案进行数据传输并将端口号为x和x+2的DMRS端口分配给UE-03,基站01通过下行信令指示UE-04采用CLSM传输方案进行数据传输并将端口号为x和y的DMRS端口分配给UE-04,UE可以采用相应的传输方案进行数据传输。示例地,基站01与UE-02之间采用BTD传输方案进行数据传输占用基站01的波束b1和波束b2,基站01与UE-03之间采用基于CDD的空分复用传输方案进行数据传输占用基站01的波束b3和波束4,基站01与UE-04之间采用CLSM传输方案进行数据传输占用基站01的波束b5和波束b6。由于UE-02、UE-03和UE-04采用不同的传输方案进行数据传输,因此,基站01调度的灵活性较高,且当信道环境多样化时,可以达到最佳调度结果,提高频谱效率。
需要说明的是,在本申请实施例中,采用BTD传输方案和基于CDD的空分复用传输方案进行数据传输时,相应的发射端设备需要对原始空间流进行预处理,因此,为了便于UE-02和UE-03对原始空间流进行预处理,基站01还需要通过下行信令向UE-02和UE-03指示相应的预处理方式,示例地,基站通过下行信令向UE-02指示SFBC,向UE-03指示CDD。
还需要说明的是,在本申请实施例中,基站01为UE-02、UE-03和UE-04分配的DMRS端口中都存在端口号为x的DMRS端口,也即是,此时UE-02、UE-03和UE-04采用同一个DMRS端口进行数据传输,此时,该UE-02、UE-03和UE-04中,不同UE的导频(DMRS)可以采用指定序列进行区分,该指定序列如Z-C序列,具体的区分过程可以参考现有技术,本申请实施例在此不再赘述。
下述为本申请的设备实施例,可以用于执行本申请方法实施例。对于本申请设备实施例中未披露的细节,请参照本申请方法实施例。
请参考图5-1,其示出了本申请实施例提供的一种发射端设备500的框图。该发射端设备500可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的任一UE(例如,UE-02)的部分或者全部。参见图5-1,该发射端设备500可以包括但不限于:
第一预编码模块510,用于对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
第一发射模块520,用于发射多个预编码数据流。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理和空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
可选地,第一预编码模块510,用于采用单位矩阵对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,单位矩阵的列向量为至少两个第一预处理空间流的预编码向量。
可选地,至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量的DMRS序列不同;
请参考图5-2,其示出了本申请实施例提供的另一种发射端设备500的框图,参见图5-2,在图5-1的基础上,该发射端设备500还包括:
第二预编码模块530,用于对至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,至少两个第一预处理空间流中的每个第一预处理空间流对应一个解调参考信号;
第二发射模块540,用于发射多个预编码解调参考信号。
综上所述,本申请实施例提供的发射端设备,通过对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,发射多个预编码数据流,使得多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
请参考图6-1,其示出了本申请实施例提供的一种接收端设备600的框图。该接收端设备600可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的基站01的部分或者全部。参见图6-1,该发射端设备600可以包括但不限于:
第一接收模块610,用于接收多个预编码数据流,多个预编码数据流是对多个空间流进行预编码得到的,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
第一恢复模块620,用于从多个预编码数据流中恢复出至少两个第一预处理空间流;
第二恢复模块630,用于根据至少两个第一预处理空间流恢复出第一原始空间流。
可选地,至少两个第一预处理空间流来自第一发射端设备。
可选地,多个空间流还包括:至少两个第二预处理空间流,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,第二原始空间流来自第二发射端设备,
请参考图6-2,其示出了本申请实施例提供的另一种接收端设备600的框图,参见图6-2,在图6-1的基础上,该接收端设备600还包括:
第三恢复模块640,用于从多个预编码数据流中恢复出至少两个第二预处理空间流;
第四恢复模块650,用于根据至少两个第二预处理空间流恢复出第二原始空间流。
可选地,多个空间流还包括至少一个原始空间流,至少一个原始空间流来自第三发射端设备,请继续参考图6-2,该接收端设备600还包括:
第五恢复模块660,用于从多个预编码数据流中恢复出至少一个原始空间流。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理或空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
可选地,多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS资源,不同的预编码向量对应的DMRS资源不同,请继续参考图6-2,该接收端设备600还包括:
第二接收模块670,用于接收多个预编码解调参考信号,多个预编码解调参考信号是对多个空间流的解调参考信号进行预编码得到的,多个空间流中的每个空间流对应一个解调参考信号;
第一恢复模块620,用于根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流;
第三恢复模块640,用于根据至少两个第二预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第二预处理空间流;
第五恢复模块660,用于根据至少一个原始空间流的预编码解调参考信号从多个预编码数据流中恢复出至少一个原始空间流。
可选地,DMRS资源包括:DMRS端口和指定序列中的至少一种。
综上所述,本申请实施例提供的接收端设备,通过接收多个预编码数据流,从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流,由于至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,因此,多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
需要说明的是:上述实施例提供的发射端设备和接收端设备在传输数据时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的发射端设备、接收端设备和数据传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
请参考图7,其示出了本申请实施例提供的一种发射端设备700的框图。该发射端设备700可以为图1所示实施环境中的任一UE(例如,UE-02),用于执行图4-1所示实施例提供的部分方法以及图2所示实施例提供的全部方法。参见图7,该发射端设备700可以包括:处理器710、发射机720、存储器730和网络接口740,处理器710、发射机720、存储器730和网络接口740之间通过总线750连接。
处理器710包括一个或者一个以上处理核心。处理器710通过运行软件程序以及单元,从而执行各种功能应用以及数据处理。
网络接口740可以为多个,该网络接口740用于该发射端设备700与其它存储设备或者网络设备进行通信。其中,网络接口740是可选地,实际应用中,发射端设备700可以通过发射机720与其它存储设备或者网络设备进行通信,所以,发射端设备700中可以没有网络接口,本申请实施例对此不作限定。
处理器710,用于对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
发射机720,用于发射多个预编码数据流。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理和空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
可选地,处理器710,用于采用单位矩阵对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,单位矩阵的列向量为至少两个第一预处理空间流的预编码向量。
可选地,至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量的DMRS序列不同;
处理器710,用于对至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,至少两个第一预处理空间流中的每个第一预处理空间流对应一个解调参考信号;
发射机720,用于发射多个预编码解调参考信号。
综上所述,本申请实施例提供的发射端设备,通过对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,发射多个预编码数据流,使得多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
请参考图8,其示出了本申请实施例提供的一种接收端设备800的框图。该接收端设备800可以为图1所示实施环境中的基站01,用于执行图4-1所示实施例提供的部分方法以及图3所示实施例提供的全部方法。参见图8,该接收端设备800可以包括:接收机810、处理器820、存储器830和网络接口840,接收机810、处理器820、存储器830和网络接口840之间通过总线850连接。
处理器820包括一个或者一个以上处理核心。处理器820通过运行软件程序以及单元,从而执行各种功能应用以及数据处理。
网络接口840可以为多个,该网络接口840用于该接收端设备800与其它存储设备或者网络设备进行通信。其中,网络接口840是可选地,实际应用中,接收端设备800可以通过接收机810与其它存储设备或者网络设备进行通信,所以,接收端设备800中可以没有网络接口,本申请实施例对此不作限定。
接收机810,用于接收多个预编码数据流,多个预编码数据流是对多个空间流进行预编码得到的,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
处理器820,用于从多个预编码数据流中恢复出至少两个第一预处理空间流;
处理器820,用于根据至少两个第一预处理空间流恢复出第一原始空间流。
可选地,至少两个第一预处理空间流来自第一发射端设备。
可选地,多个空间流还包括:至少两个第二预处理空间流,至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,第二原始空间流来自第二发射端设备,
处理器820,用于从多个预编码数据流中恢复出至少两个第二预处理空间流;
处理器820,用于根据至少两个第二预处理空间流恢复出第二原始空间流。
可选地,多个空间流还包括至少一个原始空间流,至少一个原始空间流来自第三发射端设备,
处理器820,用于从多个预编码数据流中恢复出至少一个原始空间流。
可选地,预处理包括发射分集处理。
可选地,发射分集处理包括空时发射分集处理、空频发射分集处理或空时频发射分集处理中的任意一种。
可选地,发射分集处理包括循环延迟发射分集处理。
可选地,发射分集处理包括开环发射分集处理。
可选地,预处理包括基于发射分集的空分复用处理。
可选地,多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS资源,不同的预编码向量对应的DMRS资源不同,
接收机810,用于接收多个预编码解调参考信号,多个预编码解调参考信号是对多个空间流的解调参考信号进行预编码得到的,多个空间流中的每个空间流对应一个解调参考信号;
处理器820,用于根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流;
处理器820,用于根据至少两个第二预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第二预处理空间流;
处理器820,用于根据至少一个原始空间流的预编码解调参考信号从多个预编码数据流中恢复出至少一个原始空间流。
可选地,DMRS资源包括:DMRS端口和指定序列中的至少一种。
综上所述,本申请实施例提供的接收端设备,通过接收多个预编码数据流,从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流,由于至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,因此,多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
请参考图9,其示出了本申请实施例提供的一种数据传输系统900结构示意图。参见图9,该数据传输系统900可以包括:发射端设备910和接收端设备920。
在一种可能的实现方式中,发射端设备910为图5-1或图5-2所示的发射端设备500;接收端设备920为图6-1或图6-2所示的接收端设备600;
在另一种可能的实现方式中,发射端设备910为7所示的发射端设备700;接收端设备920为图8所示的接收端设备800。
综上所述,本申请实施例提供的数据传输系统,发射端设备对至少两个第一预处理空间流进行预编码得到多个预编码数据流并发射该多个预编码数据流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流,由于至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,因此,多个UE可以进行时频资源的空分复用,有助于解决现有技术中多个UE无法进行时频资源的空分复用,影响系统的吞吐量的问题,提高系统的吞吐量。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行图2所示实施例提供的数据发送方法和图4-1所示实施例提供的数据传输方法的相关步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行图3所示实施例提供的数据接收方法和图4-1所示实施例提供的数据传输方法的相关步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图2所示实施例提供的数据发送方法和图4-1所示实施例提供的数据传输方法的相关步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算 机上运行时,使得计算机执行图3所示实施例提供的数据接收方法和图4-1所示实施例提供的数据传输方法的相关步骤。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (46)

  1. 一种数据发送方法,其特征在于,所述方法包括:
    对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    发射所述多个预编码数据流。
  2. 根据权利要求1所述的方法,其特征在于,所述预处理包括发射分集处理。
  3. 根据权利要求2所述的方法,其特征在于,所述发射分集处理包括空时发射分集处理、空频发射分集处理和空时频发射分集处理中的任意一种。
  4. 根据权利要求2所述的方法,其特征在于,所述发射分集处理包括循环延迟发射分集处理。
  5. 根据权利要求2所述的方法,其特征在于,所述发射分集处理包括开环发射分集处理。
  6. 根据权利要求1所述的方法,其特征在于,所述预处理包括基于发射分集的空分复用处理。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,包括:
    采用单位矩阵对所述至少两个第一预处理空间流进行预编码,得到所述多个预编码数据流,所述单位矩阵的列向量为所述至少两个第一预处理空间流的预编码向量。
  8. 根据权利要求1至7任一所述的方法,其特征在于,
    所述至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量的DMRS序列不同;
    所述方法还包括:
    对所述至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,所述至少两个第一预处理空间流中的每个第一预处理空间流对应一个所述解调参考信号;
    发射所述多个预编码解调参考信号。
  9. 一种数据接收方法,其特征在于,所述方法包括:
    接收多个预编码数据流,所述多个预编码数据流是对多个空间流进行预编码得到的,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流;
    根据所述至少两个第一预处理空间流恢复出所述第一原始空间流。
  10. 根据权利要求9所述的方法,其特征在于,所述至少两个第一预处理空间流来自第一发射端设备。
  11. 根据权利要求9所述的方法,其特征在于,所述多个空间流还包括:至少两个第二 预处理空间流,所述至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,所述第二原始空间流来自第二发射端设备,所述方法还包括:
    从所述多个预编码数据流中恢复出所述至少两个第二预处理空间流;
    根据所述至少两个第二预处理空间流恢复出所述第二原始空间流。
  12. 根据权利要求9所述的方法,其特征在于,所述多个空间流还包括至少一个原始空间流,所述至少一个原始空间流来自第三发射端设备,所述方法还包括:
    从所述多个预编码数据流中恢复出所述至少一个原始空间流。
  13. 根据权利要求9至12任一所述的方法,其特征在于,所述预处理包括发射分集处理。
  14. 根据权利要求13所述的方法,其特征在于,所述发射分集处理包括空时发射分集处理、空频发射分集处理或空时频发射分集处理中的任意一种。
  15. 根据权利要求13所述的方法,其特征在于,所述发射分集处理包括循环延迟发射分集处理。
  16. 根据权利要求13所述的方法,其特征在于,所述发射分集处理包括开环发射分集处理。
  17. 根据权利要求9至12任一所述的方法,其特征在于,所述预处理包括基于发射分集的空分复用处理。
  18. 根据权利要求9至17任一所述的方法,其特征在于,
    所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS资源,不同的预编码向量对应的DMRS资源不同,
    所述方法还包括:
    接收多个预编码解调参考信号,所述多个预编码解调参考信号是对所述多个空间流的解调参考信号进行预编码得到的,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    所述从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流,包括:
    根据所述至少两个第一预处理空间流的预编码解调参考信号从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流。
  19. 根据权利要求18所述的方法,其特征在于,所述DMRS资源包括:DMRS端口和指定序列中的至少一种。
  20. 一种发射端设备,其特征在于,所述发射端设备包括:
    第一预编码模块,用于对至少两个第一预处理空间流进行预编码,得到多个预编码数据流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    第一发射模块,用于发射所述多个预编码数据流。
  21. 根据权利要求20所述的发射端设备,其特征在于,所述预处理包括发射分集处理。
  22. 根据权利要求21所述的发射端设备,其特征在于,所述发射分集处理包括空时发射分集处理、空频发射分集处理和空时频发射分集处理中的任意一种。
  23. 根据权利要求21所述的发射端设备,其特征在于,所述发射分集处理包括循环延迟 发射分集处理。
  24. 根据权利要求21所述的发射端设备,其特征在于,所述发射分集处理包括开环发射分集处理。
  25. 根据权利要求20所述的发射端设备,其特征在于,所述预处理包括基于发射分集的空分复用处理。
  26. 根据权利要求20至25任一所述的发射端设备,其特征在于,
    所述第一预编码模块,用于采用单位矩阵对所述至少两个第一预处理空间流进行预编码,得到所述多个预编码数据流,所述单位矩阵的列向量为所述至少两个第一预处理空间流的预编码向量。
  27. 根据权利要求20至26任一所述的发射端设备,其特征在于,
    所述至少两个第一预处理空间流中不同的第一预处理空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,或者,至少两个预编码向量对应的DMRS端口相同,对应同一DMRS端口的预编码向量的DMRS序列不同;
    所述发射端设备还包括:
    第二预编码模块,用于对所述至少两个第一预处理空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,所述至少两个第一预处理空间流中的每个第一预处理空间流对应一个所述解调参考信号;
    第二发射模块,用于发射所述多个预编码解调参考信号。
  28. 一种接收端设备,其特征在于,所述接收端设备包括:
    第一接收模块,用于接收多个预编码数据流,所述多个预编码数据流是对多个空间流进行预编码得到的,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    第一恢复模块,用于从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流;
    第二恢复模块,用于根据所述至少两个第一预处理空间流恢复出所述第一原始空间流。
  29. 根据权利要求28所述的接收端设备,其特征在于,所述至少两个第一预处理空间流来自第一发射端设备。
  30. 根据权利要求28所述的接收端设备,其特征在于,所述多个空间流还包括:至少两个第二预处理空间流,所述至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,所述第二原始空间流来自第二发射端设备,所述接收端设备还包括:
    第三恢复模块,用于从所述多个预编码数据流中恢复出所述至少两个第二预处理空间流;
    第四恢复模块,用于根据所述至少两个第二预处理空间流恢复出所述第二原始空间流。
  31. 根据权利要求28所述的接收端设备,其特征在于,所述多个空间流还包括至少一个原始空间流,所述至少一个原始空间流来自第三发射端设备,所述接收端设备还包括:
    第五恢复模块,用于从所述多个预编码数据流中恢复出所述至少一个原始空间流。
  32. 根据权利要求28至31任一所述的接收端设备,其特征在于,所述预处理包括发射分集处理。
  33. 根据权利要求32所述的接收端设备,其特征在于,所述发射分集处理包括空时发射分集处理、空频发射分集处理或空时频发射分集处理中的任意一种。
  34. 根据权利要求32所述的接收端设备,其特征在于,所述发射分集处理包括循环延迟发射分集处理。
  35. 根据权利要求32所述的方法,其特征在于,所述发射分集处理包括开环发射分集处理。
  36. 根据权利要求28至31任一所述的接收端设备,其特征在于,所述预处理包括基于发射分集的空分复用处理。
  37. 根据权利要求28至36任一所述的接收端设备,其特征在于,
    所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS资源,不同的预编码向量对应的DMRS资源不同,所述接收端设备还包括:
    第二接收模块,用于接收多个预编码解调参考信号,所述多个预编码解调参考信号是对所述多个空间流的解调参考信号进行预编码得到的,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    所述第一恢复模块,用于根据所述至少两个第一预处理空间流的预编码解调参考信号从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流。
  38. 根据权利要求37所述的接收端设备,其特征在于,所述DMRS资源包括:DMRS端口和指定序列中的至少一种。
  39. 一种数据传输系统,其特征在于,所述数据传输系统包括:权利要求20至27任一所述的发射端设备;和,权利要求28至38任一所述的接收端设备。
  40. 一种发射端设备,其特征在于,所述发射端设备包括:处理器、网络接口、存储器以及总线,所述存储器与所述网络接口分别通过所述总线和所述处理器相连,所述处理器被配置为执行所述存储器中存储的指令,所述处理器通过执行指令来实现权利要求1至8任一所述的数据发送方法。
  41. 一种接收端设备,其特征在于,所述接收端设备包括:处理器、网络接口、存储器以及总线,所述存储器与所述网络接口分别通过所述总线和所述处理器相连,所述处理器被配置为执行所述存储器中存储的指令,所述处理器通过执行指令来实现权利要求9至19任一所述的数据接收方法。
  42. 一种数据传输系统,其特征在于,所述数据传输系统包括:权利要求40所述的发射端设备;和,权利要求41所述的接收端设备。
  43. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得所述计算机执行利要求1至8任一所述的数据发送方法。
  44. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得所述计算机执行利要求9至19任一所述的数据接收方法。
  45. 一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行利要求1至8任一所述的数据发送方法。
  46. 一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行利要求9至19任一所述的数据接收方法。
PCT/CN2017/098288 2016-09-21 2017-08-21 数据发送方法、数据接收方法、设备及系统、存储介质 WO2018054188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17852257.9A EP3503424B1 (en) 2016-09-21 2017-08-21 Data transmitting and receiving methods, devices and systems, and storage medium
US16/361,193 US20190222373A1 (en) 2016-09-21 2019-03-21 Data sending method, data receiving method, device, system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610839205.8A CN107863995B (zh) 2016-09-21 2016-09-21 数据发送方法、数据接收方法、设备及系统
CN201610839205.8 2016-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/361,193 Continuation US20190222373A1 (en) 2016-09-21 2019-03-21 Data sending method, data receiving method, device, system, and storage medium

Publications (1)

Publication Number Publication Date
WO2018054188A1 true WO2018054188A1 (zh) 2018-03-29

Family

ID=61690176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098288 WO2018054188A1 (zh) 2016-09-21 2017-08-21 数据发送方法、数据接收方法、设备及系统、存储介质

Country Status (4)

Country Link
US (1) US20190222373A1 (zh)
EP (1) EP3503424B1 (zh)
CN (1) CN107863995B (zh)
WO (1) WO2018054188A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258574B2 (en) * 2017-03-31 2022-02-22 Nec Corporation Methods and apparatuses for reference signal allocation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093062A1 (en) * 2004-11-04 2006-05-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
CN101115045A (zh) * 2006-07-28 2008-01-30 华为技术有限公司 一种多天线发射方法及装置
CN101584141A (zh) * 2006-11-30 2009-11-18 诺基亚西门子通信有限责任两合公司 Sc-fdma系统中的自适应调制与编码
CN101771648A (zh) * 2009-01-06 2010-07-07 中兴通讯股份有限公司 一种多天线信号处理系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
CN101057417B (zh) * 2004-09-03 2013-05-08 高通股份有限公司 用于使用发射分集方案进行空间扩展的设备和方法
US9806785B2 (en) * 2006-04-28 2017-10-31 Apple Inc. Rank adaptive transmission methods and apparatuses
US8160177B2 (en) * 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
US8379751B2 (en) * 2007-09-19 2013-02-19 Agency For Science, Technology And Research Method of transmitting data to a receiver
JP5372963B2 (ja) * 2009-01-07 2013-12-18 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
US10638464B2 (en) * 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
CN107733511B (zh) * 2012-01-21 2021-02-26 华为技术有限公司 数据的传输方法及装置
US9351228B2 (en) * 2012-09-26 2016-05-24 Optis Cellular Technology, Llc Metric computation for interference-aware routing
US9923666B2 (en) * 2014-10-01 2018-03-20 Qualcomm, Incorporated Encoding in uplink multi-user MIMO and OFDMA transmissions
CN107733492B (zh) * 2016-08-10 2020-09-04 华为技术有限公司 数据发送、接收方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093062A1 (en) * 2004-11-04 2006-05-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
CN101115045A (zh) * 2006-07-28 2008-01-30 华为技术有限公司 一种多天线发射方法及装置
CN101584141A (zh) * 2006-11-30 2009-11-18 诺基亚西门子通信有限责任两合公司 Sc-fdma系统中的自适应调制与编码
CN101771648A (zh) * 2009-01-06 2010-07-07 中兴通讯股份有限公司 一种多天线信号处理系统及方法

Also Published As

Publication number Publication date
EP3503424A1 (en) 2019-06-26
EP3503424B1 (en) 2021-08-18
CN107863995B (zh) 2020-09-11
EP3503424A4 (en) 2019-07-10
US20190222373A1 (en) 2019-07-18
CN107863995A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
US10454652B2 (en) Methods of enabling multiuser superposition transmission
US10027391B2 (en) Transmit diversity on a control channel without additional reference signals
JP5236753B2 (ja) 開ループ空間多重化モードでの信号送受信方法
KR101582685B1 (ko) 다중안테나를 이용한 데이터 전송장치 및 방법
WO2018028309A1 (zh) 传输方案指示方法、数据传输方法、装置及系统
JP5478780B2 (ja) データ送受信用の複数のサービス・アンテナを有するmimoシステムおよびその方法
CN107733492B (zh) 数据发送、接收方法和装置
WO2019047705A1 (zh) 通信方法、网络设备、终端设备和系统
CN106374985B (zh) 一种多用户数据的发送接收方法及装置
CN103516486A (zh) 基于矢量选择调制的多天线传输方法、接收方法和装置
WO2018054188A1 (zh) 数据发送方法、数据接收方法、设备及系统、存储介质
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
WO2018036246A1 (zh) 数据发送方法、数据接收方法、设备及系统
KR101422026B1 (ko) 다중 입출력 시스템에서, 신호를 송수신하는 방법
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置
WO2011072553A1 (zh) 一种多用户复用方法及发射装置
KR20230168146A (ko) 무선 통신 시스템에서 데이터 송신 방법 및 장치
WO2010000095A1 (zh) 利用预编码解相关进行开环空间复用的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852257

Country of ref document: EP

Effective date: 20190320