WO2018054150A1 - 水分含量检测、控制和监控系统 - Google Patents

水分含量检测、控制和监控系统 Download PDF

Info

Publication number
WO2018054150A1
WO2018054150A1 PCT/CN2017/093237 CN2017093237W WO2018054150A1 WO 2018054150 A1 WO2018054150 A1 WO 2018054150A1 CN 2017093237 W CN2017093237 W CN 2017093237W WO 2018054150 A1 WO2018054150 A1 WO 2018054150A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
moisture content
signal
detector
sample
Prior art date
Application number
PCT/CN2017/093237
Other languages
English (en)
French (fr)
Inventor
李辰
丁庆
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹系统设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹系统设备有限公司 filed Critical 华讯方舟科技有限公司
Priority to EP17852220.7A priority Critical patent/EP3517935A4/en
Publication of WO2018054150A1 publication Critical patent/WO2018054150A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for

Definitions

  • the invention relates to the field of terahertz detection technology, in particular to a moisture content detection, control and monitoring system.
  • moisture content is a key factor in determining product quality, not only affecting the physical and chemical properties of the product, such as weight, density, viscosity, refractive index, water activity, electrical conductivity, etc., but also related to the processing properties of the product, Commercialization requirements, legality, etc.
  • the moisture content detection system can not only carry out control analysis in industrial production, but also measure product quality. Under the increasingly strict development of quality inspection, the detection of moisture content has become an important indicator to measure product quality, and has been widely used in medicine, Food, tobacco, paper, plastics, textile and other industries.
  • the moisture content detection system can be divided into physical measurement methods and chemical measurement methods according to the measurement principle.
  • Physical measurement methods commonly used are weight loss method, distillation layering method, gas chromatography analysis method, etc.
  • the chemical measurement methods mainly include Karl Fischer method, toluene method and the like. Among them, the Karl Fischer method has been listed as an international standard method for moisture determination in many substances, and the development of detection instruments other than the volume method and the Coulomb method.
  • the object of the present invention is to provide a moisture content detecting, controlling and monitoring system, which can perform moisture content detection in real time and accurately, and has high signal to noise ratio and stability.
  • a moisture content detecting system comprising a moisture meter system component, a lens assembly and a signal analysis component; the moisture meter system component comprising a light source component, a terahertz radiator, a first terahertz detector and a second a terahertz detector, the signal analysis component comprising a bias signal generator and a signal processing device;
  • the light source assembly is configured to generate a laser beat frequency beam, and the generated laser beat frequency beam is split into a terahertz radiator, a first terahertz detector, and a second terahertz detector;
  • the terahertz radiator radiates a terahertz signal under the action of an incident laser beat beam and an electric field of the bias signal generator, a portion of the radiated terahertz signal being transmitted and/or reflected back to the a first terahertz detector, another portion of the radiated terahertz signal being transmitted and/or reflected by the lens assembly and reflected from the sample to be tested is returned to the second terahertz detector;
  • the first terahertz detector obtains a reference electrical signal under the action of the incident laser beat beam and the returned terahertz signal
  • the second terahertz detector is at the incident laser beat beam and the returned terahertz signal
  • a sample electrical signal is obtained under the action of the sample, and the reference electrical signal and the sample electrical signal are input to the signal processing device for detecting the water content of the sample to be tested.
  • the moisture meter system component comprising the light source component, the terahertz radiator, the first terahertz detector and the second The Hertz detector
  • the signal analysis component comprises a bias signal generator and a signal processing device, wherein the laser beat beam generated by the light source assembly is split into a terahertz radiator, a first terahertz detector and a second terahertz detector,
  • the terahertz radiator radiates the terahertz signal under the action of the incident laser beat beam and the electric field of the bias signal generator, and the portion of the radiated terahertz signal is transmitted through the lens assembly and/or reflected back to the first The Hertz detector, another portion of the radiated terahertz signal is transmitted and/or reflected by the lens assembly and the reflection of the sample to be tested is returned to the second terahertz detector such that
  • a moisture content control system comprising a microcomputer and a moisture content detecting system as described above, the microcomputer is connected to a signal processing device of the moisture content detecting system, and the microcomputer is further connected to a pipeline control device;
  • the signal processing device is configured to feed back the detected water content value of the sample to be tested to the microcomputer;
  • the microcomputer is configured to compare the water content value with a preset moisture content threshold value, obtain a comparison result, and determine, according to the comparison result, whether the sample to be tested needs to be further subjected to a dehydration operation, and obtain a determination result, according to The determination result generates an instruction and sends the instruction to the pipeline control device;
  • the pipeline control device is configured to control a running direction of the corresponding pipeline according to the instruction.
  • the moisture content control system of the present invention since it has the above-described moisture content detecting system, it is also possible to perform moisture content detection in real time and accurately, and the signal-to-noise ratio and stability are high, and since The water content value is compared with a preset moisture content threshold value, and based on the comparison result, it is judged whether the sample to be tested needs to be further subjected to a dehydration operation, and an instruction is generated based on the determination result and sent to the pipeline control device to control the operation of the corresponding pipeline.
  • the automatic control of the pipeline can be realized based on the moisture content value detected by the moisture content detection system.
  • a moisture content monitoring system comprising a data storage server and a moisture content detecting system as described above, the data storage server being coupled to a signal processing device of the moisture content detecting system;
  • the signal processing device is configured to upload the water content value monitored at each time to the data storage server in real time.
  • the moisture content monitoring system of the present invention since it has the above-described moisture content detecting system, it is also possible to perform moisture content detection in real time and accurately, and the signal-to-noise ratio and stability are high, and at the same time,
  • the moisture content value monitored at any time is uploaded to the data storage server in real time, which can facilitate the pipeline manager to understand the control behavior of the pipeline device by viewing the real-time moisture content change curve in the production process through various terminal programs.
  • data can be analyzed on the data stored in the data storage server (water content value at each moment), and the manufacturing process can be adjusted to improve production efficiency.
  • FIG. 1 is a schematic structural view of a moisture content detecting system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the refinement structure of the moisture meter system assembly of FIG. 1 in one embodiment
  • FIG. 3 is a schematic diagram showing the refinement structure of the lens assembly of FIG. 1 in one embodiment and the connection relationship with some devices in the moisture meter system assembly;
  • FIG. 4 is a schematic diagram 1 showing the working principle of the moisture content detecting system according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the working principle of the moisture content detecting system and the detailed composition structure of the signal analyzing component according to the first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a moisture content control system according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an application of a moisture content control system according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a moisture content monitoring system according to a third embodiment of the present invention.
  • Terahertz radiation refers to electromagnetic radiation having a frequency between 0.1 THz and 10 THz, which has good permeability to many dielectric materials and non-polar materials, especially its strong absorption properties for water. Since water is a polar molecule, the absorption of terahertz radiation by water is much higher than that of other non-polar molecular components. Therefore, in the embodiment of the present invention, terahertz radiation is used for moisture determination, and the signal-to-noise ratio and stability are superior to the microwave detection mode and the near-infrared detection mode. By using terahertz radiation for moisture determination, non-destructive, real-time and accurate moisture content monitoring can be carried out during the production process quality monitoring and finished product grading, ensuring product quality and processing performance. The various embodiments of the inventive arrangements are described in detail below.
  • the moisture content detecting system of the first embodiment of the present invention includes a moisture meter system component 10, a lens assembly 11 and a signal analysis component 12, and the moisture meter system component 10 includes a light source component 101 and is respectively connected to the light source component 101.
  • the moisture meter system component 10 includes a light source component 101 and is respectively connected to the light source component 101.
  • the detector 104, the signal analysis component 12 includes a bias signal generator 121 and a signal processing device 122.
  • the lens assembly 11 is disposed between the terahertz radiator 102, the first terahertz detector 103 and the second terahertz detector 104, and the terahertz radiator 102 is connected to the bias signal generator 121; the first terahertz detector 103 and The second terahertz detectors 104 are coupled to the signal processing device 122, respectively.
  • the lens assembly may include one or more of a parabolic mirror, a beam splitter, a plane mirror, and a lens.
  • the number of each of the parabolic mirror, the beam splitter, the plane mirror, and the lens may be one or more, respectively. .
  • the light source assembly 101 is used to generate the laser beat frequency beam, and the generated laser beat frequency beam is split into the terahertz radiator 102, the first terahertz detector 103 and the second terahertz detector 104;
  • the terahertz radiator 102 radiates a terahertz signal into the lens assembly 11 under the action of the incident laser beat frequency and the electric field provided by the bias signal generator 121; a portion of the radiated terahertz signal is transmitted through the lens assembly 11 and/or The reflection is returned to the first terahertz detector 103; another portion of the radiated terahertz signal is transmitted and/or reflected by the lens assembly 11 and the reflection of the sample to be tested (not shown in FIG. 1) is returned to the second terahertz detector 104.
  • the first terahertz detector 103 obtains a reference electrical signal under the action of the incident laser beat beam and the returned terahertz signal, and the second terahertz detector 104 acts on the incident laser beat beam and the returned terahertz signal.
  • a sample electrical signal is obtained, and the reference electrical signal and the sample electrical signal are input to the signal processing device 122 for detecting the water content of the sample to be tested.
  • the moisture content in the sample to be tested can be obtained in real time, and further, since the beam splitting to the terahertz radiator 102, the first terahertz detector 103 and the second terahertz detector 104 are all from the light source assembly. 101, the hardware cost can be saved, and the frequencies of the laser beams split to the terahertz radiator 102, the first terahertz detector 103, and the second terahertz detector 104 are the same, which can improve the accuracy of detection, and at the same time, It is based on the terahertz radiation signal for moisture detection, and the signal-to-noise ratio and stability are high.
  • FIG. 2 a schematic diagram of the refinement structure of the moisture meter system component 10 in one embodiment
  • FIG. 2 shows a schematic structural diagram of a preferred example of the moisture meter system component 10 according to different considerations.
  • all of the components shown in FIG. 2 may be included, or only a part of the components shown in FIG. 2 may be included, and the following may be for several of the waters.
  • a specific embodiment of the sub-content detection system will be described in detail.
  • the light source assembly 101 includes the first laser source G1, the second laser source G2, and the optical mixer X1 of FIG. 2; the input ends of the optical mixer X1 are respectively connected to the output ends of the first laser source G1. And an output of the second laser source G2, the output of the optical mixer X1 is connected to the input of the terahertz radiator 102, the input of the first terahertz detector 103 and the input of the second terahertz detector 104, respectively. .
  • the first laser source G1 and the second laser source G2 are used to generate an infrared laser beam whose frequency difference is within a set range.
  • the difference in frequency e.g., less than a smaller set point
  • both the first laser source G1 and the second laser source G2 may be diode laser sources.
  • the light source assembly 101 may further include the first coupler FC1 and the second in FIG. 2 on the basis of the above-described one embodiment. a coupler FC1, a first frequency stabilizer W1 and a second frequency stabilizer W2;
  • the input end of the first coupler FC1 is connected to the output end of the first laser source G1, and the output end of the first coupler FC1 is connected to the input end of the first frequency stabilizer W1 and the optical mixer X1, respectively.
  • the input end of the second coupler FC2 is connected to the output end of the second laser source G2, and the output end of the second coupler FC2 is respectively connected to the input end of the second frequency stabilizer W2 and the input end of the optical mixer X2;
  • the first frequency stabilizer W1 stabilizes the first laser source G1 by a part of the output light of the first laser source G1
  • the second frequency stabilizer W2 stabilizes the second laser source G2 by a part of the output light of the second laser source G2. frequency.
  • the first frequency stabilizer W1 and the second frequency stabilizer W2 are added, so that the frequencies (f 1 and f 2 ) of the incident laser light can be controlled, and the radiation in the terahertz band can be easily obtained.
  • the splitting ratios of the respective output ends of the first coupler FC1 and the second coupler FC2 can be set according to actual needs.
  • most of the laser beams of the incident power (for example, 99%) are branched to the optical mixer X1.
  • the laser beam with very little incident power (about 1%) is shunted to the first frequency stabilizer W1 and the second frequency stabilizer W2.
  • the external frequency of the laser beat frequency can be adjusted by the first frequency stabilizer W1 and the second frequency stabilizer W2.
  • the optical mixer X1 can connect the first terahertz detector 103 and the second terahertz detector 104 through the third coupler FC3 in FIG.
  • the light source assembly A third coupler FC3 is further included, the input of the third coupler FC3 is connected to the output of the optical mixer X1, and the output of the third coupler FC3 is connected to the input of the first terahertz detector 103 and the second The input of the Hertzian detector 104.
  • the split ratio of the third coupler FC3 can be set according to actual needs, and the split ratio of the two output ends of the third coupler FC3 is preferably 50%.
  • the lens assembly 11 includes a first parabolic mirror PM1, a second parabolic mirror PM2, a first dichroic mirror BS1, a second dichroic mirror BS2, a plane mirror M1 and a lens L1, and a terahertz radiator.
  • the terahertz signal radiated by the 102 is reflected by the first parabolic mirror PM1 to the first beam splitter BS1, and split into two parts by the first beam splitter BS1, one part is reflected by the plane mirror M1, and the second parabolic mirror PM2 is focused to the first terahertz.
  • the detector 103; the other portion is focused by the lens L1, the sample 13 to be tested is reflected, the lens L1 is focused, and the second beam splitter BS2 is reflected to the second terahertz detector 104.
  • the light beams entering the first terahertz detector 103 and the second terahertz detector 104 are subjected to a focusing process, which can increase the signal strength and improve the detection accuracy.
  • the structural composition of the lens assembly 11 is not limited thereto.
  • the first laser source G1 and the second laser source G2 are used to generate infrared laser beams of similar frequency, respectively connected and split with the first coupler FC1 and the second coupler FC2, and most of the incident power lasers
  • the beam is split to the optical mixer X1 to form a laser beat frequency, and the laser beam with very little incident power (about 1%) is shunted to the first frequency stabilizer W1 and the second frequency stabilizer W2, the first frequency stabilizer W1 and the second frequency stabilizer W2 regulate the frequencies (f 1 and f 2 ) of the incident laser light, thereby regulating the external frequency of the laser beat frequency.
  • the optical mixer X1 is used to mix or superimpose two laser beams generated by the first laser source G1 and the second laser source G2 to make the laser components of the two frequencies slightly different (for example, frequencies f 1 and f 2 respectively ).
  • the difference frequency oscillation effect occurs between each other to generate a laser beat frequency.
  • the external frequency of the laser beat frequency is the difference between the incident laser frequencies (ie, f 1 -f 2 ), and the external frequency directly determines the frequency of the subsequent generated terahertz radiation. .
  • a laser beat frequency illuminates the photoconductor (such as GaAs) in the terahertz radiator 102 to generate an electron-hole pair, and the carrier moves directionalally under the electric field of the bias signal generator 121 to form a tone.
  • the photocurrent is outputted by the antenna structure to output such a beat-modulated photocurrent, thereby generating a terahertz radiation signal, that is, the above-described terahertz signal, which is emitted into the dimming lens assembly 11 provided in the free space.
  • the nonlinear crystal can also extract the laser beat frequency and generate terahertz radiation instead of the optical mixer X1 and the terahertz radiator 102.
  • Another laser beat frequency is split into the first terahertz detector 103 and the second terahertz detector 103 through the third coupler FC3; the laser beat frequency enters the first terahertz detector 103 and the second terahertz detector After 103, the photo-conductors in the first terahertz detector 103 and the second terahertz detector 103 are illuminated to form electron-hole pairs, and the returned terahertz radiation forms an electric field applied to the photoconductor, causing current carrying The directional movement of the sub-sets forms a photocurrent that can be used for signal acquisition and processing within the subsequent signal analysis component 12.
  • the structure and detection principle of the first terahertz detector 103 and the second terahertz detector 10 are identical but different in use, and the first terahertz detector 103 is used to receive the terahertz emitted directly from the terahertz radiator 102.
  • the signal obtains a reference electrical signal;
  • the second terahertz detector 103 is configured to receive the terahertz radiation reflected from the sample to be tested, convert it into an electrical signal, and compare it with the reference electrical signal to analyze the test in real time.
  • the moisture content in the sample is identical but different in use, and the first terahertz detector 103 is used to receive the terahertz emitted directly from the terahertz radiator 102.
  • the signal obtains a reference electrical signal;
  • the second terahertz detector 103 is configured to receive the terahertz radiation reflected from the sample to be tested, convert it into an electrical signal, and compare it with the reference electrical signal to analyze the test in real time.
  • the terahertz signal radiated by the terahertz radiator 102 is collected by the first parabolic mirror PM1 and obtains a parallel light, split by the first beam splitter BS1, one mirrored by the plane mirror M1, and the second parabolic mirror PM2 is focused to the first terahertz
  • the detector 103 obtains a reference photocurrent; the other path is focused by the lens L1, the sample 13 to be tested is reflected, the lens L1 is concentrated, and the second beam splitter BS2 is reflected to the second terahertz detector 104 to obtain a sample photocurrent;
  • the photocurrent is amplified and collected by the signal analysis component 12 at the back end, and the resulting two electrical signals are compared to analyze the moisture content of the sample.
  • the signal analysis component 12 can further include a current voltage amplifier 123 and a lock-in amplifier 124.
  • the current voltage amplifier 123 is coupled to the first terahertz detector 103 and the second terahertz detector, respectively. 104.
  • the current voltage amplifier 123 is also connected to a lock-in amplifier 124.
  • the lock-in amplifier 124 is connected to the bias signal generator 121 and the signal processing device 122, respectively.
  • the current voltage amplifier 123 is configured to convert a weak photocurrent (sample photocurrent of the reference photocurrent as above) into an electrical signal (reference electrical signal and sample electrical signal) and perform an intensity low noise amplification of the electrical signal;
  • Amplifier 124 suppresses unwanted noise, improves detection signal-to-noise ratio, and simultaneously signals A certain degree of amplification is performed;
  • the bias signal generator 121 provides a reference signal for the lock-in amplifier 124;
  • the signal processing device 122 can acquire and pre-process the reference electrical signal and the sample electrical signal to obtain a reference spectrum and a sample spectrum, according to the spectral data.
  • the intensity of the internal water absorption peak changes to obtain the moisture content of the sample to be tested.
  • the devices in the moisture meter system assembly 10 described above are typically connected by fiber optics, and the devices in the signal analysis component 12 are typically electrically connected.
  • the moisture content detecting system of the invention can be applied to a belt production line in industrial production, and has high application value.
  • the present invention also provides a moisture content control system.
  • the moisture content monitoring system of the second embodiment includes a microcomputer 21 and a moisture content detecting system 20 of any one of the above embodiments.
  • the microcomputer 21 is connected to the signal processing device 201 of the moisture content detecting system 20, and the microcomputer 21 can also be The pipeline control device 22 is connected.
  • the signal processing device 201 is configured to feed back the detected water content value of the sample to be tested to the microcomputer;
  • the microcomputer 21 is configured to compare the water content value with a preset moisture content threshold value, obtain a comparison result, and determine, according to the comparison result, whether the sample to be tested needs to be further subjected to a dehydration operation, and obtain a determination result, according to the The judgment result generation instruction is sent to the pipeline control device;
  • the pipeline control device 22 is configured to control the running direction of the corresponding pipeline according to the instruction.
  • the moisture content control system of the present invention will be applied to a belt line in industrial production as an example with reference to FIG.
  • the belt line is commonly used in the industrial production of industrial agricultural products, including a line control device 22 (for example, a conveyor belt control system), a conveyor belt 23, and a semi-finished product 25 to be tested of unknown moisture content on the conveyor belt 23 (corresponding to the sample to be tested described above).
  • the moisture content detecting system 20 detects the moisture content of the semi-finished product 25 to be tested, and feeds back the moisture content value of the obtained semi-finished product to the microcomputer 21, and the microcomputer 21 performs the water content value received and the preset moisture content threshold value.
  • the moisture content threshold can be set according to the moisture content that meets the product requirements.
  • the moisture content detecting system 20 can be fixed on the scanning axis to evaluate the moisture content of the semi-finished product 25 to be tested along a certain line or within a certain area, so as to better evaluate whether the average moisture content of the product meets the moisture requirement of the product. content.
  • the present invention also provides a moisture content monitoring system.
  • the moisture content monitoring system of the third embodiment includes a data storage server 31 and a moisture content detecting system as described in any of the above embodiments, a data storage server 31 and a signal processing device 301 of the moisture content detecting system 30. connection.
  • the data storage server 31 may be a cloud storage.
  • the signal processing device 301 uploads the water content value monitored at each time to the data storage server 31 in real time, and the storage server 31 can generate a real-time moisture content change curve based on the received water content values.
  • the pipeline manager can understand the control behavior of the pipeline device by viewing the real-time moisture content change curve in the production process through various terminal programs, such as computer software, mobile phone application, etc., to achieve the pipeline.
  • the data storage server 31 can also store data offline and perform data analysis, thereby facilitating the pipeline manager to adjust the manufacturing process according to the data analysis result to maximize the production efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种水分含量检测、控制和监控系统,其水分含量检测系统包括水分仪系统组件(10)、透镜组件(11)和信号分析组件(12);水分仪系统组件(10)包括光源组件(101)、太赫兹辐射器(102)、第一和第二太赫兹探测器(103,104),信号分析组件(12)包括偏压信号发生器(121)和信号处理装置(122),光源组件(101)产生激光拍频光束并分束至太赫兹辐射器(102)、第一和第二太赫兹探测器(103,104),太赫兹辐射器(102)辐射的太赫兹信号的一部分经透镜组件(11)返回至第一太赫兹探测器(103),另一部分经透镜组件(11)以及待测样品返回至第二太赫兹探测器(104),第一太赫兹探测器(103)获得的参考电信号和第二太赫兹探测器(104)获得的样品电信号输入信号处理装置(122)进行待测样品的含水量检测。能够实时、准确的进行水分含量检测,且信噪比和稳定性较高。

Description

水分含量检测、控制和监控系统 技术领域
本发明涉及太赫兹检测技术领域,特别是涉及一种水分含量检测、控制和监控系统。
背景技术
在工业生产中,水分含量是决定产品质量的关键因素,不仅会影响产品的物理化学性质,如重量、密度、粘度、折光率、水活度、电导率等,还关系着产品的加工性能、商业化要求、合法性等。水分含量检测系统既可以在工业生产中进行控制分析,又能够对产品质量进行测定,在质量检测日趋严格的发展下,水分含量的检测已成为衡量产品质量的重要指标,已经广泛应用于医药、粮食、烟草、造纸、塑胶、纺织等行业。
水分含量检测系统按测定原理可以分为物理测定法和化学测定法。物理测定法常用的是失重法、蒸馏分层法、气相色谱分析法等,化学测定方法主要有卡尔费休法、甲苯法等。其中,卡尔费休法已被列为许多物质中水分测定的国际标准方法,并发展除了容量法和库伦法的检测仪器。
然而,随着工业化的快速发展,几分钟的检测速度已经不能满足市场需求,在线实时的水分含量检测是市场的主要发展趋势。目前一些间接测量方法可提供在线水分检测,如微波共振法和近红外光谱法,但信噪比和稳定性较低。
发明内容
本发明的目的在于提供一种水分含量检测、控制和监控系统,能够实时、准确的进行水分含量检测,且信噪比和稳定性较高。
本发明的目的通过如下技术方案实现:
一种水分含量检测系统,包括水分仪系统组件、透镜组件和信号分析组件;所述水分仪系统组件包括光源组件、太赫兹辐射器、第一太赫兹探测器和第二 太赫兹探测器,所述信号分析组件包括偏压信号发生器和信号处理装置;
所述光源组件用于产生激光拍频光束,产生的激光拍频光束被分束至太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器;
所述太赫兹辐射器在入射的激光拍频光束和所述偏压信号发生器的电场的作用下辐射太赫兹信号,辐射的太赫兹信号的一部分经透镜组件透射和/或反射返回至所述第一太赫兹探测器,辐射的太赫兹信号的另一部分经透镜组件透射和/或反射以及待测样品的反射返回至第二太赫兹探测器;
所述第一太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得参考电信号,所述第二太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得样品电信号,所述参考电信号和所述样品电信号输入所述信号处理装置进行待测样品的含水量检测。
根据上述本发明的水分含量检测系统的方案,其包括水分仪系统组件、透镜组件和信号分析组件,水分仪系统组件包括该光源组件、太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器,信号分析组件包括偏压信号发生器和信号处理装置,由于光源组件产生的激光拍频光束被分束至太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器,这样,太赫兹辐射器在入射的激光拍频光束和偏压信号发生器的电场的作用下辐射太赫兹信号,且由于辐射的太赫兹信号的一部分经透镜组件透射和/或反射返回第一太赫兹探测器,辐射的太赫兹信号的另一部分经透镜组件透射和/或反射以及待测样品的反射返回至第二太赫兹探测器,这样,第一太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得参考电信号,第二太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得样品电信号,参考电信号和样品电信号输入信号处理装置进行待测样品的含水量检测,如此,可以实时地获取待测样品内水分含量,此外,由于分束至太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器的激光拍频都来自同一光源组件,可以节约硬件成本,且使得分束至太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器的激光的频率都相同,可以提升检测的准确性,同时,由于是基于太赫兹辐射信号进行水分检测,信噪比与稳定性均较高。
一种水分含量控制系统,包括微机以及如上所述的水分含量检测系统,所述微机与所述水分含量检测系统的信号处理装置连接,所述微机还连接流水线控制设备;
所述信号处理装置用于将检测到的待测样品的含水量值反馈给所述微机;
所述微机用于将所述含水量值与预设的水分含量门限值进行比较,获得比较结果,根据所述比较结果判断所述待测样品是否需要进一步进行脱水操作,获得判断结果,根据所述判断结果生成指令并发送给流水线控制设备;
所述流水线控制设备用于根据所述指令控制对应的流水线的运行方向。
根据上述本发明的水分含量控制系统的方案,由于其具有上述水分含量检测系统,因此,也能够实时、准确的进行水分含量检测,且信噪比和稳定性较高,同时由于其将所述含水量值与预设的水分含量门限值进行比较,基于比较结果判断所述待测样品是否需要进一步进行脱水操作,并基于判断结果生成指令并发送给流水线控制设备以控制对应的流水线的运行方向,可以基于水分含量检测系统检测到的水分含量值实现对流水线自动化控制。
一种水分含量监控系统,包括数据存储服务器以及如上所述的水分含量检测系统,所述数据存储服务器与所述水分含量检测系统的信号处理装置连接;
所述信号处理装置用于将各个时刻监测到的含水量值实时地上传到所述数据存储服务器。
根据上述本发明的水分含量监控系统的方案,由于其具有上述水分含量检测系统,因此,也能够实时、准确的进行水分含量检测,且信噪比和稳定性较高,同时,由于还将各个时刻监测到的含水量值实时地上传到所述数据存储服务器,可以便于流水线的管理者可通过各种终端程序通过查看生产过程中的实时水分含量变化曲线,了解流水线设备的控制行为,以达到对流水线的监控的目的,也可以对数据存储服务器存储的数据(各个时刻的含水量值)进行数据分析,进行对生产制造工艺进行调整,以提高生产效益。
附图说明
图1为本发明实施例一的水分含量检测系统的组成结构示意图;
图2为图1中的水分仪系统组件在其中一个实施例中的细化组成结构示意图;
图3为图1中的透镜组件在其中一个实施例中的细化组成结构以及与水分仪系统组件中的部分器件的连接关系示意图;
图4本发明实施例一的水分含量检测系统的工作原理示意图一;
图5本发明实施例一的水分含量检测系统的工作原理以及信号分析组件的一种细化组成结构示意图二;
图6为本发明实施例二的水分含量控制系统的组成结构示意图;
图7为本发明实施例二的水分含量控制系统的一种应用示意图;
图8为本发明实施例三的水分含量监控系统的组成结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本使用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
太赫兹辐射是指频率在0.1THz到10THz之间的电磁辐射,其对许多介电材料和非极性物质具有良好的穿透性,特别是它对水有较强的吸收特性。由于水是极性分子,水对太赫兹辐射的吸收远高于其他非极性分子成分组成。因此,本发明实施例中使用太赫兹辐射进行水分测定,信噪比与稳定性均优于微波检测方式和近红外检测方式。通过使用太赫兹辐射进行水分测定,可以在生产过程质量监控及成品分级等流水线阶段,实施无损、实时、准确的水分含量监控,确保产品质量及生产加工性能。以下对本发明方案的各个实施例进行详细阐述。
实施例一
参见图1所示,为本发明实施例一的水分含量检测系统的组成结构示意图。如图1所示,本发明实施例一的水分含量检测系统包括水分仪系统组件10、透镜组件11和信号分析组件12,水分仪系统组件10包括光源组件101以及分别与该光源组件101连接的太赫兹辐射器102、第一太赫兹探测器103和第二太赫 兹探测器104,信号分析组件12包括偏压信号发生器121和信号处理装置122。
透镜组件11设置在太赫兹辐射器102、第一太赫兹探测器103和第二太赫兹探测器104之间,太赫兹辐射器102连接偏压信号发生器121;第一太赫兹探测器103和第二太赫兹探测器104分别连接信号处理装置122。
这里,透镜组件可以包括抛物面镜、分光镜、平面镜和透镜中的一种或者多种,抛物面镜、分光镜、平面镜和透镜中的每一种镜片的数量分别可以为一个,也可以为多个。
其中,光源组件101用于产生的激光拍频光束,产生的激光拍频光束被分束至太赫兹辐射器102、第一太赫兹探测器103和第二太赫兹探测器104;
太赫兹辐射器102在入射的激光拍频和偏压信号发生器121所提供的电场的作用下向透镜组件11中辐射太赫兹信号;辐射的太赫兹信号的一部分经透镜组件11透射和/或反射返回至第一太赫兹探测器103;辐射的太赫兹信号的另一部分经透镜组件11透射和/或反射以及待测样品(图1中未示出)的反射返回至第二太赫兹探测器104。
第一太赫兹探测器103在入射的激光拍频光束和返回的太赫兹信号的作用下获得参考电信号,第二太赫兹探测器104在入射的激光拍频光束和返回的太赫兹信号的作用下获得样品电信号,所述参考电信号和所述样品电信号输入信号处理装置122进行待测样品的含水量检测。
采用上述本实施例的方案,可以实时地获取待测样品内水分含量,此外,由于分束至太赫兹辐射器102、第一太赫兹探测器103和第二太赫兹探测器104都来自光源组件101,可以节约硬件成本,且使得分束至太赫兹辐射器102、第一太赫兹探测器103和第二太赫兹探测器104的激光的频率都相同,可以提升检测的准确性,同时,由于是基于太赫兹辐射信号进行水分检测,信噪比与稳定性均较高。
参见图2所示,为水分仪系统组件10在其中一个实施例中的细化结构示意图,图2中示出了水分仪系统组件10的一个较佳示例的组成结构示意图依据不同的考虑因素,在具体实现本发明的水分含量检测系统时,可以包含图2中所示的全部,也可以只包含图2中所示的其中一部分,以下就针对其中的几个水 分含量检测系统的具体实施例进行详细说明。
在其中一个实施例中,光源组件101包括图2中第一激光源G1、第二激光源G2、光学混频器X1;光学混频器X1的输入端分别连接第一激光源G1的输出端和第二激光源G2的输出端,光学混频器X1的输出端分别连接太赫兹辐射器102的输入端、第一太赫兹探测器103的输入端和第二太赫兹探测器104的输入端。
其中,第一激光源G1和第二激光源G2用于产生频率之差在设定范围内的红外激光光束。一般地,该频率之差比较(例如小于一个较小的设定值)接近且不相等最为适宜,第一激光源G1和第二激光源G2均可以是二极管激光源。
在其中一个实施例中,为了使得入射激光的频率(f1和f2)可控,在上述一个实施例的基础上,光源组件101还可以包括图2中的第一耦合器FC1、第二耦合器FC1、第一稳频器W1和第二稳频器W2;
如图2所示,第一耦合器FC1的输入端连接第一激光源G1的输出端,第一耦合器FC1的输出端分别连接第一稳频器W1的输入端和光学混频器X1的输入端,第二耦合器FC2的输入端连接第二激光源G2的输出端,第二耦合器FC2的输出端分别连接第二稳频器W2的输入端和光学混频器X2的输入端;
第一稳频器W1通过第一激光源G1的一部分输出光对第一激光源G1进行稳频,第二稳频器W2通过第二激光源G2的一部分输出光对第二激光源G2进行稳频。
在本实施例中,添加了第一稳频器W1和第二稳频器W2,可以使得入射激光的频率(f1和f2)可控,可以易于获得太赫兹频段的辐射。
其中,第一耦合器FC1和第二耦合器FC2的各个输出端的分光比可以根据实际需要设定,一般地,大部分分入射功率(例如99%)的激光光束分路至光学混频器X1,极少入射功率(1%左右)的激光光束被分路至第一稳频器W1和第二稳频器W2。通过第一稳频器W1和第二稳频器W2可以调控激光拍频的外部频率。
在具体实现时,光学混频器X1可以通过图2中的第三耦合器FC3连接第一太赫兹探测器103和第二太赫兹探测器104。具体地,如图2所示,光源组件 还包括第三耦合器FC3,第三耦合器FC3的输入端连接光学混频器X1的输出端,第三耦合器FC3的输出端分别连接第一太赫兹探测器103的输入端和第二太赫兹探测器104的输入端。
其中,第三耦合器FC3的分光比可以根据实际需要设定,第三耦合器FC3的两个输出端分光比均是50%为佳。
在其中一个实施例中,如图3所示,透镜组件11包括第一抛物面镜PM1第二抛物面镜PM2、第一分光镜BS1、第二分光镜BS2、平面镜M1和透镜L1,太赫兹辐射器102辐射的太赫兹信号经第一抛物面镜PM1反射到第一分光镜BS1后,被第一分光镜BS1分束成两部分,一部分经平面镜M1反射、第二抛物面镜PM2聚焦至第一太赫兹探测器103;另一部分经透镜L1聚焦、待测样品13反射、透镜L1聚焦、第二分光镜BS2反射至第二太赫兹探测器104。
采用本实施例中的方案,进入第一太赫兹探测器103和第二太赫兹探测器104的光束都经过聚焦过程,可以增加信号强度,提升检测的准确性。需要说明的是,透镜组件11的结构组成不限于此。
为了便于理解本发明的方案,以下结合图4和图5对本发明的工作原理进行说明。
图4中,第一激光源G1和第二激光源G2用于产生频率接近的红外激光光束,分别与第一耦合器FC1和第二耦合器FC2光纤连接和分束,大部分入射功率的激光光束被分路至光学混频器X1形成激光拍频,极少入射功率(1%左右)的激光光束被分路至第一稳频器W1和第二稳频器W2,第一稳频器W1和第二稳频器W2对入射激光的频率(f1和f2)进行调控,从而调控激光拍频的外部频率。
光学混频器X1用于将第一激光源G1和第二激光源G2产生的两路激光光束混频或叠加,使两路频率稍微不同的激光成分(例如频率分别为f1和f2)之间相互发生差频振荡效应,以产生激光拍频,此激光拍频的外部频率是入射激光频率之差(即f1-f2),此外部频率直接决定后续产生的太赫兹辐射的频率。
一路激光拍频照射太赫兹辐射器102内的光电导体(如GaAs),产生了电子-空穴对,载流子在偏压信号发生器121的电场作用下发生定向移动,形成调 制光电流,用天线结构将这种受拍频调制的光电流进行输出,从而产生太赫兹辐射信号,即上述太赫兹信号,发射至自由空间内设置的调光透镜组件11中。值得注意的是,非线性晶体也可替代光学混频器X1和太赫兹辐射器102提取激光拍频并产生太赫兹辐射。
另一路激光拍频通过第三耦合器FC3分别分束至第一太赫兹探测器103和第二太赫兹探测器103中;激光拍频进入第一太赫兹探测器103和第二太赫兹探测器103后,照射第一太赫兹探测器103和第二太赫兹探测器103中的光电导体,形成电子-空穴对,返回的太赫兹辐射形成了外加在此光电导体上的电场,促使载流子的定向移动,形成光电流,该光电流可在随后的信号分析组件12内进行信号的采集和处理。
这里,第一太赫兹探测器103和第二太赫兹探测器10的结构及探测原理完全相同,但用途不同,第一太赫兹探测器103用于接收直接从太赫兹辐射器102发射的太赫兹信号,得到一个参考电信号;第二太赫兹探测器103用于接收从待测样品反射回来的太赫兹辐射,将其转化为电信号,并与参考电信号进行比较,从而实时地分析待测样品内的水分含量。
太赫兹辐射器102辐射的太赫兹信号,由第一抛物面镜PM1收集并获得一平行光,经第一分光镜BS1分束,一路经平面镜M1反射、第二抛物面镜PM2聚焦至第一太赫兹探测器103,获得一个参考光电流;另一路经透镜L1聚焦、待测样品13反射、透镜L1汇聚、第二分光镜BS2反射至第二太赫兹探测器104,获得一路样品光电流;这两个光电流经过后端的信号分析组件12的放大和采集,得到的两个电信号将进行比较,以分析样品内水分含量。
在其中一个实施例中,如图5所示,信号分析组件12还可以包括电流电压放大器123和锁相放大器124,电流电压放大器123分别连接第一太赫兹探测器103和第二太赫兹探测器104,电流电压放大器123还连接锁相放大器124,锁相放大器124分别连接偏压信号发生器121和信号处理装置122。
其中,电流电压放大器123用于将微弱的光电流(如上的参考光电流的样品光电流)转换成电信号(参考电信号和样品电信号)并将电信号进行一定强度低噪声放大;锁相放大器124抑制无用噪声,改善检测信噪比,同时对信号 进行一定程度的放大;偏压信号发生器121为锁相放大器124提供参考信号;信号处理装置122能够对参考电信号和样品电信号进行采集、预处理,获取参考光谱和样品光谱,根据光谱数据内水吸收峰的强度变化,获得所测样品的水分含量。
在具体实现时上述的水分仪系统组件10中的各器件之间一般是通过光纤连接,信号分析组件12中的各器件之间一般是电连接。本发明的水分含量检测系统可以应用于工业生产中皮带流水线上,具有较高的应用价值。
实施例二
根据上述实施例一的水分含量检测系统,本发明还提供一种水分含量控制系统。如图6所示,本实施例二的水分含量监控系统包括微机21以及上述任意一个实施例的水分含量检测系统20,微机21与水分含量检测系统20的信号处理装置201连接,微机21还可以连接流水线控制设备22。
信号处理装置201用于将检测到的待测样品的含水量值反馈给所述微机;
微机21用于将所述含水量值与预设的水分含量门限值进行比较,获得比较结果,根据所述比较结果判断所述待测样品是否需要进一步进行脱水操作,获得判断结果,根据所述判断结果生成指令并发送给流水线控制设备;
流水线控制设备22用于根据所述指令控制对应的流水线的运行方向。
以下结合附图7以将本发明的水分含量控制系统应用于工业生产中的皮带流水线上为例进行说明。该皮带流水线常用于工农产品的工业生产,包括流水线控制设备22(例如,传送带控制系统)、传送带23及传送带23上的未知水分含量的待测半成品25(相当于上述的待测样品)。水分含量检测系统20对待测半成品25进行水分含量的检测,并将获得的半成品的含水量值反馈到微机21中,由微机21对接收到的含水量值与预设的水分含量门限值进行比较,获得比较结果,根据所述比较结果判断待测半成品25是否需要进一步进行脱水操作,获得判断结果,根据所述判断结果生成指令并发送给流水线控制设备22以控制传送带的运行方向。
这里,水分含量门限值可以根据符合产品要求的水分含量进行设定。
其中,水分含量检测系统20可固定于扫描轴上,沿某一条线或在某一个面积内对待测半成品25的水分含量进行评估,以更好的评测产品的平均水分含量是否符合产品要求的水分含量。
实施例三
根据上述实施例一的水分含量检测系统,本发明还提供一种水分含量监控系统。如图8所示,本实施例三的水分含量监控系统包括数据存储服务器31以及如上任意一个实施例中所述的水分含量检测系统,数据存储服务器31与水分含量检测系统30的信号处理装置301连接。这里,数据存储服务器31可以是云储存器。信号处理装置301将各个时刻监测到的含水量值实时地上传到数据存储服务器31,存储服务器31可以基于接收到的各含水量值生成实时水分含量变化曲线。
采用本实施例的方案,流水线的管理者可通过各种终端程序,如电脑软件、手机应用等,通过查看生产过程中的实时水分含量变化曲线,了解流水线设备的控制行为,以达到对流水线的监控的目的,数据存储服务器31也可以线下储存数据,并进行数据分析,从而方便流水线的管理者根据数据分析结果对生产制造工艺进行调整,实现生产效益最大化。
需要说明的是,当一个元件被称为“连接”另一个元件,根据需要,它可以是直接连接到另一个元件或者间接连接至该另一个元件上。术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或者暗示相对重要性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种水分含量检测系统,其特征在于,包括水分仪系统组件、透镜组件和信号分析组件;所述水分仪系统组件包括光源组件、太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器,所述信号分析组件包括偏压信号发生器和信号处理装置;
    所述光源组件用于产生激光拍频光束,产生的激光拍频光束被分束至太赫兹辐射器、第一太赫兹探测器和第二太赫兹探测器;
    所述太赫兹辐射器在入射的激光拍频光束和所述偏压信号发生器的电场的作用下辐射太赫兹信号,辐射的太赫兹信号的一部分经透镜组件透射和/或反射返回至所述第一太赫兹探测器,辐射的太赫兹信号的另一部分经透镜组件透射和/或反射以及待测样品的反射返回至第二太赫兹探测器;
    所述第一太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得参考电信号,所述第二太赫兹探测器在入射的激光拍频光束和返回的太赫兹信号的作用下获得样品电信号,所述参考电信号和所述样品电信号输入所述信号处理装置进行待测样品的含水量检测。
  2. 根据权利要求1所述的水分含量检测系统,其特征在于,所述光源组件包括第一激光源、第二激光源、光学混频器;所述光学混频器的输入端分别连接所述第一激光源和所述第二激光源,所述光学混频器的输出端分别连接所述太赫兹辐射器的输入端、所述第一太赫兹探测器的输入端和所述第二太赫兹探测器的输入端。
  3. 根据权利要求2所述的水分含量检测系统,其特征在于,所述光源组件还包括第一耦合器、第二耦合器、第一稳频器和第二稳频器;
    所述第一耦合器的输入端连接所述第一激光源的输出端,所述第一耦合器的输出端分别连接所述第一稳频器的输入端和所述光学混频器的输入端,所述第二耦合器的输入端连接所述第二激光源的输出端,所述第二耦合器的输出端分别连接所述第二稳频器的输入端和所述光学混频器的输入端;
    所述第一稳频器通过所述第一激光源的一部分输出光对所述第一激光源进行稳频,所述第二稳频器通过所述第二激光源的一部分输出光对所述第二激光 源进行稳频。
  4. 根据权利要求2或3所述的水分含量检测系统,其特征在于,用非线性晶体代替所述光学混频器和所述太赫兹辐射器。
  5. 根据权利要求2或3所述的水分含量检测系统,其特征在于,所述光源组件还包括第三耦合器,所述第三耦合器的输入端连接所述光学混频器的输出端,所述第三耦合器的输出端分别连接所述第一太赫兹探测器的输入端和所述第二太赫兹探测器的输入端。
  6. 根据权利要求2或3所述的水分含量检测系统,其特征在于,所述第一激光源和所述第二激光源产生的红外激光光束的频率之差在设定范围内。
  7. 根据权利要求1所述的水分含量检测系统,其特征在于,所述透镜组件包括第一抛物面镜、第二抛物面镜、第一分光镜、第二分光镜、平面镜和透镜,所述太赫兹辐射器的辐射的太赫兹信号经所述第一抛物面镜反射到所述第一分光镜后,被所述第一分光镜分束成两部分,一部分经所述平面镜反射、所述第二抛物面镜聚焦至第一太赫兹探测器;另一部分经所述透镜聚焦、待测样品反射、所述透镜聚焦、所述第二分光镜反射至第二太赫兹探测器。
  8. 根据权利要求1所述的水分含量检测系统,其特征在于,所述信号分析组件还包括电流电压放大器和锁相放大器,所述电流电压放大器分别连接所述第一太赫兹探测器和第二太赫兹探测器,所述电流电压放大器还连接所述锁相放大器,所述锁相放大器分别连接所述偏压信号发生器和所述信号处理装置。
  9. 一种水分含量控制系统,其特征在于,包括微机以及如权利要求1至8之一所述的水分含量检测系统,所述微机与所述水分含量检测系统的信号处理装置连接,所述微机还连接流水线控制设备;
    所述信号处理装置用于将检测到的待测样品的含水量值反馈给所述微机;
    所述微机用于将所述含水量值与预设的水分含量门限值进行比较,获得比较结果,根据所述比较结果判断所述待测样品是否需要进一步进行脱水操作,获得判断结果,根据所述判断结果生成指令并发送给流水线控制设备;
    所述流水线控制设备用于根据所述指令控制对应的流水线的运行方向。
  10. 一种水分含量监控系统,其特征在于,包括数据存储服务器以及如权 利要求1至8之一所述的水分含量检测系统,所述数据存储服务器与所述水分含量检测系统的信号处理装置连接;
    所述信号处理装置用于将各个时刻监测到的含水量值实时地上传到所述数据存储服务器。
PCT/CN2017/093237 2016-09-26 2017-07-17 水分含量检测、控制和监控系统 WO2018054150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17852220.7A EP3517935A4 (en) 2016-09-26 2017-07-17 MOISTURE CONTENT DETECTION, REGULATION AND MONITORING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610851926.0 2016-09-26
CN201610851926.0A CN106353279B (zh) 2016-09-26 2016-09-26 水分含量检测、控制和监控系统

Publications (1)

Publication Number Publication Date
WO2018054150A1 true WO2018054150A1 (zh) 2018-03-29

Family

ID=57859926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093237 WO2018054150A1 (zh) 2016-09-26 2017-07-17 水分含量检测、控制和监控系统

Country Status (3)

Country Link
EP (1) EP3517935A4 (zh)
CN (1) CN106353279B (zh)
WO (1) WO2018054150A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727280A (zh) * 2019-09-26 2020-01-24 北京农业信息技术研究中心 具有太赫兹传感功能的设施养殖机器人装置及方法
CN111579525A (zh) * 2020-05-15 2020-08-25 甘肃银光化学工业集团有限公司 一种自动检测粉状含能材料水分的装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353279B (zh) * 2016-09-26 2024-06-14 深圳市华讯方舟光电技术有限公司 水分含量检测、控制和监控系统
CN107300533B (zh) * 2017-08-16 2024-01-23 中交第三航务工程勘察设计院有限公司 散货煤堆表层水分远距离测量系统
KR102564009B1 (ko) * 2017-11-20 2023-08-07 현대자동차주식회사 차량용 수밀 검사 장치 및 방법
CN109490243A (zh) * 2018-12-29 2019-03-19 深圳职业技术学院 在线监测微波冷冻干燥过程中物料外观的系统及监测方法
CN110082293A (zh) * 2019-06-03 2019-08-02 云南电网有限责任公司电力科学研究院 一种绝缘油中水分无损检测装置及方法
CN110108666B (zh) * 2019-06-20 2022-06-10 云南电网有限责任公司电力科学研究院 绝缘油水分含量检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042670B1 (en) * 2001-11-13 2003-12-11 Rensselaer Polytech Inst Method and system for performing three-dimensional teraherz imaging on an object
CN101566589A (zh) * 2008-12-15 2009-10-28 深圳先进技术研究院 太赫兹成像装置和太赫兹成像方法
CN102324683A (zh) * 2011-09-14 2012-01-18 电子科技大学 一种太赫兹波信号产生装置
CN204731158U (zh) * 2015-05-13 2015-10-28 河南工业大学 一种太赫兹波检测系统
CN105092514A (zh) * 2015-08-20 2015-11-25 中国科学院重庆绿色智能技术研究院 一种散射式的扫描近场太赫兹显微镜
CN105548083A (zh) * 2015-12-08 2016-05-04 电子科技大学 双光路太赫兹时域光谱仪
CN106353279A (zh) * 2016-09-26 2017-01-25 华讯方舟科技有限公司 水分含量检测、控制和监控系统
CN206095933U (zh) * 2016-09-26 2017-04-12 华讯方舟科技有限公司 水分含量检测、控制和监控系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438215B (en) * 2006-05-19 2011-06-08 Teraview Ltd A THz investigation apparatus and method
US8144370B2 (en) * 2006-09-12 2012-03-27 Canon Kabushiki Kaisha Image forming apparatus, printing method and printing apparatus
JP4996428B2 (ja) * 2007-11-16 2012-08-08 独立行政法人理化学研究所 薄切片試料の含有水分量測定装置および方法
KR101453472B1 (ko) * 2010-02-11 2014-10-21 한국전자통신연구원 테라헤르츠파 장치
US20130220158A1 (en) * 2010-10-28 2013-08-29 Imego Aktiebolag System and a method for detecting material parameters
CN103575693A (zh) * 2012-08-01 2014-02-12 中国科学院深圳先进技术研究院 变压器油中水含量的检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042670B1 (en) * 2001-11-13 2003-12-11 Rensselaer Polytech Inst Method and system for performing three-dimensional teraherz imaging on an object
CN101566589A (zh) * 2008-12-15 2009-10-28 深圳先进技术研究院 太赫兹成像装置和太赫兹成像方法
CN102324683A (zh) * 2011-09-14 2012-01-18 电子科技大学 一种太赫兹波信号产生装置
CN204731158U (zh) * 2015-05-13 2015-10-28 河南工业大学 一种太赫兹波检测系统
CN105092514A (zh) * 2015-08-20 2015-11-25 中国科学院重庆绿色智能技术研究院 一种散射式的扫描近场太赫兹显微镜
CN105548083A (zh) * 2015-12-08 2016-05-04 电子科技大学 双光路太赫兹时域光谱仪
CN106353279A (zh) * 2016-09-26 2017-01-25 华讯方舟科技有限公司 水分含量检测、控制和监控系统
CN206095933U (zh) * 2016-09-26 2017-04-12 华讯方舟科技有限公司 水分含量检测、控制和监控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517935A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727280A (zh) * 2019-09-26 2020-01-24 北京农业信息技术研究中心 具有太赫兹传感功能的设施养殖机器人装置及方法
CN111579525A (zh) * 2020-05-15 2020-08-25 甘肃银光化学工业集团有限公司 一种自动检测粉状含能材料水分的装置
CN111579525B (zh) * 2020-05-15 2023-10-20 甘肃银光化学工业集团有限公司 一种自动检测粉状含能材料水分的装置

Also Published As

Publication number Publication date
CN106353279A (zh) 2017-01-25
EP3517935A4 (en) 2020-06-10
CN106353279B (zh) 2024-06-14
EP3517935A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2018054150A1 (zh) 水分含量检测、控制和监控系统
US10401281B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
US8659759B2 (en) Laser based cavity enhanced optical absorption gas analyzer
CN105784634A (zh) 垂直入射同时测透射和反射的太赫兹时域光谱仪
EP3485254A1 (en) Photothermal interferometry apparatus and method
CN104020114A (zh) 分析氨气痕量浓度的方法
CN108844926B (zh) 磁光光致发光光调制反射和光调制透射光谱联合测试系统
JP2006284586A (ja) 電界差分処理によるコモンモード抑圧を具えた電力比決定システムおよび方法
CN105548083A (zh) 双光路太赫兹时域光谱仪
CN112326588A (zh) 一种太赫兹时域光谱仪
CN109596565B (zh) 一种基于激光器阵列实现接收光强自稳定的装置及方法
CN104792705A (zh) 用于光声光谱测量的激光功率波动监测和补偿装置及方法
CN211927689U (zh) 一种光谱检测装置
Wang et al. Dual-beam wavelength modulation spectroscopy for sensitive detection of water vapor
Tu et al. Analysis of random noise and long-term drift for tunable diode laser absorption spectroscopy system at atmospheric pressure
CN210071661U (zh) 一种激光气体分析仪
CN206095933U (zh) 水分含量检测、控制和监控系统
JP2008134076A (ja) ガス分析装置
CN114486813B (zh) 一种不同偏振态激光损伤阈值测试的装置与方法
US6411388B1 (en) System and method for frequency domain interferometric second harmonic spectroscopy
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
KR102175532B1 (ko) 테라헤르츠 시간 영역 분광을 이용한 샘플의 두께 및 굴절률 측정 방법
CN113640248A (zh) 一种气体多组分浓度在位监测方法
KR20180005447A (ko) 위상 변조기를 이용한 연속 테라헤르츠파 발생장치
CN113739918A (zh) 保偏反射式近红外傅里叶变换偏振光谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852220

Country of ref document: EP

Effective date: 20190426