WO2018053869A1 - 一种确定、发送小区参数集合的方法、设备及系统 - Google Patents

一种确定、发送小区参数集合的方法、设备及系统 Download PDF

Info

Publication number
WO2018053869A1
WO2018053869A1 PCT/CN2016/100201 CN2016100201W WO2018053869A1 WO 2018053869 A1 WO2018053869 A1 WO 2018053869A1 CN 2016100201 W CN2016100201 W CN 2016100201W WO 2018053869 A1 WO2018053869 A1 WO 2018053869A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification signal
information
parameter set
signal
identification
Prior art date
Application number
PCT/CN2016/100201
Other languages
English (en)
French (fr)
Inventor
张兴炜
冯淑兰
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680088674.9A priority Critical patent/CN109644170B/zh
Priority to EP16916608.9A priority patent/EP3509259B1/en
Priority to PCT/CN2016/100201 priority patent/WO2018053869A1/zh
Publication of WO2018053869A1 publication Critical patent/WO2018053869A1/zh
Priority to US16/365,069 priority patent/US11496950B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for determining and transmitting a set of cell parameters.
  • 5G fifth generation of mobile communication technology
  • 5G new wireless access technology (English name: New Radio Access Technologies, RAT) defines a new air interface access technology, which can support faster user experience rate and higher number of connections. Density and flow density, end-to-end delay in milliseconds, faster peak rate. At the same time, 5G also greatly improves the efficiency of network deployment and operation.
  • parameters such as multiple subcarrier spacing, symbol length, and subframe length are supported in the 5G NR.
  • the terminal In the communication process, the terminal usually performs signal transmission with the base station according to the parameter set of the cell.
  • the cell parameter set of the Long Term Evolution (LTE) system has a subcarrier spacing of 15 kHz, a subframe length of 1 ms, and one subframe includes 14 or 12 symbols.
  • LTE Long Term Evolution
  • the set of cell parameters is fixed, and the base station and the terminal are known, and the terminal can directly use a fixed set of cell parameters to perform signal transmission between the base station and the base station.
  • the cell supports multiple parameter sets.
  • the terminal Before accessing the network, the terminal does not know which parameter set is used by a certain cell. Therefore, the terminal needs to identify the parameter set of the cell before performing the camp with the base station. Signal transmission. Therefore, how to identify the parameter set of the cell in the 5G NR becomes an urgent problem to be solved.
  • the embodiments of the present invention provide a method, a device, and a system for determining and transmitting a cell parameter set, and implementing a parameter set of a terminal identifiable cell in a 5G NR supporting multiple cell parameter sets.
  • a method for determining a set of cell parameters for use in a terminal.
  • the method specifically includes: acquiring feature information of the identification signal of the cell; determining a parameter set of the cell according to the feature information of the identification signal; the parameter set of the cell includes at least one of the following parameters: a subcarrier interval, a subframe length, and a symbol Length, time slot length, cyclic prefix (English full name: Cyclic Prefix, CP) length, number of symbols in the subframe, number of symbols in the slot, subframe type, slot type, CP type, duplex mode, authorization Spectrum, whether it is a separate carrier, whether multiple beams, the number of beams, and service requirements.
  • the method for determining a set of cell parameters can accurately distinguish the different parameter sets of the cell by carrying the parameter set of the cell and identifying the different feature information of the signal, and when the terminal acquires the identification signal, the method can be
  • the feature information of the identification signal accurately identifies the parameter set of the cell, and implements a parameter set of the terminal identifiable cell in the 5G NR supporting multiple cell parameter sets.
  • determining a parameter set of the cell according to the feature information of the identification signal may be implemented as: determining, according to the feature information of the identification signal, a parameter set of the cell from the N parameter sets; N is greater than or equal to 2.
  • the N parameter sets are the parameter sets supported by the cell defined in the communication standard of the communication system to which the cell belongs. In this way, the terminal can accurately identify the parameter set of the cell in the plurality of parameter sets supported by the cell according to the feature information of the identification signal, thereby improving the efficiency of the identification.
  • determining the parameter set of the cell according to the feature information of the identification signal includes: determining a parameter set of the cell according to the feature information and the mapping relationship of the identification signal; and the mapping relationship includes the feature information and the at least one The correspondence between the parameter sets.
  • the mapping relationship indicates the correspondence between the feature information of the signal and the parameter set.
  • a set of feature information uniquely corresponds to a set of parameters.
  • one of the feature information may correspond to a plurality of parameter sets, and the intersection of the parameter sets corresponding to each of the set of feature information is The only parameter set.
  • one parameter in the parameter set may correspond to multiple sets of feature information, and the intersection of the feature information corresponding to each parameter in the parameter set is unique feature information. This application does not limit the specific content in the mapping relationship.
  • an implementation scheme for acquiring the identification signal feature information of the cell may include: performing matching according to the reference parameter set, acquiring the identification signal of the cell, and analyzing the feature of the identification signal of the identification signal. information. That is to say, regardless of the content of the parameter set of the cell, the identification signal is sent according to the reference parameter set, and when the terminal acquires the identification signal, the terminal can perform matching according to the reference parameter set, so that the receiving of the identification signal is simple, and the terminal is reduced. Detection complexity.
  • another implementation scheme for acquiring the identification signal feature information of the cell is provided, which may include: sequentially following the preset M reference The parameter set is matched until the identification signal of the cell is acquired, and the feature information of the acquisition identification signal of the identification signal is parsed; M is greater than or equal to 2.
  • the identification signal is transmitted according to the parameter set of the cell, and when the terminal acquires the identification signal, the terminal performs blind matching according to the possible parameter set blind detection. Therefore, the design of the identification signal is simple.
  • a method for transmitting a set of cell parameters for use in a base station.
  • the method specifically includes: determining feature information of the identification signal according to the parameter set of the cell; and determining the feature information of the identification signal, and transmitting the identification signal to the terminal.
  • the parameter set of the cell includes at least one of the following parameters: subcarrier spacing, subframe length, symbol length, slot length, CP length, number of symbols in the subframe, number of symbols in the slot, subframe type, Slot type, CP type, duplex mode, whether to grant spectrum, whether it is independent carrier, whether multiple beams, the number of beams, and service requirements.
  • the method for transmitting a cell parameter set provided by the present application can accurately distinguish the different parameter sets of the cell by carrying the parameter set of the cell by the feature information of the identification signal, and can identify the different parameter sets of the cell, and send the identification signal to complete the transmission of the cell parameter set.
  • the terminal acquires the identification signal, it can accurately identify the feature information according to the identification signal.
  • the parameter set of the out-cell is implemented to implement a parameter set of the terminal identifiable cell in the 5G NR supporting multiple cell parameter sets.
  • determining the feature information of the identification signal according to the parameter set of the cell includes: determining feature information of the identification signal according to the parameter set and the mapping relationship of the cell; and the mapping relationship includes the parameter set and the at least one feature. Correspondence of information.
  • the mapping relationship indicates the correspondence between the feature information of the signal and the parameter set.
  • mapping relationship in the second aspect is the same as the mapping relationship in the first aspect, and details are not described herein.
  • the method for transmitting the identification signal to the terminal by using the determined characteristic information of the identification signal may be implemented as: sending, according to the reference parameter set, the characteristic information of the identified identification signal, to the terminal Identify the signal. That is to say, regardless of the content of the parameter set of the cell, the identification signal is sent according to the reference parameter set, and when the terminal acquires the identification signal, the terminal can perform matching according to the reference parameter set, so that the receiving of the identification signal is simple, and the terminal is reduced. Detection complexity
  • the method for transmitting the identification signal to the terminal by using the determined characteristic information of the identification signal may be implemented as follows: according to the parameter set of the cell, the characteristic information of the identified identification signal is sent to the terminal. Send an identification signal.
  • the design of the identification signal is simple.
  • the identification signal may include at least one of the following signals/channels: a synchronization signal, a broadcast channel, and a reference signal.
  • the identification signal is a synchronization signal
  • the terminal can identify the parameter set of the cell in the earliest synchronization stage, and reduce the delay of the terminal identification parameter set.
  • the identification signal is a broadcast signal
  • the parameter set of the cell may be indicated by an explicit field, and the identification signal is simple in design.
  • the identification signal is a reference signal
  • the synchronization signal can be uniformly designed, and the terminal does not need to blindly check the synchronization signal, and only needs to identify the parameter set of the cell earlier by using the reference signal sequence in the channel estimation stage.
  • the reference signal may include an independent reference signal.
  • the number, or, may also include a reference signal of a broadcast channel.
  • the feature information of the identification signal is information that any dimension can use to distinguish the signal.
  • the feature information of the identification signal may include at least one of the following information: time domain resource information of the identification signal, frequency domain resource information of the identification signal, spatial domain resource information of the identification signal, and identification signal.
  • the parameter set indication information is used to indicate a parameter set of the cell.
  • the parameter set indication information can be an explicit field.
  • the time domain resource information is feature information that can be used to distinguish signals in the time dimension.
  • the terminal realizes the parameter set of the cell by identifying the time domain resource information of the identification signal.
  • the time domain resource information of the identification signal includes at least one of the following: the time domain position of the identification signal, the time domain spacing of the identification signal, the period of the identification signal, the number of repetitions of the identification signal, and the transmission time occupied by the identification signal.
  • the frequency domain resource information is feature information that can be used to distinguish signals in the frequency dimension.
  • the terminal realizes the parameter set of the cell by using the frequency domain resource information of the identification signal.
  • the frequency domain resource information of the identification signal may include: identifying a frequency domain bandwidth of the signal; or identifying a frequency domain bandwidth of the signal and a frequency domain location of the identification signal.
  • the spatial domain resource information is characteristic information that can be used to distinguish signals in the spatial dimension.
  • the terminal realizes that the terminal identifies the parameter set of the cell by using the spatial domain resource information of the identification signal.
  • the spatial domain resource information of the identification signal may include at least one of the following: the number of antenna ports transmitting the identification signal, the antenna port number transmitting the identification signal, the number of antennas transmitting the identification signal, the number of beams transmitting the identification signal, and the transmission identification signal Beam number.
  • the code domain resource information is feature information that can be used to distinguish signals in the coding mode dimension.
  • the terminal realizes the parameter set of the cell by using the code domain resource information of the identification signal.
  • Identification The code domain resource information of the signal may include at least one of the following: a root sequence of the identification signal, a cyclic shift of the identification signal, an orthogonal mask of the identification signal, and a scrambling code of the identification signal.
  • the power parameter information is feature information that can be used to distinguish signals in the signal power dimension.
  • the terminal Using the power parameter information as the feature information, the terminal realizes that the parameter set of the cell is identified by the power parameter information of the identification signal.
  • the power parameter information of the identification signal may include: a transmission power of the identification signal, or a transmission power difference of the identification signal.
  • the difference in transmit power of the identification signal includes a difference in transmit power between different types of identification signals, or a difference in transmit power between two similar identification signals.
  • the category information is feature information that can be used to distinguish signals in the signal category dimension.
  • the terminal realizes that the terminal identifies the parameter set of the cell by using the category information of the identification signal.
  • the category information of the identification signal includes at least one of the following: the identification signal is a primary synchronization signal, the identification signal is a secondary synchronization signal, the synchronization signal is a base station-based synchronization signal, and the identification signal is a satellite-based synchronization signal.
  • an embodiment of the present invention provides a terminal, where the terminal can implement a function performed by a network terminal in the foregoing method example, where the function can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal element to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the terminal and other network elements.
  • the terminal can also include a memory for coupling with the processor that retains the program instructions and data necessary for the terminal.
  • the embodiment of the present invention provides a base station, where the base station can implement the functions performed by the base station in the foregoing method, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the base station includes A processor and a transceiver are configured to support the base station to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the base station and other network elements.
  • the base station can also include a memory for coupling with the processor that holds the necessary program instructions and data for the base station.
  • the embodiment of the present invention provides a communication system, which includes the terminal element according to any one of the foregoing aspects or any possible implementation manner, and any one of the foregoing aspects or any possible implementation manner.
  • Base station the terminal element according to any one of the foregoing aspects or any possible implementation manner, and any one of the foregoing aspects or any possible implementation manner.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the terminal, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the base station, including a program designed to perform the above aspects.
  • FIG. 1 is a schematic structural diagram of a network of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for determining and transmitting a cell parameter set according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an identification signal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another identification signal according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the method provided by the embodiment of the present application is applied to the communication system shown in FIG. 1, and the system includes at least one base station 101.
  • Each base station 101 serves at least one terminal 102 over a wireless interface.
  • the base station 101 communicates with the terminal 102 in accordance with the parameter set of the cell served by the base station 101.
  • the number of base stations 101 included in the communication system shown in FIG. 1 and the number of terminals 102 served by each base station 101 are all deployed according to actual network requirements. This application does not specifically limit this.
  • FIG. 1 only one base station 101 and a terminal 102 served by the base station 101 are exemplarily illustrated.
  • the content illustrated in FIG. 1 is not specifically limited to the number of base stations 101 included in the communication system and the number of terminals 102 served by the base station 101.
  • the terminal 102 can be a mobile station, a remote station, a user terminal, or the like.
  • the specific form of the terminal 102 may be a user terminal such as a mobile phone, a tablet computer, or a personal digital assistant. This embodiment of the present invention does not specifically limit this.
  • the method for determining and transmitting a set of cell parameters provided by the embodiment of the present invention may be performed by the terminal 102 and the base station 101 in the network architecture of the communication system shown in FIG.
  • the cell served by the base station 101 supports a plurality of parameter sets. After identifying the parameter set used by the cell served by the base station 101, the terminal 102 accesses the cell served by the base station 101, and the two communicate.
  • FIG. 2 is a schematic structural diagram of a terminal 20 related to various embodiments of the present invention.
  • the terminal 10 may be any one of the terminals 102 deployed in FIG.
  • the terminal 20 can include a processor 201, a memory 202, and a transceiver 203.
  • the memory 202 can be a volatile memory (English full name: volatile memory), such as a random access memory (English name: random-access memory, RAM); or a non-volatile memory (English name: non-volatile memory), For example, read-only memory (English full name: read-only memory, ROM), flash memory (English full name: flash memory), hard disk (English full name: hard disk drive, HDD) or solid state hard disk (English full name: solid-state drive, SSD); or a combination of the above types of memory for storing related applications, and configuration files, that can implement the method of the present invention.
  • volatile memory such as a random access memory (English name: random-access memory, RAM)
  • non-volatile memory English name: non-volatile memory
  • read-only memory English full name: read-only memory, ROM
  • flash memory English full name: flash memory
  • hard disk English full name: hard disk drive, HDD
  • solid state hard disk English full name: solid-state drive, SSD
  • the processor 201 is a control center of the terminal 20, and may be a central processing unit (English name: central processing unit, CPU), or may be a specific integrated circuit (English) Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention, such as: one or more microprocessors (English full name: digital singnal processor, DSP), or One or more field programmable gate arrays (English full name: Field Programmable Gate Array, FPGA).
  • the processor 201 can perform various functions of the terminal 20 by running or executing software programs and/or modules stored in the memory 202, as well as invoking data stored in the memory 202.
  • the transceiver 203 can be a communication port or a communication interface or a transceiver antenna of the terminal 20 or the like for transmitting information or messages with other network elements.
  • FIG. 3 is a schematic structural diagram of a base station 30 related to various embodiments of the present invention.
  • the base station 30 may be the base station 101 deployed in FIG.
  • the base station 30 can include a processor 301, a memory 302, and a transceiver 303.
  • the components of the base station 30 will be specifically described below with reference to FIG. 3:
  • the memory 302 may be a volatile memory such as a RAM; or a non-volatile memory such as a ROM, a flash memory, an HDD or an SSD; or a combination of the above types of memories for storing related applications and configurations capable of implementing the method of the present invention. file.
  • the processor 301 is a control center of the base station 30, and may be a CPU, an ASIC, or one or more integrated circuits configured to implement the embodiments of the present invention, such as one or more DSPs, or one or Multiple FPGAs.
  • the processor 301 can perform various functions of the base station 30 by running or executing software programs and/or modules stored in the memory 302, as well as invoking data stored in the memory 302.
  • the transceiver 303 can be a communication port or a communication interface or a transceiver antenna of the base station 30 or the like for communicating information or messages with other network elements.
  • an embodiment of the present invention provides a method for transmitting and determining a cell parameter set, which is applied to the communication system shown in FIG. 1. As shown in FIG. 4, the method may include:
  • the base station determines feature information of the identification signal according to the parameter set of the cell.
  • the processor 301 in the base station shown in FIG. 3 may execute the specific content of S401.
  • the parameter set of the cell includes at least one of the following parameters: subcarrier spacing, subframe length, symbol length, slot length, CP length, number of symbols in the subframe, number of symbols in the slot, and subframe.
  • Type time slot type, CP type, duplex mode, whether to grant spectrum, whether it is independent carrier, whether multiple beams, the number of beams, and service requirements.
  • the types of the parameters included in the parameter set used by a cell may be configured according to actual requirements, which is not specifically limited in this embodiment of the present invention.
  • the specific value of the parameter included in the parameter set is defined according to the communication standard, and is not specifically limited in this embodiment of the present invention.
  • subcarrier spacing options include: 3.75 kHz (English name: kilohertz, kHz), 9 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, ....
  • the optional value of the subframe length may include: 1 millisecond (English full name: millisecond, ms), 0.5 ms, ....
  • the optional value of the symbol length may include: 71 microseconds (English full name: microsecond, ⁇ s) and the like.
  • the optional values of the slot length may include: 0.5 ms, and the like.
  • the optional values for the length of the CP may include: 5 ⁇ s, and the like.
  • An optional value for the number of symbols in a subframe may include: 1-14.
  • the optional values of the number of symbols in one slot may include: 1, 2, 3, 4, 5, 6, 7.
  • the optional values of the subframe/slot type may include: full uplink, full downlink, uplink + guard interval + downlink.
  • the optional values of the CP type may include: a regular cyclic prefix (English full name: Normal Cyclic Prefix, NCP), an extended cyclic prefix (English full name: Extended Cyclic Prefix, ECP), a CP type (type) 1, a CP type 2, ... .
  • the optional values of the duplex mode may include: frequency division duplex (English full name: Frequency) Division Dual, FDD), Time Division Duplexing (TDD), Flexible Duplex, Full Duplex.
  • the optional values of the licensed spectrum may include: licensed spectrum, unlicensed spectrum.
  • the optional values of the independent carriers may include: independent carriers, non-independent carriers.
  • the optional values of the number of multiple beams or beams may include: single beam/multi-beam or number of beams.
  • the optional values of the business requirements may include: Enhanced Mobile Broadband (English name: Enhanced mobile broadband, eMBB), low latency and high reliability communication (English full name: Ultra reliable and low latency communications, URLLC), large connection Internet of Things ( English full name: Massive machine-type-communications, mMTC), V2X (English full name: Vehicle to X).
  • Enhanced Mobile Broadband English name: Enhanced mobile broadband, eMBB
  • low latency and high reliability communication English full name: Ultra reliable and low latency communications, URLLC
  • large connection Internet of Things English full name: Massive machine-type-communications, mMTC
  • V2X International full name: Vehicle to X
  • the identification signal may include at least one of the following signals/channels: a synchronization signal, a broadcast channel, and a reference signal.
  • the identification signal can be one of the above signals/channels, or a combination of these signals/channels.
  • the identification signal may also be other signals that can be used to carry the feature information.
  • the embodiment of the present invention does not specifically limit the type of the identification signal.
  • the reference signal may be an independent reference signal or may be a reference signal of a broadcast channel. This embodiment of the present invention does not specifically limit this.
  • the feature information of the identification signal includes at least one of the following information: time domain resource information of the identification signal, frequency domain resource information of the identification signal, spatial domain resource information of the identification signal, code domain resource information of the identification signal, The power parameter information of the identification signal, the category information of the identification signal, the number of categories of the identification signal, and the parameter set indication information.
  • the information included in the feature information of the identification signal may be set according to actual needs, and is not limited to the above enumeration. Any information that can be used to distinguish signals can be used as the characteristic information of the identification signal.
  • identification signals for distinguishing parameter sets except for a certain feature
  • the information of the other dimensions may be the same or different.
  • the embodiment of the present invention does not specifically limit the information.
  • the parameter set indication information is used to indicate a parameter set of the cell.
  • the parameter set indication information may be an explicit field, and different fields correspond to different parameter sets. According to the parameter set of the cell, the parameter set indication information can be uniquely determined. According to the field of the parameter set indication information, the corresponding parameter set can be determined uniquely and quickly.
  • the field type and the format of the parameter set indication information may be set according to actual requirements, which is not specifically limited in this embodiment of the present invention.
  • the corresponding relationship between the parameter set indication information and the parameter set may also be set according to actual requirements, which is not specifically limited in the embodiment of the present invention.
  • the time domain resource information refers to information used to distinguish different signals in the time dimension.
  • the time domain resource information of the identification signal may include at least one of the following: the time domain position of the identification signal, the time domain spacing of the identification signal, the period of the identification signal, the number of repetitions of the identification signal, and the transmission time occupied by the identification signal.
  • the time domain position may be an absolute position of the type of the identification signal, or may be a relative position of the two types of identification signals, which is not specifically limited in the embodiment of the present invention.
  • the time domain spacing of the identification signal refers to the time interval value of the at least two types of identification signals in the same period in the time domain.
  • the period of the identification signal refers to the interval value between the two periods of the periodic identification signal in the time domain.
  • the number of repetitions of the identification signal refers to the number of repetitions of the identification signal at the time of transmission.
  • the transmission time occupied by the identification signal refers to the length of time that the identification signal is transmitted in the time domain.
  • time domain resource information may also include other information, which is not specifically limited in this embodiment of the present invention.
  • the content included in the time domain resource information may be configured according to actual requirements.
  • the frequency domain resource information refers to information used to distinguish different signals in the frequency dimension.
  • the frequency domain resource information of the identification signal may include: identifying a frequency domain bandwidth of the signal; or identifying a frequency domain bandwidth of the signal and a frequency domain location of the identification signal.
  • the frequency domain bandwidth of the identification signal refers to the frequency width occupied by the identification signal in the frequency domain.
  • the frequency domain position of the identification signal refers to the absolute position of the identification signal in the frequency domain, including low frequency or intermediate frequency or high frequency. Or the relative position in the frequency domain, the relative position of the frequency domain of the identification signal of different classes, or the relative position of the frequency domain of the identification signal of the same class transmitted in different times, such as the relative position of the primary synchronization signal and the secondary synchronization signal, or the primary synchronization The relative position between the different transmission times of the signal signal.
  • the frequency domain resource information may also include other information, which is not specifically limited in this embodiment of the present invention.
  • the content included in the frequency domain resource information may be configured according to actual requirements.
  • the airspace resource information is information used to distinguish different signals from the spatial dimension.
  • the airspace resource information of the identification signal may include at least one of the following: the number of antenna ports transmitting the identification signal, the antenna port number transmitting the identification signal, the number of antennas transmitting the identification signal, the number of beams transmitting the identification signal, The beam number of the identification signal is transmitted.
  • the airspace resource information may also include other information, which is not specifically limited in this embodiment of the present invention, and may be configured according to actual requirements.
  • the code domain resource information is a dimension from the coding mode and is used to distinguish information of different signals.
  • the code domain resource information of the identification signal includes at least one of the following: a root sequence of the identification signal, a cyclic shift of the identification signal, an orthogonal mask of the identification signal, and a scrambling code of the identification signal.
  • code domain resource information may also include other information, which is not specifically limited in this embodiment of the present invention.
  • the content included in the code domain resource information may be configured according to actual requirements.
  • the power parameter information is a dimension from the power value and is used to distinguish information of different signals.
  • the power parameter information of the identification signal may include: a transmission power of the identification signal, or a transmission power difference of the identification signal.
  • the difference in transmit power of the identification signal includes a difference in transmit power between different types of identification signals, or a difference in transmit power between two similar identification signals.
  • the power parameter information may also include other information, which is not specifically limited in this embodiment of the present invention, and the content included in the power parameter information may be configured according to actual requirements.
  • the category information is a dimension used to distinguish different types of signals from different types of signals.
  • the category information of the identification signal includes at least one of the following: the identification signal is a primary synchronization signal, the identification signal is a secondary synchronization signal, the synchronization signal is a base station-based synchronization signal, and the identification signal is a satellite-based synchronization signal.
  • the category information may also include other information, which is not specifically limited in the embodiment of the present invention, and may be included according to actual demand category information.
  • the base station determines the feature information of the identification signal according to the parameter set of the cell, and may be implemented by any one of the following two implementation manners:
  • the feature information of the identification signal is determined according to the parameter set and the mapping relationship of the cell.
  • the mapping relationship includes a correspondence between the parameter set and the at least one feature information.
  • the specific value of the feature information corresponding to the parameter set may be configured according to actual requirements, and the two parties are known.
  • the specific value of the feature information corresponding to the parameter set is not limited in the embodiment of the present invention.
  • the mapping relationship may include a set of parameter sets corresponding to a set of feature information, and the two correspond to each other.
  • the mapping relationship can be queried quickly and uniquely, and the feature information corresponding to the parameter set is obtained.
  • the mapping relationship can be uniquely and quickly queried, and the parameter set corresponding to the feature information is obtained.
  • the combination of all possible feature information and the parameter set corresponding to each group of feature information are included in the enumeration manner.
  • mapping relationship is illustrated in the form of a table.
  • Parameter set Characteristic information Parameter set 1 A, b, c... Parameter set 2 A, b, 1... Parameter set 3 x, b, 4... — .
  • one of the set of feature information corresponds to the plurality of parameter sets, and the intersection of the parameter sets corresponding to each of the set of feature information is a unique parameter set.
  • the mapping relationship is queried, and multiple feature information corresponding to the parameter set is obtained to form a set of feature information.
  • the mapping relationship is queried, corresponding to multiple parameter sets, but the intersection is unique.
  • Parameter set Characteristic information Parameter set 1, parameter set 2, ... A Parameter set 2, parameter set 5, ... B Parameter set 6, parameter set 1, ... C — .
  • one parameter in the parameter set corresponds to multiple sets of feature information, and the intersection of the feature information corresponding to each parameter in the parameter set is unique feature information.
  • the mapping relationship is queried, and multiple sets of feature information corresponding to each parameter in the parameter set are obtained, and the intersection is a unique group feature information.
  • the feature information a plurality of parameters corresponding to the feature information are acquired to form a parameter set.
  • Parameter O Feature information group 1, feature information group 6, ... Parameter P Feature information group 7, feature information group 12, ... Parameter Q Feature information group 10, feature information group 5, ... — .
  • Table 1, Table 2, and Table 3 merely illustrate the correspondence between the content included in the mapping relationship by way of example, and are not specific to the form of the mapping relationship and the content included in the mapping relationship. In practical applications, it can be matched according to actual needs.
  • the form of the mapping relationship and the specific content are not specifically limited in the embodiment of the present invention.
  • the base station may calculate the feature parameters of the identification signal according to the preset set according to the parameter set of the cell.
  • the preset formula can be a simple addition, subtraction, multiplication, and division operation, or can be a complex modulo, integral, or derivative operation, and the like.
  • the base station determines characteristic information of the identification signal, and sends an identification signal to the terminal.
  • the specific content of S402 can be performed by the processor 301 in the base station shown in FIG. 3 through the transceiver 303.
  • the base station sends the identification signal to the terminal according to the characteristic information of the determined identification signal, which may be implemented as follows: according to the reference parameter set or the parameter set of the cell, the characteristic information of the identified identification signal is sent to the terminal. Send an identification signal.
  • the reference parameter set may be configured with specific content according to actual requirements, which is not specifically limited in this embodiment of the present invention.
  • whether the base station sends the identification signal to the terminal according to the reference parameter set or sends the identification signal to the terminal according to the parameter set of the cell may be defined by the communication standard and is known by both the base station and the terminal.
  • S402 The execution of S402 is exemplified by way of example below.
  • the base station transmits the identification signal according to the indication of the time domain resource information.
  • the base station transmits the identification signal according to the indication of the frequency domain resource information.
  • the feature information of the identification signal is the number of antenna ports transmitting the identification signal
  • the number of antenna ports of the determined transmission identification signal is transmitted to the terminal.
  • the process of executing S402 under other airspace resource information is similar to this, and will not be described again.
  • the root sequence of the determined identification signal of the base station encodes the identification signal and transmits the identification signal to the terminal.
  • the process of executing S402 under other code domain resource information is similar to this, and will not be described again.
  • the base station transmits the identification signal to the terminal with the transmission power of the determined identification signal.
  • the process of executing S402 under other power parameter information is similar to this, and will not be described again.
  • the base station transmits the main synchronization signal to the terminal as the identification signal.
  • the process of executing S402 under other category information is similar to this, and will not be described again.
  • the base station transmits X types of identification signals to the terminal.
  • the base station transmits an identification signal carrying the parameter set indication information to the terminal.
  • FIG. 5 illustrates four different identification signals transmitted to the terminal when the feature information of the identification signal is the time domain position, the feature information of the four different identification signals determined by the four different parameter sets.
  • FIG. 6 illustrates three types of three different identification signal information determined by three different parameter sets when the feature information of the identification signal is a time domain interval between different types of identification signals. Different identification signals.
  • FIG. 7 illustrates three different characteristics transmitted to the terminal when the feature information of the identification signal is the time domain interval between the same type identification signals, and the characteristic information of the three different identification signals determined by the three different parameter sets. Identification signal.
  • FIG. 8 illustrates four different identification signals transmitted to the terminal when the feature information of the identification signal is the number of repetitions of the identification signal, the feature information of the four different identification signals determined by the four different parameter sets.
  • FIG. 9 illustrates four different identification signals determined by four different parameter sets when the characteristic information of the identification signal is the transmission power difference of the same type identification signal. Feature information, four different identification signals sent to the terminal.
  • FIG. 10 illustrates four different types of four different identification signals determined by four different parameter sets when the characteristic information of the identification signal is the difference of the transmission power of the different types of identification signals. Identify the signal.
  • Example 7 and FIG. 11 illustrates that when the feature information of the identification signal is the transmission power difference of the different types of identification signals and the number of repetitions of the identification signal, the characteristic information of the four different identification signals determined by the four different parameter sets is presented to the terminal. Four different identification signals are sent.
  • Example 8 and FIG. 12 illustrates four different identification signals transmitted to the terminal when the feature information of the identification signal is the transmission time occupied by the identification signal, and the characteristic information of the four different identification signals determined by the four different parameter sets. .
  • FIG. 13 illustrates two different identification signals transmitted to the terminal when the feature information of the identification signal is the frequency domain bandwidth of the identification signal, and the characteristic information of the two different identification signals determined by the two different parameter sets. .
  • FIG. 14 illustrates two types of characteristic information of two different identification signals determined by two different parameter sets when the feature information of the identification signal is the frequency domain bandwidth and the frequency domain position of the identification signal, and two types of information are transmitted to the terminal. Different identification signals.
  • the terminal acquires feature information of the identification signal of the cell.
  • the specific content of S403 can be performed by the processor 201 in the terminal shown in FIG. 2 through the transceiver 203.
  • the terminal may perform matching to acquire the identification signal of the cell by using a frequency sweep, and then parse the acquired identification signal to obtain feature information of the identification signal.
  • the feature information of the identification signal is defined in advance and is known by both the base station and the terminal. Therefore, the terminal may analyze and acquire the feature information of the identification signal in accordance with the pre-definition in S404.
  • the terminal acquires an identification signal of the cell according to the parameter set. Therefore, the specific manner in which the terminal acquires the identification signal of the cell depends on the manner in which the base station transmits the identification signal in S402.
  • the feature information that the terminal acquires the identification signal of the cell may be implemented by using any one of the following two implementation manners:
  • the terminal performs matching according to the reference parameter set, acquires the identification signal of the cell, and parses the feature information of the identification signal of the identification signal.
  • the base station transmits an identification signal to the terminal according to the reference parameter set and the characteristic information of the identified identification signal.
  • the terminal performs matching according to the preset M reference parameter sets until the identification signal of the cell is acquired, and the feature information of the identification signal of the identification signal is parsed.
  • the base station transmits an identification signal to the terminal according to the parameter set of the cell and the characteristic information of the determined identification signal.
  • the terminal sets the parameter set of the cell to be unknown. Therefore, in the mode B, the terminal adopts the blind detection mode, and attempts to perform blind detection matching according to the preset M reference parameter sets, and obtains the cell identification according to a certain reference parameter set. After the signal, the blind check is ended.
  • the terminal adopts mode A or mode B in S403, and can select a configuration according to the communication standard.
  • the identification signal acquired by the terminal in S403 is the identification signal sent by the base station in S402.
  • the identification signal has been described in detail in S401, and will not be described again here.
  • the terminal determines a parameter set of the cell according to the feature information of the identification signal.
  • the specific content of S404 can be performed by the processor 201 in the terminal shown in FIG. 2.
  • the parameter set of the cell includes at least one of the following parameters: subcarrier spacing, subframe length, symbol length, slot length, CP length, number of symbols in the subframe, number of symbols in the slot, and subframe.
  • Type time slot type, CP type, duplex mode, whether to grant spectrum, whether it is independent carrier, whether multiple beams, the number of beams, and service requirements.
  • the terminal determines the parameter set of the cell according to the feature information of the identification signal, and may be implemented by any one of the following two solutions:
  • the terminal determines a parameter set of the cell from the N parameter sets according to the feature information of the identification signal.
  • N is greater than or equal to 2.
  • the N parameter sets are a set of parameters supported by the cells in the communication system.
  • the terminal determines the parameter set of the cell from the N parameter sets according to the feature information of the identification signal.
  • the following second solution can be implemented.
  • the preset formula here is similar to the preset formula in the second implementation manner in S401, and will not be described again.
  • the terminal determines the parameter set of the cell according to the feature information and the mapping relationship of the identification signal.
  • the mapping relationship includes a correspondence between the feature information and the at least one parameter set.
  • mapping relationship and the parameter set of the cell are determined according to the mapping relationship has been described in detail in S401, and details are not described herein.
  • the method for determining and transmitting a cell parameter set provided by the embodiment of the present invention can accurately distinguish different parameter sets of a cell by using the feature information of the identification signal to carry the parameter set of the cell, and identifying the different feature information of the signal, when the terminal acquires the identification signal , according to the characteristic information of the identification signal, the parameter set of the cell can be accurately identified, and the support is realized.
  • each network element such as a terminal, a base station, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform the division of the function modules on the terminal, the base station, and the like according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 15 is a schematic diagram showing a possible structure of the terminal 150 involved in the foregoing embodiment.
  • the terminal 150 includes an obtaining unit 1501 and a determining unit 1502.
  • the obtaining unit 1501 is used by the terminal 150 to perform the process S403 in FIG. 4, and the determining unit 1502 is configured to support the terminal 150 to execute the process S404 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 16 shows a possible structural diagram of the terminal 150 involved in the above embodiment.
  • the terminal 150 may include a processing module 1601 and a communication module 1602.
  • the processing module 1601 is configured to control and manage the actions of the terminal 150.
  • the processing module 1601 is configured to support the terminal 150 to perform the processes S403 and S404 in FIG. 40.
  • Communication module 1602 is used to support communication of terminal 150 with other network entities.
  • the terminal 150 may further include a storage module 1603 for storing program codes and data of the terminal 150.
  • the processing module 1601 may be the processor 201 in the physical structure of the terminal 20 shown in FIG. 2, and may be a processor or a controller, such as a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic. Device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1602 may be the transceiver 203 in the physical structure of the terminal 20 shown in FIG. 2, or may be a transceiver circuit or a communication interface or the like.
  • the storage module 1603 may be the memory 202 in the physical structure of the terminal 20 shown in FIG. 2.
  • the terminal 150 involved in FIG. 16 of the embodiment of the present invention may be the terminal 20 shown in FIG.
  • FIG. 17 is a schematic diagram showing a possible structure of the base station 170 involved in the foregoing embodiment.
  • the base station 170 includes a determining unit 1701 and a sending unit 1702.
  • the determining unit 1701 is configured to support the base station 170 to perform the process S401 in FIG. 4, and the transmitting unit 1702 is configured to support the base station 170 to perform the process S402 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 18 shows a possible structural diagram of the base station 170 involved in the above embodiment.
  • the base station 170 can include a processing module 1801 and a communication module 1802.
  • the processing module 1801 is configured to perform control management on the action of the base station 170.
  • the processing module 1801 is configured to support the base station 170 to perform the process S401 in FIG. 4, for example, the processing module 1801 is further configured to support the base station 170 to perform the communication module 1802 through the communication module 1802. Process S402 in.
  • Communication module 1802 is for supporting communication of base station 170 with other network entities.
  • the base station 170 can also include a storage module 1803 for storing program codes and data of the base station 170.
  • the processing module 1801 may be the processor 301 in the physical structure of the base station 30 shown in FIG. 3, and may be a processor or a controller, for example, may be a CPU, and a general office. Processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1802 may be the transceiver 303 in the physical structure of the base station 30 shown in FIG. 3, or may be a transceiver circuit or a communication interface or the like.
  • the storage module 1803 may be the memory 302 in the physical structure of the base station 30 shown in FIG.
  • the base station 170 involved in FIG. 18 of the embodiment of the present invention may be the base station 30 shown in FIG.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, Erasable Programmable ROM (EPROM), and electrically erasable programmable read only memory (Electrically EPROM).
  • EEPROM electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also reside in the device as discrete components.
  • the embodiment of the present invention provides a communication system 190.
  • the communication system 190 can include:
  • the communication system 190 can include:
  • the architecture of the communication system 190 is only schematically illustrated in FIG. 19 or FIG. 20, and is not a limitation on the number of terminals and base stations included in the communication system 190.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or may be two or two.
  • the upper unit is integrated in one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种确定、发送小区参数集合的方法、设备及系统,涉及通信领域,实现在支持多种小区参数集合的5G NR中终端可识别小区的参数集合。本发明实施例提供的方案包括:终端获取小区的识别信号;根据识别信号,获取识别信号的特征信息;根据识别信号的特征信息,确定小区的参数集合。本发明用于确定小区的参数集合。

Description

一种确定、发送小区参数集合的方法、设备及系统 技术领域
本发明涉及通信领域,尤其涉及一种确定、发送小区参数集合的方法、设备及系统。
背景技术
随着移动业务性能的需求越来越高,移动通信技术已经发展到了第五代移动通信技术(英文全称:5th-Generation,5G)。5G具备更高的业务性能,5G新的无线接入技术(英文全称:New Radio Access Technologies,RAT)中定义了新的空口接入技术,可以支持更快的用户体验速率,更高的连接数密及流量密度度,毫秒级的端到端时延,更快的峰值速率。同时,5G还大幅提高网络部署和运营的效率。当前,已经确定5G NR中支持多种子载波间隔、符号长度、子帧长度等参数。
在通信过程中,终端通常依据小区的参数集合与基站间进行信号传输。例如,长期演进(英文全称:Long Term Evolution,LTE)系统的小区参数集合为子载波间隔15kHz、子帧长度1ms、一个子帧包括14个或12个符号。LTE系统中小区参数集合固定,且基站与终端共知,终端可以直接采用固定的小区参数集合与基站间进行信号传输。
但是,由于5G NR中技术中,小区支持多种参数集合,在接入网络之前,终端并不知道某个小区使用哪种参数集合,因此,终端需要先识别小区的参数集合,才能与基站进行信号传输。所以,在5G NR中终端如何识别小区的参数集合成为亟待解决的问题。
发明内容
本发明实施例提供一种确定、发送小区参数集合的方法、设备及系统,实现在支持多种小区参数集合的5G NR中终端可识别小区的参数集合。
为达到上述目的,本发明的实施例采用如下技术方案:
本申请的第一方面,提供一种确定小区参数集合的方法,应用于终端。该方法具体包括:获取小区的识别信号的特征信息;根据识别信号的特征信息,确定小区的参数集合;小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、循环前缀(英文全称:Cyclic Prefix,CP)长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
本申请提供的确定小区参数集合的方法,通过识别信号的特征信息携带小区的参数集合,识别信号不同的特征信息即可准确区分小区不同的参数集合,当终端获取到识别信号时,即可根据识别信号的特征信息准确识别出小区的参数集合,实现在支持多种小区参数集合的5G NR中终端可识别小区的参数集合。
在一种可能的实现方式中,根据识别信号的特征信息,确定小区的参数集合,具体可以实现为:根据识别信号的特征信息,从N个参数集合中确定小区的参数集合;N大于或等于2。其中,N个参数集合为小区所属的通信系统的通信标准中定义的小区支持的参数集合。这样一来,终端可以根据识别信号的特征信息,在小区支持的多个参数集合中准确识别小区的参数集合,提高了识别的效率。
在另一种可能的实现方式中,根据识别信号的特征信息,确定小区的参数集合,包括:根据识别信号的特征信息和映射关系,确定小区的参数集合;映射关系包括分别特征信息与至少一个参数集合的对应关系。通过映射关系表示信号的特征信息与参数集合的对应关系,终端在获取到识别信号的特征信息时,可以直接查找确定小区的参数集合,实现简单快速。
其中,在映射关系中,可以是一组特征信息唯一对应一组参数集合。或者,在映射关系中,也可以是特征信息中的一个信息对应多个参数集合,这组特征信息中每个信息对应的参数集合的交集为 唯一的参数集合。或者,在映射关系中,也可以是参数集合中的一个参数对应多组特征信息,这个参数集合中每个参数对应的特征信息的交集为唯一的特征信息。本申请对于映射关系中的具体对应内容不进行限定。
在另一种可能的实现方式中,提供一种获取小区的识别信号特征信息的实现方案,具体可以包括:按照参考参数集合进行匹配,获取小区的识别信号,解析识别信号的获取识别信号的特征信息。也就是说,不论小区的参数集合的内容是什么,识别信号均按照参考参数集合发送,终端在获取识别信号时,按照参考参数集合进行匹配即可,使得识别信号的接收实现简单,降低了终端的检测复杂度。
结合第一方面或上述任一可能的实现方式,在另一种可能的实现方式中,提供另一种获取小区的识别信号特征信息的实现方案,具体可以包括:依次按照预设M个的参考参数集合进行匹配,直至获取小区的识别信号,解析识别信号的获取识别信号的特征信息;M大于或等于2。识别信号按照小区的参数集合发送,终端在获取识别信号时,按照可能的参数集合盲检进行匹配。因此,识别信号的设计简单。
本申请的第二方面,提供一种发送小区参数集合的方法,应用于基站。该方法具体包括:根据小区的参数集合,确定识别信号的特征信息;以确定的识别信号的特征信息,向终端发送识别信号。小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
本申请提供的发送小区参数集合的方法,通过识别信号的特征信息携带小区的参数集合,识别信号不同的特征信息即可准确区分小区不同的参数集合,发送识别信号即完成小区参数集合的发送。当终端获取到识别信号时,即可根据识别信号的特征信息准确识别 出小区的参数集合,实现在支持多种小区参数集合的5G NR中终端可识别小区的参数集合。
在一种可能的实现方式中,根据小区的参数集合,确定识别信号的特征信息,包括:根据小区的参数集合和映射关系,确定识别信号的特征信息;映射关系包括包括参数集合与至少一个特征信息的对应关系。通过映射关系表示信号的特征信息与参数集合的对应关系,基站在发送识别信号时,可以直接查找映射关系确定识别信号的特征信息,实现简单快速。
其中,第二方面中的映射关系,与第一方面中的映射关系相同,此处不再进行赘述。
在另一种可能的实现方式中,以确定的识别信号的特征信息,向终端发送识别信号的实现方案,具体可以实现为:按照参考参数集合,以确定的识别信号的特征信息,向终端发送识别信号。也就是说,不论小区的参数集合的内容是什么,识别信号均按照参考参数集合发送,终端在获取识别信号时,按照参考参数集合进行匹配即可,使得识别信号的接收实现简单,降低了终端的检测复杂度
在另一种可能的实现方式中,以确定的识别信号的特征信息,向终端发送识别信号的实现方案,具体可以实现为:按照小区的参数集合,以确定的识别信号的特征信息,向终端发送识别信号。识别信号的设计简单。
在另一种可能的实现方式中,为了提高方案实现的多样性,达到不同的效果,识别信号可以包括下述信号/信道中的至少一项:同步信号、广播信道、参考信号。其中,若识别信号为同步信号,在最早的同步阶段终端即可识别出小区的参数集合,减少了终端识别参数集合的时延。若识别信号为广播信号,可以通过显式字段指示小区的参数集合,识别信号设计简单。若识别信号为参考信号,同步信号可以统一设计,终端不需要盲检同步信号,只需要在信道估计阶段即可使用参考信号序列相关较早识别出小区的参数集合。
在另一种可能的实现方式中,参考信号可以包括独立的参考信 号,或者,也可以包括广播信道的参考信号。
在另一种可能的实现方式中,识别信号的特征信息是任意维度可以用来区分信号的信息。为了提高方案实现的多样性,识别信号的特征信息可以包括下述信息中的至少一项:识别信号的时域资源信息、识别信号的频域资源信息、识别信号的空域资源信息、识别信号的码域资源信息、识别信号的功率参数信息、识别信号的类别信息、识别信号的类别数量、参数集合指示信息。其中,参数集合指示信息用于指示小区的参数集合。参数集合指示信息可以为显式字段。
在另一种可能的实现方式中,时域资源信息是时间维度上可以用来区分信号的特征信息。将时域资源信息作为特征信息,实现了终端通过识别信号的时域资源信息识别小区的参数集合。识别信号的时域资源信息包括下述信息中的至少一项:识别信号的时域位置、识别信号的时域间距、识别信号的周期、识别信号的重复次数、识别信号占用的传输时间。
在另一种可能的实现方式中,频域资源信息是频率维度上可以用来区分信号的特征信息。将频域资源信息作为特征信息,实现了终端通过识别信号的频域资源信息识别小区的参数集合。识别信号的频域资源信息可以包括:识别信号的频域带宽;或者,识别信号的频域带宽和识别信号的频域位置。
在另一种可能的实现方式中,空域资源信息是空间维度上可以用来区分信号的特征信息。将空域资源信息作为特征信息,实现了终端通过识别信号的空域资源信息识别小区的参数集合。识别信号的空域资源信息可以包括下述信息中的至少一项:传输识别信号的天线端口数、传输识别信号的天线端口号、传输识别信号的天线数、传输识别信号的波束数量、传输识别信号的波束编号。
在另一种可能的实现方式中,码域资源信息是编码方式维度上可以用来区分信号的特征信息。将码域资源信息作为特征信息,实现了终端通过识别信号的码域资源信息识别小区的参数集合。识别 信号的码域资源信息可以包括下述信息中的至少一项:识别信号的根序列、识别信号的循环移位、识别信号的正交掩码、识别信号的扰码。
在另一种可能的实现方式中,功率参数信息是信号功率维度上可以用来区分信号的特征信息。将功率参数信息作为特征信息,实现了终端通过识别信号的功率参数信息识别小区的参数集合。识别信号的功率参数信息可以包括:识别信号的发射功率,或者,识别信号的发射功率差。其中,识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
在另一种可能的实现方式中,类别信息是信号种类维度上可以用来区分信号的特征信息。将类别信息作为特征信息,实现了终端通过识别信号的类别信息识别小区的参数集合。识别信号的类别信息包括下述信息中的至少一项:识别信号为主同步信号、识别信号为辅同步信号、同步信号为基于基站的同步信号、识别信号为基于卫星的同步信号。
第三方面,本发明实施例提供一种终端,该终端可以实现上述方法示例中网络终端所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第三方面,在一种可能的实现方式中,该终端的结构中包括处理器和收发器,该处理器被配置为支持该终端元执行上述方法中相应的功能。该收发器用于支持该终端与其他网元之间的通信。该终端还可以包括存储器,该存储器用于与处理器耦合,其保存该终端必要的程序指令和数据。
第四方面,本发明实施例提供了一种基站,该基站可以实现上述方法示例中基站所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第四方面,在一种可能的实现方式中,该基站的结构中包 括处理器和收发器,该处理器被配置为支持该基站执行上述方法中相应的功能。该收发器用于支持该基站与其他网元之间的通信。该基站还可以包括存储器,该存储器用于与处理器耦合,其保存该基站必要的程序指令和数据。
第五方面,本发明实施例提供了一种通信系统,该系统包括上述任一方面或任一种可能的实现方式所述的终端元和上述任一方面或任一种可能的实现方式所述的基站。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
上述第三方面至第七方面提供的方案,用于实现上述第一方面或第二方面提供的方法,因此可以与第一方面或第二方面达到相同的有益效果,此处不再进行赘述。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统网络结构示意图;
图2为本发明实施例提供的一种终端的结构示意图;
图3为本发明实施例提供的一种基站的结构示意图;
图4为本发明实施例提供的一种确定、发送小区参数集合的方法流程示意图;
图5为本发明实施例提供的一种识别信号的结构示意图;
图6为本发明实施例提供的另一种识别信号的结构示意图;
图7为本发明实施例提供的另一种识别信号的结构示意图;
图8为本发明实施例提供的另一种识别信号的结构示意图;
图9为本发明实施例提供的另一种识别信号的结构示意图;
图10为本发明实施例提供的另一种识别信号的结构示意图;
图11为本发明实施例提供的另一种识别信号的结构示意图;
图12为本发明实施例提供的另一种识别信号的结构示意图;
图13为本发明实施例提供的另一种识别信号的结构示意图;
图14为本发明实施例提供的另一种识别信号的结构示意图;
图15为本发明实施例提供的另一种终端的结构示意图;
图16为本发明实施例提供的再一种终端的结构示意图;
图17为本发明实施例提供的另一种基站的结构示意图;
图18为本发明实施例提供的再一种基站的结构示意图;
图19为本发明实施例提供的一种通信系统的结构示意图;
图20为本发明实施例提供的一种通信系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在描述本发明实施例之前,先对本申请方案应用的场景网络架构进行说明。本申请实施例提供的方法,应用于图1所示的通信系统中,该系统中包括至少一个基站101。每个基站101通过无线接口服务至少一个终端102。基站101与终端102之间按照基站101服务的小区的参数集合进行通信。
需要说明的是,对于图1所示的通信系统中包括的基站101的数量、每个基站101服务的终端102的数量,均根据实际网络需求部署。本申请对此不进行具体限定。
在图1中,仅示例性的示意了一个基站101以及基站101服务的终端102。图1中示意的内容并不是对通信系统中包括的基站101的数量、基站101服务的终端102的数量的具体限定。
其中,终端102可以为移动站、远程站、用户终端等。终端102的具体形态可以为手机、平板电脑、个人数字助手等用户终端。本发明实施例对此不进行具体限定。
本发明实施例提供的确定、发送小区参数集合的方法方法可以由图1所示的通信系统网络架构中的终端102、基站101执行。基站101服务的小区支持多种参数集合,终端102识别出基站101服务的小区所采用的参数集合后,接入基站101服务的小区,两者进行通信。
图2示出的是与本发明各实施例相关的一种终端20的结构示意图,该终端10可以为图2中部署的任一个终端102。
如图2所示,该终端20可以包括:处理器201、存储器202、收发器203。
下面结合图2对终端20的各个构成部件进行具体的介绍:
存储器202,可以是易失性存储器(英文全称:volatile memory),例如随机存取存储器(英文全称:random-access memory,RAM);或者非易失性存储器(英文全称:non-volatile memory),例如只读存储器(英文全称:read-only memory,ROM),快闪存储器(英文全称:flash memory),硬盘(英文全称:hard disk drive,HDD)或固态硬盘(英文全称:solid-state drive,SSD);或者上述种类的存储器的组合,用于存储可实现本发明方法的相关应用程序、以及配置文件。
处理器201是终端20的控制中心,可以是一个中央处理器(英文全称:central processing unit,CPU),也可以是特定集成电路(英 文全称:Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(英文全称:digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(英文全称:Field Programmable Gate Array,FPGA)。处理器201可以通过运行或执行存储在存储器202内的软件程序和/或模块,以及调用存储在存储器202内的数据,执行终端20的各种功能。
收发器203可以为终端20的通信端口或者通信接口或者收发天线或者其他,用于与其他网元传递信息或消息。
进一步的,图3示出的是与本发明各实施例相关的一种基站30的结构示意图,该基站30可以为图2中部署的基站101。
如图3所示,该基站30可以包括:处理器301、存储器302、收发器303。
下面结合图3对基站30的各个构成部件进行具体的介绍:
存储器302,可以是volatile memory,例如RAM;或者non-volatile memory,例如ROM,flash memory,HDD或SSD;或者上述种类的存储器的组合,用于存储可实现本发明方法的相关应用程序、以及配置文件。
处理器301是基站30的控制中心,可以是一个CPU,也可以是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。处理器301可以通过运行或执行存储在存储器302内的软件程序和/或模块,以及调用存储在存储器302内的数据,执行基站30的各种功能。
收发器303可以为基站30的通信端口或者通信接口或者收发天线或者其他,用于与其他网元传递信息或消息。
下面结合附图,对本发明的实施例进行具体阐述。
一方面,本发明实施例提供一种发送、确定小区参数集合的方法,应用于图1所示的通信系统中。如图4所示,所述方法可以包括:
S401、基站根据小区的参数集合,确定识别信号的特征信息。
具体的,可以有图3所示的基站中的处理器301执行S401的具体内容。
其中,小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
需要说明的是,一个小区所采用的参数集合中包括的参数的种类可以根据实际需求配置,本发明实施例对此不进行具体限定。参数集合中包括的参数的具体取值,根据通信标准定义,本发明实施例对此也不进行具体限定。
下面通过举例的形式,对参数集合中包括的参数的进行说明。
示例性的,子载波间隔可选值包括:3.75千赫兹(英文全称:kilohertz,kHz),9kHz,7.5kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz,……。
子帧长度的可选值可以包括:1毫秒(英文全称:millisecond,ms),0.5ms,……。
符号长度的可选值可以包括:71微秒(英文全称:microsecond,μs)等。
时隙长度的可选值可以包括:0.5ms等。
CP长度的可选值可以包括:5μs等。
一个子帧中的符号数的可选值可以包括:1-14。
一个时隙中的符号数的可选值可以包括:1,2,3,4,5,6,7。
子帧/时隙类型的可选值可以包括:全上行,全下行,上行+保护间隔+下行。
CP类型的可选值可以包括:常规循环前缀(英文全称:Normal Cyclic Prefix,NCP)、扩展循环前缀(英文全称:Extended Cyclic Prefix,ECP)、CP类型(type)1,CP type 2,……。
双工模式的可选值可以包括:频分双工(英文全称:Frequency  Division Dual,FDD)、时分双工(英文全称:Time Division Duplexing,TDD)、灵活双工、全双工。
是否授权频谱的可选值可以包括:授权频谱、非授权频谱。
是否独立载波的可选值可以包括:独立载波、非独立载波。
是否多波束或波束的数量的可选值可以包括:单波束(Single beam)/多波束(multi-beam)或波束的数量。
业务需求的可选值可以包括:增强型移动宽带(英文全称:Enhanced mobile broadband,eMBB),低时延及高可靠通信(英文全称:Ultra reliable and low latency communications,URLLC),大连接物联网(英文全称:Massive machine-type-communications,mMTC),V2X(英文全称:Vehicle to X)。
需要说明的是,上述示例只是通过举例的形式对于参数集合中包括的参数的示例说明,并不是对参数集合中包括的参数取值的具体限定。
可选的,识别信号可以包括下述信号/信道中的至少一项:同步信号、广播信道、参考信号。因此,识别信号可以为上述信号/信道中的一项,或者这些信号/信道的组合。
当然,识别信号也可以为其他可用于携带特征信息的信号,本发明实施例对于识别信号的类型不进行具体限定。
其中,参考信号可以为独立的参考信号,或者,也可以为广播信道的参考信号。本发明实施例对此不进行具体限定。
可选的,识别信号的特征信息包括下述信息中的至少一项:识别信号的时域资源信息、识别信号的频域资源信息、识别信号的空域资源信息、识别信号的码域资源信息、识别信号的功率参数信息、识别信号的类别信息、识别信号的类别数量、参数集合指示信息。
需要说明的是,识别信号的特征信息包括的信息,可以根据实际需求设定,并不局限于上述列举。凡是可以用来区分信号的信息,均可以作为识别信号的特征信息。
具体的,用于区分参数集合的不同的识别信号,除了某个特征 信息不同,其他维度的特征信息可以相同,也可以不同,本发明实施例对此不进行具体限定。
其中,参数集合指示信息用于指示小区的参数集合。参数集合指示信息可以为显式字段,不同的字段对应不同的参数集合。根据小区的参数集合,可以唯一确定参数集合指示信息。根据参数集合指示信息的字段,可以唯一快速的确定对应的参数集合。
需要说明的是,对于参数集合指示信息的字段类型及形式,可以根据实际需求设定,本发明实施例对此不进行具体限定。对于参数集合指示信息与参数集合的对应关系,也可以根据实际需求设定,本发明实施例对此也不进行具体限定。
其中,时域资源信息是指时间维度上用于区分不同信号的信息。识别信号的时域资源信息可以包括下述信息中的至少一项:识别信号的时域位置、识别信号的时域间距、识别信号的周期、识别信号的重复次数、识别信号占用的传输时间。
具体的,时域位置可以为一类识别信号的绝对位置,也可以为两类识别信号的相对位置,本发明实施例对此不进行具体限定。
识别信号的时域间距是指至少两类识别信号在同一周期内,在时域上的时间间隔值。
识别信号的周期,是指周期性的识别信号两个周期之间在时域的间隔值。
识别信号的重复次数,是指识别信号在发送时的重复次数。
识别信号占用的传输时间,是指发送一次识别信号在时域上占用的时长。
当然,时域资源信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求配置时域资源信息包括的内容。
其中,频域资源信息是指频率维度上用于区分不同信号的信息。识别信号的频域资源信息可以包括:识别信号的频域带宽;或者,识别信号的频域带宽和识别信号的频域位置。
具体的,识别信号的频域带宽,是指发送一次识别信号在频域上占用的频率宽度。
识别信号的频域位置,是指发送一次识别信号在频域上的绝对位置,包括低频或中频或高频。或者频域上的相对位置,不同类别的识别信号的频域相对位置,或者不同次数发送的相同类别的识别信号的频域相对位置,例如主同步信号和辅同步信号的相对位置,或主同步信号信号的不同发送次数之间的相对位置。
当然,频域资源信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求配置频域资源信息包括的内容。
其中,空域资源信息是从空间维度用来区分不同信号的信息。具体的,识别信号的空域资源信息可以包括下述信息中的至少一项:传输识别信号的天线端口数、传输识别信号的天线端口号、传输识别信号的天线数、传输识别信号的波束数量、传输识别信号的波束编号。
当然,空域资源信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求配置空域资源信息包括的内容。
其中,码域资源信息是从编码方式的维度,用来区分不同信号的信息。具体的,识别信号的码域资源信息包括下述信息中的至少一项:识别信号的根序列、识别信号的循环移位、识别信号的正交掩码、识别信号的扰码。
当然,码域资源信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求配置码域资源信息包括的内容。
其中,功率参数信息是从功率值的维度,用来区分不同信号的信息。具体的,识别信号的功率参数信息可以包括:识别信号的发射功率,或者,识别信号的发射功率差。
其中,识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
当然,功率参数信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求配置功率参数信息包括的内容。
其中,类别信息是从识别信号种类的维度,用来区分不同信号的信息。具体的,识别信号的类别信息包括下述信息中的至少一项:识别信号为主同步信号、识别信号为辅同步信号、同步信号为基于基站的同步信号、识别信号为基于卫星的同步信号。
当然,类别信息还可以包括其他信息,本发明实施例对此不进行具体限定,均可以根据实际需求类别信息包括的内容。
进一步可选的,在S401中,基站根据小区的参数集合,确定识别信号的特征信息,可以通过下述两种实现方式中任一种实现:
第一种实现方式、
根据小区的参数集合和映射关系,确定识别信号的特征信息。
其中,映射关系包括参数集合与至少一个特征信息的对应关系。
需要说明的是,对于与参数集合对应的特征信息的具体取值,可以根据实际需求配置定义,且通信双方共知。本发明实施例对于与参数集合对应的特征信息的具体取值不进行限定。
可选的,映射关系中可以包括一组参数集合对应一组特征信息,两者一一对应。根据参数集合可以唯一快速的查询映射关系,获取该参数集合对应的特征信息。反之,根据特征信息,也可以唯一快速的查询映射关系,获取该特征信息对应的参数集合。映射关系中通过枚举方式包含了所有可能的特征信息的组合,以及每组特征信息对应的参数集合。
示例性的,如表1所示,以表格的形式示意了一种映射关系。
表1
参数集合 特征信息
参数集合1 A、b、c……
参数集合2 A、b、1……
参数集合3 x、b、4……
…… ……
可选的,映射关系中,可以是一组特征信息中的一个信息对应多个参数集合,这组特征信息中每个信息对应的参数集合的交集为唯一的参数集合。根据一组参数集合,查询映射关系,获取该参数集合对应的多个特征信息,构成一组特征信息。反之,根据特征信息中每个信息,查询映射关系,分别对应多个参数集合,但交集唯一。
示例性的,如表2所示,以表格的形式示意了另一种映射关系。
表2
参数集合 特征信息
参数集合1、参数集合2、…… A
参数集合2、参数集合5、…… B
参数集合6、参数集合1、…… C
…… ……
可选的,映射关系中,可以是参数集合中的一个参数对应多组特征信息,这个参数集合中每个参数对应的特征信息的交集为唯一的特征信息。根据一组参数集合,查询映射关系,获取该参数集合中每个参数对应的多组特征信息,交集则为唯一组特征信息。反之,根据特征信息,获取该特征信息对应的多个参数,构成一个参数集合。
示例性的,如表3所示,以表格的形式示意了另一种映射关系。
表3
参数 特征信息
参数O 特征信息组1、特征信息组6、……
参数P 特征信息组7、特征信息组12、……
参数Q 特征信息组10、特征信息组5、……
…… ……
需要说明的是,表1、表2、表3只是以举例的形式说明映射关系中包括的内容的对应关系,并不是对映射关系的形式以及映射关系中包括的内容的具体限定。在实际应用中,可以根据实际需求配 置映射关系的形式以及具体内容,本发明实施例对此不进行具体限定。
第二种实现方式、
基站可以根据小区的参数集合,根据预设公式计算得到识别信号的特征参数。
需要说明的是,本发明实施例对于预设公式的内容不进行具体限定,可以根据实际需求配置。
示例性的,预设公式可以为简单的加减乘除运算,或者也可以为复杂的取模、积分或求导运算等等。
S402、基站以确定的识别信号的特征信息,向终端发送识别信号。
具体的,可以由图3所示的基站中的处理器301,通过收发器303执行S402的具体内容。
可选的,在S402中,基站以确定的识别信号的特征信息,向终端发送识别信号,具体可以实现为:按照参考参数集合或者小区的参数集合,以确定的识别信号的特征信息,向终端发送识别信号。
其中,参考参数集合可以根据实际需求配置具体内容,本发明实施例对此不进行具体限定。
需要说明的是,对于基站按照参考参数集合向终端发送识别信号,还是按照小区的参数集合向终端发送识别信号,可以由通信标准定义,并由基站及终端双方共知。
下面通过举例的形式,对S402的执行进行示例说明。
当识别信号的特征信息为时域资源信息时,在S402中,基站则将识别信号按照时域资源信息的指示进行发送。
当识别信号的特征信息为频时域资源信息时,在S402中,基站则将识别信号按照频域资源信息的指示进行发送。
当识别信号的特征信息为传输识别信号的天线端口数时,在S402中,以确定的传输识别信号的天线端口数向终端发送识别信号。对于其他空域资源信息下执行S402的过程与此相似,不再赘述。
当识别信号的特征信息为识别信号的根序列时,在S402中,基站以确定的识别信号的根序列对识别信号进行编码后向终端发送识别信号。对于其他码域资源信息下执行S402的过程与此相似,不再赘述。
当识别信号的特征信息为识别信号的发射功率时,在S402中,基站以确定的识别信号的发射功率向终端发送识别信号。对于其他功率参数信息下执行S402的过程与此相似,不再赘述。
当识别信号的特征信息是识别信号为主同步信号时,在S402中,基站向终端发送主同步信号作为识别信号。对于其他类别信息下执行S402的过程与此相似,不再赘述。
当识别信号的特征信息是识别信号的类别数量X时,在S402中,基站向终端发送X种识别信号。
当识别信号的特征信息是参数集合指示信息时,在S402中,基站向终端发送携带参数集合指示信息的识别信号。
下面结合附图,对S402的执行进行示例说明。
示例一、图5示意当识别信号的特征信息为时域位置时,以四种不同的参数集合确定的四种不同的识别信号的特征信息,向终端发送的四种不同的识别信号。
示例二、图6示意当识别信号的特征信息为不同类识别信号之间的时域间隔时,以三种不同的参数集合确定的三种不同的识别信号的特征信息,向终端发送的三种不同的识别信号。
示例三、图7示意当识别信号的特征信息为同类识别信号之间的时域间隔时,以三种不同的参数集合确定的三种不同的识别信号的特征信息,向终端发送的三种不同的识别信号。
示例四、图8示意当识别信号的特征信息为识别信号的重复次数时,以四种不同的参数集合确定的四种不同的识别信号的特征信息,向终端发送的四种不同的识别信号。
示例五、图9示意当识别信号的特征信息为同类识别信号的发射功率差时,以四种不同的参数集合确定的四种不同的识别信号的 特征信息,向终端发送的四种不同的识别信号。
示例六、图10示意当识别信号的特征信息为不同类识别信号的发射功率差时,以四种不同的参数集合确定的四种不同的识别信号的特征信息,向终端发送的四种不同的识别信号。
示例七、图11示意当识别信号的特征信息为不同类识别信号的发射功率差及识别信号的重复次数时,以四种不同的参数集合确定的四种不同的识别信号的特征信息,向终端发送的四种不同的识别信号。
示例八、图12示意当识别信号的特征信息为识别信号占用的传输时间时,以四种不同的参数集合确定的四种不同的识别信号的特征信息,向终端发送的四种不同的识别信号。
示例九、图13示意当识别信号的特征信息为识别信号的频域带宽时,以两种不同的参数集合确定的两种不同的识别信号的特征信息,向终端发送的两种不同的识别信号。
示例十、图14示意当识别信号的特征信息为识别信号的频域带宽和频域位置时,以两种不同的参数集合确定的两种不同的识别信号的特征信息,向终端发送的两种不同的识别信号。
需要说明的是,上面列举了不同特征信息下执行S402的过程。当特征信息包含多个维度时,可以将上述执行S402的过程叠加执行,此处不再进行赘述。
S403、终端获取小区的识别信号的特征信息。
具体的,可以由图2所示的终端中的处理器201,通过收发器203执行S403的具体内容。
其中,在S403中,终端可以通过扫频的方式进行匹配获取小区的识别信号,再对获取的识别信号进行解析得到识别信号的特征信息。
需要说明的是,对于识别信号的特征信息,是预先定义并由并由基站及终端双方共知的。因此,终端在S404中按照预先定义解析获取识别信号的特征信息即可。
需要说明的是,对于识别信号的特征信息,已经在S401中进行了详细描述,此处不再进行赘述。
具体的,在S403中,终端按照参数集合获取小区的识别信号。因此,终端获取小区的识别信号的具体方式,取决于S402中基站发送识别信号的方式。
可选的,在S403中,终端获取小区的识别信号的特征信息具体可以通过下述两种实现方式中任一种实现:
方式A、
终端按照参考参数集合进行匹配,获取小区的识别信号,解析识别信号的获取识别信号的特征信息。
与方式A对应的是,在S402中基站按照参考参数集合,以确定的识别信号的特征信息,向终端发送的识别信号。
方式B、
终端依次按照预设M个的参考参数集合进行匹配,直至获取小区的识别信号,解析识别信号的获取识别信号的特征信息。
其中,M大于或等于2。
与方式B对应的是,在S402中基站按照小区的参数集合,以确定的识别信号的特征信息,向终端发送的识别信号。由于终端对于小区的参数集合未知,因此,在方式B中终端采用盲检的方式,尝试依次按照预设M个的参考参数集合进行盲检匹配,当按照某个参考参数集合获取到小区的识别信号后,则结束盲检。
需要说明的是,对于基站按照参考参数集合向终端发送识别信号,还是按照小区的参数集合向终端发送识别信号,可以由通信标准定义,并由基站及终端双方共知。因此,终端在S403中采用方式A或者方式B,可以根据通信标准选择配置。
需要说明的是,S403中终端获取的识别信号,即S402中基站发送的识别信号。对于识别信号,已经在S401中进行了详细描述,此处不再进行赘述。
S404、终端根据识别信号的特征信息,确定小区的参数集合。
具体的,可以由图2所示的终端中的处理器201执行S404的具体内容。
其中,小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
需要说明的是,对于小区的参数集合,已经在S401中进行了详细描述,此处不再进行赘述。
具体的,在S404中,终端根据识别信号的特征信息,确定小区的参数集合,可以通过下述两种方案中的任一种实现:
第一方案、
终端根据识别信号的特征信息,从N个参数集合中确定小区的参数集合。
其中,N大于或等于2。N个参数集合为通信系统中小区支持的参数集合。
需要说明的是,对于终端根据识别信号的特征信息,从N个参数集合中确定小区的参数集合的过程,可以采用下述第二方案实现。当然,也可以通过预设公式实现。此处的预设公式,与S401中第二种实现方式中的预设公式相似,不再赘述。
第二方案、
终端根据识别信号的特征信息和映射关系,确定小区的参数集合。
其中,映射关系包括特征信息与至少一个参数集合的对应关系。
需要说明的是,对于映射关系以及根据映射关系确定小区的参数集合的方式,已经在S401中进行了详细描述,此处不再进行赘述。
本发明实施例提供的确定、发送小区参数集合的方法,通过识别信号的特征信息携带小区的参数集合,识别信号不同的特征信息即可准确区分小区不同的参数集合,当终端获取到识别信号时,即可根据识别信号的特征信息准确识别出小区的参数集合,实现在支 持多种小区参数集合的5G NR中终端可识别小区的参数集合。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端、基站等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对终端、基站等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图15示出了上述实施例中所涉及的终端150的一种可能的结构示意图,终端150包括:获取单元1501,确定单元1502。获取单元1501用于终端150执行图4中的过程S403,确定单元1502用于支持终端150执行图4中的过程S404。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图16示出了上述实施例中所涉及的终端150的一种可能的结构示意图。终端150可以包括:处理模块1601和通信模块1602。处理模块1601用于对终端150的动作进行控制管理,例如,处理模块1601用于支持终端150执行图40中的过程S403、S404。通信模块1602用于支持终端150与其他网络实体的通信。终端150还可以包括存储模块1603,用于存储终端150的程序代码和数据。
其中,处理模块1601可以为图2所示的终端20的实体结构中的处理器201,可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1602可以是图2所示的终端20的实体结构中的收发器203,或者可以是收发电路或通信接口等。存储模块1603可以是图2所示的终端20的实体结构中的存储器202。
当处理模块1601为处理器,通信模块1602为收发器,存储模块1603为存储器时,本发明实施例图16所涉及的终端150可以为图2所示的终端20。
在采用对应各个功能划分各个功能模块的情况下,图17示出了上述实施例中所涉及的基站170的一种可能的结构示意图,基站170包括:确定单元1701,发送单元1702。确定单元1701用于支持基站170执行图4中的过程S401,发送单元1702用于支持基站170执行图4中的过程S402。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的基站170的一种可能的结构示意图。基站170可以包括:处理模块1801和通信模块1802。处理模块1801用于对基站170的动作进行控制管理,例如,处理模块1801用于支持基站170执行图4中的过程S401,例如,处理模块1801还用于支持基站170通过通信模块1802执行图4中的过程S402。通信模块1802用于支持基站170与其他网络实体的通信。基站170还可以包括存储模块1803,用于存储基站170的程序代码和数据。
其中,处理模块1801可以为图3所示的基站30的实体结构中的处理器301,可以是处理器或控制器,例如可以是CPU,通用处 理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1802可以是图3所示的基站30的实体结构中的收发器303,或者可以是收发电路或通信接口等。存储模块1803可以是图3所示的基站30的实体结构中的存储器302。
当处理模块1801为处理器,通信模块1802为收发器,存储模块1803为存储器时,本发明实施例图18所涉及的基站170可以为图3所示的基站30。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于设备中。
再一方面,本发明实施例提供一种通信系统190,如图19所示,所示通信系统190可以包括:
上述任一实施例所述的终端20,及上述任一实施例所述的基站30。
本发明实施例提供另一种通信系统190,如图20所示,所示通信系统190可以包括:
上述任一实施例所述的终端150,及上述任一实施例所述的终端170。
还需要说明的是,图19或图20中只是示意描述通信系统190的架构,并不是对通信系统190包括的终端及基站的数量的限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以 上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (40)

  1. 一种确定小区参数集合的方法,其特征在于,应用于终端,所述方法包括:
    获取小区的识别信号的特征信息;
    根据所述识别信号的特征信息,确定所述小区的参数集合;所述小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、循环前缀CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述识别信号的特征信息,确定所述小区的参数集合,包括:
    根据所述识别信号的特征信息,从N个参数集合中确定所述小区的参数集合;所述N大于或等于2;
    或者,
    根据所述识别信号的特征信息和映射关系,确定所述小区的参数集合;所述映射关系包括特征信息与至少一个参数集合的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述识别信号包括下述信号/信道中的至少一项:
    同步信号、广播信道、参考信号。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述识别信号的特征信息包括下述信息中的至少一项:
    所述识别信号的时域资源信息、所述识别信号的频域资源信息、所述识别信号的空域资源信息、所述识别信号的码域资源信息、所述识别信号的功率参数信息、所述识别信号的类别信息、所述识别信号的类别数量、参数集合指示信息;
    其中,所述参数集合指示信息用于指示所述小区的参数集合。
  5. 根据权利要求4所述的方法,其特征在于,所述识别信号的时域资源信息包括下述信息中的至少一项:
    所述识别信号的时域位置、所述识别信号的时域间距、所述识别 信号的周期、所述识别信号的重复次数、所述识别信号占用的传输时间。
  6. 根据权利要求4或5所述的方法,其特征在于,所述识别信号的频域资源信息包括:
    所述识别信号的频域带宽;
    或者,
    所述识别信号的频域带宽和所述识别信号的频域位置。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述识别信号的空域资源信息包括下述信息中的至少一项:
    传输所述识别信号的天线端口数、传输所述识别信号的天线端口号、传输所述识别信号的天线数、传输所述识别信号的波束数量、传输所述识别信号的波束编号。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述识别信号的码域资源信息包括下述信息中的至少一项:
    所述识别信号的根序列、所述识别信号的循环移位、所述识别信号的正交掩码、所述识别信号的扰码。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,所述识别信号的功率参数信息包括:
    所述识别信号的发射功率,或者,所述识别信号的发射功率差;
    其中,所述识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
  10. 根据权利要求4-9任一项所述的方法,其特征在于,所述识别信号的类别信息包括下述信息中的至少一项:
    所述识别信号为主同步信号、所述识别信号为辅同步信号、所述同步信号为基于基站的同步信号、所述识别信号为基于卫星的同步信号。
  11. 一种发送小区参数集合的方法,其特征在于,应用于基站,所述方法包括:
    根据小区的参数集合,确定识别信号的特征信息;所述小区的参 数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、循环前缀CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求;
    以所述识别信号的特征信息,向终端发送所述识别信号。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述小区的参数集合,确定识别信号的特征信息,包括:
    根据所述小区的参数集合和映射关系,确定所述识别信号的特征信息;所述映射关系包括参数集合与至少一个特征信息的对应关系。
  13. 根据权利要求11或12所述的方法,其特征在于,所述识别信号包括下述信号/信道中的至少一项:
    同步信号、广播信道、参考信号。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述识别信号的特征信息包括下述信息中的至少一项:
    所述识别信号的时域资源信息、所述识别信号的频域资源信息、所述识别信号的空域资源信息、所述识别信号的码域资源信息、所述识别信号的功率参数信息、所述识别信号的类别信息、所述识别信号的类别数量、参数集合指示信息;
    其中,所述参数集合指示信息用于指示所述小区的参数集合。
  15. 根据权利要求14所述的方法,其特征在于,所述识别信号的时域资源信息包括下述信息中的至少一项:
    所述识别信号的时域位置、所述识别信号的时域间距、所述识别信号的周期、所述识别信号的重复次数、所述识别信号占用的传输时间。
  16. 根据权利要求14或15所述的方法,其特征在于,所述识别信号的频域资源信息包括:
    所述识别信号的频域带宽;
    或者,
    所述识别信号的频域带宽和所述识别信号的频域位置。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述识别信号的空域资源信息包括下述信息中的至少一项:
    传输所述识别信号的天线端口数、传输所述识别信号的天线端口号、传输所述识别信号的天线数、传输所述识别信号的波束数量、传输所述识别信号的波束编号。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述识别信号的码域资源信息包括下述信息中的至少一项:
    所述识别信号的根序列、所述识别信号的循环移位、所述识别信号的正交掩码、所述识别信号的扰码。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述识别信号的功率参数信息包括:
    所述识别信号的发射功率,或者,所述识别信号的发射功率差;
    其中,所述识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,所述识别信号的类别信息包括下述信息中的至少一项:
    所述识别信号为主同步信号、所述识别信号为辅同步信号、所述同步信号为基于基站的同步信号、所述识别信号为基于卫星的同步信号。
  21. 一种终端,其特征在于,所述终端包括处理器;所述处理器用于:
    获取小区的识别信号的特征信息;
    根据所述识别信号的特征信息,确定所述小区的参数集合;所述小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、循环前缀CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求。
  22. 根据权利要求21所述的终端,其特征在于,所述处理器具体用于:
    根据所述识别信号的特征信息,从N个参数集合中确定所述小区的参数集合;所述N大于或等于2;
    或者,
    根据所述识别信号的特征信息和映射关系,确定所述小区的参数集合;所述映射关系包括特征信息与至少一个参数集合的对应关系。
  23. 根据权利要求21或22所述的终端,其特征在于,所述识别信号包括下述信号/信道中的至少一项:
    同步信号、广播信道、参考信号。
  24. 根据权利要求21-23任一项所述的终端,其特征在于,所述识别信号的特征信息包括下述信息中的至少一项:
    所述识别信号的时域资源信息、所述识别信号的频域资源信息、所述识别信号的空域资源信息、所述识别信号的码域资源信息、所述识别信号的功率参数信息、所述识别信号的类别信息、所述识别信号的类别数量、参数集合指示信息;
    其中,所述参数集合指示信息用于指示所述小区的参数集合。
  25. 根据权利要求24所述的终端,其特征在于,所述识别信号的时域资源信息包括下述信息中的至少一项:
    所述识别信号的时域位置、所述识别信号的时域间距、所述识别信号的周期、所述识别信号的重复次数、所述识别信号占用的传输时间。
  26. 根据权利要求24或25所述的终端,其特征在于,所述识别信号的频域资源信息包括:
    所述识别信号的频域带宽;
    或者,
    所述识别信号的频域带宽和所述识别信号的频域位置。
  27. 根据权利要求24-26任一项所述的终端,其特征在于,所述识别信号的空域资源信息包括下述信息中的至少一项:
    传输所述识别信号的天线端口数、传输所述识别信号的天线端口号、传输所述识别信号的天线数、传输所述识别信号的波束数量、传 输所述识别信号的波束编号。
  28. 根据权利要求24-27任一项所述的终端,其特征在于,所述识别信号的码域资源信息包括下述信息中的至少一项:
    所述识别信号的根序列、所述识别信号的循环移位、所述识别信号的正交掩码、所述识别信号的扰码。
  29. 根据权利要求24-28任一项所述的终端,其特征在于,所述识别信号的功率参数信息包括:
    所述识别信号的发射功率,或者,所述识别信号的发射功率差;
    其中,所述识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
  30. 根据权利要求24-29任一项所述的终端,其特征在于,所述识别信号的类别信息包括下述信息中的至少一项:
    所述识别信号为主同步信号、所述识别信号为辅同步信号、所述同步信号为基于基站的同步信号、所述识别信号为基于卫星的同步信号。
  31. 一种基站,其特征在于,所述基站包括处理器及收发器;所述处理器用于:
    根据小区的参数集合,确定识别信号的特征信息;所述小区的参数集合包括下述参数中的至少一项:子载波间隔、子帧长度、符号长度、时隙长度、循环前缀CP长度、子帧中的符号数、时隙中的符号数、子帧类型、时隙类型、CP类型、双工模式、是否授权频谱、是否独立载波、是否多波束、波束的数量、业务需求;
    以所述识别信号的特征信息,通过所述收发器向终端发送所述识别信号。
  32. 根据权利要求31所述的基站,其特征在于,所述处理器具体用于:
    根据所述小区的参数集合和映射关系,确定所述识别信号的特征信息;所述映射关系包括参数集合与至少一个特征信息的对应关系。
  33. 根据权利要求31或32所述的基站,其特征在于,所述识别 信号包括下述信号/信道中的至少一项:
    同步信号、广播信道、参考信号。
  34. 根据权利要求31-33任一项所述的基站,其特征在于,所述识别信号的特征信息包括下述信息中的至少一项:
    所述识别信号的时域资源信息、所述识别信号的频域资源信息、所述识别信号的空域资源信息、所述识别信号的码域资源信息、所述识别信号的功率参数信息、所述识别信号的类别信息、所述识别信号的类别数量、参数集合指示信息;
    其中,所述参数集合指示信息用于指示所述小区的参数集合。
  35. 根据权利要求34所述的基站,其特征在于,所述识别信号的时域资源信息包括下述信息中的至少一项:
    所述识别信号的时域位置、所述识别信号的时域间距、所述识别信号的周期、所述识别信号的重复次数、所述识别信号占用的传输时间。
  36. 根据权利要求34或35所述的基站,其特征在于,所述识别信号的频域资源信息包括:
    所述识别信号的频域带宽;
    或者,
    所述识别信号的频域带宽和所述识别信号的频域位置。
  37. 根据权利要求34-36任一项所述的基站,其特征在于,所述识别信号的空域资源信息包括下述信息中的至少一项:
    传输所述识别信号的天线端口数、传输所述识别信号的天线端口号、传输所述识别信号的天线数、传输所述识别信号的波束数量、传输所述识别信号的波束编号。
  38. 根据权利要求34-37任一项所述的基站,其特征在于,所述识别信号的码域资源信息包括下述信息中的至少一项:
    所述识别信号的根序列、所述识别信号的循环移位、所述识别信号的正交掩码、所述识别信号的扰码。
  39. 根据权利要求34-38任一项所述的基站,其特征在于,所述 识别信号的功率参数信息包括:
    所述识别信号的发射功率,或者,所述识别信号的发射功率差;
    其中,所述识别信号的发射功率差包括不同类识别信号间的发射功率差,或者,两次同类识别信号之间的发射功率差。
  40. 根据权利要求34-39任一项所述的基站,其特征在于,所述识别信号的类别信息包括下述信息中的至少一项:
    所述识别信号为主同步信号、所述识别信号为辅同步信号、所述同步信号为基于基站的同步信号、所述识别信号为基于卫星的同步信号。
PCT/CN2016/100201 2016-09-26 2016-09-26 一种确定、发送小区参数集合的方法、设备及系统 WO2018053869A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680088674.9A CN109644170B (zh) 2016-09-26 2016-09-26 一种确定、发送小区参数集合的方法、设备及系统
EP16916608.9A EP3509259B1 (en) 2016-09-26 2016-09-26 Method and device for transmitting parameter set of cell
PCT/CN2016/100201 WO2018053869A1 (zh) 2016-09-26 2016-09-26 一种确定、发送小区参数集合的方法、设备及系统
US16/365,069 US11496950B2 (en) 2016-09-26 2019-03-26 Method for determining parameter set of cell, method for sending parameter set of cell, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100201 WO2018053869A1 (zh) 2016-09-26 2016-09-26 一种确定、发送小区参数集合的方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,069 Continuation US11496950B2 (en) 2016-09-26 2019-03-26 Method for determining parameter set of cell, method for sending parameter set of cell, device, and system

Publications (1)

Publication Number Publication Date
WO2018053869A1 true WO2018053869A1 (zh) 2018-03-29

Family

ID=61689296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100201 WO2018053869A1 (zh) 2016-09-26 2016-09-26 一种确定、发送小区参数集合的方法、设备及系统

Country Status (4)

Country Link
US (1) US11496950B2 (zh)
EP (1) EP3509259B1 (zh)
CN (1) CN109644170B (zh)
WO (1) WO2018053869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048344A1 (zh) * 2020-09-04 2022-03-10 华为技术有限公司 一种通信方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208733B (zh) * 2022-07-20 2024-02-13 成都华日通讯技术股份有限公司 一种lte与5gnr信号联合识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231893A (zh) * 2011-06-21 2011-11-02 北京交通大学 一种lte同步信号检测方法
CN102752769A (zh) * 2011-04-19 2012-10-24 中兴通讯股份有限公司 一种无线通信系统中循环前缀类型的指示方法及装置
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223625B2 (en) * 2006-08-23 2012-07-17 Qualcomm, Incorporated Acquisition in frequency division multiple access systems
US9137075B2 (en) * 2007-02-23 2015-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Subcarrier spacing identification
JP4814176B2 (ja) * 2007-05-01 2011-11-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置および同期チャネル送信方法
EP2291035A1 (en) * 2008-04-28 2011-03-02 Sharp Kabushiki Kaisha Mobile communication system, mobile station device, base station device, and mobile communication method
GB2487908B (en) * 2011-02-04 2015-06-17 Sca Ipla Holdings Inc Telecommunications method and system
GB2493702B (en) * 2011-08-11 2016-05-04 Sca Ipla Holdings Inc OFDM subcarrier allocations in wireless telecommunications systems
US20130142138A1 (en) * 2011-12-05 2013-06-06 Esmael Hejazi Dinan Coordination of Control Channel Transmissions
CN103298136B (zh) * 2012-02-29 2016-11-23 华为技术有限公司 一种随机接入方法、终端、基站及系统
EP3537629B1 (en) * 2012-10-22 2023-06-07 QUALCOMM Incorporated Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station
WO2014069953A1 (ko) * 2012-11-04 2014-05-08 엘지전자 주식회사 동기 신호 수신 방법 및 사용자기기와, 동기 신호 전송 방법 및 기지국
EP3439382B1 (en) * 2013-07-31 2022-01-12 Sony Group Corporation Terminal device and information processing device
JP6429207B2 (ja) * 2014-02-28 2018-11-28 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無認可スペクトル、デバイス、及びシステムを用いて通信を実行する方法
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN107113857B (zh) * 2014-09-19 2020-05-08 意大利电信股份公司 第四代无线电移动网络的调度方法和系统
CN105900503B (zh) * 2014-11-27 2020-05-15 上海朋邦实业有限公司 寻呼方法、基站及寻呼系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752769A (zh) * 2011-04-19 2012-10-24 中兴通讯股份有限公司 一种无线通信系统中循环前缀类型的指示方法及装置
CN102231893A (zh) * 2011-06-21 2011-11-02 北京交通大学 一种lte同步信号检测方法
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Samsung . Numerology and Frame Structure for 5G New Radio Interface: sub-6GHz", 3GPP TSG RAN WGL #84BIS, 1 April 2016 (2016-04-01), XP051079512 *
See also references of EP3509259A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048344A1 (zh) * 2020-09-04 2022-03-10 华为技术有限公司 一种通信方法及设备

Also Published As

Publication number Publication date
CN109644170A (zh) 2019-04-16
EP3509259A4 (en) 2019-09-25
US20190230582A1 (en) 2019-07-25
EP3509259B1 (en) 2023-05-03
CN109644170B (zh) 2021-08-03
EP3509259A1 (en) 2019-07-10
US11496950B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
EP3098976A1 (en) Acquisition method, beam sending method, communication node, system and storage medium
EP3739800A1 (en) Pilot signal generation method and apparatus
CN108282895A (zh) 一种随机接入方法及终端
EP3866530B1 (en) Uplink signal transmission method and device
WO2018102966A1 (zh) 用于随机接入的方法、网络设备和终端设备
US8224367B2 (en) Method and system for estimating station numbers in wireless communications
CN113747586B (zh) 资源分配方法、装置、系统、计算机设备和存储介质
US20230055366A1 (en) Pucch design for unlicensed band operation at mmwaves
WO2021031939A1 (zh) 一种数据传输方法及装置
KR20200044801A (ko) 협대역 무선 네트워크에서의 이용가능한 채널로의 튜닝
WO2019062149A1 (zh) 物理下行控制信道的处理方法及相关设备
EP4333528A1 (en) Resource allocation method, communication apparatus, and computer-readable storage medium
WO2021087673A1 (zh) Nr-u中drs窗口确定方法、装置及终端
WO2018141115A1 (zh) 一种用于传输信号的方法、终端设备和网络设备
US20190200397A1 (en) Random Access Method, Apparatus, and System
WO2018053869A1 (zh) 一种确定、发送小区参数集合的方法、设备及系统
WO2018228495A1 (zh) 一种传输信息的方法和装置
WO2019196066A1 (en) Random access response for bwp
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
JP2020504542A (ja) 受信ノード、送信ノード、及び伝送方法
US20230133947A1 (en) Ultra-Reliable Low Latency Communication (URLLC) Scheme Selection
US11012835B2 (en) Method and terminal for acquiring transmission resource in vehicle to everything
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2022056856A1 (zh) 一种物理下行控制信道传输方法及装置
US20230163933A1 (en) Information transmission method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016916608

Country of ref document: EP

Effective date: 20190405