WO2018053813A1 - Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique - Google Patents

Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique Download PDF

Info

Publication number
WO2018053813A1
WO2018053813A1 PCT/CN2016/099928 CN2016099928W WO2018053813A1 WO 2018053813 A1 WO2018053813 A1 WO 2018053813A1 CN 2016099928 W CN2016099928 W CN 2016099928W WO 2018053813 A1 WO2018053813 A1 WO 2018053813A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
catalytic reduction
reduction reaction
power unit
flight
Prior art date
Application number
PCT/CN2016/099928
Other languages
English (en)
Chinese (zh)
Inventor
余元旗
Original Assignee
余元旗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 余元旗 filed Critical 余元旗
Priority to CN201680086065.XA priority Critical patent/CN109562835A/zh
Priority to PCT/CN2016/099928 priority patent/WO2018053813A1/fr
Publication of WO2018053813A1 publication Critical patent/WO2018053813A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C31/00Aircraft intended to be sustained without power plant; Powered hang-glider-type aircraft; Microlight-type aircraft
    • B64C31/02Gliders, e.g. sailplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D10/00Flight suits

Definitions

  • the present application relates to aircraft, and more particularly to a power unit and a flying wing with a power unit.
  • Liquid fossil fuel blends require sufficient oxygen supply to burn and work normally. As human activities continue to expand into outer space and deep sea, these places are thin or even completely deprived of oxygen, and conventional fossil fuels cannot burn and lose their usefulness. This requires a new mode of energy supply that can provide power without relying on oxidation reactions in the absence of oxygen.
  • the present application provides a power unit and a flying wing device having the power unit.
  • the present application provides a power unit including a control regulator and a sequentially connected high oxygen water storage chamber, a catalytic reduction reaction chamber, and an injection power compartment, wherein the control regulator is used for regulation
  • the high-oxygen water storage chamber flows into the high-oxygen water liquid of the catalytic reduction reaction chamber, and the high-oxygen water liquid stored in the high-oxygen water storage chamber enters the catalytic reduction reaction chamber after the catalytic reduction A reduction reaction occurs in the reaction chamber, and the jet kinetic energy generated in the reduction reaction forms a driving force through the injection power compartment.
  • the present application provides a flying wing device having a power device, including a flying wing suit and a flight monitor, further comprising the above-described power device, the flight monitor and the power device setting
  • the power device is used to generate a catalytic reduction reaction chamber through a high oxygen aqueous liquid solution
  • the generated jet kinetic energy is used to drive the flight wing
  • the flight monitor is used to regulate the magnitude of the jet kinetic energy to regulate the flight speed of the flight wing.
  • FIG. 1 is a schematic structural view of a power device of the present application in an embodiment
  • FIG. 2 is a schematic diagram of functional modules of a control regulator of the present application in an embodiment
  • FIG. 3 is a schematic structural view of a flying wing with a power unit according to an embodiment of the present invention.
  • the present application proposes to utilize the jet kinetic energy released by the hydrogen peroxide in the catalytic reduction reaction, and based on the novel utilization idea of the kinetic energy characteristics released by the chemical reaction, in order to increase the oxygen content per unit volume of the oxygenated water, the release can be improved.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an embodiment of the power device of the present application includes a control regulator 8, a high oxygen water storage chamber 1, a catalytic reduction reaction chamber 9, an injection power compartment 3, and a high oxygen water storage chamber. 1.
  • the catalytic reduction reaction chamber 9 and the injection power compartment 3 are sequentially connected, and the control regulator 8 is used for regulating the high-oxygen water raw liquid flowing from the high-oxygen water storage chamber into the catalytic reduction reaction chamber, and is stored in the high-oxygen water storage chamber 1 at a high level.
  • the oxygenated water solution undergoes a reduction reaction in the catalytic reduction reaction chamber 9, and the injection kinetic energy generated in the reduction reaction forms a driving force by the injection power cabin 3.
  • the high oxygen water storage chamber is provided with a feed port 0, and the catalytic reduction reaction chamber 9 may be provided with a slit 6 for injecting or removing the catalyst.
  • the control regulator 8 may include a terminal and a liquid shut-off valve 4, the terminal includes a processor 203, and the raw liquid shut-off valve 4 is disposed in the high-oxygen water storage chamber 1 and the catalytic reduction reaction chamber 9.
  • the processor 203 is configured to control the liquid shut-off valve according to the user's instruction.
  • control regulator 8 further includes a flow regulating pump 5, which is also disposed between the high oxygen water storage chamber 1 and the catalytic reduction reaction chamber 9, the flow regulating pump 5 and the raw liquid solution
  • the shut-off valve 4 is connected in series, and the processor 203 is also used to control the flow regulating pump 5 according to a user's instruction.
  • the flow regulating pump 5 may be provided with a plurality of adjusting gear positions including 0 to MAX, and the terminal is further configured to control the flow regulating pump according to a user's instruction to adjust the high oxygen water. flow.
  • the terminal of the present application may further include an operation state parameter sampling input module 201, a control instruction parameter input module 202, a processor 203, a control parameter output module 204, and a communication module 205, and the input of the processor 203.
  • the terminal is bidirectionally connected to the operating state parameter sampling input module 201 and the control command parameter input module 202, and the output end of the processor 203 is bidirectionally connected to the control parameter output module 204 and the communication module 205.
  • the operating state parameter sampling input module 201 inputs parameters such as the liquid level of the high-oxygen aqueous solution in the high-oxygen water storage chamber 1 and the pump flow rate to the processor 203, and the control command parameter input module 202 starts/stops the device, and accelerates/decelerates the injection power.
  • the instruction parameters are input to the processor 203, and after being processed by the processor 203, the signals are sent to the raw liquid shut-off valve 4 through the control parameter output module 204, and the flow regulating pump 5 is adjusted to realize the operation of the device, so that the injection power device is Connect with the application system in which it is located.
  • the upper server 206 is connected to the communication module 205 by wire or wirelessly, and the user can also send an instruction to the processor 203 via the communication module 205 via the upper server 206.
  • the injection power compartment 3 of the present application adopts a bell mouth structure, and the input end of the injection power compartment 3 is connected to the output end of the catalytic reduction reaction chamber 9, and the mixture of fresh water and nascent oxygen generated in the reduction reaction is described.
  • the small port end of the injection power compartment 3 enters the injection power compartment 3, and generates a propulsive force of advancement by interacting with the external medium through the large mouth end.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • a flight device with a power unit of the present application includes a flight wing suit 18, a flight monitor 12, and a power unit in the first embodiment, a flight monitor 12 and
  • the power unit is disposed on the flight wing suit 18, and after the power unit is used for catalytic reduction reaction by the high oxygen water liquid solution, the generated jet kinetic energy is used to drive the flight wing assembly 18, and the flight monitor 12 is used to adjust the magnitude of the jet kinetic energy.
  • the flight speed of the flight wing assembly 18 is adjusted.
  • the control regulator 8 in the power unit in this embodiment may be provided separately or integrated with the flight monitor 12 as a whole.
  • the flying wing device with power device of the present application may further include a backpack 21 including a bag body, a strap 17 and a waist belt 16, a bottom portion of the bag body, and a power device portion disposed inside the bag body and jetting power
  • the compartment 3 is placed outside the bag through the cornice, and the harness 17 and the waistband 16 are used to bind the bag to the flight wing suit 18.
  • the flight wing suit 18 may be an integrated structure.
  • the batwings of the flying wing suits 18 may be provided with batwings 19, and the underarms of the flying wing suits 19 may be provided with connecting tails 20.
  • the flight monitor 12 includes a flight monitoring box, a hand controller 13 and a digital display and sound unit (not shown), a flight monitoring box 12, an actual monitoring for flight state parameters, a flow control valve adjustment, and a process.
  • the display of the status parameters, the hand controller and the digital display and sound unit are respectively connected to the flight monitoring box 12.
  • the flight monitoring box 12, the hand controller 13 and the built-in earphone 14 together constitute a flight monitor to implement flight process monitoring and safety prompts, wherein the flight monitoring box 12 has the basic circuit structure of the terminal in the above example.
  • the operating state parameter sampling input module includes various types of sensors capable of collecting data, and can realize monitoring of state parameters including flight altitude, flight speed, flight time, ambient temperature and humidity, and remaining content of flying power materials, and accepting The flow control valve is actually adjusted online under the command of the hand controller 13, and the power of the flight monitor 12 is supplied by the battery as a whole.
  • the flight monitoring box 12 is bound to the waist belt 16 and placed in front of the human body to facilitate the display of the state parameters displayed on the flight monitoring box 12 by the eye during flight, and the flight controller parameters can be selected by the manual controller 13 to be built in.
  • the headphone 14 of the coat is reported to the flighter by the voice, especially the safety warning of the remaining materials is beneficial to the flighter. Even if the flight strategy is adjusted, the hand controller should be small and can be placed in the transparent pocket of the palm for blind operation. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

L'invention porte sur une dispositif électrique et un ensemble aile aérienne pourvu du dispositif électrique. L'invention comprend un dispositif de réglage de commande (8), une chambre de stockage d'eau extrêmement oxygénée (1), une chambre de réduction catalytique (9) et un compartiment de propulsion par jet (3) connectés dans cet ordre. Le dispositif de réglage de commande (8) est utilisé pour commander l'écoulement d'une solution de réserve d'eau extrêmement oxygénée s'écoulant de la chambre de stockage d'eau extrêmement oxygénée (1) dans la chambre de réduction catalytique (9). La solution de réserve d'eau extrêmement oxygénée stockée à l'intérieur de la chambre de stockage d'eau extrêmement oxygénée (1) s'écoule dans la chambre de réduction catalytique (9) et subit une réaction de réduction à l'intérieur de la chambre de réduction catalytique (9). La puissance de propulsion est générée par la réaction de réduction qui génère une force de poussée par l'intermédiaire du compartiment de propulsion par jet (3). En utilisant l'eau extrêmement oxygénée comme matière première, l'invention peut éviter des problèmes d'émissions de gaz de combustion et d'autres formes de pollution environnementale provoquées par l'utilisation de combustibles fossiles, ce qui permet d'obtenir une forme propre de puissance ayant une pollution nulle. L'invention peut fournir une puissance de propulsion en tant qu'alternative aux combustibles fossiles dans un environnement d'air de faible densité ou de peu d'oxygène. Un dispositif électrique et un ensemble aile aérienne ont une structure simple et un faible coût, et sont respectueux de l'environnement et faciles à installer.
PCT/CN2016/099928 2016-09-23 2016-09-23 Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique WO2018053813A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680086065.XA CN109562835A (zh) 2016-09-23 2016-09-23 一种动力装置及具有动力装置的飞行翼服
PCT/CN2016/099928 WO2018053813A1 (fr) 2016-09-23 2016-09-23 Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099928 WO2018053813A1 (fr) 2016-09-23 2016-09-23 Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique

Publications (1)

Publication Number Publication Date
WO2018053813A1 true WO2018053813A1 (fr) 2018-03-29

Family

ID=61689814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099928 WO2018053813A1 (fr) 2016-09-23 2016-09-23 Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique

Country Status (2)

Country Link
CN (1) CN109562835A (fr)
WO (1) WO2018053813A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104171A (zh) * 2019-05-24 2019-08-09 李明珠 一种动力翼装
CN112527004A (zh) * 2020-10-22 2021-03-19 泰州镭昇光电科技有限公司 速率方向一体化调控系统
WO2022177788A1 (fr) * 2021-02-19 2022-08-25 Mcmullin Eric William Chemise de navigation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA16341U (en) * 2005-12-06 2006-08-15 Andrii Anatoliiovych Voronko Suit of glider-pilot
WO2013016788A1 (fr) * 2011-07-29 2013-02-07 Ferreira Leonardo Cesar Vêtement gonflable aérodynamique
CN103057705A (zh) * 2012-12-25 2013-04-24 苏州铭晋纺织有限公司 新型具有安全功能的飞行服
US8695117B1 (en) * 2012-04-02 2014-04-15 Fidel Machuca Skydiving garment with enhanced aerodynamic control
CN104432658A (zh) * 2014-11-25 2015-03-25 江阴市翔诺电子科技有限公司 一种飞行衣
CN104477377A (zh) * 2014-12-31 2015-04-01 北京航空航天大学 一种复合式多模态多用途飞行器
FR3031964A1 (fr) * 2015-01-28 2016-07-29 Fabrice Mora Combinaison ailee

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA16341U (en) * 2005-12-06 2006-08-15 Andrii Anatoliiovych Voronko Suit of glider-pilot
WO2013016788A1 (fr) * 2011-07-29 2013-02-07 Ferreira Leonardo Cesar Vêtement gonflable aérodynamique
US8695117B1 (en) * 2012-04-02 2014-04-15 Fidel Machuca Skydiving garment with enhanced aerodynamic control
CN103057705A (zh) * 2012-12-25 2013-04-24 苏州铭晋纺织有限公司 新型具有安全功能的飞行服
CN104432658A (zh) * 2014-11-25 2015-03-25 江阴市翔诺电子科技有限公司 一种飞行衣
CN104477377A (zh) * 2014-12-31 2015-04-01 北京航空航天大学 一种复合式多模态多用途飞行器
FR3031964A1 (fr) * 2015-01-28 2016-07-29 Fabrice Mora Combinaison ailee

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104171A (zh) * 2019-05-24 2019-08-09 李明珠 一种动力翼装
CN112527004A (zh) * 2020-10-22 2021-03-19 泰州镭昇光电科技有限公司 速率方向一体化调控系统
WO2022177788A1 (fr) * 2021-02-19 2022-08-25 Mcmullin Eric William Chemise de navigation
US11766073B2 (en) 2021-02-19 2023-09-26 Eric William McMullin Sail shirt
US11849780B2 (en) 2021-02-19 2023-12-26 Eric William McMullin Sail shirt

Also Published As

Publication number Publication date
CN109562835A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018053813A1 (fr) Dispositif électrique et ensemble aile aérienne pourvu du dispositif électrique
JP5160228B2 (ja) 貯蔵および節約モードを伴う酸素発生器
CA2688513C (fr) Systeme et procede de reduction catalytique selective d'oxydes d'azote dans des gaz d'echappement de combustion
CN101511432B (zh) 为航空器机组人员和乘客提供氧气的呼吸气体供应系统
WO2008115662A2 (fr) Système de synthèse de combustible par séquestration de dioxyde de carbone et utilisation
WO2009076037A3 (fr) Système et procédé de contrôle d'alimentation en oxygène sur la base du rythme respiratoire
WO2008021558A3 (fr) Traitement par biomasse de déchets organiques ou d'eaux usées
WO2009055582A3 (fr) Système de concentrateur d'oxygène portatif et procédé incluant l'administration d'un flux d'oxygène concentré
CA2313763A1 (fr) Procede et dispositif pour produire, traiter et fournir de facon autonome du gaz respiratoire destine a des profondeurs extremes
CN102872553B (zh) 便捷式全天候化学增氧装置及其使用方法
JP2019107007A (ja) 作物生産用施設への二酸化炭素含有ガスと熱の供給装置及び供給方法
CN201643466U (zh) 自救型应急吸氧装置
JP2008099569A (ja) 温室栽培システム
CN202250473U (zh) 一种燃气发动机混合器
CN105977511B (zh) 一种基于单组元燃料的脉冲式仿生动力装置及其控制方法
KR20160087861A (ko) 대기중 이산화탄소의 흡수
US9586702B2 (en) Nitrous oxide system for producing breathing air
US20140073208A1 (en) Wearable Assembly, Shirt, Gas Generator and Methods
CN202136705U (zh) 一种化学氧自救器
CN206498814U (zh) 一种适用于水面喷药的喷药机
CN206985909U (zh) 一种便捷式净水设备
CN103599600A (zh) 一种自动供氧救生包
CN205594467U (zh) 农业大棚智能co2调节系统
CN201668887U (zh) 隔绝式化学氧自救器
CN208823827U (zh) 一种呼吸器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916552

Country of ref document: EP

Kind code of ref document: A1