WO2018053791A1 - Autonomous physical uplink shared channel power control for uplink carrier aggregation - Google Patents

Autonomous physical uplink shared channel power control for uplink carrier aggregation Download PDF

Info

Publication number
WO2018053791A1
WO2018053791A1 PCT/CN2016/099841 CN2016099841W WO2018053791A1 WO 2018053791 A1 WO2018053791 A1 WO 2018053791A1 CN 2016099841 W CN2016099841 W CN 2016099841W WO 2018053791 A1 WO2018053791 A1 WO 2018053791A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
pcc
downlink
specified
wireless communication
Prior art date
Application number
PCT/CN2016/099841
Other languages
French (fr)
Inventor
Tao Huang
Yanxia Wang
Lei Li
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to PCT/CN2016/099841 priority Critical patent/WO2018053791A1/en
Publication of WO2018053791A1 publication Critical patent/WO2018053791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present application relates to wireless communications, and more particularly to power allocation for uplink transmissions during LTE communications using carrier aggregation.
  • Wireless communication systems are rapidly growing in usage.
  • wireless devices such as smart phones and tablet computers have become increasingly sophisticated.
  • mobile devices i.e., user equipment devices or UEs
  • GPS global positioning system
  • wireless communication standards include GSM, UMTS (WCDMA, TDS-CDMA) , LTE, LTE Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , IEEE 802.11 (WLAN or Wi-Fi) , IEEE 802.16 (WiMAX) , BLUETOOTH TM , etc.
  • LTE Long Term Evolution
  • DL downlink
  • MAC Media Access Control
  • UL uplink
  • PUSCH Physical Uplink Shared Channel
  • UE user equipment
  • eNB enhanced Node B
  • DCI format 0 uplink scheduling grant
  • PUSCH typically supports QPSK and quadrature amplitude modulation (QAM) .
  • the PUSCH In addition to user data, the PUSCH also carries control information (UCI: uplink control information) necessary to decode the information, such as transport format indicators and multiple-in multiple-out (MIMO) parameters. Control data is multiplexed with information data prior to digital Fourier transform (DFT) spreading.
  • UCI uplink control information
  • MIMO multiple-in multiple-out
  • LTE also supports the use of carrier aggregation (CA) , which refers to two or more component carriers (CCs) being aggregated in order to support wider transmission bandwidths, e.g. bandwidths of up to 100MHz.
  • CA carrier aggregation
  • a UE may simultaneously receive and/or transmit on one or multiple CCs depending on the UE’s capabilities.
  • CA When CA is configured, the UE may maintain one RRC connection with the network.
  • the serving cell managing the UE’s RRC connection is referred to as the Primary Cell (PCell)
  • SCells Secondary Cells
  • the carrier used for communications served the PCell is referred to as the Primary Component Carrier (PCC)
  • the carrier (s) used for communications served by the SCell (s) are referred to as Secondary Component Carrier (s) (SCCs)
  • the PUSCH may be transmitted over the PCC and/or the SCC (s) .
  • the power allocated to the PCC when transmitting the PUSCH over the PCC is sometimes different from the power allocated to the SCC (s) for transmitting the PUSCH over the SCC (s) . Accordingly, there are cases when the power allocated to the SCC (s) for transmitting PUSCH may be limited even when such limitation is not necessary, and negatively impact PUSCH transmission over the SCC (s) .
  • Embodiments are presented herein of, inter alia, of methods for allocating power to a secondary component carrier (SCC) during carrier aggregation (CA) for transmission of a Physical Uplink Shared Channel (PUSCH) , based on downlink metrics and/or Reference Signal Received Power (RSRP) obtained by a wireless communication device (UE device) , thereby improving the overall power allocation for transmission of the PUSCH over a primary component carrier (PCC) and SCC.
  • Measurements of specified metrics corresponding to the PCC may be used by the UE device to determine how to allocate power to the PCC and SCC (s) for transmission of the PUSCH over the PCC and/or SCC.
  • Embodiments are further presented herein for wireless communication systems containing user equipment (UE) devices and/or base stations communicating with each other within the wireless communication systems.
  • the wireless communication device may calculate/determine certain specified metrics to ascertain whether the UCI is lost, or there is a likelihood that the UCI is lost during the uplink transmission. If the metrics show that there is no impact on UCI transmission when the power to the PCC and the SCC is allocated (scaled) equally, then it is not necessary to sacrifice the power of the SCC, and the UL throughput can be considerably improved.
  • a wireless communication device may use carrier aggregation to conduct wireless communications according to a first radio access technology, for example LTE, on a PCC and one or more SCC (s) .
  • a first radio access technology for example LTE
  • the UE may allocate first power to the PCC for transmission of the PUSCH on the PCC, and allocate second power to the SCC (s) for transmission of the PUSCH on the SCC (s) according to an enhanced power allocation procedure/method.
  • the PUSCH power of the PCC and the SCC (s) i.e.
  • the respective power allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and on the SCC (s) may each be calculated/determined in the same manner as for single carriers. Scaling of the PUSCH power between PCC and SCC may be enhanced if the total (calculated/determined) power allocated to PCC and the SCC (s) exceeds a specified limit, e.g. if it exceeds the maximum uplink power.
  • the power of the PCC and the power of the SCC (s) are allocated/adjusted based on a power measurement associated with the PCC and one or more downlink metrics associated with the PCC.
  • the enhanced scaling of the PUSCH power for the PCC and the SCC (s) may be performed when information transmitted in the PUSCH on the PCC includes uplink control information.
  • the UE may allocate/adjust power to the PCC and the SCC (s) –or adjust the power scaling for the PCC and the SCC (s) –based on a comparison between a specified threshold value –defined by the UE, for example –and a measurement value indicated by a downlink receive power measurement, and further based on whether the one or more downlink metrics meet a specified set of criteria.
  • the downlink receive power measurement e.g.
  • the UE may scale the PUSCH power of the PCC and the SCC (s) without any further enhancements.
  • the UE may scale the PUSCH power of the PCC and the SCC (s) according to various embodiments of the enhanced power allocation/scaling as described herein.
  • the power of the PCC and the power of the SCC (s) may be allocated/adjusted based on a power measurement associated with the PCC and one or more downlink metrics associated with the PCC whenever the PUSCH power is scaled between PCC and the SCC (s) .
  • the UE may scale down the second power when the downlink receive power measurement value is below the specified threshold value.
  • the UE may allocate the first power and the second power equally when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics meet a specified set of criteria.
  • the UE may increase the first power by a specified amount and scale down the second power according to a remainder power determined based on the increased first power, when the measurement value is greater than or equal to the specified threshold value and the one or more downlink metrics do not meet the specified set of criteria.
  • the specified threshold value may be selected based on a tradeoff between an improvement of uplink communications and degradation of downlink communications of the wireless communication device.
  • the one or more downlink metrics may include respective values associated with a downlink block error rate (BLER) , channel quality indicator (CQI) , precoding matrix indicators (PMI) , rank indicator (RI) , and acknowledge (ACK) , associated with downlink communications of the UE over the PCC.
  • BLER downlink block error rate
  • CQI channel quality indicator
  • PMI precoding matrix indicators
  • RI rank indicator
  • ACK acknowledge
  • the one or more downlink metrics are considered to meet the specified set of criteria when the respective value associated with the downlink BLER is equal to or less than a specified BLER value, a distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on the CQI is equal to or less than a specified distance, the respective value associated with the downlink PMI value is equal to or less than a specified PMI value, a percentage of downlink codewords not consistent with the RI is equal to or less than a specified percentage, and a percentage of unnecessary downlink retransmissions is equal to or lower than a specified percentage.
  • MCS downlink modulation and coding scheme
  • Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments
  • Figure 2 illustrates an exemplary base station in communication with an exemplary wireless user equipment (UE) device, according to some embodiments
  • Figure 3 illustrates an exemplary block diagram of a UE, according to some embodiments
  • Figure 4 illustrates an exemplary block diagram of a base station, according to some embodiments
  • Figure 5 shows a diagram illustrating power allocation for a primary component carrier and a secondary component carrier for transmission of a physical uplink shared channel, according to prior art
  • Figure 6 shows an exemplary diagram illustrating improved uplink throughput related to power allocation to primary and secondary component carriers, according to some embodiments.
  • Figure 7 shows a flow diagram of an exemplary method for allocating power to a primary component carrier and a secondary component carrier for wireless transmissions using carrier aggregation, according to some embodiments.
  • ⁇ BS Base Station
  • ⁇ CC Component Carrier (for CA)
  • ⁇ DL Downlink (from BS to UE)
  • ⁇ LAN Local Area Network
  • LAA License Assisted Access
  • ⁇ MAC Media Access Control (layer)
  • ⁇ PDCCH Physical Downlink Control Channel
  • ⁇ PDSCH Physical Downlink Shared Channel
  • ⁇ PUSCH Physical Uplink Shared Channel
  • ⁇ RAT Radio Access Technology
  • ⁇ RF Radio Frequency
  • ⁇ RSRP Reference Signal Received Power
  • ⁇ UE User Equipment (Device)
  • ⁇ UL Uplink (from UE to BS)
  • ⁇ UMTS Universal Mobile Telecommunication System
  • ⁇ WLAN Wireless LAN
  • Wi-Fi Wireless Local Area Network (WLAN) RAT based on the Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards
  • Memory Medium Any of various types of memory devices or storage devices.
  • the term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc. ; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc.
  • the memory medium may comprise other types of memory as well or combinations thereof.
  • the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer system for execution.
  • the term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network.
  • Carrier Medium a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • a physical transmission medium such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • Computer System any of various types of computing or processing systems, including a personal computer system (PC) , mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA) , television system, grid computing system, or other device or combinations of devices.
  • PC personal computer system
  • mainframe computer system workstation
  • network appliance Internet appliance
  • PDA personal digital assistant
  • television system grid computing system, or other device or combinations of devices.
  • computer system may be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.
  • UE User Equipment
  • UE Device any of various types of computer systems devices which are mobile or portable and which performs wireless communications. Also referred to as wireless communication devices.
  • Examples of UE devices include mobile telephones or smart phones (e.g., iPhone TM , Android TM -based phones) and tablet computers such as iPad TM , Samsung Galaxy TM , etc., portable gaming devices (e.g., Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPod TM ) , laptops, wearable devices (e.g. Apple Watch TM , Google Glass TM ) , PDAs, portable Internet devices, music players, data storage devices, or other handheld devices, etc.
  • mobile telephones or smart phones e.g., iPhone TM , Android TM -based phones
  • tablet computers such as iPad TM , Samsung Galaxy TM , etc.
  • portable gaming devices e.g., Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPod TM
  • UE or “UE device” may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
  • SRATs short-range radio access technologies
  • UE device may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
  • Base Station (BS) –
  • Base Station has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.
  • Processing Element refers to various elements or combinations of elements that are capable of performing a function in a device, e.g. in a user equipment device or in a cellular network device.
  • Processing elements may include, for example: processors and associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit) , programmable hardware elements such as a field programmable gate array (FPGA) , as well any of various combinations of the above.
  • ASIC Application Specific Integrated Circuit
  • Wireless Device any of various types of computer systems devices which performs wireless communications using WLAN communications, SRAT communications, Wi-Fi communications and the like.
  • the term “wireless device” may refer to a UE device, as defined above, or to a stationary device, such as a stationary wireless client or a wireless base station.
  • a wireless device may be any type of wireless station of an 802.11 system, such as an access point (AP) or a client station (UE) , or any type of wireless station of a cellular communication system communicating according to a cellular radio access technology (e.g. LTE, CDMA, GSM) , such as a base station or a cellular telephone, for example.
  • a cellular radio access technology e.g. LTE, CDMA, GSM
  • Wi-Fi has the full breadth of its ordinary meaning, and at least includes a wireless communication network or RAT that is serviced by wireless LAN (WLAN) access points and which provides connectivity through these access points to the Internet.
  • WLAN wireless LAN
  • Most modern Wi-Fi networks (or WLAN networks) are based on IEEE 802.11 standards and are marketed under the name “Wi-Fi” .
  • Wi-Fi (WLAN) network is different from a cellular network.
  • Automatically refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware elements, ASICs, etc. ) , without user input directly specifying or performing the action or operation.
  • a computer system e.g., software executed by the computer system
  • device e.g., circuitry, programmable hardware elements, ASICs, etc.
  • An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually” , where the user specifies each action to perform.
  • a user filling out an electronic form by selecting each field and providing input specifying information is filling out the form manually, even though the computer system must update the form in response to the user actions.
  • the form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields.
  • the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed) .
  • the present specification provides various examples of operations being automatically performed in response to actions the user has taken.
  • Configured to Various components may be described as “configured to” perform a task or tasks.
  • “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected) .
  • “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on.
  • the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.
  • Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments. It is noted that the system of Figure 1 is merely one example of a possible system, and embodiments may be implemented in any of various systems, as desired.
  • the exemplary wireless communication system includes a base station 102 which communicates over a transmission medium with one or more user devices 106-1 through 106-N.
  • Each of the user devices may be referred to herein as a “user equipment” (UE) or UE device.
  • the user devices 106 are referred to as UEs or UE devices.
  • Various ones of the UE devices may operate using carrier aggregation (CA) with power allocated to the primary component carrier (PCC) and secondary component carrier (s) (s) (s) ) as further described herein..
  • CA carrier aggregation
  • PCC primary component carrier
  • SCC secondary component carrier
  • the base station 102 may be a base transceiver station (BTS) or cell site, and may include hardware that enables wireless communication with the UEs 106A through 106N.
  • the base station 102 may also be equipped to communicate with a network 100 (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN) , and/or the Internet, among various possibilities) .
  • PSTN public switched telephone network
  • the base station 102 may facilitate communication between the user devices and/or between the user devices and the network 100. Communication between base station 102 and any of UE devices 106 may take place using CA, whereby the UE 106 uses a PCC and one or more SCCs during communication with base station 102.
  • the communication area (or coverage area) of the base station may be referred to as a “cell. ”
  • a base station may sometimes be considered as representing the network insofar as uplink and downlink communications of the UE are concerned.
  • a UE communicating with one or more base stations in the network may also be interpreted as the UE communicating with the network.
  • the base station 102 and the user devices may be configured to communicate over the transmission medium using any of various radio access technologies (RATs) , also referred to as wireless communication technologies, or telecommunication standards, such as GSM, UMTS (WCDMA) , LTE, LTE-Advanced (LTE-A) , LAA/LTE-U, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , Wi-Fi, WiMAX etc.
  • RATs radio access technologies
  • WCDMA UMTS
  • LTE LTE-Advanced
  • LAA/LTE-U LAA/LTE-U
  • 3GPP2 CDMA2000 e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD
  • Wi-Fi WiMAX etc.
  • the base station 102 communicates with at least one UE that performs improved power allocation to the PCC and the SCC (s) for transmitting a physical uplink shared channel (PUSCH) –which includes uplink control information (UCI) –over the PCC and the SCC (s) .
  • PUSCH physical uplink shared channel
  • UCI uplink control information
  • UE 106 may be capable of communicating using multiple wireless communication standards.
  • a UE 106 might be configured to communicate using either or both of a 3GPP cellular communication standard (such as LTE) or a 3GPP2 cellular communication standard (such as a cellular communication standard in the CDMA2000 family of cellular communication standards) .
  • the UE 106 may be configured to operate with improved power allocation to the PCC and the SCC (s) for PUSCH transmission (with UCI) , at least according to the various methods as described herein.
  • Base station 102 and other similar base stations operating according to the same or a different cellular communication standard may thus be provided as one or more networks of cells, which may provide continuous or nearly continuous overlapping service to UE 106 and similar devices over a wide geographic area via one or more cellular communication standards.
  • the UE 106 might also or alternatively be configured to communicate using WLAN, BLUETOOTH TM , one or more global navigational satellite systems (GNSS, e.g., GPS or GLONASS) , one and/or more mobile television broadcasting standards (e.g., ATSC-M/H or DVB-H) , etc.
  • GNSS global navigational satellite systems
  • GNSS global navigational satellite systems
  • mobile television broadcasting standards e.g., ATSC-M/H or DVB-H
  • Other combinations of wireless communication standards are also possible.
  • FIG. 2 illustrates an exemplary user equipment 106 (e.g., one of the devices 106-1 through 106-N) in communication with the base station 102, according to some embodiments.
  • the UE 106 may be a device with wireless network connectivity such as a mobile phone, a hand-held device, a computer or a tablet, or virtually any type of wireless device.
  • the UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions.
  • the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
  • the UE 106 may be configured to communicate using any of multiple wireless communication protocols.
  • the UE 106 may be configured to communicate using two or more of CDMA2000, LTE, LTE-A, WLAN, or GNSS. Other combinations of wireless communication standards are also possible.
  • the UE 106 may include one or more antennas for communicating using one or more wireless communication protocols according to one or more RAT standards. In some embodiments, the UE 106 may share one or more parts of a receive chain and/or transmit chain between multiple wireless communication standards.
  • the shared radio may include a single antenna, or may include multiple antennas (e.g., for MIMO) for performing wireless communications. Alternatively, the UE 106 may include separate transmit and/or receive chains (e.g., including separate antennas and other radio components) for each wireless communication protocol with which it is configured to communicate.
  • the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol. For example, the UE 106 may include a shared radio for communicating using either of LTE or CDMA2000 1xRTT, and separate radios for communicating using each of Wi-Fi and BLUETOOTH TM . Other configurations are also possible.
  • FIG. 3 illustrates a block diagram of an exemplary UE 106, according to some embodiments.
  • the UE 106 may include a system on chip (SOC) 300, which may include portions for various purposes.
  • the SOC 300 may include processor (s) 302 which may execute program instructions for the UE 106 and display circuitry 304 which may perform graphics processing and provide display signals to the display 360.
  • the processor (s) 302 may also be coupled to memory management unit (MMU) 340, which may be configured to receive addresses from the processor (s) 302 and translate those addresses to locations in memory (e.g., memory 306, read only memory (ROM) 350, NAND flash memory 310) and/or to other circuits or devices, such as the display circuitry 304, radio 330, connector I/F 320, and/or display 340.
  • MMU memory management unit
  • the MMU 340 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 340 may be included as a portion of the processor (s) 302.
  • the SOC 300 may be coupled to various other circuits of the UE 106.
  • the UE 106 may include various types of memory (e.g., including NAND flash 310) , a connector interface 320 (e.g., for coupling to the computer system) , the display 360, and wireless communication circuitry (e.g., for LTE, LTE-A, CDMA2000, BLUETOOTH TM , Wi-Fi, GPS, etc. ) .
  • the UE device 106 may include at least one antenna (e.g. 335a) , and possibly multiple antennas (e.g. illustrated by antennas 335a and 335b) , for performing wireless communication with base stations and/or other devices.
  • Antennas 335a and 335b are shown by way of example, and UE device 106 may include fewer or more antennas. Overall, the one or more antennas are collectively referred to as antenna (s) 335. For example, the UE device 106 may use antenna (s) 335 to perform the wireless communication with the aid of radio circuitry 330. As noted above, the UE may be configured to communicate wirelessly using multiple wireless communication standards in some embodiments.
  • the UE 106 may include hardware and software components for implementing methods for at least UE 106 to wirelessly communicate using CA, allocating power to the PCC and the SCC (s) –for transmission of a PUSCH with UCI over the PCC and SCC (s) –based on power measurements and downlink metrics associated with the PCC.
  • UE 106 may measure power associated with transmissions over the PCC and may also determine one or more downlink metrics associated with the PCC, then allocate power to the PCC and the SCC (s) for transmission of the PUSCH, based on whether the measured power exceeds a specified threshold and whether the metrics meet a specific set of criteria.
  • the processor (s) 302 of the UE device 106 may be configured to implement part or all of the functionality described above, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • processor (s) 302 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) .
  • processor (s) 302 may be coupled to and/or may interoperate with other components as shown in Figure 3, to implement communications by UE 106 that incorporate power allocation to the PCC and the SCC (s) for wireless communications of UE 106, according to various embodiments disclosed herein.
  • processor (s) 302 may be coupled to and/or may interoperate with other components as shown in Figure 3 to facilitate UE 106 allocating power to the PCC and SCC (s) , for example as described above.
  • Processor (s) 302 may also implement various other applications and/or end-user applications running on UE 106.
  • radio 300 may include separate controllers dedicated to controlling communications for various respective RAT standards.
  • radio 330 may include a Wi-Fi controller 350, a cellular controller (e.g. LTE/3GPP controller) 352, and BLUETOOTH TM controller 354, and in at least some embodiments, one or more or all of these controllers may be implemented as respective integrated circuits (ICs or chips, for short) in communication with each other and with SOC 300 (and more specifically with processor (s) 302) .
  • Wi-Fi controller 350 may communicate with cellular controller 352 over a cell-ISM link or WCI interface
  • BLUETOOTH TM controller 354 may communicate with cellular controller 352 over a cell-ISM link, etc. While three separate controllers are illustrated within radio 330, other embodiments have fewer or more similar controllers for various different RATs that may be implemented in UE device 106.
  • FIG. 4 illustrates a block diagram of an exemplary base station 102, according to some embodiments. It is noted that the base station of Figure 4 is merely one example of a possible base station. As shown, the base station 102 may include processor (s) 404 which may execute program instructions for the base station 102. The processor (s) 404 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor (s) 404 and translate those addresses to locations in memory (e.g., memory 460 and read only memory (ROM) 450) or to other circuits or devices.
  • MMU memory management unit
  • the base station 102 may include at least one network port 470.
  • the network port 470 may be configured to couple to a telephone network and provide a plurality of devices, such as UE devices 106, access to the telephone network as described above in Figures 1 and 2.
  • the network port 470 (or an additional network port) may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider.
  • the core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106.
  • the network port 470 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider) .
  • the base station 102 may include at least one antenna 434, and possibly multiple antennas.
  • the at least one antenna 434 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 430.
  • the antenna 434 communicates with the radio 430 via communication chain 432.
  • Communication chain 432 may be a receive chain, a transmit chain or both.
  • the radio 430 may be designed to communicate via various wireless telecommunication standards, including, but not limited to, LTE, LTE-A WCDMA, CDMA2000, etc.
  • the processor 404 of the base station 102 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) , for base station 102 to communicate with a UE device capable of allocating power to the PCC and the SCC (s) when communicating using carrier aggregation as described with respect to various embodiments disclosed herein.
  • the processor 404 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) , or a combination thereof.
  • base station 102 may be designed as an access point (AP) , in which case network port 470 may be implemented to provide access to a wide area network and/or local area network (s) , e.g. it may include at least one Ethernet port, and radio 430 may be designed to communicate according to the Wi-Fi standard.
  • Base station 102 may operate according to the various methods as disclosed herein for communicating with mobile devices capable of detecting an imbalance between LAA and LTE cellular wireless communications of the mobile devices, and adjusting their wireless operations accordingly, when applicable.
  • LTE supports the use of carrier aggregation (CA) , by which two or more component carriers (CCs) are aggregated in order to support wider transmission bandwidths.
  • a UE may simultaneously receive and/or transmit on one or multiple CCs depending on the UE’s capabilities.
  • CA carrier aggregation
  • the UE maintains one RRC connection with the network, and the serving cell managing the UE’s RRC connection is referred to as the Primary Cell (PCell) , which forms a set of serving cells together with one or more Secondary Cells (SCells) .
  • PCell Primary Cell
  • SCells Secondary Cells
  • the carrier used for communication served by the PCell is referred to as the Primary Component Carrier (PCC)
  • the carrier (s) used for communication (s) served by the SCell (s) are referred to as Secondary Component Carrier (s) (SCCs)
  • the PUSCH may be transmitted over the PCC and/or the SCC (s) .
  • the power allocated to the PCC when transmitting the PUSCH over the PCC is sometimes different from the power allocated to the SCC (s) for transmitting the PUSCH over the SCC (s) .
  • the PUSCH power of the PCC and the SCC (s) –i.e. the respective power allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and on the SCC (s) , respectively – may each be calculated/determined in the same manner as for single carriers. Scaling of the PUSCH power between PCC and SCC may be enhanced if the total (calculated/determined) power allocated to PCC and the SCC (s) exceeds a specified limit, e.g. if it exceeds the maximum uplink power.
  • the PCC when uplink control information (UCI) is included in the PUSCH on the PCC, then the PCC has high priority in how the power allocations are calculated or determined.
  • the specification includes a formula prescribed for calculating power allocations/scaling for the PCC and SCC (s) if the UE has PUSCH transmission with UCI on a given serving cell and the UE has PUSCH transmission without UCI in any of the remaining serving cells, when the total transmit power of the UE would exceed a prescribed maximum (available) transmit power. In those cases the UE scales the PUSCH transmit power for any given subframe for the SCC (s) without UCI in the given subframe such that the condition expressed by the formula is satisfied.
  • the PCC has priority in being allocated more power, or a higher percentage of the total transmit power available at the UE. Consequently the power allocated to the SCC (s) for transmission of the PUSCH on the SCC (s) may be reduced in favor of power allocated to the PCC. For example, if /when the power for PUSCH transmission on the PCC reaches a maximum power limitation, e.g. when the maximum allowed power is allocated to the PCC for transmission of the. PUSCH (e.g. with UCI) on the PCC, then the power allocated to the SCC (s) for transmission of PUSCH on the SCC (s) may only be set at a prescribed minimum value, e.g. -45dBm. However, the network may still schedule UL grants for the SCC (s) , which may result in potentially adversely affected transmissions on the SCC (s) due to only minimum power having been allocated to the SCC (s) .
  • a prescribed minimum value e.g. -45dBm
  • Figure 5 shows a diagram illustrating power allocation for a PCC and an SCC for transmission of a PUSCH, according to prior art.
  • the maximum available transmit power for uplink is 17dBm
  • the power allocated for transmission of the PUSCH on the PCC and SCC, respectively is scaled equally to 14dBm.
  • the power allocated for transmission of the PUSCH on the SCC can only be set at a lowest available power value, which in this case is -45dBm.
  • the respective power allocated to the PCC and the SCC for transmission of the PUSCH on PCC and SCC, respectively may fluctuate among the uplink subframes.
  • the respective power allocated to the PCC and the SCC for PUSCH transmission on the PCC and the SCC, respectively may not be the same for all subframes, and may differ from subframe to subframe. This may not present an issue for the PCC, and does not adversely impact transmission on the PCC because power is increased when UCI is attached, that is when UCI is transmitted on the PUSCH.
  • the reason for unequal scaling of the PUSCH power between the PCC and the SCC (s) is to ensure that UCI is successfully transmitted.
  • the UCI transmission quality may be perceived and/or determined by UE via several different metrics. In other words, the UE may itself be capable of ascertaining whether the UCI is likely to be successfully transmitted.
  • the UE may be able to leverage such metrics to confirm whether UCI is successfully transmitted, and autonomously determine how to scale the PUSCH power for PCC and SCC, or how to allocate power to the PCC and SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
  • the respective power allocated to the PCC and the SCC (s) for PUSCH transmission on the PCC and the SCC (s) may be based on certain metrics/power values obtained by the UE.
  • the respective power allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) may be determined by the UE based on the reference signal received power (RSRP) associated with the PCC, and various downlink metrics associated with the PCC.
  • RSRP reference signal received power
  • the UE may specify a threshold value associated with the transmit power of the PCC.
  • the UE may specify a threshold value to which the UE may compare the measured RSRP associated with the PCC in order to at least partially determine how to allocate respective power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
  • the UE may obtain the RSRP associated with the PCC as well as certain metrics also associated with the PCC.
  • the UE may specify a threshold, “Thresh_abs” which may be used to determine how to allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
  • the UE may obtain a power measurement “Ms” associated with the PCC, e.g. an RSRP associated with the PCC.
  • the UE may further obtain metrics corresponding to downlink BLER ( “M BLER ” ) , metrics corresponding to a channel quality indicator (CQI) associated with the PCC ( “M CQI ” ) , metrics corresponding to rank indication (RI) associated with the PCC ( “M RI ” ) , metrics corresponding to precoding matrix indicators (PMI) associated with the PCC ( “M PMI ” ) , and metrics associated with an acknowledge (ACL) associated with the PCC ( “M ACK ” ) .
  • CQI channel quality indicator
  • RI rank indication
  • PMI precoding matrix indicators
  • ACL acknowledge
  • the UE may allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively as follows:
  • Ms ⁇ Thresh_abs adjust PUSCH power based on the 3GPP specification (e.g. decrease power allocated to the SCC (s) ) .
  • the UE may determine if this condition is true at any time. For example, as soon as a downlink receive power measurement is obtained, the UE may determine if this condition is true.
  • Ms > Thresh_abs and all of the metrics (M BLER , M CQI , M RI , M PMI , M ACK ) are positive (as will be further detailed below) , and a total power allocated to the PCC and the SCC (s) exceeds a specified limit, e.g. a maximum uplink power, scale the PUSCH power to specified values for the PCC and the SCC (s) .
  • the UE may allocate the PUSCH power equally to the PCC and the SCC (s) , respectively.
  • the UE may scale down the PUSCH power of the PCC by a specified amount, e.g.
  • the UE may periodically monitor the value of Ms and the value of the metrics to determine if this condition is true. For example, in some embodiments, the UE may check the value of Ms and values corresponding to the metrics once every specified time period.
  • Ms > Thresh_abs and any of the metrics (M BLER , M CQI , M RI , M PMI , M ACK ) are negative (as will be further detailed below) , increase the PUSCH power of PCC (i.e. increase the respective power allocated to the PCC for transmission of the PUSCH on the PCC) by a specified amount, e.g. by 1dBm.
  • the remainder power may be allocated to SCC (s) , for example by following the rules set forth in the 3GPP specification regarding calculation of the PUSCH power of SCC (i.e. the power allocated to the SCC for transmission of the PUSCH on the SCC) .
  • the UE may periodically monitor the value of Ms and the value of the metrics to determine if this condition is true. For example, in some embodiments, the UE may check the value of Ms and values corresponding to the metrics once every specified time period. Each time the condition is true, the PUSCH power of the PCC may be increased by the specified amount, until a specified total uplink power level, e.g. a maximum uplink power level is reached.
  • a specified total uplink power level e.g. a maximum uplink power level is reached.
  • the UE may take into consideration the following downlink metrics in evaluating/determining how to allocate respective power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively: BLER, CQI, PMI, RI and ACK.
  • the UE may evaluate these metrics for a specified period, or for a specified time duration, and determine whether the evaluation result or positive or negative, as follows.
  • ⁇ M BLER if the downlink BLER is higher than a previously specified BLER threshold value, set M BLER to negative, otherwise set M BLER to positive.
  • ⁇ M CQI if the distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on CQI is higher than a previously specified threshold value, set M CQI to negative, otherwise set M CQI to positive.
  • MCS downlink modulation and coding scheme
  • ⁇ M PMI if the downlink PMI is higher than a previously specified PMI threshold value, set M PMI to negative, otherwise set M PMI to positive.
  • ⁇ M RI if the percentage of downlink codewords is not consistent with RI and is higher than a specified threshold value, set M RI to negative, otherwise set M RI to positive.
  • ⁇ M ACK if the percentage of unnecessary DL retransmissions is higher than a specified threshold value, set M ACK to negative, otherwise set M ACK to positive.
  • the above are merely presented as examples of how the UE may use various metrics and power measurement (s) to determine how to allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
  • the various metrics taken into consideration and the respective values of all associated thresholds may be selected based on a variety of design considerations, e.g. as relating to available transmit power, among others.
  • Figure 6 shows an exemplary diagram illustrating improved uplink throughput related to power allocation to primary and secondary component carriers, according to some embodiments.
  • overall uplink throughput is indicated on the vertical axis versus RSRP different values indicated on the horizontal axis.
  • the overall UL throughput without the improved power allocation methods described herein is illustrated by curve 604, while throughput when using the improved power allocation methods described herein is illustrated by curve 602.
  • the Thresh_abs threshold may be selected in terms of a tradeoff between uplink improvement and downlink degradation. In other words, in some embodiments, Thresh_abs may be selected based on the level of uplink improvement gained with respect to potential downlink degradation.
  • FIG. 7 shows a flow diagram of an exemplary method for allocating power to a primary component carrier and a secondary component carrier for wireless transmissions using carrier aggregation, according to some embodiments.
  • a wireless communication device may conduct wireless communications according to a first RAT, and using carrier aggregation, with the communications conducted on a PCC and at least one SCC (702) .
  • the wireless communication device may measure transmit power (e.g. Reference Signal Received Power) associated with the PCC (704) . If the measured downlink receive power is below a specified threshold, e.g. below a required value, the wireless communication device adjusts the PUSCH power of the at least one SCC to meet specification requirements, e.g. to meet 3GPP Standards specification requirements (706) .
  • transmit power e.g. Reference Signal Received Power
  • the wireless communication device may also obtain various downlink metrics associated with the PCC (708) .
  • the wireless communication device may then allocate first power to the PCC for transmission of a PUSCH on the PCC, and may allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, based at least on the obtained various downlink metrics (710) .
  • the flow diagram of the exemplary method shown in Figure 7 represents one set of embodiments, and alternate embodiments may differ while maintaining the disclosed power allocation/scaling schedule as described herein.
  • the various downlink metrics may be obtained independently of the downlink receive power measurement (s) and vice versa, and may also be independent of whether the total power allocation of the PCC and the at least one SCC exceeds the maximum uplink power.
  • the various measurements and monitoring associated with the downlink receive power and downlink metrics may be performed at any time as desired, as long as any value (s) used in determining power allocations of the PCC and the at least one SCC are available to make the determinations as described herein.
  • specific metrics e.g.
  • downlink metrics and power measurements are disclosed herein, various embodiments may include measurement (s) of different and/or additional metrics as desired, and the different and/or additional metrics may be used to determine the power allocations/scaling of the PCC and the at least one SCC according to the principles and methods disclosed herein.
  • Embodiments of the present invention may be realized in any of various forms.
  • the present invention may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system.
  • the present invention may be realized using one or more custom-designed hardware devices such as ASICs.
  • the present invention may be realized using one or more programmable hardware elements such as FPGAs.
  • a non-transitory computer-readable memory medium e.g., a non-transitory memory element
  • a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of a method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.
  • a non-transitory memory element may store programming instruction executable by a processing element to cause a wireless communication device to conduct wireless communications according to a first RAT on a PCC and on at least one SCC.
  • the programming instructions may further be executable to cause the wireless communication device to allocate first power to the PCC for transmission of a PUSCH on the PCC, and allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, with the first power and the second power allocated based on one or more downlink metrics associated with the PCC and/or a power measurement associated with the PCC.
  • a device e.g., a UE
  • a device may be configured to include a processor (or a set of processors) and a memory medium (or memory element) , where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets) .
  • the device may be realized in any of various forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication device (UE) may use carrier aggregation to conduct wireless communications according to a first radio access technology (RAT) on a primary component carrier (PCC) and one or more secondary component carriers (SCC (s) ). The UE may allocate power to the PCC for transmission of a Physical Uplink Shared Channel (PUSCH) on the PCC, and allocate power to the SCC (s) for transmission of the PUSCH on the SCC (s) such that power to the PCC and the power to the SCC (s) are allocated based on a power measurement associated with the PCC and one or more downlink metrics associated with the PCC. The UE may allocate power to the PCC and the SCC (s) based on a comparison between a specified threshold value and a measurement value indicated by the power measurement, and whether the one or more downlink metrics meet a specified set of criteria.

Description

Autonomous Physical Uplink Shared Channel Power Control for Uplink Carrier Aggregation FIELD OF THE INVENTION
The present application relates to wireless communications, and more particularly to power allocation for uplink transmissions during LTE communications using carrier aggregation.
DESCRIPTION OF THE RELATED ART
Wireless communication systems are rapidly growing in usage. In recent years, wireless devices such as smart phones and tablet computers have become increasingly sophisticated. In addition to supporting telephone calls, many mobile devices (i.e., user equipment devices or UEs) now provide access to the internet, email, text messaging, and navigation using the global positioning system (GPS) , and are capable of operating sophisticated applications that utilize these functionalities. Additionally, there exist numerous different wireless communication technologies and standards. Some examples of wireless communication standards include GSM, UMTS (WCDMA, TDS-CDMA) , LTE, LTE Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , IEEE 802.11 (WLAN or Wi-Fi) , IEEE 802.16 (WiMAX) , BLUETOOTHTM, etc.
The ever increasing number of features and functionality introduced in wireless communication devices also creates a continuous need for improvement in both wireless communications and in wireless communication devices. In particular, it is important to ensure the accuracy of transmitted and received signals through user equipment (UE) devices, e.g., through wireless devices such as cellular phones, base stations and relay stations used in wireless cellular communications. Long Term Evolution (LTE) has become the technology of choice for the majority of wireless network operators worldwide, providing mobile broadband data and high-speed Internet access to their subscriber base. LTE defines a number of downlink (DL) physical channels, categorized as transport or control channels, to carry information blocks received from the MAC (Media Access Control) and higher layers. LTE also defines three physical layer channels for the uplink (UL) .
One of the physical channels defined for the UL is the Physical Uplink Shared Channel (PUSCH) , which is a UL channel shared by all devices (user equipment, UE) in a radio cell to  transmit user data to the network. The scheduling for all UEs is under control of the LTE base station (enhanced Node B, or eNB) . The eNB uses the uplink scheduling grant (DCI format 0) to inform the UE about resource block (RB) assignment, and the modulation and coding scheme to be used. PUSCH typically supports QPSK and quadrature amplitude modulation (QAM) . In addition to user data, the PUSCH also carries control information (UCI: uplink control information) necessary to decode the information, such as transport format indicators and multiple-in multiple-out (MIMO) parameters. Control data is multiplexed with information data prior to digital Fourier transform (DFT) spreading.
LTE also supports the use of carrier aggregation (CA) , which refers to two or more component carriers (CCs) being aggregated in order to support wider transmission bandwidths, e.g. bandwidths of up to 100MHz. A UE may simultaneously receive and/or transmit on one or multiple CCs depending on the UE’s capabilities. When CA is configured, the UE may maintain one RRC connection with the network. The serving cell managing the UE’s RRC connection is referred to as the Primary Cell (PCell) , and Secondary Cells (SCells) together with the PCell may form a set of serving cells. Correspondingly, the carrier used for communications served the PCell is referred to as the Primary Component Carrier (PCC) , and the carrier (s) used for communications served by the SCell (s) are referred to as Secondary Component Carrier (s) (SCCs) . In the case of UL CA, the PUSCH may be transmitted over the PCC and/or the SCC (s) . However, per the 3GPP specification, the power allocated to the PCC when transmitting the PUSCH over the PCC is sometimes different from the power allocated to the SCC (s) for transmitting the PUSCH over the SCC (s) . Accordingly, there are cases when the power allocated to the SCC (s) for transmitting PUSCH may be limited even when such limitation is not necessary, and negatively impact PUSCH transmission over the SCC (s) .
Other corresponding issues related to the prior art will become apparent to one skilled in the art after comparing such prior art with the disclosed embodiments as described herein.
SUMMARY OF THE INVENTION
Embodiments are presented herein of, inter alia, of methods for allocating power to a secondary component carrier (SCC) during carrier aggregation (CA) for transmission of a Physical Uplink Shared Channel (PUSCH) , based on downlink metrics and/or Reference Signal Received Power (RSRP) obtained by a wireless communication device (UE device) , thereby improving the overall power allocation for transmission of the PUSCH over a primary component carrier (PCC) and SCC. Measurements of specified metrics corresponding to the PCC may be used by the UE device to determine how to allocate power to the PCC and SCC (s) for transmission of the PUSCH over the PCC and/or SCC. Embodiments are further presented herein for wireless communication systems containing user equipment (UE) devices and/or base stations communicating with each other within the wireless communication systems.
When carrier aggregation is configured for uplink communications of a wireless communication device, there are condition under which the uplink power is not equally allocated (or scaled) between the PCC and the SCC, for example to protect uplink control information (UCI) transmitted on the PCC. This protection of the UCI on the PCC may lead to considerable decrease in the throughput of the SCC when the total UL power reaches a maximum power limit. In order to improve throughput on the SCC while maintaining integrity of the UCI transmission on the PCC, the wireless communication device may calculate/determine certain specified metrics to ascertain whether the UCI is lost, or there is a likelihood that the UCI is lost during the uplink transmission. If the metrics show that there is no impact on UCI transmission when the power to the PCC and the SCC is allocated (scaled) equally, then it is not necessary to sacrifice the power of the SCC, and the UL throughput can be considerably improved.
Accordingly, in some embodiments, a wireless communication device (UE) may use carrier aggregation to conduct wireless communications according to a first radio access technology, for example LTE, on a PCC and one or more SCC (s) . Under certain conditions, for example when a total power allocated to the PCC and the SCC (s) exceeds a specified power limit (e.g. a maximum uplink power) , the UE may allocate first power to the PCC for transmission of the PUSCH on the PCC, and allocate second power to the SCC (s) for transmission of the PUSCH on the SCC (s) according to an enhanced power allocation procedure/method. Thus, in some embodiments, the PUSCH power of the PCC and the SCC (s) –i.e. the respective power  allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and on the SCC (s) , respectively –may each be calculated/determined in the same manner as for single carriers. Scaling of the PUSCH power between PCC and SCC may be enhanced if the total (calculated/determined) power allocated to PCC and the SCC (s) exceeds a specified limit, e.g. if it exceeds the maximum uplink power. The power of the PCC and the power of the SCC (s) are allocated/adjusted based on a power measurement associated with the PCC and one or more downlink metrics associated with the PCC. Furthermore, the enhanced scaling of the PUSCH power for the PCC and the SCC (s) may be performed when information transmitted in the PUSCH on the PCC includes uplink control information. In such cases the UE may allocate/adjust power to the PCC and the SCC (s) –or adjust the power scaling for the PCC and the SCC (s) –based on a comparison between a specified threshold value –defined by the UE, for example –and a measurement value indicated by a downlink receive power measurement, and further based on whether the one or more downlink metrics meet a specified set of criteria. When the downlink receive power measurement (e.g. reference signal received power, or RSRP) indicates that the measured power is below a specified threshold, the UE may scale the PUSCH power of the PCC and the SCC (s) without any further enhancements. When the downlink receive power measurement indicates that the measured power is over the specified threshold, the UE may scale the PUSCH power of the PCC and the SCC (s) according to various embodiments of the enhanced power allocation/scaling as described herein. In general, as described above, the power of the PCC and the power of the SCC (s) may be allocated/adjusted based on a power measurement associated with the PCC and one or more downlink metrics associated with the PCC whenever the PUSCH power is scaled between PCC and the SCC (s) .
Therefore, the UE may scale down the second power when the downlink receive power measurement value is below the specified threshold value. The UE may allocate the first power and the second power equally when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics meet a specified set of criteria. The UE may increase the first power by a specified amount and scale down the second power according to a remainder power determined based on the increased first power, when the measurement value is greater than or equal to the specified threshold value and the one or more downlink metrics do not meet the specified set of criteria. The specified threshold value may be  selected based on a tradeoff between an improvement of uplink communications and degradation of downlink communications of the wireless communication device.
In some embodiments, the one or more downlink metrics may include respective values associated with a downlink block error rate (BLER) , channel quality indicator (CQI) , precoding matrix indicators (PMI) , rank indicator (RI) , and acknowledge (ACK) , associated with downlink communications of the UE over the PCC. The one or more downlink metrics are considered to meet the specified set of criteria when the respective value associated with the downlink BLER is equal to or less than a specified BLER value, a distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on the CQI is equal to or less than a specified distance, the respective value associated with the downlink PMI value is equal to or less than a specified PMI value, a percentage of downlink codewords not consistent with the RI is equal to or less than a specified percentage, and a percentage of unnecessary downlink retransmissions is equal to or lower than a specified percentage.
Note that the techniques described herein may be implemented in and/or used with a number of different types of devices, including but not limited to, base stations, access points, cellular phones, portable media players, tablet computers, wearable devices, and various other computing devices.
This Summary is intended to provide a brief overview of some of the subject matter described in this document. Accordingly, it will be appreciated that the above-described features are merely examples and should not be construed to narrow the scope or spirit of the subject matter described herein in any way. Other features, aspects, and advantages of the subject matter described herein will become apparent from the following Detailed Description, Figures, and Claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments;
Figure 2 illustrates an exemplary base station in communication with an exemplary wireless user equipment (UE) device, according to some embodiments;
Figure 3 illustrates an exemplary block diagram of a UE, according to some embodiments;
Figure 4 illustrates an exemplary block diagram of a base station, according to some embodiments;
Figure 5 shows a diagram illustrating power allocation for a primary component carrier and a secondary component carrier for transmission of a physical uplink shared channel, according to prior art;
Figure 6 shows an exemplary diagram illustrating improved uplink throughput related to power allocation to primary and secondary component carriers, according to some embodiments; and
Figure 7 shows a flow diagram of an exemplary method for allocating power to a primary component carrier and a secondary component carrier for wireless transmissions using carrier aggregation, according to some embodiments.
While features described herein are susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to be limiting to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the subject matter as defined by the appended claims.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Acronyms
Various acronyms are used throughout the present application. Definitions of the most prominently used acronyms that may appear throughout the present application are provided below:
● ACK: Acknowledgement
● APR: Applications Processor
● BLER: Block Error Rate
● BS: Base Station
● BSR: Buffer Size Report
● CA: Carrier Aggregation
● CC: Component Carrier (for CA)
● CMR: Change Mode Request
● CQI: Channel Quality Indicator
● DL: Downlink (from BS to UE)
● DYN: Dynamic
● FDD: Frequency Division Duplexing
● FT: Frame Type
● GPRS: General Packet Radio Service
● GSM: Global System for Mobile Communication
● HARQ: Hybrid Automatic Repeat Request
● IE: Information Element
● LAN: Local Area Network
● LBT: Listen Before Talk
● LTE: Long Term Evolution
● LTE-U: LTE in Unlicensed Spectrum
● LAA: License Assisted Access
● MAC: Media Access Control (layer)
● NACK: Negative Acknowledgement
● PCC: Primary Component Carrier
● PDCCH: Physical Downlink Control Channel
● PDSCH: Physical Downlink Shared Channel
● PDN: Packet Data Network
● PDU: Protocol Data Unit
● PMI: Precoding Matrix Indicators
● PUSCH: Physical Uplink Shared Channel
● QoS: Quality of Service
● RAT: Radio Access Technology
● RF: Radio Frequency
● RI: Rank Indicator
● RSRP: Reference Signal Received Power
● RTP: Real-time Transport Protocol
● RX: Reception/Receive
● SCC: Secondary Component Carrier
● TBS: Transport Block Size
● TDD: Time Division Duplexing
● TTI: Transmission Time Interval
● TX: Transmission/Transmit
● UCI: Uplink Control Information
● UE: User Equipment (Device)
● UL: Uplink (from UE to BS)
● UMTS: Universal Mobile Telecommunication System
● VoLTE: Voice over LTE
● WLAN: Wireless LAN
● Wi-Fi: Wireless Local Area Network (WLAN) RAT based on the Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards
Terms
The following is a glossary of terms that may appear in the present application:
Memory Medium –Any of various types of memory devices or storage devices. The term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc. ; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc. The memory medium may comprise other types of memory as well or combinations thereof. In addition, the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer system for execution. The term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network.
Carrier Medium –a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
Computer System (or Computer) –any of various types of computing or processing systems, including a personal computer system (PC) , mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA) , television system, grid computing system, or other device or combinations of devices. In general, the term "computer system"may be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.
User Equipment (UE) (or “UE Device” ) –any of various types of computer systems devices which are mobile or portable and which performs wireless communications. Also referred to as wireless communication devices. Examples of UE devices include mobile telephones or smart phones (e.g., iPhoneTM, AndroidTM-based phones) and tablet computers such as iPadTM, Samsung GalaxyTM, etc., portable gaming devices (e.g., Nintendo DSTM, PlayStation PortableTM, Gameboy AdvanceTM, iPodTM) , laptops, wearable devices (e.g. Apple WatchTM, Google GlassTM) , PDAs, portable Internet devices, music players, data storage devices, or other handheld devices, etc. Various other types of devices would fall into this category if they include Wi-Fi or both cellular and Wi-Fi communication capabilities and/or other wireless  communication capabilities, for example over short-range radio access technologies (SRATs) such as BLUETOOTHTM, etc. In general, the term “UE” or “UE device” may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
Base Station (BS) –The term "Base Station"has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.
Processing Element –refers to various elements or combinations of elements that are capable of performing a function in a device, e.g. in a user equipment device or in a cellular network device. Processing elements may include, for example: processors and associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit) , programmable hardware elements such as a field programmable gate array (FPGA) , as well any of various combinations of the above.
Wireless Device (or wireless communication device) –any of various types of computer systems devices which performs wireless communications using WLAN communications, SRAT communications, Wi-Fi communications and the like. As used herein, the term “wireless device” may refer to a UE device, as defined above, or to a stationary device, such as a stationary wireless client or a wireless base station. For example a wireless device may be any type of wireless station of an 802.11 system, such as an access point (AP) or a client station (UE) , or any type of wireless station of a cellular communication system communicating according to a cellular radio access technology (e.g. LTE, CDMA, GSM) , such as a base station or a cellular telephone, for example.
Wi-Fi –The term "Wi-Fi" has the full breadth of its ordinary meaning, and at least includes a wireless communication network or RAT that is serviced by wireless LAN (WLAN) access points and which provides connectivity through these access points to the Internet. Most modern Wi-Fi networks (or WLAN networks) are based on IEEE 802.11 standards and are marketed under the name “Wi-Fi” . A Wi-Fi (WLAN) network is different from a cellular network.
Automatically –refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware  elements, ASICs, etc. ) , without user input directly specifying or performing the action or operation. Thus the term "automatically" is in contrast to an operation being manually performed or specified by the user, where the user provides input to directly perform the operation. An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually” , where the user specifies each action to perform. For example, a user filling out an electronic form by selecting each field and providing input specifying information (e.g., by typing information, selecting check boxes, radio selections, etc. ) is filling out the form manually, even though the computer system must update the form in response to the user actions. The form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields. As indicated above, the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed) . The present specification provides various examples of operations being automatically performed in response to actions the user has taken.
Configured to –Various components may be described as “configured to” perform a task or tasks. In such contexts, “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected) . In some contexts, “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.
Various components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to. ” Reciting a component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, paragraph six, interpretation for that component.
Figures 1 and 2 –Exemplary Communication System
Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments. It is noted that the system of Figure 1 is merely one example of a possible system, and embodiments may be implemented in any of various systems, as desired.
As shown, the exemplary wireless communication system includes a base station 102 which communicates over a transmission medium with one or more user devices 106-1 through 106-N. Each of the user devices may be referred to herein as a “user equipment” (UE) or UE device. Thus, the user devices 106 are referred to as UEs or UE devices. Various ones of the UE devices may operate using carrier aggregation (CA) with power allocated to the primary component carrier (PCC) and secondary component carrier (s) (SCC (s) ) as further described herein..
The base station 102 may be a base transceiver station (BTS) or cell site, and may include hardware that enables wireless communication with the UEs 106A through 106N. The base station 102 may also be equipped to communicate with a network 100 (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN) , and/or the Internet, among various possibilities) . Thus, the base station 102 may facilitate communication between the user devices and/or between the user devices and the network 100. Communication between base station 102 and any of UE devices 106 may take place using CA, whereby the UE 106 uses a PCC and one or more SCCs during communication with base station 102. The communication area (or coverage area) of the base station may be referred to as a “cell. ” As also used herein, from the perspective of UEs, a base station may sometimes be considered as representing the network insofar as uplink and downlink communications of the UE are concerned. Thus, a UE communicating with one or more base stations in the network may also be interpreted as the UE communicating with the network.
The base station 102 and the user devices may be configured to communicate over the transmission medium using any of various radio access technologies (RATs) , also referred to as wireless communication technologies, or telecommunication standards, such as GSM, UMTS (WCDMA) , LTE, LTE-Advanced (LTE-A) , LAA/LTE-U, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , Wi-Fi, WiMAX etc. In some embodiments, the base station 102 communicates with at least one UE that performs improved power allocation to the PCC and the  SCC (s) for transmitting a physical uplink shared channel (PUSCH) –which includes uplink control information (UCI) –over the PCC and the SCC (s) .
UE 106 may be capable of communicating using multiple wireless communication standards. For example, a UE 106 might be configured to communicate using either or both of a 3GPP cellular communication standard (such as LTE) or a 3GPP2 cellular communication standard (such as a cellular communication standard in the CDMA2000 family of cellular communication standards) . In some embodiments, the UE 106 may be configured to operate with improved power allocation to the PCC and the SCC (s) for PUSCH transmission (with UCI) , at least according to the various methods as described herein. Base station 102 and other similar base stations operating according to the same or a different cellular communication standard may thus be provided as one or more networks of cells, which may provide continuous or nearly continuous overlapping service to UE 106 and similar devices over a wide geographic area via one or more cellular communication standards.
The UE 106 might also or alternatively be configured to communicate using WLAN, BLUETOOTHTM, one or more global navigational satellite systems (GNSS, e.g., GPS or GLONASS) , one and/or more mobile television broadcasting standards (e.g., ATSC-M/H or DVB-H) , etc. Other combinations of wireless communication standards (including more than two wireless communication standards) are also possible.
Figure 2 illustrates an exemplary user equipment 106 (e.g., one of the devices 106-1 through 106-N) in communication with the base station 102, according to some embodiments. The UE 106 may be a device with wireless network connectivity such as a mobile phone, a hand-held device, a computer or a tablet, or virtually any type of wireless device. The UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions. Alternatively, or in addition, the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein. The UE 106 may be configured to communicate using any of multiple wireless communication protocols. For example, the UE 106 may be configured to communicate using  two or more of CDMA2000, LTE, LTE-A, WLAN, or GNSS. Other combinations of wireless communication standards are also possible.
The UE 106 may include one or more antennas for communicating using one or more wireless communication protocols according to one or more RAT standards. In some embodiments, the UE 106 may share one or more parts of a receive chain and/or transmit chain between multiple wireless communication standards. The shared radio may include a single antenna, or may include multiple antennas (e.g., for MIMO) for performing wireless communications. Alternatively, the UE 106 may include separate transmit and/or receive chains (e.g., including separate antennas and other radio components) for each wireless communication protocol with which it is configured to communicate. As another alternative, the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol. For example, the UE 106 may include a shared radio for communicating using either of LTE or CDMA2000 1xRTT, and separate radios for communicating using each of Wi-Fi and BLUETOOTHTM. Other configurations are also possible.
Figure 3 –Block Diagram of an Exemplary UE
Figure 3 illustrates a block diagram of an exemplary UE 106, according to some embodiments. As shown, the UE 106 may include a system on chip (SOC) 300, which may include portions for various purposes. For example, as shown, the SOC 300 may include processor (s) 302 which may execute program instructions for the UE 106 and display circuitry 304 which may perform graphics processing and provide display signals to the display 360. The processor (s) 302 may also be coupled to memory management unit (MMU) 340, which may be configured to receive addresses from the processor (s) 302 and translate those addresses to locations in memory (e.g., memory 306, read only memory (ROM) 350, NAND flash memory 310) and/or to other circuits or devices, such as the display circuitry 304, radio 330, connector I/F 320, and/or display 340. The MMU 340 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 340 may be included as a portion of the processor (s) 302.
As shown, the SOC 300 may be coupled to various other circuits of the UE 106. For example, the UE 106 may include various types of memory (e.g., including NAND flash 310) , a connector interface 320 (e.g., for coupling to the computer system) , the display 360, and wireless communication circuitry (e.g., for LTE, LTE-A, CDMA2000, BLUETOOTHTM, Wi-Fi, GPS, etc. ) . The UE device 106 may include at least one antenna (e.g. 335a) , and possibly multiple antennas (e.g. illustrated by  antennas  335a and 335b) , for performing wireless communication with base stations and/or other devices.  Antennas  335a and 335b are shown by way of example, and UE device 106 may include fewer or more antennas. Overall, the one or more antennas are collectively referred to as antenna (s) 335. For example, the UE device 106 may use antenna (s) 335 to perform the wireless communication with the aid of radio circuitry 330. As noted above, the UE may be configured to communicate wirelessly using multiple wireless communication standards in some embodiments.
As described further subsequently herein, the UE 106 (and/or base station 102) may include hardware and software components for implementing methods for at least UE 106 to wirelessly communicate using CA, allocating power to the PCC and the SCC (s) –for transmission of a PUSCH with UCI over the PCC and SCC (s) –based on power measurements and downlink metrics associated with the PCC. Thus, in some embodiments, UE 106 may measure power associated with transmissions over the PCC and may also determine one or more downlink metrics associated with the PCC, then allocate power to the PCC and the SCC (s) for transmission of the PUSCH, based on whether the measured power exceeds a specified threshold and whether the metrics meet a specific set of criteria. The processor (s) 302 of the UE device 106 may be configured to implement part or all of the functionality described above, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) . In other embodiments, processor (s) 302 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) . Furthermore, processor (s) 302 may be coupled to and/or may interoperate with other components as shown in Figure 3, to implement communications by UE 106 that incorporate power allocation to the PCC and the SCC (s) for wireless communications of UE 106, according to various embodiments disclosed herein. Specifically, processor (s) 302 may be coupled to and/or may interoperate with other components as shown in Figure 3 to facilitate UE 106 allocating power to the PCC and SCC (s) , for example  as described above. Processor (s) 302 may also implement various other applications and/or end-user applications running on UE 106.
In some embodiments, radio 300 may include separate controllers dedicated to controlling communications for various respective RAT standards. For example, as shown in Figure 3, radio 330 may include a Wi-Fi controller 350, a cellular controller (e.g. LTE/3GPP controller) 352, and BLUETOOTHTM controller 354, and in at least some embodiments, one or more or all of these controllers may be implemented as respective integrated circuits (ICs or chips, for short) in communication with each other and with SOC 300 (and more specifically with processor (s) 302) . For example, Wi-Fi controller 350 may communicate with cellular controller 352 over a cell-ISM link or WCI interface, and/or BLUETOOTHTM controller 354 may communicate with cellular controller 352 over a cell-ISM link, etc. While three separate controllers are illustrated within radio 330, other embodiments have fewer or more similar controllers for various different RATs that may be implemented in UE device 106.
Figure 4 –Block Diagram of an Exemplary Base Station
Figure 4 illustrates a block diagram of an exemplary base station 102, according to some embodiments. It is noted that the base station of Figure 4 is merely one example of a possible base station. As shown, the base station 102 may include processor (s) 404 which may execute program instructions for the base station 102. The processor (s) 404 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor (s) 404 and translate those addresses to locations in memory (e.g., memory 460 and read only memory (ROM) 450) or to other circuits or devices.
The base station 102 may include at least one network port 470. The network port 470 may be configured to couple to a telephone network and provide a plurality of devices, such as UE devices 106, access to the telephone network as described above in Figures 1 and 2. The network port 470 (or an additional network port) may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider. The core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106. In some cases, the network port 470 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider) .
The base station 102 may include at least one antenna 434, and possibly multiple antennas. The at least one antenna 434 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 430. The antenna 434 communicates with the radio 430 via communication chain 432. Communication chain 432 may be a receive chain, a transmit chain or both. The radio 430 may be designed to communicate via various wireless telecommunication standards, including, but not limited to, LTE, LTE-A WCDMA, CDMA2000, etc. The processor 404 of the base station 102 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) , for base station 102 to communicate with a UE device capable of allocating power to the PCC and the SCC (s) when communicating using carrier aggregation as described with respect to various embodiments disclosed herein. Alternatively, the processor 404 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) , or a combination thereof. In the case of certain RATs, for example Wi-Fi, base station 102 may be designed as an access point (AP) , in which case network port 470 may be implemented to provide access to a wide area network and/or local area network (s) , e.g. it may include at least one Ethernet port, and radio 430 may be designed to communicate according to the Wi-Fi standard. Base station 102 may operate according to the various methods as disclosed herein for communicating with mobile devices capable of detecting an imbalance between LAA and LTE cellular wireless communications of the mobile devices, and adjusting their wireless operations accordingly, when applicable.
Carrier Aggregation and Power Allocation to Component Carriers
As previously mentioned, LTE supports the use of carrier aggregation (CA) , by which two or more component carriers (CCs) are aggregated in order to support wider transmission bandwidths. A UE may simultaneously receive and/or transmit on one or multiple CCs depending on the UE’s capabilities. With CA configured, the UE maintains one RRC connection with the network, and the serving cell managing the UE’s RRC connection is referred to as the Primary Cell (PCell) , which forms a set of serving cells together with one or more Secondary Cells (SCells) . Correspondingly, the carrier used for communication served by the PCell is  referred to as the Primary Component Carrier (PCC) , and the carrier (s) used for communication (s) served by the SCell (s) are referred to as Secondary Component Carrier (s) (SCCs) . In the case of UL CA, the PUSCH may be transmitted over the PCC and/or the SCC (s) . According to the 3GPP specification, the power allocated to the PCC when transmitting the PUSCH over the PCC is sometimes different from the power allocated to the SCC (s) for transmitting the PUSCH over the SCC (s) .
The PUSCH power of the PCC and the SCC (s) –i.e. the respective power allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and on the SCC (s) , respectively –may each be calculated/determined in the same manner as for single carriers. Scaling of the PUSCH power between PCC and SCC may be enhanced if the total (calculated/determined) power allocated to PCC and the SCC (s) exceeds a specified limit, e.g. if it exceeds the maximum uplink power. As set forth in the 3GPP TS 36.213 specification, when uplink control information (UCI) is included in the PUSCH on the PCC, then the PCC has high priority in how the power allocations are calculated or determined. The specification includes a formula prescribed for calculating power allocations/scaling for the PCC and SCC (s) if the UE has PUSCH transmission with UCI on a given serving cell and the UE has PUSCH transmission without UCI in any of the remaining serving cells, when the total transmit power of the UE would exceed a prescribed maximum (available) transmit power. In those cases the UE scales the PUSCH transmit power for any given subframe for the SCC (s) without UCI in the given subframe such that the condition expressed by the formula is satisfied.
In other words, when PUSCH with UCI is to be transmitted over the PCC, the PCC has priority in being allocated more power, or a higher percentage of the total transmit power available at the UE. Consequently the power allocated to the SCC (s) for transmission of the PUSCH on the SCC (s) may be reduced in favor of power allocated to the PCC. For example, if /when the power for PUSCH transmission on the PCC reaches a maximum power limitation, e.g. when the maximum allowed power is allocated to the PCC for transmission of the. PUSCH (e.g. with UCI) on the PCC, then the power allocated to the SCC (s) for transmission of PUSCH on the SCC (s) may only be set at a prescribed minimum value, e.g. -45dBm. However, the network may still schedule UL grants for the SCC (s) , which may result in potentially adversely affected transmissions on the SCC (s) due to only minimum power having been allocated to the SCC (s) .
Figure 5 –Power Allocation to Component Carriers in Prior Art
Figure 5 shows a diagram illustrating power allocation for a PCC and an SCC for transmission of a PUSCH, according to prior art. As shown in Figure 5, if the maximum available transmit power for uplink is 17dBm, then, when UCI is not transmitted in the PUSCH, the power allocated for transmission of the PUSCH on the PCC and SCC, respectively, is scaled equally to 14dBm. However, when UCI is included in the information transmitted on the PUSCH on the PCC, most of the transmit power is allocated to the PCC for transmission of the PUSCH on the PCC, as PCC has the high priority, and the power allocated for transmission of the PUSCH on the SCC can only be set at a lowest available power value, which in this case is -45dBm.
Power Allocation Determined by the UE, Based on Metrics
Since the UCI is not always included in the information transmitted on the PUSCH, (in other words the UCI is not always attached to the PUSCH) , the respective power allocated to the PCC and the SCC for transmission of the PUSCH on PCC and SCC, respectively, may fluctuate among the uplink subframes. In other words, the respective power allocated to the PCC and the SCC for PUSCH transmission on the PCC and the SCC, respectively, may not be the same for all subframes, and may differ from subframe to subframe. This may not present an issue for the PCC, and does not adversely impact transmission on the PCC because power is increased when UCI is attached, that is when UCI is transmitted on the PUSCH. However, this scenario may adversely affect transmission of the PUSCH on the SCC (s) , as the power allocated to the SCC (s) may be decreased and lead to high block error rates (BLER) . According to the 3GPP specification, the reason for unequal scaling of the PUSCH power between the PCC and the SCC (s) (that is, the unequal allocation of power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively) is to ensure that UCI is successfully transmitted. However, in actuality, the UCI transmission quality may be perceived and/or determined by UE via several different metrics. In other words, the UE may itself be capable of ascertaining whether the UCI is likely to be successfully transmitted. The UE may be able to leverage such metrics to confirm whether UCI is successfully transmitted, and autonomously determine how to scale the PUSCH power for PCC and SCC, or how to allocate power to the PCC and SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
Based at least on the above, in some embodiments, the respective power allocated to the PCC and the SCC (s) for PUSCH transmission on the PCC and the SCC (s) , respectively, may be based on certain metrics/power values obtained by the UE. For example, the respective power allocated to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) may be determined by the UE based on the reference signal received power (RSRP) associated with the PCC, and various downlink metrics associated with the PCC. In some embodiments, the UE may specify a threshold value associated with the transmit power of the PCC. For example, the UE may specify a threshold value to which the UE may compare the measured RSRP associated with the PCC in order to at least partially determine how to allocate respective power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively.
In one set of embodiments, the UE may obtain the RSRP associated with the PCC as well as certain metrics also associated with the PCC. The UE may specify a threshold, “Thresh_abs” which may be used to determine how to allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively. The UE may obtain a power measurement “Ms” associated with the PCC, e.g. an RSRP associated with the PCC. The UE may further obtain metrics corresponding to downlink BLER ( “MBLER” ) , metrics corresponding to a channel quality indicator (CQI) associated with the PCC ( “MCQI” ) , metrics corresponding to rank indication (RI) associated with the PCC ( “MRI” ) , metrics corresponding to precoding matrix indicators (PMI) associated with the PCC ( “MPMI” ) , and metrics associated with an acknowledge (ACL) associated with the PCC ( “MACK” ) .
Taking into consideration the above, the UE may allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively as follows:
● If Ms < Thresh_abs, adjust PUSCH power based on the 3GPP specification (e.g. decrease power allocated to the SCC (s) ) . The UE may determine if this condition is true at any time. For example, as soon as a downlink receive power measurement is obtained, the UE may determine if this condition is true.
● If Ms >= Thresh_abs and all of the metrics (MBLER, MCQI, MRI, MPMI, MACK) are positive (as will be further detailed below) , and a total power allocated to the PCC and the SCC (s) exceeds a specified limit, e.g. a maximum uplink power, scale the PUSCH power to specified values for the PCC and the SCC (s) . E. g., the UE may allocate the PUSCH  power equally to the PCC and the SCC (s) , respectively. In some embodiments, the UE may scale down the PUSCH power of the PCC by a specified amount, e.g. by 1 dBm, until the power of the PCC and the SCC (s) are allocated as desired, for example until the power of the PCC and the SCC (s) are commensurate with each other. The UE may periodically monitor the value of Ms and the value of the metrics to determine if this condition is true. For example, in some embodiments, the UE may check the value of Ms and values corresponding to the metrics once every specified time period.
● If Ms >= Thresh_abs and any of the metrics (MBLER, MCQI, MRI, MPMI, MACK) are negative (as will be further detailed below) , increase the PUSCH power of PCC (i.e. increase the respective power allocated to the PCC for transmission of the PUSCH on the PCC) by a specified amount, e.g. by 1dBm. The remainder power may be allocated to SCC (s) , for example by following the rules set forth in the 3GPP specification regarding calculation of the PUSCH power of SCC (i.e. the power allocated to the SCC for transmission of the PUSCH on the SCC) . Similar to the previous condition, the UE may periodically monitor the value of Ms and the value of the metrics to determine if this condition is true. For example, in some embodiments, the UE may check the value of Ms and values corresponding to the metrics once every specified time period. Each time the condition is true, the PUSCH power of the PCC may be increased by the specified amount, until a specified total uplink power level, e.g. a maximum uplink power level is reached.
As mentioned above, the UE may take into consideration the following downlink metrics in evaluating/determining how to allocate respective power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively: BLER, CQI, PMI, RI and ACK. The UE may evaluate these metrics for a specified period, or for a specified time duration, and determine whether the evaluation result or positive or negative, as follows.
● MBLER: if the downlink BLER is higher than a previously specified BLER threshold value, set MBLER to negative, otherwise set MBLER to positive.
● MCQI: if the distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on CQI is higher than a previously specified threshold value, set MCQI to negative, otherwise set MCQI to positive.
● MPMI: if the downlink PMI is higher than a previously specified PMI threshold value, set MPMI to negative, otherwise set MPMI to positive.
● MRI: if the percentage of downlink codewords is not consistent with RI and is higher than a specified threshold value, set MRI to negative, otherwise set MRI to positive.
● MACK: if the percentage of unnecessary DL retransmissions is higher than a specified threshold value, set MACK to negative, otherwise set MACK to positive.
The above are merely presented as examples of how the UE may use various metrics and power measurement (s) to determine how to allocate power to the PCC and the SCC (s) for transmission of the PUSCH on the PCC and the SCC (s) , respectively. The various metrics taken into consideration and the respective values of all associated thresholds may be selected based on a variety of design considerations, e.g. as relating to available transmit power, among others.
Figure 6 shows an exemplary diagram illustrating improved uplink throughput related to power allocation to primary and secondary component carriers, according to some embodiments. As illustrated in Figure 6, overall uplink throughput is indicated on the vertical axis versus RSRP different values indicated on the horizontal axis. The overall UL throughput without the improved power allocation methods described herein is illustrated by curve 604, while throughput when using the improved power allocation methods described herein is illustrated by curve 602. The Thresh_abs threshold may be selected in terms of a tradeoff between uplink improvement and downlink degradation. In other words, in some embodiments, Thresh_abs may be selected based on the level of uplink improvement gained with respect to potential downlink degradation.
Figure 7 shows a flow diagram of an exemplary method for allocating power to a primary component carrier and a secondary component carrier for wireless transmissions using carrier aggregation, according to some embodiments. A wireless communication device may conduct wireless communications according to a first RAT, and using carrier aggregation, with the communications conducted on a PCC and at least one SCC (702) . The wireless communication device may measure transmit power (e.g. Reference Signal Received Power) associated with the PCC (704) . If the measured downlink receive power is below a specified threshold, e.g. below a required value, the wireless communication device adjusts the PUSCH power of the at least one SCC to meet specification requirements, e.g. to meet 3GPP Standards specification requirements (706) . If the measured downlink receive power is not below the specified threshold, and the total  power allocation of the PCC and the at least one SCC exceeds a specified power limit, e.g. a maximum uplink power, the wireless communication device may also obtain various downlink metrics associated with the PCC (708) . The wireless communication device may then allocate first power to the PCC for transmission of a PUSCH on the PCC, and may allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, based at least on the obtained various downlink metrics (710) .
It should be noted that the flow diagram of the exemplary method shown in Figure 7 represents one set of embodiments, and alternate embodiments may differ while maintaining the disclosed power allocation/scaling schedule as described herein. For example, the various downlink metrics may be obtained independently of the downlink receive power measurement (s) and vice versa, and may also be independent of whether the total power allocation of the PCC and the at least one SCC exceeds the maximum uplink power. Overall, the various measurements and monitoring associated with the downlink receive power and downlink metrics may be performed at any time as desired, as long as any value (s) used in determining power allocations of the PCC and the at least one SCC are available to make the determinations as described herein. It should also be noted that while specific metrics (e.g. downlink metrics) and power measurements (e.g. downlink receive power measurements) are disclosed herein, various embodiments may include measurement (s) of different and/or additional metrics as desired, and the different and/or additional metrics may be used to determine the power allocations/scaling of the PCC and the at least one SCC according to the principles and methods disclosed herein.
Embodiments of the present invention may be realized in any of various forms. For example, in some embodiments, the present invention may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system. In other embodiments, the present invention may be realized using one or more custom-designed hardware devices such as ASICs. In other embodiments, the present invention may be realized using one or more programmable hardware elements such as FPGAs.
In some embodiments, a non-transitory computer-readable memory medium (e.g., a non-transitory memory element) may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of a method embodiments described herein, or, any combination of  the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets. For example, in some embodiments, a non-transitory memory element may store programming instruction executable by a processing element to cause a wireless communication device to conduct wireless communications according to a first RAT on a PCC and on at least one SCC. The programming instructions may further be executable to cause the wireless communication device to allocate first power to the PCC for transmission of a PUSCH on the PCC, and allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, with the first power and the second power allocated based on one or more downlink metrics associated with the PCC and/or a power measurement associated with the PCC.
In some embodiments, a device (e.g., a UE) may be configured to include a processor (or a set of processors) and a memory medium (or memory element) , where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets) . The device may be realized in any of various forms.
Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims (20)

  1. An apparatus comprising:
    a processing element configured to cause a wireless communication device to:
    conduct wireless communications according to a first radio access technology (RAT) on a primary component carrier (PCC) and on at least one secondary component carrier (SCC) ;
    allocate first power to the PCC for transmission of a Physical Uplink Shared Channel (PUSCH) on the PCC, and allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, wherein the first power and the second power are allocated based at least on one of the following:
    one or more metrics associated with the PCC; or
    a power measurement associated with the PCC.
  2. The apparatus of claim 1, wherein the processing element is configured to further cause the wireless communication device to allocate the first power and the second power based on a comparison of:
    a measurement value indicated by the power measurement; and
    a specified threshold value.
  3. The wireless communication device of claim 2, wherein the processing element is configured to further cause the wireless communication device to perform one or more of the following:
    scale down the second power when the measurement value is below the specified threshold value;
    allocate the first power and the second power equally when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics meet a specified set of criteria; or
    increase the first power by a specified amount and scale down the second power according to a remainder power determined based on the increased first power when the measurement value is greater than or equal to the specified threshold value and the one or more  downlink metrics do not meet the specified set of criteria.
  4. The apparatus of claim 2, wherein the specified threshold value is selected based on a tradeoff between an improvement of uplink communications and degradation of downlink communications of the wireless communication device.
  5. The apparatus of claim 1, wherein the one or more metrics are downlink metrics and comprise respective values associated with:
    downlink block error rate (BLER) ;
    channel quality indicator (CQI) ;
    precoding matrix indicators (PMI) ;
    rank indicator (RI) ; and
    acknowledge (ACK) .
  6. The apparatus of claim 5, wherein the one or more downlink metrics meet the specified set of criteria when:
    the respective value associated with the downlink BLER is equal to or less than a specified BLER value;
    a distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on the CQI is equal to or less than a specified distance;
    the respective value associated with the downlink PMI value is equal to or less than a specified PMI value;
    a percentage of downlink codewords not consistent with the RI is equal to or less than a specified percentage; and
    a percentage of unnecessary downlink retransmissions is equal to or lower than a specified percentage.
  7. The apparatus of claim 1, wherein information transmitted in the PUSCH on the PCC comprises uplink control information.
  8. A wireless communication device comprising:
    radio circuitry comprising one or more antennas and configured to facilitate wireless communications of the wireless communication device according to a first radio access technology (RAT) on a component carrier (PCC) and on at least one secondary component carrier (SCC) ;
    a processing element coupled to the radio circuitry and configured to interoperate with the radio circuitry to cause the wireless communication device to:
    allocate first power to the PCC for transmission of a Physical Uplink Shared Channel (PUSCH) on the PCC and allocate second power to the at least one SCC for transmission of the PUSCH on the at least one SCC, wherein the first power and the second power are allocated based at least on one of the following:
    one or more downlink metrics associated with the PCC; or
    a power measurement associated with the PCC.
  9. The wireless communication device of claim 8, wherein the processing element is configured to interoperate with the radio circuitry to further cause the wireless communication device to allocate the first power and the second power based on a comparison of:
    a measurement value indicated by the power measurement; and
    a specified threshold value.
  10. The wireless communication device of claim 9, wherein the processing element is configured to interoperate with the radio circuitry to further cause the wireless communication device to perform one or more of the following:
    scale down the second power when the measurement value is below the specified threshold value;
    allocate the first power and the second power equally when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics meet a specified set of criteria; or
    increase the first power by a specified amount and scale down the second power according to a remainder power determined based on the increased first power when the measurement value is greater than or equal to the specified threshold value and the one or more downlink metrics do not meet the specified set of criteria.
  11. The wireless communication device of claim 9, wherein the specified threshold value is selected based on a tradeoff between an improvement of uplink communications and degradation of downlink communications of the wireless communication device.
  12. The wireless communication device of claim 8, wherein the one or more downlink metrics comprise respective values associated with:
    a downlink block error rate (BLER) ;
    a channel quality indicator (CQI) ;
    a precoding matrix indicators (PMI) ;
    a rank indicator (RI) ; and
    an acknowledge (ACK) .
  13. The wireless communication device of claim 12, wherein the one or more downlink metrics meet the specified set of criteria when:
    the respective value associated with the downlink BLER is equal to or less than a specified BLER value;
    a distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on the CQI is equal to or less than a specified distance;
    the respective value associated with the downlink PMI value is equal to or less than a specified PMI value;
    a percentage of downlink codewords not consistent with the RI is equal to or less than a specified percentage; and
    a percentage of unnecessary downlink retransmissions is equal to or lower than a specified percentage.
  14. The wireless communication device of claim 8, wherein information transmitted in the PUSCH on the PCC comprises uplink control information.
  15. A method for allocating power to component carriers for conducting wireless communications over the component carriers, the method comprising:
    conducting, by a wireless communication device, wireless communications according to a first radio access technology (RAT) on a primary component carrier (PCC) and on at least one secondary component carrier (SCC) ;
    allocating, by the wireless communication device, first power to the PCC for transmission of a Physical Uplink Shared Channel (PUSCH) on the PCC;
    allocating, by the wireless communication device, second power to the at least one SCC for transmission of the PUSCH on the at least one SCC;
    wherein allocating the first power and the second power comprises allocating the first power and the second power based at least on one of the following:
    one or more downlink metrics associated with the PCC; or
    a power measurement associated with the PCC.
  16. The method of claim 15, further comprising:
    allocating, by the wireless communication device, the first power and the second power based on a comparison of:
    a measurement value indicated by the power measurement; and
    a specified threshold value.
  17. The method of claim 16, further comprising performing one or more of the following:
    scaling down, by the wireless communication device, the second power when the measurement value is below the specified threshold value;
    allocating, by the wireless communication device, the first power and the second power equally when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics meet a specified set of criteria; or
    increasing, by the wireless communication device, the first power by a specified amount, and scaling down, by the wireless communication device, the second power according to a remainder power determined based on the increased first power, when the measurement value is greater than or equal to the specified threshold value, and the one or more downlink metrics do not meet the specified set of criteria.
  18. The method of claim 16, wherein the specified threshold value is selected based on a tradeoff between an improvement of uplink communications and degradation of downlink communications.
  19. The method of claim 15, wherein the one or more downlink metrics comprise respective values associated with:
    downlink block error rate (BLER) ;
    channel quality indicator (CQI) ;
    precoding matrix indicators (PMI) ;
    rank indicator (RI) ; and
    acknowledge (ACK) .
  20. The method of claim 19, wherein the one or more downlink metrics meet the specified set of criteria when:
    the respective value associated with the downlink BLER is equal to or less than a specified BLER value;
    a distance between a downlink modulation and coding scheme (MCS) to a preferred MCS based on the CQI is equal to or less than a specified distance;
    the respective value associated with the downlink PMI value is equal to or less than a specified PMI value;
    a percentage of downlink codewords not consistent with the RI is equal to or less than a specified percentage; and
    a percentage of unnecessary downlink retransmissions is equal to or lower than a specified percentage.
PCT/CN2016/099841 2016-09-23 2016-09-23 Autonomous physical uplink shared channel power control for uplink carrier aggregation WO2018053791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099841 WO2018053791A1 (en) 2016-09-23 2016-09-23 Autonomous physical uplink shared channel power control for uplink carrier aggregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099841 WO2018053791A1 (en) 2016-09-23 2016-09-23 Autonomous physical uplink shared channel power control for uplink carrier aggregation

Publications (1)

Publication Number Publication Date
WO2018053791A1 true WO2018053791A1 (en) 2018-03-29

Family

ID=61690740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099841 WO2018053791A1 (en) 2016-09-23 2016-09-23 Autonomous physical uplink shared channel power control for uplink carrier aggregation

Country Status (1)

Country Link
WO (1) WO2018053791A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440022A (en) * 2010-06-17 2012-05-02 联发科技股份有限公司 Measurement configuration in multi-carrier ofdma wireless communication systems
CN103200605A (en) * 2013-03-01 2013-07-10 西安电子科技大学 Uplink power reducing method and uplink power reducing device based on carrier aggregation system
WO2014098507A1 (en) * 2012-12-20 2014-06-26 주식회사 팬택 Method for controlling communication in ca environment and apparatus for same
CN104365054A (en) * 2012-06-22 2015-02-18 高通股份有限公司 Techniques for joint support of coordinated multipoint (CoMP) operations and carrier aggregation (CA)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440022A (en) * 2010-06-17 2012-05-02 联发科技股份有限公司 Measurement configuration in multi-carrier ofdma wireless communication systems
CN104365054A (en) * 2012-06-22 2015-02-18 高通股份有限公司 Techniques for joint support of coordinated multipoint (CoMP) operations and carrier aggregation (CA)
WO2014098507A1 (en) * 2012-12-20 2014-06-26 주식회사 팬택 Method for controlling communication in ca environment and apparatus for same
CN103200605A (en) * 2013-03-01 2013-07-10 西安电子科技大学 Uplink power reducing method and uplink power reducing device based on carrier aggregation system

Similar Documents

Publication Publication Date Title
US11044635B2 (en) Dynamic link monitoring to resolve imbalance in LAA/LTE radio resource allocation
US20180092109A1 (en) LAA/WiFi Coexistence for 5GHz Antenna Sharing
EP3574601B1 (en) User equipment provision of enhanced capability information for harq processing
EP4376321A2 (en) Concurrent channel state information (csi) capability reporting using multiple codebooks
KR20190110609A (en) Modular Control Channel Formats for Uplink Control Information in Cellular Communication Systems
US20240147462A1 (en) Channel State Information Reporting for Multi-Transmission-Reception-Point Operation
WO2022076819A1 (en) Physical layer signaling by devices for requesting positioning-resources
US20230276282A1 (en) Wireless Device Scheduling Availability During Neighbor Cell Measurements
KR20220123481A (en) Laa/wi-fi coexistence for 5ghz antenna sharing
WO2023130307A1 (en) Inter radio access technology measurement without measurement gap
US20220360402A1 (en) Periodic Reference Signal Activation and Deactivation
US11432313B2 (en) Detecting cellular network bottlenecks through analysis of resource allocation patterns
WO2018053791A1 (en) Autonomous physical uplink shared channel power control for uplink carrier aggregation
WO2018053787A1 (en) Autonomous measurement report for carrier aggregation setup
US11910350B2 (en) Physical layer signaling by base stations for provisioning positioning-resources
EP4307808A2 (en) Improved reliability for beam failure recovery and search space and control resource set index 0
WO2023077337A1 (en) High speed single frequency network beam failure recovery
US11962368B2 (en) Doppler shift estimate reporting with pre-compensation
WO2023178634A1 (en) Channel state information reference signal transmission and measurement for reduced capability wireless device operation
EP4131833A1 (en) Nr control channel element detections to reduce blind demodulation and decoding
US20220322446A1 (en) Base Station (BS) RACH Procedures for Reduced Latency in High-Propagation-Delay Networks

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916530

Country of ref document: EP

Kind code of ref document: A1