WO2018053787A1 - Autonomous measurement report for carrier aggregation setup - Google Patents

Autonomous measurement report for carrier aggregation setup Download PDF

Info

Publication number
WO2018053787A1
WO2018053787A1 PCT/CN2016/099834 CN2016099834W WO2018053787A1 WO 2018053787 A1 WO2018053787 A1 WO 2018053787A1 CN 2016099834 W CN2016099834 W CN 2016099834W WO 2018053787 A1 WO2018053787 A1 WO 2018053787A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
scc
network
pcc
threshold
Prior art date
Application number
PCT/CN2016/099834
Other languages
French (fr)
Inventor
Tao Huang
Yanxia Wang
Bing Zhao
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to PCT/CN2016/099834 priority Critical patent/WO2018053787A1/en
Publication of WO2018053787A1 publication Critical patent/WO2018053787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off

Definitions

  • the present application relates to wireless communications, and more particularly to signal measurement reporting when using carrier aggregation.
  • Wireless communication systems are rapidly growing in usage. Additionally, there exist numerous different wireless communication technologies and standards. Some examples of wireless communication technologies include GSM, UMTS (associated with, for example, WCDMA or TD-SCDMA air interfaces) , LTE, LTE Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , IEEE 802.11 (WLAN or Wi-Fi) , IEEE 802.16 (WiMAX) , Bluetooth, and others.
  • GSM Global System for Mobile communications
  • UMTS associated with, for example, WCDMA or TD-SCDMA air interfaces
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • HSPA High Speed Packet Access 2000
  • 3GPP2 CDMA2000 e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • Bluetooth
  • Carrier Aggregation is a technique which allows a wireless device with multiple communication chains to communicate data using multiple component carriers. Reporting of signal measurements by a mobile device to a base station may impact a Carrier Aggregation configuration implemented by the base station, thus impacting system performance. Improvements in the field would be desirable.
  • Embodiments are presented herein of methods for a wireless device to manage its component carriers during carrier aggregation, and of devices configured to implement the methods.
  • Carrier aggregation may include the use of multiple component carriers for data communication by a UE.
  • a secondary component carrier SCC
  • PCC primary component carrier
  • the network e.g., a base station of the serving cell
  • the UE may have additional information regarding whether adding or releasing a SCC would be preferred. Accordingly, it may be useful for a UE to implement techniques to influence whether the serving cell will add or release the SCC.
  • a wireless device to determine whether use of the SCC would be preferred in a carrier aggregation scenario, and to take action to encourage or discourage the serving cell to add or release the SCC based on the determination. For example, in some embodiments, when the SCC is preferred, reports of positive performance of the serving cell and/or the neighbor cell may be reported, while reports of negative performance of the serving cell may be delayed or suppressed. Inversely, in some embodiments, when the SCC is not preferred, reports of negative performance of the serving cell may be reported, while reports of positive performance of the serving cell and/or the neighbor cell may be delayed or suppressed. In some embodiments, the UE may determine whether the SCC is preferred based on volume of data traffic.
  • the techniques described herein may be implemented in and/or used with a number of different types of devices, including but not limited to cellular phones, tablet computers, wearable computing devices, portable media players, and any of various other computing devices.
  • Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments
  • FIG. 2 illustrates a base station (BS) in communication with a user equipment (UE) device, according to some embodiments;
  • Figure 3 illustrates an exemplary block diagram of a UE, according to some embodiments
  • Figure 4 illustrates an exemplary block diagram of a BS, according to some embodiments
  • Figure 5 illustrates an exemplary carrier aggregation scheme, according to some embodiments
  • Figure 6 is a diagram illustrating a state machine for a wireless device to periodically determine whether use of a SCC is preferred, according to some embodiments
  • FIG. 7 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while a secondary component carrier (SCC) is not preferred, according to some embodiments;
  • SCC secondary component carrier
  • Figure 8 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while a SCC is preferred, according to some embodiments.
  • ⁇ BS Base Station
  • ⁇ CC Component Carrier
  • ⁇ DL Downlink (from BS to UE)
  • ⁇ LAN Local Area Network
  • ⁇ MAC Media Access Control (layer)
  • ⁇ PDCCH Physical Downlink Control Channel
  • ⁇ PDSCH Physical Downlink Shared Channel
  • ⁇ PUCCH Physical Uplink Control Channel
  • ⁇ RAT Radio Access Technology
  • ⁇ RF Radio Frequency
  • ⁇ RSRP Reference Signal Received Power
  • ⁇ UE User Equipment (Device)
  • ⁇ UL Uplink (from UE to BS)
  • ⁇ UMTS Universal Mobile Telecommunication System
  • ⁇ WLAN Wireless LAN
  • Memory Medium Any of various types of memory devices or storage devices.
  • the term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc. ; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc.
  • the memory medium may comprise other types of memory as well or combinations thereof.
  • the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer system for execution.
  • the term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network.
  • Carrier Medium a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • a physical transmission medium such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • Computer System any of various types of computing or processing systems, including a personal computer system (PC) , mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA) , television system, grid computing system, or other device or combinations of devices.
  • PC personal computer system
  • mainframe computer system workstation
  • network appliance Internet appliance
  • PDA personal digital assistant
  • television system grid computing system, or other device or combinations of devices.
  • computer system may be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.
  • UE User Equipment
  • UE Device any of various types of computer systems devices which are mobile or portable and which performs wireless communications. Also referred to as wireless communication devices.
  • Examples of UE devices include mobile telephones or smart phones (e.g., iPhone TM , Android TM -based phones) and tablet computers such as iPad TM , Samsung Galaxy TM , etc., portable gaming devices (e.g., Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPod TM ) , laptops, wearable devices (e.g. Apple Watch TM , Google Glass TM ) , PDAs, portable Internet devices, music players, data storage devices, or other handheld devices, etc.
  • mobile telephones or smart phones e.g., iPhone TM , Android TM -based phones
  • tablet computers such as iPad TM , Samsung Galaxy TM , etc.
  • portable gaming devices e.g., Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPod TM
  • UE or “UE device” may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
  • SRATs short-range radio access technologies
  • UE device may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
  • Base Station has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.
  • Processing Element refers to various elements or combinations of elements that are capable of performing a function in a device, e.g. in a user equipment device or in a cellular network device.
  • Processing elements may include, for example: processors and associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit) , programmable hardware elements such as a field programmable gate array (FPGA) , as well any of various combinations of the above.
  • ASIC Application Specific Integrated Circuit
  • channel widths may be variable (e.g., depending on device capability, band conditions, etc. ) .
  • LTE may support scalable channel bandwidths from 1.4 MHz to 20MHz.
  • WLAN channels may be 22MHz wide while Bluetooth channels may be 1Mhz wide.
  • Other protocols and standards may include different definitions of channels.
  • some standards may define and use multiple types of channels, e.g., different channels for uplink or downlink and/or different channels for different uses such as data, control information, etc.
  • band has the full breadth of its ordinary meaning, and at least includes a section of spectrum (e.g., radio frequency spectrum) in which channels are used or set aside for the same purpose.
  • spectrum e.g., radio frequency spectrum
  • Automatically refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware elements, ASICs, etc. ) , without user input directly specifying or performing the action or operation.
  • a computer system e.g., software executed by the computer system
  • device e.g., circuitry, programmable hardware elements, ASICs, etc.
  • An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually” , where the user specifies each action to perform.
  • a user filling out an electronic form by selecting each field and providing input specifying information is filling out the form manually, even though the computer system must update the form in response to the user actions.
  • the form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields.
  • the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed) .
  • the present specification provides various examples of operations being automatically performed in response to actions the user has taken.
  • Configured to Various components may be described as “configured to” perform a task or tasks.
  • “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected) .
  • “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on.
  • the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.
  • Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments. It is noted that the system of Figure 1 is merely one example of a possible system, and embodiments may be implemented in any of various systems, as desired.
  • the exemplary wireless communication system includes a base station 102A which communicates over a transmission medium with one or more user devices 106A, 106B, etc., through 106N.
  • Each of the user devices may be referred to herein as a “user equipment” (UE) .
  • UE user equipment
  • the user devices 106 are referred to as UEs or UE devices.
  • the base station 102A may be a base transceiver station (BTS) or cell site, and may include hardware that enables wireless communication with the UEs 106A through 106N.
  • the base station 102A may also be equipped to communicate with a network 100 (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN) , and/or the Internet, among various possibilities) .
  • PSTN public switched telephone network
  • the base station 102A may facilitate communication between the user devices and/or between the user devices and the network 100.
  • the communication area (or coverage area) of the base station may be referred to as a “cell. ”
  • the base station 102A and the UEs 106 may be configured to communicate over the transmission medium using any of various radio access technologies (RATs) , also referred to as wireless communication technologies, or telecommunication standards, such as GSM, UMTS (WCDMA, TD-SCDMA) , LTE, LTE-Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , Wi-Fi, WiMAX etc.
  • RATs radio access technologies
  • Base station 102A and other similar base stations (such as base stations 102B...102N) operating according to the same or a different cellular communication standard may thus be provided as a network of cells, which may provide continuous or nearly continuous overlapping service to UEs 106A-N and similar devices over a wide geographic area via one or more cellular communication standards.
  • each UE 106 may also be capable of receiving signals from (and possibly within communication range of) one or more other cells (which might be provided by base stations 102B-N and/or any other base stations) , which may be referred to as “neighboring cells” .
  • Such cells may also be capable of facilitating communication between user devices and/or between user devices and the network 100, according to the same wireless communication technology as base station 102A and/or any of various other possible wireless communication technologies.
  • Such cells may include “macro” cells, “micro” cells, “pico” cells, and/or cells which provide any of various other granularities of service area size.
  • base stations 102A-B illustrated in Figure 1 might be macro cells, while base station 102N might be a micro cell. Other configurations are also possible.
  • a UE 106 may be capable of communicating using multiple wireless communication standards.
  • a UE 106 may be configured to communicate using a wireless networking (e.g., Wi-Fi) and/or peer-to-peer wireless communication protocol (e.g., BT, Wi-Fi peer-to-peer, etc. ) in addition to at least one cellular communication protocol (e.g., GSM, UMTS (WCDMA, TD-SCDMA) , LTE, LTE-A, HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , etc. ) .
  • a wireless networking e.g., Wi-Fi
  • peer-to-peer wireless communication protocol e.g., BT, Wi-Fi peer-to-peer, etc.
  • at least one cellular communication protocol e.g., GSM, UMTS (WCDMA, TD-SCDMA) , LTE, LTE
  • the UE 106 may also or alternatively be configured to communicate using one or more global navigational satellite systems (GNSS, e.g., GPS or GLONASS) , one or more mobile television broadcasting standards (e.g., ATSC-M/H or DVB-H) , and/or any other wireless communication protocol, if desired.
  • GNSS global navigational satellite systems
  • mobile television broadcasting standards e.g., ATSC-M/H or DVB-H
  • any other wireless communication protocol if desired.
  • Other combinations of wireless communication standards including more than two wireless communication standards are also possible.
  • Figure 2 illustrates user equipment 106 (e.g., one of the devices 106A through 106N) in communication with a base station 102 (e.g., one of the base stations 102A through 102N) , according to some embodiments.
  • the UE 106 may be a device with cellular communication capability such as a mobile phone, a hand-held device, a wearable device, a computer or a tablet, or virtually any type of wireless device.
  • the UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions. Alternatively, or in addition, the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
  • a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
  • the UE 106 may include one or more antennas for communicating using one or more wireless communication protocols or technologies.
  • the UE 106 might be configured to communicate using either of CDMA2000 (1xRTT /1xEV-DO /HRPD /eHRPD) or LTE using a single shared radio and/or GSM or LTE using the single shared radio.
  • the shared radio may couple to a single antenna, or may couple to multiple antennas (e.g., for MIMO) for performing wireless communications.
  • a radio may include any combination of a baseband processor, analog RF signal processing circuitry (e.g., including filters, mixers, oscillators, amplifiers, etc.
  • the radio may implement one or more receive and transmit chains using the aforementioned hardware.
  • the UE 106 may share one or more parts of a receive and/or transmit chain between multiple wireless communication technologies, such as those discussed above.
  • the UE 106 may include separate (and possibly multiple) transmit and/or receive chains (e.g., including separate RF and/or digital radio components) for each wireless communication protocol with which it is configured to communicate.
  • the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol.
  • the UE 106 might include a shared radio for communicating using either of LTE or 1xRTT (or LTE or GSM) , and separate radios for communicating using each of Wi-Fi and Bluetooth. Other configurations are also possible.
  • FIG. 3 illustrates an exemplary block diagram of a UE 106, according to some embodiments.
  • the UE 106 may include a system on chip (SOC) 300, which may include portions for various purposes.
  • the SOC 300 may include processor (s) 302 which may execute program instructions for the UE 106 and display circuitry 304 which may perform graphics processing and provide display signals to the display 360.
  • the processor (s) 302 may also be coupled to memory management unit (MMU) 340, which may be configured to receive addresses from the processor (s) 302 and translate those addresses to locations in memory (e.g., memory 306, read only memory (ROM) 350, NAND flash memory 310) and/or to other circuits or devices, such as the display circuitry 304, wireless communication circuitry 330, connector I/F 320, and/or display 360.
  • MMU memory management unit
  • the MMU 340 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 340 may be included as a portion of the processor (s) 302.
  • the SOC 300 may be coupled to various other circuits of the UE 106.
  • the UE 106 may include various types of memory (e.g., including NAND flash 310) , a connector interface 320 (e.g., for coupling to a computer system, dock, charging station, etc. ) , the display 360, and wireless communication circuitry 330 (e.g., for LTE, Wi-Fi, GPS, etc. ) .
  • the UE device 106 may include at least one antenna (and possibly multiple antennas, e.g., for MIMO and/or for implementing different wireless communication technologies, among various possibilities) , for performing wireless communication with base stations and/or other devices.
  • the UE device 106 may use antenna (s) 335 to perform the wireless communication.
  • the UE 106 may be configured to communicate wirelessly using multiple wireless communication technologies in some embodiments.
  • the UE 106 may include hardware and software components for implementing features for managing a secondary component carrier, such as those described herein with reference to, inter alia, Figure 6.
  • the processor 302 of the UE device 106 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • processor 302 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the processor 302 of the UE device 106 in conjunction with one or more of the other components 300, 304, 306, 310, 320, 330, 335, 340, 350, 360 may be configured to implement part or all of the methods described herein, such as managing performance reporting as described herein with reference to any of Figures 6-8.
  • FIG. 4 illustrates an exemplary block diagram of a base station 102, according to some embodiments. It is noted that the base station of Figure 4 is merely one example of a possible base station. As shown, the base station 102 may include processor (s) 404 which may execute program instructions for the base station 102. The processor (s) 404 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor (s) 404 and translate those addresses to locations in memory (e.g., memory 460 and read only memory (ROM) 450) or to other circuits or devices.
  • MMU memory management unit
  • the base station 102 may include at least one network port 470.
  • the network port 470 may be configured to couple to a telephone network and provide a plurality of devices, such as UE devices 106, access to the telephone network as described above in Figures 1 and 2.
  • the network port 470 may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider.
  • the core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106.
  • the network port 470 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider) .
  • the base station 102 may include at least one antenna 434, and possibly multiple antennas.
  • the antenna (s) 434 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 430.
  • the antenna 434 communicates with the radio 430 via communication chain 432.
  • Communication chain 432 may be a receive chain, a transmit chain or both.
  • the radio 430 may be configured to communicate via various wireless telecommunication standards, including, but not limited to, LTE, LTE-A, UMTS, CDMA2000, Wi-Fi, etc.
  • the BS 102 may be configured to communicate wirelessly using multiple wireless communication standards.
  • the base station 102 may include multiple radios, which may enable the base station 102 to communicate according to multiple wireless communication technologies.
  • the base station 102 may include an LTE radio for performing communication according to LTE as well as a Wi-Fi radio for performing communication according to Wi-Fi.
  • the base station 102 may be capable of operating as both an LTE base station and a Wi-Fi access point.
  • the base station 102 may include a multi-mode radio which is capable of performing communications according to any of multiple wireless communication technologies (e.g., LTE and Wi-Fi) .
  • the BS 102 may include hardware and software components for implementing or supporting implementation of features described herein, such as those described herein with reference to, inter alia, Figure 6.
  • the processor 404 of the base station 102 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • the processor 404 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) , or a combination thereof.
  • the processor 404 of the BS 102 in conjunction with one or more of the other components 430, 432, 434, 440, 450, 460, 470 may be configured to support implementation of part or all of the features described herein, such as the features described herein with reference to any of Figures 6-8.
  • Carrier aggregation is a scheme in which multiple carriers (e.g., frequency channels) may be used for wireless communication with a UE according to a wireless communication technology.
  • Figure 5 illustrates one exemplary carrier aggregation scheme (e.g., which may be used in accordance with the LTE radio access technology) which may be used in accordance with other aspects of this disclosure, such as with respect to the method of Figure 6.
  • each component carrier may use a channel width of up to 20MHz.
  • each component carrier may be an LTE release 8 carrier.
  • a UE may be allocated up to 100MHz of bandwidth. In many instances, such a carrier aggregation scheme may enable a UE participating in it with greater throughput than without such a scheme.
  • component carriers may utilize adjacent frequency channels.
  • carrier aggregation utilizing non-continuous frequency channels, potentially including non-continuous frequency channels within the same frequency band, and/or frequency channels within different frequency bands.
  • an independent cell may be implemented on each component carrier, for example by providing a control channel with data scheduling and other control features for each cell on the component carrier for that cell.
  • some or all control functions may be centralized.
  • a "primary cell” might be implemented on one ( “primary” ) component carrier (PCC)
  • PCC primary component carrier
  • secondary cells might be implemented on any additional ( “secondary” ) component carriers (SCCs) , such that some or all control information for the secondary cells is communicated by way of the primary cell.
  • a network may first add a SCC to the UE.
  • Adding a SCC may include configuring the SCC to interact with the UE on the RRC level.
  • An SCC that has been added to the UE may sometimes be described as being “set up” for the UE.
  • the UE may measure signal performance of the SCC, such as downlink power (e.g., RSRP) .
  • the UE typically does not monitor the PDCCH of the SCC at this stage.
  • the network may, if desired, release an SCC that was previously added to the UE. After being released, the carrier may be described as an inter-frequency neighbor carrier of the UE, rather than as an SCC.
  • the network may activate the SCC.
  • Activating the SCC may include configuring the SCC to interact with the UE on the MAC level.
  • an SCC may be activated only on an “as-needed” basis, and may be used primarily for best effort (e.g., lower-priority) downlink data.
  • a secondary component carrier might be activated if there is downlink data for a UE beyond the amount that can be handled by the primary component carrier for the UE, if radio conditions are sufficiently good for the secondary component carrier.
  • Activation may be by a media access control (MAC) control packet/control element; once the secondary component carrier is activated, a downlink grant may be assigned to the UE on the SCC (e.g., in addition to a downlink grant on the PCC) , and the UE may receive downlink data on both the PCC and the SCC.
  • the UE may monitor the PDCCH for an activated SCC. If the network detects or is informed by the UE that the radio conditions for the secondary component carrier are degraded, or if downlink data for the UE can be handled solely using the primary component carrier, the network may deactivate the secondary component carrier.
  • MAC media access control
  • a network may add a secondary cell in response to an indication that signal performance (e.g., reference signal received power (RSRP) and/or reference signal received quality (RSRQ) ) of a neighbor cell meets a threshold, e.g., indicating that the signal performance of the neighbor cell is sufficient to provide a reliable SCC.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the network may add a SCC in response to an LTE A4 event.
  • a UE may report negative performance of the PCC (e.g., an A2 event, reporting that the signal performance of the PCC fails to meet a threshold) before reporting the positive performance of the neighbor cell (e.g., the A4 event) .
  • the network may not add the SCC, even if the UE would benefit from increased throughput, e.g., if the current volume of data traffic is high.
  • a UE may benefit from the network not adding a SCC, or from the network releasing a previously added SCC.
  • a SCC Voice over LTE
  • data traffic may be low, such that increased throughput may not yield significant benefits.
  • the PUCCH will be configured according to format 1b with channel selection (1bCS) . This format may result in HARQ-ACK feedback ambiguity, resulting in degraded performance relative to other PUCCH formats, which may be implemented when no SCC is added.
  • the reception status for each subframe may be fed back as any of three possible feedback values: ACK (acknowledgement) , NACK (negative acknowledgement) , or DTX (discontinuous transmission) .
  • Reporting the status of each of two cells operating with carrier aggregation results in a total of eight subframes to be reported.
  • the maximum number of possible feedback combinations to be reported is 3 ⁇ 8.
  • an insufficient number of bits are available for reporting that number of possible combinations.
  • certain combinations of reporting bits may be used to indicate multiple combinations of feedback reports. This ambiguity may result in the UE misinterpreting the feedback, which may lead to degraded performance.
  • carrier aggregation schemes may be implemented in conjunction with other wireless communication technologies; carriers according to other LTE releases or other radio access technologies altogether may be used; carriers having different channel widths may be used; different numbers of component carriers may be supported; and/or any of numerous other alternatives to and variations of the illustrated scheme are also possible.
  • carrier aggregation may include the use of multiple component carriers for data communication by a UE.
  • a secondary component carrier SCC
  • PCC primary component carrier
  • the primary cell e.g., a base station of the primary cell
  • the UE may have additional information regarding whether adding or releasing a SCC would be preferred. Accordingly, it may be useful for a UE to implement techniques to determine whether a SCC would be preferred, and to take action to encourage or discourage the serving cell to add or release the SCC.
  • Figure 6 is a diagram illustrating a state machine for a wireless device to periodically determine whether use (e.g., setup) of a SCC is preferred, according to some embodiments. Specifically, in identifying whether use of the SCC is “preferred, ” the UE may seek to determine whether use of the SCC is likely to improve (or not detriment) system performance.
  • the wireless device may be or include, e.g., a UE 106, or some component thereof, such as the wireless communication circuitry 330 or a baseband processor thereof.
  • the wireless device may operate in either a “SCC is preferred” state 602 or a “SCC is not preferred” state 604.
  • the wireless device may periodically evaluate whether use of an SCC is preferred, and transition between states in response to the evaluation. In each period, the wireless device may evaluate whether use of the SCC is currently preferred based on the current service requirement.
  • the service requirement may be defined in terms of volume of data traffic, e.g., data rate.
  • the data rate may be quantized, e.g., in terms of number of downlink grants per unit of time.
  • the data rate may be defined as a downlink scheduled subframe number divided by total subframe number for a defined time period.
  • the defined time period may be, e.g., the preceding evaluation period, or some fraction thereof, such as half of the preceding evaluation period.
  • the state machine may be set to the “SCC is preferred” state 602 by default. In some embodiments this may be implemented, e.g., by setting a variable S SCC_Preferred to true.
  • the wireless device may compare a current rate of data traffic to one or more thresholds. For example, while the wireless device is in the “SCC is preferred” state 602, it may determine that the current rate of data traffic meets (or exceeds) a threshold T high_data_traffic . In response, the wireless device may remain in the “SCC is preferred” state 602, as illustrated in Figure 6 by state transition 610. As one example, T high_data_traffic may be set such that it is met only by continuous DL grants. In other examples, T high_data_traffic may be set to some lower value.
  • the wireless device may determine that the current rate of data traffic does not meet (or exceed) a threshold T low_data_traffic .
  • the wireless device may transition to the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 620. In some embodiments this may be implemented, e.g., by setting a variable S SCC_Preferred to false.
  • T low_data_traffic may be set such that typical rates of data traffic associated with VoLTE communications would not meet T low_data_traffic . In other examples, T low_data_traffic may be set to some higher or lower value.
  • the wireless device may determine that the current rate of data traffic meets (or exceeds) the threshold T high_data_traffic .
  • the wireless device may transition to the “SCC is preferred” state 602, as illustrated in Figure 6 by state transition 630, e.g., by setting a variable S SCC_Preferred to true.
  • the wireless device may determine that the current rate of data traffic does not meet (or exceed) the threshold T low_data_traffic . In response, the wireless device may remain in the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 640.
  • T low_data_traffic may be equal to T high_data_traffic . In other embodiments, T low_data_traffic may be lower than T high_data_traffic . If the wireless device determines that the current rate of data traffic falls between the two thresholds (i.e., the current rate of data traffic is higher than T low_data_traffic but lower than T high_data_traffic ) , then the wireless device may remain in its current state.
  • the wireless device may employ only one data traffic threshold.
  • the wireless device may transition to (or remain in) the “SCC is preferred” state 602, as illustrated in Figure 6 by state transition 630 (or state transition 610) in response to determining that the current rate of data traffic meets the threshold T high_data_traffic , and may transition to (or remain in) the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 620 (or state transition 640) in response to determining that the current rate of data traffic does not meet the threshold T high_data_traffic .
  • T high_data_traffic may be set such that typical rates of data traffic associated with VoLTE communications would not meet T high_data_traffic .
  • T high_data_traffic may be set to some higher or lower value.
  • the wireless device may perform measurement reporting steps based on the state transition followed at the start of the evaluation period, and further based on measurements determined during the present and/or previous evaluation periods.
  • reporting positive performance of the serving cells (e.g., of the PCC and SCC) and/or a neighbor cell may encourage, or cause, the network to add the SCC, or to not release the SCC, if previously added.
  • reporting negative performance of the serving cells and/or the neighbor cell may discourage the network from adding the SCC, or may encourage the network to release the SCC, if previously added.
  • the wireless device may be able to influence whether the SCC is added or released, based on a determination by the wireless device regarding whether the SCC is preferred.
  • one or more reports of positive performance of the serving cells and/or the neighbor cell may be reported, while one or more reports of negative performance of the serving cells may be delayed or suppressed.
  • one or more reports of negative performance of the serving cells may be reported, while one or more reports of positive performance of the serving cells and/or the neighbor cell may be delayed or suppressed.
  • constraints may be applied to avoid unduly disrupting other functions that rely on the performance measurements.
  • Specific examples of various manipulations of performance measurements, as well as constraints that may be applied, are further described with reference to Figures 7-8.
  • Figure 7 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while in the “SCC is not preferred” state 604, according to some embodiments.
  • the method shown in Figure 7 may be used in conjunction with any of the computer systems or devices shown in the above Figures, among other devices.
  • some of the elements of the scheme shown may be performed concurrently, in a different order than shown, or may be omitted. Additional elements may also be performed as desired.
  • the scheme may operate as follows.
  • the wireless device may determine that use of a SCC is not currently preferred. For example, this method may be performed according to transition 620 or transition 640 of Figure 6, e.g., by determining that the current rate of data traffic does not meet (or exceed) a threshold value.
  • the determining that use of the SCC is not currently preferred may include determining that the rate of data traffic has not met the threshold value for at least a predefined period of time, e.g., one or more of the evaluation periods of Figure 6. Such embodiments may thus be performed according to the transition 640 of Figure 6, and not according to the transition 620.
  • the wireless device may determine whether the SCC is currently set up; i.e., whether the SCC was previously added, as described above with regard to Figure 5.
  • the wireless device may take steps to encourage the network (e.g., a BS of the primary cell) to release the SCC. For example, at 706, the wireless device may detect whether performance conditions of the PCC are satisfactory. For example, the wireless device may determine (e.g., measure) one or more performance metrics of the PCC, and compare them to one or more respective performance thresholds. The one or more performance metrics of the PCC may be measures of performance of the PCC.
  • the wireless device may determine one or more (e.g., all) of RSRP, RSRQ, and/or signal-to-noise ratio (SNR) of the PCC, and may compare the determined value (s) to one or more threshold values T RSRP2 , T RSRQ2 , and/or T SNR2 , respectively.
  • RSRP signal-to-noise ratio
  • SNR signal-to-noise ratio
  • the wireless device may falsely (e.g., artificially) report (e.g., generate and transmit a false report to the network) that a performance metric of the SCC (M S_SCC ) does not meet a performance threshold T A2_SCC .
  • the performance metric M S_SCC may represent a measure of performance of the SCC
  • the performance threshold T A2_SCC may represent a specified value of the measure, defined such that measured values not meeting the performance threshold T A2_SCC indicate poor performance of the communications.
  • the performance metric M S_SCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the SCC, and the performance threshold T A2_SCC may include minimum acceptable value (s) of the measurement (s) .
  • the performance threshold T A2_SCC may be or reflect a threshold defined for an A2 event of the SCC, with or without an associated hysteresis value, and the performance metric M S_SCC may be a measurement defined for use in detecting the A2 event of the SCC.
  • reporting that the performance metric M S_SCC does not meet the performance threshold T A2_SCC may be similar or equivalent to, or may include, reporting an A2 event of the SCC. It should be noted that, in some scenarios, the performance metric M S_SCC may actually not meet the performance threshold T A2_SCC (and the wireless device may detect that condition, e.g., according to normal operations) . However, the report of operation 708 may nevertheless be considered to be a “false” report, in that the wireless device transmits the report without regard to whether the performance metric M S_SCC meets the performance threshold T A2_SCC (and, in some embodiments, without detecting whether that condition is met) .
  • a negative performance report of the SCC may cause the network to release the SCC.
  • the false report of operation 708 may cause the SCC to be released, which is the desired result in light of the determination, at 702, that the SCC is not currently preferred.
  • the wireless device may, at 710, report detected events (such as A2 of the PCC and/or SCC, or other events) to the network (e.g., to a BS of the primary cell) , e.g., according to the specifications of the communication protocol by which the wireless device is communicating (e.g., without false reports) .
  • detected events such as A2 of the PCC and/or SCC, or other events
  • the network e.g., to a BS of the primary cell
  • the wireless device may, at 710, report detected events (such as A2 of the PCC and/or SCC, or other events) to the network (e.g., to a BS of the primary cell) , e.g., according to the specifications of the communication protocol by which the wireless device is communicating (e.g., without false reports) .
  • falsely reporting negative performance of the SCC such as an A2 event
  • the wireless device may define the one or more performance thresholds of the one or more performance metrics of the PCC (e.g., T RSRP2 , T RSRQ2 , and/or T SNR2 ) to represent an absolute performance threshold that performance of the PCC must meet before the wireless device will falsely report negative performance of the SCC.
  • the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that handover is unlikely to be performed imminently.
  • a false report regarding negative performance of the SCC may be transmitted without significant concern of negatively impacting handover, and otherwise the wireless device may report detection of various performance measurement events to the network, e.g., according to normal procedures of the communication protocol.
  • the wireless device may take steps to discourage the network from adding the SCC. For example, at 712, the wireless device may detect whether one or more conditions are satisfied for suppressing a report of a measurement event. Specifically, the wireless device may detect whether a performance metric of a neighbor cell (M N ) meets a performance threshold T A4 , and possibly whether a performance metric M S_PCC meets a performance threshold T A2_PCC , and whether performance conditions of the PCC are satisfactory.
  • M N performance metric of a neighbor cell
  • the performance metric M N may be a measure of performance of communications between a BS of the neighbor cell and the wireless device, and may report a value similar to that of the performance metric M S_SCC .
  • the performance metric M N may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the neighbor BS, and the performance threshold T A4 may include minimum acceptable value (s) of the measurement (s) .
  • the performance threshold T A4 may be or reflect a threshold defined for an A4 event, with or without associated hysteresis and/or offset values, and the performance metric M N may be a measurement defined for use in detecting the A4 event.
  • detecting that the performance metric M N meets the performance threshold T A4 may be similar or equivalent to detecting an A4 event.
  • the performance metric M S_PCC may be similar to the performance metric M S_SCC , but may represent a measure of performance of the PCC, and the performance threshold T A2_PCC may represent a specified value of the measure, defined such that measured values not meeting the performance threshold T A2_PCC indicate poor performance of the communications.
  • T S2_PCC may or may not be the same value as the performance threshold T A2_SCC .
  • the performance metric M S_PCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the PCC, and the performance threshold T A2_PCC may include minimum acceptable value (s) of the measurement (s) .
  • the performance threshold T A2_PCC may be or reflect a threshold defined for an A2 event of the PCC, with or without an associated hysteresis value, and the performance metric M S_PCC may be a measurement defined for use in detecting an A2 event of the PCC.
  • detecting that the performance metric M S_PCC does not meet the performance threshold T A2_PCC may be similar or equivalent to, or may include, detecting an A2 event of the PCC.
  • Detecting whether performance conditions of the PCC are satisfactory may be carried out as discussed above.
  • the wireless device may, at 716, not report to the network that the performance metric M N meets a performance threshold T A4 .
  • the wireless device may be communicating with the network according to a communication protocol (e.g., LTE) that specifies (e.g., requires, dictates, suggests, or encourages) that the wireless device report detection that the performance metric M N meets the performance threshold T A4 .
  • a communication protocol e.g., LTE
  • the wireless device not reporting this detection to the network may include suppressing (e.g., not generating and/or not transmitting) a report that is typical, expected, or required according to the communication protocol.
  • reporting positive performance of the neighbor cell may encourage, or cause, the network to add the SCC.
  • such a positive performance report may be suppressed to avoid addition of the SCC.
  • the wireless device may take no special action. For example, the wireless device may, at 710, report detected events, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
  • the wireless device does not detect, at 712, that the performance metric M N meets a performance threshold T A4 (e.g., before the end of the evaluation period or based on a first one or more samples of the evaluation period) , then no suppression of that event is needed, and normal reporting may proceed at 710, e.g., according to the communication protocol.
  • a performance threshold T A4 e.g., before the end of the evaluation period or based on a first one or more samples of the evaluation period
  • the wireless device may report this detection to the network, e.g., according to normal procedures of the communication protocol. As noted above, reporting of negative performance of the serving cell may discourage addition of the SCC.
  • reporting of this negative performance may outweigh positive reporting of the performance of the neighbor cell, such that reporting both that the performance metric M S_PCC fails to meet the performance threshold T A2_PCC (e.g., such as an A2 event) and that the performance metric M N meets a performance threshold T A4 (e.g., such as an A4 event) may still result in the SCC not being added.
  • the wireless device may avoid negatively impacting other functions that rely on such reports, such as handover.
  • the conditions tested at 712 may include detecting whether the performance metric M S_PCC meets the performance threshold T A2_PCC .
  • the wireless device may report detection of various performance measurement events (e.g., A2 and/or A4 events, as discussed above) to the network, e.g., according to normal procedures of the communication protocol.
  • various performance measurement events e.g., A2 and/or A4 events, as discussed above
  • suppressing a report regarding positive performance of a neighbor cell may negatively impact proper handover between cells.
  • the wireless device may define the one or more performance thresholds of the one or more performance metrics of the PCC as defined above (e.g., T RSRP2 , T RSRQ2 , and/or T SNR2 ) to further represent an absolute performance threshold that performance of the PCC must meet before the wireless device will suppress a report regarding positive performance of the neighbor cell.
  • the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that handover is unlikely to be performed imminently.
  • a report regarding positive performance of the neighbor cell may be suppressed without significant concern of negatively impacting handover, and otherwise the wireless device may report detection of various performance measurement events to the network, e.g., according to normal procedures of the communication protocol.
  • the one or more performance thresholds of the one or more performance metrics of the PCC may be defined to be similar in nature, but higher in value, than the performance threshold T A2_PCC .
  • the performance threshold T A2_PCC may be a threshold RSRP value
  • the one or more performance thresholds of the PCC may include a higher threshold RSRP value.
  • detecting that the performance conditions of the PCC are satisfactory may inherently include detecting that the performance metric M S_PCC meets the lower performance threshold T A2_PCC .
  • operation 712 may include only detecting whether the performance metric M N meets the performance threshold T A4 and whether the performance conditions of the PCC are satisfactory (i.e., without expressly detecting whether the performance metric M S_PCC meets the performance threshold T A2_PCC ) .
  • the wireless device may, at 712, monitor for the conditions for suppressing a report of a measurement event throughout the evaluation period, and decide at the end of the evaluation period which events to report to the network. For example, if the wireless device determines that all of the criteria are satisfied during the evaluation period, then, at the end of the evaluation period, the wireless device may not transmit the report that the performance metric M N met a performance threshold T A4 . In other embodiments, the wireless device may decide to send one or more reports before the end of the evaluation period. For example, if the wireless device determines that the performance metric M S_PCC does not meet the performance threshold T A2_PCC , then the wireless device may (e.g., immediately) proceed to operation 710 and first report that determination.
  • the wireless device may (e.g., immediately) proceed to operation 710 and first report that determination.
  • the wireless device may then follow the first report with a second report that the performance metric M N meets the performance threshold T A4 , e.g., immediately following the first report if such an event had been detected earlier in the evaluation period, or immediately upon detection if such an event is detected later in the evaluation period.
  • the wireless device may operate to take steps to discourage the network from adding the SCC (e.g., according to the “No” branch of operation 704) , but not to take steps to encourage the network to release the SCC if set up (e.g., according to the “Yes” branch of operation 704) , or vice versa.
  • Figure 8 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while in the “SCC is preferred” state 602, according to some embodiments.
  • the method shown in Figure 8 may be used in conjunction with any of the computer systems or devices shown in the above Figures, among other devices.
  • some of the elements of the scheme shown may be performed concurrently, in a different order than shown, or may be omitted. Additional elements may also be performed as desired.
  • the scheme may operate as follows.
  • the wireless device may determine that use of a SCC is currently preferred. For example, this method may be performed according to transition 610 or transition 630 of Figure 6, e.g., by determining that the current rate of data traffic meets (or exceeds) the threshold value.
  • the determining that use of the SCC is currently preferred may include determining that the rate of data traffic has met the threshold value for less than a predefined period of time, e.g., one or more of the evaluation periods of Figure 6. Such embodiments may thus be performed according to the transition 630 of Figure 6, and not according to the transition 610.
  • the wireless device may, in response to determining that the rate of data traffic has met the threshold value for at least the predefined period of time, e.g., according to the transition 610, report detected performance measurement events (such as A1, A2, A4, or other events) to the network, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
  • detected performance measurement events such as A1, A2, A4, or other events
  • the wireless device may determine whether the SCC is currently set up; i.e., whether the SCC was previously added, as described above with regard to Figure 5.
  • the wireless device may, at 806, report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
  • the wireless device may take steps to encourage the network (e.g., a BS of the primary cell) to add the SCC. For example, at 808, the wireless device may detect whether the performance metric M S_PCC meets the performance threshold T A2_PCC and whether the performance metric M N meets the performance threshold T A4 .
  • the network e.g., a BS of the primary cell
  • the wireless device may detect whether the performance metric M S_PCC meets the performance threshold T A2_PCC and whether the performance metric M N meets the performance threshold T A4 .
  • the wireless device may proceed to operation 806 and report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating. For example, if the wireless device is communicating according to an LTE protocol, then this condition may reflect or include detecting an A4 event, while not detecting an A2 event of the PCC.
  • reporting positive performance of the neighbor cell may encourage, or cause, the network to add the SCC, while reporting negative performance of the PCC may discourage the network from adding the SCC.
  • normal reporting may be desirable where such will result in reporting positive performance of the neighbor cell, without reporting negative performance of the PCC.
  • the wireless device may, at 810, detect whether one or more conditions are satisfied for delaying a report of a measurement event. For example, the wireless device may detect whether the performance metric M S_PCC meets the performance threshold T A2_PCC , whether the performance metric M N meets the performance threshold T A4 , and whether performance conditions of the PCC are satisfactory.
  • the wireless device may determine that one or more conditions are satisfied for delaying a report of a measurement event upon detecting that the performance metric M S_PCC does not meet the performance threshold T A2_PCC , and that the performance metric M N meets the performance threshold T A4 , and that the performance conditions of the PCC are satisfactory.
  • the wireless device may determine (e.g., measure) one or more performance metrics of the PCC, and compare them to one or more respective performance thresholds, in a manner similar to that described with regard to operation 706 of Figure 7.
  • the one or more performance metrics of the PCC may be measures of performance of the PCC.
  • the wireless device may determine one or more (e.g., all) of RSRP, RSRQ, and/or signal-to-noise ratio (SNR) of the PCC, and may compare the determined value (s) to one or more threshold values T RSRP1 , T RSRQ1 , and/or T SNR1 , respectively.
  • the one or more respective performance thresholds of operation 810 may differ from the one or more respective performance thresholds of operation 706 (e.g., T RSRP2 , T RSRQ2 , and/or T SNR2 ) .
  • the conditions for delaying a report of a measurement event may include a negative performance event of the PCC (e.g., an A2 event) , a positive performance event of the neighbor cell (e.g., an A4 event) , and a determination that the PCC is performing above a specified performance level, despite the negative performance event.
  • a negative performance event of the PCC e.g., an A2 event
  • a positive performance event of the neighbor cell e.g., an A4 event
  • the flowchart of Figure 8 is a logical flowchart, rather than a chronological flow chart.
  • each of operations 808 and 810 detect whether the performance metric M S_PCC meets the performance threshold T A2 and whether the performance metric M N meets the performance threshold T A4 , these may reflect the same detections; the different operations may simply indicate different logical flows that may result from differing combinations of the detected conditions.
  • the wireless device may determine, e.g., at the end of the current evaluation period, which of the conditions evaluated in operations 808 and 810 have been satisfied during the current evaluation period, and perform the appropriate operation at that time. Specifically, the wireless device may delay all performance event reporting at least until the end of the current evaluation period. Then, based on all performance events detected during the current evaluation period, the wireless device may perform one of operation 806, 814, or 816, as illustrated in Figure 8.
  • the length of the evaluation periods may be selected so as to be sufficiently short to allow timely reporting of detected events.
  • the evaluation period may be equal to a minimum time to trigger (TTT) timer configured for relevant events (e.g., A1, A2, and A4 events) .
  • the wireless device may proceed to operation 806 and report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
  • the wireless device may, at 812, determine whether the current evaluation period (of Figure 6) is the first evaluation period following attachment of the wireless device to the primary cell.
  • the wireless device may, at 814, delay reporting to the network that the performance metric M S_PCC does not meet the performance threshold T A2_PCC until after reporting that the performance metric M N meets the performance threshold T A4 . For example, at the end of the current evaluation period, the wireless device may report that the performance metric M N meets the performance threshold T A4 . The wireless device may afterward report that the performance metric M S_PCC does not meet the performance threshold T A2_PCC , e.g., at the end of the next evaluation period.
  • reporting positive performance of the neighbor cell may encourage, or cause, the network to add the SCC
  • reporting negative performance of the PCC may discourage the network from adding the SCC.
  • the wireless device may provide an opportunity for the network to add the SCC before receiving the second report that the performance metric M S_PCC does not meet the performance threshold T A2_PCC . Subsequently reporting the second report is unlikely, by itself, to cause the network to release the SCC, once added.
  • the wireless device may, at 814, delay reporting to the network that the performance metric M S_PCC does not meet the performance threshold T A2_PCC and that the performance metric M N meets the performance threshold T A4 until after falsely reporting that the performance metric M S_PCC meets a performance threshold T A1 .
  • the performance threshold T A1 may represent a specified value of the measure of M S_PCC , defined such that measured value meeting the performance threshold T A2 indicate satisfactory (or improving) performance of the communications.
  • the performance metric M S_PCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the PCC, and the performance threshold T A1 may include minimum acceptable value (s) of the measurement (s) .
  • the performance threshold T A1 may be or reflect a threshold defined for an A1 event, with or without an associated hysteresis value, and the performance metric M S_PCC may be a measurement defined for use in detecting the A1 event.
  • reporting that the performance metric M S_PCC meets the performance threshold T A1 may be similar or equivalent to, or may include, reporting an A1 event. It should be noted that, in some scenarios, the performance metric M S_PCC may actually meet the performance threshold T A1 (and the wireless device may detect that condition, e.g., according to normal operations) . However, the report of operation 816 may nevertheless be considered to be a “false” (e.g. artificial) report, in that the wireless device transmits the report without regard to whether the performance metric M S_PCC meets the performance threshold T A1 (and, in some embodiments, without detecting whether that condition is met) .
  • the report of operation 816 may nevertheless be considered to be a “false” (e.g. artificial) report, in that the wireless device transmits the report without regard to whether the performance metric M S_PCC meets the performance threshold T A1 (and, in some embodiments, without detecting whether that condition is met) .
  • the wireless device may falsely first report that the performance metric M S_PCC meets the performance threshold T A1 .
  • execution of operation 816 requires that at least one evaluation period has passed since attachment of the wireless device to the primary cell, without the SCC being added. This condition may result, e.g., from a negative report of the performance of the PCC during a previous evaluation period.
  • the false first report that the performance metric M S_PCC meets the performance threshold T A1 during the current reporting period may indicate to the network that the performance of the PCC is improving.
  • the wireless device may report that the performance metric M N meets the performance threshold T A4 .
  • the wireless device may afterward report that the performance metric M S_PCC does not meet the performance threshold T A2_PCC , e.g., at the end of the next evaluation period following the report that the performance metric M N meets the performance threshold T A4 .
  • reporting positive performance of the neighbor cell such as an A4 event
  • reporting negative performance of the PCC such as an A2 event
  • the wireless device may provide an opportunity for the network to add the SCC before receiving the second report that the performance metric M S_PCC does not meet the performance threshold T A2_PCC .
  • Previously reporting that the performance metric M S_PCC meets the performance threshold T A1 may signal to the network that the PCC is performing at a level sufficient to support addition of a SCC. Subsequently reporting the second report is unlikely, by itself, to cause the network to release the SCC, once added.
  • the wireless device may define the one or more performance thresholds of the one or more performance metrics of the PCC (e.g., T RSRP1 , T RSRQ1 , and/or T SNR1 ) to represent an absolute performance threshold that performance of the PCC must meet before the wireless device will delay or falsify a performance report.
  • T RSRP1 e.g., T RSRP1 , T RSRQ1 , and/or T SNR1
  • the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that a delay in reporting the negative performance of the PCC and a false report of positive performance of the PCC are unlikely to cause significant performance degradation; e.g., that handover to a neighbor cell is unlikely to be immediately necessary.
  • the performance conditions of the PCC are satisfied, then a report regarding negative performance of the PCC may be delayed, and/or a report regarding positive performance of the PCC may be falsified, without significant concern of impacting handover. Otherwise the wireless device may proceed to operation 806 and report detected performance measurement events to the network as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
  • Embodiments of the present disclosure may be realized in any of various forms. For example, some embodiments may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system. Other embodiments may be realized using one or more custom-designed hardware devices such as ASICs. Still other embodiments may be realized using one or more programmable hardware elements such as FPGAs.
  • a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of a method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.
  • a device e.g., a UE 106 may be configured to include a processor (or a set of processors) and a memory medium, where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets) .
  • the device may be realized in any of various forms.

Abstract

Techniques are disclosed for a wireless device to determine whether use of a secondary component carrier (SCC) would be preferred in a carrier aggregation scenario, and to take action to encourage or discourage the serving cell to add or release the SCC based on the determination. For example, in some embodiments, when the SCC is preferred, reports of positive performance of serving cells and/or a neighbor cell may be reported, while reports of negative performance of the serving cells may be delayed or suppressed. Inversely, in some embodiments, when the SCC is not preferred, reports of negative performance of the serving cells may be reported, while reports of positive performance of the serving cells and/or the neighbor cell may be delayed or suppressed. In some embodiments, the UE may determine whether the SCC is preferred based on volume of data traffic.

Description

Autonomous Measurement Report For Carrier Aggregation Setup FIELD
The present application relates to wireless communications, and more particularly to signal measurement reporting when using carrier aggregation.
DESCRIPTION OF THE RELATED ART
Wireless communication systems are rapidly growing in usage. Additionally, there exist numerous different wireless communication technologies and standards. Some examples of wireless communication technologies include GSM, UMTS (associated with, for example, WCDMA or TD-SCDMA air interfaces) , LTE, LTE Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , IEEE 802.11 (WLAN or Wi-Fi) , IEEE 802.16 (WiMAX) , Bluetooth, and others.
Carrier Aggregation is a technique which allows a wireless device with multiple communication chains to communicate data using multiple component carriers. Reporting of signal measurements by a mobile device to a base station may impact a Carrier Aggregation configuration implemented by the base station, thus impacting system performance. Improvements in the field would be desirable.
SUMMARY
Embodiments are presented herein of methods for a wireless device to manage its component carriers during carrier aggregation, and of devices configured to implement the methods.
Carrier aggregation (e.g., such as supported in LTE) may include the use of multiple component carriers for data communication by a UE. For example, a secondary component carrier (SCC) may be used together with a primary component carrier (PCC) to receive downlink data and/or transmit uplink data in a carrier aggregation scenario. In such scenarios, the network (e.g., a base station of the serving cell) may determine whether a SCC will be added or released. However, the UE may have additional information regarding whether adding or releasing a SCC would be preferred. Accordingly, it may be useful for a UE to implement techniques to influence whether the serving cell will add or release the SCC.
Techniques are disclosed for a wireless device to determine whether use of the SCC would be preferred in a carrier aggregation scenario, and to take action to encourage or discourage the serving cell to add or release the SCC based on the determination. For example, in some embodiments, when the SCC is preferred, reports of positive performance of the serving cell and/or the neighbor cell may be reported, while reports of negative performance of the serving cell may be delayed or suppressed. Inversely, in some embodiments, when the SCC is not preferred, reports of negative performance of the serving cell may be reported, while reports of positive performance of the serving cell and/or the neighbor cell may be delayed or suppressed. In some embodiments, the UE may determine whether the SCC is preferred based on volume of data traffic.
The techniques described herein may be implemented in and/or used with a number of different types of devices, including but not limited to cellular phones, tablet computers, wearable computing devices, portable media players, and any of various other computing devices.
This Summary is intended to provide a brief overview of some of the subject matter described in this document. Accordingly, it will be appreciated that the above-described features are merely examples and should not be construed to narrow the scope or spirit of the subject matter described herein in any way. Other features, aspects, and advantages of the subject matter described herein will become apparent from the following Detailed Description, Figures, and Claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A better understanding of the present subject matter can be obtained when the following detailed description of the embodiments is considered in conjunction with the following drawings, in which:
Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments;
Figure 2 illustrates a base station (BS) in communication with a user equipment (UE) device, according to some embodiments;
Figure 3 illustrates an exemplary block diagram of a UE, according to some embodiments;
Figure 4 illustrates an exemplary block diagram of a BS, according to some embodiments;
Figure 5 illustrates an exemplary carrier aggregation scheme, according to some embodiments;
Figure 6 is a diagram illustrating a state machine for a wireless device to periodically determine whether use of a SCC is preferred, according to some embodiments;
Figure 7 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while a secondary component carrier (SCC) is not preferred, according to some embodiments;
Figure 8 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while a SCC is preferred, according to some embodiments.
While the features described herein may be susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to be limiting to the particular  form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the subject matter as defined by the appended claims.
DETAILED DESCRIPTION
Acronyms
Various acronyms are used throughout the present application. Definitions of the most prominently used acronyms that may appear throughout the present application are provided below:
· ACK: Acknowledgement
· BS: Base Station
· CC: Component Carrier
· DL: Downlink (from BS to UE)
· DTX: Discontinuous Transmission
· GPRS: General Packet Radio Service
· GSM: Global System for Mobile Communication
· HARQ: Hybrid Automatic Repeat Request
· LAN: Local Area Network
· LTE: Long Term Evolution
· LTE-A: LTE Advanced
· MAC: Media Access Control (layer)
· NACK: Negative Acknowledgement
· PCC: Primary Component Carrier
· PDCCH: Physical Downlink Control Channel
· PDSCH: Physical Downlink Shared Channel
· PUCCH: Physical Uplink Control Channel
· RAT: Radio Access Technology
· RF: Radio Frequency
· RSRP: Reference Signal Received Power
· RSRQ: Reference Signal Received Quality
· RX: Reception/Receive
· SCC: Secondary Component Carrier
· SNR: Signal-to-Noise Ratio
· TX: Transmission/Transmit
· UE: User Equipment (Device)
· UL: Uplink (from UE to BS)
· UMTS: Universal Mobile Telecommunication System
· VoLTE: Voice over LTE
· WLAN: Wireless LAN
Terms
The following is a glossary of terms used in this disclosure:
Memory Medium –Any of various types of memory devices or storage devices. The term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc. ; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc. The memory medium may comprise other types of memory as well or combinations thereof. In addition, the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer system for execution. The term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network.
Carrier Medium –a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
Computer System (or Computer) –any of various types of computing or processing systems, including a personal computer system (PC) , mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA) , television system, grid computing system, or other device or combinations of devices. In general, the term "computer system"may be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.
User Equipment (UE) (or “UE Device” ) –any of various types of computer systems devices which are mobile or portable and which performs wireless communications. Also referred to as wireless communication devices. Examples of UE devices include mobile telephones or smart phones (e.g., iPhoneTM, AndroidTM-based phones) and tablet computers such as iPadTM, Samsung GalaxyTM, etc., portable gaming devices (e.g., Nintendo DSTM, PlayStation PortableTM, Gameboy AdvanceTM, iPodTM) , laptops, wearable devices (e.g. Apple WatchTM, Google GlassTM) , PDAs, portable Internet devices, music players, data storage devices, or other handheld devices, etc. Various other types of devices would fall into this category if they include Wi-Fi or both cellular and Wi-Fi communication capabilities and/or other wireless communication capabilities, for example over short-range radio access technologies (SRATs) such as BLUETOOTHTM, etc. In general, the term “UE” or “UE device” may be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.
Base Station (BS) –The term "Base Station" has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.
Processing Element –refers to various elements or combinations of elements that are capable of performing a function in a device, e.g. in a user equipment device or in a cellular network device. Processing elements may include, for example: processors and  associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit) , programmable hardware elements such as a field programmable gate array (FPGA) , as well any of various combinations of the above.
Channel -a medium used to convey information from a sender (transmitter) to a receiver. It should be noted that since characteristics of the term “channel” may differ according to different wireless protocols, the term “channel” as used herein may be considered as being used in a manner that is consistent with the standard of the type of device with reference to which the term is used. In some standards, channel widths may be variable (e.g., depending on device capability, band conditions, etc. ) . For example, LTE may support scalable channel bandwidths from 1.4 MHz to 20MHz. In contrast, WLAN channels may be 22MHz wide while Bluetooth channels may be 1Mhz wide. Other protocols and standards may include different definitions of channels. Furthermore, some standards may define and use multiple types of channels, e.g., different channels for uplink or downlink and/or different channels for different uses such as data, control information, etc.
Band -The term "band" has the full breadth of its ordinary meaning, and at least includes a section of spectrum (e.g., radio frequency spectrum) in which channels are used or set aside for the same purpose.
Automatically –refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware elements, ASICs, etc. ) , without user input directly specifying or performing the action or operation. Thus the term "automatically" is in contrast to an operation being manually performed or specified by the user, where the user provides input to directly perform the operation. An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually” , where the user specifies each action to perform. For example, a user filling out an electronic form by selecting  each field and providing input specifying information (e.g., by typing information, selecting check boxes, radio selections, etc. ) is filling out the form manually, even though the computer system must update the form in response to the user actions. The form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields. As indicated above, the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed) . The present specification provides various examples of operations being automatically performed in response to actions the user has taken.
Configured to –Various components may be described as “configured to” perform a task or tasks. In such contexts, “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected) . In some contexts, “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.
Various components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to. ” Reciting a component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, paragraph six, interpretation for that component.
Figures 1 and 2 -Communication System
Figure 1 illustrates an exemplary (and simplified) wireless communication system, according to some embodiments. It is noted that the system of Figure 1 is merely one example of a possible system, and embodiments may be implemented in any of various systems, as desired.
As shown, the exemplary wireless communication system includes a base station 102A which communicates over a transmission medium with one or  more user devices  106A, 106B, etc., through 106N. Each of the user devices may be referred to herein as a “user equipment” (UE) . Thus, the user devices 106 are referred to as UEs or UE devices.
The base station 102A may be a base transceiver station (BTS) or cell site, and may include hardware that enables wireless communication with the UEs 106A through 106N. The base station 102A may also be equipped to communicate with a network 100 (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN) , and/or the Internet, among various possibilities) . Thus, the base station 102A may facilitate communication between the user devices and/or between the user devices and the network 100.
The communication area (or coverage area) of the base station may be referred to as a “cell. ” The base station 102A and the UEs 106 may be configured to communicate over the transmission medium using any of various radio access technologies (RATs) , also referred to as wireless communication technologies, or telecommunication standards, such as GSM, UMTS (WCDMA, TD-SCDMA) , LTE, LTE-Advanced (LTE-A) , HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , Wi-Fi, WiMAX etc.
Base station 102A and other similar base stations (such as base stations 102B…102N) operating according to the same or a different cellular communication standard may thus be provided as a network of cells, which may provide continuous or nearly continuous overlapping service to UEs 106A-N and similar devices over a wide geographic area via one or more cellular communication standards.
Thus, while base station 102A may act as a “serving cell” for UEs 106A-N as illustrated in Figure 1, each UE 106 may also be capable of receiving signals from (and possibly within communication range of) one or more other cells (which might be provided by base stations 102B-N and/or any other base stations) , which may be referred to as “neighboring cells” . Such cells may also be capable of facilitating communication between user devices and/or between user devices and the network 100, according to the same wireless communication technology as base station 102A and/or any of various other possible wireless communication technologies. Such cells may include “macro” cells, “micro” cells, “pico” cells, and/or cells which provide any of various other granularities of service area size. For example, base stations 102A-B illustrated in Figure 1 might be macro cells, while base station 102N might be a micro cell. Other configurations are also possible.
Note that a UE 106 may be capable of communicating using multiple wireless communication standards. For example, a UE 106 may be configured to communicate using a wireless networking (e.g., Wi-Fi) and/or peer-to-peer wireless communication protocol (e.g., BT, Wi-Fi peer-to-peer, etc. ) in addition to at least one cellular communication protocol (e.g., GSM, UMTS (WCDMA, TD-SCDMA) , LTE, LTE-A, HSPA, 3GPP2 CDMA2000 (e.g., 1xRTT, 1xEV-DO, HRPD, eHRPD) , etc. ) . The UE 106 may also or alternatively be configured to communicate using one or more global navigational satellite systems (GNSS, e.g., GPS or GLONASS) , one or more mobile television broadcasting standards (e.g., ATSC-M/H or DVB-H) , and/or any other wireless communication protocol, if desired. Other combinations of wireless communication standards (including more than two wireless communication standards) are also possible.
Figure 2 illustrates user equipment 106 (e.g., one of the devices 106A through 106N) in communication with a base station 102 (e.g., one of the base stations 102A through 102N) , according to some embodiments. The UE 106 may be a device with  cellular communication capability such as a mobile phone, a hand-held device, a wearable device, a computer or a tablet, or virtually any type of wireless device.
The UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions. Alternatively, or in addition, the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
The UE 106 may include one or more antennas for communicating using one or more wireless communication protocols or technologies. In one embodiment, the UE 106 might be configured to communicate using either of CDMA2000 (1xRTT /1xEV-DO /HRPD /eHRPD) or LTE using a single shared radio and/or GSM or LTE using the single shared radio. The shared radio may couple to a single antenna, or may couple to multiple antennas (e.g., for MIMO) for performing wireless communications. In general, a radio may include any combination of a baseband processor, analog RF signal processing circuitry (e.g., including filters, mixers, oscillators, amplifiers, etc. ) , or digital processing circuitry (e.g., for digital modulation as well as other digital processing) . Similarly, the radio may implement one or more receive and transmit chains using the aforementioned hardware. For example, the UE 106 may share one or more parts of a receive and/or transmit chain between multiple wireless communication technologies, such as those discussed above.
In some embodiments, the UE 106 may include separate (and possibly multiple) transmit and/or receive chains (e.g., including separate RF and/or digital radio components) for each wireless communication protocol with which it is configured to communicate. As a further possibility, the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol. For example,  the UE 106 might include a shared radio for communicating using either of LTE or 1xRTT (or LTE or GSM) , and separate radios for communicating using each of Wi-Fi and Bluetooth. Other configurations are also possible.
Figure 3 –Exemplary Block Diagram of a UE
Figure 3 illustrates an exemplary block diagram of a UE 106, according to some embodiments. As shown, the UE 106 may include a system on chip (SOC) 300, which may include portions for various purposes. For example, as shown, the SOC 300 may include processor (s) 302 which may execute program instructions for the UE 106 and display circuitry 304 which may perform graphics processing and provide display signals to the display 360. The processor (s) 302 may also be coupled to memory management unit (MMU) 340, which may be configured to receive addresses from the processor (s) 302 and translate those addresses to locations in memory (e.g., memory 306, read only memory (ROM) 350, NAND flash memory 310) and/or to other circuits or devices, such as the display circuitry 304, wireless communication circuitry 330, connector I/F 320, and/or display 360. The MMU 340 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 340 may be included as a portion of the processor (s) 302.
As shown, the SOC 300 may be coupled to various other circuits of the UE 106. For example, the UE 106 may include various types of memory (e.g., including NAND flash 310) , a connector interface 320 (e.g., for coupling to a computer system, dock, charging station, etc. ) , the display 360, and wireless communication circuitry 330 (e.g., for LTE, Wi-Fi, GPS, etc. ) .
The UE device 106 may include at least one antenna (and possibly multiple antennas, e.g., for MIMO and/or for implementing different wireless communication technologies, among various possibilities) , for performing wireless communication with base stations and/or other devices. For example, the UE device 106 may use antenna (s) 335 to perform the wireless communication. As noted above, the UE 106 may be  configured to communicate wirelessly using multiple wireless communication technologies in some embodiments.
As described further subsequently herein, the UE 106 may include hardware and software components for implementing features for managing a secondary component carrier, such as those described herein with reference to, inter alia, Figure 6. The processor 302 of the UE device 106 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) . In other embodiments, processor 302 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) . Alternatively (or in addition) , the processor 302 of the UE device 106, in conjunction with one or more of the  other components  300, 304, 306, 310, 320, 330, 335, 340, 350, 360 may be configured to implement part or all of the methods described herein, such as managing performance reporting as described herein with reference to any of Figures 6-8.
Figure 4 –Exemplary Block Diagram of a Base Station
Figure 4 illustrates an exemplary block diagram of a base station 102, according to some embodiments. It is noted that the base station of Figure 4 is merely one example of a possible base station. As shown, the base station 102 may include processor (s) 404 which may execute program instructions for the base station 102. The processor (s) 404 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor (s) 404 and translate those addresses to locations in memory (e.g., memory 460 and read only memory (ROM) 450) or to other circuits or devices.
The base station 102 may include at least one network port 470. The network port 470 may be configured to couple to a telephone network and provide a plurality of  devices, such as UE devices 106, access to the telephone network as described above in Figures 1 and 2.
The network port 470 (or an additional network port) may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider. The core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106. In some cases, the network port 470 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider) .
The base station 102 may include at least one antenna 434, and possibly multiple antennas. The antenna (s) 434 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 430. The antenna 434 communicates with the radio 430 via communication chain 432. Communication chain 432 may be a receive chain, a transmit chain or both. The radio 430 may be configured to communicate via various wireless telecommunication standards, including, but not limited to, LTE, LTE-A, UMTS, CDMA2000, Wi-Fi, etc.
The BS 102 may be configured to communicate wirelessly using multiple wireless communication standards. In some instances, the base station 102 may include multiple radios, which may enable the base station 102 to communicate according to multiple wireless communication technologies. For example, as one possibility, the base station 102 may include an LTE radio for performing communication according to LTE as well as a Wi-Fi radio for performing communication according to Wi-Fi. In such a case, the base station 102 may be capable of operating as both an LTE base station and a Wi-Fi access point. As another possibility, the base station 102 may include a multi-mode radio which is capable of performing communications according to any of multiple wireless communication technologies (e.g., LTE and Wi-Fi) .
The BS 102 may include hardware and software components for implementing or supporting implementation of features described herein, such as those described herein  with reference to, inter alia, Figure 6. The processor 404 of the base station 102 may be configured to implement part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) . Alternatively, the processor 404 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) , or a combination thereof. Alternatively (or in addition) , the processor 404 of the BS 102, in conjunction with one or more of the  other components  430, 432, 434, 440, 450, 460, 470 may be configured to support implementation of part or all of the features described herein, such as the features described herein with reference to any of Figures 6-8.
Figure 5 -Carrier Aggregation
Carrier aggregation is a scheme in which multiple carriers (e.g., frequency channels) may be used for wireless communication with a UE according to a wireless communication technology. Figure 5 illustrates one exemplary carrier aggregation scheme (e.g., which may be used in accordance with the LTE radio access technology) which may be used in accordance with other aspects of this disclosure, such as with respect to the method of Figure 6.
In the illustrated scheme, up to five component carriers ( carriers  504, 506, 508, 510, 512) may be aggregated for a single user device (such one of the UEs 106 illustrated in and described with respect to Figures 1-3) . Each component carrier may use a channel width of up to 20MHz. As one possibility, each component carrier may be an LTE release 8 carrier. Thus, according to the exemplary scheme, a UE may be allocated up to 100MHz of bandwidth. In many instances, such a carrier aggregation scheme may enable a UE participating in it with greater throughput than without such a scheme.
In many cases, component carriers may utilize adjacent frequency channels. However, it should be noted that it is also possible to implement carrier aggregation utilizing non-continuous frequency channels, potentially including non-continuous  frequency channels within the same frequency band, and/or frequency channels within different frequency bands.
For systems which implement carrier aggregation, various control schemes/mechanisms are possible. As one possibility, an independent cell may be implemented on each component carrier, for example by providing a control channel with data scheduling and other control features for each cell on the component carrier for that cell. As another possibility, some or all control functions may be centralized. For example, a "primary cell" might be implemented on one ( "primary" ) component carrier (PCC) , while "secondary cells" might be implemented on any additional ( "secondary" ) component carriers (SCCs) , such that some or all control information for the secondary cells is communicated by way of the primary cell.
In managing carrier aggregation, a network (e.g., a BS of the network, such as a BS of the primary cell) may first add a SCC to the UE. Adding a SCC may include configuring the SCC to interact with the UE on the RRC level. An SCC that has been added to the UE may sometimes be described as being “set up” for the UE. At this stage, the UE may measure signal performance of the SCC, such as downlink power (e.g., RSRP) . The UE typically does not monitor the PDCCH of the SCC at this stage. The network may, if desired, release an SCC that was previously added to the UE. After being released, the carrier may be described as an inter-frequency neighbor carrier of the UE, rather than as an SCC.
Once a SCC has been added, the network may activate the SCC. Activating the SCC may include configuring the SCC to interact with the UE on the MAC level. In many instances, an SCC may be activated only on an “as-needed” basis, and may be used primarily for best effort (e.g., lower-priority) downlink data. For example, a secondary component carrier might be activated if there is downlink data for a UE beyond the amount that can be handled by the primary component carrier for the UE, if radio conditions are sufficiently good for the secondary component carrier. Activation may be by a media access control (MAC) control packet/control element; once the secondary  component carrier is activated, a downlink grant may be assigned to the UE on the SCC (e.g., in addition to a downlink grant on the PCC) , and the UE may receive downlink data on both the PCC and the SCC. The UE may monitor the PDCCH for an activated SCC. If the network detects or is informed by the UE that the radio conditions for the secondary component carrier are degraded, or if downlink data for the UE can be handled solely using the primary component carrier, the network may deactivate the secondary component carrier.
In many instances, a network may add a secondary cell in response to an indication that signal performance (e.g., reference signal received power (RSRP) and/or reference signal received quality (RSRQ) ) of a neighbor cell meets a threshold, e.g., indicating that the signal performance of the neighbor cell is sufficient to provide a reliable SCC. For example, the network may add a SCC in response to an LTE A4 event. However, in some scenarios, a UE may report negative performance of the PCC (e.g., an A2 event, reporting that the signal performance of the PCC fails to meet a threshold) before reporting the positive performance of the neighbor cell (e.g., the A4 event) . In such scenarios, the network may not add the SCC, even if the UE would benefit from increased throughput, e.g., if the current volume of data traffic is high.
In other instances, a UE may benefit from the network not adding a SCC, or from the network releasing a previously added SCC. For example, when a UE is conducting a voice over LTE (VoLTE) communication, data traffic may be low, such that increased throughput may not yield significant benefits. Furthermore, when a SCC is added, the PUCCH will be configured according to format 1b with channel selection (1bCS) . This format may result in HARQ-ACK feedback ambiguity, resulting in degraded performance relative to other PUCCH formats, which may be implemented when no SCC is added.
For example, Table 1 illustrates HARQ-ACK feedback ambiguity that may result from format 1bCS with M=4 (one uplink subframe contains PDSCH result for four downlink subframes) . As shown, the reception status for each subframe may be fed back  as any of three possible feedback values: ACK (acknowledgement) , NACK (negative acknowledgement) , or DTX (discontinuous transmission) . Reporting the status of each of two cells operating with carrier aggregation results in a total of eight subframes to be reported. Thus, the maximum number of possible feedback combinations to be reported is 3^8. However, an insufficient number of bits are available for reporting that number of possible combinations. As shown in Table 1, certain combinations of reporting bits (Constellation and RM Code Input Bits fields) may be used to indicate multiple combinations of feedback reports. This ambiguity may result in the UE misinterpreting the feedback, which may lead to degraded performance.
Figure PCTCN2016099834-appb-000001
Table 1: Transmission of HARQ-ACK Multiplexing for M=4
It should be noted that while the exemplary scheme illustrated in Figure 5 and the associated description are provided by way of example as one possible manner of implementing carrier aggregation, they are not intended to be limiting to the disclosure as a whole. Numerous alternatives to and variations of the details thereof are possible and should be considered within the scope of the present disclosure. For example: carrier aggregation schemes may be implemented in conjunction with other wireless  communication technologies; carriers according to other LTE releases or other radio access technologies altogether may be used; carriers having different channel widths may be used; different numbers of component carriers may be supported; and/or any of numerous other alternatives to and variations of the illustrated scheme are also possible.
Figure 6 -Secondary Component Carrier Preference
As noted above, carrier aggregation (e.g., such as supported in LTE) may include the use of multiple component carriers for data communication by a UE. For example, a secondary component carrier (SCC) may be used together with a primary component carrier (PCC) to receive downlink data and/or transmit uplink data in a carrier aggregation scenario. In such scenarios, the primary cell (e.g., a base station of the primary cell) may determine whether a SCC will be added or released. However, the UE may have additional information regarding whether adding or releasing a SCC would be preferred. Accordingly, it may be useful for a UE to implement techniques to determine whether a SCC would be preferred, and to take action to encourage or discourage the serving cell to add or release the SCC.
Figure 6 is a diagram illustrating a state machine for a wireless device to periodically determine whether use (e.g., setup) of a SCC is preferred, according to some embodiments. Specifically, in identifying whether use of the SCC is “preferred, ” the UE may seek to determine whether use of the SCC is likely to improve (or not detriment) system performance. The wireless device may be or include, e.g., a UE 106, or some component thereof, such as the wireless communication circuitry 330 or a baseband processor thereof.
As illustrated in Figure 6, the wireless device may operate in either a “SCC is preferred” state 602 or a “SCC is not preferred” state 604. The wireless device may periodically evaluate whether use of an SCC is preferred, and transition between states in response to the evaluation. In each period, the wireless device may evaluate whether use of the SCC is currently preferred based on the current service requirement. For example,  the service requirement may be defined in terms of volume of data traffic, e.g., data rate. The data rate may be quantized, e.g., in terms of number of downlink grants per unit of time. For example, the data rate may be defined as a downlink scheduled subframe number divided by total subframe number for a defined time period. The defined time period may be, e.g., the preceding evaluation period, or some fraction thereof, such as half of the preceding evaluation period.
The state machine may be set to the “SCC is preferred” state 602 by default. In some embodiments this may be implemented, e.g., by setting a variable SSCC_Preferred to true.
In some embodiments, at the start of a first period, the wireless device may compare a current rate of data traffic to one or more thresholds. For example, while the wireless device is in the “SCC is preferred” state 602, it may determine that the current rate of data traffic meets (or exceeds) a threshold Thigh_data_traffic. In response, the wireless device may remain in the “SCC is preferred” state 602, as illustrated in Figure 6 by state transition 610. As one example, Thigh_data_traffic may be set such that it is met only by continuous DL grants. In other examples, Thigh_data_traffic may be set to some lower value.
Alternatively, while the wireless device is in the “SCC is preferred” state 602, it may determine that the current rate of data traffic does not meet (or exceed) a threshold Tlow_data_traffic. In response, the wireless device may transition to the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 620. In some embodiments this may be implemented, e.g., by setting a variable SSCC_Preferred to false. As one example, Tlow_data_traffic may be set such that typical rates of data traffic associated with VoLTE communications would not meet Tlow_data_traffic. In other examples, Tlow_data_traffic may be set to some higher or lower value.
Similarly, while the wireless device is in the “SCC is not preferred” state 604, it may determine that the current rate of data traffic meets (or exceeds) the threshold Thigh_data_traffic. In response, the wireless device may transition to the “SCC is preferred”  state 602, as illustrated in Figure 6 by state transition 630, e.g., by setting a variable SSCC_Preferred to true.
Alternatively, while the wireless device is in the “SCC is not preferred” state 604, it may determine that the current rate of data traffic does not meet (or exceed) the threshold Tlow_data_traffic. In response, the wireless device may remain in the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 640.
In some embodiments Tlow_data_traffic may be equal to Thigh_data_traffic. In other embodiments, Tlow_data_traffic may be lower than Thigh_data_traffic. If the wireless device determines that the current rate of data traffic falls between the two thresholds (i.e., the current rate of data traffic is higher than Tlow_data_traffic but lower than Thigh_data_traffic) , then the wireless device may remain in its current state.
In other embodiments, the wireless device may employ only one data traffic threshold. For example, the wireless device may transition to (or remain in) the “SCC is preferred” state 602, as illustrated in Figure 6 by state transition 630 (or state transition 610) in response to determining that the current rate of data traffic meets the threshold Thigh_data_traffic, and may transition to (or remain in) the “SCC is not preferred” state 604, as illustrated in Figure 6 by state transition 620 (or state transition 640) in response to determining that the current rate of data traffic does not meet the threshold Thigh_data_traffic. As one example, in such embodiments, Thigh_data_traffic may be set such that typical rates of data traffic associated with VoLTE communications would not meet Thigh_data_traffic. In other examples, Thigh_data_traffic may be set to some higher or lower value.
At the end of each evaluation period and/or during each evaluation period, the wireless device may perform measurement reporting steps based on the state transition followed at the start of the evaluation period, and further based on measurements determined during the present and/or previous evaluation periods. In general terms, it may be noted that reporting positive performance of the serving cells (e.g., of the PCC and SCC) and/or a neighbor cell may encourage, or cause, the network to add the SCC, or to not release the SCC, if previously added. By contrast, reporting negative performance of  the serving cells and/or the neighbor cell may discourage the network from adding the SCC, or may encourage the network to release the SCC, if previously added. Thus, by manipulating reports of performance measurements of the serving cells and/or the neighbor cell, the wireless device may be able to influence whether the SCC is added or released, based on a determination by the wireless device regarding whether the SCC is preferred.
For example, when the SCC is preferred, one or more reports of positive performance of the serving cells and/or the neighbor cell may be reported, while one or more reports of negative performance of the serving cells may be delayed or suppressed. Inversely, when the SCC is not preferred, one or more reports of negative performance of the serving cells may be reported, while one or more reports of positive performance of the serving cells and/or the neighbor cell may be delayed or suppressed.
However, when manipulating reports of performance measurements, constraints may be applied to avoid unduly disrupting other functions that rely on the performance measurements. Specific examples of various manipulations of performance measurements, as well as constraints that may be applied, are further described with reference to Figures 7-8.
Figure 7 –Remaining in the SCC Not Preferred State
Figure 7 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while in the “SCC is not preferred” state 604, according to some embodiments. The method shown in Figure 7 may be used in conjunction with any of the computer systems or devices shown in the above Figures, among other devices. In various embodiments, some of the elements of the scheme shown may be performed concurrently, in a different order than shown, or may be omitted. Additional elements may also be performed as desired. As shown, the scheme may operate as follows.
At 702, the wireless device may determine that use of a SCC is not currently preferred. For example, this method may be performed according to transition 620 or transition 640 of Figure 6, e.g., by determining that the current rate of data traffic does not meet (or exceed) a threshold value. In some embodiments, the determining that use of the SCC is not currently preferred may include determining that the rate of data traffic has not met the threshold value for at least a predefined period of time, e.g., one or more of the evaluation periods of Figure 6. Such embodiments may thus be performed according to the transition 640 of Figure 6, and not according to the transition 620.
At 704, the wireless device may determine whether the SCC is currently set up; i.e., whether the SCC was previously added, as described above with regard to Figure 5.
In response to determining, at 702, that use of the SCC is not currently preferred and, at 704, that the SCC is currently set up, the wireless device may take steps to encourage the network (e.g., a BS of the primary cell) to release the SCC. For example, at 706, the wireless device may detect whether performance conditions of the PCC are satisfactory. For example, the wireless device may determine (e.g., measure) one or more performance metrics of the PCC, and compare them to one or more respective performance thresholds. The one or more performance metrics of the PCC may be measures of performance of the PCC. As a specific example, the wireless device may determine one or more (e.g., all) of RSRP, RSRQ, and/or signal-to-noise ratio (SNR) of the PCC, and may compare the determined value (s) to one or more threshold values TRSRP2, TRSRQ2, and/or TSNR2, respectively.
In response to detecting, at 706, that the performance conditions of the PCC are satisfactory, the wireless device may falsely (e.g., artificially) report (e.g., generate and transmit a false report to the network) that a performance metric of the SCC (MS_SCC) does not meet a performance threshold TA2_SCC. The performance metric MS_SCC may represent a measure of performance of the SCC, and the performance threshold TA2_SCC may represent a specified value of the measure, defined such that measured values not meeting the performance threshold TA2_SCC indicate poor performance of the  communications. For example, the performance metric MS_SCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the SCC, and the performance threshold TA2_SCC may include minimum acceptable value (s) of the measurement (s) . As a further example, if the wireless device is communicating according to an LTE protocol, the performance threshold TA2_SCC may be or reflect a threshold defined for an A2 event of the SCC, with or without an associated hysteresis value, and the performance metric MS_SCC may be a measurement defined for use in detecting the A2 event of the SCC. Thus, in some embodiments, reporting that the performance metric MS_SCC does not meet the performance threshold TA2_SCC may be similar or equivalent to, or may include, reporting an A2 event of the SCC. It should be noted that, in some scenarios, the performance metric MS_SCC may actually not meet the performance threshold TA2_SCC (and the wireless device may detect that condition, e.g., according to normal operations) . However, the report of operation 708 may nevertheless be considered to be a “false” report, in that the wireless device transmits the report without regard to whether the performance metric MS_SCC meets the performance threshold TA2_SCC (and, in some embodiments, without detecting whether that condition is met) .
As previously noted, a negative performance report of the SCC may cause the network to release the SCC. Thus, the false report of operation 708 may cause the SCC to be released, which is the desired result in light of the determination, at 702, that the SCC is not currently preferred.
In response to detecting, at 706, that the performance conditions of the PCC are not satisfactory, the wireless device may, at 710, report detected events (such as A2 of the PCC and/or SCC, or other events) to the network (e.g., to a BS of the primary cell) , e.g., according to the specifications of the communication protocol by which the wireless device is communicating (e.g., without false reports) . Specifically, it should be noted that falsely reporting negative performance of the SCC (such as an A2 event) may negatively impact proper handover between cells. Thus, in some embodiments, the wireless device may define the one or more performance thresholds of the one or more performance  metrics of the PCC (e.g., TRSRP2, TRSRQ2, and/or TSNR2) to represent an absolute performance threshold that performance of the PCC must meet before the wireless device will falsely report negative performance of the SCC. For example, the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that handover is unlikely to be performed imminently. Thus, in some embodiments, if the one or more performance metrics of the PCC meet the one or more respective thresholds, then a false report regarding negative performance of the SCC may be transmitted without significant concern of negatively impacting handover, and otherwise the wireless device may report detection of various performance measurement events to the network, e.g., according to normal procedures of the communication protocol.
In response to determining, at 702, that use of the SCC is not currently preferred and, at 704, that the SCC is not currently set up, the wireless device may take steps to discourage the network from adding the SCC. For example, at 712, the wireless device may detect whether one or more conditions are satisfied for suppressing a report of a measurement event. Specifically, the wireless device may detect whether a performance metric of a neighbor cell (MN) meets a performance threshold TA4, and possibly whether a performance metric MS_PCC meets a performance threshold TA2_PCC, and whether performance conditions of the PCC are satisfactory.
The performance metric MN may be a measure of performance of communications between a BS of the neighbor cell and the wireless device, and may report a value similar to that of the performance metric MS_SCC. For example, the performance metric MN may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the neighbor BS, and the performance threshold TA4 may include minimum acceptable value (s) of the measurement (s) . As a further example, if the wireless device is communicating according to an LTE protocol, the performance threshold TA4 may be or reflect a threshold defined for an A4 event, with or without  associated hysteresis and/or offset values, and the performance metric MN may be a measurement defined for use in detecting the A4 event. Thus, in some embodiments, detecting that the performance metric MN meets the performance threshold TA4 may be similar or equivalent to detecting an A4 event.
The performance metric MS_PCC may be similar to the performance metric MS_SCC, but may represent a measure of performance of the PCC, and the performance threshold TA2_PCC may represent a specified value of the measure, defined such that measured values not meeting the performance threshold TA2_PCC indicate poor performance of the communications. TS2_PCC may or may not be the same value as the performance threshold TA2_SCC. For example, the performance metric MS_PCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the PCC, and the performance threshold TA2_PCC may include minimum acceptable value (s) of the measurement (s) . As a further example, if the wireless device is communicating according to an LTE protocol, the performance threshold TA2_PCC may be or reflect a threshold defined for an A2 event of the PCC, with or without an associated hysteresis value, and the performance metric MS_PCC may be a measurement defined for use in detecting an A2 event of the PCC. Thus, in some embodiments, detecting that the performance metric MS_PCC does not meet the performance threshold TA2_PCC may be similar or equivalent to, or may include, detecting an A2 event of the PCC.
Detecting whether performance conditions of the PCC are satisfactory may be carried out as discussed above.
In response to determining, at 712, that the conditions are satisfied for suppressing a report of a measurement event (e.g., in response to detecting that the performance metric MN meets the performance threshold TA4, and possibly that the performance metric MS_PCC meets the performance threshold TA2_PCC, and that the performance conditions of the PCC are satisfactory) , the wireless device may, at 716, not report to the network that the performance metric MN meets a performance threshold TA4. Specifically, the wireless device may be communicating with the network according to a  communication protocol (e.g., LTE) that specifies (e.g., requires, dictates, suggests, or encourages) that the wireless device report detection that the performance metric MN meets the performance threshold TA4. Thus, the wireless device not reporting this detection to the network may include suppressing (e.g., not generating and/or not transmitting) a report that is typical, expected, or required according to the communication protocol. As noted above, reporting positive performance of the neighbor cell may encourage, or cause, the network to add the SCC. Thus, when use of the SCC is not currently preferred, such a positive performance report may be suppressed to avoid addition of the SCC.
However, in response to determining, at 712, that the conditions for suppressing a report of a measurement event are not satisfied, the wireless device may take no special action. For example, the wireless device may, at 710, report detected events, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
As a specific example, if the wireless device does not detect, at 712, that the performance metric MN meets a performance threshold TA4 (e.g., before the end of the evaluation period or based on a first one or more samples of the evaluation period) , then no suppression of that event is needed, and normal reporting may proceed at 710, e.g., according to the communication protocol.
As a second specific example, in some embodiments, if the wireless device detects, at 712, that the performance metric MS_PCC fails to meet the performance threshold TA2_PCC, then the wireless device may report this detection to the network, e.g., according to normal procedures of the communication protocol. As noted above, reporting of negative performance of the serving cell may discourage addition of the SCC. Thus, reporting of this negative performance may outweigh positive reporting of the performance of the neighbor cell, such that reporting both that the performance metric MS_PCC fails to meet the performance threshold TA2_PCC (e.g., such as an A2 event) and that the performance metric MN meets a performance threshold TA4 (e.g., such as an A4  event) may still result in the SCC not being added. By not unnecessarily suppressing a measurement event report, the wireless device may avoid negatively impacting other functions that rely on such reports, such as handover. In particular, if the performance metric MS_PCC fails to meet the performance threshold TA2_PCC (e.g., such as an A2 event) , this may indicate that a handover event may soon occur, in which case suppressing positive reporting of the neighbor cell may be detrimental. Thus, in some embodiments, the conditions tested at 712 may include detecting whether the performance metric MS_PCC meets the performance threshold TA2_PCC.
As a third specific example, if the wireless device detects, at 712, that the performance conditions of the PCC are not satisfactory, then the wireless device may report detection of various performance measurement events (e.g., A2 and/or A4 events, as discussed above) to the network, e.g., according to normal procedures of the communication protocol. Specifically, it should be noted that suppressing a report regarding positive performance of a neighbor cell (such as an A4 event) may negatively impact proper handover between cells. Thus, in some embodiments, the wireless device may define the one or more performance thresholds of the one or more performance metrics of the PCC as defined above (e.g., TRSRP2, TRSRQ2, and/or TSNR2) to further represent an absolute performance threshold that performance of the PCC must meet before the wireless device will suppress a report regarding positive performance of the neighbor cell. For example, the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that handover is unlikely to be performed imminently. Thus, in some embodiments, if the one or more performance metrics of the PCC meet the one or more respective thresholds, then a report regarding positive performance of the neighbor cell may be suppressed without significant concern of negatively impacting handover, and otherwise the wireless device may report detection of various performance measurement events to the network, e.g., according to normal procedures of the communication protocol.
In some embodiments, the one or more performance thresholds of the one or more performance metrics of the PCC may be defined to be similar in nature, but higher in value, than the performance threshold TA2_PCC. For example, the performance threshold TA2_PCC may be a threshold RSRP value, and the one or more performance thresholds of the PCC may include a higher threshold RSRP value. In such embodiments, detecting that the performance conditions of the PCC are satisfactory may inherently include detecting that the performance metric MS_PCC meets the lower performance threshold TA2_PCC. Thus, in such embodiments, operation 712 may include only detecting whether the performance metric MN meets the performance threshold TA4 and whether the performance conditions of the PCC are satisfactory (i.e., without expressly detecting whether the performance metric MS_PCC meets the performance threshold TA2_PCC) .
In some embodiments, the wireless device may, at 712, monitor for the conditions for suppressing a report of a measurement event throughout the evaluation period, and decide at the end of the evaluation period which events to report to the network. For example, if the wireless device determines that all of the criteria are satisfied during the evaluation period, then, at the end of the evaluation period, the wireless device may not transmit the report that the performance metric MN met a performance threshold TA4. In other embodiments, the wireless device may decide to send one or more reports before the end of the evaluation period. For example, if the wireless device determines that the performance metric MS_PCC does not meet the performance threshold TA2_PCC, then the wireless device may (e.g., immediately) proceed to operation 710 and first report that determination. In that example, the wireless device may then follow the first report with a second report that the performance metric MN meets the performance threshold TA4, e.g., immediately following the first report if such an event had been detected earlier in the evaluation period, or immediately upon detection if such an event is detected later in the evaluation period.
As noted above, in various embodiments, some of the elements of the scheme shown may be performed concurrently, in a different order than shown, or may be  omitted. Additional elements may also be performed as desired. For example, the wireless device may operate to take steps to discourage the network from adding the SCC (e.g., according to the “No” branch of operation 704) , but not to take steps to encourage the network to release the SCC if set up (e.g., according to the “Yes” branch of operation 704) , or vice versa.
Figure 8 –Transitioning to the SCC Preferred State
Figure 8 is a flowchart diagram illustrating a method for a wireless device to manage signal performance reporting while in the “SCC is preferred” state 602, according to some embodiments. The method shown in Figure 8 may be used in conjunction with any of the computer systems or devices shown in the above Figures, among other devices. In various embodiments, some of the elements of the scheme shown may be performed concurrently, in a different order than shown, or may be omitted. Additional elements may also be performed as desired. As shown, the scheme may operate as follows.
At 802, the wireless device may determine that use of a SCC is currently preferred. For example, this method may be performed according to transition 610 or transition 630 of Figure 6, e.g., by determining that the current rate of data traffic meets (or exceeds) the threshold value. In some embodiments, the determining that use of the SCC is currently preferred may include determining that the rate of data traffic has met the threshold value for less than a predefined period of time, e.g., one or more of the evaluation periods of Figure 6. Such embodiments may thus be performed according to the transition 630 of Figure 6, and not according to the transition 610. In such embodiments, the wireless device may, in response to determining that the rate of data traffic has met the threshold value for at least the predefined period of time, e.g., according to the transition 610, report detected performance measurement events (such as A1, A2, A4, or other events) to the network, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
At 804, the wireless device may determine whether the SCC is currently set up; i.e., whether the SCC was previously added, as described above with regard to Figure 5.
In response to determining that use of the SCC is currently preferred and that the SCC is currently set up, the wireless device may, at 806, report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
In response to determining that use of the SCC is currently preferred and that the SCC is currently not set up, the wireless device may take steps to encourage the network (e.g., a BS of the primary cell) to add the SCC. For example, at 808, the wireless device may detect whether the performance metric MS_PCC meets the performance threshold TA2_PCC and whether the performance metric MN meets the performance threshold TA4. These performance metrics, thresholds, and determinations may be as described above with regard to Figure 7. Specifically, if the wireless device detects that the performance metric MS_PCC meets the performance threshold TA2_PCC and that the performance metric MN meets the performance threshold TA4, then the wireless device may proceed to operation 806 and report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating. For example, if the wireless device is communicating according to an LTE protocol, then this condition may reflect or include detecting an A4 event, while not detecting an A2 event of the PCC. As noted above, reporting positive performance of the neighbor cell may encourage, or cause, the network to add the SCC, while reporting negative performance of the PCC may discourage the network from adding the SCC. Thus, in a scenario in which SCC addition is desired, normal reporting may be desirable where such will result in reporting positive performance of the neighbor cell, without reporting negative performance of the PCC.
In response to determining, at 808, either that the performance metric MS_PCC does not meet the performance threshold TA2_PCC or that the performance metric MN does not meet the performance threshold TA4, then the wireless device may, at 810, detect  whether one or more conditions are satisfied for delaying a report of a measurement event. For example, the wireless device may detect whether the performance metric MS_PCC meets the performance threshold TA2_PCC, whether the performance metric MN meets the performance threshold TA4, and whether performance conditions of the PCC are satisfactory. Specifically, the wireless device may determine that one or more conditions are satisfied for delaying a report of a measurement event upon detecting that the performance metric MS_PCC does not meet the performance threshold TA2_PCC, and that the performance metric MN meets the performance threshold TA4, and that the performance conditions of the PCC are satisfactory.
To determine whether the performance conditions of the PCC are satisfactory, the wireless device may determine (e.g., measure) one or more performance metrics of the PCC, and compare them to one or more respective performance thresholds, in a manner similar to that described with regard to operation 706 of Figure 7. The one or more performance metrics of the PCC may be measures of performance of the PCC. As a specific example, the wireless device may determine one or more (e.g., all) of RSRP, RSRQ, and/or signal-to-noise ratio (SNR) of the PCC, and may compare the determined value (s) to one or more threshold values TRSRP1, TRSRQ1, and/or TSNR1, respectively. It should be understood that the one or more respective performance thresholds of operation 810 (e.g., TRSRP1, TRSRQ1, and/or TSNR1) may differ from the one or more respective performance thresholds of operation 706 (e.g., TRSRP2, TRSRQ2, and/or TSNR2) .
Thus, the conditions for delaying a report of a measurement event may include a negative performance event of the PCC (e.g., an A2 event) , a positive performance event of the neighbor cell (e.g., an A4 event) , and a determination that the PCC is performing above a specified performance level, despite the negative performance event.
It should be appreciated that the flowchart of Figure 8 is a logical flowchart, rather than a chronological flow chart. For example, although each of  operations  808 and 810 detect whether the performance metric MS_PCC meets the performance threshold TA2 and whether the performance metric MN meets the performance threshold TA4, these may  reflect the same detections; the different operations may simply indicate different logical flows that may result from differing combinations of the detected conditions. For example, the wireless device may determine, e.g., at the end of the current evaluation period, which of the conditions evaluated in  operations  808 and 810 have been satisfied during the current evaluation period, and perform the appropriate operation at that time. Specifically, the wireless device may delay all performance event reporting at least until the end of the current evaluation period. Then, based on all performance events detected during the current evaluation period, the wireless device may perform one of  operation  806, 814, or 816, as illustrated in Figure 8.
Because the wireless device may wait to report the detection of performance measurement events until at least the end of the current evaluation period, in some embodiments, the length of the evaluation periods may be selected so as to be sufficiently short to allow timely reporting of detected events. For example, in some embodiments, the evaluation period may be equal to a minimum time to trigger (TTT) timer configured for relevant events (e.g., A1, A2, and A4 events) .
If the wireless device detects, at 810, that the conditions for delaying a report of a measurement event are not satisfied, then the wireless device may proceed to operation 806 and report detected performance measurement events as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
If the wireless device instead detects, at 810, that the conditions for delaying a report of a measurement event are satisfied, then the wireless device may, at 812, determine whether the current evaluation period (of Figure 6) is the first evaluation period following attachment of the wireless device to the primary cell.
In response to determining, at 812, that the current evaluation period is the first evaluation period following attachment, the wireless device may, at 814, delay reporting to the network that the performance metric MS_PCC does not meet the performance threshold TA2_PCC until after reporting that the performance metric MN meets the  performance threshold TA4. For example, at the end of the current evaluation period, the wireless device may report that the performance metric MN meets the performance threshold TA4. The wireless device may afterward report that the performance metric MS_PCC does not meet the performance threshold TA2_PCC, e.g., at the end of the next evaluation period. As noted above, reporting positive performance of the neighbor cell (such as an A4 event) may encourage, or cause, the network to add the SCC, while reporting negative performance of the PCC (such as an A2 event) may discourage the network from adding the SCC. Thus, by first reporting that the performance metric MN meets the performance threshold TA4, the wireless device may provide an opportunity for the network to add the SCC before receiving the second report that the performance metric MS_PCC does not meet the performance threshold TA2_PCC. Subsequently reporting the second report is unlikely, by itself, to cause the network to release the SCC, once added.
In response to determining, at 812, that the current evaluation period is not the first evaluation period following attachment, the wireless device may, at 814, delay reporting to the network that the performance metric MS_PCC does not meet the performance threshold TA2_PCC and that the performance metric MN meets the performance threshold TA4 until after falsely reporting that the performance metric MS_PCC meets a performance threshold TA1.
The performance threshold TA1 may represent a specified value of the measure of MS_PCC, defined such that measured value meeting the performance threshold TA2 indicate satisfactory (or improving) performance of the communications. For example, the performance metric MS_PCC may be, include, or represent one or more measurements of RSRP, RSRQ, and/or SNR for the PCC, and the performance threshold TA1 may include minimum acceptable value (s) of the measurement (s) . As a further example, if the wireless device is communicating according to an LTE protocol, the performance threshold TA1 may be or reflect a threshold defined for an A1 event, with or without an associated hysteresis value, and the performance metric MS_PCC may be a measurement  defined for use in detecting the A1 event. Thus, in some embodiments, reporting that the performance metric MS_PCC meets the performance threshold TA1 may be similar or equivalent to, or may include, reporting an A1 event. It should be noted that, in some scenarios, the performance metric MS_PCC may actually meet the performance threshold TA1 (and the wireless device may detect that condition, e.g., according to normal operations) . However, the report of operation 816 may nevertheless be considered to be a “false” (e.g. artificial) report, in that the wireless device transmits the report without regard to whether the performance metric MS_PCC meets the performance threshold TA1 (and, in some embodiments, without detecting whether that condition is met) .
As a specific example of the operation 816, at the end of the current evaluation period, the wireless device may falsely first report that the performance metric MS_PCC meets the performance threshold TA1. It should be noted that execution of operation 816 requires that at least one evaluation period has passed since attachment of the wireless device to the primary cell, without the SCC being added. This condition may result, e.g., from a negative report of the performance of the PCC during a previous evaluation period. Thus, the false first report that the performance metric MS_PCC meets the performance threshold TA1 during the current reporting period may indicate to the network that the performance of the PCC is improving. Following the first report (e.g., immediately following or at the end of the next evaluation period) , the wireless device may report that the performance metric MN meets the performance threshold TA4. The wireless device may afterward report that the performance metric MS_PCC does not meet the performance threshold TA2_PCC, e.g., at the end of the next evaluation period following the report that the performance metric MN meets the performance threshold TA4. As noted above, reporting positive performance of the neighbor cell (such as an A4 event) may encourage, or cause, the network to add the SCC, while reporting negative performance of the PCC (such as an A2 event) may discourage the network from adding the SCC. Thus, by first reporting that the performance metric MN meets the performance threshold TA4, the wireless device may provide an opportunity for the network to add the SCC  before receiving the second report that the performance metric MS_PCC does not meet the performance threshold TA2_PCC. Previously reporting that the performance metric MS_PCC meets the performance threshold TA1 may signal to the network that the PCC is performing at a level sufficient to support addition of a SCC. Subsequently reporting the second report is unlikely, by itself, to cause the network to release the SCC, once added.
It should be noted that delaying a report regarding negative performance of the serving cell or falsely reporting positive performance of the PCC may impact proper handover between cells. Thus, in some embodiments, the wireless device may define the one or more performance thresholds of the one or more performance metrics of the PCC (e.g., TRSRP1, TRSRQ1, and/or TSNR1) to represent an absolute performance threshold that performance of the PCC must meet before the wireless device will delay or falsify a performance report. For example, the one or more performance thresholds may be defined as values such that, if the one or more performance metrics of the PCC meet the respective one or more thresholds, the wireless device may be confident that a delay in reporting the negative performance of the PCC and a false report of positive performance of the PCC are unlikely to cause significant performance degradation; e.g., that handover to a neighbor cell is unlikely to be immediately necessary. Thus, in some embodiments, if the performance conditions of the PCC are satisfied, then a report regarding negative performance of the PCC may be delayed, and/or a report regarding positive performance of the PCC may be falsified, without significant concern of impacting handover. Otherwise the wireless device may proceed to operation 806 and report detected performance measurement events to the network as detected, e.g., according to the specifications of the communication protocol by which the wireless device is communicating.
Embodiments of the present disclosure may be realized in any of various forms. For example, some embodiments may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system. Other embodiments may be  realized using one or more custom-designed hardware devices such as ASICs. Still other embodiments may be realized using one or more programmable hardware elements such as FPGAs.
In some embodiments, a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of a method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.
In some embodiments, a device (e.g., a UE 106) may be configured to include a processor (or a set of processors) and a memory medium, where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets) . The device may be realized in any of various forms.
Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims (20)

  1. A method for managing performance reporting to a network by a user equipment device (UE) capable of performing carrier aggregation, the method comprising: by the UE:
    determining that use of a secondary component carrier (SCC) of the network is not currently preferred;
    detecting that one or more first performance metrics of a primary component carrier (PCC) of the network meet respective one or more first performance thresholds; and
    transmitting to a base station of the network, in response to determining that use of the SCC is not currently preferred, a false report that a second performance metric of the SCC does not meet a second performance threshold.
  2. The method of claim 1, further comprising:
    detecting that the SCC is set up for use by the UE;
    wherein transmitting the false report is further in response to the detecting that the SCC is currently set up for use by the UE.
  3. The method of claim 1, wherein the one or more first performance metrics comprise at least one of a Reference Signal Received Power (RSRP) measurement, a Reference Signal Received Quality (RSRQ) measurement, and a signal-to-noise ratio (SNR) measurement.
  4. The method of claim 1, wherein determining that use of the SCC is not currently preferred comprises determining that current data rate is lower than a data rate threshold.
  5. The method of claim 1, wherein determining that use of the SCC is not currently preferred comprises determining that a current data rate has remained lower than a data rate threshold for a predefined period of time.
  6. A method for managing performance reporting to a network by a user equipment device (UE) capable of performing carrier aggregation, the method comprising: by the UE:
    determining that use of a secondary component carrier (SCC) of the network is not currently preferred; and
    detecting that a performance metric of a neighbor cell of the network meets a first performance threshold, wherein, in response to determining that use of the SCC is not currently preferred, the UE does not report the detecting to the network.
  7. The method of claim 6, wherein the UE communicates with the base station according to a communication protocol that specifies that the UE report detection that the performance metric of the neighbor cell meets the first performance threshold.
  8. The method of claim 6, further comprising:
    detecting that one or more performance metrics of a primary component carrier (PCC) of the network meet one or more respective second performance thresholds; and
    detecting that the SCC is not currently set up for use by the UE;
    wherein the UE not reporting the detecting to the network is further in response to the detecting that the one or more performance metrics of the PCC meet the one or more respective second performance thresholds and the detecting that the SCC is not currently set up for use by the UE.
  9. The method of claim 6, wherein the performance metric of the neighbor cell comprises at least one of a Reference Signal Received Power (RSRP) measurement and a Reference Signal Received Quality (RSRQ) measurement.
  10. The method of claim 6, wherein the determining that use of a SCC of the network is not currently preferred comprises determining that a current data traffic rate is lower than a data traffic threshold.
  11. A apparatus comprising:
    at least one processor; and
    a memory medium storing software instructions executable by the at least one processor to cause the apparatus to:
    determine that use of a secondary component carrier (SCC) of a network is not currently preferred;
    determine whether the SCC is currently set up for use by the apparatus;
    in response to determining that that the SCC is currently set up for use by the apparatus, and further in response to the determining that use of the SCC is not currently preferred, and further in response to detecting that one or more first performance metrics of a primary component carrier (PCC) of the network meet one or more respective first performance thresholds:
    generate a false first report to the network that the SCC does not meet a second performance threshold; and
    in response to determining that that the SCC is not currently set up for use by the apparatus, and further in response to the determining that use of the SCC is not currently preferred, and further in response to detecting that a performance metric of a neighbor cell meets a third performance threshold:
    omit a second report to the network that the performance metric of the neighbor cell meets the third performance threshold, wherein a communication  protocol used by the apparatus to communicate with the network specifies that the second report be sent in response to detecting that the performance metric of the neighbor cell meets the third performance threshold.
  12. The apparatus of claim 11, wherein omitting the second report is further in response to detecting that the one or more first performance metrics of the PCC meet the one or more respective first performance thresholds.
  13. The apparatus of claim 11, wherein at least one of the first performance metric and the second performance metric comprises at least one of a Reference Signal Received Power (RSRP) measurement, a Reference Signal Received Quality (RSRQ) measurement, and a signal-to-noise ratio (SNR) measurement.
  14. The apparatus of claim 11, wherein, in determining that use of a SCC is not currently preferred, the software instructions are further executable by the at least one processor to cause the apparatus to:
    determine that a current data traffic rate is lower than a data traffic threshold.
  15. The apparatus of claim 14, wherein the data traffic threshold is higher than a data traffic rate of Voice over LTE (VoLTE) communication.
  16. A method for managing performance reporting to a network by a user equipment device (UE) capable of performing carrier aggregation, the method comprising: by the UE:
    determining that use of a secondary component carrier (SCC) of the network is currently preferred;
    detecting that a first performance metric of a primary component carrier (PCC) of the network does not meet a first performance threshold;
    reporting to the network that the first performance metric of the serving cell does not meet the second performance threshold, wherein, in response to the determining that use of a secondary component carrier (SCC) is currently preferred, and further in response to detecting that one or more second performance metrics of the PCC meet respective one or more second performance thresholds, the reporting is delayed until after the UE detecting and reporting to the network that a performance metric of a neighbor cell meets a third performance threshold.
  17. The method of claim 16, further comprising:
    delaying the reporting that the first performance metric of the serving cell does not meet the second performance threshold and the reporting that the performance metric of the neighbor cell meets the third performance threshold until after the UE transmitting a false report to the network that the first performance metric of the PCC meets a fourth performance threshold.
  18. The method of claim 16, further comprising:
    detecting that the SCC is not currently set up for use by the UE;
    wherein delaying the reporting is further in response to the detecting that the SCC is not currently set up for use by the UE.
  19. The method of claim 16, wherein at least one of the first performance metric of the PCC and the performance metric of the neighbor cell comprises at least one of a Reference Signal Received Power (RSRP) measurement, a Reference Signal Received Quality (RSRQ) measurement, and a signal-to-noise ratio (SNR) measurement.
  20. The method of claim 16, wherein determining that use of a SCC is currently preferred comprises determining that current data traffic volume is lower than a data traffic threshold.
PCT/CN2016/099834 2016-09-23 2016-09-23 Autonomous measurement report for carrier aggregation setup WO2018053787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099834 WO2018053787A1 (en) 2016-09-23 2016-09-23 Autonomous measurement report for carrier aggregation setup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099834 WO2018053787A1 (en) 2016-09-23 2016-09-23 Autonomous measurement report for carrier aggregation setup

Publications (1)

Publication Number Publication Date
WO2018053787A1 true WO2018053787A1 (en) 2018-03-29

Family

ID=61690734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099834 WO2018053787A1 (en) 2016-09-23 2016-09-23 Autonomous measurement report for carrier aggregation setup

Country Status (1)

Country Link
WO (1) WO2018053787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150883A (en) * 2022-09-05 2022-10-04 荣耀终端有限公司 Measurement reporting method, device, terminal device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220675A (en) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 Optimal selection method and optimal selection system of auxiliary carrier
CN104683080A (en) * 2013-12-02 2015-06-03 中国移动通信集团公司 Carrier aggregation implementing method, carrier availability detecting method and device
US20150163041A1 (en) * 2013-12-09 2015-06-11 Apple Inc. Restrictions on transmissions of control plane data with carrier aggregation
CN105227283A (en) * 2015-08-31 2016-01-06 宇龙计算机通信科技(深圳)有限公司 A kind of control method of the auxiliary carrier wave based on carrier aggregation and device
CN105830493A (en) * 2013-12-16 2016-08-03 苹果公司 Systems and methods for carrier channel selection in carrier aggregation enabled networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220675A (en) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 Optimal selection method and optimal selection system of auxiliary carrier
CN104683080A (en) * 2013-12-02 2015-06-03 中国移动通信集团公司 Carrier aggregation implementing method, carrier availability detecting method and device
US20150163041A1 (en) * 2013-12-09 2015-06-11 Apple Inc. Restrictions on transmissions of control plane data with carrier aggregation
CN105830493A (en) * 2013-12-16 2016-08-03 苹果公司 Systems and methods for carrier channel selection in carrier aggregation enabled networks
CN105227283A (en) * 2015-08-31 2016-01-06 宇龙计算机通信科技(深圳)有限公司 A kind of control method of the auxiliary carrier wave based on carrier aggregation and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150883A (en) * 2022-09-05 2022-10-04 荣耀终端有限公司 Measurement reporting method, device, terminal device and storage medium

Similar Documents

Publication Publication Date Title
US11044635B2 (en) Dynamic link monitoring to resolve imbalance in LAA/LTE radio resource allocation
US10397924B2 (en) Robust downlink control information with flexible resource assignments
US11871346B2 (en) Wake up signal for cellular communication in unlicensed spectrum
US10333686B2 (en) Adaptive half duplex/full duplex operation for battery and antenna constrained devices
US11737063B2 (en) Self-contained slot and slot duration configuration in NR systems
US10470050B2 (en) License assisted access uplink communication with Wi-Fi preamble
US9554302B2 (en) QoS based buffering while TTI bundling is enabled
US10397119B2 (en) Handling voice and non-voice data under uplink limited conditions
US10966248B2 (en) Coexistence features for cellular communication in unlicensed spectrum
US20160095086A1 (en) Carrier Aggregation Secondary Component Carrier Management
US10015694B2 (en) Buffer status report including uncategorized data
WO2018053787A1 (en) Autonomous measurement report for carrier aggregation setup
US20230276282A1 (en) Wireless Device Scheduling Availability During Neighbor Cell Measurements
US11432313B2 (en) Detecting cellular network bottlenecks through analysis of resource allocation patterns
US11387949B2 (en) Transmitting acknowledgment messages on preferred link in 5G carrier aggregation
US11659402B2 (en) Enhanced reservation signal for cellular communication in unlicensed spectrum
US11917424B2 (en) Signaling a quasi-colocation update with aperiodic reference signals
WO2023065216A1 (en) Cssf design for ue with needforgap capability
US20230354360A1 (en) Multiplexing of Uplink Transmissions
WO2023178634A1 (en) Channel state information reference signal transmission and measurement for reduced capability wireless device operation
WO2023000269A1 (en) Configuring listen before talk and short control signaling in unlicensed spectrum
US20220303086A1 (en) Using Aperiodic Reference Signals for a Spatial Relationship Update
WO2018053791A1 (en) Autonomous physical uplink shared channel power control for uplink carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916526

Country of ref document: EP

Kind code of ref document: A1