WO2018052179A1 - Electrode material and electrochemical device using same - Google Patents

Electrode material and electrochemical device using same Download PDF

Info

Publication number
WO2018052179A1
WO2018052179A1 PCT/KR2017/006149 KR2017006149W WO2018052179A1 WO 2018052179 A1 WO2018052179 A1 WO 2018052179A1 KR 2017006149 W KR2017006149 W KR 2017006149W WO 2018052179 A1 WO2018052179 A1 WO 2018052179A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
crystalline
electrode material
amorphous
pores
Prior art date
Application number
PCT/KR2017/006149
Other languages
French (fr)
Korean (ko)
Inventor
박정욱
강석민
황민영
조인희
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201790001218.6U priority Critical patent/CN211208258U/en
Publication of WO2018052179A1 publication Critical patent/WO2018052179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiment relates to an electrode material and an electrochemical device using the same, and more particularly, to an electrode material capable of realizing an electrochemical device having a high capacitance and an electrochemical device using the same.
  • the electrochemical device enables conversion between electrical energy and chemical energy, and specific examples thereof include a supercapacitor (electric double layer capacitor, EDLC), a lithium ion secondary battery, a hybrid capacitor, and the like.
  • a supercapacitor electric double layer capacitor, EDLC
  • a lithium ion secondary battery lithium ion secondary battery
  • a hybrid capacitor and the like.
  • Electrochemical devices are attracting attention in terms of charge / discharge and high energy density, and high capacitance and energy density are required as the application fields are expanded.
  • a unit cell including an anode and a cathode impregnated with an electrolyte, a separator provided between two electrodes, a gasket for preventing leakage of the electrolyte and preventing insulation and short circuit, and a metal case.
  • Cells are laminated and configured by combining terminals of a positive electrode and a negative electrode.
  • a composition for forming an electrode may include a binder and a conductive material in addition to an electrode active material, and each component may be applied to a supercapacitor in a slurry form after mixing.
  • the performance of the electrochemical device is determined in particular by the electrode active material, and activated carbon is mainly used as the electrode active material.
  • the commercialized electrode active material has a limitation in increasing the capacity of the electrochemical device, a solution for this situation is required.
  • the embodiment aims to provide an electrode material capable of implementing an electrochemical device having a high capacitance.
  • the electrode material of the present invention comprises a carbon source, the carbon source comprises crystalline and amorphous, the crystalline comprises a crystal lattice, the amorphous comprises pores, the interlayer distance of the crystalline is between 0.37 nm and 0.40 nm and the electrode
  • the ratio of said crystalline to the unit weight (g) of material is 0.4 to 0.91.
  • the ratio of the crystalline to the unit weight (g) may satisfy the following equation (1) and (2).
  • Equation 1 20x + 2000y k
  • the volume of the pores having a diameter of more than 0 nm and 1 nm or less in the pores may be 60% to 85% of the total volume of the amorphous.
  • the volume of the pores having a diameter of 0.6 nm to 0.9 nm in the pores may be 45% to 75% of the total volume of the amorphous.
  • the volume of the pores having a diameter of 0.75 nm to 0.85 nm in the pores may be 15% to 23% of the total volume of the amorphous.
  • the specific surface area may be 200 m 2 / g to 1200 m 2 / g.
  • the apparent density is 0.7 g / cm 3 To 1.5 g / cm 3 .
  • the electrochemical device of the present invention includes a first electrode, a second electrode and a separator disposed between the first electrode and the second electrode, and forms at least one of the first electrode and the second electrode.
  • the electrode material comprises a carbon source, the carbon source comprises crystalline and amorphous, the crystalline comprises a crystalline lattice, the amorphous comprises pores, the crystalline interlayer distance is between 0.37 nm and 0.40 nm and the The ratio of the crystalline to the unit weight (g) is 0.4 to 0.91.
  • the ratio of the crystalline to the unit weight (g) may satisfy the following equation (1) and (2).
  • Equation 1 20x + 2000y k
  • the volume of the pores having a diameter of more than 0 nm and 1 nm or less in the pores may be 60% to 85% of the total volume of the amorphous.
  • the electrochemical device formed by including the electrode material of the embodiment is capable of realizing high capacitance, and thus has excellent electrical characteristics.
  • the electrode material of the embodiment can be used in electrochemical devices with significantly improved capacitance.
  • FIG. 1 is a view schematically showing an enlarged shape of an electrode material according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an electrochemical device according to an embodiment of the present invention.
  • FIG. 3 is a manufacturing process chart of the electrode material according to an embodiment of the present invention.
  • FIG. 4 is a view schematically showing a change in carbon source according to heat treatment and activation treatment.
  • FIG. 6 is a graph showing the distribution of pores according to the pore diameter of Example 1 and Comparative Example 8.
  • FIG. 6 is a graph showing the distribution of pores according to the pore diameter of Example 1 and Comparative Example 8.
  • each layer, film, electrode, plate or substrate, etc. is formed on or under the "on” of each layer, film, electrode, plate or substrate, etc.
  • “on” and “under” include both being formed “directly” or “indirectly” through other components.
  • FIG. 1 is a view schematically showing an enlarged shape of an electrode material according to an embodiment of the present invention. A description with reference to FIG. 1 is as follows.
  • the electrode material comprises a carbon source 100, and the carbon source 100 comprises a crystalline 21 and an amorphous 11 comprising a crystal lattice. That is, the crystalline 21 and the amorphous 11 are mixed in the carbon source 100 included in the electrode material.
  • the carbon source 100 may include, for example, a material such as petroleum or coal-based pitch, green coke (green coke), calcination (calcination) coke, or the like. However, as long as it does not depart from the object of the present invention, it is not necessarily limited thereto.
  • the amorphous 11 included in the carbon source 100 includes pores 12.
  • the pores 12 impart porosity to the electrode material, and electrolyte ions 13 may be inserted into the pores 12 included in the amorphous 11.
  • the presence or absence of pores 12 and / or the diameter length of the pores 12 in the amorphous 11 is a factor influencing the specific surface area of the electrode material. Accordingly, the capacitance of the electrode material may be improved by adjusting the presence or absence of the pores 12 and / or the diameter length of the pores 12.
  • the electrode material may include at least one pore 12 in the amorphous 11. That is, the electrode material may include a plurality of pores 12 in the amorphous 11.
  • the length of the diameter may be the same or different for each pore 12.
  • the electrode material may include pores 12 having the same length diameter.
  • the electrode material may include pores 12 having different length diameters.
  • the electrode material may include both pores 12 having the same diameter in length and pores 12 having different diameters in length.
  • Crystalline 21 included in the carbon source 100 is formed as the partial crystallization in the process of heat treatment at a temperature of 650 °C to 900 °C as described later.
  • the carbon source 100 includes the crystalline 21 can be confirmed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • Some of the diffraction occurs when X-rays are irradiated to the crystals.
  • the diffraction angles and intensities are inherent in each material structure, and the diffraction X-rays can be used to obtain information related to the type and amount of crystalline material contained in the sample. That is, according to the X-ray diffraction analysis, information about the structure of the crystalline substance can be known.
  • the electrode material includes a crystalline 21 in addition to the pores 12 of the amorphous 11 in the carbon source 100. Accordingly, the crystalline 21 may serve to move the electrolyte ions 13 so that the electrolyte ions 13 easily flow, thereby lowering the resistance to improve electrical conductivity. In addition, the capacitance can be significantly improved.
  • the crystalline interlayer distance d is 0.37 nm to 0.40 nm.
  • the crystalline interlayer distance d may be controlled by an activation temperature and / or a content ratio of a carbon source and an activator, which will be described later.
  • the crystalline interlayer distance d is less than 0.37 nm, electrolyte ions 13 cannot be inserted between adjacent crystal lattice layers.
  • the crystalline interlayer distance (d) exceeds 0.40 nm, the distance between adjacent crystal layers becomes farther, and van der Waals forces existing between the respective crystal layers cannot act, thereby losing crystallinity. Accordingly, there is a problem that the capacitance F / cc is lowered when the crystalline interlayer distance d is out of the above range.
  • the crystalline interlayer distance d may be measured by a method well known in the art, and may be, for example, X-ray diffraction analysis or TEM photograph, but is not necessarily limited thereto.
  • the ratio of the crystalline 21 to the unit weight g of the electrode material is 0.4 to 0.91.
  • the specific surface area of the carbon source 100 including only the crystalline 21 and only the amorphous 11 may be different. Therefore, in order to implement an electrode material capable of improving the capacitance value, the ratio of the crystalline 21 and the amorphous 11 per unit weight (g) of the electrode material may be specified.
  • the ratio of the crystalline 21 to the unit weight (g) of the electrode material may be derived by Equations 1 and 2 below.
  • Equation 1 20x + 2000y k
  • x is the proportion of crystalline
  • y is the proportion of amorphous
  • k is 200 to 1200 for the specific surface area value.
  • the ratio of the crystalline 21 to the unit weight (g) of the electrode material may be controlled by the heat treatment temperature of the carbon source 100 as described below.
  • the carbon source 100 includes both the amorphous 11 and the crystalline 21, and thus the capacitance may be improved by considering all the factors related to the capacitance in the amorphous 11 and the crystalline 21.
  • the ratio of the pores 12 and the diameter of the pores 12 having a specific range of diameters can be measured by the BET measurement method, but is not necessarily limited thereto.
  • the pores 12 may be composed of pores 12 having various diameters.
  • the pores 12 may include pores 12 having a diameter greater than 0 nm and 1 nm or less.
  • the volume of the pores 12 having a diameter in the above range may be 60% to 85% of the total volume of the amorphous (11).
  • the volume of pores 12 having a diameter in this range is less than 60% or more than 85% relative to the total volume of amorphous 11, the capacitance of the electrode material is significantly reduced. Accordingly, there is a problem in that the electrical properties of the electrode material and the electrochemical device 10 including the same are lowered.
  • the volume of pores 12 with a diameter of 0.6 nm to 0.9 nm may be 45% to 75% of the total volume of the amorphous 11.
  • the volume of the pores 12 having a diameter of 0.6 nm to 0.9 nm is within the above range, the effect of improving capacitance can be improved, which is preferable.
  • the volume of pores 12 with a diameter of 0.75 nm to 0.85 nm may be 15% to 23% of the total volume of the amorphous 11.
  • the volume of the pores 12 having a diameter of 0.75 nm to 0.85 nm is in the above-described range, the effect of improving capacitance can be significantly improved, which is very preferable.
  • the specific surface area of the electrode material is also a factor influencing the capacitance. Specifically, when the specific surface area is large, energy storage characteristics are generally improved, but when the specific surface area is too large, the electrode density may be lowered, and thus the capacitance F / cc may be reduced.
  • the specific surface area of the electrode material may vary depending on the carbon source 100 included in the electrode material.
  • the specific surface area of the electrode material may also vary depending on the ratio of the crystalline 21 and the amorphous 11 included in the carbon source 100.
  • the ratio of the crystalline 21 is less than 0.4, there is a problem that the specific surface area of the electrode material is small and the electrostatic capacity is significantly lowered. In addition, when the ratio of the crystalline 21 is more than 0.91, there is a problem that the specific surface area of the electrode material is excessively increased and the capacitance is rather reduced.
  • the specific surface area of the electrode material may be 200 m 2 / g to 1200 m 2 / g.
  • the specific surface area of the electrode material is within the above-described range, the electrolyte ions are easily introduced between the crystal lattice or the amorphous pores 12, and thus the electrostatic capacity is remarkably improved.
  • the specific surface area may be measured by BET measurement, but is not necessarily limited thereto.
  • the apparent density means mass per unit volume, and the apparent density may also affect the capacitance. Specifically, if the apparent density is too large, there is a problem that the capacitance decreases, and if the apparent density is too small, energy storage characteristics may be degraded.
  • the apparent density of the electrode material is 0.7 g / cm 3 To 1.5 g / cm 3 . It is preferable that the apparent density is a value within the above-mentioned range because the capacitance of the electrode material increases.
  • the apparent density of the electrode material may be between 0.9 g / cm 3 and 1.3 g / cm 3 . If the apparent density is a value within the above-mentioned range, the effect of improving the capacitance of the electrode material is more preferable.
  • the electrode material of the present invention comprises a carbon source 100, the carbon source 100 comprises a crystalline 21 comprising a crystal lattice and an amorphous 11 comprising pores 12, the crystalline interlayer distance (d) is 0.37 nm to 0.40 nm, and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91. Accordingly, the electrode material may have a high capacitance.
  • FIG 2 schematically illustrates an electrochemical device 10 of one embodiment.
  • the electrochemical device 10 is not particularly limited as long as it is within the scope of the present invention without departing from the object of the electrical energy and chemical energy conversion.
  • the electrochemical device 10 may be a supercapacitor, a secondary battery, or the like.
  • a supercapacitor is used as the electrochemical device 10.
  • the electrochemical device 10 of the present invention is formed including the electrode material described above.
  • the electrochemical device 10 includes a first electrode 2, a second electrode 4, and a separator 3 disposed between the first electrode 2 and the second electrode 4.
  • At least one of the first electrode 2 and the second electrode 4 included in the electrochemical element 10 is formed by including the electrode material described above, and thus overlaps with the foregoing description with respect to the electrode material. The detailed description thereof will be omitted within the scope.
  • the electrode material forming at least one of the first electrode 2 and the second electrode 4 includes a carbon source 100 and the carbon source 100 includes a crystalline 21 and pores (including a crystal lattice).
  • Interlayer distance (d) of the crystalline is from 0.37 to 0.40 nm, and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91.
  • the electrode material may be included as an electrode forming composition for at least one of the first electrode 2 and the second electrode 4 so that the electrode material may function as an electrode active material.
  • the ratio of the crystalline to the unit weight (g) may satisfy the following equations (1) and (2).
  • Equation 1 20x + 2000y k
  • x is a crystalline ratio
  • y is an amorphous ratio
  • k is 200 to 1200.
  • the volume of the pores 12 having a diameter greater than 0 nm and 1 nm or less in the pores 12 included in the electrochemical device 10 may be 60% to 85% of the total volume of the amorphous 11. Can be.
  • the volume of the pores 12 having a diameter of 0.6 nm to 0.9 nm among the pores 12 included in the electrochemical device 10 may be 45% to 75% of the total volume of the amorphous 11. Can be.
  • the volume of the pores 12 having a diameter of 0.75 nm to 0.85 nm in the pores 12 may be 15% to 23% of the total volume of the amorphous 11.
  • the specific surface area of the electrode material may be 200 m 2 / g to 1200 m 2 / g.
  • the apparent density of the electrode material may be 0.7 g / cm 3 to 1.5 g / cm 3 .
  • the first electrode 2 may be an anode
  • the second electrode 4 may be a cathode
  • the separator 3 is disposed between the first electrode 2 and the second electrode 4. Specifically, the separator 3 may be disposed in contact with the first electrode 2 and the second electrode 4. One side and the other side of the separator 3 may be disposed in direct contact with the first electrode 2 and the second electrode 4.
  • the first electrode 2, the second electrode 4, and the separator 3 may be impregnated with an electrolyte.
  • the electrolyte may be a non-aqueous electrolyte.
  • the electrolyte cation may be TEA + , TEMA + , Li + , EMIM + , Na +, etc.
  • the electrolyte anion may be BF 4 ⁇ , PF 6 ⁇ , TFSI ⁇ , FSI ⁇ , or the like.
  • the electrolyte solvent may also be an organic electrolyte, more specifically ACN, PC, GBL, DMK, or the like.
  • the concentration of the electrolyte may be different for each kind of the solvent and the electrolyte ions 13.
  • the electrochemical device 10 may include two or more separators.
  • the separators 1 other than the separator 3 disposed between the first electrode 2 and the second electrode 4 may be formed. It may be disposed above the first electrode 2.
  • At least one electrode of the first electrode 2 and the second electrode 4 may be a rolling composition of an electrode forming composition including the electrode material described above on a base substrate.
  • the first electrode 2 and / or the second electrode 4 may be coated with a composition for forming an electrode including the electrode material on a base substrate.
  • the first electrode 2 and / or the second electrode 4 may be formed by making the electrode-forming material into a sheet state and attaching it to a base substrate, followed by drying, but the present invention is necessarily implemented. It is not limited to the examples.
  • the base substrate may be formed including a conductive material.
  • a conductive material may be metals and the like. More specifically, the metal may be copper, aluminum, or the like, but the present invention is not necessarily limited to the embodiments.
  • the base substrate may have a thin film shape.
  • the electrode forming composition may include a binder and a conductive material in addition to the electrode material, and may further include a solvent.
  • each component may be applied to the electrochemical device 10 as a slurry after mixing.
  • the binder imparts adhesion to the composition for forming an electrode.
  • specific examples of the binder include carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP) And polyvinyl alcohol (PVA).
  • the binder may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
  • the binder may be included in 1 to 45% by weight based on the total composition for forming the electrode.
  • the conductive material imparts conductivity to the composition for forming an electrode.
  • Specific examples of the conductive material may include carbon black, graphene, carbon nanotubes (CNT), carbon nanofibers (CNF), and the like.
  • the conductive material may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
  • the conductive material may be included in an amount of 1 to 45% by weight based on the entire composition for forming an electrode.
  • the electrode forming composition may further include a solvent.
  • the solvent may include water or an organic solvent, but embodiments are not necessarily limited thereto.
  • the solvent may be included in 10 to 97% by weight based on the total composition for forming the electrode.
  • lead wires 6 and 7 may be attached to each of the first electrode 2 and the second electrode 4.
  • first electrode 2, the second electrode 4, and the separator 3 disposed therebetween may have a structure disposed in the cover 5.
  • the cover 5 may be formed including a conductive material.
  • the conductive material may include a metal and the like. Specific examples of the metal may be aluminum and the like.
  • FIG. 3 is a manufacturing process chart of the electrode material according to an embodiment of the present invention
  • Figure 4 is a view showing a change in the carbon source according to the activation process.
  • the manufacturing method of an electrode material is demonstrated with reference to FIG. 3 and FIG.
  • the carbon source 100 is heat treated at a temperature of 650 °C to 900 °C.
  • the carbon source 100 is heat-treated at a temperature of 650 ° C. to 900 ° C. to form amorphous 11 and crystalline 21 in the carbon source 100.
  • the heat treatment temperature may be 650 °C to 850 °C.
  • the ratio of the crystalline 21 to the unit weight (g) of the electrode material may be controlled by the heat treatment temperature of the carbon source 100.
  • the ratio of the crystalline 21 to the unit weight (g) of the electrode material varies according to the heat treatment temperature of the carbon source 100, and the ratio of the crystalline 21 affects the specific surface area of the electrode material and thus the electrostatic The dose value can be changed.
  • the specific surface area can be reduced.
  • the electrode material may include the crystalline 21 as the heat treatment of the carbon source 100 within a temperature range of 650 ° C. to 900 ° C., as well as an optimal crystalline to improve the capacitance value.
  • the ratio of 21) may be implemented in the range of 0.4 to 0.91 based on the unit weight (g) of the electrode material.
  • the time for which the heat treatment process is performed may vary depending on the size of the reactor.
  • the heat treatment may be performed in an inert gas atmosphere.
  • the inert gas may be helium, argon, nitrogen, and the like.
  • the inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
  • the heat treated carbon source 100 is activated with a material containing alkali at a temperature of 800 ° C to 1000 ° C.
  • the amorphous 11 is broken to form pores 12, or the crystalline 21 has a crystalline interlayer distance (see FIG. 4), thereby increasing the specific surface area of the carbon source.
  • the activation treatment temperature is less than 800 °C or more than 1000 °C, the crystalline interlayer distance of the crystalline 21 in the crystalline 21 of the carbon source 100 is out of 0.37 nm to 0.40 nm there is a problem that can not secure a high capacitance .
  • Electrode materials can be produced which deviate from 60 to 85% of the total volume. In this case, there is a problem that the electrode material and the electrochemical device 10 including the same cannot implement high capacitance.
  • alkali may be lithium, sodium, potassium metal, and the like, but are not necessarily limited thereto.
  • the activation treatment may be performed in an inert gas atmosphere.
  • the inert gas may be helium, argon, nitrogen, and the like.
  • the inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
  • the activation treatment may be performed in an inert gas atmosphere.
  • the inert gas may be helium, argon, nitrogen, and the like.
  • the inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
  • the carbon source 100 and the activator are mixed in a weight ratio of 1: 0.8 to 1: 5.5.
  • the carbon source may not be sufficiently activated. Accordingly, even if the crystalline 21 is present in the electrode material, there is a problem that the interlayer distance of the crystalline 21 sufficient to insert the electrolyte ions cannot be secured.
  • the weight ratio of the carbon source and the activator is outside the above-described range, it may be difficult to adjust the proportion of the pores 12 having a specific range of diameters. Accordingly, it is difficult to implement the volume of the pores 12 greater than 0 nm and less than 1 nm in diameter to 60 to 85% of the total volume of the amorphous 11, so that the capacitance may be significantly reduced.
  • the activation treatment is neutralized to remove the alkali-containing material
  • hydrochloric acid, nitric acid, etc. may be used as a neutralizing agent.
  • distilled water may be used as an example in the washing process.
  • After the cleaning may further comprise a drying process.
  • the time and temperature of the drying process may vary depending on the size of the reactor.
  • the manufacturing method of the electrode material is well known in the art and may further include the process, if it is within the scope without departing from the object of the present invention.
  • the electrode material produced by the above-described method comprises a crystalline 21 comprising a crystal lattice and an amorphous 11 comprising pores 12 and the crystalline interlayer distance d is between 0.37 nm and 0.40 nm. 100) and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91. That is, according to the method of manufacturing the electrode material, the above-described electrode material is manufactured, and thus, the above-described contents may be applied in the same range to overlap with the description of the electrode material.
  • the residue oil from the Naphta Cracking Center (NCC) process was heat treated at a temperature of 350 ° C. to produce a solid state pitch ranging from 1000 to 2500 molecular weight, and used as the carbon source of the electrode material.
  • the carbon source prepared by the above method was heat-treated in a hot spot of 60 ⁇ * 120 cm for 1 hour at a temperature of 750 ° C. under argon atmosphere.
  • an electrode material was prepared by activating a content ratio of a carbon source and a KOH activator 1: 4 at 900 ° C. for 1 hour in an argon atmosphere, and then a material for forming an electrode was prepared using the ingredients and contents shown in Table 1 below.
  • the composition for forming an electrode was pressed on a copper base substrate with a roller to make a sheet, and then dried to prepare a first electrode and a second electrode, and a lead wire was attached to each electrode.
  • the first separator, the first electrode, the second separator and the second electrode were laminated and wound up, and the sealing rubber was attached thereto and then inserted into the aluminum cover. Subsequently, an electrolyte solution (1M TEABF4 in ACN) was injected and then sealed to impregnate the winding device to prepare an electrochemical device (super capacitor) (see FIG. 2).
  • Example 5 is an X-ray diffraction analysis pattern of the electrode material according to Example 1 of the present invention
  • An electrochemical device was manufactured in the same manner as in Example 1, except that the content ratio of the carbon source and the activator was different from Example 1 in the range of 1: 0.8 to 1: 5.5.
  • An electrochemical device was manufactured in the same manner as in Example 1, except that the activating treatment was performed using a content ratio of a carbon source and an activator of 1: 0.5.
  • An electrochemical device was manufactured in the same manner as in Example 1, except that the activating treatment was performed using a content ratio of a carbon source and an activator of 1: 6.
  • the interlayer distance of crystalline in the electrode material according to the Examples and Comparative Examples was measured by X-ray diffraction analysis.
  • the electrode materials prepared in Examples 2 to 4 belong to the scope of the present invention because the crystalline interlayer distance in the crystalline range is 0.37 nm to 0.4 nm.
  • An electrochemical device was manufactured in the same manner as in Example 1, except that the carbon source was heat-treated at different temperatures within the temperature range of 650 ° C to 900 ° C.
  • Comparative Examples 3 and 4 were heat-treated at a temperature close to 650 °C even within the temperature range
  • Comparative Examples 5 to 7 was heat-treated at a temperature close to 900 °C even within the temperature range.
  • Example 5 0.890 0.110 238 25.5
  • Example 6 0.866 0.134 285
  • Example 7 0.854 0.146 309 25.3
  • Example 8 0.848 0.152 320 24
  • Example 9 0.827 0.173 363 24.4
  • Example 10 0.521 0.479 969 24.9
  • Example 11 0.453 0.547 1104 26 Comparative Example 3 0.977 0.023 66 19 Comparative Example 4 0.947 0.053 124 18 Comparative Example 5 0.343 0.657 1320 20 Comparative Example 6 0.202 0.798 1600 19 Comparative Example 7 0.020 0.980 1960 17
  • the heat treatment was performed within a temperature range of 650 ° C. to 900 ° C.
  • Comparative Examples 3 and 4 which were heat-treated at a high temperature even in the above temperature range, had a relatively high ratio of crystalline and a small specific surface area
  • Comparative Examples 5 to 7 that were heat-treated at a low temperature within the above temperature range had a crystalline ratio It is relatively low and accordingly, the specific surface area is large.
  • An electrochemical device was manufactured in the same manner as in Example 1, except that the material for forming an electrode was manufactured using the ingredients and contents shown in Table 4 below.
  • Example 1 the BET measurement method using N 2 adsorption (device: SURFACE AREA ANALYZER (TRISTAR-3000), manufactured by MICROMERITICS) measured the distribution of pores having a specific pore diameter and a corresponding diameter.
  • N 2 adsorption device: SURFACE AREA ANALYZER (TRISTAR-3000), manufactured by MICROMERITICS
  • the electrode material of Example 1 contained pores, and the volume of pores having a diameter of more than 0 nm and 1.0 nm or less was 74.61% of the total amorphous volume. It turns out that it belongs to the scope of the invention.
  • Comparative Example 8 was found to be out of the scope of the present invention because the volume of the pores having a diameter of more than 0 nm and 1.0 nm or less was 32.16% with respect to the total amorphous volume even if the pores were included.
  • the apparent density was calculated by mass per unit volume, and the capacitance was measured by a Hi-EDLC 16CH instrument (manufactured by Human Instrument, Inc.) at 0.565 mA. The results are shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An embodiment relates to an electrode material and an electrochemical device using the same and, more specifically, to: an electrode material, which can implement an electrochemical device and has a high capacitance by comprising a carbon source, comprising a crystalline structure and an amorphous structure, wherein the crystalline structure comprises a crystal lattice, the amorphous structure comprises pores, the interlayer distance of the crystalline structure is 0.37-0.40 nm, and the ratio of the crystalline structure to the unit weight (g) of the electrode material is 0.4-0.91; and an electrochemical device using the same.

Description

전극 재료 및 이를 이용한 전기 화학 소자Electrode Materials and Electrochemical Devices Using the Same
실시예는 전극 재료 및 이를 이용한 전기 화학 소자에 관한 것으로, 특히 높은 정전 용량을 갖는 전기 화학 소자의 구현이 가능한 전극 재료 및 이를 이용한 전기 화학 소자에 관한 것이다.The embodiment relates to an electrode material and an electrochemical device using the same, and more particularly, to an electrode material capable of realizing an electrochemical device having a high capacitance and an electrochemical device using the same.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. Recently, interest in energy storage technology is increasing.
휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기 화학 소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. As the field of application extends to the energy of mobile phones, camcorders and notebook PCs, and even electric vehicles, efforts for research and development of electrochemical devices are becoming more concrete.
전기 화학 소자는 전기 에너지와 화학 에너지 상호간에 변환이 가능하도록 하는 것으로, 구체적인 예로는 슈퍼 캐패시터(전기 이중층 캐패시터, EDLC), 리튬 이온 2차 전지, 하이브리드 캐패시터 등이 있다. The electrochemical device enables conversion between electrical energy and chemical energy, and specific examples thereof include a supercapacitor (electric double layer capacitor, EDLC), a lithium ion secondary battery, a hybrid capacitor, and the like.
전기 화학 소자는 충방전이 가능하고 에너지 밀도가 높다는 측면에서 주목 받고 있는 분야이며, 응용 분야의 확대에 따라 높은 정전 용량과 에너지 밀도가 요구되고 있다.Electrochemical devices are attracting attention in terms of charge / discharge and high energy density, and high capacitance and energy density are required as the application fields are expanded.
슈퍼 캐패시터를 예로 들면, 전해액에 함침된 양극 및 음극, 두 전극 사이에 구비되는 분리막, 전해액의 누액을 방지하고 절연 및 단락 방지를 위한 가스켓, 금속 케이스 등을 포함하여 단위 셀이 이루어지며, 이러한 단위 셀을 적층하고 양극 및 음극의 단자를 조합하여 구성되며, 전극 형성용 조성물로 전극 활물질 외에 바인더, 도전재가 포함될 수 있으며 각 성분은 혼합 후 슬러리 형태로 슈퍼 캐패시터에 적용될 수 있다.As an example of a supercapacitor, a unit cell is formed including an anode and a cathode impregnated with an electrolyte, a separator provided between two electrodes, a gasket for preventing leakage of the electrolyte and preventing insulation and short circuit, and a metal case. Cells are laminated and configured by combining terminals of a positive electrode and a negative electrode. A composition for forming an electrode may include a binder and a conductive material in addition to an electrode active material, and each component may be applied to a supercapacitor in a slurry form after mixing.
이 때, 전기 화학 소자의 성능은 특히 전극 활물질에 의해 결정되며, 전극 활물질로 활성탄이 주로 이용되고 있다. At this time, the performance of the electrochemical device is determined in particular by the electrode active material, and activated carbon is mainly used as the electrode active material.
그러나, 상용화된 전극 활물질로는 전기 화학 소자의 고 용량화에 한계가 있는바, 이에 대한 해결책이 필요한 실정이다.However, the commercialized electrode active material has a limitation in increasing the capacity of the electrochemical device, a solution for this situation is required.
실시예는 높은 정전 용량을 갖는 전기 화학 소자의 구현이 가능한 전극 재료를 제공하는 것을 목적으로 한다.The embodiment aims to provide an electrode material capable of implementing an electrochemical device having a high capacitance.
또한, 실시예는 정전 용량이 현저하게 향상된 전기 화학 소자의 구현이 가능한 전극 재료를 이용한 전기 화학 소자를 제공하는 것을 목적으로 한다.In addition, it is an object of the embodiment to provide an electrochemical device using an electrode material capable of realizing an electrochemical device with significantly improved capacitance.
본 발명의 전극 재료는 탄소원을 포함하고 상기 탄소원은 결정질 및 비정질을 포함하며, 상기 결정질은 결정 격자를 포함하고, 상기 비정질은 기공을 포함하며, 상기 결정질의 층간 거리는 0.37 nm 내지 0.40 nm이고 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91이다.The electrode material of the present invention comprises a carbon source, the carbon source comprises crystalline and amorphous, the crystalline comprises a crystal lattice, the amorphous comprises pores, the interlayer distance of the crystalline is between 0.37 nm and 0.40 nm and the electrode The ratio of said crystalline to the unit weight (g) of material is 0.4 to 0.91.
상기 전극 재료의 일 실시예로, 상기 단위 중량(g)에 대한 상기 결정질의 비율은 하기 수학식 1 및 수학식 2를 만족할 수 있다.In one embodiment of the electrode material, the ratio of the crystalline to the unit weight (g) may satisfy the following equation (1) and (2).
[수학식 1] 20x+2000y=k Equation 1 20x + 2000y = k
[수학식 2] x+y=1[Equation 2] x + y = 1
(식 중, x는 결정질 비율이고, y는 비정질 비율이며, k는 200 내지 1200임).(Wherein x is a crystalline ratio, y is an amorphous ratio and k is 200 to 1200).
상기 전극 재료의 일 실시예로, 상기 기공 중 지름이 0 nm 초과 1 nm 이하인 기공의 부피는 상기 비정질 전체 부피의 60 % 내지 85 %일 수 있다.In one embodiment of the electrode material, the volume of the pores having a diameter of more than 0 nm and 1 nm or less in the pores may be 60% to 85% of the total volume of the amorphous.
상기 전극 재료의 일 실시예로, 상기 기공 중 지름이 0.6 nm 내지 0.9 nm인 기공의 부피는 상기 비정질 전체 부피의 45 % 내지 75 %일 수 있다.In one embodiment of the electrode material, the volume of the pores having a diameter of 0.6 nm to 0.9 nm in the pores may be 45% to 75% of the total volume of the amorphous.
상기 전극 재료의 일 실시예로, 상기 기공 중 지름이 0.75 nm 내지 0.85 nm인 기공의 부피는 상기 비정질 전체 부피의 15 % 내지 23 %일 수 있다.In one embodiment of the electrode material, the volume of the pores having a diameter of 0.75 nm to 0.85 nm in the pores may be 15% to 23% of the total volume of the amorphous.
상기 전극 재료의 일 실시예로, 비표면적은 200 m2/g 내지 1200 m2/g일 수 있다.In one embodiment of the electrode material, the specific surface area may be 200 m 2 / g to 1200 m 2 / g.
상기 전극 재료의 일 실시예로, 겉보기 밀도는 0.7 g/cm3 내지 1.5 g/cm3일 수 있다.In one embodiment of the electrode material, the apparent density is 0.7 g / cm 3 To 1.5 g / cm 3 .
본 발명의 전기 화학 소자는 제1 전극, 제2 전극 및 상기 제1 전극 및 상기 제2 전극 사이에 배치되는 분리막을 포함하고, 상기 제1 전극 및 상기 제2 전극 중 적어도 하나의 전극을 형성하는 전극 재료는, 탄소원을 포함하고 상기 탄소원은 결정질 및 비정질을 포함하며, 상기 결정질은 결정 격자를 포함하고, 상기 비정질은 기공을 포함하며, 상기 결정질의 층간 거리는 0.37 nm 내지 0.40 nm이고 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91이다.The electrochemical device of the present invention includes a first electrode, a second electrode and a separator disposed between the first electrode and the second electrode, and forms at least one of the first electrode and the second electrode. The electrode material comprises a carbon source, the carbon source comprises crystalline and amorphous, the crystalline comprises a crystalline lattice, the amorphous comprises pores, the crystalline interlayer distance is between 0.37 nm and 0.40 nm and the The ratio of the crystalline to the unit weight (g) is 0.4 to 0.91.
상기 전기 화학 소자의 일 실시예로, 상기 단위 중량(g)에 대한 상기 결정질의 비율은 하기 수학식 1 및 수학식 2를 만족할 수 있다.In one embodiment of the electrochemical device, the ratio of the crystalline to the unit weight (g) may satisfy the following equation (1) and (2).
[수학식 1] 20x+2000y=k Equation 1 20x + 2000y = k
[수학식 2] x+y=1[Equation 2] x + y = 1
(식 중, x는 결정질 비율이고, y는 비정질 비율이며, k는 200 내지 1200임).(Wherein x is a crystalline ratio, y is an amorphous ratio and k is 200 to 1200).
상기 전기 화학 소자의 일 실시예로, 상기 기공 중 지름이 0 nm 초과 1 nm 이하인 기공의 부피는 상기 비정질 전체 부피의 60 % 내지 85 %일 수 있다.In one embodiment of the electrochemical device, the volume of the pores having a diameter of more than 0 nm and 1 nm or less in the pores may be 60% to 85% of the total volume of the amorphous.
실시예의 전극 재료를 포함하여 형성되는 전기 화학 소자는 높은 정전 용량의 구현이 가능하여 전기적 특성이 우수하다.The electrochemical device formed by including the electrode material of the embodiment is capable of realizing high capacitance, and thus has excellent electrical characteristics.
실시예의 전극 재료는 정전 용량이 현저히 향상된 전기 화학 소자에 이용될 수 있다.The electrode material of the embodiment can be used in electrochemical devices with significantly improved capacitance.
도 1은 본 발명의 일 실시예에 따른 전극 재료를 확대한 형상을 개략적으로 도시한 도면이다.1 is a view schematically showing an enlarged shape of an electrode material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전기 화학 소자를 개략적으로 도시한 도면이다.2 is a view schematically showing an electrochemical device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전극 재료의 제조 공정도이다.3 is a manufacturing process chart of the electrode material according to an embodiment of the present invention.
도 4는 열처리 및 활성화 처리에 따른 탄소원의 변화를 개략적으로 도시한 도면이다. 4 is a view schematically showing a change in carbon source according to heat treatment and activation treatment.
도 5는 본 발명의 일 실시예에 따른 전극 재료의 X선 회절 분석 패턴이다5 is an X-ray diffraction analysis pattern of the electrode material according to an embodiment of the present invention
도 6은 실시예 1 및 비교예 8의 기공 지름에 따른 기공의 분포에 관한 그래프이다.6 is a graph showing the distribution of pores according to the pore diameter of Example 1 and Comparative Example 8. FIG.
실시예의 설명에 있어서, 각 층, 막, 전극, 판 또는 기판 등이 각 층, 막, 전극, 판 또는 기판 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. In the description of the embodiments, it is described that each layer, film, electrode, plate or substrate, etc., is formed on or under the "on" of each layer, film, electrode, plate or substrate, etc. In the case, “on” and “under” include both being formed “directly” or “indirectly” through other components.
또한 각 구성요소의 상, 옆 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.In addition, the criteria for the top, side or bottom of each component will be described with reference to the drawings. The size of each component in the drawings may be exaggerated for description, and does not mean a size that is actually applied.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 전극 재료를 확대한 형상을 개략적으로 도시한 도면이다. 이하 도 1을 참조하여 설명한다.1 is a view schematically showing an enlarged shape of an electrode material according to an embodiment of the present invention. A description with reference to FIG. 1 is as follows.
상기 전극 재료는 탄소원(100)을 포함하고, 상기 탄소원(100)은 결정 격자를 포함하는 결정질(21) 및 비정질(11)을 포함한다. 즉, 상기 전극 재료에 포함되는 탄소원(100)에는 결정질(21)과 비정질(11)이 혼재되어 있다.The electrode material comprises a carbon source 100, and the carbon source 100 comprises a crystalline 21 and an amorphous 11 comprising a crystal lattice. That is, the crystalline 21 and the amorphous 11 are mixed in the carbon source 100 included in the electrode material.
상기 탄소원(100)은 구체적인 예를 들면 석유계 또는 석탄계 피치(Pitch), 생 코크스(그린 코크스), 칼시네이션(Calcination) 코크스 등의 물질을 포함할 수 있다. 그러나, 본 발명의 목적을 벗어나지 않는 범위 내라면 반드시 이에 제한되는 것은 아니다. The carbon source 100 may include, for example, a material such as petroleum or coal-based pitch, green coke (green coke), calcination (calcination) coke, or the like. However, as long as it does not depart from the object of the present invention, it is not necessarily limited thereto.
상기 탄소원(100)에 포함되는 비정질(11)은 기공(12)을 포함한다.The amorphous 11 included in the carbon source 100 includes pores 12.
상기 기공(12)은 상기 전극 재료에 다공성을 부여하는 것으로 상기 비정질(11)에 포함되는 기공(12)에 전해질 이온(13)이 삽입될 수 있다. The pores 12 impart porosity to the electrode material, and electrolyte ions 13 may be inserted into the pores 12 included in the amorphous 11.
상기 비정질(11)에서 기공(12)의 유무 및/또는 기공(12)의 지름 길이는 전극 재료의 비표면적에 영향을 주는 요인이다. 따라서, 기공(12)의 유무 및/또는 기공(12)의 지름 길이를 조절하여 전극 재료의 정전 용량을 향상시킬 수 있다.The presence or absence of pores 12 and / or the diameter length of the pores 12 in the amorphous 11 is a factor influencing the specific surface area of the electrode material. Accordingly, the capacitance of the electrode material may be improved by adjusting the presence or absence of the pores 12 and / or the diameter length of the pores 12.
상기 전극 재료는 상기 비정질(11)에 적어도 하나의 기공(12)을 포함할 수 있다. 즉, 상기 전극 재료는 복수 개의 기공(12)을 상기 비정질(11)에 포함할 수 있다.The electrode material may include at least one pore 12 in the amorphous 11. That is, the electrode material may include a plurality of pores 12 in the amorphous 11.
상기 전극 재료가 복수 개의 기공(12)을 포함하는 경우, 각각의 기공(12)마다 지름의 길이는 동일하거나 상이할 수 있다. 구체적으로, 상기 전극 재료는 동일한 길이의 지름을 갖는 기공(12)들을 포함할 수 있다. 또한, 상기 전극 재료는 상이한 길이의 지름을 갖는 기공(12)들을 포함할 수 있다. 뿐만 아니라, 상기 전극 재료는 길이가 동일한 지름을 갖는 기공(12)들과 길이가 상이한 지름을 갖는 기공(12)들을 모두 포함할 수 있다.When the electrode material comprises a plurality of pores 12, the length of the diameter may be the same or different for each pore 12. Specifically, the electrode material may include pores 12 having the same length diameter. In addition, the electrode material may include pores 12 having different length diameters. In addition, the electrode material may include both pores 12 having the same diameter in length and pores 12 having different diameters in length.
상기 탄소원(100)에 포함되는 결정질(21)은 후술하는 바와 같이 상기 탄소원(100)이 650 ℃ 내지 900 ℃의 온도에서 열처리되는 과정에서 부분 결정화가 진행됨에 따라 형성된다.Crystalline 21 included in the carbon source 100 is formed as the partial crystallization in the process of heat treatment at a temperature of 650 ℃ to 900 ℃ as described later.
상기 탄소원(100)이 결정질(21)을 포함하는지 여부는 X선 회절 분석법(X-ray diffraction, XRD)에 의해 확인할 수 있다. 결정에 X선 조사시 일부에서 회절이 일어나는데, 그 회절각과 강도는 물질 구조마다 고유한 것으로서, 회절 X선을 이용하여 시료에 함유된 결정성 물질의 종류와 양에 관계되는 정보를 알 수 있다. 즉, X선 회절 분석법에 의하면 결정성 물질의 구조에 관한 정보를 알 수 있다.Whether the carbon source 100 includes the crystalline 21 can be confirmed by X-ray diffraction (XRD). Some of the diffraction occurs when X-rays are irradiated to the crystals. The diffraction angles and intensities are inherent in each material structure, and the diffraction X-rays can be used to obtain information related to the type and amount of crystalline material contained in the sample. That is, according to the X-ray diffraction analysis, information about the structure of the crystalline substance can be known.
상기 전극 재료는 탄소원(100) 내에 비정질(11)의 기공(12) 외에도 결정질(21)을 포함한다. 이에 따라, 상기 결정질(21)은 전해질 이온(13)이 용이하게 흐를 수 있도록 전해질 이온(13)의 이동 통로 역할을 함으로써 저항을 낮춰 전기 전도도를 개선시킬 수 있다. 또한, 정전 용량을 현저히 향상시킬 수 있다. The electrode material includes a crystalline 21 in addition to the pores 12 of the amorphous 11 in the carbon source 100. Accordingly, the crystalline 21 may serve to move the electrolyte ions 13 so that the electrolyte ions 13 easily flow, thereby lowering the resistance to improve electrical conductivity. In addition, the capacitance can be significantly improved.
상기 결정질의 층간 거리(d)는 0.37 nm 내지 0.40 nm이다.The crystalline interlayer distance d is 0.37 nm to 0.40 nm.
상기 결정질의 층간 거리(d)는 후술하는 활성화 온도 및/또는 탄소원과 활성화제의 함량비로 조절할 수 있으며, 이와 관련된 내용은 후술한다.The crystalline interlayer distance d may be controlled by an activation temperature and / or a content ratio of a carbon source and an activator, which will be described later.
상기 결정질의 층간 거리(d)가 0.37 nm 미만이면 인접하는 결정 격자층 사이에 전해질 이온(13)이 삽입될 수 없다. 또한, 상기 결정질의 층간 거리(d)가 0.40 nm 를 초과하면 인접하는 결정층 사이의 거리가 멀어져 각 결정층 사이에 존재하던 반데르발스 힘이 작용할 수 없으므로 결정성을 상실한다. 이에 따라, 결정질의 층간 거리(d)가 상기 범위를 벗어나는 경우 정전 용량(F/cc)이 저하되는 문제가 있다.If the crystalline interlayer distance d is less than 0.37 nm, electrolyte ions 13 cannot be inserted between adjacent crystal lattice layers. In addition, when the crystalline interlayer distance (d) exceeds 0.40 nm, the distance between adjacent crystal layers becomes farther, and van der Waals forces existing between the respective crystal layers cannot act, thereby losing crystallinity. Accordingly, there is a problem that the capacitance F / cc is lowered when the crystalline interlayer distance d is out of the above range.
상기 결정질의 층간 거리(d)는 당 분야에 널리 알려진 방법에 의해 측정할 수 있고, 구체적인 예를 들면 X선 회절 분석법 또는 TEM 사진 등에 의할 수 있으나, 반드시 이에 제한되는 것은 아니다. The crystalline interlayer distance d may be measured by a method well known in the art, and may be, for example, X-ray diffraction analysis or TEM photograph, but is not necessarily limited thereto.
상기 전극 재료의 단위 중량(g)에 대한 상기 결정질(21)의 비율은 0.4 내지 0.91이다.The ratio of the crystalline 21 to the unit weight g of the electrode material is 0.4 to 0.91.
상기 전극 재료에 포함되는 상기 탄소원(100)의 종류에 따라 상기 탄소원(100)이 결정질(21) 만을 포함하는 경우와 비정질(11)만을 포함하는 경우의 비표면적이 상이할 수 있다. 따라서, 정전 용량 값을 향상시킬 수 있는 전극 재료를 구현하기 위하여 상기 전극 재료의 단위 중량(g)당 상기 결정질(21) 및 비정질(11)의 비율을 구체화 할 수 있다.Depending on the type of the carbon source 100 included in the electrode material, the specific surface area of the carbon source 100 including only the crystalline 21 and only the amorphous 11 may be different. Therefore, in order to implement an electrode material capable of improving the capacitance value, the ratio of the crystalline 21 and the amorphous 11 per unit weight (g) of the electrode material may be specified.
상기 전극 재료의 단위 중량(g)에 대한 상기 결정질(21)의 비율은 하기 수학식 1 및 수학식 2에 의해 도출될 수 있다.The ratio of the crystalline 21 to the unit weight (g) of the electrode material may be derived by Equations 1 and 2 below.
[수학식 1] 20x+2000y=k Equation 1 20x + 2000y = k
[수학식 2] x+y=1[Equation 2] x + y = 1
식 중, x는 결정질의 비율이고, y는 비정질의 비율이며, k는 비표면적 값으로 200 내지 1200이다.Wherein x is the proportion of crystalline, y is the proportion of amorphous, and k is 200 to 1200 for the specific surface area value.
또한, 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질(21)의 비율은 후술하는 바와 같이 탄소원(100)의 열처리 온도에 의해 조절될 수 있다.In addition, the ratio of the crystalline 21 to the unit weight (g) of the electrode material may be controlled by the heat treatment temperature of the carbon source 100 as described below.
상기 탄소원(100)은 비정질(11)과 결정질(21)을 모두 포함하는바, 비정질(11) 및 결정질(21)에서 정전 용량과 관련된 요인들을 모두 고려하여 정전 용량을 향상시킬 수 있다.The carbon source 100 includes both the amorphous 11 and the crystalline 21, and thus the capacitance may be improved by considering all the factors related to the capacitance in the amorphous 11 and the crystalline 21.
일 실시예로, 상기 비정질(11) 중 일정한 지름을 갖는 기공(12)의 비율을 조절함으로써 높은 정전 용량을 구현할 수 있다.In one embodiment, by adjusting the ratio of the pores 12 having a constant diameter of the amorphous 11 can be implemented a high capacitance.
특정 범위의 지름을 갖는 기공(12)의 비율 및 기공(12)의 지름은 BET 측정법에 의해 측정할 수 있으나, 반드시 이에 제한되는 것은 아니다. The ratio of the pores 12 and the diameter of the pores 12 having a specific range of diameters can be measured by the BET measurement method, but is not necessarily limited thereto.
상기 기공(12)은 다양한 지름을 가진 기공(12)들로 구성될 수 있다. The pores 12 may be composed of pores 12 having various diameters.
구체적으로, 상기 기공(12)은 지름이 0 nm 초과 1 nm 이하인 기공(12)을 포함할 수 있다. 전술한 범위의 지름을 갖는 기공(12)의 부피는 상기 비정질(11) 전체 부피의 60 %내지 85 %일 수 있다.Specifically, the pores 12 may include pores 12 having a diameter greater than 0 nm and 1 nm or less. The volume of the pores 12 having a diameter in the above range may be 60% to 85% of the total volume of the amorphous (11).
상기 범위의 지름을 갖는 기공(12)의 부피가 비정질(11) 전체 부피에 대하여 60% 미만이거나 또는 85%를 초과하는 경우 전극 재료의 정전 용량이 현저히 감소한다. 이에 따라 전극 재료 및 이를 포함하는 전기 화학 소자(10)의 전기적 특성이 저하되는 문제가 있다.If the volume of pores 12 having a diameter in this range is less than 60% or more than 85% relative to the total volume of amorphous 11, the capacitance of the electrode material is significantly reduced. Accordingly, there is a problem in that the electrical properties of the electrode material and the electrochemical device 10 including the same are lowered.
일 실시예로, 지름이 0.6 nm 내지 0.9 nm인 기공(12)의 부피는 상기 비정질(11)의 전체 부피에 대해 45 % 내지 75 %일 수 있다. 0.6 nm 내지 0.9 nm의 지름을 갖는 기공(12)의 부피가 전술한 범위 내인 경우 정전 용량 개선 효과가 향상될 수 있어 바람직하다.In one embodiment, the volume of pores 12 with a diameter of 0.6 nm to 0.9 nm may be 45% to 75% of the total volume of the amorphous 11. When the volume of the pores 12 having a diameter of 0.6 nm to 0.9 nm is within the above range, the effect of improving capacitance can be improved, which is preferable.
다른 실시예로, 지름이 0.75 nm 내지 0.85 nm인 기공(12)의 부피는 상기 비정질(11)의 전체 부피에 대해 15 % 내지 23 %일 수 있다. 0.75 nm 내지 0.85 nm의 지름을 갖는 기공(12)의 부피가 전술한 범위 내인 경우 정전 용량 개선 효과가 현저히 향상될 수 있어 매우 바람직하다.In another embodiment, the volume of pores 12 with a diameter of 0.75 nm to 0.85 nm may be 15% to 23% of the total volume of the amorphous 11. When the volume of the pores 12 having a diameter of 0.75 nm to 0.85 nm is in the above-described range, the effect of improving capacitance can be significantly improved, which is very preferable.
또한, 일 실시예로 전극 재료의 비표면적도 정전 용량에 영향을 주는 요인이다. 구체적으로, 비표면적이 크면 에너지 저장 특성이 향상되는 것이 일반적이나, 비표면적이 지나치게 큰 경우 전극 밀도가 낮아져 정전 용량(F/cc)이 오히려 감소할 수 있다.In addition, in one embodiment, the specific surface area of the electrode material is also a factor influencing the capacitance. Specifically, when the specific surface area is large, energy storage characteristics are generally improved, but when the specific surface area is too large, the electrode density may be lowered, and thus the capacitance F / cc may be reduced.
본 발명에 있어 상기 탄소원(100)의 열처리 온도가 낮을수록 비정질(11)의 비율이 높아져 전극 재료의 비표면적이 증가될 수 있고, 상기 탄소원(100)의 열처리 온도가 높을수록 결정질(21)의 비율이 높아져 전극 재료의 비표면적이 감소할 수 있다.In the present invention, the lower the heat treatment temperature of the carbon source 100, the higher the ratio of amorphous 11 can increase the specific surface area of the electrode material, the higher the heat treatment temperature of the carbon source 100, the higher the crystalline 21 of The ratio may be high to reduce the specific surface area of the electrode material.
상기 전극 재료의 비표면적은 전극 재료에 포함되는 탄소원(100)에 따라 달라질 수 있다. The specific surface area of the electrode material may vary depending on the carbon source 100 included in the electrode material.
또한, 전극 재료의 비표면적은 탄소원(100)에 포함되는 결정질(21) 및 비정질(11)의 비율에 따라서도 달라질 수 있다.In addition, the specific surface area of the electrode material may also vary depending on the ratio of the crystalline 21 and the amorphous 11 included in the carbon source 100.
상기 결정질(21)의 비율이 0.4 미만이면 전극 재료의 비표면적이 작아 정전 용량이 현저히 저하되는 문제가 있다. 또한, 상기 결정질(21)의 비율이 0.91 초과이면 전극 재료의 비표면적이 지나치게 증가하여 정전 용량이 오히려 감소하는 문제가 있다.If the ratio of the crystalline 21 is less than 0.4, there is a problem that the specific surface area of the electrode material is small and the electrostatic capacity is significantly lowered. In addition, when the ratio of the crystalline 21 is more than 0.91, there is a problem that the specific surface area of the electrode material is excessively increased and the capacitance is rather reduced.
일 실시예로, 상기 전극 재료의 비표면적은 200 m2/g 내지 1200 m2/g 일 수 있다. 상기 전극 재료의 비표면적이 전술한 범위 내인 경우 결정 격자 사이 또는 비정질의 기공(12)에 전해질 이온의 유입이 용이하여 정전 용량이 현저히 향상되어 바람직하다.In one embodiment, the specific surface area of the electrode material may be 200 m 2 / g to 1200 m 2 / g. When the specific surface area of the electrode material is within the above-described range, the electrolyte ions are easily introduced between the crystal lattice or the amorphous pores 12, and thus the electrostatic capacity is remarkably improved.
상기 비표면적은 BET 측정법에 의해 측정할 수 있으나, 반드시 이에 제한되는 것은 아니다.The specific surface area may be measured by BET measurement, but is not necessarily limited thereto.
본 명세서에서 겉보기 밀도란 단위 부피당 질량을 의미하는 것으로, 겉보기 밀도도 정전 용량에 영향을 줄 수 있다. 구체적으로, 겉보기 밀도가 너무 크면 정전 용량이 감소하는 문제가 있고, 겉보기 밀도가 너무 작으면 에너지 저장 특성이 저하될 수 있다. In the present specification, the apparent density means mass per unit volume, and the apparent density may also affect the capacitance. Specifically, if the apparent density is too large, there is a problem that the capacitance decreases, and if the apparent density is too small, energy storage characteristics may be degraded.
일 실시예로, 상기 전극 재료의 겉보기 밀도는 0.7 g/cm3 내지 1.5 g/cm3일 수 있다. 겉보기 밀도가 전술한 범위 내의 값이면 상기 전극 재료의 정전 용량이 증가하므로 바람직하다.In one embodiment, the apparent density of the electrode material is 0.7 g / cm 3 To 1.5 g / cm 3 . It is preferable that the apparent density is a value within the above-mentioned range because the capacitance of the electrode material increases.
다른 실시예로, 상기 전극 재료의 겉보기 밀도는 0.9 g/cm3 내지 1.3 g/cm3 일 수 있다. 겉보기 밀도가 전술한 범위 내의 값이면 상기 전극 재료의 정전 용량 향상 효과가 현저하므로 보다 바람직하다. In another embodiment, the apparent density of the electrode material may be between 0.9 g / cm 3 and 1.3 g / cm 3 . If the apparent density is a value within the above-mentioned range, the effect of improving the capacitance of the electrode material is more preferable.
본 발명의 전극 재료는 탄소원(100)을 포함하고, 상기 탄소원(100)은 결정 격자를 포함하는 결정질(21) 및 기공(12)을 포함하는 비정질(11)을 포함하며, 상기 결정질의 층간 거리(d)는 0.37 nm 내지 0.40 nm 이고, 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91이다. 이에 따라, 상기 전극 재료는 높은 정전 용량을 가질 수 있다.The electrode material of the present invention comprises a carbon source 100, the carbon source 100 comprises a crystalline 21 comprising a crystal lattice and an amorphous 11 comprising pores 12, the crystalline interlayer distance (d) is 0.37 nm to 0.40 nm, and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91. Accordingly, the electrode material may have a high capacitance.
도 2는 일 실시예의 전기 화학 소자(10)를 개략적으로 도시한 도면이다.2 schematically illustrates an electrochemical device 10 of one embodiment.
상기 전기 화학 소자(10)는 전기 에너지와 화학 에너지 상호 변환이 가능한 것으로써 본 발명의 목적을 벗어나지 않는 범위 내라면 특별히 제한되지 않는다. 구체적인 예를 들면 상기 전기 화학 소자(10)는 슈퍼 캐패시터, 이차 전지 등 일 수 있다. 이하에서는 상기 전기 화학 소자(10)로 슈퍼 캐패시터를 예로 든 도 2를 참조하여 설명한다.The electrochemical device 10 is not particularly limited as long as it is within the scope of the present invention without departing from the object of the electrical energy and chemical energy conversion. For example, the electrochemical device 10 may be a supercapacitor, a secondary battery, or the like. Hereinafter, a description will be given with reference to FIG. 2, in which a supercapacitor is used as the electrochemical device 10.
본 발명의 전기 화학 소자(10)는 전술한 전극 재료를 포함하여 형성된다.The electrochemical device 10 of the present invention is formed including the electrode material described above.
상기 전기 화학 소자(10)는 제1 전극(2), 제2 전극(4) 및 상기 제1 전극(2) 및 상기 제2 전극(4) 사이에 배치되는 분리막(3)을 포함한다.The electrochemical device 10 includes a first electrode 2, a second electrode 4, and a separator 3 disposed between the first electrode 2 and the second electrode 4.
상기 전기 화학 소자(10)에 포함되는 상기 제1 전극(2) 및 제2 전극(4) 중 적어도 하나의 전극은 전술한 전극 재료를 포함하여 형성되므로, 전극 재료와 관련하여 전술한 내용과 중첩되는 범위 내에서는 그에 관한 구체적인 설명을 생략한다.At least one of the first electrode 2 and the second electrode 4 included in the electrochemical element 10 is formed by including the electrode material described above, and thus overlaps with the foregoing description with respect to the electrode material. The detailed description thereof will be omitted within the scope.
상기 제1 전극(2) 및 제2 전극(4) 중 적어도 하나의 전극을 형성하는 전극 재료는 탄소원(100)을 포함하고 상기 탄소원(100)은 결정 격자를 포함하는 결정질(21) 및 기공(12)을 포함하는 비정질(11)을 포함하며 상기 결정질의 층간 거리(d)는 0.37 내지 0.40 nm이고, 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91이다.The electrode material forming at least one of the first electrode 2 and the second electrode 4 includes a carbon source 100 and the carbon source 100 includes a crystalline 21 and pores (including a crystal lattice). Interlayer distance (d) of the crystalline is from 0.37 to 0.40 nm, and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91.
따라서, 상기 전극 재료는 상기 제1 전극(2) 및 제2 전극(4) 중 적어도 한 전극에 대하여, 전극 형성용 조성물로 포함되어 상기 전극 재료는 전극 활물질로써 기능할 수 있다.Accordingly, the electrode material may be included as an electrode forming composition for at least one of the first electrode 2 and the second electrode 4 so that the electrode material may function as an electrode active material.
상기 전기 화학 소자(10)에 있어, 상기 단위 중량(g)에 대한 상기 결정질의 비율은 하기 수학식 1 및 수학식 2를 만족할 수 있다.In the electrochemical device 10, the ratio of the crystalline to the unit weight (g) may satisfy the following equations (1) and (2).
[수학식 1] 20x+2000y=k Equation 1 20x + 2000y = k
[수학식 2] x+y=1[Equation 2] x + y = 1
식 중, x는 결정질 비율이고, y는 비정질 비율이며, k는 200 내지 1200이다.Wherein x is a crystalline ratio, y is an amorphous ratio, and k is 200 to 1200.
일 실시예로, 상기 전기 화학 소자(10)에 포함되는 상기 기공(12) 중 지름이 0 nm 초과 1 nm 이하인 기공(12)의 부피는 상기 비정질(11) 전체 부피의 60 % 내지 85 %일 수 있다.In one embodiment, the volume of the pores 12 having a diameter greater than 0 nm and 1 nm or less in the pores 12 included in the electrochemical device 10 may be 60% to 85% of the total volume of the amorphous 11. Can be.
다른 실시예로, 상기 전기 화학 소자(10)에 포함되는 상기 기공(12) 중 지름이 0.6 nm 내지 0.9 nm인 기공(12)의 부피는 상기 비정질(11) 전체 부피의 45 % 내지 75 %일 수 있다.In another embodiment, the volume of the pores 12 having a diameter of 0.6 nm to 0.9 nm among the pores 12 included in the electrochemical device 10 may be 45% to 75% of the total volume of the amorphous 11. Can be.
또 다른 실시예로, 상기 기공(12) 중 지름이 0.75 nm 내지 0.85 nm인 기공(12)의 부피는 상기 비정질(11) 전체 부피의 15 % 내지 23 %일 수 있다.In another embodiment, the volume of the pores 12 having a diameter of 0.75 nm to 0.85 nm in the pores 12 may be 15% to 23% of the total volume of the amorphous 11.
상기 전기 화학 소자(10)에 있어 상기 전극 재료의 비표면적은 200 m2/g 내지 1200 m2/g일 수 있다.In the electrochemical device 10, the specific surface area of the electrode material may be 200 m 2 / g to 1200 m 2 / g.
또한, 상기 전기 화학 소자(10)에 있어 상기 전극 재료의 겉보기 밀도는 0.7 g/cm3 내지 1.5 g/cm3 일 수 있다.In addition, in the electrochemical device 10, the apparent density of the electrode material may be 0.7 g / cm 3 to 1.5 g / cm 3 .
상기 제1 전극(2)은 양극일 수 있고, 상기 제2 전극(4)은 음극일 수 있다. The first electrode 2 may be an anode, and the second electrode 4 may be a cathode.
상기 분리막(3)은 상기 제1 전극(2) 및 상기 제2 전극(4) 사이에 배치된다. 구체적으로, 상기 분리막(3)은 상기 제1 전극(2) 및 상기 제2 전극(4)과 접촉하며 배치될 수 있다. 상기 분리막(3)의 일면 및 타면은 상기 제1 전극(2) 및 상기 제2 전극(4)과 직접 접촉하며 배치될 수 있다.The separator 3 is disposed between the first electrode 2 and the second electrode 4. Specifically, the separator 3 may be disposed in contact with the first electrode 2 and the second electrode 4. One side and the other side of the separator 3 may be disposed in direct contact with the first electrode 2 and the second electrode 4.
상기 제1 전극(2), 제2 전극(4) 및 분리막(3)은 전해액에 함침될 수 있다.The first electrode 2, the second electrode 4, and the separator 3 may be impregnated with an electrolyte.
일 실시예로, 상기 전해액은 비수계 전해액일 수 있다. In one embodiment, the electrolyte may be a non-aqueous electrolyte.
보다 구체적으로, 비수계 전해액이 사용되는 경우 전해질 양이온은 TEA+, TEMA+, Li+, EMIM+, Na+ 등일 수 있고, 전해질 음이온은 BF4 -, PF6 -, TFSI-, FSI- 등일 수 있다. 또한, 전해액 용매는 유기성 전해액, 보다 구체적으로는 ACN, PC, GBL, DMK 등일 수 있다. More specifically, when a non-aqueous electrolyte is used, the electrolyte cation may be TEA + , TEMA + , Li + , EMIM + , Na +, etc., and the electrolyte anion may be BF 4 , PF 6 , TFSI , FSI −, or the like. have. The electrolyte solvent may also be an organic electrolyte, more specifically ACN, PC, GBL, DMK, or the like.
상기 전해액의 농도는 용매와 전해질 이온(13)의 종류마다 상이할 수 있다.The concentration of the electrolyte may be different for each kind of the solvent and the electrolyte ions 13.
필요에 따라, 상기 전기 화학 소자(10)는 2 이상의 분리막을 포함할 수 있다. If necessary, the electrochemical device 10 may include two or more separators.
일 실시예로, 상기 전기 화학 소자(10)가 복수의 분리막을 포함하는 경우, 제1 전극(2)과 제2 전극(4) 사이에 배치되는 분리막(3) 이외의 분리막(1)은 상기 제1 전극(2)의 상부에 배치될 수 있다.In an embodiment, when the electrochemical device 10 includes a plurality of separators, the separators 1 other than the separator 3 disposed between the first electrode 2 and the second electrode 4 may be formed. It may be disposed above the first electrode 2.
일 실시예로 상기 제1 전극(2) 및 제2 전극(4) 중 적어도 하나의 전극은 베이스 기판 상에서, 전술한 전극 재료를 포함하는 전극 형성용 조성물이 롤링으로 압연된 것일 수 있다. In an embodiment, at least one electrode of the first electrode 2 and the second electrode 4 may be a rolling composition of an electrode forming composition including the electrode material described above on a base substrate.
일 실시예로, 상기 제1 전극(2) 및/또는 제2 전극(4)은 상기 전극 재료를 포함하는 전극 형성용 조성물이 베이스 기판 상에 코팅된 것일 수 있다.In an embodiment, the first electrode 2 and / or the second electrode 4 may be coated with a composition for forming an electrode including the electrode material on a base substrate.
다른 실시예로, 상기 제1 전극(2) 및/또는 제2 전극(4)은 상기 전극 형성용 물질을 시트 상태로 만들어 베이스 기판에 붙인 후 건조하여 형성된 것일 수 있으나, 본 발명이 반드시 그 실시예들에 제한되는 것은 아니다.In another embodiment, the first electrode 2 and / or the second electrode 4 may be formed by making the electrode-forming material into a sheet state and attaching it to a base substrate, followed by drying, but the present invention is necessarily implemented. It is not limited to the examples.
상기 베이스 기판은 전도성 물질을 포함하여 형성된 것일 수 있다. 전도성 물질의 구체적인 예를 들면 금속 등일 수 있다. 보다 구체적으로 상기 금속은 구리, 알루미늄 등 일 수 있으나 본 발명이 반드시 그 실시예들에 제한되는 것은 아니다.The base substrate may be formed including a conductive material. Specific examples of the conductive material may be metals and the like. More specifically, the metal may be copper, aluminum, or the like, but the present invention is not necessarily limited to the embodiments.
상기 베이스 기판은 박막 형상일 수 있다.The base substrate may have a thin film shape.
상기 전극 형성용 조성물은 상기 전극 재료 외에 바인더, 도전재를 포함하고, 선택적으로 용매를 더 포함할 수 있다. 또한, 각 성분은 혼합 후 슬러리로써 전기 화학 소자(10)에 적용될 수 있다.The electrode forming composition may include a binder and a conductive material in addition to the electrode material, and may further include a solvent. In addition, each component may be applied to the electrochemical device 10 as a slurry after mixing.
상기 바인더는 전극 형성용 조성물에 접착성을 부여한다. 상기 바인더의 구체적인 예를 들면 카르복시메틸셀룰로오스(CMC), 폴리비닐피롤리돈(PVP), 스티렌-부타디엔 고무(SBR), 폴리비닐리덴플루오라이드(PVDF), 폴리에틸렌(PE), 폴리프로필렌(PP) 및 폴리비닐알콜(PVA) 등일 수 있다. 상기 바인더는 전술한 예들 중 적어도 하나를 포함하여 사용될 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다.  The binder imparts adhesion to the composition for forming an electrode. Specific examples of the binder include carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP) And polyvinyl alcohol (PVA). The binder may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
일 실시예로, 상기 바인더는 전극 형성용 조성물 전체에 대하여 1 내지 45 중량%로 포함될 수 있다.In one embodiment, the binder may be included in 1 to 45% by weight based on the total composition for forming the electrode.
상기 도전재는 전극 형성용 조성물에 전도성을 부여 한다. 상기 도전재의 구체적인 예를 들면 카본 블랙(carbon black), 그래핀(graphene), 탄소나노튜브(CNT), 탄소나노섬유(CNF) 등일 수 있다. 상기 도전재는 전술한 예들 중 적어도 하나를 포함하여 사용될 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다. The conductive material imparts conductivity to the composition for forming an electrode. Specific examples of the conductive material may include carbon black, graphene, carbon nanotubes (CNT), carbon nanofibers (CNF), and the like. The conductive material may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
일 실시예로, 상기 도전재는 전극 형성용 조성물 전체에 대하여 1 내지 45 중량%로 포함될 수 있다.In one embodiment, the conductive material may be included in an amount of 1 to 45% by weight based on the entire composition for forming an electrode.
필요에 따라, 상기 전극 형성용 조성물은 용매를 더 포함할 수 있다. 상기 용매의 구체적인 예를 들면 물 또는 유기 용매 등일 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다. If necessary, the electrode forming composition may further include a solvent. Specific examples of the solvent may include water or an organic solvent, but embodiments are not necessarily limited thereto.
일 실시예로, 상기 용매는 전극 형성용 조성물 전체에 대하여 10 내지 97 중량%로 포함될 수 있다.In one embodiment, the solvent may be included in 10 to 97% by weight based on the total composition for forming the electrode.
일 실시예로, 상기 제1 전극(2) 및 상기 제2 전극(4) 각각에 리드선(6, 7)이 부착될 수 있다. 또한, 상기 제1 전극(2), 제2 전극(4) 및 그 사이에 배치된 분리막(3)은 덮개(5) 내에 배치된 구조일 수 있다.In one embodiment, lead wires 6 and 7 may be attached to each of the first electrode 2 and the second electrode 4. In addition, the first electrode 2, the second electrode 4, and the separator 3 disposed therebetween may have a structure disposed in the cover 5.
일 실시예로, 상기 덮개(5)는 전도성 물질을 포함하여 형성된 것일 수 있다. 상기 전도성 물질은 금속 등을 포함할 수 있다. 상기 금속의 구체적인 예를 들면 알루미늄 등 일 수 있다.In one embodiment, the cover 5 may be formed including a conductive material. The conductive material may include a metal and the like. Specific examples of the metal may be aluminum and the like.
도 3은 본 발명의 일 실시예에 따른 전극 재료의 제조 공정도이고, 도 4는 활성화 처리에 따른 탄소원의 변화를 개략적으로 도시한 도면이다. 이하에서는, 도 3 및 도 4를 참조하여 전극 재료의 제조 방법에 대해 설명한다.3 is a manufacturing process chart of the electrode material according to an embodiment of the present invention, Figure 4 is a view showing a change in the carbon source according to the activation process. Hereinafter, the manufacturing method of an electrode material is demonstrated with reference to FIG. 3 and FIG.
먼저, 탄소원(100)을 650 ℃ 내지 900 ℃의 온도에서 열처리한다.First, the carbon source 100 is heat treated at a temperature of 650 ℃ to 900 ℃.
열처리의 온도가 650 ℃ 미만이면 탄소원(100)에 결정질(21)이 형성되지 않는다. 또한, 열처리 온도가 900 ℃를 초과하면 탄소원(100)에 비정질(11) 없이 결정질(21)만이 존재하여 높은 정전용량을 구현할 수 없는 문제가 있다. 즉, 탄소원(100)을 650 ℃ 내지 900 ℃의 온도에서 열처리하여 상기 탄소원(100) 내에 비정질(11) 및 결정질(21)을 형성한다.If the temperature of the heat treatment is less than 650 ° C., the crystalline 21 is not formed in the carbon source 100. In addition, when the heat treatment temperature exceeds 900 ℃ there is a problem that can not implement a high capacitance because only the crystalline 21 is present in the carbon source 100 without the amorphous (11). That is, the carbon source 100 is heat-treated at a temperature of 650 ° C. to 900 ° C. to form amorphous 11 and crystalline 21 in the carbon source 100.
일 실시예로, 상기 열처리 온도는 650 ℃ 내지 850 ℃일 수 있다.In one embodiment, the heat treatment temperature may be 650 ℃ to 850 ℃.
상기 전극 재료의 단위 중량(g)에 대한 상기 결정질(21)의 비율은 상기 탄소원(100)의 열처리 온도에 의해 조절될 수 있다.The ratio of the crystalline 21 to the unit weight (g) of the electrode material may be controlled by the heat treatment temperature of the carbon source 100.
상기 탄소원(100)의 열처리 온도에 따라 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질(21)의 비율이 달라지며, 상기 결정질(21)의 비율이 전극 재료의 비표면적에 영향을 주어 정전 용량 값을 변화시킬 수 있다.The ratio of the crystalline 21 to the unit weight (g) of the electrode material varies according to the heat treatment temperature of the carbon source 100, and the ratio of the crystalline 21 affects the specific surface area of the electrode material and thus the electrostatic The dose value can be changed.
상기 탄소원(100)의 열처리 온도가 낮을수록 비정질(11)의 비율이 높아져 전극 재료의 비표면적이 증가되고, 상기 탄소원(100)의 열처리 온도가 높을수록 결정질(21)의 비율이 높아져 전극 재료의 비표면적이 감소할 수 있다.The lower the heat treatment temperature of the carbon source 100 is, the higher the proportion of amorphous 11 increases the specific surface area of the electrode material. The higher the heat treatment temperature of the carbon source 100, the higher the ratio of crystalline 21 is increased. The specific surface area can be reduced.
실시예는 650 ℃ 내지 900 ℃의 온도 범위 내에서 상기 탄소원(100)을 열처리함에 따라 상기 전극 재료가 결정질(21)을 포함할 수 있을 뿐만 아니라, 정전 용량 값을 향상시킬 수 있는 최적의 결정질(21)의 비율을 상기 전극 재료의 단위 중량(g)에 대하여 0.4 내지 0.91로 구현할 수 있다.In an embodiment, the electrode material may include the crystalline 21 as the heat treatment of the carbon source 100 within a temperature range of 650 ° C. to 900 ° C., as well as an optimal crystalline to improve the capacitance value. The ratio of 21) may be implemented in the range of 0.4 to 0.91 based on the unit weight (g) of the electrode material.
상기 열처리 공정이 수행되는 시간은 반응조의 크기에 따라 달라질 수 있다.The time for which the heat treatment process is performed may vary depending on the size of the reactor.
상기 열처리는 불활성 기체 분위기에서 수행될 수 있다. 불활성 기체의 구체적인 예를 들면 헬륨, 아르곤, 질소 등일 수 있다. 상기 불활성 기체는 전술한 예들 중 적어도 하나를 포함하여 사용될 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다.The heat treatment may be performed in an inert gas atmosphere. Specific examples of the inert gas may be helium, argon, nitrogen, and the like. The inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
이어서, 열처리된 탄소원(100)을 800 ℃ 내지 1000 ℃의 온도에서 알칼리를 포함하는 물질로 활성화 처리한다. Subsequently, the heat treated carbon source 100 is activated with a material containing alkali at a temperature of 800 ° C to 1000 ° C.
상기 활성화 처리 단계에서 상기 비정질(11)이 깨져 기공(12)이 형성되거나, 상기 결정질(21)에서는 결정질의 층간 거리가 벌어지는바(도 4 참조), 상기 탄소원의 비표면적이 증가한다.In the activation process step, the amorphous 11 is broken to form pores 12, or the crystalline 21 has a crystalline interlayer distance (see FIG. 4), thereby increasing the specific surface area of the carbon source.
상기 활성화 처리 온도가 800 ℃ 미만이거나 1000 ℃ 를 초과하는 경우, 탄소원(100)의 결정질(21)에서 결정질의 층간 거리가 0.37 nm 내지 0.40 nm를 벗어나게 되어 높은 정전 용량을 확보할 수 없는 문제가 있다. If the activation treatment temperature is less than 800 ℃ or more than 1000 ℃, the crystalline interlayer distance of the crystalline 21 in the crystalline 21 of the carbon source 100 is out of 0.37 nm to 0.40 nm there is a problem that can not secure a high capacitance .
또한, 상기 활성화 처리 온도가 800 ℃ 내지 1000 ℃ 범위를 벗어나는 경우 특정 범위의 지름을 갖는 기공(12) 비율을 조절하는 것이 어려운바, 지름이 0 초과 1 nm 미만인 기공(12)의 부피가 비정질(11) 전체 부피의 60 내지 85%를 벗어나는 전극 재료가 제조 될 수 있다. 이 경우, 상기 전극 재료 및 이를 포함하여 형성되는 전기 화학 소자(10)가 높은 정전 용량을 구현할 수 없는 문제가 있다. In addition, when the activation treatment temperature is outside the range of 800 ℃ to 1000 ℃ it is difficult to control the proportion of pores 12 having a specific range of diameter, the volume of the pores 12 having a diameter greater than 0 and less than 1 nm is amorphous ( 11) Electrode materials can be produced which deviate from 60 to 85% of the total volume. In this case, there is a problem that the electrode material and the electrochemical device 10 including the same cannot implement high capacitance.
상기 알칼리의 구체적인 예를 들면 리튬, 나트륨, 칼륨 금속 등일 수 있으나, 반드시 이에 제한되는 것은 아니다.Specific examples of the alkali may be lithium, sodium, potassium metal, and the like, but are not necessarily limited thereto.
상기 활성화 처리는 불활성 기체 분위기에서 수행될 수 있다.The activation treatment may be performed in an inert gas atmosphere.
불활성 기체의 구체적인 예를 들면 헬륨, 아르곤, 질소 등일 수 있다. 상기 불활성 기체는 전술한 예들 중 적어도 하나를 포함하여 사용될 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다.Specific examples of the inert gas may be helium, argon, nitrogen, and the like. The inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
상기 활성화 처리는 불활성 기체 분위기에서 수행될 수 있다.The activation treatment may be performed in an inert gas atmosphere.
불활성 기체의 구체적인 예를 들면 헬륨, 아르곤, 질소 등일 수 있다. 상기 불활성 기체는 전술한 예들 중 적어도 하나를 포함하여 사용될 수 있으나, 실시예가 반드시 이에 제한되는 것은 아니다.Specific examples of the inert gas may be helium, argon, nitrogen, and the like. The inert gas may be used including at least one of the above examples, but the embodiment is not necessarily limited thereto.
활성화 처리 단계에서, 상기 탄소원(100)과 활성화제는 1:0.8 내지 1:5.5의 중량비로 혼합된다.In the activation treatment step, the carbon source 100 and the activator are mixed in a weight ratio of 1: 0.8 to 1: 5.5.
상기 탄소원과 활성화제의 중량비가 1:0.8 미만이면 탄소원을 충분히 활성화 할 수 없다. 이에 따라, 전극 재료 내에 결정질(21)이 존재하더라도 전해질 이온이 삽입되기에 충분한 결정질(21)의 층간 거리가 확보될 수 없는 문제가 있다. If the weight ratio of the carbon source and the activator is less than 1: 0.8, the carbon source may not be sufficiently activated. Accordingly, even if the crystalline 21 is present in the electrode material, there is a problem that the interlayer distance of the crystalline 21 sufficient to insert the electrolyte ions cannot be secured.
한편, 상기 탄소원과 활성화제의 중량비가 1:5.5를 초과하면 인접하는 결정층 사이의 거리가 멀어진다. 이에 따라, 결정층 간 반데르발스 힘이 작용할 수 없어 전극 재료가 결정성을 상실하게 된다. On the other hand, when the weight ratio of the carbon source and the activator exceeds 1: 5.5, the distance between adjacent crystal layers becomes far. As a result, van der Waals forces between the crystal layers cannot act and the electrode material loses crystallinity.
또한, 탄소원과 활성화제의 중량비가 전술한 범위를 벗어나면 특정 범위의 지름을 갖는 기공(12) 비율을 조절하는 것이 어려워질 수 있다. 이에 따라, 지름 0 nm 초과 1 nm 미만인 기공(12)의 부피를 비정질(11) 전체 부피의 60 내지 85%로 구현하기 어려워 정전 용량이 현저히 저하될 수 있다.In addition, when the weight ratio of the carbon source and the activator is outside the above-described range, it may be difficult to adjust the proportion of the pores 12 having a specific range of diameters. Accordingly, it is difficult to implement the volume of the pores 12 greater than 0 nm and less than 1 nm in diameter to 60 to 85% of the total volume of the amorphous 11, so that the capacitance may be significantly reduced.
상기 활성화 처리된 후에는 알칼리를 포함하는 물질의 제거를 위하여 중화하며, 구체적인 예를 들면 중화제로 염산, 질산 등이 사용될 수 있다.After the activation treatment is neutralized to remove the alkali-containing material, for example, hydrochloric acid, nitric acid, etc. may be used as a neutralizing agent.
중화 후에는 결과물을 세정하고, 상기 세정 공정에서 일 예로 증류수가 사용될 수 있다.After neutralization, the resultant is washed, and distilled water may be used as an example in the washing process.
상기 세정 후에는 건조 공정을 더 포함할 수 있다. 상기 건조 공정의 시간 및 온도는 반응조의 크기에 따라 달라질 수 있다.After the cleaning may further comprise a drying process. The time and temperature of the drying process may vary depending on the size of the reactor.
상기 전극 재료의 제조 방법은 당 분야에 널리 알려진 것으로 본 발명의 목적을 벗어나지 않는 범위 내라면, 해당 공정을 더 포함할 수 있다. The manufacturing method of the electrode material is well known in the art and may further include the process, if it is within the scope without departing from the object of the present invention.
전술한 방법에 의해 제조된 전극 재료는 결정 격자를 포함하는 결정질(21) 및 기공(12)을 포함하는 비정질(11)을 포함하고 결정질의 층간 거리(d)는 0.37 nm 내지 0.40 nm인 탄소원(100)을 포함하며 상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91이다. 즉, 상기 전극 재료 제조 방법에 의하면 전술한 전극 재료가 제조 되므로, 상기 전극 재료의 기재 내용과 중첩되는 범위 내에서는 전술한 내용이 동일하게 적용될 수 있다.The electrode material produced by the above-described method comprises a crystalline 21 comprising a crystal lattice and an amorphous 11 comprising pores 12 and the crystalline interlayer distance d is between 0.37 nm and 0.40 nm. 100) and the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91. That is, according to the method of manufacturing the electrode material, the above-described electrode material is manufactured, and thus, the above-described contents may be applied in the same range to overlap with the description of the electrode material.
실시예Example 1 One
전극 형성용 물질의 제조Preparation of materials for forming electrodes
NCC(Naphta Cracking Center) 공정에서 나오는 잔사 오일을 350 ℃의 온도에서 열처리하여 분자량 1000 내지 2500 범위의 고체상태 피치(pitch)로 만들어 전극 재료의 탄소원으로 사용하였다.The residue oil from the Naphta Cracking Center (NCC) process was heat treated at a temperature of 350 ° C. to produce a solid state pitch ranging from 1000 to 2500 molecular weight, and used as the carbon source of the electrode material.
전술한 방법으로 제조된 탄소원을 아르곤 분위기 하에서 750 ℃의 온도로 1 시간동안 60 Φ * 120 cm의 핫스팟에서 열처리하였다.The carbon source prepared by the above method was heat-treated in a hot spot of 60 Φ * 120 cm for 1 hour at a temperature of 750 ° C. under argon atmosphere.
이어서, 아르곤 분위기 하에서 900 ℃에서 1 시간동안 탄소원과 KOH 활성화제의 함량비를 1:4로 활성화 처리 하여 전극 재료를 제조한 후, 하기 표 1의 성분 및 함량으로 전극 형성용 물질을 제조하였다.Subsequently, an electrode material was prepared by activating a content ratio of a carbon source and a KOH activator 1: 4 at 900 ° C. for 1 hour in an argon atmosphere, and then a material for forming an electrode was prepared using the ingredients and contents shown in Table 1 below.
구분(중량%)Division (weight%) 바인더bookbinder 도전재Conductive material 본 발명에 따른 전극 재료Electrode material according to the invention
실시예 1Example 1 55 55 9090
전기 화학 소자의 제조Fabrication of Electrochemical Devices
구리 베이스 기판 상에 롤러로 전극 형성용 조성물을 압착하여 시트 상태로 만든 후 건조하여 제1 전극 및 제2 전극을 제조하고 전극 각각에 리드선을 부착하였다.The composition for forming an electrode was pressed on a copper base substrate with a roller to make a sheet, and then dried to prepare a first electrode and a second electrode, and a lead wire was attached to each electrode.
제1 분리막, 제1 전극, 제2 분리막 및 제2 전극을 적층 후 권취하고, 이에 실링 고무를 부착 후 알루미늄 덮개 내에 삽입하였다. 이어서, 전해액(1M TEABF4 in ACN)을 상기 권취 소자가 함침 되도록 주입 후 밀봉하여 전기 화학 소자(슈퍼 캐패시터)를 제조하였다(도 2 참조).The first separator, the first electrode, the second separator and the second electrode were laminated and wound up, and the sealing rubber was attached thereto and then inserted into the aluminum cover. Subsequently, an electrolyte solution (1M TEABF4 in ACN) was injected and then sealed to impregnate the winding device to prepare an electrochemical device (super capacitor) (see FIG. 2).
실험예Experimental Example 1: 결정질 존재 유무 1: presence of crystalline
실시예 1에 따라 형성된 전극 재료에의 결정성 부분 존재 유무를 X선 회절 분석법에 의해 확인하였다.The presence or absence of a crystalline part in the electrode material formed according to Example 1 was confirmed by X-ray diffraction analysis.
도 5는 본 발명의 실시예 1에 따른 전극 재료의 X선 회절 분석 패턴이다5 is an X-ray diffraction analysis pattern of the electrode material according to Example 1 of the present invention
도 5를 참조하면 2θ가 25.5°인 지점에의 피크가 높게 나타나는데 상기 피크는 결정질에 해당한다. 따라서, 상기 X선 회절 분석 패턴을 통해 실시예 1의 전극 재료는 비정질과 결정질을 모두 포함함을 확인할 수 있었다.Referring to FIG. 5, a peak at a point where 2θ is 25.5 ° appears to be high, which corresponds to crystalline. Therefore, it was confirmed through the X-ray diffraction analysis pattern that the electrode material of Example 1 includes both amorphous and crystalline.
실험예Experimental Example 2: 결정질의 층간 거리에 따른 정전 용량 측정 2: Capacitance measurement according to crystalline interlayer distance
실시예Example 2 내지 4 2 to 4
탄소원과 활성화제의 함량비를 1:0.8 내지 1:5.5 내에서 실시예 1과 다르도록 활성화 처리 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기 화학 소자를 제조하였다An electrochemical device was manufactured in the same manner as in Example 1, except that the content ratio of the carbon source and the activator was different from Example 1 in the range of 1: 0.8 to 1: 5.5.
비교예Comparative example 1 One
탄소원과 활성화제의 함량비를 1:0.5로 하여 활성화 처리 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기 화학 소자를 제조하였다.An electrochemical device was manufactured in the same manner as in Example 1, except that the activating treatment was performed using a content ratio of a carbon source and an activator of 1: 0.5.
비교예Comparative example 2 2
탄소원과 활성화제의 함량비를 1:6으로 하여 활성화 처리 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기 화학 소자를 제조하였다.An electrochemical device was manufactured in the same manner as in Example 1, except that the activating treatment was performed using a content ratio of a carbon source and an activator of 1: 6.
실시예 및 비교예들에 따른 전극 재료에서 결정질의 층간 거리는 X선 회절 분석법에 의하여 측정하였다.The interlayer distance of crystalline in the electrode material according to the Examples and Comparative Examples was measured by X-ray diffraction analysis.
또한, 정전 용량은 0.565 mA 에서 단위 부피당 정전용량을 Hi-EDLC 16CH 기기(Human Instrument社 제조)로 측정하였고, 그 결과는 하기 표 2와 같다.In addition, the capacitance was measured by a Hi-EDLC 16CH instrument (manufactured by Human Instrument, Inc.) at a unit volume of 0.565 mA, and the results are shown in Table 2 below.
구분division 결정질의 층간 거리 [nm]Crystalline interlayer distance [nm] 정전 용량 [F/cc]Capacitance [F / cc]
실시예 2Example 2 0.3920.392 26.026.0
실시예 3Example 3 0.3810.381 24.424.4
실시예 4Example 4 0.3730.373 24.324.3
비교예 1Comparative Example 1 0.3520.352 15.615.6
비교예 2Comparative Example 2 0.4090.409 1818
표 2를 참조하면, 실시예 2 내지 4에 의한 제조된 전극재료는 결정질에 있어 결정질의 층간 거리가 0.37 nm 내지 0.4 nm 범위이므로 본 발명의 범위에 속함을 확인할 수 있었다. Referring to Table 2, it can be seen that the electrode materials prepared in Examples 2 to 4 belong to the scope of the present invention because the crystalline interlayer distance in the crystalline range is 0.37 nm to 0.4 nm.
또한, 실시예들이 비교예 1 및 2에 비해 높은 정전 용량 값을 가지므로 본 발명의 전극 재료가 우수한 전기적 특성을 나타냄을 알 수 있었다.In addition, since the embodiments have a higher capacitance value than Comparative Examples 1 and 2, it can be seen that the electrode material of the present invention exhibits excellent electrical properties.
실험예Experimental Example 3:  3: 탄소원의Carbon source 단위  unit 중량에 대한 결정질의 비율에In the ratio of crystalline to weight 따른 정전 용량 측정 Capacitance measurements
실시예Example 5 내지 11 및  5 to 11 and 비교예Comparative example 3 내지 7 3 to 7
탄소원을 650 ℃ 내지 900 ℃의 온도 범위 내에서 각각 다른 온도에서 열처리 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기 화학 소자를 제조하였다.An electrochemical device was manufactured in the same manner as in Example 1, except that the carbon source was heat-treated at different temperatures within the temperature range of 650 ° C to 900 ° C.
구체적으로, 비교예 3 및 4는 상기 온도 범위 내에서도 650 ℃에 근접한 온도에서 열처리 되었으며, 비교예 5 내지 7은 상기 온도 범위 내에서도 900 ℃에 근접한 온도에서 열처리하였다.Specifically, Comparative Examples 3 and 4 were heat-treated at a temperature close to 650 ℃ even within the temperature range, Comparative Examples 5 to 7 was heat-treated at a temperature close to 900 ℃ even within the temperature range.
실시예 5 내지 11 및 비교예 3 내지 7에 따른 전극 재료의 비표면적은 BET 측정법에 의하였고, 정전 용량은 실험예 2와 동일한 방법으로 측정하였으며, 그 결과는 하기 표 3과 같다.The specific surface areas of the electrode materials according to Examples 5 to 11 and Comparative Examples 3 to 7 were determined by the BET measurement method, and the capacitance was measured by the same method as Experimental Example 2, and the results are shown in Table 3 below.
구분division x(결정질 비율)x (crystalline ratio) y(비정질 비율)y (amorphous ratio) 비표면적[m2/g]Specific surface area [m 2 / g] 정전 용량[F/cc]Capacitance [F / cc]
실시예 5Example 5 0.8900.890 0.1100.110 238238 25.525.5
실시예 6Example 6 0.8660.866 0.1340.134 285285 2626
실시예 7Example 7 0.8540.854 0.1460.146 309309 25.325.3
실시예 8Example 8 0.8480.848 0.1520.152 320320 2424
실시예 9Example 9 0.8270.827 0.1730.173 363363 24.424.4
실시예 10Example 10 0.5210.521 0.4790.479 969969 24.924.9
실시예 11Example 11 0.4530.453 0.5470.547 11041104 2626
비교예 3Comparative Example 3 0.9770.977 0.0230.023 6666 1919
비교예 4Comparative Example 4 0.9470.947 0.0530.053 124124 1818
비교예 5Comparative Example 5 0.3430.343 0.6570.657 13201320 2020
비교예 6Comparative Example 6 0.2020.202 0.7980.798 16001600 1919
비교예 7Comparative Example 7 0.0200.020 0.9800.980 19601960 1717
상기 표 3을 참조하면, 실시예들은 모두 0.4 내지 0.91의 범위 내에서 결정질을 포함하고, 비교예들은 결정질의 비율이 본 발명의 범위를 벗어남을 확인할 수 있었다.Referring to Table 3, all of the examples include crystalline within the range of 0.4 to 0.91, Comparative Examples were able to confirm that the ratio of the crystalline is outside the scope of the present invention.
구체적으로 살펴보면, 650 ℃ 내지 900 ℃의 온도 범위 내에서 열처리 되었는바 실시예 및 비교예들이 결정질 및 비정질을 모두 포함하였다.Specifically, the heat treatment was performed within a temperature range of 650 ° C. to 900 ° C. Examples and comparative examples included both crystalline and amorphous materials.
한편, 상기 온도 범위 내 중에서도 높은 온도에서 열처리된 비교예 3 및 4는 결정질의 비율이 상대적으로 높고 비표면적이 작았으며, 상기 온도 범위 내에서도 낮은 온도에서 열처리된 비교예 5 내지 7은 결정질의 비율이 상대적으로 낮고 이에 따라 비표면적이 큼을 알 수 있었다.Meanwhile, Comparative Examples 3 and 4, which were heat-treated at a high temperature even in the above temperature range, had a relatively high ratio of crystalline and a small specific surface area, and Comparative Examples 5 to 7 that were heat-treated at a low temperature within the above temperature range had a crystalline ratio It is relatively low and accordingly, the specific surface area is large.
또한, 실시예들의 정전 용량 값이 비교예들에 비해 현저히 우수함을 확인하였다.In addition, it was confirmed that the capacitance value of the embodiments is significantly superior to the comparative examples.
실시예Example 12 내지 14 및  12 to 14 and 비교예Comparative example 8 8
하기 표 4의 성분 및 함량으로 전극 형성용 물질을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기 화학 소자를 제조하였다.An electrochemical device was manufactured in the same manner as in Example 1, except that the material for forming an electrode was manufactured using the ingredients and contents shown in Table 4 below.
Figure PCTKR2017006149-appb-T000001
Figure PCTKR2017006149-appb-T000001
실험예 4: 기공 분포도 측정Experimental Example 4: Measurement of Pore Distribution
실시예 1 및 비교예 8에 대해 N2 흡착을 이용한 BET 측정법(기기: SURFACE AREA ANALYZER(TRISTAR-3000), MICROMERITICS社 제조)으로, 특정 기공 지름 및 해당 지름을 갖는 기공의 분포도를 측정하였다. In Example 1 and Comparative Example 8, the BET measurement method using N 2 adsorption (device: SURFACE AREA ANALYZER (TRISTAR-3000), manufactured by MICROMERITICS) measured the distribution of pores having a specific pore diameter and a corresponding diameter.
그 결과는 하기 표 5와 같으며 이를 그래프로 도시하여 도 6에 나타내었다.The results are shown in Table 5 below and are shown in a graph of FIG. 6.
Figure PCTKR2017006149-appb-T000002
Figure PCTKR2017006149-appb-T000002
표 5 및 도 6을 참조하면, 실시예 1의 전극 재료는 기공을 포함하고, 지름의 길이가 0 nm 초과 1.0 nm 이하인 기공의 부피는 비정질 전체 부피에 대하여 74.61%이었는바, 실시예 1은 본 발명의 범위에 속함을 알 수 있었다.Referring to Table 5 and FIG. 6, the electrode material of Example 1 contained pores, and the volume of pores having a diameter of more than 0 nm and 1.0 nm or less was 74.61% of the total amorphous volume. It turns out that it belongs to the scope of the invention.
그러나, 비교예 8은 기공을 포함하더라도 지름의 길이가 0 nm 초과 1.0 nm 이하인 기공의 부피가 비정질 전체 부피에 대하여 32.16%였으므로, 본 발명의 범위를 벗어남을 확인하였다.However, Comparative Example 8 was found to be out of the scope of the present invention because the volume of the pores having a diameter of more than 0 nm and 1.0 nm or less was 32.16% with respect to the total amorphous volume even if the pores were included.
실험예 5: 겉보기 밀도 및 정전 용량 측정Experimental Example 5: Measurement of apparent density and capacitance
전술한 방법으로 제조된 실시예 1, 12, 13 및 비교예 8에 있어 각각의 겉보기 밀도 및 정전 용량을 측정하였다. The apparent density and capacitance of each of Examples 1, 12, 13 and Comparative Example 8 prepared by the above-described method were measured.
겉보기 밀도는 단위 부피당 질량으로 계산하였으며, 정전 용량은 0.565 mA 에서 단위 부피당 정전용량을 Hi-EDLC 16CH 기기(Human Instrument社 제조)로 측정하였고, 그 결과는 하기 표 6과 같다.The apparent density was calculated by mass per unit volume, and the capacitance was measured by a Hi-EDLC 16CH instrument (manufactured by Human Instrument, Inc.) at 0.565 mA. The results are shown in Table 6 below.
Figure PCTKR2017006149-appb-T000003
Figure PCTKR2017006149-appb-T000003
표 6을 참조하면, 겉보기 밀도 및 정전 용량은 실시예 1, 12, 13이 비교예 8에 비해 높은 값을 나타냄을 알 수 있었다.Referring to Table 6, it was found that the apparent densities and capacitances were higher in Examples 1, 12, and 13 than in Comparative Example 8.
또한, 실시예들의 겉보기 밀도와 정전 용량을 비교한 결과, 상기 전극 재료 함량비율이 높을수록 정전 용량 개선 효과가 극대화됨을 확인할 수 있었다.In addition, as a result of comparing the apparent density and the capacitance of the embodiments, the higher the electrode material content ratio was confirmed that the effect of improving the capacitance is maximized.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although described above with reference to the embodiment is only an example and is not intended to limit the invention, those of ordinary skill in the art to which the present invention does not exemplify the above within the scope not departing from the essential characteristics of this embodiment It will be appreciated that many variations and applications are possible. For example, each component specifically shown in the embodiment can be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.

Claims (10)

  1. 탄소원을 포함하고Including carbon sources
    상기 탄소원은 결정질 및 비정질을 포함하며,The carbon source includes crystalline and amorphous,
    상기 결정질은 결정 격자를 포함하고,The crystalline comprises a crystal lattice,
    상기 비정질은 기공을 포함하며,The amorphous comprises pores,
    상기 결정질의 층간 거리는 0.37 nm 내지 0.40 nm이고 The crystalline interlayer distance is 0.37 nm to 0.40 nm
    상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91인, 전극 재료.The ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 단위 중량(g)에 대한 상기 결정질의 비율은 하기 수학식 1 및 수학식 2를 만족하는, 전극 재료:Wherein the ratio of the crystalline to the unit weight (g) satisfies Equations 1 and 2 below:
    [수학식 1] 20x+2000y=kEquation 1 20x + 2000y = k
    [수학식 2] x+y=1[Equation 2] x + y = 1
    (식 중, x는 결정질 비율이고, y는 비정질 비율이며, k는 200 내지 1200임).(Wherein x is a crystalline ratio, y is an amorphous ratio and k is 200 to 1200).
  3. 청구항 1에 있어서, 상기 기공 중 지름이 0 nm 초과 1 nm 이하인 기공의 부피는 상기 비정질 전체 부피의 60 % 내지 85 %인, 전극 재료.The electrode material of claim 1, wherein the volume of pores having a diameter greater than 0 nm and less than or equal to 1 nm is 60% to 85% of the total volume of the amorphous material.
  4. 청구항 1에 있어서, 상기 기공 중 지름이 0.6 nm 내지 0.9 nm인 기공의 부피는 상기 비정질 전체 부피의 45 % 내지 75 %인, 전극 재료.The electrode material of claim 1, wherein the volume of pores having a diameter of 0.6 nm to 0.9 nm in the pores is 45% to 75% of the total volume of the amorphous.
  5. 청구항 1에 있어서, 상기 기공 중 지름이 0.75 nm 내지 0.85 nm인 기공의 부피는 상기 비정질 전체 부피의 15 % 내지 23 %인, 전극 재료.The electrode material of claim 1, wherein the volume of the pores with a diameter of 0.75 nm to 0.85 nm is 15% to 23% of the total volume of the amorphous.
  6. 청구항 1에 있어서, 상기 전극 재료의 비표면적은 200 m2/g 내지 1200 m2/g인, 전극 재료.The electrode material of claim 1, wherein the specific surface area of the electrode material is 200 m 2 / g to 1200 m 2 / g.
  7. 청구항 1에 있어서, 상기 전극 재료의 겉보기 밀도는 0.7 g/cm3 내지 1.5 g/cm3인, 전극 재료.The apparent density of the electrode material is 0.7 g / cm 3 The electrode material being from 1.5 g / cm 3 .
  8. 제1 전극;A first electrode;
    제2 전극; 및Second electrode; And
    상기 제1 전극 및 상기 제2 전극 사이에 배치되는 분리막;을 포함하고,And a separator disposed between the first electrode and the second electrode.
    상기 제1 전극 및 상기 제2 전극 중 적어도 하나의 전극을 형성하는 전극 재료는,An electrode material for forming at least one electrode of the first electrode and the second electrode,
    탄소원을 포함하고Including carbon sources
    상기 탄소원은 결정질 및 비정질을 포함하며,The carbon source includes crystalline and amorphous,
    상기 결정질은 결정 격자를 포함하고,The crystalline comprises a crystal lattice,
    상기 비정질은 기공을 포함하며,The amorphous comprises pores,
    상기 결정질의 층간 거리는 0.37 nm 내지 0.40 nm이고The crystalline interlayer distance is 0.37 nm to 0.40 nm
    상기 전극 재료의 단위 중량(g)에 대한 상기 결정질의 비율은 0.4 내지 0.91인, 전기 화학 소자.And the ratio of the crystalline to the unit weight (g) of the electrode material is 0.4 to 0.91.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 단위 중량(g)에 대한 상기 결정질의 비율은 하기 수학식 1 및 수학식 2를 만족하는, 전기 화학 소자:Wherein the ratio of the crystalline to the unit weight (g) satisfies Equation 1 and Equation 2 below:
    [수학식 1] 20x+2000y=kEquation 1 20x + 2000y = k
    [수학식 2] x+y=1[Equation 2] x + y = 1
    (식 중, x는 결정질 비율이고, y는 비정질 비율이며, k는 200 내지 1200임).(Wherein x is a crystalline ratio, y is an amorphous ratio and k is 200 to 1200).
  10. 청구항 8에 있어서, 상기 기공 중 지름이 0 nm 초과 1 nm 이하인 기공의 부피는 상기 비정질 전체 부피의 60 % 내지 85 %인, 전기 화학 소자.The electrochemical device of claim 8, wherein the volume of the pores having a diameter greater than 0 nm and less than or equal to 1 nm is 60% to 85% of the total amorphous volume.
PCT/KR2017/006149 2016-09-13 2017-06-13 Electrode material and electrochemical device using same WO2018052179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790001218.6U CN211208258U (en) 2016-09-13 2017-06-13 Electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0118387 2016-09-13
KR1020160118387A KR102519740B1 (en) 2016-09-13 2016-09-13 Electrode material and electrochemical element using the same

Publications (1)

Publication Number Publication Date
WO2018052179A1 true WO2018052179A1 (en) 2018-03-22

Family

ID=61619653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006149 WO2018052179A1 (en) 2016-09-13 2017-06-13 Electrode material and electrochemical device using same

Country Status (3)

Country Link
KR (1) KR102519740B1 (en)
CN (1) CN211208258U (en)
WO (1) WO2018052179A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814618B1 (en) * 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
KR100818263B1 (en) * 2006-12-19 2008-03-31 삼성에스디아이 주식회사 Porous anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2010147006A (en) * 2008-12-22 2010-07-01 Sony Corp Negative electrode and secondary battery
KR20160007507A (en) * 2013-05-16 2016-01-20 스미토모덴키고교가부시키가이샤 Capacitor and charge-discharge method therefor
KR20160104560A (en) * 2015-02-26 2016-09-05 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274233B1 (en) * 1998-05-21 2001-02-01 김순택 Anode active material for lithium ion secondary battery and method for preparing the same
KR101702980B1 (en) * 2011-11-11 2017-02-07 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814618B1 (en) * 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
KR100818263B1 (en) * 2006-12-19 2008-03-31 삼성에스디아이 주식회사 Porous anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2010147006A (en) * 2008-12-22 2010-07-01 Sony Corp Negative electrode and secondary battery
KR20160007507A (en) * 2013-05-16 2016-01-20 스미토모덴키고교가부시키가이샤 Capacitor and charge-discharge method therefor
KR20160104560A (en) * 2015-02-26 2016-09-05 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20180029794A (en) 2018-03-21
KR102519740B1 (en) 2023-04-10
CN211208258U (en) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2015190833A1 (en) Negative electrode active material and method for preparing same
WO2015056907A1 (en) Separation membrane and lithium-sulfur battery comprising same
WO2017135794A1 (en) Negative electrode active material and secondary battery comprising same
WO2019035669A2 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2015084036A1 (en) Porous silicon-based anode active material and method for preparing same, and lithium secondary battery including same
WO2015065047A1 (en) Negative electrode active material and method for preparing same
WO2014084663A1 (en) Silicon oxide, and method for preparing same
WO2018221827A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2022050801A1 (en) Separator for electrochemical device and method for manufacturing same
WO2018236200A1 (en) Positive electrode for lithium secondary battery and lithium secondary battery including same
WO2021086088A1 (en) Lithium secondary battery separator having enhanced adhesive strength to electrode and improved resistance characteristics, and lithium secondary battery comprising lithium secondary battery separator
WO2018236064A1 (en) Multilayer polymer solid electrolyte and all-solid-state battery comprising same
WO2024136079A1 (en) Negative electrode for lithium secondary battery and method for manufacturing same
WO2024111906A1 (en) Anode for lithium secondary battery and method for manufacturing same
WO2022010225A1 (en) Anode, and secondary battery comprising anode
WO2020180160A1 (en) Lithium secondary battery
WO2018052179A1 (en) Electrode material and electrochemical device using same
WO2019245202A1 (en) Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
WO2022085891A1 (en) Electrode active material, preparation method therefor, electrode comprising same, and secondary battery
WO2021029650A1 (en) Cathode for lithium secondary battery and lithium secondary battery comprising same
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2024111841A1 (en) Solid electrolyte sheet, manufacturing method for same, and lithium secondary battery comprising same
WO2022045756A1 (en) Supercapacitor electrode material and method for manufacturing same
WO2024005527A1 (en) Positive electrode for lithium secondary battery, and manufacturing method therefor
WO2021246587A1 (en) Preparation method for anode active material for hybrid supercapacitor having high-output characteristics, hybrid supercapacitor having same, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17851056

Country of ref document: EP

Kind code of ref document: A1