WO2018051968A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2018051968A1
WO2018051968A1 PCT/JP2017/032825 JP2017032825W WO2018051968A1 WO 2018051968 A1 WO2018051968 A1 WO 2018051968A1 JP 2017032825 W JP2017032825 W JP 2017032825W WO 2018051968 A1 WO2018051968 A1 WO 2018051968A1
Authority
WO
WIPO (PCT)
Prior art keywords
daylighting
light
base material
thickness
film
Prior art date
Application number
PCT/JP2017/032825
Other languages
French (fr)
Japanese (ja)
Inventor
智子 植木
裕介 津田
豪 鎌田
俊 植木
英臣 由井
昌洋 辻本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018051968A1 publication Critical patent/WO2018051968A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds

Definitions

  • One embodiment of the present invention relates to a lighting device.
  • This application claims priority on Japanese Patent Application No. 2016-178540 filed in Japan on September 13, 2016, the contents of which are incorporated herein by reference.
  • Patent Document 1 a technique described in Patent Document 1 is known as a technique for efficiently guiding light incident on a window glass indoors.
  • a daylighting film in which a plurality of unit prisms having a daylighting function are formed on one surface of a translucent support is attached to the inner surface (indoor side surface) of a window glass. The light incident from the unit prism side is refracted on the surface of the unit prism, passes through the unit prism, the support, and the window glass and enters the room indoors.
  • the lighting performance on the ceiling may be reduced, or the light will be distributed to the eyes of people in the room, which may cause unpleasant glare.
  • the light in which a person in the room feels dazzling is called glare.
  • One aspect of the present invention is made in view of the above-described problems of the prior art, and it is possible to secure a favorable indoor environment in which a person in the room does not feel glare by further suppressing glare.
  • One of the objects is to provide a daylighting device that can be used.
  • the daylighting device includes at least a daylighting film including a base material having light permeability and a plurality of daylighting parts having light transmittance provided on the first surface side of the base material,
  • the daylighting unit has a reflection surface that reflects light incident on the daylighting unit, and the light reflected from the reflection surface and emitted from the second surface of the base material is the first surface of the base material.
  • the substrate has a plurality of regions having different thicknesses.
  • the thickness t in at least one of the plurality of regions may satisfy the following condition.
  • t0 indicates a reference thickness.
  • the thickness t in at least one of the plurality of regions may satisfy the following condition.
  • t0 indicates a reference thickness.
  • the daylighting device may be configured such that the base material includes a base material body having light permeability and an additional member having light permeability.
  • the base body and the additional member are bonded to each other via an adhesive layer, and the thickness of the adhesive layer changes in the arrangement direction of the plurality of daylighting units. It is good also as a structure.
  • the daylighting apparatus may be configured such that the thickness of the base material continuously changes in the arrangement direction of the plurality of daylighting units.
  • the daylighting apparatus may have a configuration in which the intervals between adjacent daylighting units are set to a plurality of levels.
  • the daylighting apparatus may have a configuration in which the refractive index of the base material has a distribution in one plane.
  • the daylighting device may have a configuration in which the refractive indexes of the plurality of daylighting portions have a distribution within one surface of the base material.
  • a daylighting apparatus that can ensure a favorable indoor environment in which glare is further suppressed so that a person in the room does not feel dazzling.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a lighting device according to one embodiment of the present invention.
  • Sectional drawing which shows the lighting film in 1st Embodiment.
  • Sectional drawing which shows the lighting film (1st base material) in 1st Embodiment.
  • the schematic diagram which shows an example of a room model.
  • the incident angle theta IN of the incident light L IN entering the lighting apparatus diagram explaining the definition of the exit angle theta OUT of emitted light L OUT emitted from the lighting device.
  • FIG. The figure which shows the structure of the lighting film 1 of 1st Embodiment, and the optical path of the light which permeate
  • FIG. The figure for demonstrating the characteristic of the daylighting film 1 of 1st Embodiment.
  • FIG. 1 The figure which shows thickness t0 used as the reference
  • FIG. The figure which shows thickness t of the 1st base material 2.
  • Sectional drawing which shows partially schematic structure of the daylighting film 31 of 3rd Embodiment.
  • the figure which shows the modification 4 of the daylighting film in 4th Embodiment The figure which shows the modification 5 of the lighting film in 4th Embodiment.
  • the figure which shows the modification 6 of the daylighting film in 4th Embodiment The figure which shows the modification 7 of the lighting film in 4th Embodiment.
  • the figure which shows the structure of the daylighting film in 5th Embodiment The figure which shows the structure of the daylighting film 61 of Example 1 in 6th Embodiment.
  • FIG. 30 is a sectional view taken along line E-E ′ of the roll screen shown in FIG. 29.
  • the perspective view which shows schematic structure of a blind (open state).
  • the perspective view (closed state) which shows schematic structure of a blind.
  • the figure which shows schematic structure of the lighting slat with which a blind is provided.
  • the figure which shows the state which reversed the direction of the lighting slat with which a blind is provided.
  • FIG. 37 is a room model including a lighting device and an illumination dimming system, and is a cross-sectional view taken along line J-J ′ of FIG. 36.
  • the top view which shows the ceiling of a room model.
  • the graph which shows the relationship between the illumination intensity of the light (natural light) daylighted indoors by the lighting apparatus, and the illumination intensity (illumination dimming system) by an indoor lighting apparatus.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a daylighting apparatus according to an aspect of the present invention.
  • a daylighting apparatus 100 shown in FIG. 1 is an example of a daylighting apparatus that takes sunlight into a room in a form of being attached to a window glass, for example.
  • the daylighting apparatus 100 includes a daylighting film 1, and is attached to an inner surface 1003 a (interior side surface) of a window glass (object to be installed) 1003, for example, via an adhesive layer 8 or on the surface 1003 a.
  • the vertical direction of the paper surface coincides with the vertical direction (XZ direction) of the daylighting film 1 bonded to the window glass 1003.
  • FIG. 2 is a cross-sectional view showing the daylighting film in the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the first base material.
  • FIG. 4 is a schematic diagram illustrating an example of a room model.
  • Figure 5 is a diagram illustrating the incident angle theta IN of the incident light L IN entering the lighting apparatus, the definition of the exit angle theta OUT of emitted light L OUT emitted from the lighting device.
  • the daylighting film 1 includes a first base material 2 having optical transparency, and a plurality of daylighting units 3 having optical transparency provided on the first surface 2 a of the first base material 2. And a gap 4 is formed between the plurality of daylighting units 3.
  • the fine structure side on which the plurality of daylighting portions 3 are formed is the light incident surface 1a of the daylighting film 1, and the side on which the fine structure is not formed is the light emitting surface 1b.
  • the daylighting film 1 is used in a posture in which the light incident surface 1a side is opposed to the window glass 1003 shown in FIG.
  • the first substrate 2 of the present embodiment is partially different in thickness in the vertical direction (Z direction), and the first surface 2 a and the second surface 2 b of the first substrate 2.
  • the first base material 2 has a convex portion 2B that protrudes from the base material body 2A toward the light exit surface 1b at a predetermined height in the second region R2, whereby the second region R2 becomes the first region R1.
  • the shape has a thickness greater than that.
  • the convex part 2B is provided in the X direction along the extending direction of the daylighting part 3, and the width along the Z direction is arbitrarily set.
  • the base body 2A and the convex portion 2B are integrally configured.
  • the thickness of the first base material 2 is such that the thickness T1 of the first region R1 is 100 ⁇ m and the thickness T2 of the second region R2 is 105 ⁇ m.
  • the number, size, ratio, and the like of the first region R1 and the second region R2 in the first base material 2 are set as appropriate, and are not limited to the configuration shown in FIG.
  • a light-transmitting base material made of a resin such as a thermoplastic polymer, a thermosetting resin, or a photopolymerizable resin is used.
  • a light-transmitting substrate made of acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer, or the like is used.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • a light-transmitting substrate such as a film or a polyimide (PI) film is preferably used.
  • the total light transmittance of the first base material 2 is preferably 90% or more according to JIS K7361-1. Thereby, sufficient transparency can be obtained.
  • the 1st base material 2 may be comprised from one base material, as another structural example, the light which consists of the base base material 12, the contact bonding layer 13, and the resin base material 14 as shown, for example in FIG.
  • a base material having a three-layer structure having permeability may be used.
  • the vertical direction of the first substrate 2 is provided by the convex portion 2 ⁇ / b> B provided on the resin substrate 14 where the daylighting unit 3 is not disposed.
  • the thickness in the (Z direction) is partially different.
  • the plurality of daylighting units 3 are arranged on the first surface 2a of the first base member 2 at a predetermined interval s in the Z direction.
  • the daylighting section 3 extends in a straight line in one direction (a direction perpendicular to the paper surface of FIG. 2), and a cross-sectional shape orthogonal to the longitudinal direction forms a polygonal column shape.
  • the daylighting unit 3 is a pentagon having five vertices in a cross-sectional shape cut in a direction intersecting the longitudinal direction thereof, and all inner angles are less than 180 °.
  • the plurality of daylighting units 3 are arranged in parallel in the width direction, with each longitudinal direction parallel to one side of the rectangular first base material 2.
  • the daylighting unit 3 has an asymmetric shape on both sides around the perpendicular M of the surface 3a passing through the vertex q farthest from the surface 3a facing the first surface 2a of the first base material 2.
  • the plurality of daylighting units 3 are arranged in a state in which the large volume side (the surface 3d and the surface 3e side) is unified downward with the vertical line M of the surface 3a in each center.
  • the cross-sectional shape of the daylighting unit 3 is not limited to a pentagon, and may be a polygon more than a triangle. Further, it may be a polyhedron other than a polygon. In other words, the daylighting unit 3 only needs to be asymmetrical with respect to an arbitrary perpendicular line of the surface 3a. As the daylighting film 1, it is only necessary that a prism structure having a lower volume equal to or higher than an upper volume in a cross-sectional shape is continuously formed.
  • the refractive index of the adhesive layer 8 is preferably equal to the refractive index of the window glass 1003. Thereby, refraction does not occur at the interface between the daylighting film 1 and the window glass 1003.
  • each daylighting section 3 faces the horizontal direction
  • the arrangement direction of the plurality of daylighting sections 3 faces the vertical direction
  • the daylighting film 1 is interposed through the adhesive layer 8 shown in FIG. And attached to the inner surface 1003a of the window glass 1003.
  • the first base material (base material) 2 is ejected from the second surface 2b (interface between the second surface 2b and the indoor space) toward the ceiling.
  • a virtual straight line passing through the incident point C and orthogonal to the first surface 2a of the first base material 2 is defined as a straight line f.
  • the space on the side where the light L incident on the incident point C is present is the first space K1, and the light L incident on the incident point C exists.
  • the space on the side not to be used is defined as a second space K2.
  • the light L incident from the surface 3c of the daylighting unit 3 is totally reflected by the surface 3e of the daylighting unit 3, travels obliquely upward, that is, toward the first space K1, and is emitted from the surface 3a of the daylighting unit 3.
  • the light L emitted from the daylighting unit 3 passes through the first base material 2 and travels from the daylighting film 1 toward the indoor ceiling.
  • the light emitted from the daylighting film 1 toward the ceiling is reflected by the ceiling and illuminates the room, and thus is a substitute for illumination light. Therefore, when such a daylighting film 1 is used, the energy-saving effect which saves the energy which the lighting equipment in a building consumes during the day can be expected.
  • the room model 1000 is a model that assumes use of the daylighting apparatus 100 in an office, for example.
  • a room model 1000 shown in FIG. 4 is a room surrounded by a ceiling 1001, a floor 1002, a front side wall 1004 to which a window glass 1003 is attached, and a back side wall 1005 facing the front side wall 1004.
  • 1006 illustrates a case where outdoor light L is incident obliquely from above through the window glass 1003.
  • the daylighting device 100 is attached to the upper side of the inner surface of the window glass 1003.
  • the height dimension (dimension from the ceiling 1001 to the floor 1002) H of the room 1006 is 2.7 m
  • the vertical dimension H2 of the window glass 1003 is 1.8 m from the ceiling 1001
  • the vertical dimension of the daylighting film 1 H1 is 0.6 m from the ceiling 1001.
  • the room model 1000 there are a person Ma sitting on a chair in the room 1006 and a person Mb standing on the floor 1002 in the back of the room 1006.
  • the eye height lower limit Ha of the person Ma sitting on the chair is set to 0.8 m from the floor 1002
  • the eye height upper limit Hb of the person Mb standing on the floor 1002 is set to 1.8 m from the floor 1002.
  • a region (hereinafter referred to as a glare region) G that makes the people Ma and Mb in the room 1006 feel dazzled is a range of eye heights Ha and Hb of the people Ma and Mb in the room.
  • the vicinity of the window glass 1003 in the room 1006 is a region F where the outdoor light L is directly irradiated through the lower side of the window glass 1003 to which the daylighting film 1 is not attached.
  • This region F is in the range of 1 m from the side wall 1004 on the near side.
  • the glare region G is a range from a position 1 m away from the front side wall 1004 excluding the region F to the back side wall 1005 in the height range of 0.8 m to 1.8 m from the floor 1002. .
  • the emission angle when the emission angle is in the range of ⁇ 45 ° to 0 °, it can be glare light.
  • the glare area G is an area defined based on the position of the eye in the area where the person moves. Even if the room 1006 is brightly illuminated by the light traveling toward the ceiling 1001, the person in the room 1006 tends to feel uncomfortable if there is a lot of light reaching the glare region G.
  • the daylighting film 1 of the present embodiment can relatively increase the luminance of the light toward the ceiling 1001 while reducing the luminance of the light toward the glare region G out of the light L entering the room 1006 through the window glass 1003. It is possible.
  • the light L ′ reflected by the ceiling 1001 illuminates the room 1006 brightly over a wide area, instead of the illumination light. In this case, by turning off the lighting equipment in the room 1006, an energy saving effect that saves the energy consumed by the lighting equipment in the room 1006 during the day can be expected.
  • the daylighting film 1 of the daylighting apparatus 100 is mainly illustrated, and other components are omitted.
  • the injection angle theta OUT of the incident angle theta IN and exit light L OUT of the incident light L IN is lighting apparatus 100 normal to the direction of along the (first substrate 2 of the lighting film 1)
  • the angle is defined as 0 °
  • the angle toward the ceiling 1001 is defined as positive (+)
  • the angle toward the floor 1002 is defined as negative ( ⁇ ).
  • the injection angle theta OUT of emitted light L OUT emitted from the lighting device 100 is greater than 0 °, but the light beam toward the ceiling, if the injection angle theta OUT is 0 ° or less, facing the window glass 1003 It becomes a light ray toward the side wall 1005 and can become a glare ray.
  • the luminance of the light toward the ceiling 1001 is relatively reduced while the luminance of the light toward the glare region G and the light toward the floor 1002 is reduced. It is possible to increase it. That is, the light L incident on the room 1006 through the daylighting apparatus 100 and the window glass 1003 can be efficiently emitted toward the ceiling 1001. Further, the light L toward the ceiling 1001 can be irradiated to the back of the room 1006 without causing the people Ma and Mb in the room 1006 to feel dazzling.
  • the light L ′ reflected by the ceiling 1001 illuminates the room 1006 brightly over a wide area, instead of illumination light.
  • an energy saving effect that saves the energy consumed by the lighting equipment in the room 1006 during the day can be expected.
  • ⁇ IN > ⁇ OUT is satisfied within a range of 20 ° ⁇ ⁇ IN ⁇ 50 °.
  • FIG. 6A is a diagram illustrating a configuration of a daylighting film 901 as a comparative example and an optical path of light transmitted through the daylighting film 901.
  • FIG. 6B is a diagram illustrating a configuration of a daylighting film 904 as another comparative example and an optical path of light transmitted through the daylighting film 904.
  • a lighting film 901 shown in FIG. 6A includes a plurality of daylighting portions 903 having a pentagonal cross-sectional shape, and a contact length (z direction) between the surface 3a of one daylighting portion 903 and the first surface 902a of the first base material 902. ) W is about 150 ⁇ m, and the interval s between the daylighting portions 903 is 20 ⁇ m.
  • the 6B includes a plurality of daylighting units 905 having a triangular cross-sectional shape, and a contact length (z direction) between the surface 3a of one daylighting unit 905 and the first surface 902a of the first base material 902. ) W is about 150 ⁇ m, and the interval s between the daylighting portions 905 is 20 ⁇ m.
  • the cross-sectional shape of the daylighting parts 903 and 905 is not limited to the illustrated shape.
  • the perpendicular M of the surface 3 a passing through the vertex q farthest from the surface 3 a facing the second surface 902 b of the first base material 902 is the center.
  • a polygonal columnar structure having a pentagonal cross-sectional shape that is asymmetric on both sides may be used. That is, the lower volume including the surface 3e (reflection surface) may be smaller than the upper volume including the surfaces 3b, 3c, and 3d.
  • the light incident on the daylighting portions 903 and 905 of the daylighting films 901 and 904 shown in FIGS. 6A and 6B is reflected at the interface between the second surface 902b of the first base material 902 and the air layer, and then incident on the daylighting.
  • the light is refracted by the plurality of daylighting units 903 and 905 positioned below the units 903 and 905 and is emitted into the room at a certain emission angle ⁇ OUT .
  • stray light glare if each light ray is emitted into the room at the same emission angle ⁇ OUT , a person in the room may feel dazzling.
  • the light incident on the daylighting films 901 and 904 follows the same optical path according to the repeated arrangement of the daylighting units 903 and 905. For this reason, light rays that become stray light glare are concentrated at the same exit angle ⁇ OUT , causing uncomfortable feeling to people in the room.
  • stray light glare similarly occurs even when a fine structure surface on which a plurality of daylighting portions 907 and 905 are formed is installed toward the indoor side.
  • FIG. 7 is a diagram for explaining the characteristics of the daylighting film 901 shown in FIG. 6A as a comparative example.
  • FIG. 8 is a diagram showing the relationship between the exit angle of stray light glare and the luminous flux. In FIG.7 and FIG.8, the result at the time of making plate
  • FIG. 9 is a diagram showing the configuration of the daylighting film 1 of the present embodiment and the optical path of light that passes through the daylighting film 1.
  • the light incident on the daylighting film 1 is refracted or reflected by each daylighting unit 3 and then totally reflected at the interface between the second surface 2 b of the first base member 2 and the air layer, The light enters the other daylighting unit 3 positioned lower than the incident daylighting unit 3.
  • the position of reflection at the interface between the second surface 2b and the air layer in the vertical direction (Z direction) is 1 It depends on the thickness of the substrate 2.
  • the positions where the lights L1 and L2 are totally reflected at the interface between the second surface 2b of the first base material 2 and the air layer vary between a portion with the convex portion 2B and a portion without the convex portion 2B. Therefore, the subsequent optical path also changes, and the angle at which the light is finally emitted from the daylighting film 1 changes.
  • the light L1 totally reflected in the first region R1 is emitted at ⁇ OUT (1), whereas the second region The light L2 totally reflected at R2 is emitted at ⁇ OUT (2).
  • the optical path of the light transmitted through the daylighting film 1 is changed by partially increasing the thickness of the first base material 2 by providing the convex portions 2B.
  • the emission angle ⁇ OUT of the emitted light when emitted into the room could be dispersed into a plurality of angles (emission angle ⁇ OUT (1) ⁇ emission angle ⁇ OUT (2)).
  • emission angle ⁇ OUT (1) ⁇ emission angle ⁇ OUT (2) the light flux of the peak of the stray light glare emitted at the same angle is reduced.
  • FIG. 10 is a diagram for explaining the characteristics of the daylighting film 1 of the first embodiment.
  • FIG. 11 is a diagram comparing the relationship between the emission angle of stray light glare of the daylighting film and the light flux in the first embodiment with a comparative example.
  • the daylighting film 1 of the present embodiment has the stray light glare ⁇ OUT concentrated in the exit angle ⁇ OUT in the vicinity of ⁇ 14.5 ° and in the vicinity of ⁇ 34 ° in the conventional daylighting film 901, as shown in FIG. , Can be distributed to other angles. Thereby, the peak light flux of the stray light glare emitted at the same angle can be reduced.
  • FIG. 12 is a diagram showing the relationship between the light emission angle ( ⁇ OUT ) and the luminous flux in the daylighting film in the first embodiment and the daylighting film as a comparative example.
  • the daylighting characteristics of the daylighting film 1 are almost the same as the daylighting characteristics of the daylighting film 901 of the comparative example, and there is no significant change in the luminous flux of the light emitted toward the indoor ceiling. That is, even if the arrangement intervals of the adjacent daylighting units 3 are set to a plurality of levels, it is possible to maintain the light flux in the daylighting direction.
  • the daylighting film 1 by changing the optical path of the light by partially changing the thickness of the first base material 2, a plurality of light beams forming the glare luminous flux are changed to other light beams. By dispersing to an angle, the daylighting film 1 that does not feel dazzling anywhere in the room is obtained. Further, the daylighting film 1 can reduce the luminous flux at the peak of stray light glare while substantially maintaining the daylighting characteristics. Thereby, the favorable indoor environment which does not make the person who exists indoors feel dazzling can be ensured.
  • the surface in which the fine structure was formed among the lighting films 1 was made into the light-incidence surface 1a, the said light-incidence surface 1a was installed facing the window glass 1003 (outdoor) side, but the lighting film 1 was installed. 6C or 6D, the fine structure surface on which the plurality of daylighting portions 3 are formed may be installed toward the indoor side. In this case as well, a plurality of light beams forming the glare light beam can be dispersed to other angles, and the daylighting film 1 that does not feel dazzling wherever it is in the room is obtained.
  • the 1st base material 2 becomes a structure which has one convex part 2B, like the lighting film 20 shown in FIG. 13, several convex part 2B in an up-down direction (Z direction). It is good also as a structure provided with the 1st base material (base material) 21 which has.
  • FIG. 13 is a view showing a modification of the daylighting film of the first embodiment. With this configuration, there are a plurality of portions having different thicknesses in the first base material 21, and the plurality of light beams forming the glare light beam can be further dispersed to other angles.
  • the change in luminance ratio due to the thickness of the first base material 2 is calculated geometrically. It is difficult. Therefore, it is examined how much the thickness t of the first base material 2 in the daylighting film is changed from the reference thickness t0 so that a decrease in light rays that become stray light glare can be visually recognized, and a lower limit value of the thickness t is set. did.
  • FIG. 14A is a diagram showing a thickness t0 as a reference of the first base material 2.
  • FIG. 14B is a diagram showing the thickness t of the first base material 2.
  • the pitch of “the width W of the daylighting unit 3 + the interval s between adjacent daylighting units 3” is indicated by the symbol p.
  • the thickness t0 of the first base material 2 of the daylighting film 1A shown in FIG. 14A is used as a reference thickness
  • the thickness t of the first base material 2 of the daylighting film 1B shown in FIG. 14B is a predetermined thickness.
  • FIG. 15 is a diagram showing the luminous flux of glare rays emitted at a specific angle in the above-described two daylighting films 1A and 1B.
  • the vertical axis represents the stray light glare light flux (relative ratio)
  • the horizontal axis represents the ratio ((t ⁇ t0) / p) between the difference from the reference thickness t0 of the first substrate 2 and the pitch p. Show.
  • the level at which a person in the room can realize that the glare luminous flux has decreased is when the relative luminance ratio that can be recognized by human eyes is 20% in photopic vision.
  • the daylighting film 1 includes emission light whose luminance is about 20% lower than the brightest emission light, it can be recognized that there is a difference in the luminance ratio of each emission light, and stray light glare. Will be improved.
  • the luminous flux of the stray light glare becomes Max
  • the ratio between the thickness difference from the reference thickness t0 and the pitch p ((t ⁇ When t0) / p) was -0.013
  • the luminous flux of stray light glare was 0.8 times that of Max.
  • the glare luminous flux can be obtained by including a region having a reference thickness t0 and a region having a predetermined thickness t so that the luminous flux ratio is 20%. Peak reduction can be expected.
  • t0 is a reference thickness in the first base material 2
  • t is a predetermined thickness of the first base material 2.
  • you may comprise so that at least 1 area
  • the thickness difference with respect to the reference thickness t0 in the first base material 2 may be defined as “a thickness difference in which the ratio to the pitch p is 2.8% or more”.
  • the basic configuration of the daylighting film 31 of the present embodiment shown below is substantially the same as that of the first embodiment, but the first base material 32 has a protrusion 34 that is a separate member from the base material body 33. It differs in that it is configured. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate
  • the same reference numerals are given to the same components as those used in the description of the previous embodiment.
  • FIG. 16 is a cross-sectional view partially showing the schematic configuration of the daylighting film 31 of the third embodiment.
  • the daylighting film 31 of the present embodiment includes a base body 33 and a second surface of the base body 33 opposite to the first surface 33 a provided with the plurality of daylighting portions 3.
  • the convex portion 34 may be a light transmissive film, sheet, or tape, or may be a member made of a light transmissive resin.
  • the thickness of the first base material 32 can be partially changed.
  • the light totally reflected at a portion having a difference in thickness that is, the optical path of the light L 2 totally reflected at the interface between the one surface 34 b of the convex portion 34 and the air layer is
  • the light path L1 is changed to a different optical path from the light L1 totally reflected at the interface between the second surface 33b and the air layer, and is emitted at an emission angle ⁇ OUT (2) different from the emission angle ⁇ OUT (1) of the light L1.
  • the convex portion 34 may be a separate member from the base material body 33.
  • the thickness t0 of the base body 33 it is preferable that the thickness t of the first base 32 including the convex portion 34 satisfies the above formula 3 or the above formula 4.
  • the basic structure of the daylighting film of the present embodiment shown below is substantially the same as that of the first embodiment, but differs in that the thickness of the first base material is set to three or more levels.
  • FIG. 17 is a diagram showing the configuration of the daylighting film of the fourth embodiment.
  • the first base material (base material) 9 in the daylighting film 40 of the present embodiment has three regions R1, R2, and R3 having different thicknesses T1, T2, and T3, A structure in which the thicknesses T1, T2, and T3 of the first base material 9 are stepwise different in the vertical direction (Z direction) by the plurality of surfaces 9a, 9b, and 9c having different positions in the thickness direction (Y direction). It has become.
  • the emission angles of the emitted light are made different for the regions R1, R2, R3. be able to.
  • the several light beam which forms a glare light beam can be more disperse
  • the number of the surfaces 9c, 9b, and 9c at different positions in the thickness direction (Y direction) of the first base material 9 may be three or more.
  • FIGS. 18A to 18C are diagrams showing modifications 1 to 3 of the daylighting film in the fourth embodiment.
  • a daylighting film 41 shown in FIG. 18A includes a first base material (base material) 91 having three regions R1, R2, and R3 having different thicknesses T1, T2, and T3.
  • base material base material
  • three surfaces 9a, 9b, 9c having different positions in the thickness direction (Y direction) are randomly present in the vertical direction (Z direction).
  • each surface 9b, 9c is provided on each surface 9b, 9c.
  • the surface 9a exists so as to be adjacent to each other.
  • the thicknesses T1, T2, T3 of the first base material 9 in the vertical direction (Z direction) are provided by a plurality of surfaces 9a, 9b, 9c having different positions in the thickness direction (Y direction).
  • the thicknesses T1, T2, and T3 may change randomly in the vertical direction (Z direction) as in the first base material 91 shown in this example.
  • region where thickness differs from each other among the 1st base materials 91 is not restricted to three, Four or more may be sufficient.
  • the daylighting film 42 shown in FIG. 18B includes a first base material (base material) 92 in which the curved surface 6 and the flat surface 7 are alternately present in the vertical direction (Z direction).
  • the curved surfaces 6 and 6 are convex circular arc surfaces and have the same curvature.
  • the first region R1 corresponding to the plane 7 has a constant thickness T1 in the vertical direction, whereas the second region R2 corresponding to the curved surface 6 has a thickness T2 at the apex e of the curved surface 6.
  • the thickness T2 is maximum, and the thickness T2 continuously changes (decreases) over the first region R1 (plane 7).
  • the optical path of the light reflected by the air layer and each of the curved surface 6 and the flat surface 7 is different, but in the case of the curved surface 6, in the thickness direction (Y direction). Since the light reflection position in FIG. 4 continuously changes in the vertical direction (Z direction), the light reflection position also changes continuously in the vertical direction. Therefore, the light incident on the curved surface 6 is reflected at various reflection angles at the interface with the air layer, and is emitted through different optical paths.
  • the curved surfaces 6 and 6 can further reduce the stray light glare peak luminous flux emitted at the same angle, and provide a favorable indoor environment that does not make a person in the room feel dazzling.
  • the daylighting film 43 shown in FIG. 18C has a first base material (base material) 93 in which a plurality of curved surfaces 6A and 6B and a plane 7 having different curvatures are alternately present in the vertical direction (Z direction). . Since the curved surfaces 6A and 6B have different curvatures, the positions of the apexes e1 and e2 are different in the thickness direction (Y direction). The first region R1 corresponding to the plane 7 has a constant thickness T1 in the vertical direction.
  • the thickness T2 becomes maximum at the apex e1 of the curved surface 6A, and the thickness T2 continuously changes (decreases) over the first region R1 (plane 7). Yes. Further, in the third region R3 corresponding to the curved surface 6B, the thickness T3 becomes maximum at the apex e2 of the curved surface 6B, and the thickness T3 continuously changes (decreases) over the first region R1 (plane 7). Yes.
  • the first base material 93 of this example further includes curved surfaces 6A and 6B having different curvatures in addition to the plane 7, the light incident on the curved surfaces 6A and 6B is reflected at different angles. , Emitted through various optical paths.
  • the curved surfaces 6A and 6B having different curvatures can further reduce the stray light glare peak luminous flux emitted at the same angle, thereby providing a better indoor environment in which a person in the room does not feel dazzling.
  • FIG. 19A to 19D are views showing modified examples 4 to 7 of the daylighting film in the fourth embodiment.
  • Modification 4 It is good also as a structure provided with the 1st base material (base material) 94 which has several plane 7 and several inclined surface 15a, 15b like the lighting film 44 shown to FIG. 19A.
  • the inclined surfaces 15a and 15b are inclined at the same inclination angle ⁇ with respect to the normal direction (Y direction) of the first base material 94 and opposite to each other in the vertical direction (Z direction).
  • the inclined surfaces 15a, 15b, and 7 are repeatedly present in this order in the vertical direction.
  • the region corresponding to the plane 7 in the first base 94 has a constant thickness T1 in the vertical direction.
  • the thickness T2 is maximum at the top portion e3, and the thickness T2 continuously changes (decreases) in the vertical direction toward the plane 7.
  • the positions of the tops e4, e5, e6 formed by the plurality of inclined surfaces 15a, 15b are the thickness direction (Y direction) of the first base material (base material) 95. Different configurations may be used.
  • the inclination angles ⁇ e4, ⁇ e5, and ⁇ e6 of the pair of inclined surfaces 15a and 15b that constitute the apexes e4 to e6 are different for each of the apexes e4, e5, and e6.
  • Modification 6 It is good also as a structure provided with the 1st base material (base material) 96 in which the some curved surface 6 exists continuously in an up-down direction (Z direction) like the lighting film 46 shown to FIG. 19C.
  • the minimum thickness T1 is provided on the end side of each curved surface 6, and the maximum thickness T2 is provided on the apex e of each curved surface 6. In this manner, a configuration may be adopted in which there is no region that forms a flat surface on the surface 96b opposite to the fine structure surface 96a.
  • a surface 97b opposite to the fine structure surface 97a includes a first base material (base material) 97 configured by a plurality of curved surfaces 6a to 6f having different curvatures. Also good. Thereby, the thickness of the 1st base material 97 in the up-down direction changes more randomly than the structure of the modification 6 provided with two or more curved surfaces 6 with the same curvature.
  • the thickness of the first base material As described above, with respect to variations in how the thickness of the first base material varies, if the indoor side surface of the first base material (the surface opposite to the fine structure surface) is not flat, the thickness of the first base material ( The position of the interface with the air layer) has an infinite level. In this case, the light beam totally reflected at the interface between the first base material and the air layer is dispersed in various directions, and an effect of further dispersing the emission angle of the stray light glare can be obtained.
  • the daylighting film of the present embodiment shown below is different from the previous embodiment in that the thickness of the first base material 2 is partially different as in the previous embodiment, but the distance between adjacent daylighting portions is different. Is different.
  • FIG. 20 is a diagram showing a configuration of a daylighting film in the fifth embodiment.
  • the daylighting film 50 is disposed on the first base 2 having the convex portion 2 ⁇ / b> B on the second surface 2 b side of the first base 2 and the first surface 2 a of the first base 2.
  • the first base material 2 is partially thick in the vertical direction (Z direction) by the convex portion 2B provided on the one surface (second surface 2b) side of the first base material 2.
  • the intervals between the daylighting units 3 adjacent in the vertical direction (Z direction) are all constant, but in the present embodiment, they are adjacent in the vertical direction (Z direction).
  • the intervals between the daylighting units 3 are not constant and are set to a plurality of levels.
  • a plurality of daylighting units 3 are arranged with an interval s0 or an interval s1 between other adjacent daylighting units 3 (s0 ⁇ s1).
  • the interval s0 and the interval s1 are randomly present in the vertical direction in the arrangement direction (Z direction) of the daylighting units 3, and a plurality of daylighting units 3 are irregularly arranged.
  • the thickness of the first base material 2 is partially different, and the arrangement interval s of the daylighting unit 3 is varied, so that the regularity of the arrangement of the constituent elements can be further improved in both elements. And stray light glare can be dispersed.
  • the configuration is not limited to the configuration of the present embodiment, and the interval s0 and the interval s1 may alternately exist or regularly exist in the arrangement direction (Z direction) of the daylighting units 3.
  • the configuration in which the interval s0 and the interval s1 exist randomly that is, the configuration in which the plurality of daylighting units 3 are irregularly arranged in the vertical direction has a higher effect of improving the dispersibility of the glare emission angle.
  • FIG. 21A is a diagram illustrating a configuration of the daylighting film 61 of Example 1 according to the sixth embodiment.
  • the daylighting film 61 shown in FIG. 21A is configured to have a distribution of refractive index in the daylighting film 61.
  • the daylighting film 61 in this embodiment has a different refractive index for each region, and uses a first region R1 formed using a material having a refractive index n1 and a material having a refractive index n2. And a second region R2 formed in the above manner.
  • a convex portion 2C formed using a material having the same refractive index n1 as that of the daylighting portion 3A in the same region is provided.
  • the second region R2 is provided with a convex portion 2C formed using a material having a refractive index n1, and a convex portion 2D formed using a material having the same refractive index n2 as the daylighting portion 3B in the same region.
  • the optical path of the light incident on the first region R1 of the daylighting film 61 and the optical path of the light incident on the second region R2 can be changed. Also in each of the regions R1 and R2, the optical paths of light incident on the convex portions 2C and 2D having a predetermined refractive index and the optical paths of light not incident on the convex portions 2C and 2D can be changed.
  • FIG. 21B is a diagram showing a configuration of the daylighting film 62 of Example 2 in the sixth embodiment.
  • the daylighting film 62 shown in FIG. 21B includes a first base 2 composed of a base body 2A and a plurality of convex portions 2C, and a first surface 2a of the first base 2 (a second surface 2b provided with the convex portions 2C). And a plurality of daylighting units 3A provided on the opposite surface).
  • the first base 2 and the plurality of daylighting units 3A are made of a material having a refractive index n1.
  • some of the daylighting units 3B among the plurality of daylighting units are made of a material having a refractive index n2 different from those of the other daylighting units 3A and the first base material 2.
  • the daylighting unit 3A having the refractive index n1 and the base body 2A not only the light path of light traveling in the daylighting unit 3A having the refractive index n1 and the base body 2A, and the daylighting unit 3B having the refractive index n2, but also the daylighting unit 3B having the refractive index n2
  • the optical path of the traveling light can be changed. Further, since the optical path of the light traveling in the convex portion 2C is also different from the other optical paths, the glare light beam can be further dispersed.
  • FIG. 21C is a diagram showing a configuration of the daylighting film 63 of Example 3 in the sixth embodiment.
  • the daylighting film 63 shown in FIG. 21C is configured by providing a plurality of plate members 64A, 64B, and 64C having different refractive indexes on the second surface 2b side of the first base material 2.
  • a plate member 64A made of a material having a refractive index n3 has a convex portion 2E made of the same material.
  • the plate member 64C made of a material having a refractive index n1 has a convex portion 2F made of the same material. Further, in FIG.
  • the plate member 64B made of the material having the refractive index n2 is not provided with a protrusion, but like the other plate members 64A and 64C, the protrusion made of the same material as the plate member 64B is provided. It may be provided.
  • the plate members 64A, 64B, and 64C need only be bonded to the second surface 2b of the first base member 2, so that the adjustment of the optical path change is easy and the manufacture is easy.
  • the light flux at the peak of the stray light glare is obtained by partially varying the thickness and the refractive index of the first base material 2 in the daylighting film 63. Can be further reduced.
  • FIG. 22 is a diagram showing the optical path and luminance of the daylighting film 71 of the first embodiment in the seventh embodiment, in which the thicknesses t1 to t3 in the vertical direction of the first base material 2 are repeatedly set in this order.
  • the thickness t1 to t3 in the vertical direction of the first base material 2 are repeatedly set in this order.
  • the thickness t1 to t3 in the vertical direction are regularly set repeatedly, the thickness varies depending on the thicknesses t1 to t3. Luminous emitted light is emitted from the daylighting film 71.
  • FIG. 23 is a diagram showing the optical path and luminance of the daylighting film 72 of Example 2 in the seventh embodiment, in which the thicknesses t1 to t3 are set at random.
  • the thicknesses t1 to t3 are set at random.
  • emission lights having different luminances are emitted at random.
  • a person in the room looks at the daylighting film 72, he / she sees light with uniform luminance.
  • FIG. 24 is a diagram illustrating the optical path and luminance of the daylighting film 73 of Example 3 in the seventh embodiment, in which the thicknesses t1, t2, and t3 are different for each of the regions A1, A2, and A3 of the first base material 2.
  • the first base material 2 of the daylighting film 73 for example, a region A1 set to a thickness t1, a region A2 set to a thickness t2, and a region A3 set to a thickness t3.
  • Light having different luminance is emitted for each of the areas A1, A2, and A3.
  • the basic configuration of the daylighting film 81 of the present embodiment shown below is substantially the same as that of the first embodiment, but is different in that design is imparted to the light emitted from the daylighting film 81. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate
  • the same reference numerals are given to the same components as those used in the description of the previous embodiment.
  • FIG. 25 is a diagram illustrating the distribution of the thicknesses t1, t2, and t3 of the first base material (base material) 81A in the daylighting film 81 as an example of the eighth embodiment.
  • FIG. 26 is a diagram illustrating a state in which the daylighting film 81 illustrated in FIG. 25 is viewed from a person in the room.
  • the daylighting film 81 for example, in the case of a configuration in which the thicknesses t1, t2, and t3 of the first base material 81A are repeatedly arranged in this order, a person who is in the room as shown in FIG.
  • the luminance (brightness) of the emitted light varies depending on the thicknesses t1, t2, and t3 of the first base material 81A.
  • the difference in brightness of the emitted light flux of the stray light glare can be used.
  • the design can be arbitrarily given to the daylighting film 81.
  • the daylighting film 81 described above for example, a daylighting film having a first base member 81A as shown in FIG. 27 may be adopted.
  • the first base material 81 ⁇ / b> A is configured by being bonded through a base base material (base material body) 12, a resin base material (additional member) 14, and an adhesive layer 13 that have a smooth shape.
  • the base substrate 12 has a first surface 12a and a second surface 12b that are parallel to each other, and the thickness of the substrate in the vertical direction (Z direction) is substantially constant.
  • the resin base material 14 is bonded along the surface of the adhesive layer 13 provided on the second surface 12 b side of the base base material 12.
  • the surface of the adhesive layer 13 is an uneven surface 13b, and the thickness of the layer is partially different.
  • the uneven surface 13b of the adhesive layer 13 in the present embodiment has a plurality of curved surfaces 13c having the same curvature, and the thickness of the adhesive layer 13 varies between the minimum thickness T1 and the maximum thickness T2 in the vertical direction. ing.
  • the film-like resin base material 14 bonded onto the uneven surface 13b has a shape reflecting the uneven shape on the surface of the adhesive layer 13. Therefore, the resin base material 14 is also uneven.
  • the uneven shape of the uneven surface 13b of the adhesive layer 13 is not limited to the illustrated shape. The unevenness generated when the adhesive is applied may be formed, or the unevenness may be intentionally formed.
  • the thickness of the adhesive layer 13 is partially different, and the interface between the light emitting surface of the daylighting film 81 (the second surface 14b of the resin base material 14) and the air layer is not smooth but is an uneven surface. It has become. Therefore, a plurality of light beams forming the stray light glare emitted from the daylighting film 81 can be dispersed to more angles on the light emission side.
  • the first base material 81B is configured by being bonded to each other via the base base material 12 having a smooth shape, the resin base material 14, and the adhesive layer 13, and is formed on the first surface 14a of the resin base material 14 disposed on the light incident side.
  • a plurality of daylighting units 3 are provided.
  • the resin base material 14 having the plurality of daylighting portions 3 on the first surface 14 a side is bonded along the uneven surface 13 b of the adhesive layer 13 provided on the base base material 12.
  • the film-like resin base material 14 bonded on the uneven surface 13 b has a shape reflecting the uneven shape on the surface of the adhesive layer 13. Therefore, the resin base material 14 is also uneven, and the postures of the respective daylighting units 3 also change from each other. With such a configuration, it is possible to disperse the light rays forming the glare light beam at more angles on the light incident side.
  • FIG. 29 is a perspective view showing a schematic configuration of the roll screen 301.
  • 30 is a cross-sectional view taken along line EE ′ of the roll screen 301 shown in FIG.
  • symbol shall be attached
  • the roll screen 301 includes a daylighting screen 302 and a winding mechanism 303 that supports the daylighting screen 302 so as to be freely wound.
  • the daylighting screen 302 includes a plurality of daylighting films formed side by side on a film-like (sheet-like) first base 2 having light permeability and a first surface 2 a of the first base 2. And a daylighting member 300 having a plurality of gaps 4 formed between each of the plurality of daylighting parts 3 and taking in outside light through the daylighting member 300.
  • the daylighting screen 302 has basically the same structure as the daylighting film 1.
  • the thickness of the first substrate 2 having the substrate body 2A and at least one convex portion 2B is a thickness suitable for the roll screen 301.
  • the winding mechanism 303 includes a winding core (supporting member) 304 attached along the upper end of the daylighting screen 302 and a lower pipe (supporting) attached along the lower end of the daylighting screen 302. Member) 305, a tension cord 306 attached to the center of the lower end of the daylighting screen 302, and a storage case 307 for storing the daylighting screen 302 wound around the winding core 304.
  • the take-up mechanism 303 is a pull cord type, and is fixed at the position where the daylighting screen 302 is pulled out, or by further pulling the tensioning cord 306 from the position where it is pulled out, and the fixing is released and the daylighting screen 302 is attached to the core 304. It is possible to wind up automatically.
  • the winding mechanism 303 is not limited to such a pull cord type, but may be a chain type winding mechanism that rotates the winding core 304 with a chain, an automatic winding mechanism that rotates the winding core 304 with a motor, or the like. There may be.
  • the roll screen 301 having the above-described configuration is in a state where the storage case 307 is fixed to the upper part of the window glass 308, while the daylighting screen 302 stored in the storage case 307 is pulled out by the pull cord 306, It is used in a state where it faces the inner surface.
  • the daylighting screen 302 is arranged in a direction in which the arrangement direction of the plurality of daylighting units 3 matches the vertical direction (vertical direction) of the window glass 308 with respect to the window glass 308. That is, the daylighting screen 302 is arranged so that the longitudinal direction of the plurality of daylighting units 3 is aligned with the horizontal direction (horizontal direction) of the window glass 308 with respect to the window glass 308.
  • the daylighting screen 302 facing the inner surface of the window glass 308 irradiates the light incident on the room through the window glass 308 toward the indoor ceiling while changing the light traveling direction in the plurality of daylighting units 3. Moreover, since the light which goes to a ceiling reflects on a ceiling and illuminates a room, it becomes a substitute for illumination light. Therefore, when such a roll screen 301 is used, the energy saving effect which saves the energy which the lighting equipment in a building consumes during the day can be expected.
  • the roll screen according to the embodiment of the present invention is directed to the glare region G, for example, on the second surface 2b side of the first base material 2 in addition to the configuration of the roll screen 301. It is also possible to adopt a configuration in which a functional film such as a light diffusion film for diffusing light in a direction or a heat-insulating film having light permeability for blocking radiant heat of natural light (sunlight) is arranged.
  • a functional film such as a light diffusion film for diffusing light in a direction or a heat-insulating film having light permeability for blocking radiant heat of natural light (sunlight) is arranged.
  • FIG. 31 is a perspective view showing a schematic configuration of the blind.
  • 32A and 32B are perspective views showing a schematic configuration of the blind 401, FIG. 32A shows an open state of the blind 401, and FIG. 32B shows a closed state of the blind 401.
  • FIG. 33 is a diagram illustrating a schematic configuration of a daylighting slat included in the blind.
  • FIG. 34 is a diagram illustrating a state in which the direction of the daylighting slats included in the blinds is reversed.
  • the blind 401 includes a plurality of daylighting slats 402 arranged side by side at a predetermined interval, a tilting mechanism (supporting mechanism) 403 that supports the plurality of daylighting slats 402 so as to tilt freely.
  • a storage mechanism 408 that folds and stores the plurality of daylighting slats 402 connected by the tilting mechanism 403 so as to be able to be inserted and removed.
  • the plurality of daylighting slats 402 are formed side by side on the first base 2 and the first surface 2a of the first base 2 as shown in FIGS. 32A, 32B and 33.
  • the lighting member includes a plurality of daylighting units 3 and a plurality of gaps 4 formed between the plurality of daylighting units 3.
  • the 1st base material 2 has at least 1 convex part 2B in the 2nd surface 2b side.
  • Each daylighting slat 402 is made of any one of the daylighting films of the above-described embodiments.
  • the tilting mechanism 403 includes a plurality of ladder cords 404.
  • the plurality of ladder cords 404 support the plurality of daylighting slats 402 by being arranged in the longitudinal direction of the daylighting slats 402.
  • the ladder code 404 is spanned between a pair of vertical cords 405a and 405b arranged in parallel to each other and the vertical cords 405a and 405b, and a plurality of the ladder cords 404 arranged at equal intervals in the longitudinal direction of the vertical cords 405a and 405b.
  • the ladder cord 404 holds the daylighting slat 402 between the vertical cords 405a and 405b while sandwiching the daylighting slat 402 with a pair of holding cords 407a and 407b constituting the horizontal cord 406.
  • the tilt mechanism 403 includes an operation mechanism that moves the pair of vertical cords 405a and 405b in the vertical direction opposite to each other.
  • the plurality of daylighting slats 402 can be tilted while being synchronized with each other by moving the pair of vertical cords 405a and 405b by the operation mechanism.
  • the blind 401 having the above-described configuration is used in a state of being suspended from the upper part of a window glass (not shown) and facing the inner surface of the window glass.
  • each daylighting slat 402 is arrange
  • the daylighting slats 402 are arranged so that the extending direction of the plurality of daylighting units 3 is aligned with the horizontal direction (horizontal direction) of the window glass with respect to the window glass.
  • the blind 401 facing the inner surface of the window glass directs the light L incident into the room through the window glass toward the indoor ceiling while changing the light traveling direction in the plurality of daylighting units 3. Irradiate.
  • the light L directed to the ceiling is reflected by the ceiling and illuminates the room, and thus is a substitute for illumination light. Therefore, when such a blind 401 is used, an energy saving effect that saves the energy consumed by the lighting equipment in the building during the day can be expected.
  • the angle of the light L toward the ceiling can be adjusted by tilting the plurality of daylighting slats 402. Furthermore, light incident from between the plurality of daylighting slats 402 can be adjusted.
  • the blind 401 as shown in FIG. 34, even when the direction of the daylighting slat 402 is reversed by 180 °, the light L incident on the room through the window glass is changed as in the case before the direction of the daylighting slat 402 is reversed. It is possible to irradiate the indoor ceiling while changing the traveling direction of the light with the plurality of daylighting units 3.
  • a blind in addition to the configuration of the blind 401, on the second surface 2b side of the first base material 2, for example, in the direction toward the glare region G
  • Functional films such as a light diffusing film (light diffusing member) for diffusing light and a light-transmitting heat insulating film (heat insulating member) for blocking radiant heat of natural light (sunlight) are arranged. It is also possible to adopt the configuration described above.
  • the blind it is possible to use a light shielding slat having a light shielding property in combination with the daylighting slat 402.
  • the daylighting part comprised by the some lighting slat 402
  • the light-shielding part comprised in the lower part of this daylighting part by the some light-shielding slat.
  • FIG. 35 is a sectional view taken along the line JJ ′ of FIG. 36, which is a room model 2000 equipped with a daylighting device and an illumination dimming system.
  • FIG. 36 is a plan view showing the ceiling of the room model 2000.
  • the ceiling material constituting the ceiling 2003a of the room 2003 into which external light is introduced may have high light reflectivity.
  • a light-reflective ceiling material 2003A is installed on the ceiling 2003a of the room 2003 as a light-reflective ceiling material.
  • the light-reflective ceiling material 2003A is intended to promote the introduction of outside light from the daylighting device 2010 installed in the window 2002 into the interior of the room, and is installed on the ceiling 2003a near the window. Yes. Specifically, it is installed in a predetermined area E (an area about 3 m from the window 2002) of the ceiling 2003a.
  • the light-reflective ceiling material 2003A is configured to transmit the outside light introduced into the room through the window 2002 in which the daylighting device 2010 (the daylighting device of any of the above-described embodiments) is installed. Efficiently leads to the back.
  • the external light introduced from the lighting device 2010 toward the indoor ceiling 2003a is reflected by the light-reflective ceiling material 2003A and changes its direction to illuminate the desk surface 2005a of the desk 2005 placed in the interior of the room. The effect of brightening the desk top surface 2005a is exhibited.
  • the light-reflective ceiling material 2003A may be diffusely reflective or specularly reflective, but has the effect of brightening the desk top surface 2005a of the desk 2005 placed in the interior of the room, and is in the room. In order to achieve both effects of suppressing glare light that is unpleasant for humans, it is preferable that the characteristics of the two are appropriately mixed.
  • the light incident on the ceiling (region E) in the vicinity of the window can be distributed toward the back of the room where the amount of light is small compared to the window.
  • the light-reflective ceiling material 2003A is formed by, for example, embossing a metal plate such as aluminum with unevenness of about several tens of microns, or depositing a metal thin film such as aluminum on the surface of a resin substrate on which similar unevenness is formed. Can be created. Or the unevenness
  • the emboss shape formed on the light-reflective ceiling material 2003A it is possible to control the light distribution characteristics and the light distribution in the room. For example, when embossing is performed in a stripe shape extending toward the back of the room, the light reflected by the light-reflective ceiling material 2003A is in the left-right direction of the window 2002 (direction intersecting the longitudinal direction of the unevenness). spread. When the size and direction of the window 2002 in the room 2003 are limited, the light is reflected in the horizontal direction by the light-reflective ceiling material 2003A and the interior of the room 2003 is moved to the back of the room. It can be reflected toward.
  • the daylighting apparatus 2010 is used as a part of the illumination dimming system in the room 2003.
  • the lighting dimming system includes, for example, a lighting device 2010, a plurality of indoor lighting devices 2007, a solar radiation adjusting device 2008 installed in a window, a control system thereof, and a light-reflective ceiling material 2003A installed on a ceiling 2003a. And the constituent members of the entire room including
  • a lighting device 2010 is installed on the upper side, and a solar radiation adjusting device 2008 is installed on the lower side.
  • a blind is installed as the solar radiation adjustment device 2008, but this is not a limitation.
  • a plurality of indoor lighting devices 2007 are arranged in a grid in the left-right direction (Y direction) of the window 2002 and the depth direction (X direction) of the room.
  • the plurality of indoor lighting devices 2007 together with the daylighting device 2010 constitute an entire lighting system of the room 2003.
  • an office ceiling 2003a in which the length L1 in the left-right direction (Y direction) of the window 2002 is 18 m and the length L2 in the depth direction (X direction) of the room 2003 is 9 m is shown.
  • the indoor lighting devices 2007 are arranged in a grid pattern with an interval P of 1.8 m in the horizontal direction (Y direction) and the depth direction (X direction) of the ceiling 2003a. More specifically, 50 indoor lighting devices 2007 are arranged in 10 rows (Y direction) ⁇ 5 columns (X direction).
  • the indoor lighting device 2007 includes an indoor lighting fixture 2007a, a brightness detection unit 2007b, and a control unit 2007c.
  • the indoor lighting fixture 2007a is configured by integrating the brightness detection unit 2007b and the control unit 2007c. It is.
  • the indoor lighting device 2007 may include a plurality of indoor lighting fixtures 2007a and a plurality of brightness detection units 2007b. However, one brightness detector 2007b is provided for each indoor lighting device 2007a.
  • the brightness detection unit 2007b receives the reflected light of the irradiated surface illuminated by the indoor lighting fixture 2007a, and detects the illuminance of the irradiated surface.
  • the brightness detection unit 2007b detects the illuminance of the desk surface 2005a of the desk 2005 placed indoors.
  • the control units 2007c provided for each room lighting device 2007 are connected to each other.
  • Each indoor lighting device 2007 is configured such that the illuminance of the desk top surface 2005a detected by each brightness detecting unit 2007b becomes a constant target illuminance L0 (for example, average illuminance: 750 lx) by the control units 2007c connected to each other.
  • Feedback control is performed to adjust the light output of the LED lamp of each indoor lighting fixture 2007a.
  • FIG. 37 is a graph showing the relationship between the illuminance of light (natural light) taken indoors by the daylighting device and the illuminance (illumination dimming system) by the indoor lighting device.
  • the vertical axis represents the illuminance (lx) on the desk surface
  • the horizontal axis represents the distance (m) from the window.
  • the broken line in the figure indicates the target illuminance in the room.
  • the desk surface illuminance due to the light collected by the daylighting device 2010 is brighter in the vicinity of the window, and the effect becomes smaller as the distance from the window increases.
  • the daylighting device 2010 is used in combination with the indoor lighting device 2007 that compensates for the illuminance distribution in the room.
  • the indoor lighting device 2007 installed on the indoor ceiling detects the average illuminance below each device by the brightness detection unit 2007b, and is dimmed and controlled so that the desk surface illuminance of the entire room becomes a constant target illuminance L0. Lights up.
  • the S1 and S2 rows installed in the vicinity of the window are hardly lit, and are lit while increasing the output toward the back of the room with the S3, S4, and S5 rows.
  • the desk surface of the room is illuminated by the sum of the illuminance by natural lighting and the illumination by the interior lighting device 2007, and the illuminance of the desk surface is 750 lx (“JIS Z9110 illumination” which is sufficient for work throughout the room. "Recommended maintenance illuminance in the office of" General "" can be realized.
  • the daylighting device 2010 and the lighting dimming system indoor lighting device 2007
  • One embodiment of the present invention can be applied to a daylighting apparatus or the like that needs to secure a favorable indoor environment in which glare is suppressed and a person in the room does not feel dazzling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A lighting device according to one mode of embodiment of the present invention is provided at least with a lighting film comprising a light transmissive base material and a plurality of light transmissive lighting portions which are provided on a first surface side of the base material, wherein the lighting portions include a reflecting surface which reflects light that has entered the lighting portion. Light which is reflected by the reflecting surface and is to be emitted from a second surface of the base material has the characteristic of progressing toward a space on the same side as the side from which the light is incident upon the reflecting surface, from among two spaces having as a boundary an imaginary plane which is perpendicular to the second surface of the base material and is parallel to the direction in which the lighting portion extends. The base material includes a plurality of regions having different thicknesses.

Description

採光装置Daylighting equipment
 本発明の一態様は、採光装置に関するものである。
 本願は、2016年9月13日に日本に出願された特願2016-178540号について優先権を主張し、その内容をここに援用する。
One embodiment of the present invention relates to a lighting device.
This application claims priority on Japanese Patent Application No. 2016-178540 filed in Japan on September 13, 2016, the contents of which are incorporated herein by reference.
 窓ガラスに入射する光を効率よく屋内に導くための技術として、例えば、特許文献1に記載の技術が知られている。特許文献1の技術は、透光性の支持体の一方の面に採光機能を担う複数の単位プリズムを形成した採光フィルムを、窓ガラスの内面(屋内側の面)に貼り付けるものである。単位プリズム側から入射した光は、単位プリズムの表面で屈折し、単位プリズム、支持体および窓ガラスを透過して屋内に入射する。 For example, a technique described in Patent Document 1 is known as a technique for efficiently guiding light incident on a window glass indoors. In the technique of Patent Document 1, a daylighting film in which a plurality of unit prisms having a daylighting function are formed on one surface of a translucent support is attached to the inner surface (indoor side surface) of a window glass. The light incident from the unit prism side is refracted on the surface of the unit prism, passes through the unit prism, the support, and the window glass and enters the room indoors.
特開2011-123478号公報JP 2011-123478 A
 しかしながら、窓が設置されている場所の緯度、方位の違い又は太陽高度によっては、天井への採光性が低下したり、室内に居る人の目線に光が分配されて不快な眩しさを感じさせてしまったりすることがある。以下の説明において、室内に居る人が眩しさを感じる光をグレアと言う。 However, depending on the latitude, azimuth difference of the place where the window is installed, or the solar altitude, the lighting performance on the ceiling may be reduced, or the light will be distributed to the eyes of people in the room, which may cause unpleasant glare. Sometimes In the following description, the light in which a person in the room feels dazzling is called glare.
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、グレアをより抑制することで室内に居る人に眩しさを感じさせない良好な室内環境を確保することができる採光装置を提供することを目的の一つとしている。 One aspect of the present invention is made in view of the above-described problems of the prior art, and it is possible to secure a favorable indoor environment in which a person in the room does not feel glare by further suppressing glare. One of the objects is to provide a daylighting device that can be used.
 本発明の一態様における採光装置は、光透過性を有する基材と、前記基材の第1面側に設けられた光透過性を有する複数の採光部と、を有する採光フィルムを少なくとも備え、前記採光部が、前記採光部に入射した光を反射する反射面を有しており、前記反射面で反射して前記基材の第2面から射出される光が、前記基材の前記第2面に垂直、かつ前記採光部の延在方向に平行な仮想平面を境界とする2つの空間のうち、前記反射面に光が入射する側と同じ側の空間に向けて進行する特性を有してなり、前記基材は、厚さが異なる複数の領域を有している。 The daylighting device according to one aspect of the present invention includes at least a daylighting film including a base material having light permeability and a plurality of daylighting parts having light transmittance provided on the first surface side of the base material, The daylighting unit has a reflection surface that reflects light incident on the daylighting unit, and the light reflected from the reflection surface and emitted from the second surface of the base material is the first surface of the base material. Of the two spaces having a virtual plane as a boundary perpendicular to two surfaces and parallel to the extending direction of the daylighting section, the light travels toward the space on the same side as the light incident side on the reflecting surface. Thus, the substrate has a plurality of regions having different thicknesses.
 本発明の一態様における採光装置は、前記採光部の延在方向に交差する方向の幅Wと、隣り合う前記採光部どうしの間隔sと、を足し合わせた長さをpとしたとき、前記複数の領域のうち少なくとも1つの領域における厚さtが、以下に示す条件を満たす構成としてもよい。
Figure JPOXMLDOC01-appb-M000003
 ここで、t0は基準とする厚さを示す。
In the daylighting device according to one aspect of the present invention, when the length obtained by adding the width W in the direction intersecting the extending direction of the daylighting unit and the interval s between the daylighting units adjacent to each other is p, The thickness t in at least one of the plurality of regions may satisfy the following condition.
Figure JPOXMLDOC01-appb-M000003
Here, t0 indicates a reference thickness.
 本発明の一態様における採光装置は、前記採光部の延在方向に交差する方向の幅Wと、隣り合う前記採光部どうしの間隔sと、を足し合わせた長さをpとしたとき、前記複数の領域のうち少なくとも1つの領域における厚さtが、以下に示す条件を満たす構成としてもよい。
Figure JPOXMLDOC01-appb-M000004
 ここで、t0は基準とする厚さを示す。
In the daylighting device according to one aspect of the present invention, when the length obtained by adding the width W in the direction intersecting the extending direction of the daylighting unit and the interval s between the daylighting units adjacent to each other is p, The thickness t in at least one of the plurality of regions may satisfy the following condition.
Figure JPOXMLDOC01-appb-M000004
Here, t0 indicates a reference thickness.
 本発明の一態様における採光装置は、前記基材は、光透過性を有する基材本体と光透過性を有する追加部材とを有してなる構成としてもよい。 The daylighting device according to one aspect of the present invention may be configured such that the base material includes a base material body having light permeability and an additional member having light permeability.
 本発明の一態様における採光装置は、前記基材本体と前記追加部材とが接着層を介して貼り合わされており、前記接着層の厚さが前記複数の採光部の配列方向に変化している構成としてもよい。 In the lighting device according to one aspect of the present invention, the base body and the additional member are bonded to each other via an adhesive layer, and the thickness of the adhesive layer changes in the arrangement direction of the plurality of daylighting units. It is good also as a structure.
 本発明の一態様における採光装置は、前記基材の厚さは、前記複数の採光部の配列方向に連続的に変化している構成としてもよい。 The daylighting apparatus according to an aspect of the present invention may be configured such that the thickness of the base material continuously changes in the arrangement direction of the plurality of daylighting units.
 本発明の一態様における採光装置は、隣り合う前記採光部どうしの間隔が複数の水準に設定されている構成としてもよい。 The daylighting apparatus according to one aspect of the present invention may have a configuration in which the intervals between adjacent daylighting units are set to a plurality of levels.
 本発明の一態様における採光装置は、前記基材の屈折率が一面内で分布をもっている構成としてもよい。 The daylighting apparatus according to one aspect of the present invention may have a configuration in which the refractive index of the base material has a distribution in one plane.
 本発明の一態様における採光装置は、前記複数の採光部の屈折率が前記基材の一面内で分布をもっている構成としてもよい。 The daylighting device according to one aspect of the present invention may have a configuration in which the refractive indexes of the plurality of daylighting portions have a distribution within one surface of the base material.
 本発明の一態様によれば、グレアをより抑制することで室内に居る人に眩しさを感じさせない良好な室内環境を確保することができる採光装置を提供することができる。 According to one embodiment of the present invention, it is possible to provide a daylighting apparatus that can ensure a favorable indoor environment in which glare is further suppressed so that a person in the room does not feel dazzling.
本発明の一態様に係る採光装置の概略構成を示す断面図。1 is a cross-sectional view illustrating a schematic configuration of a lighting device according to one embodiment of the present invention. 第1実施形態における採光フィルムを示す断面図。Sectional drawing which shows the lighting film in 1st Embodiment. 第1実施形態における採光フィルム(第1基材)を示す断面図。Sectional drawing which shows the lighting film (1st base material) in 1st Embodiment. 部屋モデルの一例を示す模式図。The schematic diagram which shows an example of a room model. 採光装置に入射する入射光LINの入射角θINと、採光装置から射出される射出光LOUTの射出角θOUTとの定義について説明する図。The incident angle theta IN of the incident light L IN entering the lighting apparatus, diagram explaining the definition of the exit angle theta OUT of emitted light L OUT emitted from the lighting device. 比較例としての採光フィルムの構成及び当該採光フィルムを透過する光の光路を示す図(微細構造が室外側)。The figure which shows the structure of the lighting film as a comparative example, and the optical path of the light which permeate | transmits the said lighting film (a fine structure is an outdoor side). 比較例としての採光フィルムの構成及び当該採光フィルムを透過する光の光路を示す図(微細構造が室外側)。The figure which shows the structure of the lighting film as a comparative example, and the optical path of the light which permeate | transmits the said lighting film (a fine structure is an outdoor side). 比較例としての採光フィルムの構成及び当該採光フィルムを透過する光の光路を示す図(微細構造が室内側)。The figure which shows the structure of the lighting film as a comparative example, and the optical path of the light which permeate | transmits the said lighting film (a fine structure is indoor side). 比較例としての採光フィルムの構成及び当該採光フィルムを透過する光の光路を示す図(微細構造が室内側)。The figure which shows the structure of the lighting film as a comparative example, and the optical path of the light which permeate | transmits the said lighting film (a fine structure is indoor side). 比較例として図6Aに示した採光フィルム901の特性を説明するための図。The figure for demonstrating the characteristic of the daylighting film 901 shown to FIG. 6A as a comparative example. 迷光グレアの射出角と光束との関係を示す図。The figure which shows the relationship between the emission angle of a stray-light glare, and a light beam. 第1実施形態の採光フィルム1の構成及び当該採光フィルム1を透過する光の光路を示す図。The figure which shows the structure of the lighting film 1 of 1st Embodiment, and the optical path of the light which permeate | transmits the said lighting film 1. FIG. 第1実施形態の採光フィルム1の特性を説明するための図。The figure for demonstrating the characteristic of the daylighting film 1 of 1st Embodiment. 第1実施形態における採光フィルムの迷光グレアの射出角と光束との関係を比較例と比較した図。The figure which compared the relationship between the emission angle of the stray light glare of the daylighting film in 1st Embodiment, and a light beam with a comparative example. 第1実施形態における採光フィルム及び比較例としての採光フィルムにおける、採光の射出角度(θOUT)と光束との関係を示す図。The figure which shows the relationship between the lighting emission angle ((theta) OUT ) and the light beam in the daylighting film in 1st Embodiment, and the daylighting film as a comparative example. 第1実施形態の採光フィルムの変形例を示す図。The figure which shows the modification of the daylighting film of 1st Embodiment. 第1基材2の基準とする厚さt0を示す図。The figure which shows thickness t0 used as the reference | standard of the 1st base material 2. FIG. 第1基材2の厚さtを示す図。The figure which shows thickness t of the 1st base material 2. 上記した2つの採光フィルム1A,1Bにおいて特定の角度に射出される迷光グレア光線の光束を示す図。The figure which shows the light beam of the stray-light glare ray inject | emitted at the specific angle in two above-mentioned daylighting films 1A and 1B. 第3実施形態の採光フィルム31の概略構成を部分的に示す断面図。Sectional drawing which shows partially schematic structure of the daylighting film 31 of 3rd Embodiment. 第4実施形態の採光フィルムの構成を示す図。The figure which shows the structure of the lighting film of 4th Embodiment. 第4実施形態における採光フィルムの変形例1を示す図。The figure which shows the modification 1 of the lighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例2を示す図。The figure which shows the modification 2 of the daylighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例3を示す図。The figure which shows the modification 3 of the daylighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例4を示す図。The figure which shows the modification 4 of the daylighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例5を示す図。The figure which shows the modification 5 of the lighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例6を示す図。The figure which shows the modification 6 of the daylighting film in 4th Embodiment. 第4実施形態における採光フィルムの変形例7を示す図。The figure which shows the modification 7 of the lighting film in 4th Embodiment. 第5実施形態における採光フィルムの構成を示す図。The figure which shows the structure of the daylighting film in 5th Embodiment. 第6実施形態における実施例1の採光フィルム61の構成を示す図。The figure which shows the structure of the daylighting film 61 of Example 1 in 6th Embodiment. 第6実施形態における実施例2の採光フィルム62の構成を示す図。The figure which shows the structure of the daylighting film 62 of Example 2 in 6th Embodiment. 第6実施形態における実施例3の採光フィルム63の構成を示す図。The figure which shows the structure of the daylighting film 63 of Example 3 in 6th Embodiment. 第7実施形態における実施例1の採光フィルム71の光路及び輝度を示す図。The figure which shows the optical path and brightness | luminance of the lighting film 71 of Example 1 in 7th Embodiment. 第7実施形態における実施例2の採光フィルム72の光路及び輝度を示す図。The figure which shows the optical path and brightness | luminance of the daylighting film 72 of Example 2 in 7th Embodiment. 第7実施形態における実施例3の採光フィルム73の光路及び輝度を示す図。The figure which shows the optical path and brightness | luminance of the lighting film 73 of Example 3 in 7th Embodiment. 第8実施形態の一例として、採光フィルム81内における厚さt1,t2,t3の分布を示す図。The figure which shows distribution of thickness t1, t2, t3 in the daylighting film 81 as an example of 8th Embodiment. 図25に示す第8実施形態の採光フィルム81を室内に居る人から見た様子を示す図。The figure which shows a mode that the daylighting film 81 of 8th Embodiment shown in FIG. 25 was seen from the person who exists indoors. 第8実施形態における第1基材の変形例を示す図。The figure which shows the modification of the 1st base material in 8th Embodiment. 第8実施形態における第1基材の変形例を示す図。The figure which shows the modification of the 1st base material in 8th Embodiment. 第9実施形態の採光装置としてロールスクリーンの概略構成を示す斜視図。The perspective view which shows schematic structure of a roll screen as a lighting apparatus of 9th Embodiment. 図29中に示すロールスクリーンのE-E’線に沿った断面図。FIG. 30 is a sectional view taken along line E-E ′ of the roll screen shown in FIG. 29. 第10実施形態の採光装置としてブラインドの概略構成を示す斜視図。The perspective view which shows schematic structure of a blind as a lighting apparatus of 10th Embodiment. ブラインドの概略構成を示す斜視図(開状態)。The perspective view which shows schematic structure of a blind (open state). ブラインドの概略構成を示す斜視図(閉状態)。The perspective view (closed state) which shows schematic structure of a blind. ブラインドが備える採光スラットの概略構成を示す図。The figure which shows schematic structure of the lighting slat with which a blind is provided. ブラインドが備える採光スラットの向きを反転させた状態を示す図。The figure which shows the state which reversed the direction of the lighting slat with which a blind is provided. 採光装置及び照明調光システムを備えた部屋モデルであって、図36のJ-J’線に沿う断面図。FIG. 37 is a room model including a lighting device and an illumination dimming system, and is a cross-sectional view taken along line J-J ′ of FIG. 36. 部屋モデルの天井を示す平面図。The top view which shows the ceiling of a room model. 採光装置によって室内に採光された光(自然光)の照度と、室内照明装置による照度(照明調光システム)との関係を示すグラフ。The graph which shows the relationship between the illumination intensity of the light (natural light) daylighted indoors by the lighting apparatus, and the illumination intensity (illumination dimming system) by an indoor lighting apparatus.
 以下、本発明の一態様に係る実施形態について述べる。
 なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
Embodiments according to one embodiment of the present invention are described below.
In the following drawings, in order to make each component easy to see, the scale of dimensions may be different depending on the component.
[第1実施形態]
 図1は、本発明の一態様に係る採光装置の概略構成を示す断面図である。
 図1に示す採光装置100は、例えば、窓ガラスに貼り付ける形態で太陽光を室内に採り入れる採光装置の一つの例である。
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a daylighting apparatus according to an aspect of the present invention.
A daylighting apparatus 100 shown in FIG. 1 is an example of a daylighting apparatus that takes sunlight into a room in a form of being attached to a window glass, for example.
 図1に示すように、採光装置100は採光フィルム1を備えてなり、窓ガラス(被設置物)1003の内面1003a(室内側の面)に、例えば接着層8を介して、あるいは1003a面に設けられる。
 ここで、紙面の上下方向と、窓ガラス1003に貼り合わされた採光フィルム1の上下方向(XZ方向)とは一致する。
As shown in FIG. 1, the daylighting apparatus 100 includes a daylighting film 1, and is attached to an inner surface 1003 a (interior side surface) of a window glass (object to be installed) 1003, for example, via an adhesive layer 8 or on the surface 1003 a. Provided.
Here, the vertical direction of the paper surface coincides with the vertical direction (XZ direction) of the daylighting film 1 bonded to the window glass 1003.
 図2は、第1実施形態における採光フィルムを示す断面図である。図3は、第1基材の構成を示す図である。図4は、部屋モデルの一例を示す模式図である。図5は、採光装置に入射する入射光LINの入射角θINと、採光装置から射出される射出光LOUTの射出角θOUTとの定義について説明する図である。 FIG. 2 is a cross-sectional view showing the daylighting film in the first embodiment. FIG. 3 is a diagram illustrating a configuration of the first base material. FIG. 4 is a schematic diagram illustrating an example of a room model. Figure 5 is a diagram illustrating the incident angle theta IN of the incident light L IN entering the lighting apparatus, the definition of the exit angle theta OUT of emitted light L OUT emitted from the lighting device.
 採光フィルム1は、図2に示すように、光透過性を有する第1基材2と、第1基材2の第1面2aに設けられた光透過性を有する複数の採光部3と、を備え、複数の採光部3の間は間隙部4となっている。本実施形態においては、複数の採光部3が形成された微細構造側を採光フィルム1の光入射面1aとし、微細構造が形成されていない側を光射出面1bとしている。採光フィルム1は、光入射面1a側を図1に示した窓ガラス1003に対向させた姿勢で使用される。 As shown in FIG. 2, the daylighting film 1 includes a first base material 2 having optical transparency, and a plurality of daylighting units 3 having optical transparency provided on the first surface 2 a of the first base material 2. And a gap 4 is formed between the plurality of daylighting units 3. In the present embodiment, the fine structure side on which the plurality of daylighting portions 3 are formed is the light incident surface 1a of the daylighting film 1, and the side on which the fine structure is not formed is the light emitting surface 1b. The daylighting film 1 is used in a posture in which the light incident surface 1a side is opposed to the window glass 1003 shown in FIG.
 図2に示すように、本実施形態の第1基材2は、上下方向(Z方向)で厚さが部分的に異なっており、第1基材2の第1面2aと第2面2bとの間の厚さが異なる複数の領域R1,R2を有している。第1基材2は、基材本体2Aから光射出面1b側へ所定の高さで突出する凸部2Bを第2領域R2に有しており、これによって第2領域R2が第1領域R1よりも厚さを有する形状となっている。凸部2Bは、採光部3の延在方向に沿ってX方向に設けられており、Z方向に沿う幅は任意に設定される。本実施形態では、基材本体2Aと凸部2Bとが一体的に構成されている。 As shown in FIG. 2, the first substrate 2 of the present embodiment is partially different in thickness in the vertical direction (Z direction), and the first surface 2 a and the second surface 2 b of the first substrate 2. Have a plurality of regions R1 and R2 having different thicknesses. The first base material 2 has a convex portion 2B that protrudes from the base material body 2A toward the light exit surface 1b at a predetermined height in the second region R2, whereby the second region R2 becomes the first region R1. The shape has a thickness greater than that. The convex part 2B is provided in the X direction along the extending direction of the daylighting part 3, and the width along the Z direction is arbitrarily set. In the present embodiment, the base body 2A and the convex portion 2B are integrally configured.
 第1基材2の厚さは、一例として、第1領域R1の厚さT1が100μm、第2領域R2の厚さT2が105μmとなっている。第1基材2における第1領域R1及び第2領域R2の数、大きさ、割合等は適宜設定され、図2に示す構成に限らない。 As an example, the thickness of the first base material 2 is such that the thickness T1 of the first region R1 is 100 μm and the thickness T2 of the second region R2 is 105 μm. The number, size, ratio, and the like of the first region R1 and the second region R2 in the first base material 2 are set as appropriate, and are not limited to the configuration shown in FIG.
 第1基材2としては、例えば熱可塑性ポリマーや熱硬化性樹脂、光重合性樹脂等の樹脂類等からなる光透過性の基材が用いられる。アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー、イミド系ポリマー等などからなる光透過性の基材が用いられる。具体的には、例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリカーボネート(PC)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエーテルサルホン(PES)フィルム、ポリイミド(PI)フィルム等の光透過性の基材が好ましく用いられる。 As the first base material 2, for example, a light-transmitting base material made of a resin such as a thermoplastic polymer, a thermosetting resin, or a photopolymerizable resin is used. A light-transmitting substrate made of acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer, or the like is used. Specifically, for example, triacetyl cellulose (TAC) film, polyethylene terephthalate (PET) film, cycloolefin polymer (COP) film, polycarbonate (PC) film, polyethylene naphthalate (PEN) film, polyethersulfone (PES) A light-transmitting substrate such as a film or a polyimide (PI) film is preferably used.
 第1基材2の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。これにより、十分な透明性を得ることができる。 The total light transmittance of the first base material 2 is preferably 90% or more according to JIS K7361-1. Thereby, sufficient transparency can be obtained.
 第1基材2は、1つの基材から構成されていてもよいが、他の構成例として、例えば、図3に示すようなベース基材12、接着層13及び樹脂基材14からなる光透過性を有した3層構造の基材を用いてもよい。接着層13を介して貼り合わされたベース基材12及び樹脂基材14のうち、採光部3が配置されていない樹脂基材14に設けられた凸部2Bによって、第1基材2の上下方向(Z方向)の厚さが部分的に異なっている。 Although the 1st base material 2 may be comprised from one base material, as another structural example, the light which consists of the base base material 12, the contact bonding layer 13, and the resin base material 14 as shown, for example in FIG. A base material having a three-layer structure having permeability may be used. Of the base substrate 12 and the resin substrate 14 bonded through the adhesive layer 13, the vertical direction of the first substrate 2 is provided by the convex portion 2 </ b> B provided on the resin substrate 14 where the daylighting unit 3 is not disposed. The thickness in the (Z direction) is partially different.
 複数の採光部3は、第1基材2の第1面2a上にZ方向へ互いに所定の間隔sをおいて配置されている。 The plurality of daylighting units 3 are arranged on the first surface 2a of the first base member 2 at a predetermined interval s in the Z direction.
 採光部3は、図2に示すように、一方向(図2の紙面と垂直な方向)に直線状に細長く延び、長手方向と直交する断面形状が多角柱形状をなす。採光部3は、その長手方向に交差する方向に切断した断面形状において5つの頂点を有し、全ての内角が180°未満とされた五角形である。複数の採光部3は、各々の長手方向が矩形状の第1基材2の一辺に平行するとともに、幅方向に並設されている。 As shown in FIG. 2, the daylighting section 3 extends in a straight line in one direction (a direction perpendicular to the paper surface of FIG. 2), and a cross-sectional shape orthogonal to the longitudinal direction forms a polygonal column shape. The daylighting unit 3 is a pentagon having five vertices in a cross-sectional shape cut in a direction intersecting the longitudinal direction thereof, and all inner angles are less than 180 °. The plurality of daylighting units 3 are arranged in parallel in the width direction, with each longitudinal direction parallel to one side of the rectangular first base material 2.
 具体的に、採光部3は、第1基材2の第1面2aに対向する面3aから最も離れた頂点qを通る面3aの垂線Mを中心として、その両側の形状が非対称とされた、断面形状が5角形の多角柱状構造体である。すなわち、面3b及び面3cを含む上部の体積に対して、面(反射面)3d、面(反射面)3eを含む下部の体積の方が大きい形状となっている。
本実施形態では、複数の採光部3が、各々における面3aの垂線Mを中心として体積の大きい側(面3d及び面3e側)を下方に統一した状態で並べられている。
Specifically, the daylighting unit 3 has an asymmetric shape on both sides around the perpendicular M of the surface 3a passing through the vertex q farthest from the surface 3a facing the first surface 2a of the first base material 2. A polygonal columnar structure having a pentagonal cross section. That is, the lower volume including the surface (reflective surface) 3d and the surface (reflective surface) 3e is larger than the upper volume including the surface 3b and the surface 3c.
In the present embodiment, the plurality of daylighting units 3 are arranged in a state in which the large volume side (the surface 3d and the surface 3e side) is unified downward with the vertical line M of the surface 3a in each center.
 なお、採光部3の断面形状は、五角形に限らず、三角形以上の多角形でかまわない。また、多角形以外でも多面体でもよい。すなわち、採光部3は、面3aの任意の垂線を中心としてその両側の形状が非対称であればよい。採光フィルム1としては、断面形状において上部の体積に対して下部の体積が同等以上であるプリズム構造が連続して形成されていればよい。 Note that the cross-sectional shape of the daylighting unit 3 is not limited to a pentagon, and may be a polygon more than a triangle. Further, it may be a polyhedron other than a polygon. In other words, the daylighting unit 3 only needs to be asymmetrical with respect to an arbitrary perpendicular line of the surface 3a. As the daylighting film 1, it is only necessary that a prism structure having a lower volume equal to or higher than an upper volume in a cross-sectional shape is continuously formed.
 接着層8には、一般的な光学接着剤が用いられる。接着層8の屈折率は、窓ガラス1003の屈折率と等しいことが好ましい。これにより、採光フィルム1と窓ガラス1003との界面において屈折が生じなくなる。 For the adhesive layer 8, a general optical adhesive is used. The refractive index of the adhesive layer 8 is preferably equal to the refractive index of the window glass 1003. Thereby, refraction does not occur at the interface between the daylighting film 1 and the window glass 1003.
 このような構成の採光フィルム1は、各採光部3の長手方向が水平方向を向き、複数の採光部3の配列方向が鉛直方向を向くようにして、図1に示した接着層8を介して窓ガラス1003の内面1003aに貼り付けられる。 In the daylighting film 1 having such a configuration, the longitudinal direction of each daylighting section 3 faces the horizontal direction, and the arrangement direction of the plurality of daylighting sections 3 faces the vertical direction, and the daylighting film 1 is interposed through the adhesive layer 8 shown in FIG. And attached to the inner surface 1003a of the window glass 1003.
 図2に示すように、太陽から直接届く光は、先ず、窓ガラス1003に入射し、窓ガラス1003を透過した後、採光装置100に対して斜め上方から入射する。採光装置100へ入射した光Lは、図2に示す採光フィルム1における各採光部3の面3cあるいは面3bにおいて屈折された後、面3dあるいは面3eにおいて全反射して斜め上方に向かって進み、第1基材(基材)2の第2面2b(第2面2bと室内空間との界面)から天井へ向かって射出される。 As shown in FIG. 2, light that directly reaches from the sun first enters the window glass 1003, passes through the window glass 1003, and then enters the daylighting apparatus 100 from obliquely above. The light L incident on the daylighting device 100 is refracted on the surface 3c or the surface 3b of each daylighting section 3 in the daylighting film 1 shown in FIG. 2, and then totally reflected on the surface 3d or the surface 3e and proceeds obliquely upward. The first base material (base material) 2 is ejected from the second surface 2b (interface between the second surface 2b and the indoor space) toward the ceiling.
 ここで、説明の便宜上、図2に示す採光部3に入射した光Lのうち、任意の1本の光束が採光部3の面3e(反射面)に入射する点を入射点Cとする。入射点Cを通り、第1基材2の第1面2aに直交する仮想的な直線を直線fとする。直線fを含む水平面(仮想平面)を境界とする2つの空間のうち、入射点Cに入射する光Lが存在する側の空間を第1空間K1とし、入射点Cに入射する光Lが存在しない側の空間を第2空間K2とする。 Here, for convenience of explanation, a point where an arbitrary light beam is incident on the surface 3e (reflection surface) of the daylighting unit 3 out of the light L incident on the daylighting unit 3 shown in FIG. A virtual straight line passing through the incident point C and orthogonal to the first surface 2a of the first base material 2 is defined as a straight line f. Of the two spaces having a horizontal plane (virtual plane) including the straight line f as a boundary, the space on the side where the light L incident on the incident point C is present is the first space K1, and the light L incident on the incident point C exists. The space on the side not to be used is defined as a second space K2.
 例えば、採光部3の面3cから入射した光Lは、採光部3の面3eで全反射して斜め上方、すなわち第1空間K1の側に向かって進み、採光部3の面3aから射出される。採光部3から射出された光Lは、第1基材2を透過して、採光フィルム1から室内の天井に向けて進行する。採光フィルム1から天井に向けて射出された光は、天井で反射して室内を照らすため、照明光の代わりとなる。したがって、このような採光フィルム1を用いた場合、日中に建物内の照明設備が消費するエネルギーを節約する省エネルギー効果が期待できる。 For example, the light L incident from the surface 3c of the daylighting unit 3 is totally reflected by the surface 3e of the daylighting unit 3, travels obliquely upward, that is, toward the first space K1, and is emitted from the surface 3a of the daylighting unit 3. The The light L emitted from the daylighting unit 3 passes through the first base material 2 and travels from the daylighting film 1 toward the indoor ceiling. The light emitted from the daylighting film 1 toward the ceiling is reflected by the ceiling and illuminates the room, and thus is a substitute for illumination light. Therefore, when such a daylighting film 1 is used, the energy-saving effect which saves the energy which the lighting equipment in a building consumes during the day can be expected.
(部屋モデル)
 ここで、図4に示す部屋モデル1000を用いて採光装置100の採光特性について説明する。部屋モデル1000は、例えば、採光装置100のオフィスでの使用を想定したモデルである。具体的に、図4に示す部屋モデル1000は、天井1001と、床1002と、窓ガラス1003が取り付けられた手前の側壁1004と、手前の側壁1004と対向する奥の側壁1005とで囲まれる室内1006に、窓ガラス1003を通して屋外の光Lが斜め上方から入射する場合を模している。採光装置100は、窓ガラス1003の内面の上部側に貼り付けられている。
(Room model)
Here, the daylighting characteristics of the daylighting apparatus 100 will be described using the room model 1000 shown in FIG. The room model 1000 is a model that assumes use of the daylighting apparatus 100 in an office, for example. Specifically, a room model 1000 shown in FIG. 4 is a room surrounded by a ceiling 1001, a floor 1002, a front side wall 1004 to which a window glass 1003 is attached, and a back side wall 1005 facing the front side wall 1004. 1006 illustrates a case where outdoor light L is incident obliquely from above through the window glass 1003. The daylighting device 100 is attached to the upper side of the inner surface of the window glass 1003.
 部屋モデル1000では、室内1006の高さ寸法(天井1001から床1002までの寸法)Hを2.7mとし、窓ガラス1003の縦寸法H2を天井1001から1.8mとし、採光フィルム1の縦寸法H1を天井1001から0.6mとしている。 In the room model 1000, the height dimension (dimension from the ceiling 1001 to the floor 1002) H of the room 1006 is 2.7 m, the vertical dimension H2 of the window glass 1003 is 1.8 m from the ceiling 1001, and the vertical dimension of the daylighting film 1 H1 is 0.6 m from the ceiling 1001.
 部屋モデル1000では、室内1006の中の方に椅子に座っている人Maと、室内1006の奥の方に床1002に立っている人Mbとがいる。椅子に座っている人Maの眼の高さ下限Haは、床1002から0.8mとし、床1002に立っている人Mbの眼の高さ上限Hbは、床1002から1.8mとしている。 In the room model 1000, there are a person Ma sitting on a chair in the room 1006 and a person Mb standing on the floor 1002 in the back of the room 1006. The eye height lower limit Ha of the person Ma sitting on the chair is set to 0.8 m from the floor 1002, and the eye height upper limit Hb of the person Mb standing on the floor 1002 is set to 1.8 m from the floor 1002.
 室内1006に居る人Ma,Mbに眩しさを感じさせる領域(以下、グレア領域という。)Gは、室内に居る人Ma,Mbの眼の高さHa,Hbの範囲である。また、室内1006の窓ガラス1003の付近は、主として採光フィルム1が貼り付けられていない窓ガラス1003の下部側を通して屋外の光Lが直接照射される領域Fである。この領域Fは、手前の側壁1004から1mの範囲としている。したがって、グレア領域Gは、床1002から0.8m~1.8mの高さ範囲のうち、領域Fを除いた手前の側壁1004より1m離れた位置から奥の側壁1005までの範囲となっている。 A region (hereinafter referred to as a glare region) G that makes the people Ma and Mb in the room 1006 feel dazzled is a range of eye heights Ha and Hb of the people Ma and Mb in the room. Further, the vicinity of the window glass 1003 in the room 1006 is a region F where the outdoor light L is directly irradiated through the lower side of the window glass 1003 to which the daylighting film 1 is not attached. This region F is in the range of 1 m from the side wall 1004 on the near side. Accordingly, the glare region G is a range from a position 1 m away from the front side wall 1004 excluding the region F to the back side wall 1005 in the height range of 0.8 m to 1.8 m from the floor 1002. .
 例えば、採光装置100から射出される光のうち、出射角が-45°~0°の範囲では、グレア光となり得る。 For example, in the light emitted from the daylighting apparatus 100, when the emission angle is in the range of −45 ° to 0 °, it can be glare light.
 グレア領域Gは、人の移動する領域内における眼の位置に基づいて規定される領域である。たとえ、天井1001側に進行する光によって室内1006が明るく照明されたとしても、グレア領域Gに到達する光が多いと室内1006に居る人が不快を感じやすくなる。 The glare area G is an area defined based on the position of the eye in the area where the person moves. Even if the room 1006 is brightly illuminated by the light traveling toward the ceiling 1001, the person in the room 1006 tends to feel uncomfortable if there is a lot of light reaching the glare region G.
 本実施形態の採光フィルム1は、窓ガラス1003を通して室内1006に入射する光Lのうち、グレア領域Gに向かう光の輝度を低減しながら、天井1001に向かう光の輝度を相対的に高めることが可能となっている。天井1001で反射された光L’は、照明光の代わりとして、室内1006を広範囲に亘って明るく照らすことになる。この場合、室内1006の照明設備を消灯することによって、日中に室内1006の照明設備が消費するエネルギーを節約する省エネルギー効果が期待できる。 The daylighting film 1 of the present embodiment can relatively increase the luminance of the light toward the ceiling 1001 while reducing the luminance of the light toward the glare region G out of the light L entering the room 1006 through the window glass 1003. It is possible. The light L ′ reflected by the ceiling 1001 illuminates the room 1006 brightly over a wide area, instead of the illumination light. In this case, by turning off the lighting equipment in the room 1006, an energy saving effect that saves the energy consumed by the lighting equipment in the room 1006 during the day can be expected.
(入射角と射出角の定義)
 次に、図5を用いて、採光装置100に入射する入射光LINの入射角θINと、採光装置100から射出される射出光LOUTの射出角θOUTとの定義について説明する。
なお、図5では、採光装置100のうち採光フィルム1を中心に図示し、その他構成要素を省略している。
 図5に示すように、入射光LINの入射角θIN及び射出光LOUTの射出角θOUTは、採光装置100(採光フィルム1の第1基材2)の法線に沿った方向の角度を0°とし、天井1001に向かう方向の角度を正(+)とし、床1002に向かう方向の角度を負(-)として定義する。
(Definition of incident angle and exit angle)
Next, the definition of the incident angle θ IN of the incident light LIN incident on the lighting device 100 and the emission angle θ OUT of the emitted light L OUT emitted from the lighting device 100 will be described with reference to FIG.
In FIG. 5, the daylighting film 1 of the daylighting apparatus 100 is mainly illustrated, and other components are omitted.
As shown in FIG. 5, the injection angle theta OUT of the incident angle theta IN and exit light L OUT of the incident light L IN is lighting apparatus 100 normal to the direction of along the (first substrate 2 of the lighting film 1) The angle is defined as 0 °, the angle toward the ceiling 1001 is defined as positive (+), and the angle toward the floor 1002 is defined as negative (−).
 採光装置100から射出される射出光LOUTの射出角θOUTが0°よりも大きければ、天井へ向かう光線となるが、射出角θOUTが0°以下である場合は、窓ガラス1003に対向する側壁1005へ向かう光線となりグレア光線となり得る。 If the injection angle theta OUT of emitted light L OUT emitted from the lighting device 100 is greater than 0 °, but the light beam toward the ceiling, if the injection angle theta OUT is 0 ° or less, facing the window glass 1003 It becomes a light ray toward the side wall 1005 and can become a glare ray.
 本実施形態の採光装置100では、少なくとも採光フィルム1の各採光部3に入射した入射光LINの入射角θINが、採光フィルム1の法線に対して20°≦θIN≦50°の範囲にあるとき、採光フィルム1から射出される射出光LOUTの射出角θOUTが、採光フィルム1の法線に対して入射光LINと同じ側(+側)に0°≦θOUT≦15°となる範囲で、射出光LOUTの輝度が相対的に高くなるように設定されている。 In lighting apparatus 100 of the present embodiment, the incident angle theta IN of at least incident light L IN entering each lighting unit 3 of the daylighting film 1, 20 ° ≦ θ IN ≦ 50 in ° to the normal of the daylighting film 1 when in range, the injection angle theta OUT of emitted light L OUT emitted from the lighting film 1, 0 ° ≦ θ OUT ≦ on the same side (+ side) and the incident light L iN with respect to the normal line of the daylighting film 1 In the range of 15 °, the luminance of the emitted light L OUT is set to be relatively high.
 これにより、採光装置100及び窓ガラス1003を通して室内1006に入射した光Lのうち、グレア領域Gに向かう光や床1002に向かう光の輝度を低減しながら、天井1001に向かう光の輝度を相対的に高めることが可能である。すなわち、採光装置100及び窓ガラス1003を通して室内1006に入射した光Lを天井1001に向けて効率良く照射することができる。また、室内1006に居る人Ma,Mbに眩しさを感じさせることなく、天井1001に向かう光Lを室内1006の奥の方まで照射することができる。 As a result, of the light L incident on the room 1006 through the daylighting device 100 and the window glass 1003, the luminance of the light toward the ceiling 1001 is relatively reduced while the luminance of the light toward the glare region G and the light toward the floor 1002 is reduced. It is possible to increase it. That is, the light L incident on the room 1006 through the daylighting apparatus 100 and the window glass 1003 can be efficiently emitted toward the ceiling 1001. Further, the light L toward the ceiling 1001 can be irradiated to the back of the room 1006 without causing the people Ma and Mb in the room 1006 to feel dazzling.
 さらに、天井1001で反射された光L’は、照明光の代わりとして、室内1006を広範囲に亘って明るく照らすことになる。この場合、室内1006の照明設備を消灯することによって、日中に室内1006の照明設備が消費するエネルギーを節約する省エネルギー効果が期待できる。 Furthermore, the light L ′ reflected by the ceiling 1001 illuminates the room 1006 brightly over a wide area, instead of illumination light. In this case, by turning off the lighting equipment in the room 1006, an energy saving effect that saves the energy consumed by the lighting equipment in the room 1006 during the day can be expected.
 また、本実施形態の採光装置100では、図5に示すように、入射光LINの入射角θINの変動幅をΔθINとし、射出光LOUTの射出角θOUTの変動幅をΔθOUTとしたときに、20°≦θIN≦50°となる範囲で、ΔθIN>ΔθOUTの関係を満足することが好ましい。 Further, in the lighting apparatus 100 of the present embodiment, as shown in FIG. 5, the incident light L IN fluctuation range of the incident angle theta IN of the [Delta] [theta] IN, emitted light L OUT [Delta] [theta] OUT fluctuation range of the exit angle theta OUT of In this case, it is preferable that the relationship Δθ IN > Δθ OUT is satisfied within a range of 20 ° ≦ θ IN ≦ 50 °.
 この場合、太陽の高度変化に伴う室内1006の照射位置の変動を抑制することができる。また、天井1001に向かう光Lを室内1006の奥の方まで長時間に亘って照射することができる。これにより、更なる省エネルギー効果が期待できる。 In this case, fluctuations in the irradiation position of the room 1006 due to changes in the altitude of the sun can be suppressed. In addition, the light L toward the ceiling 1001 can be irradiated to the back of the room 1006 for a long time. Thereby, further energy saving effect can be expected.
 ここで、比較例としての採光フィルム901の構成及び当該採光フィルム901を透過する光の光路について述べる。図6Aは、比較例としての採光フィルム901の構成及び当該採光フィルム901を透過する光の光路を示す図である。図6Bは、他の比較例としての採光フィルム904の構成及び当該採光フィルム904を透過する光の光路を示す図である。 Here, a configuration of a daylighting film 901 as a comparative example and an optical path of light passing through the daylighting film 901 will be described. FIG. 6A is a diagram illustrating a configuration of a daylighting film 901 as a comparative example and an optical path of light transmitted through the daylighting film 901. FIG. 6B is a diagram illustrating a configuration of a daylighting film 904 as another comparative example and an optical path of light transmitted through the daylighting film 904.
 図6A及び図6Bに示すように、従来の採光フィルム901,904では、Z方向で第1基材902の板厚が均一である。
 図6Aに示す採光フィルム901は、断面形状が五角形をなす複数の採光部903を備え、1つの採光部903の面3aと第1基材902の第1面902aとの接触長さ(z方向)Wは約150μm、各採光部903どうしの間隔sが20μmとしてある。
 図6Bに示す採光フィルム904は、断面形状が三角形をなす複数の採光部905を備え、1つの採光部905の面3aと第1基材902の第1面902aとの接触長さ(z方向)Wは約150μm、各採光部905どうしの間隔sが20μmとしてある。
As shown in FIGS. 6A and 6B, in the conventional daylighting films 901 and 904, the plate thickness of the first base material 902 is uniform in the Z direction.
A lighting film 901 shown in FIG. 6A includes a plurality of daylighting portions 903 having a pentagonal cross-sectional shape, and a contact length (z direction) between the surface 3a of one daylighting portion 903 and the first surface 902a of the first base material 902. ) W is about 150 μm, and the interval s between the daylighting portions 903 is 20 μm.
A daylighting film 904 shown in FIG. 6B includes a plurality of daylighting units 905 having a triangular cross-sectional shape, and a contact length (z direction) between the surface 3a of one daylighting unit 905 and the first surface 902a of the first base material 902. ) W is about 150 μm, and the interval s between the daylighting portions 905 is 20 μm.
 なお、採光部903,905の断面形状は図示した形状に限らない。
 例えば、図6Cに示す採光フィルム906の採光部907のように、第1基材902の第2面902bに対向する面3aから最も離れた頂点qを通る面3aの垂線Mを中心として、その両側の形状が非対称とされた、断面形状が五角形の多角柱状構造体としてもよい。すなわち、面3b,面3c,面3dを含む上部の体積に対して、面3e(反射面)を含む下部の体積の方が小さい形状となっていてもよい。
In addition, the cross-sectional shape of the daylighting parts 903 and 905 is not limited to the illustrated shape.
For example, like the daylighting part 907 of the daylighting film 906 shown in FIG. 6C, the perpendicular M of the surface 3 a passing through the vertex q farthest from the surface 3 a facing the second surface 902 b of the first base material 902 is the center. A polygonal columnar structure having a pentagonal cross-sectional shape that is asymmetric on both sides may be used. That is, the lower volume including the surface 3e (reflection surface) may be smaller than the upper volume including the surfaces 3b, 3c, and 3d.
 そして、図6A及び図6Bに示す採光フィルム901,904の採光部903,905に入射した光は、第1基材902の第2面902bと空気層との界面において反射したのち、入射した採光部903,905よりも下位に位置する複数の採光部903,905において屈折されて、ある射出角θOUTで室内へと射出される。このような光線「迷光グレア」が多数存在する場合、各光線が同じ射出角θOUTで室内へ射出されると、室内に居る人に眩しさを感じさせてしまうことがある。 The light incident on the daylighting portions 903 and 905 of the daylighting films 901 and 904 shown in FIGS. 6A and 6B is reflected at the interface between the second surface 902b of the first base material 902 and the air layer, and then incident on the daylighting. The light is refracted by the plurality of daylighting units 903 and 905 positioned below the units 903 and 905 and is emitted into the room at a certain emission angle θ OUT . In the case where there are many such light rays “stray light glare”, if each light ray is emitted into the room at the same emission angle θ OUT , a person in the room may feel dazzling.
 複数の採光部903,905が規則的に配置された構造においては、採光フィルム901,904に入射した光は、各採光部903,905の繰り返し配置に合わせて同じ光路をたどることになる。そのため、迷光グレアとなる光線が同じ射出角θOUTに集中し、室内に居る人に不快を感じさせてしまう要因となっていた。 In a structure in which a plurality of daylighting units 903 and 905 are regularly arranged, the light incident on the daylighting films 901 and 904 follows the same optical path according to the repeated arrangement of the daylighting units 903 and 905. For this reason, light rays that become stray light glare are concentrated at the same exit angle θ OUT , causing uncomfortable feeling to people in the room.
 また、例えば図6C及び図6Dに示すように、複数の採光部907,905が形成された微細構造面を室内側へ向けて設置した場合でも、同様に迷光グレアが発生してしまう。 Further, for example, as shown in FIGS. 6C and 6D, stray light glare similarly occurs even when a fine structure surface on which a plurality of daylighting portions 907 and 905 are formed is installed toward the indoor side.
 図7は、比較例として図6Aに示した採光フィルム901の特性を説明するための図である。図8は、迷光グレアの射出角と光束との関係を示す図である。図7及び図8においては、第1基材2の板厚を一定とした場合の結果を示す。 FIG. 7 is a diagram for explaining the characteristics of the daylighting film 901 shown in FIG. 6A as a comparative example. FIG. 8 is a diagram showing the relationship between the exit angle of stray light glare and the luminous flux. In FIG.7 and FIG.8, the result at the time of making plate | board thickness of the 1st base material 2 constant is shown.
 図7に示すように、採光フィルム901から射出された射出光LOUTのうち、射出角θOUTが0°≦θOUT≦-45°の範囲内において、人が眩しさを感じる下限レベルを超えた複数の光線によって形成されるグレア光束が多く存在する。従来の採光フィルム901では、図7及び図8に示すように、迷光グレアLOUTの射出角θOUTが-14.5°付近及び-34°付近に集中していることが分かる。 As shown in FIG. 7, out of the emitted light L OUT emitted from the daylighting film 901, when the emission angle θ OUT is in the range of 0 ° ≦ θ OUT ≦ −45 °, the lower limit level at which a person feels dazzling is exceeded. There are many glare luminous fluxes formed by a plurality of light beams. In the conventional daylighting film 901, as shown in FIGS. 7 and 8, it can be seen that the emission angles θ OUT of the stray light glare L OUT are concentrated in the vicinity of −14.5 ° and in the vicinity of −34 °.
 図9は、本実施形態の採光フィルム1の構成及び当該採光フィルム1を透過する光の光路を示す図である。
 図9に示すように、採光フィルム1に入射した光は、各採光部3において屈折あるいは反射された後、第1基材2の第2面2bと空気層との界面において全反射したのち、入射した採光部3よりも下位に位置する他の採光部3へ入射する。本実施形態の採光フィルム1では、第1基材2の厚さが部分的に異なっているため、上下方向(Z方向)で第2面2bと空気層との界面における反射の位置が、第1基材2の厚さによって異なることになる。つまり、光L1,L2が第1基材2の第2面2bと空気層との界面で全反射する位置は、凸部2Bのある部分とない部分とで変化する。そのため、その後の光路も変化し、最終的に採光フィルム1から射出する角度が変わってくる。
FIG. 9 is a diagram showing the configuration of the daylighting film 1 of the present embodiment and the optical path of light that passes through the daylighting film 1.
As shown in FIG. 9, the light incident on the daylighting film 1 is refracted or reflected by each daylighting unit 3 and then totally reflected at the interface between the second surface 2 b of the first base member 2 and the air layer, The light enters the other daylighting unit 3 positioned lower than the incident daylighting unit 3. In the daylighting film 1 of the present embodiment, since the thickness of the first substrate 2 is partially different, the position of reflection at the interface between the second surface 2b and the air layer in the vertical direction (Z direction) is 1 It depends on the thickness of the substrate 2. That is, the positions where the lights L1 and L2 are totally reflected at the interface between the second surface 2b of the first base material 2 and the air layer vary between a portion with the convex portion 2B and a portion without the convex portion 2B. Therefore, the subsequent optical path also changes, and the angle at which the light is finally emitted from the daylighting film 1 changes.
 具体的には、第1基材2の第2面2bと空気層との界面のうち、第1領域R1において全反射する光L1はθOUT(1)で射出するのに対し、第2領域R2において全反射する光L2はθOUT(2)で射出する。 Specifically, among the interface between the second surface 2b of the first substrate 2 and the air layer, the light L1 totally reflected in the first region R1 is emitted at θ OUT (1), whereas the second region The light L2 totally reflected at R2 is emitted at θ OUT (2).
 本実施形態の採光フィルム1の場合、凸部2Bを設けることにより第1基材2の厚さを部分的に厚くすることによって、採光フィルム1内を透光する光の光路が変化し、最終的に室内へ射出するときの射出光の射出角θOUTを複数の角度(射出角θOUT(1)≠射出角θOUT(2))に分散させることができた。これにより、同じ角度で射出される迷光グレアのピークの光束が少なくなる。 In the case of the daylighting film 1 of the present embodiment, the optical path of the light transmitted through the daylighting film 1 is changed by partially increasing the thickness of the first base material 2 by providing the convex portions 2B. In particular, the emission angle θ OUT of the emitted light when emitted into the room could be dispersed into a plurality of angles (emission angle θ OUT (1) ≠ emission angle θ OUT (2)). Thereby, the light flux of the peak of the stray light glare emitted at the same angle is reduced.
 図10は、第1実施形態の採光フィルム1の特性を説明するための図である。図11は、第1実施形態における採光フィルムの迷光グレアの射出角と光束との関係を比較例と比較した図である。 FIG. 10 is a diagram for explaining the characteristics of the daylighting film 1 of the first embodiment. FIG. 11 is a diagram comparing the relationship between the emission angle of stray light glare of the daylighting film and the light flux in the first embodiment with a comparative example.
 図10に示すように、採光フィルム1から射出された射出光LOUTのうち、射出角θOUTが0°≦θOUT≦-45°の範囲内において、人が眩しさを感じる下限レベルを超えるような光線は殆ど存在しない。本実施形態の採光フィルム1は、図11に示すように、従来の採光フィルム901において、特に-14.5°付近及び-34°付近の射出角θOUTに集中していた迷光グレアθOUTを、他の角度に分散させることができる。
これにより、同じ角度で射出する迷光グレアのピークの光束を減らすことができる。
As shown in FIG. 10, out of the emitted light L OUT emitted from the daylighting film 1, when the emission angle θ OUT is within the range of 0 ° ≦ θ OUT ≦ −45 °, the lower limit level at which a person feels dazzling is exceeded. There are almost no such rays. As shown in FIG. 11, the daylighting film 1 of the present embodiment has the stray light glare θ OUT concentrated in the exit angle θ OUT in the vicinity of −14.5 ° and in the vicinity of −34 ° in the conventional daylighting film 901, as shown in FIG. , Can be distributed to other angles.
Thereby, the peak light flux of the stray light glare emitted at the same angle can be reduced.
 図12は、第1実施形態における採光フィルム及び比較例としての採光フィルムにおける、採光の射出角度(θOUT)と光束との関係を示す図である。
 図12に示すように、採光フィルム1の採光特性は、比較例の採光フィルム901の採光特性と殆ど同じであって、室内の天井へ向けて射出される光の光束には大きな変化はない。つまり、隣り合う採光部3の配置間隔を複数水準に設定したとしても、採光方向への光束を維持することが可能である。
FIG. 12 is a diagram showing the relationship between the light emission angle (θ OUT ) and the luminous flux in the daylighting film in the first embodiment and the daylighting film as a comparative example.
As shown in FIG. 12, the daylighting characteristics of the daylighting film 1 are almost the same as the daylighting characteristics of the daylighting film 901 of the comparative example, and there is no significant change in the luminous flux of the light emitted toward the indoor ceiling. That is, even if the arrangement intervals of the adjacent daylighting units 3 are set to a plurality of levels, it is possible to maintain the light flux in the daylighting direction.
 以上述べたように、本実施形態の構成によれば、第1基材2の厚さを部分的に変えることで光の光路を変化させることによって、グレア光束を形成する複数の光線を他の角度へ分散させることにより、室内のどこに居ても眩しさを感じさせない採光フィルム1となる。また、採光フィルム1では、採光特性をほぼ維持しつつ、迷光グレアのピークの光束を低減させることが可能である。これにより、室内に居る人に眩しさを感じさせない良好な室内環境を確保することができる。 As described above, according to the configuration of the present embodiment, by changing the optical path of the light by partially changing the thickness of the first base material 2, a plurality of light beams forming the glare luminous flux are changed to other light beams. By dispersing to an angle, the daylighting film 1 that does not feel dazzling anywhere in the room is obtained. Further, the daylighting film 1 can reduce the luminous flux at the peak of stray light glare while substantially maintaining the daylighting characteristics. Thereby, the favorable indoor environment which does not make the person who exists indoors feel dazzling can be ensured.
 また、本実施形態では、採光フィルム1のうち、微細構造が形成された面を光入射面1aとし、当該光入射面1aを窓ガラス1003(屋外)側へ向けて採光フィルム1を設置したが、図6Cあるいは6Dに示すように、複数の採光部3が形成された微細構造面を室内側へ向けて設置してもよい。この場合も、グレア光束を形成する複数の光線を他の角度へ分散させることができ、室内のどこに居ても眩しさを感じさせない採光フィルム1となる。 Moreover, in this embodiment, although the surface in which the fine structure was formed among the lighting films 1 was made into the light-incidence surface 1a, the said light-incidence surface 1a was installed facing the window glass 1003 (outdoor) side, but the lighting film 1 was installed. 6C or 6D, the fine structure surface on which the plurality of daylighting portions 3 are formed may be installed toward the indoor side. In this case as well, a plurality of light beams forming the glare light beam can be dispersed to other angles, and the daylighting film 1 that does not feel dazzling wherever it is in the room is obtained.
 なお、本実施形態では、第1基材2が1つの凸部2Bを有する構成となっているが、図13に示す採光フィルム20のように、上下方向(Z方向)に複数の凸部2Bを有する第1基材(基材)21を備える構成としてもよい。図13は、第1実施形態の採光フィルムの変形例を示す図である。この構成により、第1基材21において厚さが異なる部分が複数存在し、グレア光束を形成する複数の光線を他の角度へさらに分散させることができる。 In addition, in this embodiment, although the 1st base material 2 becomes a structure which has one convex part 2B, like the lighting film 20 shown in FIG. 13, several convex part 2B in an up-down direction (Z direction). It is good also as a structure provided with the 1st base material (base material) 21 which has. FIG. 13 is a view showing a modification of the daylighting film of the first embodiment. With this configuration, there are a plurality of portions having different thicknesses in the first base material 21, and the plurality of light beams forming the glare light beam can be further dispersed to other angles.
[第2実施形態]
 次に、第2実施形態の採光装置における採光フィルムの構成について説明する。
 以下に示す本実施形態の採光フィルムの基本構成は、上記第1実施形態と略同様であるが、第1基材2の厚さの下限値を設定した点において異なる。よって、以下の説明では、先の実施形態と異なる部分について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、先の実施形態の説明で用いた図と共通の構成要素には同一の符号を付すものとする。
[Second Embodiment]
Next, the structure of the daylighting film in the daylighting apparatus of 2nd Embodiment is demonstrated.
The basic structure of the daylighting film of this embodiment shown below is substantially the same as that of the first embodiment, but is different in that a lower limit value of the thickness of the first base material 2 is set. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate | omitted. In the drawings used for the description, the same reference numerals are given to the same components as those used in the description of the previous embodiment.
 採光フィルムから射出される迷光グレアの光束は、採光フィルムにおける突起構造や太陽位置(方位、高度)によって変化するため、第1基材2の厚さによる輝度比の変化を幾何光学的に算出するのは困難である。
 そこで、採光フィルムにおける第1基材2の厚さtを基準の厚さt0からどのくらい変えれば、迷光グレアとなる光線の低下を視認できるのか検討し、厚さtの下限値を設定することにした。
Since the luminous flux of the stray light glare emitted from the daylighting film changes depending on the protrusion structure in the daylighting film and the sun position (azimuth, altitude), the change in luminance ratio due to the thickness of the first base material 2 is calculated geometrically. It is difficult.
Therefore, it is examined how much the thickness t of the first base material 2 in the daylighting film is changed from the reference thickness t0 so that a decrease in light rays that become stray light glare can be visually recognized, and a lower limit value of the thickness t is set. did.
 図14Aは、第1基材2の基準とする厚さt0を示す図である。図14Bは、第1基材2の厚さtを示す図である。 図14A,図14Bでは、「採光部3の幅W+隣り合う採光部3どうしの間隔s」のピッチを符号pで示している。
 図14Aに示す採光フィルム1Aの第1基材2の厚さt0を基準の厚さとし、図14Bに示す採光フィルム1Bの第1基材2の厚さtを所定の厚さとする。
FIG. 14A is a diagram showing a thickness t0 as a reference of the first base material 2. FIG. FIG. 14B is a diagram showing the thickness t of the first base material 2. In FIG. 14A and FIG. 14B, the pitch of “the width W of the daylighting unit 3 + the interval s between adjacent daylighting units 3” is indicated by the symbol p.
The thickness t0 of the first base material 2 of the daylighting film 1A shown in FIG. 14A is used as a reference thickness, and the thickness t of the first base material 2 of the daylighting film 1B shown in FIG. 14B is a predetermined thickness.
 図15は、上記した2つの採光フィルム1A,1Bにおいて特定の角度に射出されるグレア光線の光束を示す図である。図15においては、縦軸に迷光グレア光束(相対比)を示し、横軸に第1基材2の基準厚さt0との差とピッチpとの比率((t-t0)/p)を示す。 FIG. 15 is a diagram showing the luminous flux of glare rays emitted at a specific angle in the above-described two daylighting films 1A and 1B. In FIG. 15, the vertical axis represents the stray light glare light flux (relative ratio), and the horizontal axis represents the ratio ((t−t0) / p) between the difference from the reference thickness t0 of the first substrate 2 and the pitch p. Show.
 ここで、室内に居る人が、グレア光束が減ったことを実感できるレベルは、人間の目が識別できる相対輝度比が明所視において20%となる場合である。つまり、採光フィルム1において最も明るい射出光に対して、輝度が20%程度低い射出光が含まれていれば、各射出光の輝度比に差があることを認識することができて、迷光グレアが改善されたことになる。 Here, the level at which a person in the room can realize that the glare luminous flux has decreased is when the relative luminance ratio that can be recognized by human eyes is 20% in photopic vision. In other words, if the daylighting film 1 includes emission light whose luminance is about 20% lower than the brightest emission light, it can be recognized that there is a difference in the luminance ratio of each emission light, and stray light glare. Will be improved.
 図15に示すように、第1基材2の厚さtが基準厚さt0のときに迷光グレアの光束がMaxとなり、基準厚さt0との厚み差とピッチpとの比率((t-t0)/p)が-0.013のときに、迷光グレアの光束がMaxの0.8倍となった。 As shown in FIG. 15, when the thickness t of the first substrate 2 is the reference thickness t0, the luminous flux of the stray light glare becomes Max, and the ratio between the thickness difference from the reference thickness t0 and the pitch p ((t− When t0) / p) was -0.013, the luminous flux of stray light glare was 0.8 times that of Max.
 そのため、1つの第1基材2内で、光束の比率が20%となる、基準厚さt0の領域と所定の厚さt(t>t0)の領域とが並んで設けられていると、各領域における輝度の違いを視認することができる。 Therefore, in one first base material 2, when a region having a reference thickness t 0 and a region having a predetermined thickness t (t> t 0) where the ratio of light flux is 20% are provided side by side, Differences in luminance in each region can be visually recognized.
 一つの採光フィルム1における第1基材2に関して、基準厚さt0の領域と、光束の比率が20%となるような所定の厚さtの領域とを含む構成にすることで、グレア光束のピークの低減を期待することができる。 With respect to the first base material 2 in one daylighting film 1, the glare luminous flux can be obtained by including a region having a reference thickness t0 and a region having a predetermined thickness t so that the luminous flux ratio is 20%. Peak reduction can be expected.
 よって、採光フィルム1の第1基材2のうち少なくとも1つの領域が、以下に示す条件を満たすように構成する。 Therefore, it comprises so that at least 1 area | region among the 1st base materials 2 of the lighting film 1 may satisfy | fill the conditions shown below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、t0は第1基材2において基準とする厚さであり、tは第1基材2の所定の厚さである。 Here, t0 is a reference thickness in the first base material 2, and t is a predetermined thickness of the first base material 2.
 よって、第1基材2における基準厚さt0に対する厚み差を、「ピッチpに対しての比率が1.3%以上の厚み差」と規定する。
 例えば、「p=W+s」が150μmのとき、基準厚さt0と所定の厚さtとの差は凡そ2.0μmに相当する。
Therefore, the thickness difference with respect to the reference thickness t0 in the first base material 2 is defined as “a thickness difference in which the ratio to the pitch p is 1.3% or more”.
For example, when “p = W + s” is 150 μm, the difference between the reference thickness t0 and the predetermined thickness t is approximately 2.0 μm.
 また、本実施形態では、採光フィルム1の第1基材2のうち少なくとも1つの領域が、以下に示す条件を満たすように構成してもよい。 Moreover, in this embodiment, you may comprise so that at least 1 area | region among the 1st base materials 2 of the lighting film 1 may satisfy | fill the conditions shown below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 例えば、第1基材2における基準厚さt0に対する厚み差を、「ピッチpに対しての比率が2.8%以上の厚み差」と規定してもよい。 For example, the thickness difference with respect to the reference thickness t0 in the first base material 2 may be defined as “a thickness difference in which the ratio to the pitch p is 2.8% or more”.
[第3実施形態]
 次に、第3実施形態の採光装置における採光フィルム31の構成について説明する。
 以下に示す本実施形態の採光フィルム31の基本構成は、上記第1実施形態と略同様であるが、第1基材32が、基材本体33とは別部材の凸部34を有して構成されている点において異なる。よって、以下の説明では、先の実施形態と異なる部分について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、先の実施形態の説明で用いた図と共通の構成要素には同一の符号を付すものとする。
[Third Embodiment]
Next, the configuration of the daylighting film 31 in the daylighting device of the third embodiment will be described.
The basic configuration of the daylighting film 31 of the present embodiment shown below is substantially the same as that of the first embodiment, but the first base material 32 has a protrusion 34 that is a separate member from the base material body 33. It differs in that it is configured. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate | omitted. In the drawings used for the description, the same reference numerals are given to the same components as those used in the description of the previous embodiment.
 図16は、第3実施形態の採光フィルム31の概略構成を部分的に示す断面図である。
 図16に示すように、本実施形態の採光フィルム31は、基材本体33と、基材本体33のうち、複数の採光部3が設けられた第1面33aとは反対側の第2面33b側に設けられた別部材の凸部34と、からなる第1基材32を備えている。
 凸部34としては、光透過性を有するフィルム、シートあるいはテープであってもよいし、光透過性樹脂からなる部材であってもよい。
FIG. 16 is a cross-sectional view partially showing the schematic configuration of the daylighting film 31 of the third embodiment.
As shown in FIG. 16, the daylighting film 31 of the present embodiment includes a base body 33 and a second surface of the base body 33 opposite to the first surface 33 a provided with the plurality of daylighting portions 3. And a first base member 32 including a convex portion 34 of another member provided on the 33b side.
The convex portion 34 may be a light transmissive film, sheet, or tape, or may be a member made of a light transmissive resin.
 このように、均一な基材本体33の一面側に部分的に凸部32Bを追加することによって、第1基材32の厚さを部分的に変化させることができる。第1基材32のうち、厚さに差がある個所で全反射した光、つまり、凸部34の一面34bと空気層との界面において全反射した光L2の光路は、基材本体33の第2面33bと空気層との界面において全反射した光L1とは異なる光路に変更され、光L1の射出角θOUT(1)とは異なる射出角θOUT(2)で射出する。 Thus, by adding the convex part 32B partially on the one surface side of the uniform base body 33, the thickness of the first base material 32 can be partially changed. Of the first base material 32, the light totally reflected at a portion having a difference in thickness, that is, the optical path of the light L 2 totally reflected at the interface between the one surface 34 b of the convex portion 34 and the air layer is The light path L1 is changed to a different optical path from the light L1 totally reflected at the interface between the second surface 33b and the air layer, and is emitted at an emission angle θ OUT (2) different from the emission angle θ OUT (1) of the light L1.
 本実施形態のように、第1基材32内で光の光路差を設けることができれば、凸部34が基材本体33とは別部材であってもよい。基材本体33の厚さt0を基準としたとき、凸部34を含めた第1基材32の厚さtが、上記式3あるいは上記式4を満たしていることが好ましい。 As long as the optical path difference of light can be provided in the first base material 32 as in the present embodiment, the convex portion 34 may be a separate member from the base material body 33. When the thickness t0 of the base body 33 is used as a reference, it is preferable that the thickness t of the first base 32 including the convex portion 34 satisfies the above formula 3 or the above formula 4.
[第4実施形態]
 次に、第4実施形態の採光装置における採光フィルムの構成について説明する。
 以下に示す本実施形態の採光フィルムの基本構成は、上記第1実施形態と略同様であるが、第1基材の厚さが3つ以上の水準に設定されている点において異なる。
[Fourth Embodiment]
Next, the structure of the daylighting film in the daylighting device of the fourth embodiment will be described.
The basic structure of the daylighting film of the present embodiment shown below is substantially the same as that of the first embodiment, but differs in that the thickness of the first base material is set to three or more levels.
 図17は、第4実施形態の採光フィルムの構成を示す図である。
 図17に示すように、本実施形態の採光フィルム40における第1基材(基材)9は、厚さT1,T2,T3が互いに異なる3つの領域R1,R2,R3を有しており、厚さ方向(Y方向)における位置が互いに異なる複数の面9a,9b,9cによって、上下方向(Z方向)で第1基材9の厚さT1,T2,T3が段階的に異なった構成となっている。
FIG. 17 is a diagram showing the configuration of the daylighting film of the fourth embodiment.
As shown in FIG. 17, the first base material (base material) 9 in the daylighting film 40 of the present embodiment has three regions R1, R2, and R3 having different thicknesses T1, T2, and T3, A structure in which the thicknesses T1, T2, and T3 of the first base material 9 are stepwise different in the vertical direction (Z direction) by the plurality of surfaces 9a, 9b, and 9c having different positions in the thickness direction (Y direction). It has become.
 この構成では、第1基材9の各面9a,9b,9cと空気層との界面でそれぞれ反射する光の光路が異なるため、領域R1,R2,R3ごとに射出光の射出角度を異ならせることができる。これにより、グレア光束を形成する複数の光線を他の複数の角度へより分散させることができる。よって、同じ角度で射出される迷光グレアのピークの光束が少なくなり、室内に居る人に眩しさを感じさせない良好な室内環境を確保することができる。 In this configuration, since the optical paths of the light reflected at the interfaces between the surfaces 9a, 9b, 9c of the first base material 9 and the air layer are different, the emission angles of the emitted light are made different for the regions R1, R2, R3. be able to. Thereby, the several light beam which forms a glare light beam can be more disperse | distributed to another several angle. Accordingly, the peak light flux of stray light glare emitted at the same angle is reduced, and it is possible to ensure a favorable indoor environment that does not make a person in the room feel dazzling.
 なお、第1基材9の厚さ方向(Y方向)で異なる位置の面9c,9b,9cの数が3つ以上設けられていてもよい。 In addition, the number of the surfaces 9c, 9b, and 9c at different positions in the thickness direction (Y direction) of the first base material 9 may be three or more.
 図18A~図18Cは、第4実施形態における採光フィルムの変形例1~3を示す図である。 FIGS. 18A to 18C are diagrams showing modifications 1 to 3 of the daylighting film in the fourth embodiment.
(変形例1)
 図18Aに示す採光フィルム41は、厚さT1,T2,T3が互いに異なる3つの領域R1,R2,R3を有した第1基材(基材)91を備えている。本例では、厚さ方向(Y方向)における位置が互いに異なる3つの面9a,9b,9cが上下方向(Z方向)にランダムに存在しており、具体的には、各面9b、9cに隣り合うようにして面9aが存在している。
(Modification 1)
A daylighting film 41 shown in FIG. 18A includes a first base material (base material) 91 having three regions R1, R2, and R3 having different thicknesses T1, T2, and T3. In this example, three surfaces 9a, 9b, 9c having different positions in the thickness direction (Y direction) are randomly present in the vertical direction (Z direction). Specifically, each surface 9b, 9c is provided on each surface 9b, 9c. The surface 9a exists so as to be adjacent to each other.
 図17に示した構成では、厚さ方向(Y方向)における位置が互いに異なる複数の面9a,9b,9cによって、上下方向(Z方向)で第1基材9の厚さT1,T2,T3が段階的に変化していたが、本例に示す第1基材91のように、厚さT1,T2,T3が上下方向(Z方向)でランダムに変化する構成としてもよい。 In the configuration shown in FIG. 17, the thicknesses T1, T2, T3 of the first base material 9 in the vertical direction (Z direction) are provided by a plurality of surfaces 9a, 9b, 9c having different positions in the thickness direction (Y direction). However, the thicknesses T1, T2, and T3 may change randomly in the vertical direction (Z direction) as in the first base material 91 shown in this example.
 なお、第1基材91のうち厚さが互いに異なる領域は3つに限られず、4つ以上であってもよい。 In addition, the area | region where thickness differs from each other among the 1st base materials 91 is not restricted to three, Four or more may be sufficient.
(変形例2)
 図18Bに示す採光フィルム42は、湾曲面6と平面7とが上下方向(Z方向)に交互に存在する第1基材(基材)92を備えている。湾曲面6,6は、凸状の円弧面であり、互いに等しい曲率を有している。平面7に対応する第1領域R1では、上下方向で一定の厚さT1となっているのに対し、湾曲面6に対応する第2領域R2では、湾曲面6の頂部eにおいて厚さT2が最大となり、第1領域R1(平面7)にかけて連続的に厚さT2が変化(減少)している。
(Modification 2)
The daylighting film 42 shown in FIG. 18B includes a first base material (base material) 92 in which the curved surface 6 and the flat surface 7 are alternately present in the vertical direction (Z direction). The curved surfaces 6 and 6 are convex circular arc surfaces and have the same curvature. The first region R1 corresponding to the plane 7 has a constant thickness T1 in the vertical direction, whereas the second region R2 corresponding to the curved surface 6 has a thickness T2 at the apex e of the curved surface 6. The thickness T2 is maximum, and the thickness T2 continuously changes (decreases) over the first region R1 (plane 7).
 本例では、第1基材92において、空気層と湾曲面6及び平面7のそれぞれで反射する光の光路が異なるのはもちろんであるが、湾曲面6の場合、厚さ方向(Y方向)における光の反射位置が上下方向(Z方向)で連続的に変化しているため、光の反射位置も上下方向で連続的に変化する。そのため、湾曲面6に入射した光は、空気層との界面において様々な反射角度で反射され、それぞれ異なる光路を経て射出される。湾曲面6,6により、同じ角度で射出される迷光グレアのピークの光束がさらに少なくなり、室内に居る人に眩しさを感じさせない良好な室内環境を提供することができる。 In this example, in the first base material 92, the optical path of the light reflected by the air layer and each of the curved surface 6 and the flat surface 7 is different, but in the case of the curved surface 6, in the thickness direction (Y direction). Since the light reflection position in FIG. 4 continuously changes in the vertical direction (Z direction), the light reflection position also changes continuously in the vertical direction. Therefore, the light incident on the curved surface 6 is reflected at various reflection angles at the interface with the air layer, and is emitted through different optical paths. The curved surfaces 6 and 6 can further reduce the stray light glare peak luminous flux emitted at the same angle, and provide a favorable indoor environment that does not make a person in the room feel dazzling.
(変形例3)
 図18Cに示す採光フィルム43は、互いに曲率が異なる複数の湾曲面6A,6Bと平面7とが上下方向(Z方向)に交互に存在する第1基材(基材)93を有している。湾曲面6A,6Bは互いに異なる曲率を有しているため、厚さ方向(Y方向)で頂部e1、e2の位置が異なる。平面7に対応する第1領域R1では、上下方向で一定の厚さT1となっている。一方、湾曲面6Aに対応する第2領域R2では、湾曲面6Aの頂部e1において厚さT2が最大となり、第1領域R1(平面7)にかけて連続的に厚さT2が変化(減少)している。また、湾曲面6Bに対応する第3領域R3では、湾曲面6Bの頂部e2において厚さT3が最大となり、第1領域R1(平面7)にかけて連続的に厚さT3が変化(減少)している。
(Modification 3)
The daylighting film 43 shown in FIG. 18C has a first base material (base material) 93 in which a plurality of curved surfaces 6A and 6B and a plane 7 having different curvatures are alternately present in the vertical direction (Z direction). . Since the curved surfaces 6A and 6B have different curvatures, the positions of the apexes e1 and e2 are different in the thickness direction (Y direction). The first region R1 corresponding to the plane 7 has a constant thickness T1 in the vertical direction. On the other hand, in the second region R2 corresponding to the curved surface 6A, the thickness T2 becomes maximum at the apex e1 of the curved surface 6A, and the thickness T2 continuously changes (decreases) over the first region R1 (plane 7). Yes. Further, in the third region R3 corresponding to the curved surface 6B, the thickness T3 becomes maximum at the apex e2 of the curved surface 6B, and the thickness T3 continuously changes (decreases) over the first region R1 (plane 7). Yes.
 本例の第1基材93は、平面7の他に、互いに曲率の異なる湾曲面6A,6Bをさらに有しているため、湾曲面6A,6Bに入射した光はそれぞれさらに異なる角度で反射され、様々な光路を経て射出される。曲率の異なる湾曲面6A,6Bにより、同じ角度で射出される迷光グレアのピークの光束がより一層少なくなり、室内に居る人に眩しさを感じさせないより良好な室内環境を提供することができる。 Since the first base material 93 of this example further includes curved surfaces 6A and 6B having different curvatures in addition to the plane 7, the light incident on the curved surfaces 6A and 6B is reflected at different angles. , Emitted through various optical paths. The curved surfaces 6A and 6B having different curvatures can further reduce the stray light glare peak luminous flux emitted at the same angle, thereby providing a better indoor environment in which a person in the room does not feel dazzling.
 図19A~図19Dは、第4実施形態における採光フィルムの変形例4~7を示す図である。
(変形例4)
 図19Aに示す採光フィルム44のように、複数の平面7と、複数の傾斜面15a,15bと、を有する第1基材(基材)94を備える構成としてもよい。傾斜面15a,15bは、第1基材94の法線方向(Y方向)に対する傾斜角度θが互いに等しく、上下方向(Z方向)で互いに相反する傾斜とされている。本例においては、上下方向に傾斜面15a,15b,7がこの順で繰り返し存在する。
19A to 19D are views showing modified examples 4 to 7 of the daylighting film in the fourth embodiment.
(Modification 4)
It is good also as a structure provided with the 1st base material (base material) 94 which has several plane 7 and several inclined surface 15a, 15b like the lighting film 44 shown to FIG. 19A. The inclined surfaces 15a and 15b are inclined at the same inclination angle θ with respect to the normal direction (Y direction) of the first base material 94 and opposite to each other in the vertical direction (Z direction). In this example, the inclined surfaces 15a, 15b, and 7 are repeatedly present in this order in the vertical direction.
 第1基材94のうち、平面7に対応する領域では、上下方向で一定の厚さT1となっている。一方、傾斜面15a,15bに対応する領域では、頂部e3において厚さT2が最大となり、平面7にかけて上下方向で連続的に厚さT2が変化(減少)している。 The region corresponding to the plane 7 in the first base 94 has a constant thickness T1 in the vertical direction. On the other hand, in the region corresponding to the inclined surfaces 15a and 15b, the thickness T2 is maximum at the top portion e3, and the thickness T2 continuously changes (decreases) in the vertical direction toward the plane 7.
(変形例5)
 図19Bに示す採光フィルム45のように、複数の傾斜面15a,15bによって形成される各頂部e4,e5,e6の位置が、第1基材(基材)95の厚さ方向(Y方向)で異なる構成としてもよい。頂部e4,e5,e6ごとに、各頂部e4~e6を構成する一対の傾斜面15a,15bの傾斜角度θe4,θe5,θe6がそれぞれ異なっている。
(Modification 5)
As in the daylighting film 45 shown in FIG. 19B, the positions of the tops e4, e5, e6 formed by the plurality of inclined surfaces 15a, 15b are the thickness direction (Y direction) of the first base material (base material) 95. Different configurations may be used. The inclination angles θe4, θe5, and θe6 of the pair of inclined surfaces 15a and 15b that constitute the apexes e4 to e6 are different for each of the apexes e4, e5, and e6.
(変形例6)
 図19Cに示す採光フィルム46のように、複数の湾曲面6が上下方向(Z方向)に連続して存在する第1基材(基材)96を備える構成としてもよい。各湾曲面6の端部側において最小の厚さT1となり、各湾曲面6の頂部eにおいて最大の厚さT2となっている。このように微細構造面96aとは反対側の面96bに平面をなす領域がない構成としてもよい。
(Modification 6)
It is good also as a structure provided with the 1st base material (base material) 96 in which the some curved surface 6 exists continuously in an up-down direction (Z direction) like the lighting film 46 shown to FIG. 19C. The minimum thickness T1 is provided on the end side of each curved surface 6, and the maximum thickness T2 is provided on the apex e of each curved surface 6. In this manner, a configuration may be adopted in which there is no region that forms a flat surface on the surface 96b opposite to the fine structure surface 96a.
(変形例7)
 図19Dに示す採光フィルム47のように、微細構造面97aとは反対側の面97bが、曲率の異なる複数の湾曲面6a~6fによって構成される第1基材(基材)97を備えてもよい。これにより、曲率の等しい湾曲面6を複数備えた変形例6の構成よりも、上下方向における第1基材97の厚さがよりランダムに変化したものとなる。
(Modification 7)
Like the daylighting film 47 shown in FIG. 19D, a surface 97b opposite to the fine structure surface 97a includes a first base material (base material) 97 configured by a plurality of curved surfaces 6a to 6f having different curvatures. Also good. Thereby, the thickness of the 1st base material 97 in the up-down direction changes more randomly than the structure of the modification 6 provided with two or more curved surfaces 6 with the same curvature.
 上述したように、第1基材の厚みバラつきの付け方のバリエーションについて、第1基材の室内側の面(微細構造面とは反対側の面)が平坦でない場合、第1基材の厚み(空気層との界面の位置)は無限の水準を持つ。この場合、第1基材と空気層との界面とにおいて全反射する光線は様々な方向に分散され、より迷光グレアの出射角を分散する効果を得られる。 As described above, with respect to variations in how the thickness of the first base material varies, if the indoor side surface of the first base material (the surface opposite to the fine structure surface) is not flat, the thickness of the first base material ( The position of the interface with the air layer) has an infinite level. In this case, the light beam totally reflected at the interface between the first base material and the air layer is dispersed in various directions, and an effect of further dispersing the emission angle of the stray light glare can be obtained.
[第5実施形態]
 次に、第5実施形態の採光装置における採光フィルムの構成について説明する。
 以下に示す本実施形態の採光フィルムは、先の実施形態と同様に第1基材2の厚さが部分的に異なっているが、隣り合う採光部どうしの間隔が異なる点において先の実施形態とは異なる。
[Fifth Embodiment]
Next, the structure of the daylighting film in the daylighting device of the fifth embodiment will be described.
The daylighting film of the present embodiment shown below is different from the previous embodiment in that the thickness of the first base material 2 is partially different as in the previous embodiment, but the distance between adjacent daylighting portions is different. Is different.
 図20は、第5実施形態における採光フィルムの構成を示す図である。
 図20に示すように、採光フィルム50は、第1基材2の第2面2b側に凸部2Bを有した第1基材2と、第1基材2の第1面2aに配置された複数の採光部3とを有して構成されている。第1基材2は、第1実施形態と同様に、第1基材2の一面(第2面2b)側に設けられた凸部2Bによって、上下方向(Z方向)で部分的に厚さが異なっている。
FIG. 20 is a diagram showing a configuration of a daylighting film in the fifth embodiment.
As illustrated in FIG. 20, the daylighting film 50 is disposed on the first base 2 having the convex portion 2 </ b> B on the second surface 2 b side of the first base 2 and the first surface 2 a of the first base 2. And a plurality of daylighting units 3. As in the first embodiment, the first base material 2 is partially thick in the vertical direction (Z direction) by the convex portion 2B provided on the one surface (second surface 2b) side of the first base material 2. Are different.
 また、先の実施形態では、上下方向(Z方向)で隣り合う採光部3どうしの間隔が全て一定となるように構成されていたが、本実施形態では、上下方向(Z方向)で隣り合う採光部3どうしの間の間隔が一定にはなっておらず、複数の水準に設定されている。 In the previous embodiment, the intervals between the daylighting units 3 adjacent in the vertical direction (Z direction) are all constant, but in the present embodiment, they are adjacent in the vertical direction (Z direction). The intervals between the daylighting units 3 are not constant and are set to a plurality of levels.
 具体的に本実施形態においては、複数の採光部3が、隣り合う他の採光部3との間に間隔s0あるいは間隔s1をおいて配置されている(s0<s1)。図20では、採光部3の配列方向(Z方向)において間隔s0及び間隔s1どうしが上下方向でランダムに存在し、複数の採光部3が不規則に配置された構成となっている。 Specifically, in the present embodiment, a plurality of daylighting units 3 are arranged with an interval s0 or an interval s1 between other adjacent daylighting units 3 (s0 <s1). In FIG. 20, the interval s0 and the interval s1 are randomly present in the vertical direction in the arrangement direction (Z direction) of the daylighting units 3, and a plurality of daylighting units 3 are irregularly arranged.
 本実施形態では、第1基材2の厚さを部分的に異ならせるとともに、採光部3の配置間隔sにバラつきを持たせることによって、両方の要素で、より構成要素の配置の規則性が低下し、迷光グレアの分散が可能になる。 In the present embodiment, the thickness of the first base material 2 is partially different, and the arrangement interval s of the daylighting unit 3 is varied, so that the regularity of the arrangement of the constituent elements can be further improved in both elements. And stray light glare can be dispersed.
 なお、本実施形態の構成に限られず、採光部3の配列方向(Z方向)において間隔s0と間隔s1とが交互に存在する、あるいは規則的に存在するように構成されていてもよい。しかしながら、間隔s0及び間隔s1がランダムに存在する構成、つまり、複数の採光部3が上下方向に不規則に配置されている構成の方が、グレアの射出角度の分散性を高める効果が高い。 Note that the configuration is not limited to the configuration of the present embodiment, and the interval s0 and the interval s1 may alternately exist or regularly exist in the arrangement direction (Z direction) of the daylighting units 3. However, the configuration in which the interval s0 and the interval s1 exist randomly, that is, the configuration in which the plurality of daylighting units 3 are irregularly arranged in the vertical direction has a higher effect of improving the dispersibility of the glare emission angle.
[第6実施形態]
 次に、第6実施形態の採光装置における採光フィルムの構成について、実施例1~3を例に挙げて説明する。
[Sixth Embodiment]
Next, the configuration of the daylighting film in the daylighting apparatus of the sixth embodiment will be described by taking Examples 1 to 3 as examples.
(実施例1)
 図21Aは、第6実施形態における実施例1の採光フィルム61の構成を示す図である。
 図21Aに示す採光フィルム61は、採光フィルム61内において屈折率に分布を持たせる構成とされている。具体的に、本実施例における採光フィルム61は、領域ごとに異なる屈折率を有しており、屈折率n1を有する材料を用いて形成した第1領域R1と、屈折率n2を有する材料を用いて形成した第2領域R2と、を有する。
(Example 1)
FIG. 21A is a diagram illustrating a configuration of the daylighting film 61 of Example 1 according to the sixth embodiment.
The daylighting film 61 shown in FIG. 21A is configured to have a distribution of refractive index in the daylighting film 61. Specifically, the daylighting film 61 in this embodiment has a different refractive index for each region, and uses a first region R1 formed using a material having a refractive index n1 and a material having a refractive index n2. And a second region R2 formed in the above manner.
 第1領域R1には、同領域内の採光部3Aと同じ屈折率n1の材料を用いて形成した凸部2Cが設けられている。第2領域R2には、屈折率n1の材料を用いて形成した凸部2Cと、同領域内の採光部3Bと同じ屈折率n2の材料を用いて形成した凸部2Dと、が設けられている。 In the first region R1, a convex portion 2C formed using a material having the same refractive index n1 as that of the daylighting portion 3A in the same region is provided. The second region R2 is provided with a convex portion 2C formed using a material having a refractive index n1, and a convex portion 2D formed using a material having the same refractive index n2 as the daylighting portion 3B in the same region. Yes.
 この構成によれば、採光フィルム61の第1領域R1に入射した光の光路と、第2領域R2に入射した光の光路とを変えることができる。また、各領域R1,2内においても、所定の屈折率を有する各凸部2C,2Dに入射した光の各光路と、凸部2C,2Dに入射しない光の光路とを変えることができる。 According to this configuration, the optical path of the light incident on the first region R1 of the daylighting film 61 and the optical path of the light incident on the second region R2 can be changed. Also in each of the regions R1 and R2, the optical paths of light incident on the convex portions 2C and 2D having a predetermined refractive index and the optical paths of light not incident on the convex portions 2C and 2D can be changed.
(実施例2)
 図21Bは、第6実施形態における実施例2の採光フィルム62の構成を示す図である。
 図21Bに示す採光フィルム62は、基材本体2A及び複数の凸部2Cからなる第1基材2と、第1基材2の第1面2a(凸部2Cが設けられた第2面2bとは反対側の面)に設けられた複数の採光部3Aと、を備えている。これら第1基材2及び複数の採光部3Aは、屈折率n1の材料からなる。
 本実施例では、複数の採光部のうち一部の採光部3Bが、他の採光部3Aや第1基材2とは異なる屈折率n2の材料から構成されている。
(Example 2)
FIG. 21B is a diagram showing a configuration of the daylighting film 62 of Example 2 in the sixth embodiment.
The daylighting film 62 shown in FIG. 21B includes a first base 2 composed of a base body 2A and a plurality of convex portions 2C, and a first surface 2a of the first base 2 (a second surface 2b provided with the convex portions 2C). And a plurality of daylighting units 3A provided on the opposite surface). The first base 2 and the plurality of daylighting units 3A are made of a material having a refractive index n1.
In the present embodiment, some of the daylighting units 3B among the plurality of daylighting units are made of a material having a refractive index n2 different from those of the other daylighting units 3A and the first base material 2.
 このため、屈折率n1の採光部3A及び基材本体2A内を進行する光の光路と、屈折率n1の採光部3A及び第1基材2だけでなく、屈折率n2の採光部3B内も進行する光の光路とを変えることができる。また、凸部2C内を進行する光の光路も他の光路とは異なるため、よりグレア光束を分散させることができる。 For this reason, not only the light path of light traveling in the daylighting unit 3A having the refractive index n1 and the base body 2A, and the daylighting unit 3B having the refractive index n2, but also the daylighting unit 3B having the refractive index n2 The optical path of the traveling light can be changed. Further, since the optical path of the light traveling in the convex portion 2C is also different from the other optical paths, the glare light beam can be further dispersed.
(実施例3)
 図21Cは、第6実施形態における実施例3の採光フィルム63の構成を示す図である。
 図21Cに示す採光フィルム63は、第1基材2の第2面2b側に屈折率がそれぞれ異なる複数の板部材64A,64B,64Cを設けて構成されている。
 屈折率n3の材料からなる板部材64Aは、同じ材料からなる凸部2Eを有している。
 屈折率n1の材料からなる板部材64Cは、同じ材料からなる凸部2Fを有している。
 また、図21Cでは、屈折率n2の材料からなる板部材64Bには凸部は設けられていないが、他の板部材64A,64Cと同様に、板部材64Bと同様の材料からなる凸部を設けてもよい。
(Example 3)
FIG. 21C is a diagram showing a configuration of the daylighting film 63 of Example 3 in the sixth embodiment.
The daylighting film 63 shown in FIG. 21C is configured by providing a plurality of plate members 64A, 64B, and 64C having different refractive indexes on the second surface 2b side of the first base material 2.
A plate member 64A made of a material having a refractive index n3 has a convex portion 2E made of the same material.
The plate member 64C made of a material having a refractive index n1 has a convex portion 2F made of the same material.
Further, in FIG. 21C, the plate member 64B made of the material having the refractive index n2 is not provided with a protrusion, but like the other plate members 64A and 64C, the protrusion made of the same material as the plate member 64B is provided. It may be provided.
 この構成によれば、第1基材2の第2面2bに板部材64A,64B,64Cをそれぞれ貼り合わせるだけでいいので、光路変更の調整が容易であるとともに製造が容易である。 According to this configuration, the plate members 64A, 64B, and 64C need only be bonded to the second surface 2b of the first base member 2, so that the adjustment of the optical path change is easy and the manufacture is easy.
 なお、本実施例の構成に限られず、板部材64A,64B,64Cにそれぞれ異なる屈折率を有する凸部を設けた構成としてもよい。 In addition, it is good also as a structure which provided the convex part which has not only the structure of a present Example but a different refractive index in plate member 64A, 64B, 64C, respectively.
 以上述べたように、本実施形態における採光フィルム61~63によれば、採光フィルム63内で第1基材2の厚さ及び屈折率を部分的に異ならせることにより、迷光グレアのピークの光束をより低減させることが可能である。 As described above, according to the daylighting films 61 to 63 in the present embodiment, the light flux at the peak of the stray light glare is obtained by partially varying the thickness and the refractive index of the first base material 2 in the daylighting film 63. Can be further reduced.
[第7実施形態]
 次に、第7実施形態の採光装置における採光フィルムの構成について説明する。
 以下に示す本実施形態の採光フィルムの基本構成は、上記第1実施形態と略同様であるが、採光フィルムにおける第1基材2の厚さtの分布が異なる。よって、以下の説明では、先の実施形態と異なる部分について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、先の実施形態の説明で用いた図と共通の構成要素には同一の符号を付すものとする。
[Seventh Embodiment]
Next, the structure of the daylighting film in the daylighting apparatus of 7th Embodiment is demonstrated.
The basic structure of the daylighting film of this embodiment shown below is substantially the same as that of the first embodiment, but the distribution of the thickness t of the first substrate 2 in the daylighting film is different. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate | omitted. In the drawings used for the description, the same reference numerals are given to the same components as those used in the description of the previous embodiment.
 図22~図24は、部分的に厚さの異なる採光フィルムから射出される光の光路と輝度を示しており、図中における各矢印の太さによって輝度が異なる。ここでは、矢印の太さが太いほど明るいことを示している。 22 to 24 show the optical path and luminance of light emitted from the daylighting films having partially different thicknesses, and the luminance varies depending on the thickness of each arrow in the drawing. Here, the thicker the arrow is, the brighter it is.
(実施例1)
 まず、採光フィルム内での厚さtの違いによる輝度分布について述べる。
 図22は、第1基材2の上下方向における厚さt1~t3がこの順に繰り返し設定された、第7実施形態における第1実施形態の採光フィルム71の光路及び輝度を示す図である。
 図22に示すように、採光フィルム71の第1基材2内において、例えば、上下方向における厚さt1~t3が規則的に繰り返し設定された構成の場合、厚さt1~t3に応じて異なる輝度の射出光が採光フィルム71から射出される。この場合、室内に居る人は、採光フィルム71から数m程度離れた距離から採光フィルム71を見るので、ある程度の領域(厚さt1,厚さt2,厚さt3を少なくとも一つずつ含む領域)での平均化された輝度の光を見ることになる。
(Example 1)
First, the luminance distribution due to the difference in thickness t in the daylighting film will be described.
FIG. 22 is a diagram showing the optical path and luminance of the daylighting film 71 of the first embodiment in the seventh embodiment, in which the thicknesses t1 to t3 in the vertical direction of the first base material 2 are repeatedly set in this order.
As shown in FIG. 22, in the first base material 2 of the daylighting film 71, for example, when the thicknesses t1 to t3 in the vertical direction are regularly set repeatedly, the thickness varies depending on the thicknesses t1 to t3. Luminous emitted light is emitted from the daylighting film 71. In this case, since a person in the room views the daylighting film 71 from a distance of about several meters from the daylighting film 71, a certain area (area including at least one thickness t1, thickness t2, and thickness t3). You will see light with an averaged brightness at.
(実施例2)
 図23は、厚さt1~t3がランダムに設定された、第7実施形態における実施例2の採光フィルム72の光路及び輝度を示す図である。
 図23に示すように、採光フィルム72の第1基材2内において、例えば、厚さt1~t3がランダムに設定された構成の場合、輝度の異なる射出光がランダムに射出される。
室内に居る人が採光フィルム72を見た場合には、均一な輝度の光を見ることになる。
(Example 2)
FIG. 23 is a diagram showing the optical path and luminance of the daylighting film 72 of Example 2 in the seventh embodiment, in which the thicknesses t1 to t3 are set at random.
As shown in FIG. 23, in the first base material 2 of the daylighting film 72, for example, when the thicknesses t1 to t3 are set at random, emission lights having different luminances are emitted at random.
When a person in the room looks at the daylighting film 72, he / she sees light with uniform luminance.
(実施例3)
 図24は、第1基材2の領域A1,A2,A3ごとに厚さt1,t2,t3が異なる、第7実施形態における実施例3の採光フィルム73の光路及び輝度を示す図である。
 図24に示すように、採光フィルム73の第1基材2内において、例えば、厚さt1に設定された領域A1、厚さt2に設定された領域A2、厚さt3に設定された領域A3、を有する構成の場合、領域A1,A2,A3ごとに異なる輝度の光が射出されることになる。この場合、採光フィルム73から射出された光には、領域A1,A2,A3ごとに異なる輝度分布が現れる。
 以上述べたように、第1基材2の領域A1,A2,A3ごとに厚さt1,t2,t3を異ならせることによって、迷光グレアによる輝度分布に違いが生じるので、用途によって配置を設定すればよい。
(Example 3)
FIG. 24 is a diagram illustrating the optical path and luminance of the daylighting film 73 of Example 3 in the seventh embodiment, in which the thicknesses t1, t2, and t3 are different for each of the regions A1, A2, and A3 of the first base material 2.
As shown in FIG. 24, in the first base material 2 of the daylighting film 73, for example, a region A1 set to a thickness t1, a region A2 set to a thickness t2, and a region A3 set to a thickness t3. , Light having different luminance is emitted for each of the areas A1, A2, and A3. In this case, in the light emitted from the daylighting film 73, a different luminance distribution appears for each of the areas A1, A2, and A3.
As described above, by varying the thicknesses t1, t2, and t3 for each region A1, A2, and A3 of the first base material 2, a difference occurs in the luminance distribution due to stray light glare. That's fine.
[第8実施形態]
 次に、第8実施形態の採光装置における採光フィルムの構成について説明する。
 以下に示す本実施形態の採光フィルム81の基本構成は、上記第1実施形態と略同様であるが、採光フィルム81からの射出光に意匠性を付与した点において異なる。よって、以下の説明では、先の実施形態と異なる部分について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、先の実施形態の説明で用いた図と共通の構成要素には同一の符号を付すものとする。
[Eighth Embodiment]
Next, the structure of the daylighting film in the daylighting device of the eighth embodiment will be described.
The basic configuration of the daylighting film 81 of the present embodiment shown below is substantially the same as that of the first embodiment, but is different in that design is imparted to the light emitted from the daylighting film 81. Therefore, in the following description, a different part from previous embodiment is demonstrated in detail, and description of a common location is abbreviate | omitted. In the drawings used for the description, the same reference numerals are given to the same components as those used in the description of the previous embodiment.
 図25は、第8実施形態の一例として、採光フィルム81内における第1基材(基材)81Aの厚さt1,t2,t3の分布を示す図である。図26は、図25に示す採光フィルム81を室内に居る人から見た様子を示す図である。
 図25に示すように、採光フィルム81内において、例えば、第1基材81Aの厚さt1,t2,t3をこの順で繰り返し配置した構成の場合、図26に示すように室内に居る人が採光フィルム81を見たときに、第1基材81Aの厚さt1,t2,t3の大きさに応じて射出光の輝度(明暗)が異なる。
FIG. 25 is a diagram illustrating the distribution of the thicknesses t1, t2, and t3 of the first base material (base material) 81A in the daylighting film 81 as an example of the eighth embodiment. FIG. 26 is a diagram illustrating a state in which the daylighting film 81 illustrated in FIG. 25 is viewed from a person in the room.
As shown in FIG. 25, in the daylighting film 81, for example, in the case of a configuration in which the thicknesses t1, t2, and t3 of the first base material 81A are repeatedly arranged in this order, a person who is in the room as shown in FIG. When the daylighting film 81 is viewed, the luminance (brightness) of the emitted light varies depending on the thicknesses t1, t2, and t3 of the first base material 81A.
 このように、採光フィルム81の第1基材81A内における厚さt1,t2,t3の分布を所定の領域ごとに調整することで、迷光グレアの射出光束の明暗の差を利用することができ、採光フィルム81に対して任意にデザイン性を付与することができる。 In this way, by adjusting the distribution of the thicknesses t1, t2, and t3 in the first base material 81A of the daylighting film 81 for each predetermined region, the difference in brightness of the emitted light flux of the stray light glare can be used. The design can be arbitrarily given to the daylighting film 81.
 以上、添付図面を参照しながら本発明の一態様に係る好適な実施形態について説明したが、本発明の一態様は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments according to one aspect of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that one aspect of the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
 上述した採光フィルム81として、例えば、図27に示すような第1基材81Aを有する採光フィルムを採用してもよい。第1基材81Aは、平滑形状をなすベース基材(基材本体)12と樹脂基材(追加部材)14と接着層13を介して貼り合わされて構成されている。 As the daylighting film 81 described above, for example, a daylighting film having a first base member 81A as shown in FIG. 27 may be adopted. The first base material 81 </ b> A is configured by being bonded through a base base material (base material body) 12, a resin base material (additional member) 14, and an adhesive layer 13 that have a smooth shape.
 ベース基材12は、互いに平行な第1面12a及び第2面12bを有し、上下方向(Z方向)における基材の厚さが略一定である。
 樹脂基材14は、ベース基材12の第2面12b側に設けられた接着層13の表面に沿って貼り合わされる。接着層13は、表面が凹凸面13bとなっており、層の厚さが部分的に異なっている。
The base substrate 12 has a first surface 12a and a second surface 12b that are parallel to each other, and the thickness of the substrate in the vertical direction (Z direction) is substantially constant.
The resin base material 14 is bonded along the surface of the adhesive layer 13 provided on the second surface 12 b side of the base base material 12. The surface of the adhesive layer 13 is an uneven surface 13b, and the thickness of the layer is partially different.
 本実施形態における接着層13の凹凸面13bは、互いに曲率の等しい複数の曲面13cを有し、接着層13の厚さが上下方向で最小厚さT1と最大厚さT2との間で変化している。このような凹凸面13b上に貼り合わされるフィルム状の樹脂基材14は、接着層13の表面の凹凸形状を反映した形状となる。よって、樹脂基材14も凹凸状とされる。
 なお、接着層13の凹凸面13bの凹凸形状は、図示した形状に限らない。接着材の塗布時に生じる凹凸であってもよいし、意図的に凹凸を形成してもよい。
The uneven surface 13b of the adhesive layer 13 in the present embodiment has a plurality of curved surfaces 13c having the same curvature, and the thickness of the adhesive layer 13 varies between the minimum thickness T1 and the maximum thickness T2 in the vertical direction. ing. The film-like resin base material 14 bonded onto the uneven surface 13b has a shape reflecting the uneven shape on the surface of the adhesive layer 13. Therefore, the resin base material 14 is also uneven.
The uneven shape of the uneven surface 13b of the adhesive layer 13 is not limited to the illustrated shape. The unevenness generated when the adhesive is applied may be formed, or the unevenness may be intentionally formed.
 この構成では、接着層13の厚さが部分的に異なっているとともに、採光フィルム81の光射出面(樹脂基材14の第2面14b)と空気層との界面が平滑ではなく凹凸面となっている。そのため、採光フィルム81から射出される迷光グレアの光束を形成する複数の光線を光射出側においてより多くの角度へ分散させることができる。 In this configuration, the thickness of the adhesive layer 13 is partially different, and the interface between the light emitting surface of the daylighting film 81 (the second surface 14b of the resin base material 14) and the air layer is not smooth but is an uneven surface. It has become. Therefore, a plurality of light beams forming the stray light glare emitted from the daylighting film 81 can be dispersed to more angles on the light emission side.
 また、上述した採光フィルム81として、例えば、図28に示すような第1基材(基材)81Bを有する採光フィルムを採用してもよい。
 第1基材81Bは、平滑形状をなすベース基材12と樹脂基材14と接着層13を介して貼り合わされて構成され、光入射側に配置された樹脂基材14の第1面14aに複数の採光部3が設けられている。
Moreover, you may employ | adopt the lighting film which has 1st base material (base material) 81B as shown in FIG. 28 as the lighting film 81 mentioned above, for example.
The first base material 81B is configured by being bonded to each other via the base base material 12 having a smooth shape, the resin base material 14, and the adhesive layer 13, and is formed on the first surface 14a of the resin base material 14 disposed on the light incident side. A plurality of daylighting units 3 are provided.
 第1面14a側に複数の採光部3を有する樹脂基材14は、ベース基材12上に設けられた接着層13の凹凸面13bに沿って貼り合わされる。凹凸面13b上に貼り合わされるフィルム状の樹脂基材14は、接着層13の表面の凹凸形状を反映した形状となる。よって樹脂基材14も凹凸状とされ、各採光部3の姿勢も互いに変化する。
 このような構成では、グレア光束を形成する光線を光入射側においてより多くの角度へ分散させることができる。
The resin base material 14 having the plurality of daylighting portions 3 on the first surface 14 a side is bonded along the uneven surface 13 b of the adhesive layer 13 provided on the base base material 12. The film-like resin base material 14 bonded on the uneven surface 13 b has a shape reflecting the uneven shape on the surface of the adhesive layer 13. Therefore, the resin base material 14 is also uneven, and the postures of the respective daylighting units 3 also change from each other.
With such a configuration, it is possible to disperse the light rays forming the glare light beam at more angles on the light incident side.
 [第9実施形態]
(ロールスクリーン)
 次に、第9実施形態の採光装置として、例えば、図29及び図30に示すロールスクリーン(採光装置)301について説明する。
 なお、図29は、ロールスクリーン301の概略構成を示す斜視図である。図30は、図29中に示すロールスクリーン301のE-E’線に沿った断面図である。また、以下の説明では、上記採光フィルム1と同等の部位については、説明を省略するとともに、図面において同じ符号を付すものとする。
[Ninth Embodiment]
(Roll screen)
Next, as a lighting device according to the ninth embodiment, for example, a roll screen (lighting device) 301 shown in FIGS. 29 and 30 will be described.
FIG. 29 is a perspective view showing a schematic configuration of the roll screen 301. 30 is a cross-sectional view taken along line EE ′ of the roll screen 301 shown in FIG. Moreover, in the following description, about the site | part equivalent to the said daylighting film 1, while omitting description, the same code | symbol shall be attached | subjected in drawing.
 ロールスクリーン301は、図29及び図30に示すように、採光スクリーン302と、採光スクリーン302を巻き取り自在に支持する巻き取り機構303とを備えている。 29 and 30, the roll screen 301 includes a daylighting screen 302 and a winding mechanism 303 that supports the daylighting screen 302 so as to be freely wound.
 採光スクリーン302は、図29に示すように、光透過性を有するフィルム状(シート状)の第1基材2と、第1基材2の第1面2aに並んで形成された複数の採光部3と、複数の採光部3の各々の間に形成された複数の間隙部4とを備えた採光部材300と、を備え、採光部材300を通して外光を採り入れるものである。採光スクリーン302は、上記採光フィルム1と基本的に同じ構造を有している。但し、基材本体2Aと少なくとも1つの凸部2Bとを有する第1基材2の厚みについては、ロールスクリーン301に適した厚みとなっている。 As shown in FIG. 29, the daylighting screen 302 includes a plurality of daylighting films formed side by side on a film-like (sheet-like) first base 2 having light permeability and a first surface 2 a of the first base 2. And a daylighting member 300 having a plurality of gaps 4 formed between each of the plurality of daylighting parts 3 and taking in outside light through the daylighting member 300. The daylighting screen 302 has basically the same structure as the daylighting film 1. However, the thickness of the first substrate 2 having the substrate body 2A and at least one convex portion 2B is a thickness suitable for the roll screen 301.
 図30に示すように、巻き取り機構303は、採光スクリーン302の上端部に沿って取り付けられた巻芯(支持部材)304と、採光スクリーン302の下端部に沿って取り付けられた下パイプ(支持部材)305と、採光スクリーン302の下端部中央に取り付けられた引張りコード306と、巻芯304に巻き取られた採光スクリーン302を収納する収納ケース307とを備えている。 As shown in FIG. 30, the winding mechanism 303 includes a winding core (supporting member) 304 attached along the upper end of the daylighting screen 302 and a lower pipe (supporting) attached along the lower end of the daylighting screen 302. Member) 305, a tension cord 306 attached to the center of the lower end of the daylighting screen 302, and a storage case 307 for storing the daylighting screen 302 wound around the winding core 304.
 巻き取り機構303は、プルコード式として、採光スクリーン302を引っ張り出した位置で固定させたり、引っ張り出した位置からさらに引張りコード306を引っ張ることで、固定を解除して採光スクリーン302を巻芯304に自動的に巻き取らせたりすることが可能である。なお、巻き取り機構303については、このようなプルコード式に限らず、巻芯304をチェーンで回転させるチェーン式の巻き取り機構や、巻芯304をモータにより回転させる自動式の巻き取り機構等であってもよい。 The take-up mechanism 303 is a pull cord type, and is fixed at the position where the daylighting screen 302 is pulled out, or by further pulling the tensioning cord 306 from the position where it is pulled out, and the fixing is released and the daylighting screen 302 is attached to the core 304. It is possible to wind up automatically. The winding mechanism 303 is not limited to such a pull cord type, but may be a chain type winding mechanism that rotates the winding core 304 with a chain, an automatic winding mechanism that rotates the winding core 304 with a motor, or the like. There may be.
 以上のような構成を有するロールスクリーン301は、窓ガラス308の上部に収納ケース307を固定した状態で、この収納ケース307に収納された採光スクリーン302を引張りコード306で引っ張り出しながら、窓ガラス308の内面に対向させた状態で使用される。このとき、採光スクリーン302は、窓ガラス308に対して複数の採光部3の並び方向が窓ガラス308の縦方向(鉛直方向)と一致する向きで配置される。つまり、採光スクリーン302は、窓ガラス308に対して複数の採光部3の長手方向が窓ガラス308の横方向(水平方向)と一致するように配置される。 The roll screen 301 having the above-described configuration is in a state where the storage case 307 is fixed to the upper part of the window glass 308, while the daylighting screen 302 stored in the storage case 307 is pulled out by the pull cord 306, It is used in a state where it faces the inner surface. At this time, the daylighting screen 302 is arranged in a direction in which the arrangement direction of the plurality of daylighting units 3 matches the vertical direction (vertical direction) of the window glass 308 with respect to the window glass 308. That is, the daylighting screen 302 is arranged so that the longitudinal direction of the plurality of daylighting units 3 is aligned with the horizontal direction (horizontal direction) of the window glass 308 with respect to the window glass 308.
 窓ガラス308の内面に対向させた採光スクリーン302は、窓ガラス308を通して室内に入射した光を複数の採光部3で光の進行方向を変えながら、室内の天井に向けて照射する。また、天井に向かう光は、天井で反射して室内を照らすため、照明光の代わりとなる。したがって、このようなロールスクリーン301を用いた場合、日中に建物内の照明設備が消費するエネルギーを節約する省エネルギー効果が期待できる。 The daylighting screen 302 facing the inner surface of the window glass 308 irradiates the light incident on the room through the window glass 308 toward the indoor ceiling while changing the light traveling direction in the plurality of daylighting units 3. Moreover, since the light which goes to a ceiling reflects on a ceiling and illuminates a room, it becomes a substitute for illumination light. Therefore, when such a roll screen 301 is used, the energy saving effect which saves the energy which the lighting equipment in a building consumes during the day can be expected.
 以上のように、本実施形態のロールスクリーン301を用いた場合には、屋外の自然光(太陽光)を室内に効率よく取り入れるとともに、室内に居る人に眩しさを感じさせずに、室内の奥の方まで明るく感じさせることができ、なおかつ太陽の高度変化に伴う照射位置の変動を抑制することが可能である。 As described above, when the roll screen 301 of the present embodiment is used, outdoor natural light (sunlight) is efficiently taken into the room, and the interior of the room is not made to feel dazzling. It is possible to make it feel brighter, and it is possible to suppress fluctuations in the irradiation position due to changes in the altitude of the sun.
 また、本発明の実施形態に係るロールスクリーンとしては、図示を省略するものの、上記ロールスクリーン301の構成に加えて、第1基材2の第2面2b側に、例えば、グレア領域Gに向かう方向の光を拡散させるための光拡散フィルムや、自然光(太陽光)の輻射熱を遮断するための光透過性を有する断熱フィルムなどの機能性フィルムを配置した構成とすることも可能である。 In addition to the configuration of the roll screen 301, the roll screen according to the embodiment of the present invention is directed to the glare region G, for example, on the second surface 2b side of the first base material 2 in addition to the configuration of the roll screen 301. It is also possible to adopt a configuration in which a functional film such as a light diffusion film for diffusing light in a direction or a heat-insulating film having light permeability for blocking radiant heat of natural light (sunlight) is arranged.
[第10実施形態]
(ブラインド)
 次に、本発明の第10実施形態として、例えば、図31に示すブラインド(採光装置)401について説明する。また、以下の説明では、上記採光フィルム1と同様の部位については説明を省略するとともに、図面において同じ符号を付すものとする。
[Tenth embodiment]
(blind)
Next, as a tenth embodiment of the present invention, for example, a blind (lighting device) 401 illustrated in FIG. 31 will be described. Moreover, in the following description, while omitting description about the same part as the said daylighting film 1, it shall attach | subject the same code | symbol in drawing.
 図31は、ブラインドの概略構成を示す斜視図である。図32A、図32Bは、ブラインド401の概略構成を示す斜視図であり、図32Aは、ブラインド401の開状態を示し、図32Bは、ブラインド401の閉状態を示す。図33は、ブラインドが備える採光スラットの概略構成を示す図である。図34は、ブラインドが備える採光スラットの向きを反転させた状態を示す図である。 FIG. 31 is a perspective view showing a schematic configuration of the blind. 32A and 32B are perspective views showing a schematic configuration of the blind 401, FIG. 32A shows an open state of the blind 401, and FIG. 32B shows a closed state of the blind 401. FIG. 33 is a diagram illustrating a schematic configuration of a daylighting slat included in the blind. FIG. 34 is a diagram illustrating a state in which the direction of the daylighting slats included in the blinds is reversed.
 ブラインド401は、図31に示すように、所定の間隔を空けて並んで配置された複数の採光スラット402と、複数の採光スラット402を互いに傾動自在に支持する傾動機構(支持機構)403と、傾動機構403によって連結された複数の採光スラット402を出し入れ可能に折り畳んで収納する収納機構408と、を備えている。 As shown in FIG. 31, the blind 401 includes a plurality of daylighting slats 402 arranged side by side at a predetermined interval, a tilting mechanism (supporting mechanism) 403 that supports the plurality of daylighting slats 402 so as to tilt freely. A storage mechanism 408 that folds and stores the plurality of daylighting slats 402 connected by the tilting mechanism 403 so as to be able to be inserted and removed.
 複数の採光スラット402は、図32A、図32B及び図33に示すように、光透過性を有する長尺板状の第1基材2と第1基材2の第1面2aに並んで形成された複数の採光部3と、複数の採光部3の各々の間に形成された複数の間隙部4とを備えた採光部材である。第1基材2は第2面2b側に少なくとも一つの凸部2Bを有している。各採光スラット402は、上述した各実施形態の採光フィルムのいずれかからなる。 The plurality of daylighting slats 402 are formed side by side on the first base 2 and the first surface 2a of the first base 2 as shown in FIGS. 32A, 32B and 33. The lighting member includes a plurality of daylighting units 3 and a plurality of gaps 4 formed between the plurality of daylighting units 3. The 1st base material 2 has at least 1 convex part 2B in the 2nd surface 2b side. Each daylighting slat 402 is made of any one of the daylighting films of the above-described embodiments.
 傾動機構403は、複数のラダーコード404を備えている。複数のラダーコード404は、図示を省略するものの、採光スラット402の長手方向に並ぶことによって、複数の採光スラット402を支持している。具体的に、ラダーコード404は、互いに平行に並ぶ一対の縦コード405a、405bと、縦コード405a、405bの間に掛け渡されるとともに、縦コード405a、405bの長手方向に等間隔に並ぶ複数の横コード406とを有している。また、ラダーコード404は、横コード406を構成する一対の保持コード407a,407bにより採光スラット402を挟み込みながら、採光スラット402を縦コード405a,405bの間で保持している。 The tilting mechanism 403 includes a plurality of ladder cords 404. Although not shown, the plurality of ladder cords 404 support the plurality of daylighting slats 402 by being arranged in the longitudinal direction of the daylighting slats 402. Specifically, the ladder code 404 is spanned between a pair of vertical cords 405a and 405b arranged in parallel to each other and the vertical cords 405a and 405b, and a plurality of the ladder cords 404 arranged at equal intervals in the longitudinal direction of the vertical cords 405a and 405b. And a horizontal cord 406. Further, the ladder cord 404 holds the daylighting slat 402 between the vertical cords 405a and 405b while sandwiching the daylighting slat 402 with a pair of holding cords 407a and 407b constituting the horizontal cord 406.
 傾動機構403は、図示を省略するものの、一対の縦コード405a,405bを互いに逆向きに上下方向に移動操作する操作機構を備えている。そして、傾動機構403では、この操作機構による一対の縦コード405a,405bの移動操作によって、複数の採光スラット402を互いに同期させながら傾動させることが可能となっている。 Although not shown, the tilt mechanism 403 includes an operation mechanism that moves the pair of vertical cords 405a and 405b in the vertical direction opposite to each other. In the tilting mechanism 403, the plurality of daylighting slats 402 can be tilted while being synchronized with each other by moving the pair of vertical cords 405a and 405b by the operation mechanism.
 以上のような構成を有するブラインド401は、窓ガラス(図示せず。)の上部から吊り下げられた状態で、この窓ガラスの内面に対向させた状態で使用される。このとき、各採光スラット402は、窓ガラスに対して複数の採光部3の並び方向が窓ガラスの縦方向(鉛直方向)と一致する向きで配置される。換言すると、採光スラット402は、窓ガラスに対して複数の採光部3の延長方向が窓ガラスの横方向(水平方向)と一致するように配置される。 The blind 401 having the above-described configuration is used in a state of being suspended from the upper part of a window glass (not shown) and facing the inner surface of the window glass. At this time, each daylighting slat 402 is arrange | positioned with the direction in which the arrangement direction of the some lighting part 3 corresponds with the vertical direction (vertical direction) of a window glass with respect to a windowglass. In other words, the daylighting slats 402 are arranged so that the extending direction of the plurality of daylighting units 3 is aligned with the horizontal direction (horizontal direction) of the window glass with respect to the window glass.
 図33に示すように、窓ガラスの内面に対向させたブラインド401は、この窓ガラスを通して室内に入射した光Lを複数の採光部3で光の進行方向を変えながら、屋内の天井に向けて照射する。また、天井に向かう光Lは、天井で反射して室内を照らすため、照明光の代わりとなる。したがって、このようなブラインド401を用いた場合、日中に建物内の照明設備が消費するエネルギーを節約する省エネルギー効果が期待できる。 As shown in FIG. 33, the blind 401 facing the inner surface of the window glass directs the light L incident into the room through the window glass toward the indoor ceiling while changing the light traveling direction in the plurality of daylighting units 3. Irradiate. In addition, the light L directed to the ceiling is reflected by the ceiling and illuminates the room, and thus is a substitute for illumination light. Therefore, when such a blind 401 is used, an energy saving effect that saves the energy consumed by the lighting equipment in the building during the day can be expected.
 また、ブラインド401では、複数の採光スラット402を傾動させることによって、天井に向かう光Lの角度を調整することができる。さらに、複数の採光スラット402の間から入射する光を調整することができる。 In the blind 401, the angle of the light L toward the ceiling can be adjusted by tilting the plurality of daylighting slats 402. Furthermore, light incident from between the plurality of daylighting slats 402 can be adjusted.
 また、ブラインド401では、図34に示すように、採光スラット402の向きを180°反転させた場合でも、採光スラット402の向きを反転させる前と同様に、窓ガラスを通して室内に入射した光Lを複数の採光部3で光の進行方向を変えながら、屋内の天井に向けて照射することができる。 Further, in the blind 401, as shown in FIG. 34, even when the direction of the daylighting slat 402 is reversed by 180 °, the light L incident on the room through the window glass is changed as in the case before the direction of the daylighting slat 402 is reversed. It is possible to irradiate the indoor ceiling while changing the traveling direction of the light with the plurality of daylighting units 3.
 以上のように、本実施形態のブラインド401を用いた場合には、屋外の自然光(太陽光)を屋内に効率良く採り入れると共に、屋内に居る人に眩しさを感じさせずに、屋内の奥の方まで明るく感じさせることができ、なお且つ、太陽の高度変化に伴う照射位置の変動を抑制することが可能である。 As described above, when the blind 401 according to the present embodiment is used, outdoor natural light (sunlight) is efficiently taken indoors, and the indoor people are not dazzled without feeling dazzling. It is possible to make the viewer feel brighter, and to suppress fluctuations in the irradiation position accompanying changes in the altitude of the sun.
 なお、本発明の一態様は、上記第9実施形態のブラインド401の構成に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that one aspect of the present invention is not necessarily limited to the configuration of the blind 401 of the ninth embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、本発明の実施形態に係るブラインドとしては、図示を省略するものの、上記ブラインド401の構成に加えて、第1基材2の第2面2b側に、例えば、グレア領域Gに向かう方向の光を拡散させるための光拡散フィルム(光拡散部材)や、自然光(太陽光)の輻射熱を遮断するための光透過性を有する断熱フィルム(断熱部材)などの機能性フィルム(機能部材)を配置した構成とすることも可能である。 For example, as a blind according to the embodiment of the present invention, although not shown in the drawing, in addition to the configuration of the blind 401, on the second surface 2b side of the first base material 2, for example, in the direction toward the glare region G Functional films (functional members) such as a light diffusing film (light diffusing member) for diffusing light and a light-transmitting heat insulating film (heat insulating member) for blocking radiant heat of natural light (sunlight) are arranged. It is also possible to adopt the configuration described above.
 また、本発明の実施形態に係るブラインドとしては、上記採光スラット402と共に、遮光性を有する遮光スラットを組み合わせて使用することも可能である。この場合、複数の採光スラット402により構成される採光部と、この採光部の下方に位置して、複数の遮光スラットにより構成される遮光部とを備えた構成とする。この構成により、窓ガラスを通して室内に入射した光を、採光部を構成する複数の採光スラット402によって屋内の天井に向けて照射すると共に、遮光部を構成する複数の遮光スラットによってグレア領域に向かう光を遮光することができる。 Further, as the blind according to the embodiment of the present invention, it is possible to use a light shielding slat having a light shielding property in combination with the daylighting slat 402. In this case, it is set as the structure provided with the daylighting part comprised by the some lighting slat 402, and the light-shielding part comprised in the lower part of this daylighting part by the some light-shielding slat. With this configuration, the light that has entered the room through the window glass is irradiated toward the indoor ceiling by the plurality of daylighting slats 402 constituting the daylighting unit, and is directed to the glare region by the plurality of daylighting slats constituting the light shielding unit. Can be shielded from light.
[照明調光システム]
 図35は、採光装置及び照明調光システムを備えた部屋モデル2000であって、図36のJ-J’線に沿う断面図である。図36は、部屋モデル2000の天井を示す平面図である。
[Lighting control system]
FIG. 35 is a sectional view taken along the line JJ ′ of FIG. 36, which is a room model 2000 equipped with a daylighting device and an illumination dimming system. FIG. 36 is a plan view showing the ceiling of the room model 2000. FIG.
 部屋モデル2000において、外光が導入される部屋2003の天井2003aを構成する天井材は、高い光反射性を有していてもよい。図35及び図36に示すように、部屋2003の天井2003aには、光反射性を有する天井材として、光反射性天井材2003Aが設置されている。光反射性天井材2003Aは、窓2002に設置された採光装置2010からの外光を室内の奥の方に導入することを促進することを目的とするもので、窓際の天井2003aに設置されている。具体的には、天井2003aの所定の領域E(窓2002から約3mの領域)に設置されている。 In the room model 2000, the ceiling material constituting the ceiling 2003a of the room 2003 into which external light is introduced may have high light reflectivity. As shown in FIGS. 35 and 36, a light-reflective ceiling material 2003A is installed on the ceiling 2003a of the room 2003 as a light-reflective ceiling material. The light-reflective ceiling material 2003A is intended to promote the introduction of outside light from the daylighting device 2010 installed in the window 2002 into the interior of the room, and is installed on the ceiling 2003a near the window. Yes. Specifically, it is installed in a predetermined area E (an area about 3 m from the window 2002) of the ceiling 2003a.
 この光反射性天井材2003Aは、先に述べたように、採光装置2010(上述したいずれかの実施形態の採光装置)が設置された窓2002を介して室内に導入された外光を室内の奥の方まで効率よく導く働きをする。採光装置2010から室内の天井2003aへ向けて導入された外光は、光反射性天井材2003Aで反射され、向きを変えて室内の奥に置かれた机2005の机上面2005aを照らすことになり、当該机上面2005aを明るくする効果を発揮する。 As described above, the light-reflective ceiling material 2003A is configured to transmit the outside light introduced into the room through the window 2002 in which the daylighting device 2010 (the daylighting device of any of the above-described embodiments) is installed. Efficiently leads to the back. The external light introduced from the lighting device 2010 toward the indoor ceiling 2003a is reflected by the light-reflective ceiling material 2003A and changes its direction to illuminate the desk surface 2005a of the desk 2005 placed in the interior of the room. The effect of brightening the desk top surface 2005a is exhibited.
 光反射性天井材2003Aは、拡散反射性であってもよいし、鏡面反射性であってもよいが、室内の奥に置かれた机2005の机上面2005aを明るくする効果と、室内に居る人とって不快なグレア光を抑える効果を両立するために、両者の特性が適度にミックスされたものが好ましい。 The light-reflective ceiling material 2003A may be diffusely reflective or specularly reflective, but has the effect of brightening the desk top surface 2005a of the desk 2005 placed in the interior of the room, and is in the room. In order to achieve both effects of suppressing glare light that is unpleasant for humans, it is preferable that the characteristics of the two are appropriately mixed.
 採光装置2010によって室内に導入された光の多くは、窓2002の付近の天井に向かうが、窓2002の近傍は光量が十分である場合が多い。そのため、上記のような光反射性天井材2003Aを併用することによって、窓付近の天井(領域E)に入射した光を、窓際に比べて光量の少ない室内の奥の方へ振り分けることができる。 Most of the light introduced into the room by the daylighting apparatus 2010 goes to the ceiling near the window 2002, but the light quantity in the vicinity of the window 2002 is often sufficient. Therefore, by using together the light-reflective ceiling material 2003A as described above, the light incident on the ceiling (region E) in the vicinity of the window can be distributed toward the back of the room where the amount of light is small compared to the window.
 光反射性天井材2003Aは、例えば、アルミニウムのような金属板に数十ミクロン程度の凹凸によるエンボス加工を施したり、同様の凹凸を形成した樹脂基板の表面にアルミのような金属薄膜を蒸着したりして作成することができる。あるいは、エンボス加工によって形成される凹凸がもっと大きな周期の曲面で形成されていてもよい。 The light-reflective ceiling material 2003A is formed by, for example, embossing a metal plate such as aluminum with unevenness of about several tens of microns, or depositing a metal thin film such as aluminum on the surface of a resin substrate on which similar unevenness is formed. Can be created. Or the unevenness | corrugation formed by embossing may be formed in the curved surface of a larger period.
 さらに、光反射性天井材2003Aに形成するエンボス形状を適宜変えることによって、光の配光特性や室内における光の分布を制御することができる。例えば、室内の奥の方に延在するストライプ状にエンボス加工を施した場合は、光反射性天井材2003Aで反射した光が、窓2002の左右方向(凹凸の長手方向に交差する方向)に拡がる。部屋2003の窓2002の大きさや向きが限られているような場合は、このような性質を利用して、光反射性天井材2003Aによって光を水平方向へ拡散させるとともに、室内の奥の方向へ向けて反射させることができる。 Furthermore, by appropriately changing the emboss shape formed on the light-reflective ceiling material 2003A, it is possible to control the light distribution characteristics and the light distribution in the room. For example, when embossing is performed in a stripe shape extending toward the back of the room, the light reflected by the light-reflective ceiling material 2003A is in the left-right direction of the window 2002 (direction intersecting the longitudinal direction of the unevenness). spread. When the size and direction of the window 2002 in the room 2003 are limited, the light is reflected in the horizontal direction by the light-reflective ceiling material 2003A and the interior of the room 2003 is moved to the back of the room. It can be reflected toward.
 採光装置2010は、部屋2003の照明調光システムの一部として用いられる。照明調光システムは、例えば、採光装置2010と、複数の室内照明装置2007と、窓に設置された日射調整装置2008と、これらの制御系と、天井2003aに設置された光反射性天井材2003Aと、を含む部屋全体の構成部材から構成される。 The daylighting apparatus 2010 is used as a part of the illumination dimming system in the room 2003. The lighting dimming system includes, for example, a lighting device 2010, a plurality of indoor lighting devices 2007, a solar radiation adjusting device 2008 installed in a window, a control system thereof, and a light-reflective ceiling material 2003A installed on a ceiling 2003a. And the constituent members of the entire room including
 部屋2003の窓2002には、上部側に採光装置2010が設置され、下部側に日射調整装置2008が設置されている。ここでは、日射調整装置2008として、ブラインドが設置されているが、これに限らない。 In the window 2002 of the room 2003, a lighting device 2010 is installed on the upper side, and a solar radiation adjusting device 2008 is installed on the lower side. Here, a blind is installed as the solar radiation adjustment device 2008, but this is not a limitation.
 部屋2003には、複数の室内照明装置2007が、窓2002の左右方向(Y方向)および室内の奥行き方向(X方向)に格子状に配置されている。これら複数の室内照明装置2007は、採光装置2010と併せて部屋2003の全体の照明システムを構成している。 In the room 2003, a plurality of indoor lighting devices 2007 are arranged in a grid in the left-right direction (Y direction) of the window 2002 and the depth direction (X direction) of the room. The plurality of indoor lighting devices 2007 together with the daylighting device 2010 constitute an entire lighting system of the room 2003.
 図35及び図36に示すように、例えば、窓2002の左右方向(Y方向)の長さL1が18m、部屋2003の奥行方向(X方向)の長さL2が9mのオフィスの天井2003aを示す。ここでは、室内照明装置2007は、天井2003aの横方向(Y方向)及び奥行方向(X方向)に、それぞれ1.8mの間隔Pをおいて格子状に配置されている。
より具体的には、50個の室内照明装置2007が10行(Y方向)×5列(X方向)に配列されている。
As shown in FIGS. 35 and 36, for example, an office ceiling 2003a in which the length L1 in the left-right direction (Y direction) of the window 2002 is 18 m and the length L2 in the depth direction (X direction) of the room 2003 is 9 m is shown. . Here, the indoor lighting devices 2007 are arranged in a grid pattern with an interval P of 1.8 m in the horizontal direction (Y direction) and the depth direction (X direction) of the ceiling 2003a.
More specifically, 50 indoor lighting devices 2007 are arranged in 10 rows (Y direction) × 5 columns (X direction).
 室内照明装置2007は、室内照明器具2007aと、明るさ検出部2007bと、制御部2007cと、を備え、室内照明器具2007aに明るさ検出部2007b及び制御部2007cが一体化されて構成されたものである。 The indoor lighting device 2007 includes an indoor lighting fixture 2007a, a brightness detection unit 2007b, and a control unit 2007c. The indoor lighting fixture 2007a is configured by integrating the brightness detection unit 2007b and the control unit 2007c. It is.
 室内照明装置2007は、室内照明器具2007a及び明るさ検出部2007bをそれぞれ複数ずつ備えていてもよい。但し、明るさ検出部2007bは、各室内照明器具2007aに対して1個ずつ設けられる。明るさ検出部2007bは、室内照明器具2007aが照明する被照射面の反射光を受光して、被照射面の照度を検出する。ここでは、明るさ検出部2007bによって、室内に置かれた机2005の机上面2005aの照度を検出する。 The indoor lighting device 2007 may include a plurality of indoor lighting fixtures 2007a and a plurality of brightness detection units 2007b. However, one brightness detector 2007b is provided for each indoor lighting device 2007a. The brightness detection unit 2007b receives the reflected light of the irradiated surface illuminated by the indoor lighting fixture 2007a, and detects the illuminance of the irradiated surface. Here, the brightness detection unit 2007b detects the illuminance of the desk surface 2005a of the desk 2005 placed indoors.
 各室内照明装置2007に1個ずつ設けられた制御部2007cは、互いに接続されている。各室内照明装置2007は、互いに接続された制御部2007cにより、各々の明るさ検出部2007bが検出する机上面2005aの照度が一定の目標照度L0(例えば、平均照度:750lx)になるように、それぞれの室内照明器具2007aのLEDランプの光出力を調整するフィードバック制御を行っている。 The control units 2007c provided for each room lighting device 2007 are connected to each other. Each indoor lighting device 2007 is configured such that the illuminance of the desk top surface 2005a detected by each brightness detecting unit 2007b becomes a constant target illuminance L0 (for example, average illuminance: 750 lx) by the control units 2007c connected to each other. Feedback control is performed to adjust the light output of the LED lamp of each indoor lighting fixture 2007a.
 図37は、採光装置によって室内に採光された光(自然光)の照度と、室内照明装置による照度(照明調光システム)との関係を示すグラフである。図37において、縦軸は机上面の照度(lx)を示し、横軸は窓からの距離(m)を示している。また、図中の破線は、室内の目標照度を示している。(●:採光装置による照度、△:室内照明装置による照度、◇:合計照度) FIG. 37 is a graph showing the relationship between the illuminance of light (natural light) taken indoors by the daylighting device and the illuminance (illumination dimming system) by the indoor lighting device. In FIG. 37, the vertical axis represents the illuminance (lx) on the desk surface, and the horizontal axis represents the distance (m) from the window. Moreover, the broken line in the figure indicates the target illuminance in the room. (●: Illuminance by lighting device, △: Illuminance by indoor lighting device, ◇: Total illumination)
 図37に示すように、採光装置2010により採光された光に起因する机上面照度は、窓近傍ほど明るく、窓から遠くなるに従ってその効果は小さくなる。採光装置2010を適用した部屋では、昼間において窓からの自然採光によりこのような部屋奥方向への照度分布が生じる。そこで、採光装置2010は、室内の照度分布を補償する室内照明装置2007と併用して用いられる。室内天井に設置された室内照明装置2007は、それぞれの装置の下の平均照度を明るさ検出部2007bによって検出し、部屋全体の机上面照度が一定の目標照度L0になるように調光制御されて点灯する。 As shown in FIG. 37, the desk surface illuminance due to the light collected by the daylighting device 2010 is brighter in the vicinity of the window, and the effect becomes smaller as the distance from the window increases. In a room to which the daylighting device 2010 is applied, such an illuminance distribution in the back direction of the room is generated by natural daylighting from a window in the daytime. Therefore, the daylighting device 2010 is used in combination with the indoor lighting device 2007 that compensates for the illuminance distribution in the room. The indoor lighting device 2007 installed on the indoor ceiling detects the average illuminance below each device by the brightness detection unit 2007b, and is dimmed and controlled so that the desk surface illuminance of the entire room becomes a constant target illuminance L0. Lights up.
 従って、窓近傍に設置されているS1列、S2列はほとんど点灯せず、S3列、S4列、S5列と部屋奥方向に向かうに従って出力を上げながら点灯される。結果として、部屋の机上面は自然採光による照度と室内照明装置2007による照明の合計で照らされ、部屋全体に渡って執務をする上で十分とされる机上面照度である750lx(「JIS Z9110 照明総則」の執務室における推奨維持照度)を実現することができる。 Therefore, the S1 and S2 rows installed in the vicinity of the window are hardly lit, and are lit while increasing the output toward the back of the room with the S3, S4, and S5 rows. As a result, the desk surface of the room is illuminated by the sum of the illuminance by natural lighting and the illumination by the interior lighting device 2007, and the illuminance of the desk surface is 750 lx (“JIS Z9110 illumination” which is sufficient for work throughout the room. "Recommended maintenance illuminance in the office of" General "" can be realized.
 以上述べたように、採光装置2010と照明調光システム(室内照明装置2007)とを併用することにより、室内の奥の方まで光を届けることが可能となり、室内の明るさをさらに向上させることができるとともに部屋全体に渡って執務をする上で十分とされる机上面照度を確保することができる。したがって、季節や天気による影響を受けずにより一層安定した明るい光環境が得られる。 As described above, by using the daylighting device 2010 and the lighting dimming system (indoor lighting device 2007) in combination, it becomes possible to deliver light to the back of the room and further improve the brightness of the room. It is possible to secure sufficient illuminance on the desk surface, which is sufficient to work throughout the room. Therefore, a more stable and bright light environment can be obtained without being affected by the season or weather.
 以上、添付図面を参照しながら本発明の一態様に係る好適な実施形態について説明したが、本発明の一態様は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments according to one aspect of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that one aspect of the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
 本発明の一態様は、グレアをより抑制することで室内に居る人に眩しさを感じさせない良好な室内環境を確保することが必要な採光装置などに適用することができる。 One embodiment of the present invention can be applied to a daylighting apparatus or the like that needs to secure a favorable indoor environment in which glare is suppressed and a person in the room does not feel dazzling.
 1,1A,20,31,40,41,42,43,44,45,46,47,50,61,62,63,71,72,73,81…採光フィルム、2,9,21,81A,81B,91,92,93,94,95,96,97…第1基材(基材)、2a,12a,14a,33a…第1面、2b,12b,14b,33b…第2面、3,3A,3B,…採光部、3d,3e…面(反射面)、7…平面、100,2010…採光装置、301…ロールスクリーン(採光装置)、401…ブラインド(採光装置)、L1,L2…長さ、p…間隔、t,t0…厚さ、W…幅 1, 1A, 20, 31, 40, 41, 42, 43, 44, 45, 46, 47, 50, 61, 62, 63, 71, 72, 73, 81 ... Daylighting film, 2, 9, 21, 81A , 81B, 91, 92, 93, 94, 95, 96, 97 ... first base material (base material), 2a, 12a, 14a, 33a ... first surface, 2b, 12b, 14b, 33b ... second surface, 3, 3A, 3B, ... daylighting unit, 3d, 3e ... surface (reflection surface), 7 ... plane, 100, 2010 ... daylighting device, 301 ... roll screen (lighting device), 401 ... blind (daylighting device), L1, L2 ... length, p ... interval, t, t0 ... thickness, W ... width

Claims (9)

  1.  光透過性を有する基材と、前記基材の第1面側に設けられた光透過性を有する複数の採光部と、を有する採光フィルムを少なくとも備え、
     前記採光部が、前記採光部に入射した光を反射する反射面を有しており、前記反射面で反射して前記基材の第2面から射出される光が、前記基材の前記第2面に垂直、かつ前記採光部の延在方向に平行な仮想平面を境界とする2つの空間のうち、前記反射面に光が入射する側と同じ側の空間に向けて進行する特性を有してなり、
     前記基材は、厚さが異なる複数の領域を有している、採光装置。
    At least a daylighting film comprising a base material having light permeability and a plurality of daylighting portions having light transmittance provided on the first surface side of the base material,
    The daylighting unit has a reflection surface that reflects light incident on the daylighting unit, and the light reflected from the reflection surface and emitted from the second surface of the base material is the first surface of the base material. Of the two spaces having a virtual plane as a boundary perpendicular to two surfaces and parallel to the extending direction of the daylighting section, the light travels toward the space on the same side as the light incident side on the reflecting surface. And
    The said base material is a lighting apparatus which has several area | regions from which thickness differs.
  2.  前記採光部の延在方向に交差する方向の幅Wと、隣り合う前記採光部どうしの間隔sと、を足し合わせた長さをpとしたとき、
     前記複数の領域のうち少なくとも1つの領域における厚さtが、以下に示す条件を満たす、
     請求項1に記載の採光装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、t0は基準とする基材の厚さを示す。
    When the length obtained by adding the width W in the direction intersecting the extending direction of the daylighting unit and the interval s between the daylighting units adjacent to each other is p,
    A thickness t in at least one of the plurality of regions satisfies the following condition:
    The daylighting device according to claim 1.
    Figure JPOXMLDOC01-appb-M000001
    Here, t0 indicates the base material thickness.
  3.  前記採光部の延在方向に交差する方向の幅Wと、隣り合う前記採光部どうしの間隔sと、を足し合わせた長さをpとしたとき、
     前記複数の領域のうち少なくとも1つの領域における厚さtが、以下に示す条件を満たす、
     請求項1に記載の採光装置。
    Figure JPOXMLDOC01-appb-M000002
     ここで、t0は基準とする基材の厚さを示す。
    When the length obtained by adding the width W in the direction intersecting the extending direction of the daylighting unit and the interval s between the daylighting units adjacent to each other is p,
    A thickness t in at least one of the plurality of regions satisfies the following condition:
    The daylighting device according to claim 1.
    Figure JPOXMLDOC01-appb-M000002
    Here, t0 indicates the base material thickness.
  4.  前記基材は、光透過性を有する基材本体と光透過性を有する追加部材とを有してなる、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The base material includes a base material body having optical transparency and an additional member having optical transparency.
    The daylighting device according to any one of claims 1 to 3.
  5.  前記基材本体と前記追加部材とが接着層を介して貼り合わされており、
     前記接着層の厚さが前記複数の採光部の配列方向に変化している、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The base material body and the additional member are bonded through an adhesive layer,
    The thickness of the adhesive layer is changed in the arrangement direction of the plurality of daylighting parts,
    The daylighting device according to any one of claims 1 to 3.
  6.  前記基材の厚さは、前記複数の採光部の配列方向に連続的に変化している、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The thickness of the base material is continuously changing in the arrangement direction of the plurality of daylighting units,
    The daylighting device according to any one of claims 1 to 3.
  7.  隣り合う前記採光部どうしの間隔が複数の水準に設定されている、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The intervals between the adjacent daylighting units are set to a plurality of levels,
    The daylighting device according to any one of claims 1 to 3.
  8.  前記基材の屈折率が一面内で分布をもっている、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The refractive index of the substrate has a distribution in one plane,
    The daylighting device according to any one of claims 1 to 3.
  9.  前記複数の採光部の屈折率が前記基材の一面内で分布をもっている、
     請求項1から3のうちいずれか一項に記載の採光装置。
    The refractive index of the plurality of daylighting portions has a distribution within one surface of the base material,
    The daylighting device according to any one of claims 1 to 3.
PCT/JP2017/032825 2016-09-13 2017-09-12 Lighting device WO2018051968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-178540 2016-09-13
JP2016178540 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051968A1 true WO2018051968A1 (en) 2018-03-22

Family

ID=61619998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032825 WO2018051968A1 (en) 2016-09-13 2017-09-12 Lighting device

Country Status (1)

Country Link
WO (1) WO2018051968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040021A (en) * 2006-08-03 2008-02-21 Fujifilm Corp Lighting film and window provided with the same
JP2014238513A (en) * 2013-06-07 2014-12-18 大日本印刷株式会社 Light control member
WO2015194499A1 (en) * 2014-06-16 2015-12-23 シャープ株式会社 Natural lighting member, method for manufacturing natural lighting member, natural lighting device and method of installing natural lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040021A (en) * 2006-08-03 2008-02-21 Fujifilm Corp Lighting film and window provided with the same
JP2014238513A (en) * 2013-06-07 2014-12-18 大日本印刷株式会社 Light control member
WO2015194499A1 (en) * 2014-06-16 2015-12-23 シャープ株式会社 Natural lighting member, method for manufacturing natural lighting member, natural lighting device and method of installing natural lighting device

Similar Documents

Publication Publication Date Title
US10337682B2 (en) Lighting member, lighting device, and method for installing lighting member
JP6450995B2 (en) Daylighting member, daylighting device, and method for installing daylighting member
JP6642872B2 (en) Lighting members, lighting devices, roll screens and blinds
JP6716733B2 (en) Lighting device and lighting slats
JP6461820B2 (en) Daylighting member, window glass, roll screen, daylighting louver
WO2015174401A1 (en) Natural lighting device
WO2017061554A1 (en) Daylighting member, method for manufacturing daylighting member, and daylighting apparatus
WO2016067998A1 (en) Daylighting device and daylighting system
WO2017086314A1 (en) Lighting device and lighting system
WO2018008656A1 (en) Lighting device, molding die, and method of manufacturing lighting film
WO2017022792A1 (en) Daylighting member, daylighting device, and installation method for daylighting member
WO2016104626A1 (en) Daylight collection device
JP2016118608A (en) Daylighting device and daylighting system
JP2016091941A (en) Daylighting device
WO2016002761A1 (en) Daylighting device
WO2018051968A1 (en) Lighting device
JP6492357B2 (en) Daylighting system and ceiling structure
WO2017086331A1 (en) Lighting device, lighting system, and method for manufacturing lighting device
JPWO2018235803A1 (en) Lighting member and lighting device
WO2018012401A1 (en) Slat and blind

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP