WO2018051863A1 - Measurement method - Google Patents

Measurement method Download PDF

Info

Publication number
WO2018051863A1
WO2018051863A1 PCT/JP2017/032132 JP2017032132W WO2018051863A1 WO 2018051863 A1 WO2018051863 A1 WO 2018051863A1 JP 2017032132 W JP2017032132 W JP 2017032132W WO 2018051863 A1 WO2018051863 A1 WO 2018051863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
metal film
measured
substance
angle
Prior art date
Application number
PCT/JP2017/032132
Other languages
French (fr)
Japanese (ja)
Inventor
野田 哲也
史生 長井
洋一 青木
真紀子 大谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US16/328,437 priority Critical patent/US11169089B2/en
Priority to JP2018539650A priority patent/JP6760384B2/en
Priority to EP17850766.1A priority patent/EP3514522A4/en
Publication of WO2018051863A1 publication Critical patent/WO2018051863A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings

Definitions

  • the present invention relates to a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance.
  • SPR Surface plasmon resonance
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • a capture body for example, a primary antibody that can specifically bind to a substance to be measured is immobilized on a metal film to form a reaction field for specifically capturing the substance to be measured.
  • a specimen for example, blood
  • the substance to be measured is bound to the reaction field.
  • a capture body for example, a secondary antibody
  • the substance to be measured bound to the reaction field is labeled with the fluorescent substance.
  • the metal film is irradiated with excitation light in this state, the fluorescent substance that labels the substance to be measured is excited by the electric field enhanced by SPR and emits fluorescence.
  • the presence or amount of the substance to be measured can be detected by detecting the fluorescence.
  • the plasmon scattered light is cut by the optical filter.
  • SPFS a fluorescent substance is excited by an electric field enhanced by SPR, so that a substance to be measured can be measured with high sensitivity.
  • the measured value is usually indicated by the mass of the substance to be measured per unit volume of the liquid, the amount of signal corresponding thereto, and the like. Therefore, when blood is used as the specimen, the measured value is indicated by the mass of the substance to be measured per unit volume of the liquid component (plasma or serum) in the blood, the signal amount corresponding thereto, and the like. Since the ratio of the liquid component in the blood varies from person to person, the measured value of whole blood (blood) cannot be uniformly converted into the measured value of the liquid component.
  • the hematocrit value (ratio of blood cell volume in the blood) of the whole blood is measured, and the measured value of whole blood is measured using the hematocrit value as a liquid component (plasma or serum). It is necessary to convert to the measured value.
  • Conventional methods for measuring a hematocrit value include a micro hematocrit method for centrifuging blood and an electric conduction method for obtaining a hematocrit value from the electrical conductivity of blood.
  • other devices such as a centrifuge, a device for measuring electrical conductivity, and a device for measuring hematocrit need to be newly prepared. Will increase.
  • the hematocrit value measurement method described in Patent Documents 1 and 2 has a higher hematocrit value. There is room for improvement from the viewpoint of measuring with high accuracy.
  • An object of the present invention is a measurement method using surface plasmon resonance, which can measure a hematocrit value with high accuracy without newly preparing a device for measuring a hematocrit value, and is to be measured in a specimen containing whole blood. It is to provide a measurement method capable of measuring the amount of a substance with high accuracy.
  • a measurement method is a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance.
  • a measuring chip having a prism having an incident surface and a film-forming surface, a metal film disposed on the film-forming surface, and a capturing body fixed on the metal film;
  • the first light is irradiated from the prism side at the first incident angle less than the critical angle, the first light that has passed through the metal film and the specimen is transmitted.
  • a hematocrit value in a measurement method using surface plasmon resonance, a hematocrit value can be measured with high accuracy without adding a new hematocrit value measurement device. Therefore, according to the present invention, the amount of a substance to be measured in a specimen containing whole blood can be measured with high accuracy without increasing the manufacturing cost and measurement cost of the measuring apparatus.
  • FIG. 1 is a flowchart showing an example of a measurement method according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the configuration of a measurement chip and a measurement device (SPFS device) that can be used to perform the measurement method according to an embodiment of the present invention.
  • 3A and 3B are graphs showing the results of simulation.
  • 4A and 4B are graphs showing the results of Reference Experiment 1.
  • FIG. 5A and 5B are graphs showing the results of Reference Experiment 1.
  • FIG. 6 is a graph showing the correlation between the amount of scattered light and the hematocrit value.
  • FIG. 7 is a graph showing the results of Reference Experiment 2.
  • FIG. 8 is a graph showing the results of Reference Experiment 3.
  • FIG. 9 is a flowchart illustrating an example of a measurement method according to the modification.
  • the measurement method according to the present invention is a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance.
  • a measurement method using surface plasmon excitation enhanced fluorescence spectroscopy (Surface Plasmon-field enhanced Fluorescence Spectroscopy: hereinafter abbreviated as “SPFS”) will be described.
  • SPFS Surface Plasmon-field enhanced Fluorescence Spectroscopy
  • FIG. 1 is a flowchart showing an example of a measurement method according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of the measurement chip 10 and the measurement apparatus (SPFS apparatus) 100 that can be used to implement the measurement method according to the first embodiment.
  • the measurement chip 10 and the SPFS device 100 will be described in detail separately.
  • the measurement method includes a step of preparing for measurement (step S110), a step of determining an enhancement angle (step S111), a step of measuring a first optical blank value (step S112), A step of measuring the second optical blank value (step S113), a step of performing a primary reaction (step S114), a step of detecting scattered light (step S115), and a step of performing a secondary reaction (step S116). And a step of detecting a fluorescent signal (step S117) and a step of correcting the measurement value (step S118).
  • Step S110 preparation for measurement is performed (step S110). Specifically, the measurement chip 10 is prepared, and the measurement chip 10 is installed in the chip holder 142 arranged at the installation position of the SPFS device 100.
  • the “installation position” is a position for installing the measurement chip 10 in the SPFS device 100.
  • the measurement chip 10 used in the SPFS apparatus 100 will be described.
  • the measurement chip 10 includes a prism 20, a metal film 30, and a channel lid 40.
  • the flow path lid 40 of the measurement chip 10 is integrated with a liquid chip 50 for containing a liquid.
  • the prism 20 has an incident surface 21, a film forming surface 22, and an exit surface 23.
  • the incident surface 21 causes an outgoing light ⁇ from a light emitting unit 110 described later to enter the prism 20.
  • a metal film 30 is disposed on the film formation surface 22.
  • the exit surface 23 enters the prism 20 at the entrance surface 21, and causes the reflected light reflected by the interface (deposition surface 22) between the prism 20 and the metal film 30 to exit to the outside of the prism 20.
  • the shape of the prism 20 is not particularly limited.
  • the shape of the prism 20 is a column having a trapezoidal bottom surface.
  • the surface corresponding to one base of the trapezoid is the film formation surface 22, the surface corresponding to one leg is the incident surface 21, and the surface corresponding to the other leg is the emission surface 23.
  • the incident surface 21 is formed so that the emitted light ⁇ from the light emitting unit 110 is reflected by the incident surface 21 and does not return to the light source of the SPFS device 100.
  • the light source of the emitted light ⁇ is a laser diode (hereinafter also referred to as “LD”)
  • LD laser diode
  • the angle of the incident surface 21 is set so that the emitted light ⁇ does not enter the incident surface 21 perpendicularly in a scanning range centered on an ideal resonance angle or enhancement angle.
  • the “resonance angle” refers to the incident angle when the amount of reflected light of the emitted light ⁇ emitted from the emission surface 23 is minimized when the incident angle of the emitted light ⁇ with respect to the metal film 30 is scanned.
  • the “enhancement angle” refers to scattered light having the same wavelength as the emitted light ⁇ emitted above the measurement chip 10 when the incident angle of the emitted light ⁇ with respect to the metal film 30 is scanned (hereinafter referred to as “plasmon scattered light”). It means the incident angle when the amount of ⁇ is maximized.
  • the angle between the incident surface 21 and the film formation surface 22 and the angle between the film formation surface 22 and the emission surface 23 are both about 80 degrees.
  • the resonance angle (and the enhancement angle near the pole) is generally determined by the design of the measurement chip 10.
  • the design factors are the refractive index of the prism 20, the refractive index of the metal film 30, the thickness of the metal film 30, the extinction coefficient (extinction coefficient) of the metal film 30, the wavelength of the outgoing light ⁇ , and the like.
  • the resonance angle and the enhancement angle are shifted by the substance to be measured trapped on the metal film 30, but the amount is less than several degrees.
  • the prism 20 is made of a dielectric that is transparent to the outgoing light ⁇ .
  • the prism 20 has a number of birefringence characteristics.
  • Examples of the material of the prism 20 include resin and glass.
  • Examples of the resin constituting the prism 20 include polymethyl methacrylate (PMMA), polycarbonate (PC), and cycloolefin-based polymer.
  • the material of the prism 20 is preferably a resin having a refractive index of 1.4 to 1.6 and a small birefringence.
  • the metal film 30 is disposed on the film formation surface 22 of the prism 20.
  • SPR surface plasmon resonance
  • Localized field light (generally also called “evanescent light” or “near field light”) can be generated on the surface of the metal film 30.
  • the localized field light extends from the surface of the metal film 30 to a distance that is about the wavelength of the outgoing light ⁇ .
  • the metal film 30 may be formed on the entire surface of the film formation surface 22 or may be formed on a part of the film formation surface 22. In the present embodiment, the metal film 30 is formed on the entire film formation surface 22.
  • a capture body for capturing the substance to be measured is immobilized on the metal film 30.
  • a region where the capturing body is immobilized on the metal film 30 is particularly referred to as a “reaction field”.
  • the capturing body may be fixed to the entire surface of the metal film 30 or may be fixed to a part of the surface.
  • the capturing body specifically binds to the substance to be measured. For this reason, the substance to be measured can be immobilized on the metal film 30 via the capturing body.
  • the type of the capturing body is not particularly limited as long as the substance to be measured can be captured.
  • the capturing body is an antibody (primary antibody) or a fragment thereof that can specifically bind to the substance to be measured, an enzyme that can specifically bind to the substance to be measured, or the like.
  • the material of the metal film 30 is not particularly limited as long as it causes surface plasmon resonance (SPR) and at least a part of the emitted light ⁇ can be transmitted.
  • Examples of the material of the metal film 30 include gold, silver, copper, and alloys thereof.
  • the thickness of the metal film 30 is preferably 30 to 60 nm from the viewpoint of efficiently generating SPR and obtaining a desired transmittance for the emitted light ⁇ .
  • the transmittance of the metal film 30 with respect to the emitted light ⁇ is, for example, 3 to 30% when the P-polarized light is irradiated onto the metal film 30 at an incident angle of 50 degrees.
  • the thickness of the metal film 30 can be appropriately set according to the material from the above viewpoint.
  • the thickness of the metal film 30 is preferably 30 to 55 nm in order to set the transmittance to 5 to 30% (see Reference Experiment 3 described later).
  • the thickness of the metal film 30 is preferably 35 to 60 nm in order to make the transmittance 3 to 20%.
  • the thickness of the metal film 30 is preferably 30 to 55 nm in order to make the transmittance 5 to 25%.
  • the material of the metal film 30 is preferably gold.
  • the metal film 30 is a gold thin film.
  • the method for forming the metal film 30 is not particularly limited. Examples of the method for forming the metal film 30 include sputtering, vapor deposition, and plating.
  • the flow path lid 40 is disposed on the metal film 30.
  • the flow path lid 40 may be disposed on the film formation surface 22.
  • the flow path lid 40 is disposed on the metal film 30.
  • an accommodating portion for accommodating the liquid is formed on the metal film 30.
  • the storage portion is a flow path 41 through which a liquid flows.
  • the channel 41 has a bottom surface, a top surface, and a pair of side surfaces that connect the bottom surface and the top surface.
  • the surface of the channel 41 on the prism 20 side is referred to as the bottom surface of the channel, and the surface of the channel 41 that faces the bottom surface of the channel 41 is referred to as the top surface of the channel.
  • the distance between the bottom surface of the flow channel 41 and the top surface of the flow channel 41 is referred to as the height of the flow channel 41.
  • a recess is formed on the back surface of the flow channel lid 40.
  • the flow path lid 40 is disposed on the metal film 30 (and the prism 20), and the opening of the concave portion is closed by the metal film 30, whereby the flow path 41 is formed.
  • the height of the flow channel 41 is large to some extent.
  • the height of the flow channel 41 is preferably small.
  • the height of the flow path 41 is preferably in the range of 0.05 to 0.15 mm. Both ends of the channel 41 are connected to an inlet and an exhaust port (not shown) formed in the channel lid 40 so that the inside of the channel 41 communicates with the outside.
  • the channel lid 40 is preferably made of a material that is transparent to light (fluorescence ⁇ , scattered light ⁇ ′, and plasmon scattered light ⁇ ) emitted from the metal film 30.
  • the material of the flow path lid 40 include glass and resin.
  • the resin include polymethyl methacrylate resin (PMMA).
  • PMMA polymethyl methacrylate resin
  • the other part of the flow-path cover 40 may be formed with the opaque material.
  • the flow path lid 40 is bonded to the metal film 30 or the prism 20 by, for example, adhesion using a double-sided tape or an adhesive, laser welding, ultrasonic welding, or pressure bonding using a clamp member.
  • the flow path cover in which the recessed part (flow path groove) is not formed in the back surface instead of said flow path cover 40.
  • the flow path lid having no recess and the metal film 30 or the prism 20 are formed by using a double-sided tape having a thickness of 0.05 to 0.15 mm in which a through hole serving as a flow path is formed in the central portion. Be joined. In this way, the flow path 41 may be formed.
  • the measurement chip 10 is usually replaced for each measurement.
  • the measuring chip 10 is preferably a structure having a length of several mm to several cm for each piece, but is a smaller structure or a larger structure that is not included in the category of “chip”. May be.
  • step S110 when a storage reagent is present on the metal film 30 of the measurement chip 10, the capture body can appropriately capture the substance to be measured on the metal film 30. To remove the storage reagent.
  • the enhancement angle is determined (step S111). Specifically, first, the measurement liquid is injected into the flow path 41.
  • the measurement liquid is provided in the flow path 41 using a pipette 131 described later.
  • the measurement solution only needs to be transparent to the emitted light ⁇ .
  • PBS phosphate buffered saline
  • TBS-T Tween20-containing Tris buffered saline
  • HBS HEPES buffered saline
  • the angle adjustment mechanism 112 scans the incident angle of the emitted light ⁇ from the light source unit 111 to the metal film 30 and detects the plasmon scattered light ⁇ by the light receiving sensor 126. Thereby, data including the relationship between the incident angle of the outgoing light ⁇ with respect to the metal film 30 and the light amount of the plasmon scattered light ⁇ is obtained.
  • the obtained data is analyzed to determine the enhancement angle, which is the incident angle when the amount of plasmon scattered light ⁇ is maximized.
  • the optical filter 124 (described later) that transmits only the fluorescent ⁇ component and removes the emitted light ⁇ component (scattered light ⁇ ′ and plasmon scattered light ⁇ ) is partially or entirely plasmon scattered light ⁇ . It is arranged to be located outside the optical path. Thereby, the emitted light ⁇ component enters the light receiving sensor 126.
  • the enhancement angle is determined by the material and shape of the prism 20, the thickness of the metal film 30, the refractive index of the liquid in the flow channel 41, etc., but the type and amount of the trapped body in the flow channel 41, the shape error of the prism 20
  • the measurement chip 10 varies slightly due to various factors such as an installation error in the SPFS device 100. For this reason, it is preferable to determine the enhancement angle every time measurement is performed.
  • the enhancement angle is determined on the order of about 0.1 degree.
  • the first optical blank value is measured (step S112).
  • the first optical blank value is an optical blank value used when determining the hematocrit value, and is a predetermined first value less than the critical angle in a state where the measurement liquid is present in the flow path 41. It means the amount of light having the same wavelength as the emitted light ⁇ emitted above the measuring chip 10 when the emitted light ⁇ is irradiated onto the metal film 30 at an incident angle.
  • the emitted light ⁇ irradiated to the metal film 30 at the first incident angle is also referred to as “first emitted light ⁇ 1 (referred to as“ first light ”in the claims”). .
  • the metal film 30 is irradiated with the first outgoing light ⁇ 1 at a first incident angle less than the critical angle, and light emitted above the measurement chip 10 is detected.
  • the first incident angle only needs to be less than the critical angle.
  • the first incident angle Is preferably smaller than the critical angle (for example, about 5 to 10 degrees).
  • the light source unit 111 is irradiated with the first outgoing light alpha 1 to the metal film 30 in the first incidence angle, detecting the light emitted above the measuring chip 10 by the light receiving sensor 126 To do.
  • the first optical blank value which is the amount of light that becomes noise in the detection of the scattered light ⁇ ′ (step S115), is obtained.
  • the optical filter 124 is disposed so that a part or all of the optical filter 124 is located outside the optical path.
  • a second optical blank value is measured (step S113).
  • the second optical blank value is an optical blank value used when determining the amount of the substance to be measured, and in a state in which the measurement liquid is present in the flow path 41, the second optical blank value is a predetermined value greater than the critical angle. It means the amount of light having the same wavelength as the emitted light ⁇ emitted above the measuring chip 10 when the emitted light ⁇ is irradiated onto the metal film 30 at the second incident angle.
  • the emitted light ⁇ irradiated to the metal film 30 at the second incident angle is also referred to as “second emitted light ⁇ 2 (referred to as“ second light ”in the claims)”. .
  • the incident angle of the emitted light ⁇ with respect to the metal film 30 (deposition surface 22) is switched to the second incident angle.
  • the second incident angle only needs to be equal to or greater than the critical angle, and is an angle for generating SPR in the metal film 30 irradiated with the emitted light ⁇ .
  • the light source in the light source unit 111 is rotated to switch from the first incident angle to the enhancement angle (second incident angle) determined in step S111.
  • the metal film 30 is irradiated with the second outgoing light ⁇ 2 at an enhancement angle, and the light emitted above the measurement chip 10 is detected.
  • the optical filter 124 is disposed on the optical path.
  • step S114 the substance to be measured in the specimen is reacted with the capturing body on the metal film 30 (primary reaction; step S114). Specifically, first, the measurement liquid is removed from the flow path 41 and the specimen is injected into the flow path 41. For example, the sample is provided in the flow channel 41 after the measurement liquid in the flow channel 41 is aspirated using the pipette 131. Thereby, when the substance to be measured exists in the specimen, at least a part of the substance to be measured can be captured by the capturing body on the metal film 30.
  • the specimen contains whole blood and may be diluted as necessary.
  • the concentration of the specimen is preferably high. This is because the amount of light scattered in the specimen increases as the concentration of the specimen increases, and the quantity of scattered light ⁇ 'detected increases.
  • the concentration of the sample is preferably low to some extent from the viewpoint of measuring the fluorescence ⁇ with high accuracy in step S117 described later. This is because when the concentration of the specimen is low to some extent, the amount of impurities in the specimen that are adsorbed (non-specific adsorption) on the capturing body can be reduced, and noise can be reduced.
  • acquired with a capture body will be saturated by adjusting the quantity of the to-be-measured substance with respect to the quantity of a capture body in the suitable range.
  • physiological saline can be used as the diluent.
  • substances to be measured in whole blood include troponin, myoglobin, and creatine kinase-MB (CK-MB).
  • scattered light ⁇ ′ indicating the hematocrit value of the specimen is detected (step S115). More specifically, when irradiated with the first outgoing light alpha 1 to the metal film 30 in the first incidence angle from the prism 20 side, the first outgoing light alpha 1 is transmitted through the metal film 30 and the specimen, the specimen Scattered light ⁇ ′ obtained by scattering in is detected. More specifically, the scattered light gamma 'is obtained by first outgoing light alpha 1 is scattered by the blood cells in the specimen.
  • the light receiving sensor 126 detects the scattered light ⁇ ′ while irradiating the metal film 30 with the emitted light ⁇ from the light source unit 111 so as to have the first incident angle. Thereby, the light quantity of the scattered light ⁇ ′ indicating the hematocrit value of the specimen can be measured.
  • the optical filter 124 is disposed such that a part or all of the optical filter 124 is located outside the optical path of the scattered light ⁇ ′.
  • the first outgoing light alpha 1 is the light of the same wavelength and the light quantity and the outgoing light alpha irradiated on the metal film 30 in step S112.
  • the first outgoing light ⁇ 1 irradiated to the metal film 30 is preferably P-polarized light having a wavelength of 600 to 700 nm.
  • the transmittance of the first outgoing light ⁇ 1 with respect to the gold film (metal film 30) is increased, and the scattered light ⁇ ′ is hemoglobin in the specimen. It is possible to suppress the absorption by. As a result, the amount of scattered light ⁇ ′ detected by the light receiving sensor 126 can be increased.
  • the transmittance of the first outgoing light ⁇ 1 with respect to the metal film 30 is further increased, so that the amount of the scattered light ⁇ ′ to be detected is increased. Can do. As a result of these, the hematocrit value can be determined with high accuracy.
  • the first outgoing light alpha 1 increases the amount of the resulting scattered light gamma 'by being scattered in the specimen, from the viewpoint of determining the hematocrit value with high precision, the concentration of the analyte is high that Is preferred.
  • the specimen is preferably whole blood having a dilution ratio of 1 to 10 times, and more preferably whole blood having a dilution ratio of 1 to 3 times (see Reference Experiment 2 described later).
  • the specimen is whole blood having a dilution ratio of 1 to 10 times.
  • the first incident angle is somewhat smaller than the critical angle.
  • the first incident angle is equal to or smaller than an angle that is 5 degrees smaller than the critical angle (see simulation described later).
  • the difference between the first incident angle and the second incident angle is preferably small.
  • the first angle of incidence may be equal to or greater than an angle that is 5 degrees less than the critical angle and 10 degrees less than the critical angle. More preferred.
  • step S115 the detection of scattered light ⁇ ′ (step S115) is performed after the completion of the primary reaction (step S114) has been described, but the scattered light ⁇ is started after the start of the primary reaction and before the end. ' May be detected.
  • the scattered light ⁇ ′ is detected immediately after the sample is injected into the flow channel 41 after the start of the primary reaction step, and then the remaining reaction time until the reaction time of the primary reaction reaches a predetermined time.
  • a primary reaction may be performed.
  • the red blood cells may settle while the sample is being reciprocated in the flow path 41, and the scattered light ⁇ ′ may not be detected accurately. This is preferable because the scattered light ⁇ ′ can be detected before settling.
  • This method is particularly effective when the red blood cells are likely to settle, such as when the reaction time of the primary reaction is long, when the dilution rate of the specimen is high, or when the hematocrit value is low.
  • the specimen is injected into the flow path 41, and the measured substance in the specimen and the capture body on the metal film 30 come into contact with each other. From this, the primary reaction itself is started.
  • the primary reaction it is preferable to stop the movement of the fluid, that is, stop the liquid feeding.
  • the primary reaction can be performed in parallel with the detection of the scattered light ⁇ ′, the total measurement time can be shortened, and one type of specimen can be prepared. It becomes simple.
  • the substance to be measured captured by the capturing body on the metal film 30 is labeled with a fluorescent material (secondary reaction; step S116). Specifically, first, the sample is removed from the flow path 41 by the pipette 131, and then the flow path 41 is washed with a buffer solution or the like to remove substances not captured by the capturing body. Next, a fluorescent labeling solution is provided in the flow path 41 by the pipette 131. Thereby, the substance to be measured can be labeled with the fluorescent substance.
  • the fluorescent labeling solution is, for example, a buffer solution containing an antibody (secondary antibody) labeled with a fluorescent substance. Thereafter, the inside of the flow path 41 is washed with a buffer solution or the like to remove free fluorescent substances.
  • fluorescent ⁇ (signal) indicating the amount of the substance to be measured is detected (step S117). Specifically, on the metal film 30, the to-be-measured substance is captured by the capturing body and the sample is not present (the state where the flow path 41 is filled with the measuring solution), the enhancement angle (the first angle) from the prism 20 side. 2 angle of incidence), when the captor through the prism 20 is irradiated with the second outgoing light alpha 2 on the rear surface of the metal film 30 corresponding to the area which has been immobilized, resulting in the measurement chip 10, the Fluorescence ⁇ (signal) indicating the amount of the measurement substance is detected.
  • the second outgoing light ⁇ 2 is excitation light that can directly or indirectly excite the fluorescent substance.
  • the light-receiving sensor 126 detects the fluorescence ⁇ while irradiating the metal film 30 with the emitted light ⁇ from the light source unit 111 such that the second incident angle becomes an enhancement angle.
  • the fluorescence value which is the light quantity of fluorescence (beta) which shows the quantity of to-be-measured substance in a test substance can be measured with high intensity
  • the optical filter 124 is disposed on the optical path.
  • the state in which no sample exists means a state in which an operation for removing the sample from the flow channel 41 is performed. In other words, it is sufficient that the sample does not substantially exist in the flow channel 41, and a slight amount of the sample that cannot be removed may remain in the flow channel 41.
  • the second outgoing light alpha 2 is the light of the same wavelength as the emitted light alpha that in step S111 and step S113 is irradiated onto the metal film 30.
  • the second outgoing light ⁇ 2 is light having a wavelength that can excite a fluorescent substance that labels the substance to be measured.
  • Second outgoing light alpha 2 wavelength and the light quantity may be the same as the first outgoing light alpha 1 wavelength and light intensity, may be different.
  • the second outgoing light alpha 2 wavelength and the light quantity is preferably the same as the first outgoing light alpha 1 wavelength and light intensity.
  • the wavelength and light amount of the second outgoing light ⁇ 2 are the same as the wavelength and light amount of the first outgoing light ⁇ 1 .
  • the measurement value is corrected (step S118). Specifically, it indicates the amount of the substance to be measured, which is determined from the fluorescence ⁇ detected in step S117, based on the hematocrit value of the specimen, which is determined from the amount of scattered light ⁇ ′ detected in step S115. Correct the measured value.
  • the hematocrit value of the specimen is determined from the amount of scattered light ⁇ ′.
  • the scattered light ⁇ ′ includes a scattering component (signal component) caused by scattering in the specimen and a noise component (for example, prism 20, metal film 30, and flow path lid 40) caused by scattering in a region other than the specimen.
  • First optical blank value Therefore, the scattering component (signal component) in the specimen can be calculated by subtracting the first optical blank value obtained in step S112 from the light amount of the scattered light ⁇ ′ detected in step S115.
  • the hematocrit value of the specimen can be determined based on the signal component and a calibration curve indicating the relationship between the amount of scattered light ⁇ ′ and the hematocrit value.
  • a measurement value indicating the amount (concentration) of the substance to be measured in the specimen is determined from the fluorescence value, which is the amount of fluorescence ⁇ .
  • the fluorescence value includes a fluorescence component (signal component) derived from a fluorescent material that labels the substance to be measured, and a noise component (second optical blank value) caused by factors other than the fluorescent material. Therefore, by subtracting the second optical blank value obtained in step S113 from the fluorescence value obtained in step S117, a measurement value (signal component) indicating the amount of the substance to be measured in the sample can be calculated. it can.
  • the measurement value indicating the amount of the substance to be measured in the specimen is corrected based on the hematocrit value. Specifically, the measurement value is converted to the amount of the substance to be measured in the plasma by multiplying by the conversion coefficient c represented by the following formula (1).
  • Hct is the hematocrit value (0 to 100%)
  • df is the dilution ratio of the specimen.
  • the amount (concentration) of the substance to be measured in plasma can be determined by the above procedure.
  • 3A and 3B are graphs showing the results of simulation.
  • 3A is a graph showing the relationship between the incident angle of the outgoing light ⁇ and the reflectance of the outgoing light ⁇ with respect to the metal film 30, and
  • FIG. 3B shows the incident angle of the outgoing light ⁇ and the metal film 30 of the outgoing light ⁇ .
  • It is a graph which shows the relationship with the transmittance
  • the horizontal axis indicates the incident angle (°) of the outgoing light ⁇ with respect to the metal film 30
  • the vertical axis indicates the reflectance of the outgoing light ⁇ with respect to the metal film 30.
  • the horizontal axis indicates the incident angle (°) of the outgoing light ⁇ with respect to the metal film 30, and the vertical axis indicates the transmittance of the outgoing light ⁇ with respect to the metal film 30.
  • the simulation result when the thickness of the metal film 30 is 30 nm is shown by a solid line
  • the simulation result when the thickness of the metal film 30 is 40 nm is shown by a dotted line
  • the thickness of the metal film 30 is 50 nm.
  • the simulation result is shown by a one-dot chain line
  • the simulation result when the thickness of the metal film 30 is 60 nm is shown by a two-dot chain line.
  • the reflectance of the emitted light ⁇ with respect to the metal film 30 is such that the incident angle of the emitted light ⁇ is small in the region where the incident angle is about 55 degrees to about 60.5 degrees (critical angle). As it gets smaller. At this time, it can be seen that the amount of change in reflectance is larger as the incident angle is closer to the critical angle and smaller as the incident angle is farther from the critical angle. It can be seen that the reflectance hardly changes in the region where the incident angle is about 55 degrees or less.
  • the transmittance of the outgoing light ⁇ increases as the incident angle of the outgoing light ⁇ decreases in the region where the incident angle is about 55 degrees to about 60.5 degrees (critical angle). It has become. At this time, it can be seen that the amount of change in transmittance is larger as the incident angle is closer to the critical angle and smaller as the incident angle is farther from the critical angle. It can be seen that the transmittance hardly changes in the region where the incident angle is about 55 degrees or less.
  • the first incident angle is preferably equal to or smaller than an angle smaller than the critical angle by 5 degrees.
  • the incident angle of the emitted light ⁇ with respect to the metal film 30 is scanned in a state where the measurement liquid, plasma, blood having a hematocrit value of 20%, or blood having a hematocrit value of 40% is present in the channel 41.
  • the light emitted above the measuring chip 10 was detected by the light receiving sensor 126, and the amount of the light was measured.
  • the reflected light of the outgoing light ⁇ was detected by a light receiving sensor (not shown) to determine the reflectance of the outgoing light ⁇ .
  • FIGS. 4A and 4B and FIGS. 5A and 5B are graphs showing the results of Reference Experiment 1, in which the incident angle of the emitted light ⁇ with respect to the metal film 30, the amount of scattered light ⁇ ′, the amount of plasmon scattered light ⁇ , and the emitted light are shown. It is a graph which shows the relationship with the reflectance of (alpha).
  • the amount of light in the angle range where the incident angle is smaller than the critical angle means the amount of scattered light ⁇ ′.
  • the amount of light in the angle range (the right side of the broken line in FIGS. 4A, B and FIGS.
  • FIG. 5A, B) where the angle is greater than or equal to the critical angle means the amount of plasmon scattered light ⁇ .
  • 4A is a measurement result in a state where a measurement liquid is present in the flow path 41
  • FIG. 4B is a measurement result in a state where plasma is present in the flow path 41
  • FIG. FIG. 5B is a measurement result in a state where blood having a hematocrit value of 40% exists in the flow path 41.
  • FIG. 4A and 4B and FIGS. 5A and 5B the horizontal axis indicates the incident angle (°) of the outgoing light ⁇ with respect to the metal film 30, and the left vertical axis indicates the light quantity (count) of the scattered light ⁇ ′ or the plasmon scattered light ⁇ .
  • the vertical axis on the right side shows the reflectance of the outgoing light ⁇ .
  • the light amounts of the scattered light ⁇ ′ and the plasmon scattered light ⁇ are indicated by white symbols ( ⁇ , ⁇ , ⁇ , and ⁇ ), and the reflectance of the emitted light ⁇ is black.
  • the symbols ( ⁇ , ⁇ , ⁇ , and ⁇ ) indicate.
  • the reflectance starts to decrease as the incident angle of the outgoing light ⁇ decreases with the vicinity of 61 degrees as a boundary. This indicates that the vicinity of 61 degrees is the critical angle.
  • the sample is a measurement solution or plasma and no blood cells are present in the sample
  • the amount of scattered light ⁇ ′ hardly changes in a region where the incident angle is less than 61 degrees (see FIGS. 4A and B).
  • the amount of scattered light ⁇ ′ increases in a region where the incident angle is less than 61 degrees (see FIGS. 5A and 5B).
  • FIG. 6 is a graph showing the correlation between the amount of scattered light ⁇ ′ or plasmon scattered light ⁇ and the hematocrit value.
  • FIG. 6 summarizes the graph showing the relationship between the incident angle of the emitted light ⁇ with respect to the metal film 30 and the amount of scattered light ⁇ ′ or plasmon scattered light ⁇ in FIGS. 4A and 4B and FIGS. 5A and 5B into one graph. It is a graph.
  • is the measurement result (FIG.
  • FIG. 5A is a measurement result in a state where blood having a hematocrit value of 20% is present in the inside (FIG. 5A), and ⁇ is a measurement result in a state where blood having a hematocrit value is 40% is present in the flow path 41.
  • FIG. 6 the greater the hematocrit value in the specimen, the greater the amount of scattered light ⁇ ′ in the region where the incident angle is less than 61 degrees.
  • the amount of plasmon scattered light ⁇ in the region where the incident angle is 61 degrees or more hardly changes. That is, as is apparent from FIG. 6, it can be seen that the correlation between the amount of scattered light ⁇ ′ and the hematocrit value is stronger than the correlation between the amount of plasmon scattered light ⁇ and the hematocrit value.
  • the intensity of the scattered light ⁇ ′ is higher than that of the plasmon scattered light ⁇ , and the scattered light ⁇ ′ is compared with the correlation between the amount of plasmon scattered light ⁇ and the hematocrit value. It can be seen that the correlation between the amount of light and the hematocrit value is stronger. Therefore, it can be seen that the hematocrit value can be determined with higher accuracy by detecting the scattered light ⁇ 'instead of the plasmon scattered light ⁇ when determining the hematocrit value.
  • Reference Experiment 2 Experiments were conducted to determine the preferred range of specimen dilution ratios when determining hematocrit values.
  • Reference Experiment 2 all 5 types of hematocrit values (0%, 20%, 30%, 45% and 65%) diluted to 1-fold (no dilution), 3-fold or 15-fold were used. Blood was used as a specimen.
  • the measurement liquid is present in the flow path 41 and the metal film 30 is irradiated with the outgoing light ⁇ at an incident angle of 52 degrees, the scattered light ⁇ ′ emitted above the measurement chip 10 is detected, An optical blank value of 1 was measured.
  • FIG. 7 is a graph showing the results of Reference Experiment 2, and is a graph showing the relationship between the specimen dilution rate and the correlation between the amount of scattered light ⁇ ′ and the hematocrit value.
  • the horizontal axis represents the hematocrit value Hct (%)
  • the vertical axis represents the signal component (count) of the scattered light ⁇ ′.
  • the results when the sample dilution rate is 1 (no dilution) are indicated by black circles ( ⁇ ), and when the sample dilution rate is 3 times, the results are indicated by black squares ( ⁇ ).
  • the results when the dilution factor is 15 times are indicated by black triangles ( ⁇ ).
  • the concentration of the specimen is preferably high from the viewpoint of determining the hematocrit value with high accuracy.
  • the specimen is preferably whole blood having a dilution ratio of 1 to 10 times, and more preferably whole blood having a dilution ratio of 1 to 3 times.
  • FIG. 8 is a graph showing the results of Reference Experiment 3.
  • the horizontal axis indicates the thickness (nm) of the metal film 30, and the vertical axis indicates the generation efficiency of surface plasmon resonance calculated based on the amount of reflected light at the resonance angle.
  • the generation efficiency of the surface plasmon resonance is maximum when the thickness of the metal film 30 is around 40 nm. Therefore, when the metal film 30 is a gold film, when the thickness of the metal film 30 is, for example, 30 to 55 nm, a signal indicating the amount of the substance to be measured can be detected with high intensity, and the amount of the substance to be measured can be reduced. It can be seen that the measured values shown can be determined with high accuracy.
  • the transmittance of the emitted light ⁇ to the metal film 30 is 5 to 30% (see FIG. 3B). That is, the scattered light ⁇ ′ can be detected with high intensity by the high transmittance of the emitted light ⁇ with respect to the metal film 30. From this point of view, the hematocrit value can be determined with high accuracy, and the amount of the substance to be measured in the sample can be determined with high accuracy.
  • FIG. 2 is a configuration diagram illustrating an example of the configuration of the SPFS device 100.
  • the SPFS device 100 includes a light emitting unit 110, a light detecting unit 120, a liquid feeding unit 130, a conveying unit 140, and a control processing unit (processing unit) 150.
  • the SPFS apparatus 100 is used in a state where the above-described measurement chip 10 is mounted on a chip holder (holder) 142 of the transport unit 140.
  • the light emitting unit 110 emits outgoing light ⁇ (first outgoing light ⁇ 1 and second outgoing light ⁇ 2 ).
  • the light emitting unit 110 emits the emitted light ⁇ so as to enter the metal film 30 at the first incident angle.
  • the light emission part 110 radiate
  • the second angle of incidence in order to determine a measurement value indicative of the amount of substance to be measured, a second incident angle of the light emitted alpha 2 of irradiating the metal film 30.
  • the first incident angle is less than the critical angle, and the second incident angle is greater than or equal to the critical angle.
  • the light emitting unit 110 When detecting the scattered light ⁇ ′, the light emitting unit 110 emits the P wave for the metal film 30 toward the incident surface 21 at the first incident angle.
  • the first outgoing light ⁇ 1 at this time passes through the film formation surface 22 and is emitted above the prism 20.
  • the light emitting unit 110 causes the P wave to the metal film 30 to be incident on the incident surface 21 at the second incident angle so that surface plasmon resonance occurs in the metal film 30. Exit toward.
  • the light emitting unit 110 includes a light source unit 111, an angle adjustment mechanism 112, and a light source control unit 113.
  • the light source unit 111 emits collimated light having a constant wavelength and light amount so that the shape of the irradiation spot on the back surface of the metal film 30 is substantially circular.
  • the light source unit 111 includes, for example, a light source, a beam shaping optical system, an APC mechanism, and a temperature adjustment mechanism (all not shown).
  • the type of the light source is not particularly limited, and is, for example, a laser diode (LD).
  • Other examples of light sources include laser light sources such as light emitting diodes and mercury lamps.
  • the wavelength of the outgoing light ⁇ emitted from the light source is, for example, in the range of 400 nm to 1000 nm.
  • the emitted light ⁇ emitted from the light source is not a beam
  • the emitted light ⁇ is converted into a beam by a lens, a mirror, a slit, or the like.
  • the emitted light ⁇ emitted from the light source is not monochromatic light
  • the emitted light ⁇ is converted into monochromatic light by a diffraction grating or the like.
  • the outgoing light ⁇ emitted from the light source is not linearly polarized light
  • the outgoing light ⁇ is converted into linearly polarized light by a polarizer or the like.
  • the beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means.
  • the beam shaping optical system may include all of these or a part thereof.
  • the collimator collimates the outgoing light ⁇ emitted from the light source.
  • the band-pass filter turns the outgoing light ⁇ emitted from the light source into a narrow band light having only the center wavelength. This is because the outgoing light ⁇ emitted from the light source has a slight wavelength distribution width.
  • the linear polarization filter converts the outgoing light ⁇ emitted from the light source into linearly polarized light.
  • the half-wave plate adjusts the polarization direction of the light so that the P wave component is incident on the metal film 30.
  • the slit and zoom means adjust the beam diameter, contour shape, and the like of the emitted light ⁇ emitted from the light source so that the shape of the irradiation spot on the back surface of the metal film 30 is a circle of a predetermined size.
  • the APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the emitted light ⁇ using a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
  • the temperature adjustment mechanism is, for example, a heater or a Peltier element.
  • the wavelength and energy of the outgoing light ⁇ emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the outgoing light ⁇ emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
  • the angle adjustment mechanism 112 adjusts the incident angle of the outgoing light ⁇ with respect to the metal film 30 (the interface between the prism 20 and the metal film 30 (film formation surface 22)).
  • the angle adjusting mechanism 112 emits the emitted light emitted from the light source to irradiate the emitted light ⁇ at the first incident angle or the second incident angle toward the predetermined position of the metal film 30 via the prism 20.
  • the optical axis ⁇ and the chip holder 142 are relatively rotated.
  • the angle adjustment mechanism 112 rotates the light source unit 111 around the axis perpendicular to the optical axis of the outgoing light ⁇ on the metal film 30 (the axis perpendicular to the paper surface of FIG. 2).
  • the position of the rotation axis is set so that the position of the irradiation spot on the metal film 30 hardly changes even when the incident angle is scanned.
  • the position of the rotation center is near the intersection of the two optical axes of the emitted light ⁇ emitted from the light source at both ends of the scanning range of the incident angle (between the irradiation position on the film formation surface 22 and the incident surface 21).
  • the light source control unit 113 controls various devices included in the light source unit 111 to control emission of the emitted light ⁇ from the light source unit 111.
  • the light source control unit 113 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the light detection unit 120 emits light (for example, fluorescence ⁇ , scattered light ⁇ ′ or scattered light emitted from the measurement chip 10 when the light emitting unit 110 irradiates the metal film 30 via the prism 20 on the metal film 30. Plasmon scattered light ⁇ ) is detected. In the present embodiment, the light detection unit 120 outputs a signal indicating the detected light amount of the fluorescence ⁇ , the light amount of the scattered light ⁇ ′, and the light amount of the plasmon scattered light ⁇ to the control processing unit 150.
  • the light detection unit 120 includes a light receiving optical system unit 121, a position switching mechanism 122, and a sensor control unit 127.
  • the light receiving optical system unit 121 is disposed on the normal line of the metal film 30 of the measuring chip 10.
  • the light receiving optical system unit 121 includes a first lens 123, an optical filter 124, a second lens 125, and a light receiving sensor 126.
  • the optical axis of the light receiving optical system unit 121 is arranged so as not to coincide with the optical axis of the outgoing light ⁇ from the light emitting unit 110. Accordingly, it is possible to prevent the outgoing light ⁇ from directly entering the light receiving sensor 126 when detecting the fluorescence ⁇ , the scattered light ⁇ ′, or the plasmon scattered light ⁇ . As a result, fluorescence ⁇ , scattered light ⁇ ′ or plasmon scattered light ⁇ can be detected with a high S / N ratio.
  • the position switching mechanism 122 switches the position of the optical filter 124 so that the optical filter 124 is positioned on the optical path in the light receiving optical system unit 121, or a part or all of the optical filter 124 is positioned outside the optical path.
  • the optical filter 124 is disposed on the optical path of the light receiving optical system unit 121, and when the light receiving sensor 126 detects the scattered light ⁇ ′ and the plasmon scattered light ⁇ , A part or all of the optical filter 124 is disposed outside the optical path of the light receiving optical system unit 121.
  • the first lens 123 is a condensing lens, for example, and condenses light (signal) emitted from the metal film 30.
  • the second lens 125 is, for example, an imaging lens, and forms an image of the light collected by the first lens 123 on the light receiving surface of the light receiving sensor 126. Between both lenses, the light is a substantially parallel light beam.
  • the optical filter 124 is disposed between the first lens 123 and the second lens 125.
  • the optical filter 124 transmits only the fluorescence component of the light incident on the optical filter 124 and removes the excitation light component (plasmon scattered light ⁇ ) during fluorescence detection. Thereby, only the fluorescence component is guided to the light receiving sensor 126, and the fluorescence ⁇ can be detected with a high S / N ratio.
  • types of the optical filter 124 include an excitation light reflection filter, a short wavelength cut filter, and a band pass filter.
  • Examples of the optical filter 124 include a filter including a multilayer film that reflects a predetermined light component, and a color glass filter that absorbs the predetermined light component.
  • the light receiving sensor 126 detects fluorescence ⁇ , scattered light ⁇ ′, and plasmon scattered light ⁇ . By receiving the fluorescence ⁇ , the scattered light ⁇ ′, and the plasmon scattered light ⁇ by the same light receiving sensor 126, it is possible to prevent the SPFS device 100 from being enlarged and to reduce the cost.
  • the light receiving sensor 126 is disposed at a position different from the position overlapping the optical axis of the outgoing light ⁇ . By detecting the scattered light ⁇ ′ at a position different from the position overlapping with the optical axis of the emitted light ⁇ , it is possible to increase the S without detecting the emitted light ⁇ that is not scattered in the specimen and emitted onto the measurement chip 10.
  • the light receiving sensor 126 has a high sensitivity capable of detecting weak fluorescence ⁇ from a very small amount of a substance to be measured.
  • the light receiving sensor 126 is, for example, a photomultiplier tube (PMT), an avalanche photodiode (APD), a silicon photodiode (SiPD), or the like.
  • the sensor control unit 127 controls detection of the output value of the light receiving sensor 126, management of sensitivity of the light receiving sensor 126 based on the output value, change of sensitivity of the light receiving sensor 126 to obtain an appropriate output value, and the like.
  • the sensor control unit 127 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the liquid feeding unit 130 supplies the liquid in the liquid chip 50 into the flow path 41 of the measurement chip 10 held by the chip holder 142. In addition, the liquid feeding unit 130 removes the liquid from the flow path 41 of the measurement chip 10.
  • the liquid feeding unit 130 includes a pipette 131 and a pipette control unit 135.
  • the pipette 131 has a syringe pump 132, a nozzle unit 133 connected to the syringe pump 132, and a pipette tip 134 attached to the tip of the nozzle unit 133.
  • the pipette control unit 135 includes a driving device for the syringe pump 132 and a moving device for the nozzle unit 133.
  • the drive device of the syringe pump 132 is a device for reciprocating the plunger of the syringe pump 132, and includes, for example, a stepping motor.
  • the moving device of the nozzle unit 133 moves the nozzle unit 133 freely in the vertical direction, for example.
  • the moving device of the nozzle unit 133 is configured by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
  • the pipette controller 135 drives the syringe pump 132 to suck various liquids from the liquid tip 50 into the pipette tip 134. Then, the pipette controller 135 moves the nozzle unit 133 to insert the pipette tip 134 into the flow channel 41 of the measurement chip 10 and drives the syringe pump 132 to flow the liquid in the pipette tip 134. 41 is injected. In addition, after the introduction of the liquid, the pipette control unit 135 drives the syringe pump 132 to suck the liquid in the channel 41 into the pipette tip 134.
  • the capture body reacts with the substance to be measured in the reaction field (primary reaction), or the measurement substance reacts with the capture body labeled with the fluorescent substance. (Secondary reaction). Further, the liquid feeding unit 130 can dispense or dilute the specimen by sucking or discharging the liquid in the liquid chip 50 as described above.
  • the transport unit 140 transports and fixes the measurement chip 10.
  • the transport unit 140 includes a transport stage 141 and a chip holder 142.
  • the transfer stage 141 moves the chip holder 142 in one direction and in the opposite direction.
  • the transport stage 141 has a shape that does not obstruct the optical path of light such as outgoing light ⁇ , reflected light of outgoing light ⁇ , fluorescence ⁇ , scattered light ⁇ ′, and plasmon scattered light ⁇ .
  • the transport stage 141 is driven by, for example, a stepping motor.
  • the chip holder 142 is fixed to the transfer stage 141 and holds the measurement chip 10 in a detachable manner.
  • the shape of the chip holder 142 can hold the measurement chip 10 and does not obstruct the optical path of light such as the outgoing light ⁇ , the reflected light of the outgoing light ⁇ , the fluorescence ⁇ , the scattered light ⁇ ′, and the plasmon scattered light ⁇ . It is.
  • the chip holder 142 is provided with an opening through which the light passes.
  • the chip holder 142 is connected to a temperature adjustment mechanism (not shown) such as a heater or a Peltier element.
  • a temperature adjustment mechanism such as a heater or a Peltier element.
  • the reaction efficiency in the reaction in the channel 41 such as the primary reaction and the secondary reaction may vary depending on the temperature. For this reason, it is preferable to keep the temperature in the flow path 41 constant by the temperature adjustment mechanism through the chip holder 142, thereby controlling the reaction efficiency constant and increasing the measurement accuracy of the substance to be measured.
  • the control processing unit 150 controls the angle adjustment mechanism 112, the light source control unit 113, the position switching mechanism 122, the sensor control unit 127, the pipette control unit 135, and the transport stage 141.
  • the control processing unit 150 also functions as a processing unit that processes the detection result of the light detection unit 120 (light receiving sensor 126).
  • the control processing unit 150 determines the hematocrit value of the specimen based on the detection result of the scattered light ⁇ ′, and determines the amount of the substance to be measured in the specimen based on the detection result of the fluorescence ⁇ . Determine the measured value shown.
  • control processing unit 150 corrects the measurement value based on the hematocrit value, and determines the amount (concentration) of the substance to be measured in plasma or serum.
  • specific information for example, data relating to various conversion coefficients, dilution factors, and calibration curves
  • the control processing unit 150 records in advance a conversion coefficient for correcting (converting) the measured value using the hematocrit value.
  • the control processing unit 150 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the outgoing light ⁇ enters the prism 20 from the incident surface 21.
  • the outgoing light ⁇ (first outgoing light ⁇ 1 ) is the liquid and flow in the metal film 30 and the channel 41.
  • Scattered light ⁇ ′ obtained by being scattered by the specimen when passing through the road lid 40 is emitted above the measurement chip 10.
  • the scattered light ⁇ ′ reaches the light receiving sensor 126.
  • first outgoing light ⁇ 1 is reflected by the metal film 30 to become reflected light, and the reflected light is emitted to the outside of the prism 20 by the outgoing surface 23.
  • the outgoing light ⁇ that has entered the prism 20 enters the metal film 30 at a second incident angle that is a total reflection angle at which SPR occurs, localized field light is generated on the metal film 30.
  • This localized field light excites a fluorescent substance that labels the substance to be measured existing on the metal film 30, and emits fluorescence ⁇ .
  • the SPFS device 100 detects the fluorescence ⁇ emitted from the fluorescent material.
  • the reflected light of the emitted light ⁇ (second emitted light ⁇ 2 ) from the metal film 30 is emitted to the outside of the prism 20 at the emission surface 23.
  • the first emission light ⁇ 1 is irradiated to the metal film 30 at the first incident angle less than the critical angle.
  • emitted light alpha 1 detects scattered light gamma 'obtained by being scattered by the sample.
  • the scattered light ⁇ ′ has a high intensity and a high correlation with the hematocrit value. Therefore, in the measurement method according to the present embodiment, the hematocrit value can be determined with higher accuracy than in the case where plasmon scattered light ⁇ is detected in order to determine the hematocrit value of the specimen.
  • the hematocrit value of the specimen can be determined with high accuracy, and the amount (concentration) of the substance to be measured in plasma can be determined with high accuracy. Further, in the measurement method according to the present embodiment, the hematocrit value can be measured with high accuracy without adding a new hematocrit value measurement device, which increases the manufacturing cost and measurement cost of the measurement device. There is nothing.
  • FIG. 9 is a flowchart illustrating an example of a measurement method according to the modification. For example, as shown in FIG. 9, after the step of detecting the fluorescence signal (step S117), the step of measuring the first optical blank value (step S112) and the step of detecting the scattered light ⁇ ′ (step S115). And may be performed.
  • the method of performing the above steps S112 and S115 for determining the hematocrit value after detecting fluorescent ⁇ is when whole blood having a large dilution ratio, for example, whole blood having a dilution ratio of 10 times or more is used as a specimen. It is a particularly effective means.
  • the sample used in the step of performing the primary reaction and the sample used in the step of detecting the scattered light ⁇ ′ are the same. For this reason, when a specimen having a large dilution rate is used in the primary reaction, the detection accuracy of the scattered light ⁇ ′ is lowered.
  • the step of detecting scattered light ⁇ ′ in the primary reaction (step S114), even when whole blood having a dilution ratio of 10 times or more is used as a specimen, the step of detecting scattered light ⁇ ′ (step S115). ), A specimen having a smaller dilution ratio (higher concentration) than that of the specimen can be separately prepared and used.
  • a measurement value indicating the amount of the substance to be measured can be obtained with high accuracy using a specimen with a large dilution ratio (low concentration), and a specimen with a low dilution ratio (high concentration) can be used. Hematocrit value can be obtained with high accuracy. As a result, the amount (concentration) of the substance to be measured in plasma can be determined with higher accuracy.
  • the hematocrit value can be measured using the sample provided in the flow path 41 in the step of performing the primary reaction as compared with the measurement method according to the modification. Therefore, the measurement time of the substance to be measured can be further shortened.
  • the secondary reaction step (step S116) and the fluorescence signal detection step (step S117) are performed. Therefore, the hematocrit value can be measured with higher accuracy without mixing the fluorescence signal with the first optical blank value.
  • the step of determining the enhancement angle (step S111), the step of measuring the first optical blank value (step S112), the step of measuring the second optical blank value (step S113), and 1
  • the aspect which performs the process (process S114) which performs a next reaction in this order was demonstrated.
  • the measurement method according to the present invention is not limited to this order.
  • the enhancement angle may be determined after performing the primary reaction, or the first optical blank value and the second optical blank value may be measured after performing the primary reaction.
  • the step of determining the enhancement angle may be performed.
  • the step of determining the enhancement angle step S111
  • the step of measuring the first optical blank value step S111
  • the step of performing the secondary reaction was performed (two-step method).
  • the timing for labeling the substance to be measured with the fluorescent substance is not particularly limited.
  • a labeling solution may be added to the sample and the substance to be measured may be labeled with a fluorescent substance in advance.
  • the sample and the labeling solution may be injected simultaneously into the flow channel 41 of the measurement chip 10.
  • the analyte to be measured is captured by the capturing body by injecting the sample into the flow channel 41 of the measurement chip 10.
  • both the primary reaction and the secondary reaction can be completed by introducing the sample into the flow channel 41 of the measurement chip 10 (one-step method).
  • the SPFS method is used to detect the fluorescent ⁇ from the fluorescent substance as a signal.
  • the present invention is not limited to this mode.
  • the reflected light of the outgoing light ⁇ may be detected as a measurement value using the SPR method.
  • the measurement method including the step of determining the enhancement angle has been described.
  • the measurement method according to the present invention may not include the step of determining the enhancement angle.
  • the enhancement angle may be calculated in advance based on factors such as the design of the measurement chip 10 and the refractive index of the liquid provided in the flow path 41.
  • the mode of irradiating the metal film 30 with (second light) has been described.
  • the measurement method according to the present invention is not limited to this mode, and the first outgoing light ⁇ 1 (first light) when detecting the scattered light ⁇ ′ and the second time when detecting the fluorescence ⁇ .
  • the metal film 30 may be irradiated from different light sources. It is more preferable to use the same light source from the viewpoint of preventing the SPFS device 100 from becoming large and reducing the cost.
  • the method for measuring a substance to be measured according to the present invention can detect the substance to be measured with high reliability, and is useful for, for example, examination of diseases.

Abstract

In the present invention, a measurement chip having a prism, a metal film, and a capture body is prepared. In a state in which a sample is present on the metal film, when a first light is radiated to the metal film at a first incidence angle less than a critical angle from the prism side, the first light transmitted through the metal film and the sample is scattered in the sample, and the scattered light thereby obtained is detected. In a state in which a substance to be measured is captured by the capture body and a sample is not present on the metal film, a signal indicating the amount of the substance to be measured is detected, the signal being generated by a measurement chip when a second light is radiated to the metal film at a second incidence angle equal to or greater than the critical angle from the prism side. A measurement value indicating the amount of the substance to be measured, the measurement value being determined from the signal, is corrected on the basis of the hematocrit value of the sample determined from the light quantity of the scattered light.

Description

測定方法Measuring method
 本発明は、表面プラズモン共鳴を利用して、全血を含む検体中の被測定物質の量を測定するための測定方法に関する。 The present invention relates to a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance.
 臨床検査において、血液中のタンパク質やDNAなどの微量の被測定物質を高感度かつ定量的に測定することができれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、血液中の被測定物質を高感度かつ定量的に測定できる方法が求められている。 In clinical examinations, if a very small amount of a substance to be measured such as protein or DNA in blood can be measured with high sensitivity and quantitativeness, it becomes possible to quickly grasp the patient's condition and perform treatment. Therefore, there is a need for a method that can measure a substance to be measured in blood with high sensitivity and quantitative.
 血液中の被測定物質を高感度に測定できる方法として、表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)法および表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)が知られている。これらの方法では、所定の条件で光を金属膜に照射すると表面プラズモン共鳴(SPR)が生じることを利用する(例えば特許文献1、2参照)。金属膜でSPRが生じるとき、金属膜に照射された光と同一波長のプラズモン散乱光が、金属膜の近傍から放出される。 Surface plasmon resonance (SPR) method and surface plasmon excitation enhanced fluorescence spectroscopy (Surface Plasmon-field enhanced Fluorescence Spectroscopy: below) (Abbreviated as “SPFS”). These methods use the fact that surface plasmon resonance (SPR) occurs when a metal film is irradiated with light under predetermined conditions (see, for example, Patent Documents 1 and 2). When SPR occurs in the metal film, plasmon scattered light having the same wavelength as the light irradiated to the metal film is emitted from the vicinity of the metal film.
 SPFSでは、被測定物質に特異的に結合できる捕捉体(例えば1次抗体)を金属膜上に固定化して、被測定物質を特異的に捕捉するための反応場を形成する。この反応場に被測定物質を含む検体(例えば血液)を提供すると、被測定物質は反応場に結合する。次いで、蛍光物質で標識された捕捉体(例えば2次抗体)を反応場に提供すると、反応場に結合した被測定物質は蛍光物質で標識される。この状態で金属膜に励起光を照射すると、被測定物質を標識する蛍光物質は、SPRにより増強された電場により励起され、蛍光を放出する。したがって、蛍光を検出することで、被測定物質の存在またはその量を検出することができる。このとき、プラズモン散乱光は、光学フィルターによりカットされる。SPFSでは、SPRにより増強された電場によって蛍光物質を励起するため、高感度で被測定物質を測定することができる。 In SPFS, a capture body (for example, a primary antibody) that can specifically bind to a substance to be measured is immobilized on a metal film to form a reaction field for specifically capturing the substance to be measured. When a specimen (for example, blood) containing a substance to be measured is provided in the reaction field, the substance to be measured is bound to the reaction field. Next, when a capture body (for example, a secondary antibody) labeled with a fluorescent substance is provided to the reaction field, the substance to be measured bound to the reaction field is labeled with the fluorescent substance. When the metal film is irradiated with excitation light in this state, the fluorescent substance that labels the substance to be measured is excited by the electric field enhanced by SPR and emits fluorescence. Therefore, the presence or amount of the substance to be measured can be detected by detecting the fluorescence. At this time, the plasmon scattered light is cut by the optical filter. In SPFS, a fluorescent substance is excited by an electric field enhanced by SPR, so that a substance to be measured can be measured with high sensitivity.
 一方、液体中の被測定物質を測定する場合、通常、測定値は、液体の単位体積当たりの被測定物質の質量や、それに相当するシグナル量などで示される。したがって、検体として血液を用いる場合、測定値は、血液中の液体成分(血漿または血清)の単位体積当たりの被測定物質の質量や、それに相当するシグナル量などで示される。血液中の液体成分の割合は個々人で異なるため、全血(血液)の測定値を一律に液体成分の測定値に変換することはできない。このため、検体として全血を用いる場合は、その全血のヘマトクリット値(血液中の血球の体積の割合)を測定し、ヘマトクリット値を用いて全血の測定値を液体成分(血漿または血清)の測定値に変換する必要がある。 On the other hand, when measuring a substance to be measured in a liquid, the measured value is usually indicated by the mass of the substance to be measured per unit volume of the liquid, the amount of signal corresponding thereto, and the like. Therefore, when blood is used as the specimen, the measured value is indicated by the mass of the substance to be measured per unit volume of the liquid component (plasma or serum) in the blood, the signal amount corresponding thereto, and the like. Since the ratio of the liquid component in the blood varies from person to person, the measured value of whole blood (blood) cannot be uniformly converted into the measured value of the liquid component. Therefore, when whole blood is used as a specimen, the hematocrit value (ratio of blood cell volume in the blood) of the whole blood is measured, and the measured value of whole blood is measured using the hematocrit value as a liquid component (plasma or serum). It is necessary to convert to the measured value.
 従来のヘマトクリット値の測定方法としては、血液を遠心分離するミクロヘマトクリット法や、血液の電気伝導度からヘマトクリット値を求める電気伝導法などがある。しかし、従来のヘマトクリット値の測定方法では、遠心分離機や電気伝導度の測定装置、ヘマトクリット値の測定装置などの他の装置を新たに用意しなければならず、測定装置の製造コストおよび測定コストが増大してしまう。 Conventional methods for measuring a hematocrit value include a micro hematocrit method for centrifuging blood and an electric conduction method for obtaining a hematocrit value from the electrical conductivity of blood. However, in the conventional method for measuring hematocrit, other devices such as a centrifuge, a device for measuring electrical conductivity, and a device for measuring hematocrit need to be newly prepared. Will increase.
 一方、特許文献1,2に記載の測定方法では、臨界角以上の入射角で金属膜に励起光を照射したときに、測定チップで発生し、検体中を透過するときに検体で散乱されたプラズモン散乱光の光量に基づいて、全血のヘマトクリット値を決定しうる。このため、特許文献1,2に記載の測定方法では、ヘマトクリット値測定用の装置を新たに用意する必要がない。 On the other hand, in the measurement methods described in Patent Documents 1 and 2, when the excitation light is irradiated onto the metal film at an incident angle greater than the critical angle, it is generated at the measurement chip and scattered by the sample when passing through the sample. The hematocrit value of whole blood can be determined based on the amount of plasmon scattered light. For this reason, the measuring methods described in Patent Documents 1 and 2 do not require a new apparatus for measuring hematocrit values.
国際公開第2015/129615号International Publication No. 2015/129615 国際公開第2016/039149号International Publication No. 2016/039149
 しかしながら、プラズモン散乱光の強度(光量)は弱く、かつヘマトクリット値とプラズモン散乱光の強度との相関も弱いため、特許文献1,2に記載のヘマトクリット値の測定方法には、ヘマトクリット値を、より高精度に測定する観点から改善の余地がある。 However, since the intensity (light quantity) of the plasmon scattered light is weak and the correlation between the hematocrit value and the intensity of the plasmon scattered light is also weak, the hematocrit value measurement method described in Patent Documents 1 and 2 has a higher hematocrit value. There is room for improvement from the viewpoint of measuring with high accuracy.
 本発明の目的は、表面プラズモン共鳴を利用した測定方法であって、ヘマトクリット値測定用の装置を新たに用意しなくてもヘマトクリット値を高精度に測定でき、全血を含む検体中の被測定物質の量を高精度に測定できる測定方法を提供することである。 An object of the present invention is a measurement method using surface plasmon resonance, which can measure a hematocrit value with high accuracy without newly preparing a device for measuring a hematocrit value, and is to be measured in a specimen containing whole blood. It is to provide a measurement method capable of measuring the amount of a substance with high accuracy.
 上記課題を解決するため、本発明の一実施の形態に係る測定方法は、表面プラズモン共鳴を利用して、全血を含む検体中の被測定物質の量を測定するための測定方法であって、入射面および成膜面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜上に固定された捕捉体とを有する測定チップを準備する工程と、前記金属膜上に前記検体が存在する状態で、前記プリズム側から臨界角未満の第1の入射角で前記金属膜に第1の光を照射したときに、前記金属膜および前記検体を透過した前記第1の光が、前記検体中で散乱されることで得られる散乱光を検出する工程と、前記金属膜上において、前記被測定物質が前記捕捉体に捕捉され、かつ前記検体が存在しない状態で、前記プリズム側から臨界角以上の第2の入射角で前記金属膜に第2の光を照射したときに前記測定チップで生じる、前記被測定物質の量を示すシグナルを検出する工程と、検出された前記散乱光の光量から決定される、前記検体のヘマトクリット値に基づいて、検出された前記シグナルから決定される、前記被測定物質の量を示す測定値を補正する工程と、を含む。 In order to solve the above problems, a measurement method according to an embodiment of the present invention is a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance. Preparing a measuring chip having a prism having an incident surface and a film-forming surface, a metal film disposed on the film-forming surface, and a capturing body fixed on the metal film; In the state where the specimen exists, when the first light is irradiated from the prism side at the first incident angle less than the critical angle, the first light that has passed through the metal film and the specimen is transmitted. A step of detecting scattered light obtained by scattering light in the specimen; and on the metal film, the substance to be measured is captured by the capture body, and the specimen is not present, Second incident angle greater than critical angle from prism side A step of detecting a signal indicating the amount of the substance to be measured, which is generated in the measurement chip when the second light is irradiated on the metal film, and the amount of the scattered light detected is determined from the detected amount of the scattered light. Correcting a measured value indicating the amount of the substance to be measured, determined from the detected signal, based on a hematocrit value.
 本発明によれば、表面プラズモン共鳴を利用した測定方法において、ヘマトクリット値測定用の装置を新たに追加することなく、ヘマトクリット値を高精度に測定することができる。したがって、本発明によれば、測定装置の製造コストおよび測定コストを増大させることなく、全血を含む検体中の被測定物質の量を高精度に測定することができる。 According to the present invention, in a measurement method using surface plasmon resonance, a hematocrit value can be measured with high accuracy without adding a new hematocrit value measurement device. Therefore, according to the present invention, the amount of a substance to be measured in a specimen containing whole blood can be measured with high accuracy without increasing the manufacturing cost and measurement cost of the measuring apparatus.
図1は、本発明の一実施の形態に係る測定方法の一例を示すフローチャートである。FIG. 1 is a flowchart showing an example of a measurement method according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係る測定方法を実施するために使用されうる測定チップおよび測定装置(SPFS装置)の構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a measurement chip and a measurement device (SPFS device) that can be used to perform the measurement method according to an embodiment of the present invention. 図3A、Bは、シミュレーションの結果を示すグラフである。3A and 3B are graphs showing the results of simulation. 図4A、Bは、参考実験1の結果を示すグラフである。4A and 4B are graphs showing the results of Reference Experiment 1. FIG. 図5A、Bは、参考実験1の結果を示すグラフである。5A and 5B are graphs showing the results of Reference Experiment 1. FIG. 図6は、散乱光の光量と、ヘマトクリット値との相関を示すグラフである。FIG. 6 is a graph showing the correlation between the amount of scattered light and the hematocrit value. 図7は、参考実験2の結果を示すグラフである。FIG. 7 is a graph showing the results of Reference Experiment 2. 図8は、参考実験3の結果を示すグラフである。FIG. 8 is a graph showing the results of Reference Experiment 3. 図9は、変形例に係る測定方法の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a measurement method according to the modification.
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。本発明に係る測定方法は、表面プラズモン共鳴を利用して、全血を含む検体中の被測定物質の量を測定するための測定方法である。ここでは、本発明に係る測定方法の代表例として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)を利用した測定方法について説明する。本実施の形態に係る測定方法では、被測定物質の量を示すシグナルとして、被測定物質を標識する蛍光物質から放出される蛍光を検出する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The measurement method according to the present invention is a measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance. Here, as a representative example of the measurement method according to the present invention, a measurement method using surface plasmon excitation enhanced fluorescence spectroscopy (Surface Plasmon-field enhanced Fluorescence Spectroscopy: hereinafter abbreviated as “SPFS”) will be described. In the measurement method according to the present embodiment, fluorescence emitted from a fluorescent substance that labels the substance to be measured is detected as a signal indicating the amount of the substance to be measured.
 図1は、実施の形態1に係る測定方法の一例を示すフローチャートである。図2は、実施の形態1に係る測定方法を実施するために使用されうる測定チップ10および測定装置(SPFS装置)100の構成の一例を示す図である。測定チップ10およびSPFS装置100については、別途詳細に説明する。 FIG. 1 is a flowchart showing an example of a measurement method according to the first embodiment. FIG. 2 is a diagram illustrating an example of the configuration of the measurement chip 10 and the measurement apparatus (SPFS apparatus) 100 that can be used to implement the measurement method according to the first embodiment. The measurement chip 10 and the SPFS device 100 will be described in detail separately.
 本実施の形態に係る測定方法は、測定の準備をする工程(工程S110)と、増強角を決定する工程(工程S111)と、第1の光学ブランク値を測定する工程(工程S112)と、第2の光学ブランク値を測定する工程(工程S113)と、1次反応を行う工程(工程S114)と、散乱光を検出する工程(工程S115)と、2次反応を行う工程(工程S116)と、蛍光シグナルを検出する工程(工程S117)と、測定値を補正する工程(工程S118)と、を含む。 The measurement method according to the present embodiment includes a step of preparing for measurement (step S110), a step of determining an enhancement angle (step S111), a step of measuring a first optical blank value (step S112), A step of measuring the second optical blank value (step S113), a step of performing a primary reaction (step S114), a step of detecting scattered light (step S115), and a step of performing a secondary reaction (step S116). And a step of detecting a fluorescent signal (step S117) and a step of correcting the measurement value (step S118).
 1)測定の準備
 まず、測定の準備をする(工程S110)。具体的には、測定チップ10を準備し、SPFS装置100の設置位置に配置されたチップホルダー142に、測定チップ10を設置する。ここで、「設置位置」とは、測定チップ10をSPFS装置100に設置するための位置である。
1) Preparation for measurement First, preparation for measurement is performed (step S110). Specifically, the measurement chip 10 is prepared, and the measurement chip 10 is installed in the chip holder 142 arranged at the installation position of the SPFS device 100. Here, the “installation position” is a position for installing the measurement chip 10 in the SPFS device 100.
 (測定チップ)
 ここで、SPFS装置100で使用される測定チップ10について説明する。図2に示されるように、測定チップ10は、プリズム20、金属膜30および流路蓋40を有する。本実施の形態では、測定チップ10の流路蓋40は、液体を収容するための液体チップ50と一体化されている。
(Measurement chip)
Here, the measurement chip 10 used in the SPFS apparatus 100 will be described. As shown in FIG. 2, the measurement chip 10 includes a prism 20, a metal film 30, and a channel lid 40. In the present embodiment, the flow path lid 40 of the measurement chip 10 is integrated with a liquid chip 50 for containing a liquid.
 プリズム20は、入射面21、成膜面22および出射面23を有する。入射面21は、後述の光出射部110からの出射光αをプリズム20の内部に入射させる。成膜面22上には、金属膜30が配置されている。出射面23は、入射面21でプリズム20内に入射し、プリズム20と金属膜30との界面(成膜面22)で反射された反射光をプリズム20の外部に出射させる。 The prism 20 has an incident surface 21, a film forming surface 22, and an exit surface 23. The incident surface 21 causes an outgoing light α from a light emitting unit 110 described later to enter the prism 20. A metal film 30 is disposed on the film formation surface 22. The exit surface 23 enters the prism 20 at the entrance surface 21, and causes the reflected light reflected by the interface (deposition surface 22) between the prism 20 and the metal film 30 to exit to the outside of the prism 20.
 プリズム20の形状は、特に限定されない。本実施の形態では、プリズム20の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面22であり、一方の脚に対応する面が入射面21であり、他方の脚に対応する面が出射面23である。 The shape of the prism 20 is not particularly limited. In the present embodiment, the shape of the prism 20 is a column having a trapezoidal bottom surface. The surface corresponding to one base of the trapezoid is the film formation surface 22, the surface corresponding to one leg is the incident surface 21, and the surface corresponding to the other leg is the emission surface 23.
 入射面21は、光出射部110からの出射光αが入射面21で反射してSPFS装置100の光源に戻らないように形成される。出射光αの光源がレーザーダイオード(以下「LD」ともいう)である場合、出射光αがLDに戻ると、LDの励起状態が乱れてしまい、出射光αの波長や出力が変動してしまう。そこで、理想的な共鳴角または増強角を中心とする走査範囲において、出射光αが入射面21に垂直に入射しないように、入射面21の角度が設定される。 The incident surface 21 is formed so that the emitted light α from the light emitting unit 110 is reflected by the incident surface 21 and does not return to the light source of the SPFS device 100. When the light source of the emitted light α is a laser diode (hereinafter also referred to as “LD”), when the emitted light α returns to the LD, the excited state of the LD is disturbed, and the wavelength and output of the emitted light α change. . Therefore, the angle of the incident surface 21 is set so that the emitted light α does not enter the incident surface 21 perpendicularly in a scanning range centered on an ideal resonance angle or enhancement angle.
 ここで「共鳴角」とは、金属膜30に対する出射光αの入射角を走査した場合に、出射面23から出射される出射光αの反射光の光量が最小となるときの、入射角を意味する。また、「増強角」とは、金属膜30に対する出射光αの入射角を走査した場合に、測定チップ10の上方に放出される出射光αと同一波長の散乱光(以下「プラズモン散乱光」という)γの光量が最大となるときの、入射角を意味する。本明細書中、金属膜30に対する出射光αの入射角が臨界角以上のときに、測定チップ10上に放出される光を「プラズモン散乱光γ」という。また、金属膜30に対する出射光αの入射角が臨界角未満のときに、測定チップ10の上方に放出される光を「散乱光γ’」という。本実施の形態では、入射面21と成膜面22との角度および成膜面22と出射面23との角度は、いずれも約80度である。 Here, the “resonance angle” refers to the incident angle when the amount of reflected light of the emitted light α emitted from the emission surface 23 is minimized when the incident angle of the emitted light α with respect to the metal film 30 is scanned. means. The “enhancement angle” refers to scattered light having the same wavelength as the emitted light α emitted above the measurement chip 10 when the incident angle of the emitted light α with respect to the metal film 30 is scanned (hereinafter referred to as “plasmon scattered light”). It means the incident angle when the amount of γ is maximized. In the present specification, light emitted onto the measurement chip 10 when the incident angle of the emitted light α with respect to the metal film 30 is equal to or larger than the critical angle is referred to as “plasmon scattered light γ”. The light emitted above the measurement chip 10 when the incident angle of the emitted light α with respect to the metal film 30 is less than the critical angle is referred to as “scattered light γ ′”. In the present embodiment, the angle between the incident surface 21 and the film formation surface 22 and the angle between the film formation surface 22 and the emission surface 23 are both about 80 degrees.
 なお、測定チップ10の設計により、共鳴角(およびその極近傍にある増強角)が概ね決まる。設計要素は、プリズム20の屈折率や、金属膜30の屈折率、金属膜30の厚み、金属膜30の消衰係数(消光係数)、出射光αの波長などである。金属膜30上に捕捉された被測定物質によって共鳴角および増強角がシフトするが、その量は数度未満である。 Note that the resonance angle (and the enhancement angle near the pole) is generally determined by the design of the measurement chip 10. The design factors are the refractive index of the prism 20, the refractive index of the metal film 30, the thickness of the metal film 30, the extinction coefficient (extinction coefficient) of the metal film 30, the wavelength of the outgoing light α, and the like. The resonance angle and the enhancement angle are shifted by the substance to be measured trapped on the metal film 30, but the amount is less than several degrees.
 プリズム20は、出射光αに対して透明な誘電体からなる。プリズム20は、複屈折特性を少なからず有する。プリズム20の材料の例には、樹脂およびガラスが含まれる。プリズム20を構成する樹脂の例には、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、およびシクロオレフィン系ポリマーが含まれる。プリズム20の材料は、好ましくは、屈折率が1.4~1.6であり、かつ複屈折が小さい樹脂である。 The prism 20 is made of a dielectric that is transparent to the outgoing light α. The prism 20 has a number of birefringence characteristics. Examples of the material of the prism 20 include resin and glass. Examples of the resin constituting the prism 20 include polymethyl methacrylate (PMMA), polycarbonate (PC), and cycloolefin-based polymer. The material of the prism 20 is preferably a resin having a refractive index of 1.4 to 1.6 and a small birefringence.
 金属膜30は、プリズム20の成膜面22上に配置されている。これにより、成膜面22に全反射条件で入射した出射光αの光子と、金属膜30中の自由電子との間で表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)が生じ、金属膜30の表面上に局在場光(一般に「エバネッセント光」または「近接場光」とも呼ばれる)を生じさせることができる。局在場光は、金属膜30の表面から出射光αの波長程度離れた距離まで及ぶ。金属膜30は、成膜面22上の全面に形成されていてもよいし、成膜面22上の一部に形成されていてもよい。本実施の形態では、金属膜30は、成膜面22の全面に形成されている。 The metal film 30 is disposed on the film formation surface 22 of the prism 20. As a result, surface plasmon resonance (hereinafter abbreviated as “SPR”) occurs between the photon of the outgoing light α incident on the film formation surface 22 under the total reflection condition and the free electrons in the metal film 30. Localized field light (generally also called “evanescent light” or “near field light”) can be generated on the surface of the metal film 30. The localized field light extends from the surface of the metal film 30 to a distance that is about the wavelength of the outgoing light α. The metal film 30 may be formed on the entire surface of the film formation surface 22 or may be formed on a part of the film formation surface 22. In the present embodiment, the metal film 30 is formed on the entire film formation surface 22.
 金属膜30には、被測定物質を捕捉するための捕捉体が固定化されている。金属膜30上において、捕捉体が固定化されている領域を、特に「反応場」という。捕捉体は、金属膜30の全面に固定化されていてもよいし、表面の一部に固定化されていてもよい。捕捉体は、被測定物質に特異的に結合する。このため、被測定物質は、捕捉体を介して金属膜30上に固定化されうる。 A capture body for capturing the substance to be measured is immobilized on the metal film 30. A region where the capturing body is immobilized on the metal film 30 is particularly referred to as a “reaction field”. The capturing body may be fixed to the entire surface of the metal film 30 or may be fixed to a part of the surface. The capturing body specifically binds to the substance to be measured. For this reason, the substance to be measured can be immobilized on the metal film 30 via the capturing body.
 捕捉体の種類は、被測定物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被測定物質に特異的に結合可能な抗体(1次抗体)またはその断片、被測定物質に特異的に結合可能な酵素などである。 The type of the capturing body is not particularly limited as long as the substance to be measured can be captured. For example, the capturing body is an antibody (primary antibody) or a fragment thereof that can specifically bind to the substance to be measured, an enzyme that can specifically bind to the substance to be measured, or the like.
 金属膜30の材料は、表面プラズモン共鳴(SPR)を生じさせるとともに、出射光αの少なくとも一部が透過することができれば特に限定されない。金属膜30の材料の例には、金、銀、銅、およびこれらの合金が含まれる。金属膜30の厚みは、SPRを効率的に発生させる観点、および出射光αに対する所望の透過率を得る観点から、30~60nmであることが好ましい。出射光αに対する金属膜30の透過率は、例えば、50度の入射角でP偏光の光を金属膜30に照射したとき、3~30%である。 The material of the metal film 30 is not particularly limited as long as it causes surface plasmon resonance (SPR) and at least a part of the emitted light α can be transmitted. Examples of the material of the metal film 30 include gold, silver, copper, and alloys thereof. The thickness of the metal film 30 is preferably 30 to 60 nm from the viewpoint of efficiently generating SPR and obtaining a desired transmittance for the emitted light α. The transmittance of the metal film 30 with respect to the emitted light α is, for example, 3 to 30% when the P-polarized light is irradiated onto the metal film 30 at an incident angle of 50 degrees.
 また、金属膜30の厚みは、上記観点から、材料に応じて適宜設定されうる。たとえば、金属膜30の材料が金である場合、透過率を5~30%とするために、金属膜30の厚みは30~55nmであることが好ましい(後述の参考実験3参照)。また、金属膜30の材料が銀である場合、透過率を3~20%とするために、金属膜30の厚みは35~60nmであることが好ましい。さらに、金属膜30の材料が銅である場合、透過率を5~25%とするために、金属膜30の厚みは30~55nmであることが好ましい。上記材料の中でも、金属膜30の材料は、金であることが好ましい。金は、他の金属と比較して、透過率が高く、SPRを高効率に発生でき、かつ外部環境に対する安定性(例えば、耐酸化性)が高いためである。本実施の形態では、金属膜30は、金薄膜である。金属膜30の形成方法は、特に限定されない。金属膜30の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。 Further, the thickness of the metal film 30 can be appropriately set according to the material from the above viewpoint. For example, when the material of the metal film 30 is gold, the thickness of the metal film 30 is preferably 30 to 55 nm in order to set the transmittance to 5 to 30% (see Reference Experiment 3 described later). When the material of the metal film 30 is silver, the thickness of the metal film 30 is preferably 35 to 60 nm in order to make the transmittance 3 to 20%. Further, when the material of the metal film 30 is copper, the thickness of the metal film 30 is preferably 30 to 55 nm in order to make the transmittance 5 to 25%. Among the above materials, the material of the metal film 30 is preferably gold. This is because gold has higher transmittance than other metals, can generate SPR with high efficiency, and has high stability (for example, oxidation resistance) against the external environment. In the present embodiment, the metal film 30 is a gold thin film. The method for forming the metal film 30 is not particularly limited. Examples of the method for forming the metal film 30 include sputtering, vapor deposition, and plating.
 流路蓋40は、金属膜30上に配置されている。金属膜30がプリズム20の成膜面22の一部にのみ形成されている場合、流路蓋40は、成膜面22上に配置されていてもよい。本実施の形態では、流路蓋40は、金属膜30の上に配置されている。金属膜30上に流路蓋40を配置することで液体を収容するための収容部が金属膜30上に形成される。本実施の形態では、当該収容部は、液体が流れる流路41である。流路41は、底面と、天面と、当該底面および当該天面を接続する一対の側面とを有する。本明細書中、流路41のプリズム20側の面を流路の底面といい、流路41の、流路41の底面と対向する面を流路の天面という。また、流路41の底面と流路41の天面との間隔を流路41の高さという。 The flow path lid 40 is disposed on the metal film 30. When the metal film 30 is formed only on a part of the film formation surface 22 of the prism 20, the flow path lid 40 may be disposed on the film formation surface 22. In the present embodiment, the flow path lid 40 is disposed on the metal film 30. By placing the flow path lid 40 on the metal film 30, an accommodating portion for accommodating the liquid is formed on the metal film 30. In the present embodiment, the storage portion is a flow path 41 through which a liquid flows. The channel 41 has a bottom surface, a top surface, and a pair of side surfaces that connect the bottom surface and the top surface. In this specification, the surface of the channel 41 on the prism 20 side is referred to as the bottom surface of the channel, and the surface of the channel 41 that faces the bottom surface of the channel 41 is referred to as the top surface of the channel. The distance between the bottom surface of the flow channel 41 and the top surface of the flow channel 41 is referred to as the height of the flow channel 41.
 流路蓋40の裏面には、凹部(流路溝)が形成されている。金属膜30(およびプリズム20)上に流路蓋40が配置され、当該凹部の開口部が金属膜30により閉塞されることで、流路41が形成される。局在場光が及ぶ領域を十分に確保する観点からは、流路41の高さ(流路溝の深さ)は、ある程度大きいことが好ましい。流路41内に混入する不純物の量を低減する観点からは、流路41の高さ(流路溝の深さ)は、小さいことが好ましい。このような観点から、流路41の高さは、0.05~0.15mmの範囲内であることが好ましい。流路41の両端は、流路41内と外部とを連通させるように、流路蓋40に形成された不図示の注入口および排気口とそれぞれ接続されている。 A recess (flow channel groove) is formed on the back surface of the flow channel lid 40. The flow path lid 40 is disposed on the metal film 30 (and the prism 20), and the opening of the concave portion is closed by the metal film 30, whereby the flow path 41 is formed. From the viewpoint of sufficiently securing a region covered with the localized field light, it is preferable that the height of the flow channel 41 (depth of the flow channel groove) is large to some extent. From the viewpoint of reducing the amount of impurities mixed into the flow channel 41, the height of the flow channel 41 (the depth of the flow channel groove) is preferably small. From such a viewpoint, the height of the flow path 41 is preferably in the range of 0.05 to 0.15 mm. Both ends of the channel 41 are connected to an inlet and an exhaust port (not shown) formed in the channel lid 40 so that the inside of the channel 41 communicates with the outside.
 流路蓋40は、金属膜30上から放出される光(蛍光β、散乱光γ’およびプラズモン散乱光γ)に対して透明な材料からなることが好ましい。流路蓋40の材料の例には、ガラスおよび樹脂が含まれる。当該樹脂の例には、ポリメタクリル酸メチル樹脂(PMMA)が含まれる。また、上記の光に対して透明であれば、流路蓋40の他の部分は、不透明な材料で形成されていてもよい。流路蓋40は、例えば、両面テープや接着剤などによる接着や、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより金属膜30またはプリズム20に接合されている。 The channel lid 40 is preferably made of a material that is transparent to light (fluorescence β, scattered light γ ′, and plasmon scattered light γ) emitted from the metal film 30. Examples of the material of the flow path lid 40 include glass and resin. Examples of the resin include polymethyl methacrylate resin (PMMA). Moreover, as long as it is transparent with respect to said light, the other part of the flow-path cover 40 may be formed with the opaque material. The flow path lid 40 is bonded to the metal film 30 or the prism 20 by, for example, adhesion using a double-sided tape or an adhesive, laser welding, ultrasonic welding, or pressure bonding using a clamp member.
 なお、上記の流路蓋40の代わりに、裏面に凹部(流路溝)が形成されていない流路蓋を使用してもよい。この場合、凹部を有さない流路蓋と、金属膜30またはプリズム20とは、中央部に流路となる貫通孔が形成された、厚み0.05~0.15mmの両面テープを用いて接合される。このようにして、流路41が形成されてもよい。 In addition, you may use the flow path cover in which the recessed part (flow path groove) is not formed in the back surface instead of said flow path cover 40. FIG. In this case, the flow path lid having no recess and the metal film 30 or the prism 20 are formed by using a double-sided tape having a thickness of 0.05 to 0.15 mm in which a through hole serving as a flow path is formed in the central portion. Be joined. In this way, the flow path 41 may be formed.
 測定チップ10は、通常、測定のたびに交換される。また、測定チップ10は、好ましくは各片の長さが数mm~数cmの構造物であるが、「チップ」の範疇に含まれない、より小型の構造物またはより大型の構造物であってもよい。 The measurement chip 10 is usually replaced for each measurement. The measuring chip 10 is preferably a structure having a length of several mm to several cm for each piece, but is a smaller structure or a larger structure that is not included in the category of “chip”. May be.
 なお、測定の準備をする工程(工程S110)では、測定チップ10の金属膜30上に保存試薬が存在する場合には、捕捉体が適切に被測定物質を捕捉できるように、金属膜30上を洗浄して保存試薬を除去する。 In the step of preparing for measurement (step S110), when a storage reagent is present on the metal film 30 of the measurement chip 10, the capture body can appropriately capture the substance to be measured on the metal film 30. To remove the storage reagent.
 2)増強角の決定
 次いで、増強角を決定する(工程S111)。具体的には、まず、流路41内に測定液を注入する。たとえば、後述のピペット131を用いて、流路41内に測定液を提供する。測定液は、出射光αに対して透明であればよく、例えば、リン酸緩衝生理食塩水(PBS)やTween20含有トリス緩衝生理食塩水(TBS-T)、HEPES緩衝生理食塩水(HBS)などの緩衝液である。
2) Determination of enhancement angle Next, the enhancement angle is determined (step S111). Specifically, first, the measurement liquid is injected into the flow path 41. For example, the measurement liquid is provided in the flow path 41 using a pipette 131 described later. The measurement solution only needs to be transparent to the emitted light α. For example, phosphate buffered saline (PBS), Tween20-containing Tris buffered saline (TBS-T), HEPES buffered saline (HBS), etc. Buffer solution.
 次いで、流路41内に測定液が存在する状態で、プリズム20を介して、捕捉体が固定化されている領域に対応する金属膜30の裏面に、金属膜30に対する出射光αの入射角度を走査しながら出射光αを照射するとともに、測定チップ10で生じるプラズモン散乱光γを検出する。本実施の形態では、角度調整機構112により、光源ユニット111からの出射光αの金属膜30への入射角を走査するとともに、受光センサー126でプラズモン散乱光γを検出する。これにより、金属膜30に対する出射光αの入射角と、プラズモン散乱光γの光量との関係を含むデータが得られる。得られたデータを解析して、プラズモン散乱光γの光量が最大となるときの入射角である増強角を決定する。なお、本工程では、蛍光β成分のみを透過させ、出射光α成分(散乱光γ’およびプラズモン散乱光γ)を除去する光学フィルター124(後述)は、その一部または全部がプラズモン散乱光γの光路外に位置するように配置されている。これにより、出射光α成分は、受光センサー126に入射する。 Next, the incident angle of the emitted light α with respect to the metal film 30 on the back surface of the metal film 30 corresponding to the region where the capturing body is fixed via the prism 20 in a state where the measurement liquid is present in the flow path 41. Irradiates the emitted light α while scanning, and detects the plasmon scattered light γ generated in the measurement chip 10. In the present embodiment, the angle adjustment mechanism 112 scans the incident angle of the emitted light α from the light source unit 111 to the metal film 30 and detects the plasmon scattered light γ by the light receiving sensor 126. Thereby, data including the relationship between the incident angle of the outgoing light α with respect to the metal film 30 and the light amount of the plasmon scattered light γ is obtained. The obtained data is analyzed to determine the enhancement angle, which is the incident angle when the amount of plasmon scattered light γ is maximized. In this step, the optical filter 124 (described later) that transmits only the fluorescent β component and removes the emitted light α component (scattered light γ ′ and plasmon scattered light γ) is partially or entirely plasmon scattered light γ. It is arranged to be located outside the optical path. Thereby, the emitted light α component enters the light receiving sensor 126.
 なお、増強角は、プリズム20の素材および形状、金属膜30の厚み、流路41内の液体の屈折率などにより決まるが、流路41内の捕捉体の種類および量、プリズム20の形状誤差、測定チップ10のSPFS装置100への設置誤差などの各種要因によりわずかに変動する。このため、測定を行うたびに増強角を決定することが好ましい。増強角は、0.1度程度のオーダーで決定される。 The enhancement angle is determined by the material and shape of the prism 20, the thickness of the metal film 30, the refractive index of the liquid in the flow channel 41, etc., but the type and amount of the trapped body in the flow channel 41, the shape error of the prism 20 The measurement chip 10 varies slightly due to various factors such as an installation error in the SPFS device 100. For this reason, it is preferable to determine the enhancement angle every time measurement is performed. The enhancement angle is determined on the order of about 0.1 degree.
 3)第1の光学ブランク値の測定
 次いで、第1の光学ブランク値を測定する(工程S112)。ここで、第1の光学ブランク値とは、ヘマトクリット値を決定するときに使用される光学ブランク値であり、測定液が流路41内に存在する状態で、臨界角未満の所定の第1の入射角で金属膜30に対して出射光αを照射したときに、測定チップ10の上方に放出される、出射光αと同じ波長の光の光量を意味する。以下、第1の入射角で金属膜30に対して照射される出射光αを「第1の出射光α(特許請求の範囲では、「第1の光」と称している)」ともいう。
3) Measurement of first optical blank value Next, the first optical blank value is measured (step S112). Here, the first optical blank value is an optical blank value used when determining the hematocrit value, and is a predetermined first value less than the critical angle in a state where the measurement liquid is present in the flow path 41. It means the amount of light having the same wavelength as the emitted light α emitted above the measuring chip 10 when the emitted light α is irradiated onto the metal film 30 at an incident angle. Hereinafter, the emitted light α irradiated to the metal film 30 at the first incident angle is also referred to as “first emitted light α 1 (referred to as“ first light ”in the claims”). .
 本工程では、まず、臨界角未満の第1の入射角で金属膜30に対して第1の出射光αを照射するとともに、測定チップ10の上方に放出される光を検出する。詳細については後述するが、第1の入射角は、臨界角未満であればよく、ヘマトクリット値を高精度に測定し、かつSPFS装置100の大型化を抑制する観点からは、第1の入射角は、臨界角よりある程度(例えば、5~10度程度)小さいことが好ましい。また、本実施の形態では、光源ユニット111から第1の出射光αを第1の入射角で金属膜30に照射させつつ、受光センサー126で測定チップ10の上方に放出される光を検出する。これにより、散乱光γ’の検出(工程S115)においてノイズとなる光の光量である第1の光学ブランク値が得られる。なお、本工程でも、光学フィルター124は、その一部または全部が光路外に位置するように配置されている。 In this step, first, the metal film 30 is irradiated with the first outgoing light α1 at a first incident angle less than the critical angle, and light emitted above the measurement chip 10 is detected. Although the details will be described later, the first incident angle only needs to be less than the critical angle. From the viewpoint of measuring the hematocrit value with high accuracy and suppressing the SPFS device 100 from becoming large, the first incident angle. Is preferably smaller than the critical angle (for example, about 5 to 10 degrees). Further, in the present embodiment, while the light source unit 111 is irradiated with the first outgoing light alpha 1 to the metal film 30 in the first incidence angle, detecting the light emitted above the measuring chip 10 by the light receiving sensor 126 To do. Thereby, the first optical blank value, which is the amount of light that becomes noise in the detection of the scattered light γ ′ (step S115), is obtained. Even in this step, the optical filter 124 is disposed so that a part or all of the optical filter 124 is located outside the optical path.
 4)第2の光学ブランク値の測定
 次いで、第2の光学ブランク値を測定する(工程S113)。ここで、第2の光学ブランク値とは、被測定物質の量を決定するときに使用される光学ブランク値であり、測定液が流路41内に存在する状態で、臨界角以上の所定の第2の入射角で金属膜30に対して出射光αを照射したときに、測定チップ10の上方に放出される、出射光αと同じ波長の光の光量を意味する。以下、第2の入射角で金属膜30に対して照射される出射光αを「第2の出射光α(特許請求の範囲では、「第2の光」と称している)」ともいう。
4) Measurement of second optical blank value Next, a second optical blank value is measured (step S113). Here, the second optical blank value is an optical blank value used when determining the amount of the substance to be measured, and in a state in which the measurement liquid is present in the flow path 41, the second optical blank value is a predetermined value greater than the critical angle. It means the amount of light having the same wavelength as the emitted light α emitted above the measuring chip 10 when the emitted light α is irradiated onto the metal film 30 at the second incident angle. Hereinafter, the emitted light α irradiated to the metal film 30 at the second incident angle is also referred to as “second emitted light α 2 (referred to as“ second light ”in the claims)”. .
 本工程では、まず、金属膜30(成膜面22)に対する出射光αの入射角を、第2の入射角に切り替える。第2の入射角は、臨界角以上であればよく、出射光αが照射された金属膜30においてSPRを生じさせるための角度である。本実施の形態では、光源ユニット111内の光源を回動させて、第1の入射角から工程S111において決定した増強角(第2の入射角)に切り替える。次いで、金属膜30に対して増強角で第2の出射光αを照射するとともに、測定チップ10の上方に放出される光を検出する。本実施の形態では、光源ユニット111から第2の出射光αを増強角で金属膜30に照射させつつ、受光センサー126で測定チップ10の上方に放出される光を検出する。これにより、蛍光シグナルの検出(工程S117)においてノイズとなる光の光量である第2の光学ブランク値が得られる。なお、本工程では、光学フィルター124は、光路上に配置されている。 In this step, first, the incident angle of the emitted light α with respect to the metal film 30 (deposition surface 22) is switched to the second incident angle. The second incident angle only needs to be equal to or greater than the critical angle, and is an angle for generating SPR in the metal film 30 irradiated with the emitted light α. In the present embodiment, the light source in the light source unit 111 is rotated to switch from the first incident angle to the enhancement angle (second incident angle) determined in step S111. Next, the metal film 30 is irradiated with the second outgoing light α2 at an enhancement angle, and the light emitted above the measurement chip 10 is detected. In this embodiment, while irradiating the metal film 30 from the light source unit 111 and the second outgoing light alpha 2 in enhancing angle, it detects the light emitted above the measuring chip 10 by the light receiving sensor 126. Thereby, the 2nd optical blank value which is the light quantity of the light used as noise in detection of a fluorescence signal (process S117) is obtained. In this step, the optical filter 124 is disposed on the optical path.
 5)1次反応
 次いで、検体中の被測定物質と金属膜30上の捕捉体とを反応させる(1次反応;工程S114)。具体的には、まず、流路41内から測定液を除去し、流路41内に検体を注入する。たとえば、ピペット131を用いて、流路41内の測定液を吸引した後に、流路41内に検体を提供する。これにより、検体中に被測定物質が存在する場合には、被測定物質の少なくとも一部は金属膜30上の捕捉体により捕捉されうる。
5) Primary reaction Next, the substance to be measured in the specimen is reacted with the capturing body on the metal film 30 (primary reaction; step S114). Specifically, first, the measurement liquid is removed from the flow path 41 and the specimen is injected into the flow path 41. For example, the sample is provided in the flow channel 41 after the measurement liquid in the flow channel 41 is aspirated using the pipette 131. Thereby, when the substance to be measured exists in the specimen, at least a part of the substance to be measured can be captured by the capturing body on the metal film 30.
 検体は、全血を含んでおり、必要に応じて希釈されていてもよい。後述の工程S115において散乱光γ’を高強度に測定する観点からは、検体の濃度は高いことが好ましい。これは、検体の濃度が高いほど検体中で散乱される光量が増え、検出される散乱光γ’の光量が増大するためである。一方で、後述の工程S117において蛍光βを高精度に測定する観点からは、検体の濃度はある程度低いことが好ましい。これは、検体の濃度がある程度低いことによって、検体中の不純物が捕捉体に吸着(非特異吸着)される量を減少させ、ノイズを減少させうるためである。また、捕捉体の量に対する被測定物質の量を適切な範囲内に調整することで、捕捉体で捕捉できる被測定物質の量が飽和してしまうのを抑制することができる。希釈液としては、例えば、生理食塩水が使用され得る。全血中の被測定物質の例には、トロポニン、ミオグロビンおよびクレアチンキナーゼ-MB(CK-MB)が含まれる。 The specimen contains whole blood and may be diluted as necessary. From the viewpoint of measuring scattered light γ 'with high intensity in step S115 described later, the concentration of the specimen is preferably high. This is because the amount of light scattered in the specimen increases as the concentration of the specimen increases, and the quantity of scattered light γ 'detected increases. On the other hand, the concentration of the sample is preferably low to some extent from the viewpoint of measuring the fluorescence β with high accuracy in step S117 described later. This is because when the concentration of the specimen is low to some extent, the amount of impurities in the specimen that are adsorbed (non-specific adsorption) on the capturing body can be reduced, and noise can be reduced. Moreover, it can suppress that the quantity of the to-be-measured substance which can be capture | acquired with a capture body will be saturated by adjusting the quantity of the to-be-measured substance with respect to the quantity of a capture body in the suitable range. As the diluent, for example, physiological saline can be used. Examples of substances to be measured in whole blood include troponin, myoglobin, and creatine kinase-MB (CK-MB).
 6)散乱光の検出
 次いで、検体のヘマトクリット値を示す散乱光γ’を検出する(工程S115)。具体的には、プリズム20側から第1の入射角で金属膜30に第1の出射光αを照射したときに、金属膜30および検体を透過した第1の出射光αが、検体中で散乱することで得られる散乱光γ’を検出する。より具体的には、散乱光γ’は、検体中の血球成分により第1の出射光αが散乱されることで得られる。本実施の形態では、光源ユニット111から出射光αを第1の入射角となるように金属膜30に照射させつつ、受光センサー126で散乱光γ’を検出する。これにより、検体のヘマトクリット値を示す散乱光γ’の光量を測定することができる。なお、本工程では、光学フィルター124は、その一部または全部が散乱光γ’の光路外に位置するように配置されている。
6) Detection of scattered light Next, scattered light γ ′ indicating the hematocrit value of the specimen is detected (step S115). More specifically, when irradiated with the first outgoing light alpha 1 to the metal film 30 in the first incidence angle from the prism 20 side, the first outgoing light alpha 1 is transmitted through the metal film 30 and the specimen, the specimen Scattered light γ ′ obtained by scattering in is detected. More specifically, the scattered light gamma 'is obtained by first outgoing light alpha 1 is scattered by the blood cells in the specimen. In the present embodiment, the light receiving sensor 126 detects the scattered light γ ′ while irradiating the metal film 30 with the emitted light α from the light source unit 111 so as to have the first incident angle. Thereby, the light quantity of the scattered light γ ′ indicating the hematocrit value of the specimen can be measured. In this step, the optical filter 124 is disposed such that a part or all of the optical filter 124 is located outside the optical path of the scattered light γ ′.
 本工程において、第1の出射光αは、工程S112において金属膜30に照射される出射光αと同じ波長および光量の光である。金属膜30に照射される第1の出射光αは、波長が600~700nmであるP偏光の光であることが好ましい。第1の出射光αの波長が600~700nmであることにより、金膜(金属膜30)に対する第1の出射光αの透過率が高くなるとともに、散乱光γ’が検体中のヘモグロビンによって吸収されるのを抑制することができる。これらの結果として、受光センサー126により検出される散乱光γ’の光量を高めることができる。また、第1の出射光αがP偏光であることによって、さらに、金属膜30に対する第1の出射光αの透過率が高くなるため、検出される散乱光γ’の光量を高めることができる。これらの結果として、ヘマトクリット値を高精度に決定することができる。 In this step, the first outgoing light alpha 1 is the light of the same wavelength and the light quantity and the outgoing light alpha irradiated on the metal film 30 in step S112. The first outgoing light α 1 irradiated to the metal film 30 is preferably P-polarized light having a wavelength of 600 to 700 nm. When the wavelength of the first outgoing light α 1 is 600 to 700 nm, the transmittance of the first outgoing light α 1 with respect to the gold film (metal film 30) is increased, and the scattered light γ ′ is hemoglobin in the specimen. It is possible to suppress the absorption by. As a result, the amount of scattered light γ ′ detected by the light receiving sensor 126 can be increased. Further, since the first outgoing light α 1 is P-polarized light, the transmittance of the first outgoing light α 1 with respect to the metal film 30 is further increased, so that the amount of the scattered light γ ′ to be detected is increased. Can do. As a result of these, the hematocrit value can be determined with high accuracy.
 本工程において、第1の出射光αが検体中で散乱されることで得られる散乱光γ’の光量を増加させ、高精度にヘマトクリット値を決定する観点からは、検体の濃度は高いことが好ましい。たとえば、検体は、希釈倍率が1~10倍の全血であることが好ましく、希釈倍率が1~3倍の全血であることがより好ましい(後述の参考実験2参照)。本実施の形態では、検体は、希釈倍率が1~10倍の全血である。 In this step, the first outgoing light alpha 1 increases the amount of the resulting scattered light gamma 'by being scattered in the specimen, from the viewpoint of determining the hematocrit value with high precision, the concentration of the analyte is high that Is preferred. For example, the specimen is preferably whole blood having a dilution ratio of 1 to 10 times, and more preferably whole blood having a dilution ratio of 1 to 3 times (see Reference Experiment 2 described later). In the present embodiment, the specimen is whole blood having a dilution ratio of 1 to 10 times.
 また前述のとおり、ヘマトクリット値を高精度に決定する観点からは、第1の入射角は、臨界角よりもある程度小さいことが好ましい。たとえば、第1の入射角は、臨界角より5度小さい角度と同じか、またはそれより小さいことが好ましい(後述のシミュレーション参照)。さらに、第1の入射角および第2の入射角の差を小さくすることで、第1の入射角および第2の入射角の切替え時間の短縮化やSPFS装置100を小型化する観点からは、第1の入射角および第2の入射角の差は、小さいことが好ましい。たとえば、第1の入射角は、第1の入射角は、臨界角より5度小さい角度と同じか、またはそれより小さく、かつ臨界角より10度小さい角度と同じか、またはそれより大きいことがより好ましい。 Also, as described above, from the viewpoint of determining the hematocrit value with high accuracy, it is preferable that the first incident angle is somewhat smaller than the critical angle. For example, it is preferable that the first incident angle is equal to or smaller than an angle that is 5 degrees smaller than the critical angle (see simulation described later). Furthermore, from the viewpoint of shortening the switching time of the first incident angle and the second incident angle and reducing the size of the SPFS device 100 by reducing the difference between the first incident angle and the second incident angle, The difference between the first incident angle and the second incident angle is preferably small. For example, the first angle of incidence may be equal to or greater than an angle that is 5 degrees less than the critical angle and 10 degrees less than the critical angle. More preferred.
 なお、ここまでは、1次反応(工程S114)の終了後に、散乱光γ’の検出(工程S115)が行われる例について説明したが、1次反応の開始後かつ終了前に、散乱光γ’の検出が行われてもよい。たとえば、1次反応工程の開始後、流路41内に検体を注入した直後に、散乱光γ’の検出を行い、その後、1次反応の反応時間が、所定の時間に達するまで、残りの1次反応を行ってもよい。1次反応において検体を流路41内で往復送液している途中で、赤血球が沈降してしまい、正確に散乱光γ’を検出できない可能性があるが、この方法によれば、赤血球が沈降してしまう前に散乱光γ’を検出できるため好ましい。この方法は、1次反応の反応時間が長い場合や、検体の希釈率が高い場合、ヘマトクリット値が低い場合などの、赤血球が沈降しやすい場合に、特に有効である。もちろん、1次反応よりも先に散乱光γ’の検出を行う場合にも、流路41内に検体を注入し、検体中の被測定物質と金属膜30上の捕捉体とが接触した時点から、1次反応自体は開始される。ただ、1次反応の途中で散乱光γ’の検出を行う場合には、散乱光γ’の強度を正確に測定する観点から、散乱光γ’を検出する際には、流路41内の流体の移動を停止させる、すなわち送液を停止することが好ましい。いずれにしても、散乱光γ’の検出と並行して1次反応を行うことができるため、合計測定時間を短縮することができるとともに、準備する検体を1種類とすることができ、手順が簡便になる。 Heretofore, an example in which the detection of scattered light γ ′ (step S115) is performed after the completion of the primary reaction (step S114) has been described, but the scattered light γ is started after the start of the primary reaction and before the end. 'May be detected. For example, the scattered light γ ′ is detected immediately after the sample is injected into the flow channel 41 after the start of the primary reaction step, and then the remaining reaction time until the reaction time of the primary reaction reaches a predetermined time. A primary reaction may be performed. In the primary reaction, the red blood cells may settle while the sample is being reciprocated in the flow path 41, and the scattered light γ ′ may not be detected accurately. This is preferable because the scattered light γ ′ can be detected before settling. This method is particularly effective when the red blood cells are likely to settle, such as when the reaction time of the primary reaction is long, when the dilution rate of the specimen is high, or when the hematocrit value is low. Of course, even when the scattered light γ ′ is detected prior to the primary reaction, the specimen is injected into the flow path 41, and the measured substance in the specimen and the capture body on the metal film 30 come into contact with each other. From this, the primary reaction itself is started. However, in the case of detecting the scattered light γ ′ during the primary reaction, from the viewpoint of accurately measuring the intensity of the scattered light γ ′, when detecting the scattered light γ ′, It is preferable to stop the movement of the fluid, that is, stop the liquid feeding. In any case, since the primary reaction can be performed in parallel with the detection of the scattered light γ ′, the total measurement time can be shortened, and one type of specimen can be prepared. It becomes simple.
 7)2次反応
 次いで、金属膜30上の捕捉体に捕捉された被測定物質を蛍光物質で標識する(2次反応;工程S116)。具体的には、まず、ピペット131により流路41内から検体を除去した後、流路41内を緩衝液などで洗浄して、捕捉体に捕捉されなかった物質を除去する。次いで、ピペット131により蛍光標識液を流路41内に提供する。これにより、被測定物質を蛍光物質で標識することができる。蛍光標識液は、例えば、蛍光物質で標識された抗体(2次抗体)を含む緩衝液である。この後、流路41内を緩衝液などで洗浄し、遊離の蛍光物質などを除去する。
7) Secondary reaction Next, the substance to be measured captured by the capturing body on the metal film 30 is labeled with a fluorescent material (secondary reaction; step S116). Specifically, first, the sample is removed from the flow path 41 by the pipette 131, and then the flow path 41 is washed with a buffer solution or the like to remove substances not captured by the capturing body. Next, a fluorescent labeling solution is provided in the flow path 41 by the pipette 131. Thereby, the substance to be measured can be labeled with the fluorescent substance. The fluorescent labeling solution is, for example, a buffer solution containing an antibody (secondary antibody) labeled with a fluorescent substance. Thereafter, the inside of the flow path 41 is washed with a buffer solution or the like to remove free fluorescent substances.
 8)蛍光シグナルの検出
 次いで、被測定物質の量を示す蛍光β(シグナル)を検出する(工程S117)。具体的には、金属膜30上において、被測定物質が捕捉体に捕捉され、かつ検体が存在しない状態(流路41が測定液で満たされた状態)で、プリズム20側から増強角(第2の入射角)で、プリズム20を介して捕捉体が固定化されている領域に対応する金属膜30の裏面に第2の出射光αを照射したときに、測定チップ10で生じる、被測定物質の量を示す蛍光β(シグナル)を検出する。このとき、第2の出射光αは、蛍光物質を直接もしくは間接に励起させうる励起光である。本実施の形態では、光源ユニット111から出射光αを第2の入射角が増強角となるように金属膜30に照射させつつ、受光センサー126で蛍光βを検出する。これにより、検体中の被測定物質の量を示す、蛍光βの光量である蛍光値を高強度で測定することができる。なお、本工程では、光学フィルター124は、光路上に配置されている。
8) Detection of fluorescent signal Next, fluorescent β (signal) indicating the amount of the substance to be measured is detected (step S117). Specifically, on the metal film 30, the to-be-measured substance is captured by the capturing body and the sample is not present (the state where the flow path 41 is filled with the measuring solution), the enhancement angle (the first angle) from the prism 20 side. 2 angle of incidence), when the captor through the prism 20 is irradiated with the second outgoing light alpha 2 on the rear surface of the metal film 30 corresponding to the area which has been immobilized, resulting in the measurement chip 10, the Fluorescence β (signal) indicating the amount of the measurement substance is detected. At this time, the second outgoing light α 2 is excitation light that can directly or indirectly excite the fluorescent substance. In the present embodiment, the light-receiving sensor 126 detects the fluorescence β while irradiating the metal film 30 with the emitted light α from the light source unit 111 such that the second incident angle becomes an enhancement angle. Thereby, the fluorescence value which is the light quantity of fluorescence (beta) which shows the quantity of to-be-measured substance in a test substance can be measured with high intensity | strength. In this step, the optical filter 124 is disposed on the optical path.
 本明細書中、「検体が存在しない状態」とは、流路41内から検体を除去する操作が行われた状態をいう。すなわち、流路41内に検体が実質的に存在していなければよく、流路41内に除去しきれなかった検体がわずかに残存していてもよい。 In this specification, “the state in which no sample exists” means a state in which an operation for removing the sample from the flow channel 41 is performed. In other words, it is sufficient that the sample does not substantially exist in the flow channel 41, and a slight amount of the sample that cannot be removed may remain in the flow channel 41.
 本工程において、第2の出射光αは、工程S111および工程S113において金属膜30に照射される出射光αと同じ波長の光である。第2の出射光αは、被測定物質を標識する蛍光物質を励起しうる波長の光である。第2の出射光αの波長および光量は、第1の出射光αの波長および光量と同じであってもよいし、異なっていてもよい。同じ光源の使用による測定装置の小型化の観点からは、第2の出射光αの波長および光量は、第1の出射光αの波長および光量と同じであることが好ましい。本実施の形態では、第2の出射光αの波長および光量は、第1の出射光αの波長および光量と同じである。 In this step, the second outgoing light alpha 2 is the light of the same wavelength as the emitted light alpha that in step S111 and step S113 is irradiated onto the metal film 30. The second outgoing light α 2 is light having a wavelength that can excite a fluorescent substance that labels the substance to be measured. Second outgoing light alpha 2 wavelength and the light quantity may be the same as the first outgoing light alpha 1 wavelength and light intensity, may be different. From the viewpoint of miniaturization of the measuring apparatus by use of the same light source, the second outgoing light alpha 2 wavelength and the light quantity is preferably the same as the first outgoing light alpha 1 wavelength and light intensity. In the present embodiment, the wavelength and light amount of the second outgoing light α 2 are the same as the wavelength and light amount of the first outgoing light α 1 .
 9)測定値の補正
 次いで、測定値を補正する(工程S118)。具体的には、工程S115で検出された散乱光γ’の光量から決定される、検体のヘマトクリット値に基づいて、工程S117で検出された蛍光βから決定される、被測定物質の量を示す測定値を補正する。
9) Correction of measurement value Next, the measurement value is corrected (step S118). Specifically, it indicates the amount of the substance to be measured, which is determined from the fluorescence β detected in step S117, based on the hematocrit value of the specimen, which is determined from the amount of scattered light γ ′ detected in step S115. Correct the measured value.
 まず、散乱光γ’の光量から検体のヘマトクリット値を決定する。散乱光γ’は、検体中での散乱に起因する散乱成分(シグナル成分)と、検体以外の領域(たとえば、プリズム20、金属膜30および流路蓋40)での散乱に起因するノイズ成分(第1の光学ブランク値)とを含む。したがって、工程S115で検出された散乱光γ’の光量から、工程S112で得られた第1の光学ブランク値を引くことで、検体中での散乱成分(シグナル成分)を算出することができる。次いで、当該シグナル成分と、散乱光γ’の光量およびヘマトクリット値の関係を示す検量線とに基づいて、検体のヘマトクリット値を決定することができる。 First, the hematocrit value of the specimen is determined from the amount of scattered light γ ′. The scattered light γ ′ includes a scattering component (signal component) caused by scattering in the specimen and a noise component (for example, prism 20, metal film 30, and flow path lid 40) caused by scattering in a region other than the specimen. First optical blank value). Therefore, the scattering component (signal component) in the specimen can be calculated by subtracting the first optical blank value obtained in step S112 from the light amount of the scattered light γ ′ detected in step S115. Next, the hematocrit value of the specimen can be determined based on the signal component and a calibration curve indicating the relationship between the amount of scattered light γ ′ and the hematocrit value.
 次いで、蛍光βの光量である蛍光値から検体中の被測定物質の量(濃度)を示す測定値を決定する。蛍光値は、被測定物質を標識する蛍光物質に由来する蛍光成分(シグナル成分)と、蛍光物質以外の要因に起因するノイズ成分(第2の光学ブランク値)とを含む。したがって、工程S117で得られた蛍光値から、工程S113で得られた第2の光学ブランク値を引くことで、検体中の被測定物質の量を示す測定値(シグナル成分)を算出することができる。 Next, a measurement value indicating the amount (concentration) of the substance to be measured in the specimen is determined from the fluorescence value, which is the amount of fluorescence β. The fluorescence value includes a fluorescence component (signal component) derived from a fluorescent material that labels the substance to be measured, and a noise component (second optical blank value) caused by factors other than the fluorescent material. Therefore, by subtracting the second optical blank value obtained in step S113 from the fluorescence value obtained in step S117, a measurement value (signal component) indicating the amount of the substance to be measured in the sample can be calculated. it can.
 最後に、検体中の被測定物質の量を示す測定値を、ヘマトクリット値に基づいて補正する。具体的には、上記測定値に以下の式(1)で表される変換係数cを掛けることで、血漿中の被測定物質の量に変換する。
Figure JPOXMLDOC01-appb-M000001
 [上記式(1)において、Hctはヘマトクリット値(0~100%)であり、dfは検体の希釈倍率である。]
Finally, the measurement value indicating the amount of the substance to be measured in the specimen is corrected based on the hematocrit value. Specifically, the measurement value is converted to the amount of the substance to be measured in the plasma by multiplying by the conversion coefficient c represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
[In the above formula (1), Hct is the hematocrit value (0 to 100%), and df is the dilution ratio of the specimen. ]
 以上の手順により、血漿中の被測定物質の量(濃度)を決定することができる。 The amount (concentration) of the substance to be measured in plasma can be determined by the above procedure.
 (シミュレーション)
 ヘマトクリット値を決定するために散乱光γ’を検出するときの、金属膜30に対する出射光αの入射角の好ましい範囲を調べるためにシミュレーションを行った。具体的には、異なる厚みを有する金属膜30について、金属膜30に対する出射光αの入射角と、出射光αの反射率(透過率)との関係についてシミュレーションを行った。本シミュレーションでは、出射光αの波長を660nm、プリズム20の屈折率を1.528、金属膜30の屈折率を0.2144、金属膜30の消衰係数を3.85、検体の屈折率を1.331に設定した。
(simulation)
A simulation was performed in order to investigate a preferable range of the incident angle of the outgoing light α with respect to the metal film 30 when the scattered light γ ′ was detected in order to determine the hematocrit value. Specifically, for the metal films 30 having different thicknesses, a simulation was performed on the relationship between the incident angle of the emitted light α with respect to the metal film 30 and the reflectance (transmittance) of the emitted light α. In this simulation, the wavelength of the outgoing light α is 660 nm, the refractive index of the prism 20 is 1.528, the refractive index of the metal film 30 is 0.2144, the extinction coefficient of the metal film 30 is 3.85, and the refractive index of the specimen is set. Set to 1.331.
 図3A、Bは、シミュレーションの結果を示すグラフである。図3Aは、出射光αの入射角と、出射光αの金属膜30に対する反射率との関係を示すグラフであり、図3Bは、出射光αの入射角と、出射光αの金属膜30に対する透過率との関係を示すグラフである。図3Aにおいて、横軸は金属膜30に対する出射光αの入射角(°)を示し、縦軸は出射光αの金属膜30に対する反射率を示している。図3Bにおいて、横軸は金属膜30に対する出射光αの入射角(°)を示し、縦軸は出射光αの金属膜30に対する透過率を示している。図3A、Bでは、金属膜30の厚みが30nmのときのシミュレーション結果を、実線で示し、金属膜30の厚みが40nmのときのシミュレーション結果を、点線で示し、金属膜30の厚みが50nmのときのシミュレーション結果を、一点鎖線で示し、金属膜30の厚みが60nmのときのシミュレーション結果を、二点鎖線で示している。 3A and 3B are graphs showing the results of simulation. 3A is a graph showing the relationship between the incident angle of the outgoing light α and the reflectance of the outgoing light α with respect to the metal film 30, and FIG. 3B shows the incident angle of the outgoing light α and the metal film 30 of the outgoing light α. It is a graph which shows the relationship with the transmittance | permeability with respect to. 3A, the horizontal axis indicates the incident angle (°) of the outgoing light α with respect to the metal film 30, and the vertical axis indicates the reflectance of the outgoing light α with respect to the metal film 30. In FIG. 3B, the horizontal axis indicates the incident angle (°) of the outgoing light α with respect to the metal film 30, and the vertical axis indicates the transmittance of the outgoing light α with respect to the metal film 30. 3A and 3B, the simulation result when the thickness of the metal film 30 is 30 nm is shown by a solid line, the simulation result when the thickness of the metal film 30 is 40 nm is shown by a dotted line, and the thickness of the metal film 30 is 50 nm. The simulation result is shown by a one-dot chain line, and the simulation result when the thickness of the metal film 30 is 60 nm is shown by a two-dot chain line.
 図3Aに示されるように、出射光αの金属膜30に対する反射率は、入射角が約55度から約60.5度(臨界角)までの領域では、出射光αの入射角が小さくなるにつれて小さくなっている。このとき、反射率の変化量は、入射角が臨界角に近いほど大きく、入射角が臨界角から離れるほど小さいことがわかる。そして、反射率は、入射角が約55度以下の領域では、ほとんど変化していないことがわかる。 As shown in FIG. 3A, the reflectance of the emitted light α with respect to the metal film 30 is such that the incident angle of the emitted light α is small in the region where the incident angle is about 55 degrees to about 60.5 degrees (critical angle). As it gets smaller. At this time, it can be seen that the amount of change in reflectance is larger as the incident angle is closer to the critical angle and smaller as the incident angle is farther from the critical angle. It can be seen that the reflectance hardly changes in the region where the incident angle is about 55 degrees or less.
 また、図3Bに示されるように、出射光αの透過率は、入射角が約55度から約60.5度(臨界角)までの領域では、出射光αの入射角が小さくなるにつれて大きくなっている。このとき、透過率の変化量は、入射角が臨界角に近いほど大きく、入射角が臨界角から離れるほど小さいことがわかる。そして、透過率は、入射角が約55度以下の領域では、ほとんど変化していないことがわかる。 As shown in FIG. 3B, the transmittance of the outgoing light α increases as the incident angle of the outgoing light α decreases in the region where the incident angle is about 55 degrees to about 60.5 degrees (critical angle). It has become. At this time, it can be seen that the amount of change in transmittance is larger as the incident angle is closer to the critical angle and smaller as the incident angle is farther from the critical angle. It can be seen that the transmittance hardly changes in the region where the incident angle is about 55 degrees or less.
 本シミュレーションの結果から、ヘマトクリット値を高精度に決定するためには、出射光αの入射角が変化したとしても、反射率(透過率)の変化が抑制されうる領域で、散乱光γ’を検出することが好ましいことがわかる。このような観点から、第1の入射角は、臨界角より5度小さい角度と同じか、またはそれより小さいことが好ましい。これにより、流路41内の液体の屈折率のわずかなずれ(例えば、Δn=0.001)による臨界角の変化や、出射光αの入射角のわずかなずれ(例えば、0.1度)などに起因する、出射光αの金属膜30の透過光量の変化を抑制することができる。結果として、検出される散乱光γ’の光量の変化を抑制し、高精度にヘマトクリット値を決定することができる。 From the results of this simulation, in order to determine the hematocrit value with high accuracy, even if the incident angle of the outgoing light α changes, the scattered light γ ′ is changed in a region where the change in reflectance (transmittance) can be suppressed. It can be seen that detection is preferable. From such a point of view, the first incident angle is preferably equal to or smaller than an angle smaller than the critical angle by 5 degrees. As a result, the critical angle changes due to a slight shift in the refractive index of the liquid in the flow channel 41 (for example, Δn = 0.001), or a slight shift in the incident angle of the outgoing light α (for example, 0.1 degree). It is possible to suppress a change in the transmitted light amount of the emitted light α through the metal film 30 due to the above. As a result, a change in the amount of the scattered light γ ′ to be detected can be suppressed, and the hematocrit value can be determined with high accuracy.
 (参考実験1)
 散乱光γ’の光量と、プラズモン散乱光γの光量とを比較するとともに、散乱光γ’の光量およびヘマトクリット値の相関と、プラズモン散乱光γの光量およびヘマトクリット値の相関とを比較するための実験を行った。
(Reference Experiment 1)
To compare the amount of scattered light γ 'with the amount of plasmon scattered light γ, and to compare the correlation between the amount of scattered light γ' and the hematocrit value, and the correlation between the amount of plasmon scattered light γ and the hematocrit value The experiment was conducted.
 参考実験1では、流路41内に測定液、血漿、ヘマトクリット値が20%の血液、またはヘマトクリット値が40%の血液が存在する状態で、金属膜30に対する出射光αの入射角度を走査しながら出射光αを金属膜30に照射するとともに、測定チップ10の上方に放出される光を受光センサー126で検出して、当該光の光量を測定した。これと同時に、出射光αの反射光を受光センサー(不図示)で検出して、出射光αの反射率を決定した。 In Reference Experiment 1, the incident angle of the emitted light α with respect to the metal film 30 is scanned in a state where the measurement liquid, plasma, blood having a hematocrit value of 20%, or blood having a hematocrit value of 40% is present in the channel 41. While irradiating the metal film 30 with the emitted light α, the light emitted above the measuring chip 10 was detected by the light receiving sensor 126, and the amount of the light was measured. At the same time, the reflected light of the outgoing light α was detected by a light receiving sensor (not shown) to determine the reflectance of the outgoing light α.
 図4A、Bおよび図5A、Bは、参考実験1の結果を示すグラフであり、金属膜30に対する出射光αの入射角と、散乱光γ’の光量、プラズモン散乱光γの光量および出射光αの反射率との関係を示すグラフである。図4A、Bおよび図5A、Bにおいて、入射角が臨界角より小さい角度範囲(図4A、Bおよび図5A、Bにおける破線の左側)における光量は、散乱光γ’の光量を意味し、入射角が臨界角以上である角度範囲(図4A、Bおよび図5A、Bにおける破線の右側)における光量は、プラズモン散乱光γの光量を意味する。図4Aは、流路41内に測定液が存在する状態における測定結果であり、図4Bは、流路41内に血漿が存在する状態における測定結果であり、図5Aは、流路41内にヘマトクリット値が20%の血液が存在する状態における測定結果であり、図5Bは、流路41内にヘマトクリット値が40%の血液が存在する状態における測定結果である。また、図4A、Bおよび図5A、Bにおいて、横軸は金属膜30に対する出射光αの入射角(°)を示し、左側の縦軸は散乱光γ’またはプラズモン散乱光γの光量(count)を示し、右側の縦軸は出射光αの反射率を示している。さらに、図4A、Bおよび図5A、Bにおいて、散乱光γ’およびプラズモン散乱光γの光量は、白色の記号(□、◇、△および○)で示し、出射光αの反射率は、黒色の記号(■、◆、▲および●)で示している。 4A and 4B and FIGS. 5A and 5B are graphs showing the results of Reference Experiment 1, in which the incident angle of the emitted light α with respect to the metal film 30, the amount of scattered light γ ′, the amount of plasmon scattered light γ, and the emitted light are shown. It is a graph which shows the relationship with the reflectance of (alpha). In FIGS. 4A and B and FIGS. 5A and B, the amount of light in the angle range where the incident angle is smaller than the critical angle (left side of the broken line in FIGS. 4A, B and 5A and B) means the amount of scattered light γ ′. The amount of light in the angle range (the right side of the broken line in FIGS. 4A, B and FIGS. 5A, B) where the angle is greater than or equal to the critical angle means the amount of plasmon scattered light γ. 4A is a measurement result in a state where a measurement liquid is present in the flow path 41, FIG. 4B is a measurement result in a state where plasma is present in the flow path 41, and FIG. FIG. 5B is a measurement result in a state where blood having a hematocrit value of 40% exists in the flow path 41. FIG. 4A and 4B and FIGS. 5A and 5B, the horizontal axis indicates the incident angle (°) of the outgoing light α with respect to the metal film 30, and the left vertical axis indicates the light quantity (count) of the scattered light γ ′ or the plasmon scattered light γ. The vertical axis on the right side shows the reflectance of the outgoing light α. Further, in FIGS. 4A and 4B and FIGS. 5A and 5B, the light amounts of the scattered light γ ′ and the plasmon scattered light γ are indicated by white symbols (□, ◇, Δ, and ○), and the reflectance of the emitted light α is black. The symbols (■, ◆, ▲, and ●) indicate.
 出射光αの反射率を示すグラフには、入射角が61度以上の領域において、72度近傍を最小値とする下に凸のピークが観測される。これは、入射角が61度以上の領域において、金属膜30で表面プラズモン共鳴が発生していることを示している。そして、検体中に血球が存在するか否かにかかわらず、入射角が61度以上の領域において、プラズモン散乱光γの光量はほとんど変化していない(図4A、Bおよび図5A、B参照)。 In the graph showing the reflectance of the outgoing light α, a downwardly convex peak having a minimum value near 72 degrees is observed in a region where the incident angle is 61 degrees or more. This indicates that surface plasmon resonance occurs in the metal film 30 in a region where the incident angle is 61 degrees or more. Regardless of whether blood cells are present in the specimen, the amount of plasmon scattered light γ hardly changes in the region where the incident angle is 61 degrees or more (see FIGS. 4A, B and FIGS. 5A, B). .
 一方、出射光αの反射率についてのグラフから明らかなように、61度近傍を境界として、出射光αの入射角が小さくなるにつれて、反射率が小さくなり始める。これは、61度近傍が臨界角であることを示している。検体が測定液または血漿であり、検体中に血球が存在しない場合、入射角が61度未満の領域においては、散乱光γ’の光量は、ほとんど変化していない(図4A、B参照)。これに対して、検体が血液であり、検体中に血球が存在する場合、入射角が61度未満の領域においては、散乱光γ’の光量は増加している(図5A、B参照)。これらの結果は、出射光αが、検体中を透過するときに検体中の血球成分により散乱されていることを示している。そして、図5A、Bから明らかなように、プラズモン散乱光γの強度と比較して、検体中の血球成分に起因する散乱光γ’の強度は、より強いことがわかる。 On the other hand, as is apparent from the graph of the reflectance of the outgoing light α, the reflectance starts to decrease as the incident angle of the outgoing light α decreases with the vicinity of 61 degrees as a boundary. This indicates that the vicinity of 61 degrees is the critical angle. When the sample is a measurement solution or plasma and no blood cells are present in the sample, the amount of scattered light γ ′ hardly changes in a region where the incident angle is less than 61 degrees (see FIGS. 4A and B). On the other hand, when the specimen is blood and blood cells are present in the specimen, the amount of scattered light γ ′ increases in a region where the incident angle is less than 61 degrees (see FIGS. 5A and 5B). These results indicate that the outgoing light α is scattered by the blood cell component in the specimen when passing through the specimen. 5A and 5B, it can be seen that the intensity of the scattered light γ ′ caused by the blood cell component in the specimen is stronger than the intensity of the plasmon scattered light γ.
 次いで、散乱光γ’の光量およびヘマトクリット値の相関と、プラズモン散乱光γの光量およびヘマトクリット値の相関と比較する。図6は、散乱光γ’またはプラズモン散乱光γの光量と、ヘマトクリット値との相関を示すグラフである。図6は、図4A、Bおよび図5A、Bにおける、金属膜30に対する出射光αの入射角と、散乱光γ’またはプラズモン散乱光γの光量との関係を示すグラフを1つのグラフにまとめたグラフである。□は流路41内に測定液が存在する状態における測定結果(図4A)であり、◇は流路41内に血漿が存在する状態における測定結果(図4B)であり、△は流路41内にヘマトクリット値が20%の血液が存在する状態における測定結果(図5A)であり、○は流路41内にヘマトクリット値が40%の血液が存在する状態における測定結果(図5B)である。図6に示されるように、検体中のヘマトクリット値が大きいほど、入射角が61度未満の領域における散乱光γ’の光量は大きくなっている。これに対して、検体中のヘマトクリット値が大きくなっても、入射角が61度以上の領域におけるプラズモン散乱光γの光量はほとんど変化していない。すなわち、図6から明らかなように、プラズモン散乱光γの光量およびヘマトクリット値の相関と比較して、散乱光γ’の光量およびヘマトクリット値の相関は、より強いことがわかる。 Next, the correlation between the light amount of the scattered light γ ′ and the hematocrit value is compared with the correlation between the light amount of the plasmon scattered light γ and the hematocrit value. FIG. 6 is a graph showing the correlation between the amount of scattered light γ ′ or plasmon scattered light γ and the hematocrit value. FIG. 6 summarizes the graph showing the relationship between the incident angle of the emitted light α with respect to the metal film 30 and the amount of scattered light γ ′ or plasmon scattered light γ in FIGS. 4A and 4B and FIGS. 5A and 5B into one graph. It is a graph. □ is the measurement result (FIG. 4A) in the state where the measurement liquid is present in the flow path 41, ◇ is the measurement result (FIG. 4B) in the state where the plasma is present in the flow path 41, and Δ is the flow path 41. FIG. 5A is a measurement result in a state where blood having a hematocrit value of 20% is present in the inside (FIG. 5A), and ○ is a measurement result in a state where blood having a hematocrit value is 40% is present in the flow path 41. . As shown in FIG. 6, the greater the hematocrit value in the specimen, the greater the amount of scattered light γ ′ in the region where the incident angle is less than 61 degrees. On the other hand, even if the hematocrit value in the specimen increases, the amount of plasmon scattered light γ in the region where the incident angle is 61 degrees or more hardly changes. That is, as is apparent from FIG. 6, it can be seen that the correlation between the amount of scattered light γ ′ and the hematocrit value is stronger than the correlation between the amount of plasmon scattered light γ and the hematocrit value.
 参考実験1の結果から、プラズモン散乱光γの強度と比較して、散乱光γ’の強度は、より高く、かつプラズモン散乱光γの光量およびヘマトクリット値の相関と比較して、散乱光γ’の光量およびヘマトクリット値の相関は、より強いことがわかる。したがって、ヘマトクリット値を決定する際に、プラズモン散乱光γではなく散乱光γ’を検出することによって、より高精度にヘマトクリット値を決定することができることがわかる。 From the results of Reference Experiment 1, the intensity of the scattered light γ ′ is higher than that of the plasmon scattered light γ, and the scattered light γ ′ is compared with the correlation between the amount of plasmon scattered light γ and the hematocrit value. It can be seen that the correlation between the amount of light and the hematocrit value is stronger. Therefore, it can be seen that the hematocrit value can be determined with higher accuracy by detecting the scattered light γ 'instead of the plasmon scattered light γ when determining the hematocrit value.
 (参考実験2)
 ヘマトクリット値を決定するときの、検体の希釈倍率の好ましい範囲を調べるために実験を行った。参考実験2では、希釈倍率が1倍(希釈なし)、3倍または15倍となるように希釈した、5種類のヘマトクリット値(0%、20%、30%、45%および65%)の全血を検体として使用した。流路41内に測定液が存在する状態で、金属膜30に入射角52度で出射光αを照射したときに、測定チップ10の上方に放出される散乱光γ’を検出して、第1の光学ブランク値を測定した。次いで、流路41内に検体が存在する状態で、金属膜30に入射角52度で出射光αを照射したときに、測定チップ10の上方に放出される散乱光γ’を検出して、散乱光γ’の光量を測定した。測定した散乱光γ’の光量から第1の光学ブランク値を引くことによって、検体中での散乱に起因する散乱成分(シグナル成分)を算出した。
(Reference Experiment 2)
Experiments were conducted to determine the preferred range of specimen dilution ratios when determining hematocrit values. In Reference Experiment 2, all 5 types of hematocrit values (0%, 20%, 30%, 45% and 65%) diluted to 1-fold (no dilution), 3-fold or 15-fold were used. Blood was used as a specimen. When the measurement liquid is present in the flow path 41 and the metal film 30 is irradiated with the outgoing light α at an incident angle of 52 degrees, the scattered light γ ′ emitted above the measurement chip 10 is detected, An optical blank value of 1 was measured. Next, when the sample film is present in the channel 41 and the emitted light α is irradiated to the metal film 30 at an incident angle of 52 degrees, the scattered light γ ′ emitted above the measurement chip 10 is detected, The amount of scattered light γ ′ was measured. By subtracting the first optical blank value from the measured amount of scattered light γ ′, a scattering component (signal component) due to scattering in the specimen was calculated.
 図7は、参考実験2の結果を示すグラフであり、検体の希釈倍率と、散乱光γ’の光量およびヘマトクリット値の相関との関係を示すグラフである。図7において、横軸はヘマトクリット値Hct(%)を示し、縦軸は散乱光γ’のシグナル成分(cоunt)を示す。また、検体の希釈倍率が1倍(希釈なし)のときの結果は、黒い丸(●)で示し、検体の希釈倍率が3倍のときの結果は、黒い四角(■)で示し、検体の希釈倍率が15倍のときの結果は、黒い三角(▲)で示している。 FIG. 7 is a graph showing the results of Reference Experiment 2, and is a graph showing the relationship between the specimen dilution rate and the correlation between the amount of scattered light γ ′ and the hematocrit value. In FIG. 7, the horizontal axis represents the hematocrit value Hct (%), and the vertical axis represents the signal component (count) of the scattered light γ ′. The results when the sample dilution rate is 1 (no dilution) are indicated by black circles (●), and when the sample dilution rate is 3 times, the results are indicated by black squares (■). The results when the dilution factor is 15 times are indicated by black triangles (▲).
 図7に示されるように、検体の希釈倍率が小さい(検体の濃度が高い)ほど、グラフの傾きは大きくなっている。すなわち、検体の希釈倍率が小さい(検体の濃度が高い)ほど、散乱光γ’の光量およびヘマトクリット値の相関は強いことがわかる。したがって、ヘマトクリット値を決定するために散乱光γ’を検出するとき、ヘマトクリット値を高精度に決定する観点からは、検体の濃度は高いことが好ましい。たとえば、検体は、希釈倍率が1~10倍の全血であることが好ましく、希釈倍率が1~3倍の全血であることがより好ましい。 As shown in FIG. 7, the slope of the graph increases as the dilution ratio of the specimen decreases (the specimen concentration increases). That is, it can be seen that the smaller the sample dilution ratio (the higher the sample concentration), the stronger the correlation between the amount of scattered light γ ′ and the hematocrit value. Therefore, when the scattered light γ ′ is detected to determine the hematocrit value, the concentration of the specimen is preferably high from the viewpoint of determining the hematocrit value with high accuracy. For example, the specimen is preferably whole blood having a dilution ratio of 1 to 10 times, and more preferably whole blood having a dilution ratio of 1 to 3 times.
 (参考実験3)
 金属膜30の厚みの好ましい範囲を調べるために実験を行った。本実験では、種々の厚み(10~80nm)を有する金属膜30について、波長660nmの出射光αを、入射角を変えながらで金属膜30に照射したときに、測定チップ10の出射面23から出射される出射光αの反射光を受光センサー(不図示)にて検出し、出射光αの反射光の光量が最小となる共鳴角度での反射光の光量に基づいて、表面プラズモン共鳴の発生効率を算出した。金属膜30としては金膜を用いた。
(Reference Experiment 3)
An experiment was conducted to investigate a preferable range of the thickness of the metal film 30. In this experiment, for the metal film 30 having various thicknesses (10 to 80 nm), when the metal film 30 is irradiated with the emitted light α having a wavelength of 660 nm while changing the incident angle, the light is emitted from the emission surface 23 of the measurement chip 10. The reflected light of the emitted light α is detected by a light receiving sensor (not shown), and surface plasmon resonance is generated based on the amount of reflected light at a resonance angle that minimizes the amount of reflected light of the emitted light α. Efficiency was calculated. A gold film was used as the metal film 30.
 図8は、参考実験3の結果を示すグラフである。図8において、横軸は金属膜30の厚み(nm)を示し、縦軸は共鳴角度での反射光の光量に基づいて算出した表面プラズモン共鳴の発生効率を示す。 FIG. 8 is a graph showing the results of Reference Experiment 3. In FIG. 8, the horizontal axis indicates the thickness (nm) of the metal film 30, and the vertical axis indicates the generation efficiency of surface plasmon resonance calculated based on the amount of reflected light at the resonance angle.
 図8に示されるように、表面プラズモン共鳴の発生効率は、金属膜30の厚みが40nm近傍のときに最大となっている。したがって、金属膜30が金膜である場合には金属膜30の厚みが、例えば、30~55nmのときに、被測定物質の量を示すシグナルを高強度に検出でき、被測定物質の量を示す測定値を高精度に決定することができることがわかる。 As shown in FIG. 8, the generation efficiency of the surface plasmon resonance is maximum when the thickness of the metal film 30 is around 40 nm. Therefore, when the metal film 30 is a gold film, when the thickness of the metal film 30 is, for example, 30 to 55 nm, a signal indicating the amount of the substance to be measured can be detected with high intensity, and the amount of the substance to be measured can be reduced. It can be seen that the measured values shown can be determined with high accuracy.
 また、金属膜30の厚みが30~55nmのとき、出射光αの金属膜30に対する透過率は、5~30%となる(図3B参照)。すなわち、金属膜30に対する出射光αの高い透過率によって、散乱光γ’を高強度に検出することもできる。このような観点からも、ヘマトクリット値を高精度に決定することができ、検体中の被測定物質の量を高精度に決定することができる。 Further, when the thickness of the metal film 30 is 30 to 55 nm, the transmittance of the emitted light α to the metal film 30 is 5 to 30% (see FIG. 3B). That is, the scattered light γ ′ can be detected with high intensity by the high transmittance of the emitted light α with respect to the metal film 30. From this point of view, the hematocrit value can be determined with high accuracy, and the amount of the substance to be measured in the sample can be determined with high accuracy.
 (SPFS装置)
 次いで、本実施の形態に係る測定方法を実施するためのSPFS装置の一例について説明する。図2は、SPFS装置100の構成の一例を示す構成図である。SPFS装置100は、光出射部110、光検出部120、送液部130、搬送部140および制御処理部(処理部)150を有する。SPFS装置100は、搬送部140のチップホルダー(ホルダー)142に前述の測定チップ10を装着した状態で使用される。
(SPFS device)
Next, an example of an SPFS apparatus for performing the measurement method according to this embodiment will be described. FIG. 2 is a configuration diagram illustrating an example of the configuration of the SPFS device 100. The SPFS device 100 includes a light emitting unit 110, a light detecting unit 120, a liquid feeding unit 130, a conveying unit 140, and a control processing unit (processing unit) 150. The SPFS apparatus 100 is used in a state where the above-described measurement chip 10 is mounted on a chip holder (holder) 142 of the transport unit 140.
 光出射部110は、出射光α(第1の出射光αおよび第2の出射光α)を出射する。上記の工程S112および工程S115では、光出射部110は、第1の入射角で金属膜30に入射するように出射光αを出射する。また、上記の工程S113および工程S117では、光出射部110は、第2の入射角で金属膜30に入射するように出射光αを出射する。すなわち、第1の入射角は、ヘマトクリット値を決定するために、金属膜30に照射される第1の出射光αの入射角である。一方で、第2の入射角は、被測定物質の量を示す測定値を決定するために、金属膜30に照射される第2の出射光αの入射角である。第1の入射角は臨界角未満であり、第2の入射角は臨界角以上である。 The light emitting unit 110 emits outgoing light α (first outgoing light α 1 and second outgoing light α 2 ). In step S112 and step S115 described above, the light emitting unit 110 emits the emitted light α so as to enter the metal film 30 at the first incident angle. Moreover, in said process S113 and process S117, the light emission part 110 radiate | emits the emitted light (alpha) so that it may inject into the metal film 30 with a 2nd incident angle. That is, the first incidence angle, in order to determine the hematocrit value, which is the first incidence angle of the light emitted alpha 1 of irradiating the metal film 30. On the other hand, the second angle of incidence, in order to determine a measurement value indicative of the amount of substance to be measured, a second incident angle of the light emitted alpha 2 of irradiating the metal film 30. The first incident angle is less than the critical angle, and the second incident angle is greater than or equal to the critical angle.
 散乱光γ’を検出するときには、光出射部110は、第1の入射角で金属膜30に対するP波を入射面21に向けて出射する。このときの第1の出射光αは、成膜面22を通過してプリズム20の上方に出射される。また、蛍光βまたはプラズモン散乱光γを検出するときには、光出射部110は、金属膜30で表面プラズモン共鳴が発生するように、第2の入射角で金属膜30に対するP波を入射面21に向けて出射する。このときの第2の出射光αは、プリズム20を介して金属膜30に表面プラズモン共鳴が生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜30の表面上に生じさせる。 When detecting the scattered light γ ′, the light emitting unit 110 emits the P wave for the metal film 30 toward the incident surface 21 at the first incident angle. The first outgoing light α 1 at this time passes through the film formation surface 22 and is emitted above the prism 20. Further, when detecting the fluorescence β or the plasmon scattered light γ, the light emitting unit 110 causes the P wave to the metal film 30 to be incident on the incident surface 21 at the second incident angle so that surface plasmon resonance occurs in the metal film 30. Exit toward. At this time, when the second outgoing light α 2 is irradiated through the prism 20 at an angle at which surface plasmon resonance occurs on the metal film 30, localized field light that excites the fluorescent material is emitted on the surface of the metal film 30. To cause.
 光出射部110は、光源ユニット111、角度調整機構112および光源制御部113を含む。 The light emitting unit 110 includes a light source unit 111, an angle adjustment mechanism 112, and a light source control unit 113.
 光源ユニット111は、コリメートされ、かつ波長および光量が一定の光を、金属膜30の裏面における照射スポットの形状が略円形となるように出射する。光源ユニット111は、例えば、光源、ビーム整形光学系、APC機構および温度調整機構(いずれも不図示)を含む。 The light source unit 111 emits collimated light having a constant wavelength and light amount so that the shape of the irradiation spot on the back surface of the metal film 30 is substantially circular. The light source unit 111 includes, for example, a light source, a beam shaping optical system, an APC mechanism, and a temperature adjustment mechanism (all not shown).
 光源の種類は、特に限定されず、例えばレーザーダイオード(LD)である。光源の他の例には、発光ダイオードや水銀灯などのレーザー光源が含まれる。光源から出射される出射光αの波長は、例えば、400nm~1000nmの範囲内である。光源から出射される出射光αがビームでない場合、出射光αは、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される出射光αが単色光でない場合は、出射光αは、回折格子などにより単色光に変換される。さらに、光源から出射される出射光αが直線偏光でない場合は、出射光αは、偏光子などにより直線偏光の光に変換される。 The type of the light source is not particularly limited, and is, for example, a laser diode (LD). Other examples of light sources include laser light sources such as light emitting diodes and mercury lamps. The wavelength of the outgoing light α emitted from the light source is, for example, in the range of 400 nm to 1000 nm. When the emitted light α emitted from the light source is not a beam, the emitted light α is converted into a beam by a lens, a mirror, a slit, or the like. When the emitted light α emitted from the light source is not monochromatic light, the emitted light α is converted into monochromatic light by a diffraction grating or the like. Furthermore, when the outgoing light α emitted from the light source is not linearly polarized light, the outgoing light α is converted into linearly polarized light by a polarizer or the like.
 ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらのすべてを含んでいてもよいし、一部を含んでいてもよい。 The beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means. The beam shaping optical system may include all of these or a part thereof.
 コリメーターは、光源から出射された出射光αをコリメートする。 The collimator collimates the outgoing light α emitted from the light source.
 バンドパスフィルターは、光源から出射された出射光αを中心波長のみの狭帯域光にする。光源から出射された出射光αは、若干の波長分布幅を有しているためである。 The band-pass filter turns the outgoing light α emitted from the light source into a narrow band light having only the center wavelength. This is because the outgoing light α emitted from the light source has a slight wavelength distribution width.
 直線偏光フィルターは、光源から出射された出射光αを直線偏光の光にする。 The linear polarization filter converts the outgoing light α emitted from the light source into linearly polarized light.
 半波長板は、金属膜30にP波成分が入射するように光の偏光方向を調整する。 The half-wave plate adjusts the polarization direction of the light so that the P wave component is incident on the metal film 30.
 スリットおよびズーム手段は、金属膜30の裏面における照射スポットの形状が所定サイズの円形となるように、光源から出射された出射光αのビーム径や輪郭形状などを調整する。 The slit and zoom means adjust the beam diameter, contour shape, and the like of the emitted light α emitted from the light source so that the shape of the irradiation spot on the back surface of the metal film 30 is a circle of a predetermined size.
 APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、出射光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。 The APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the emitted light α using a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
 温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源から出射された出射光αの波長およびエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源から出射された出射光αの波長およびエネルギーを一定に制御する。 The temperature adjustment mechanism is, for example, a heater or a Peltier element. The wavelength and energy of the outgoing light α emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the outgoing light α emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
 角度調整機構112は、金属膜30(プリズム20と金属膜30との界面(成膜面22))に対する出射光αの入射角を調整する。角度調整機構112は、プリズム20を介して金属膜30の所定の位置に向けて、第1の入射角または第2の入射角で出射光αを照射するために、光源から出射された出射光αの光軸とチップホルダー142とを相対的に回転させる。たとえば、角度調整機構112は、金属膜30上において出射光αの光軸と直交する軸(図2の紙面に対して垂直な軸)を中心として光源ユニット111を回動させる。このとき、入射角を走査しても金属膜30上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。特に、回転中心の位置を、入射角の走査範囲の両端において、光源から出射された出射光αの2つの光軸の交点近傍(成膜面22上の照射位置と入射面21との間)に設定することで、照射位置のズレを極小化することができる。 The angle adjustment mechanism 112 adjusts the incident angle of the outgoing light α with respect to the metal film 30 (the interface between the prism 20 and the metal film 30 (film formation surface 22)). The angle adjusting mechanism 112 emits the emitted light emitted from the light source to irradiate the emitted light α at the first incident angle or the second incident angle toward the predetermined position of the metal film 30 via the prism 20. The optical axis α and the chip holder 142 are relatively rotated. For example, the angle adjustment mechanism 112 rotates the light source unit 111 around the axis perpendicular to the optical axis of the outgoing light α on the metal film 30 (the axis perpendicular to the paper surface of FIG. 2). At this time, the position of the rotation axis is set so that the position of the irradiation spot on the metal film 30 hardly changes even when the incident angle is scanned. In particular, the position of the rotation center is near the intersection of the two optical axes of the emitted light α emitted from the light source at both ends of the scanning range of the incident angle (between the irradiation position on the film formation surface 22 and the incident surface 21). By setting to, the deviation of the irradiation position can be minimized.
 光源制御部113は、光源ユニット111に含まれる各種機器を制御して、光源ユニット111からの出射光αの出射を制御する。光源制御部113は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The light source control unit 113 controls various devices included in the light source unit 111 to control emission of the emitted light α from the light source unit 111. The light source control unit 113 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 光検出部120は、金属膜30上に、光出射部110がプリズム20を介して金属膜30に照射したときに、測定チップ10から放出される光(例えば、蛍光β、散乱光γ’またはプラズモン散乱光γ)を検出する。本実施の形態では、光検出部120は、検出した蛍光βの光量、散乱光γ’の光量およびプラズモン散乱光γの光量を示す信号を制御処理部150に出力する。光検出部120は、受光光学系ユニット121、位置切替え機構122およびセンサー制御部127を含む。 The light detection unit 120 emits light (for example, fluorescence β, scattered light γ ′ or scattered light emitted from the measurement chip 10 when the light emitting unit 110 irradiates the metal film 30 via the prism 20 on the metal film 30. Plasmon scattered light γ) is detected. In the present embodiment, the light detection unit 120 outputs a signal indicating the detected light amount of the fluorescence β, the light amount of the scattered light γ ′, and the light amount of the plasmon scattered light γ to the control processing unit 150. The light detection unit 120 includes a light receiving optical system unit 121, a position switching mechanism 122, and a sensor control unit 127.
 受光光学系ユニット121は、測定チップ10の金属膜30の法線上に配置される。受光光学系ユニット121は、第1のレンズ123、光学フィルター124、第2のレンズ125および受光センサー126を含む。受光光学系ユニット121の光軸は、光出射部110からの出射光αの光軸と合致しないように配置されている。これにより、蛍光β、散乱光γ’またはプラズモン散乱光γを検出するときに、出射光αが直接受光センサー126に入射するのを防ぐことができる。結果として、高いS/N比で蛍光β、散乱光γ’またはプラズモン散乱光γを検出することができる。 The light receiving optical system unit 121 is disposed on the normal line of the metal film 30 of the measuring chip 10. The light receiving optical system unit 121 includes a first lens 123, an optical filter 124, a second lens 125, and a light receiving sensor 126. The optical axis of the light receiving optical system unit 121 is arranged so as not to coincide with the optical axis of the outgoing light α from the light emitting unit 110. Accordingly, it is possible to prevent the outgoing light α from directly entering the light receiving sensor 126 when detecting the fluorescence β, the scattered light γ ′, or the plasmon scattered light γ. As a result, fluorescence β, scattered light γ ′ or plasmon scattered light γ can be detected with a high S / N ratio.
 位置切替え機構122は、光学フィルター124が受光光学系ユニット121における光路上に位置するか、または光学フィルター124の一部または全部が光路外に位置するように光学フィルター124の位置を切り替える。具体的には、受光センサー126が蛍光βを検出するときには、光学フィルター124を受光光学系ユニット121の光路上に配置し、受光センサー126が散乱光γ’およびプラズモン散乱光γを検出するときには、光学フィルター124の一部または全部を受光光学系ユニット121の光路外に配置する。 The position switching mechanism 122 switches the position of the optical filter 124 so that the optical filter 124 is positioned on the optical path in the light receiving optical system unit 121, or a part or all of the optical filter 124 is positioned outside the optical path. Specifically, when the light receiving sensor 126 detects the fluorescence β, the optical filter 124 is disposed on the optical path of the light receiving optical system unit 121, and when the light receiving sensor 126 detects the scattered light γ ′ and the plasmon scattered light γ, A part or all of the optical filter 124 is disposed outside the optical path of the light receiving optical system unit 121.
 第1のレンズ123は、例えば、集光レンズであり、金属膜30上から出射される光(シグナル)を集光する。第2のレンズ125は、例えば、結像レンズであり、第1のレンズ123で集光された光を受光センサー126の受光面に結像させる。両レンズの間において、光は、略平行の光束となっている。 The first lens 123 is a condensing lens, for example, and condenses light (signal) emitted from the metal film 30. The second lens 125 is, for example, an imaging lens, and forms an image of the light collected by the first lens 123 on the light receiving surface of the light receiving sensor 126. Between both lenses, the light is a substantially parallel light beam.
 光学フィルター124は、第1のレンズ123および第2のレンズ125の間に配置されている。光学フィルター124は、蛍光検出時においては、光学フィルター124に入射する光のうち、蛍光成分のみを透過させ、励起光成分(プラズモン散乱光γ)を除去する。これにより、蛍光成分のみを受光センサー126に導き、高いS/N比で蛍光βを検出することができる。光学フィルター124の種類の例には、励起光反射フィルター、短波長カットフィルターおよびバンドパスフィルターが含まれる。光学フィルター124の例には、所定の光成分を反射する多層膜を含むフィルターと、所定の光成分を吸収する色ガラスフィルターとが含まれる。 The optical filter 124 is disposed between the first lens 123 and the second lens 125. The optical filter 124 transmits only the fluorescence component of the light incident on the optical filter 124 and removes the excitation light component (plasmon scattered light γ) during fluorescence detection. Thereby, only the fluorescence component is guided to the light receiving sensor 126, and the fluorescence β can be detected with a high S / N ratio. Examples of types of the optical filter 124 include an excitation light reflection filter, a short wavelength cut filter, and a band pass filter. Examples of the optical filter 124 include a filter including a multilayer film that reflects a predetermined light component, and a color glass filter that absorbs the predetermined light component.
 受光センサー126は、蛍光β、散乱光γ’およびプラズモン散乱光γを検出する。蛍光β、散乱光γ’およびプラズモン散乱光γを同一の受光センサー126で受光することによって、SPFS装置100の大型化を防ぐとともに、低コスト化を実現することができる。受光センサー126は、出射光αの光軸と重なる位置とは異なる位置に配置されている。出射光αの光軸と重なる位置とは異なる位置で散乱光γ’を検出することによって、検体中で散乱されずに測定チップ10上に放出された出射光αを検出することなく、高いS/N比で散乱光γ’を検出することができる。受光センサー126は、微量の被測定物質からの微弱な蛍光βを検出することが可能な、高い感度を有する。受光センサー126は、例えば、光電子増倍管(PMT)やアバランシェフォトダイオード(APD)、シリコンフォトダイオード(SiPD)などである。 The light receiving sensor 126 detects fluorescence β, scattered light γ ′, and plasmon scattered light γ. By receiving the fluorescence β, the scattered light γ ′, and the plasmon scattered light γ by the same light receiving sensor 126, it is possible to prevent the SPFS device 100 from being enlarged and to reduce the cost. The light receiving sensor 126 is disposed at a position different from the position overlapping the optical axis of the outgoing light α. By detecting the scattered light γ ′ at a position different from the position overlapping with the optical axis of the emitted light α, it is possible to increase the S without detecting the emitted light α that is not scattered in the specimen and emitted onto the measurement chip 10. Scattered light γ ′ can be detected with the / N ratio. The light receiving sensor 126 has a high sensitivity capable of detecting weak fluorescence β from a very small amount of a substance to be measured. The light receiving sensor 126 is, for example, a photomultiplier tube (PMT), an avalanche photodiode (APD), a silicon photodiode (SiPD), or the like.
 センサー制御部127は、受光センサー126の出力値の検出や、当該出力値による受光センサー126の感度の管理、適切な出力値を得るための受光センサー126の感度の変更などを制御する。センサー制御部127は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The sensor control unit 127 controls detection of the output value of the light receiving sensor 126, management of sensitivity of the light receiving sensor 126 based on the output value, change of sensitivity of the light receiving sensor 126 to obtain an appropriate output value, and the like. The sensor control unit 127 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 送液部130は、チップホルダー142に保持された測定チップ10の流路41内に、液体チップ50内の液体を供給する。また、送液部130は、測定チップ10の流路41内から液体を除去する。送液部130は、ピペット131およびピペット制御部135を含む。 The liquid feeding unit 130 supplies the liquid in the liquid chip 50 into the flow path 41 of the measurement chip 10 held by the chip holder 142. In addition, the liquid feeding unit 130 removes the liquid from the flow path 41 of the measurement chip 10. The liquid feeding unit 130 includes a pipette 131 and a pipette control unit 135.
 ピペット131は、シリンジポンプ132と、シリンジポンプ132に接続されたノズルユニット133と、ノズルユニット133の先端に装着されたピペットチップ134とを有する。シリンジポンプ132内のプランジャーの往復運動によって、ピペットチップ134における液体の吸引および排出が定量的に行われる。 The pipette 131 has a syringe pump 132, a nozzle unit 133 connected to the syringe pump 132, and a pipette tip 134 attached to the tip of the nozzle unit 133. By the reciprocating motion of the plunger in the syringe pump 132, the liquid is sucked and discharged from the pipette tip 134 quantitatively.
 ピペット制御部135は、シリンジポンプ132の駆動装置、およびノズルユニット133の移動装置を含む。シリンジポンプ132の駆動装置は、シリンジポンプ132のプランジャーを往復運動させるための装置であり、例えば、ステッピングモーターを含む。ノズルユニット133の移動装置は、例えば、ノズルユニット133を、垂直方向に自在に動かす。ノズルユニット133の移動装置は、例えば、ロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。 The pipette control unit 135 includes a driving device for the syringe pump 132 and a moving device for the nozzle unit 133. The drive device of the syringe pump 132 is a device for reciprocating the plunger of the syringe pump 132, and includes, for example, a stepping motor. The moving device of the nozzle unit 133 moves the nozzle unit 133 freely in the vertical direction, for example. The moving device of the nozzle unit 133 is configured by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
 ピペット制御部135は、シリンジポンプ132を駆動して、液体チップ50から各種液体をピペットチップ134内に吸引させる。そして、ピペット制御部135は、ノズルユニット133を移動させて、測定チップ10の流路41内にピペットチップ134を挿入させるとともに、シリンジポンプ132を駆動して、ピペットチップ134内の液体を流路41内に注入させる。また、液体の導入後、ピペット制御部135は、シリンジポンプ132を駆動して、流路41内の液体をピペットチップ134内に吸引させる。このように流路41内の液体を順次交換することによって、反応場において捕捉体と被測定物質を反応させたり(1次反応)、被測定物質と蛍光物質で標識された捕捉体とを反応させたりする(2次反応)。また、送液部130は、上記のように液体チップ50内の液体を吸引したり、吐出したりすることで、検体を分注したり、希釈したりすることもできる。 The pipette controller 135 drives the syringe pump 132 to suck various liquids from the liquid tip 50 into the pipette tip 134. Then, the pipette controller 135 moves the nozzle unit 133 to insert the pipette tip 134 into the flow channel 41 of the measurement chip 10 and drives the syringe pump 132 to flow the liquid in the pipette tip 134. 41 is injected. In addition, after the introduction of the liquid, the pipette control unit 135 drives the syringe pump 132 to suck the liquid in the channel 41 into the pipette tip 134. By sequentially exchanging the liquid in the channel 41 in this way, the capture body reacts with the substance to be measured in the reaction field (primary reaction), or the measurement substance reacts with the capture body labeled with the fluorescent substance. (Secondary reaction). Further, the liquid feeding unit 130 can dispense or dilute the specimen by sucking or discharging the liquid in the liquid chip 50 as described above.
 搬送部140は、測定チップ10を搬送し、固定する。搬送部140は、搬送ステージ141およびチップホルダー142を含む。 The transport unit 140 transports and fixes the measurement chip 10. The transport unit 140 includes a transport stage 141 and a chip holder 142.
 搬送ステージ141は、チップホルダー142を一方向およびその逆方向に移動させる。搬送ステージ141は、出射光αや、出射光αの反射光、蛍光β、散乱光γ’、プラズモン散乱光γなどの光の光路を妨げない形状である。搬送ステージ141は、例えば、ステッピングモーターなどで駆動される。 The transfer stage 141 moves the chip holder 142 in one direction and in the opposite direction. The transport stage 141 has a shape that does not obstruct the optical path of light such as outgoing light α, reflected light of outgoing light α, fluorescence β, scattered light γ ′, and plasmon scattered light γ. The transport stage 141 is driven by, for example, a stepping motor.
 チップホルダー142は、搬送ステージ141に固定されており、測定チップ10を着脱可能に保持する。チップホルダー142の形状は、測定チップ10を保持することができ、かつ出射光αや出射光αの反射光、蛍光β、散乱光γ’、プラズモン散乱光γなどの光の光路を妨げない形状である。たとえば、チップホルダー142には、上記の光が通過するための開口が設けられている。 The chip holder 142 is fixed to the transfer stage 141 and holds the measurement chip 10 in a detachable manner. The shape of the chip holder 142 can hold the measurement chip 10 and does not obstruct the optical path of light such as the outgoing light α, the reflected light of the outgoing light α, the fluorescence β, the scattered light γ ′, and the plasmon scattered light γ. It is. For example, the chip holder 142 is provided with an opening through which the light passes.
 また、チップホルダー142には、ヒーターやペルチェ素子などの温度調整機構(不図示)が接続されている。1次反応や2次反応などの、流路41内での反応は、温度によって反応効率が変動することがある。このため、チップホルダー142を介して温度調整機構により流路41内の温度を一定に保つことにより、反応効率を一定に制御し、被測定物質の測定精度を高めることが好ましい。 The chip holder 142 is connected to a temperature adjustment mechanism (not shown) such as a heater or a Peltier element. The reaction efficiency in the reaction in the channel 41 such as the primary reaction and the secondary reaction may vary depending on the temperature. For this reason, it is preferable to keep the temperature in the flow path 41 constant by the temperature adjustment mechanism through the chip holder 142, thereby controlling the reaction efficiency constant and increasing the measurement accuracy of the substance to be measured.
 制御処理部150は、角度調整機構112、光源制御部113、位置切替え機構122、センサー制御部127、ピペット制御部135および搬送ステージ141を制御する。制御処理部150は、光検出部120(受光センサー126)の検出結果を処理する処理部としても機能する。本実施の形態では、制御処理部150は、散乱光γ’の検出結果に基づいて、検体のヘマトクリット値を決定するとともに、蛍光βの検出結果に基づいて、検体中の被測定物質の量を示す測定値を決定する。これとともに、制御処理部150は、ヘマトクリット値に基づいて測定値を補正して、血漿または血清中の被測定物質の量(濃度)を決定する。また、制御処理部150には、上記の処理の際に使用される特定の情報(例えば、種々の変換係数、希釈倍率、検量線に関するデータ)などがあらかじめ記録されていてもよい。本実施の形態では、制御処理部150には、ヘマトクリット値を用いて測定値を補正(換算)するための換算係数があらかじめ記録されている。制御処理部150は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The control processing unit 150 controls the angle adjustment mechanism 112, the light source control unit 113, the position switching mechanism 122, the sensor control unit 127, the pipette control unit 135, and the transport stage 141. The control processing unit 150 also functions as a processing unit that processes the detection result of the light detection unit 120 (light receiving sensor 126). In the present embodiment, the control processing unit 150 determines the hematocrit value of the specimen based on the detection result of the scattered light γ ′, and determines the amount of the substance to be measured in the specimen based on the detection result of the fluorescence β. Determine the measured value shown. At the same time, the control processing unit 150 corrects the measurement value based on the hematocrit value, and determines the amount (concentration) of the substance to be measured in plasma or serum. In addition, specific information (for example, data relating to various conversion coefficients, dilution factors, and calibration curves) used in the above processing may be recorded in the control processing unit 150 in advance. In the present embodiment, the control processing unit 150 records in advance a conversion coefficient for correcting (converting) the measured value using the hematocrit value. The control processing unit 150 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 (SPFS装置における光路)
 図2に示されるように、出射光αは、入射面21からプリズム20内に入射する。プリズム20内に入射した出射光αが、金属膜30に第1の入射角で入射するとき、出射光α(第1の出射光α)が金属膜30、流路41内の液体および流路蓋40を通ったときに、検体で散乱されることによって得られる散乱光γ’が、測定チップ10の上方に放出される。最後に、散乱光γ’は、受光センサー126に到達する。なお、特に図示していないが、出射光α(第1の出射光α)の一部は、金属膜30で反射されて反射光となり、当該反射光は、出射面23でプリズム20外に出射する。
(Optical path in SPFS device)
As shown in FIG. 2, the outgoing light α enters the prism 20 from the incident surface 21. When the outgoing light α that has entered the prism 20 enters the metal film 30 at the first incident angle, the outgoing light α (first outgoing light α 1 ) is the liquid and flow in the metal film 30 and the channel 41. Scattered light γ ′ obtained by being scattered by the specimen when passing through the road lid 40 is emitted above the measurement chip 10. Finally, the scattered light γ ′ reaches the light receiving sensor 126. Although not particularly illustrated, a part of the outgoing light α (first outgoing light α 1 ) is reflected by the metal film 30 to become reflected light, and the reflected light is emitted to the outside of the prism 20 by the outgoing surface 23. Exit.
 一方、プリズム20内に入射した出射光αが、金属膜30にSPRが生じる全反射角度である第2の入射角で入射するとき、金属膜30上では局在場光が発生する。この局在場光により、金属膜30上に存在する被測定物質を標識する蛍光物質が励起され、蛍光βが放出される。SPFS装置100は、蛍光物質から放出された蛍光βを検出する。なお、特に図示していないが、金属膜30での出射光α(第2の出射光α)の反射光は、出射面23でプリズム20外に出射する。 On the other hand, when the outgoing light α that has entered the prism 20 enters the metal film 30 at a second incident angle that is a total reflection angle at which SPR occurs, localized field light is generated on the metal film 30. This localized field light excites a fluorescent substance that labels the substance to be measured existing on the metal film 30, and emits fluorescence β. The SPFS device 100 detects the fluorescence β emitted from the fluorescent material. Although not particularly illustrated, the reflected light of the emitted light α (second emitted light α 2 ) from the metal film 30 is emitted to the outside of the prism 20 at the emission surface 23.
 (効果)
 本実施の形態に係る測定方法では、検体のヘマトクリット値を決定するために、臨界角未満の第1の入射角で金属膜30に第1の出射光αを照射したときに、第1の出射光αが検体中で散乱されることで得られる散乱光γ’を検出する。プラズモン散乱光γと比較して、散乱光γ’は、強度が高く、かつヘマトクリット値との相関も高い。したがって、本実施の形態に係る測定方法では、検体のヘマトクリット値を決定するためにプラズモン散乱光γを検出する場合と比較して、ヘマトクリット値を、より高精度に決定することができる。これにより、本実施の形態に係る測定方法では、検体のヘマトクリット値を高精度に決定できるとともに、血漿中の被測定物質の量(濃度)を高精度に決定することができる。また、本実施の形態に係る測定方法では、ヘマトクリット値測定用の装置を新たに追加することなく、ヘマトクリット値を高精度に測定することができるため、測定装置の製造コストおよび測定コストを増大させることがない。
(effect)
In the measurement method according to the present embodiment, in order to determine the hematocrit value of the specimen, the first emission light α 1 is irradiated to the metal film 30 at the first incident angle less than the critical angle. emitted light alpha 1 detects scattered light gamma 'obtained by being scattered by the sample. Compared with the plasmon scattered light γ, the scattered light γ ′ has a high intensity and a high correlation with the hematocrit value. Therefore, in the measurement method according to the present embodiment, the hematocrit value can be determined with higher accuracy than in the case where plasmon scattered light γ is detected in order to determine the hematocrit value of the specimen. Thereby, in the measuring method according to the present embodiment, the hematocrit value of the specimen can be determined with high accuracy, and the amount (concentration) of the substance to be measured in plasma can be determined with high accuracy. Further, in the measurement method according to the present embodiment, the hematocrit value can be measured with high accuracy without adding a new hematocrit value measurement device, which increases the manufacturing cost and measurement cost of the measurement device. There is nothing.
 [変形例]
 本発明に係る測定方法は、上記実施の形態に係る測定方法に限定されず、必要に応じて、各工程の順番を入れ替えてもよい。図9は、変形例に係る測定方法の一例を示すフローチャートである。たとえば、図9に示されるように、蛍光シグナルを検出する工程(工程S117)の後に、第1の光学ブランク値を測定する工程(工程S112)と散乱光γ’を検出する工程(工程S115)とを行ってもよい。
[Modification]
The measuring method according to the present invention is not limited to the measuring method according to the above embodiment, and the order of each step may be changed as necessary. FIG. 9 is a flowchart illustrating an example of a measurement method according to the modification. For example, as shown in FIG. 9, after the step of detecting the fluorescence signal (step S117), the step of measuring the first optical blank value (step S112) and the step of detecting the scattered light γ ′ (step S115). And may be performed.
 蛍光βを検出した後に、ヘマトクリット値を決定するための上記工程S112および工程S115を行う方法は、検体として、希釈倍率が大きい全血、例えば、希釈倍率が10倍以上の全血を使用する場合に、特に有効な手段となる。 The method of performing the above steps S112 and S115 for determining the hematocrit value after detecting fluorescent β is when whole blood having a large dilution ratio, for example, whole blood having a dilution ratio of 10 times or more is used as a specimen. It is a particularly effective means.
 上記実施の形態では、1次反応を行う工程で使用される検体と散乱光γ’の検出を行う工程で使用される検体とは、同一である。このため、希釈倍率が大きい検体を1次反応で使用する場合には、散乱光γ’の検出精度が低下してしまう。これに対して、変形例に係る測定方法では、1次反応(工程S114)において、検体として希釈倍率が10倍以上の全血を使用する場合でも、散乱光γ’を検出する工程(工程S115)では、上記検体よりも希釈倍率がより小さい(濃度が高い)検体を別途準備し、使用することが可能となる。これにより、希釈倍率が大きい(濃度が低い)検体を使用して、被測定物質の量を示す測定値を高精度に取得できるとともに、希釈倍率が小さい(濃度が高い)検体を使用して、高精度にヘマトクリット値を取得することができる。結果として、血漿中の被測定物質の量(濃度)をより高精度に決定することができる。 In the above embodiment, the sample used in the step of performing the primary reaction and the sample used in the step of detecting the scattered light γ ′ are the same. For this reason, when a specimen having a large dilution rate is used in the primary reaction, the detection accuracy of the scattered light γ ′ is lowered. On the other hand, in the measurement method according to the modified example, in the primary reaction (step S114), even when whole blood having a dilution ratio of 10 times or more is used as a specimen, the step of detecting scattered light γ ′ (step S115). ), A specimen having a smaller dilution ratio (higher concentration) than that of the specimen can be separately prepared and used. As a result, a measurement value indicating the amount of the substance to be measured can be obtained with high accuracy using a specimen with a large dilution ratio (low concentration), and a specimen with a low dilution ratio (high concentration) can be used. Hematocrit value can be obtained with high accuracy. As a result, the amount (concentration) of the substance to be measured in plasma can be determined with higher accuracy.
 上記実施の形態に係る測定方法では、上記変形例に係る測定方法と比較して、1次反応を行う工程において流路41内に提供される検体を利用してヘマトクリット値を測定することができるため、被測定物質の測定時間をより短くすることができる。また、上記実施の形態に係る測定方法では、第1の光学ブランク値を測定する工程(工程S112)の後に、2次反応の工程(工程S116)と蛍光シグナルの検出工程(工程S117)とを行うため、第1の光学ブランク値に蛍光シグナルが混ざることがなく、より高精度にヘマトクリット値を測定することができる。 In the measurement method according to the above-described embodiment, the hematocrit value can be measured using the sample provided in the flow path 41 in the step of performing the primary reaction as compared with the measurement method according to the modification. Therefore, the measurement time of the substance to be measured can be further shortened. In the measurement method according to the above embodiment, after the step of measuring the first optical blank value (step S112), the secondary reaction step (step S116) and the fluorescence signal detection step (step S117) are performed. Therefore, the hematocrit value can be measured with higher accuracy without mixing the fluorescence signal with the first optical blank value.
 なお、本実施の形態では、増強角を決定する工程(工程S111)、第1の光学ブランク値を測定する工程(工程S112)、第2の光学ブランク値を測定する工程(工程S113)および1次反応を行う工程(工程S114)をこの順番に行う態様について説明した。しかし、本発明に係る測定方法では、この順番に限定されない。たとえば、1次反応を行った後に増強角を決定してもよいし、1次反応を行った後に第1の光学ブランク値および第2の光学ブランク値を測定してもよい。 In the present embodiment, the step of determining the enhancement angle (step S111), the step of measuring the first optical blank value (step S112), the step of measuring the second optical blank value (step S113), and 1 The aspect which performs the process (process S114) which performs a next reaction in this order was demonstrated. However, the measurement method according to the present invention is not limited to this order. For example, the enhancement angle may be determined after performing the primary reaction, or the first optical blank value and the second optical blank value may be measured after performing the primary reaction.
 また、第1の光学ブランク値を測定する工程(工程S112)を行った後に増強角を決定する工程(工程S111)を行ってもよい。しかしながら、光学フィルター124の位置を切替える回数を少なくし、被測定物質の測定時間を短くする観点からは、増強角を決定する工程(工程S111)と、第1の光学ブランク値を測定する工程(工程S112)とを行った後に、第2の光学ブランク値を測定する工程(工程S113)を行うことが好ましい。 Further, after the step of measuring the first optical blank value (step S112), the step of determining the enhancement angle (step S111) may be performed. However, from the viewpoint of reducing the number of times of switching the position of the optical filter 124 and shortening the measurement time of the substance to be measured, the step of determining the enhancement angle (step S111) and the step of measuring the first optical blank value (step S111) After performing step S112), it is preferable to perform a step of measuring the second optical blank value (step S113).
 また、上記変形例では、1次反応を行う工程(工程S114)の後に、2次反応を行う工程(工程S116)を行った(2工程方式)。しかしながら、被測定物質を蛍光物質で標識するタイミングは、特に限定されない。たとえば、測定チップ10の流路41内に検体を導入する前に、検体に標識液を添加して被測定物質を予め蛍光物質で標識しておいてもよい。また、測定チップ10の流路41内に検体と標識液を同時に注入してもよい。前者の場合は、測定チップ10の流路41内に検体を注入することで、蛍光物質で標識されている被測定物質が捕捉体により捕捉される。後者の場合は、被測定物質が蛍光物質で標識されるとともに、被測定物質が捕捉体により捕捉される。いずれの場合も、測定チップ10の流路41内に検体を導入することで、1次反応および2次反応の両方を完了することができる(1工程方式)。 Further, in the above modification, after the step of performing the primary reaction (step S114), the step of performing the secondary reaction (step S116) was performed (two-step method). However, the timing for labeling the substance to be measured with the fluorescent substance is not particularly limited. For example, before the sample is introduced into the flow channel 41 of the measurement chip 10, a labeling solution may be added to the sample and the substance to be measured may be labeled with a fluorescent substance in advance. Further, the sample and the labeling solution may be injected simultaneously into the flow channel 41 of the measurement chip 10. In the former case, the analyte to be measured is captured by the capturing body by injecting the sample into the flow channel 41 of the measurement chip 10. In the latter case, the substance to be measured is labeled with a fluorescent substance, and the substance to be measured is captured by the capturing body. In any case, both the primary reaction and the secondary reaction can be completed by introducing the sample into the flow channel 41 of the measurement chip 10 (one-step method).
 なお、上記実施の形態では、SPFS法を利用し、シグナルとして蛍光物質からの蛍光βを検出する態様について説明したが、本発明はこの態様に限定されない。たとえば、SPR法を利用し、測定値として出射光αの反射光を検出してもよい。 In the above-described embodiment, the SPFS method is used to detect the fluorescent β from the fluorescent substance as a signal. However, the present invention is not limited to this mode. For example, the reflected light of the outgoing light α may be detected as a measurement value using the SPR method.
 また、上記実施の形態では、増強角を決定する工程(工程S111)を含む測定方法について説明したが、本発明に係る測定方法は、増強角を決定する工程を含まなくてもよい。この場合、増強角は、測定チップ10の設計や流路41内に提供される液体の屈折率などの因子に基づいてあらかじめ算出されていてもよい。 In the above embodiment, the measurement method including the step of determining the enhancement angle (step S111) has been described. However, the measurement method according to the present invention may not include the step of determining the enhancement angle. In this case, the enhancement angle may be calculated in advance based on factors such as the design of the measurement chip 10 and the refractive index of the liquid provided in the flow path 41.
 さらに、上記実施の形態では、同一の光源から散乱光γ’を検出するときの第1の出射光α(第1の光)と、蛍光βを検出するときの第2の出射光α(第2の光)とを金属膜30に照射する態様について説明した。しかし、本発明に係る測定方法はこの態様に限定されず、散乱光γ’を検出するときの第1の出射光α(第1の光)と、蛍光βを検出するときの第2の出射光α(第2の光)とを金属膜30に照射するときに、異なる光源から照射してもよい。SPFS装置100の大型化を防ぐとともに、低コスト化を実現する観点からは、同一の光源を使用することがより好ましい。 Furthermore, in the above embodiment, the first outgoing light α 1 (first light) when detecting scattered light γ ′ from the same light source and the second outgoing light α 2 when detecting fluorescence β. The mode of irradiating the metal film 30 with (second light) has been described. However, the measurement method according to the present invention is not limited to this mode, and the first outgoing light α 1 (first light) when detecting the scattered light γ ′ and the second time when detecting the fluorescence β. When the emitted light α 2 (second light) is irradiated onto the metal film 30, the metal film 30 may be irradiated from different light sources. It is more preferable to use the same light source from the viewpoint of preventing the SPFS device 100 from becoming large and reducing the cost.
 本出願は、2016年9月14日出願の特願2016-179396に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2016-179396 filed on Sep. 14, 2016. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係る被測定物質の測定方法は、被測定物質を高い信頼性で検出することができるため、例えば疾患の検査などに有用である。 The method for measuring a substance to be measured according to the present invention can detect the substance to be measured with high reliability, and is useful for, for example, examination of diseases.
 10 測定チップ
 20 プリズム
 21 入射面
 22 成膜面
 23 出射面
 30 金属膜
 40 流路蓋
 41 流路
 50 液体チップ
 100 SPFS装置
 110 光出射部
 111 光源ユニット
 112 角度調整機構
 113 光源制御部
 120 光検出部
 121 受光光学系ユニット
 122 位置切替え機構
 123 第1のレンズ
 124 光学フィルター
 125 第2のレンズ
 126 受光センサー
 127 センサー制御部
 130 送液部
 131 ピペット
 132 シリンジポンプ
 133 ノズルユニット
 134 ピペットチップ
 135 ピペット制御部
 140 搬送部
 141 搬送ステージ
 142 チップホルダー
 150 制御処理部(処理部)
 α 出射光
 α 第1の出射光
 α 第2の出射光
 β 蛍光
 γ プラズモン散乱光
 γ’ 散乱光
 
DESCRIPTION OF SYMBOLS 10 Measurement chip | tip 20 Prism 21 Incident surface 22 Film-forming surface 23 Output surface 30 Metal film 40 Channel cover 41 Channel 50 Liquid chip 100 SPFS apparatus 110 Light emitting part 111 Light source unit 112 Angle adjustment mechanism 113 Light source control part 120 Light detection part REFERENCE SIGNS LIST 121 light receiving optical system unit 122 position switching mechanism 123 first lens 124 optical filter 125 second lens 126 light receiving sensor 127 sensor control unit 130 liquid feeding unit 131 pipette 132 syringe pump 133 nozzle unit 134 pipette tip 135 pipette control unit 140 transport Unit 141 Transport stage 142 Chip holder 150 Control processing unit (processing unit)
α outgoing light α 1 first outgoing light α 2 second outgoing light β fluorescence γ plasmon scattered light γ ′ scattered light

Claims (14)

  1.  表面プラズモン共鳴を利用して、全血を含む検体中の被測定物質の量を測定するための測定方法であって、
     入射面および成膜面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜上に固定された捕捉体とを有する測定チップを準備する工程と、
     前記金属膜上に前記検体が存在する状態で、前記プリズム側から臨界角未満の第1の入射角で前記金属膜に第1の光を照射したときに、前記金属膜および前記検体を透過した前記第1の光が、前記検体中で散乱されることで得られる散乱光を検出する工程と、
     前記金属膜上において、前記被測定物質が前記捕捉体に捕捉され、かつ前記検体が存在しない状態で、前記プリズム側から臨界角以上の第2の入射角で前記金属膜に第2の光を照射したときに前記測定チップで生じる、前記被測定物質の量を示すシグナルを検出する工程と、
     検出された前記散乱光の光量から決定される、前記検体のヘマトクリット値に基づいて、検出された前記シグナルから決定される、前記被測定物質の量を示す測定値を補正する工程と、
     を含む、測定方法。
    A measurement method for measuring the amount of a substance to be measured in a specimen containing whole blood using surface plasmon resonance,
    Preparing a measuring chip having a prism having an incident surface and a film-forming surface, a metal film disposed on the film-forming surface, and a capturing body fixed on the metal film;
    In a state where the specimen is present on the metal film, the metal film and the specimen are transmitted when the first light is irradiated from the prism side at a first incident angle less than a critical angle. Detecting the scattered light obtained by scattering the first light in the specimen;
    On the metal film, the second substance is emitted from the prism side to the metal film at a second incident angle equal to or greater than a critical angle in a state where the substance to be measured is captured by the capturing body and the sample is not present. A step of detecting a signal indicating the amount of the substance to be measured generated in the measurement chip when irradiated;
    Correcting the measured value indicating the amount of the substance to be measured, determined from the detected signal, based on the hematocrit value of the specimen, determined from the amount of the detected scattered light;
    Including a measuring method.
  2.  前記第1の入射角は、臨界角より5度小さい角度と同じか、またはそれより小さい、請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the first incident angle is equal to or smaller than an angle smaller than a critical angle by 5 degrees.
  3.  前記第1の入射角は、臨界角より10度小さい角度と同じか、またはそれより大きい、請求項2に記載の測定方法。 The measurement method according to claim 2, wherein the first incident angle is equal to or larger than an angle that is 10 degrees smaller than a critical angle.
  4.  入射角を走査しながら前記プリズム側から光を照射したときに、前記測定チップで生じるプラズモン散乱光を検出し、前記プラズモン散乱光の光量が最大となるときの入射角である増強角を決定する工程をさらに含み、
     前記シグナルを検出する工程では、前記増強角で前記金属膜に前記第2の光を照射する、
     請求項1~3のいずれか一項に記載の測定方法。
    When light is irradiated from the prism side while scanning the incident angle, plasmon scattered light generated at the measurement chip is detected, and an enhancement angle that is an incident angle when the light quantity of the plasmon scattered light is maximized is determined. Further comprising a step,
    In the step of detecting the signal, the metal film is irradiated with the second light at the enhancement angle.
    The measurement method according to any one of claims 1 to 3.
  5.  50度の入射角でP偏光の光を前記金属膜に照射したときの、前記金属膜の光透過率は、3~30%である、請求項1~4のいずれか一項に記載の測定方法。 The measurement according to any one of claims 1 to 4, wherein when the metal film is irradiated with P-polarized light at an incident angle of 50 degrees, the light transmittance of the metal film is 3 to 30%. Method.
  6.  前記金属膜の厚みは、30~60nmである、請求項5に記載の測定方法。 The measuring method according to claim 5, wherein the metal film has a thickness of 30 to 60 nm.
  7.  前記検体は、希釈倍率が1~10倍の全血である、請求項1~6のいずれか一項に記載の測定方法。 The measurement method according to any one of claims 1 to 6, wherein the specimen is whole blood having a dilution ratio of 1 to 10.
  8.  前記検体は、希釈倍率が1~3倍の全血である、請求項7に記載の測定方法。 The measurement method according to claim 7, wherein the specimen is whole blood having a dilution ratio of 1 to 3 times.
  9.  前記第1の光は、波長が600~700nmであるP偏光の光である、請求項1~8のいずれか一項に記載の測定方法。 The measurement method according to any one of claims 1 to 8, wherein the first light is P-polarized light having a wavelength of 600 to 700 nm.
  10.  同一の光源から前記第1の光および前記第2の光を前記金属膜に照射する、請求項1~9のいずれか一項に記載の測定方法。 10. The measurement method according to claim 1, wherein the first light and the second light are applied to the metal film from the same light source.
  11.  前記光源を回動させることにより、前記第1の入射角および前記第2の入射角を切り替える、請求項10に記載の測定方法。 The measurement method according to claim 10, wherein the first incident angle and the second incident angle are switched by rotating the light source.
  12.  同一の受光センサーで前記散乱光および前記プラズモン散乱光を検出する、請求項4に記載の測定方法。 The measurement method according to claim 4, wherein the scattered light and the plasmon scattered light are detected by the same light receiving sensor.
  13.  前記散乱光を検出する工程では、前記第1の光の光軸と重なる位置とは異なる位置で前記散乱光を検出する、請求項1~12のいずれか一項に記載の測定方法。 The measurement method according to any one of claims 1 to 12, wherein, in the step of detecting the scattered light, the scattered light is detected at a position different from a position overlapping the optical axis of the first light.
  14.  前記シグナルは、前記被測定物質を標識する蛍光物質から放出される蛍光である、請求項1~13のいずれか一項に記載の測定方法。 14. The measuring method according to claim 1, wherein the signal is fluorescence emitted from a fluorescent substance that labels the substance to be measured.
PCT/JP2017/032132 2016-09-14 2017-09-06 Measurement method WO2018051863A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/328,437 US11169089B2 (en) 2016-09-14 2017-09-06 Surface plasmon resonance measurement method for measuring amount of substance in a specimen including whole blood
JP2018539650A JP6760384B2 (en) 2016-09-14 2017-09-06 Measuring method
EP17850766.1A EP3514522A4 (en) 2016-09-14 2017-09-06 Measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179396 2016-09-14
JP2016-179396 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051863A1 true WO2018051863A1 (en) 2018-03-22

Family

ID=61619489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032132 WO2018051863A1 (en) 2016-09-14 2017-09-06 Measurement method

Country Status (4)

Country Link
US (1) US11169089B2 (en)
EP (1) EP3514522A4 (en)
JP (1) JP6760384B2 (en)
WO (1) WO2018051863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182130A1 (en) * 2018-03-23 2019-09-26 コニカミノルタ株式会社 Labeled antibody dispersion liquid and kit for spfs
WO2020241341A1 (en) * 2019-05-31 2020-12-03 コニカミノルタ株式会社 Measuring method and measuring device
JP7407179B2 (en) 2018-09-30 2023-12-28 アジレント・テクノロジーズ・インク Calibration system for attenuated total internal reflection spectroscopy measurements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211189A1 (en) * 2009-08-26 2011-09-01 Reichert, Inc. Apparatus and method for determination of tear osmolarity
WO2014054389A1 (en) * 2012-10-03 2014-04-10 コニカミノルタ株式会社 Immunoassay method utilizing surface plasmon
JP2015059898A (en) * 2013-09-20 2015-03-30 コニカミノルタ株式会社 Immunoassay analysis method and device
JP2015059802A (en) * 2013-09-18 2015-03-30 コニカミノルタ株式会社 Immunoassay analysis method and immunoassay analyzer
WO2015129615A1 (en) * 2014-02-25 2015-09-03 コニカミノルタ株式会社 Measurement method and measurement device
WO2015194513A1 (en) * 2014-06-18 2015-12-23 コニカミノルタ株式会社 Measurement chip, measurement method, and measurement device
JP2016004022A (en) * 2014-06-19 2016-01-12 コニカミノルタ株式会社 Detecting device, detecting method, and detecting chip
JP2016507059A (en) * 2013-02-06 2016-03-07 アレンティック マイクロサイエンス インコーポレイテッド Detecting and using light representative of the sample
WO2016039149A1 (en) * 2014-09-10 2016-03-17 コニカミノルタ株式会社 Detection method and detection apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723099B2 (en) * 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
JP5012507B2 (en) * 2005-07-14 2012-08-29 パナソニック株式会社 Analysis apparatus and analysis method
US20140152801A1 (en) * 2009-10-28 2014-06-05 Alentic Microscience Inc. Detecting and Using Light Representative of a Sample
JP5906604B2 (en) * 2011-08-11 2016-04-20 東洋紡株式会社 Whole blood sample component measurement method
JP5949905B2 (en) * 2012-03-26 2016-07-13 コニカミノルタ株式会社 Prism and sensor chip
WO2015119154A1 (en) * 2014-02-05 2015-08-13 コニカミノルタ株式会社 Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method
EP3153845B1 (en) * 2014-05-29 2020-05-27 Konica Minolta, Inc. Surface-plasmon enhanced fluorescence measurement method and surface-plasmon enhanced fluorescence measurement device
US20190151841A1 (en) * 2016-06-21 2019-05-23 Konica Minolta, Inc. Reaction method, and reaction system and reaction device implementing same
US10809198B2 (en) * 2016-07-19 2020-10-20 Konica Minolta, Inc. Detection method and detection device
EP3505913A4 (en) * 2016-08-18 2019-07-03 Konica Minolta, Inc. Measurement method, measurement apparatus, and measurement system
US11630071B2 (en) * 2017-09-26 2023-04-18 Otsuka Pharmaceutical Co., Ltd. Analysis method and analysis device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211189A1 (en) * 2009-08-26 2011-09-01 Reichert, Inc. Apparatus and method for determination of tear osmolarity
WO2014054389A1 (en) * 2012-10-03 2014-04-10 コニカミノルタ株式会社 Immunoassay method utilizing surface plasmon
JP2016507059A (en) * 2013-02-06 2016-03-07 アレンティック マイクロサイエンス インコーポレイテッド Detecting and using light representative of the sample
JP2015059802A (en) * 2013-09-18 2015-03-30 コニカミノルタ株式会社 Immunoassay analysis method and immunoassay analyzer
JP2015059898A (en) * 2013-09-20 2015-03-30 コニカミノルタ株式会社 Immunoassay analysis method and device
WO2015129615A1 (en) * 2014-02-25 2015-09-03 コニカミノルタ株式会社 Measurement method and measurement device
WO2015194513A1 (en) * 2014-06-18 2015-12-23 コニカミノルタ株式会社 Measurement chip, measurement method, and measurement device
JP2016004022A (en) * 2014-06-19 2016-01-12 コニカミノルタ株式会社 Detecting device, detecting method, and detecting chip
WO2016039149A1 (en) * 2014-09-10 2016-03-17 コニカミノルタ株式会社 Detection method and detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514522A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182130A1 (en) * 2018-03-23 2019-09-26 コニカミノルタ株式会社 Labeled antibody dispersion liquid and kit for spfs
JPWO2019182130A1 (en) * 2018-03-23 2021-04-01 コニカミノルタ株式会社 Labeled antibody dispersion, SPFS kit
JP7171702B2 (en) 2018-03-23 2022-11-15 大塚製薬株式会社 Labeled antibody dispersion, SPFS kit
JP7407179B2 (en) 2018-09-30 2023-12-28 アジレント・テクノロジーズ・インク Calibration system for attenuated total internal reflection spectroscopy measurements
WO2020241341A1 (en) * 2019-05-31 2020-12-03 コニカミノルタ株式会社 Measuring method and measuring device
JP7405846B2 (en) 2019-05-31 2023-12-26 大塚製薬株式会社 Measuring method and measuring device

Also Published As

Publication number Publication date
EP3514522A4 (en) 2019-11-06
EP3514522A1 (en) 2019-07-24
JPWO2018051863A1 (en) 2019-06-27
US20210285874A1 (en) 2021-09-16
JP6760384B2 (en) 2020-09-23
US11169089B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP6369533B2 (en) Measuring method and measuring device
JP6587024B2 (en) Detection method and detection apparatus
JP6635168B2 (en) Surface plasmon resonance fluorescence analysis method
JP6856074B2 (en) Measuring method, measuring device and measuring system
JP6760384B2 (en) Measuring method
US11366130B2 (en) Detection device and detection method
JP6848975B2 (en) Measuring method
JP6805637B2 (en) Hematocrit value measuring method, hematocrit value measuring device, amount of substance to be measured, and amount of substance to be measured
US10895535B2 (en) Measurement method, and measuring chip and measuring kit used for the same
JP6954116B2 (en) Measuring method, measuring device and measuring chip
JP7405846B2 (en) Measuring method and measuring device
JP7469309B2 (en) Measurement method and device
JP6493412B2 (en) Detection apparatus and detection method
WO2016147774A1 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850766

Country of ref document: EP

Effective date: 20190415