WO2018051842A1 - Vehicle braking device - Google Patents

Vehicle braking device Download PDF

Info

Publication number
WO2018051842A1
WO2018051842A1 PCT/JP2017/031921 JP2017031921W WO2018051842A1 WO 2018051842 A1 WO2018051842 A1 WO 2018051842A1 JP 2017031921 W JP2017031921 W JP 2017031921W WO 2018051842 A1 WO2018051842 A1 WO 2018051842A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
braking
braking force
state
vehicle
Prior art date
Application number
PCT/JP2017/031921
Other languages
French (fr)
Japanese (ja)
Inventor
覚 中山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780057498.7A priority Critical patent/CN109715430B/en
Publication of WO2018051842A1 publication Critical patent/WO2018051842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This disclosure relates to a vehicle braking device.
  • Patent Document 1 As a vehicle braking device, there is one disclosed in Patent Document 1, for example.
  • a front brake system that brakes front wheels by operating a lever provided on a handle and a rear brake system that brakes rear wheels by operating a pedal are provided.
  • Each of the front brake system and the rear brake system includes a master cylinder that generates hydraulic pressure by operating a lever or a pedal, a brake unit that generates braking force by supplying hydraulic pressure, and a conduit that connects the master cylinder and the brake unit.
  • the braking force distribution between the front wheels and the rear wheels can be optimally set by interlocking the brake units. That is, even when only one of the lever and the pedal is operated, the braking force can be distributed to the front wheels and the rear wheels. Therefore, it is possible to increase the lock limit point of each brake unit and stabilize the posture of the vehicle.
  • the present disclosure is intended to provide a vehicle braking device that can reduce the weight of the vehicle and reduce the number of components while allowing the posture of the vehicle to be stabilized.
  • One aspect of the present disclosure is a braking device for a vehicle including a front wheel and a rear wheel, A first braking mechanism that brakes a first wheel that is one of the front wheel and the rear wheel; A second braking mechanism that brakes a second wheel that is the other of the front wheel and the rear wheel; A generator provided to transmit braking force to the second wheel; A controller that controls a generator braking force, which is a braking force applied to the second wheel by the generator, The control unit is configured to perform control to increase the generator braking force when in the following first state than when in the following second state,
  • the first state is the sum of the braking force of the first wheel by the first braking mechanism and the braking force of the second wheel by the second braking mechanism.
  • the braking force ratio which is the ratio of the braking force, is in a state exceeding a predetermined threshold
  • the second state is a vehicle braking device in which the braking force ratio is not more than the threshold value.
  • the control unit is configured to perform control to increase the generator braking force when in the first state than when in the second state. Therefore, it is possible to suppress a problem that the braking force of the first wheel is too large with respect to the braking force of the second wheel. That is, the malfunction caused by the braking force of the first wheel being too large relative to the braking force of the second wheel, for example, the nose dive in which the vehicle is lowered forward when decelerating, the locking of the first wheel, and the like are suppressed. be able to. Thereby, the posture stability of the vehicle can be ensured.
  • the adjustment of the braking force to the second wheel described above is performed by adjusting the generator braking force. That is, the generator has a function of braking the second wheel in conjunction with the first braking mechanism in addition to the function of generating power according to the rotation of the second wheel.
  • the generator already mounted on the vehicle the braking force to the second wheel can be generated without increasing the number of parts. Therefore, as described above, it is not necessary to add new parts in order to improve the posture stability of the vehicle. Therefore, the weight of the vehicle can be reduced and the number of parts can be reduced.
  • a vehicle braking device that can reduce the weight of the vehicle and reduce the number of components while allowing the posture of the vehicle to be stabilized.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle braking device in Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration of a braking device for another vehicle according to the first embodiment.
  • FIG. 3 is a flowchart for explaining the relationship between the first braking mechanism and the second braking mechanism and the instruction value of the generator braking force in the first embodiment.
  • FIG. 4 is a timing chart when the first braking mechanism and the second braking mechanism operate in the first embodiment.
  • FIG. 5 is a timing chart when operating only the first braking mechanism in the first embodiment.
  • FIG. 6 is another timing chart when the first braking mechanism and the second braking mechanism operate in the first embodiment.
  • FIG. 7 is a timing chart when operating only the second braking mechanism in the first embodiment.
  • FIG. 8 is a block diagram showing a configuration around the control unit in the second embodiment.
  • FIG. 9 is a flowchart for explaining switching between dynamic braking and regenerative braking in the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a vehicle braking device according to the third embodiment.
  • FIG. 11 is a graph schematically showing the relationship between the first braking mechanism and the second braking mechanism and the nose dive amount in the third embodiment.
  • FIG. 12 is a graph schematically showing a relationship map between the ratio of the hydraulic pressure of the first braking mechanism to the hydraulic pressure of the second braking mechanism and the nose dive amount in the third embodiment.
  • FIG. 13 is a graph schematically showing a relationship map between the stroke amount of the bottom link type front fork and the nose dive amount in the third embodiment
  • FIG. 14 is a graph schematically showing a relationship map between the stroke amount of the swing arm type suspension and the nose dive amount in the third embodiment
  • FIG. 15 is a graph schematically showing a relationship map between the nose dive amount and the indicated value of the generator braking force in the third embodiment
  • FIG. 16 is a block diagram illustrating a configuration of a vehicle braking device according to the fourth embodiment.
  • FIG. 17 is a block diagram illustrating a configuration of a braking device for another vehicle according to the fourth embodiment.
  • FIG. 18 is a graph schematically showing a relationship map between the vehicle speed and the indicated value of the generator braking force in the fourth embodiment.
  • FIG. 19 is a graph schematically showing a relationship map between the vehicle speed and the change rate of the generator braking force in the fourth embodiment.
  • FIG. 20 is a timing chart when operating only the first braking mechanism in the fourth embodiment.
  • FIG. 21 is a block diagram illustrating a configuration of a vehicle braking device according to a fifth embodiment.
  • FIG. 22 is a graph schematically showing the relationship between the clutch and the indicated value of the generator output in the fifth embodiment.
  • FIG. 23 is a graph schematically showing the relationship between the clutch and the change rate of the generator output in the fifth embodiment.
  • FIG. 24 is a block diagram illustrating a configuration of a vehicle braking device according to the sixth embodiment.
  • FIG. 25 is a graph schematically showing a relationship map between the gear ratio and the indicated value of the generator braking force in the sixth embodiment.
  • FIG. 26 is a graph schematically showing the relationship between the gear stage and the indicated value of the generator braking force in the sixth embodiment.
  • FIG. 27 is a graph schematically showing a relationship map between the gear ratio and the change rate of the generator braking force in the sixth embodiment.
  • FIG. 28 is a block diagram illustrating a configuration of a vehicle braking device according to the seventh embodiment.
  • FIG. 29 is a graph schematically showing a relationship map between the nose dive amount and the generator braking force command value in the seventh embodiment.
  • the vehicle having the braking device 1 of the present embodiment includes front wheels and rear wheels.
  • the braking device 1 includes a first braking mechanism 2, a second braking mechanism 3, a generator 4, and a control unit 5.
  • the first braking mechanism 2 brakes the first wheel 12 that is one of the front wheel and the rear wheel.
  • the second braking mechanism 3 brakes the second wheel 13 that is the other of the front wheel and the rear wheel.
  • the first wheel 12 is a front wheel and the second wheel 13 is a rear wheel.
  • the generator 4 is provided so that a braking force can be transmitted to the rear wheel 13.
  • the control unit 5 controls a generator braking force that is a braking force applied to the rear wheel 13 by the generator 4.
  • the controller 5 is configured to perform control to increase the generator braking force when in the following first state than when in the following second state.
  • the first state is the ratio of the braking force of the front wheel 12 by the first braking mechanism 2 to the sum of the braking force of the front wheel 12 by the first braking mechanism 2 and the braking force of the rear wheel 13 by the second braking mechanism 3.
  • This is a state in which the braking force ratio R exceeds a predetermined threshold value Vr.
  • the second state is a state where the braking force ratio R is equal to or less than the threshold value Vr.
  • the threshold value Vr is, for example, 0.7 to 0.8.
  • a scooter As a vehicle having the braking device 1 of this embodiment, there are two-wheeled vehicles such as a scooter, an electric motorcycle and an electric assist bicycle, and a four-wheeled vehicle such as a buggy.
  • a scooter will be described as an example.
  • the vehicle of this embodiment has an engine 14 that drives the rear wheel 13. Power is transmitted from the engine 14 to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7 and the chain 16. And the generator 4 is attached to the crankshaft 15, and it is comprised so that the rotational energy of the crankshaft 15 can be changed into alternating current power in the generator 4.
  • the first braking mechanism 2 includes a first brake lever 21, a first master cylinder 22, a first brake caliper 23, a first brake disc 24, and a first pipe 25, as shown in FIG.
  • the first brake lever 21 operates the first master cylinder 22.
  • the first master cylinder 22 and the first brake caliper 23 are connected by a first pipe 25.
  • the first brake caliper 23 is attached adjacent to the first brake disc 24 so as to sandwich a part of the first brake disc 24.
  • the first brake disc 24 is attached to the front wheel 12.
  • the first braking mechanism 2 when the driver operates the first brake lever 21, a hydraulic pressure P1 is generated in the first master cylinder 22.
  • the hydraulic pressure P 1 generated in the first master cylinder 22 is supplied to the first brake caliper 23 via the first pipe 25. Then, the brake pads incorporated in the first brake caliper 23 are pressed against the first brake disc 24, whereby the front wheels 12 can be braked.
  • the second braking mechanism 3 includes a second brake lever 31, a second master cylinder 32, a second brake caliper 33, a second brake disc 34, and a second pipe 35.
  • the second braking mechanism 3 also has the same structure as the first braking mechanism 2.
  • the second brake disc 34 is attached to the rear wheel 13. Also in the second braking mechanism 3, the rear wheel 13 can be braked by performing the same operation as the operation of the first braking mechanism 2 described above.
  • the generator 4 is electrically connected to the battery 172 via the inverter 171.
  • the AC power generated by the generator 4 is converted into DC power by the inverter 171 and then supplied to the battery 172.
  • the generator 4 can transmit a braking force (that is, a generator braking force) to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7, and the chain 16.
  • the generator braking force is a braking force generated in association with the conversion from the rotational energy of the crankshaft 15 to the generated energy in the power generation of the generator 4.
  • the power generation of the generator 4 is controlled by the control unit 5. That is, the magnitude of the generator braking force can be controlled by the control unit 5.
  • the generator braking force can be generated, for example, by performing power generation braking or regenerative braking described in Embodiment 2 described later.
  • the control unit 5 is electrically connected to the first master cylinder 22 of the first braking mechanism 2 in order to acquire the operating state of the first braking mechanism 2. Then, the control unit 5 calculates the braking force of the front wheels 12 by the first braking mechanism 2 according to the operating state of the first braking mechanism 2. Similarly, the control unit 5 is electrically connected to the second master cylinder 32 of the second braking mechanism 3 in order to acquire the operating state of the second braking mechanism 3. Then, the control unit 5 calculates the braking force of the rear wheel 13 by the second braking mechanism 3 according to the operating state of the second braking mechanism 3. As shown in FIG.
  • the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3 are the first master cylinder 22 of the first braking mechanism 2 and the second master cylinder of the second braking mechanism 3.
  • 32 may be obtained from the ABS unit 18 electrically connected to the H.32.
  • ABS is an abbreviation for anti-lock brake system.
  • the control unit 5 detects the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3, and controls the generator braking force according to these operating states. That is, the generator braking force is controlled by determining the first state and the second state from the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3. Further, the control unit 5 is configured such that when the first braking mechanism 2 is not activated and the second braking mechanism 3 is activated, both the first braking mechanism 2 and the second braking mechanism 3 are activated. Also, it is configured to perform control to reduce the generator braking force.
  • the control unit 5 changes the instruction value of the generator braking force according to the operation state of the first braking mechanism 2 and the second control mechanism 3 according to the flow shown in FIG. Set to either.
  • the instruction value of the generator braking force is a target value of the generator braking force generated by the generator 4.
  • the instruction values A, B, and C have a magnitude relationship of A> B> C.
  • step S101 when it is determined in steps S101 and S106 that neither the first braking mechanism 2 nor the second control mechanism 3 is operating, no generator braking force is generated.
  • step S101 When it is determined in step S101 that the first braking mechanism 2 is operating, and in step S102, it is determined that the second control mechanism 3 is not operating, the instruction value for the generator braking force is set to A.
  • step S103 When it is determined in steps S101 and S102 that both the first braking mechanism 2 and the second control mechanism 3 are operating, whether or not the braking force ratio R is equal to or less than the threshold value Vr in step S103. Judging. If R ⁇ Vr, that is, in the second state, the instruction value is set to B. On the other hand, if R> Vr, that is, the first state, the indicated value is A.
  • Steps S101 and S106 when it is determined that the first braking mechanism 2 is not operating and the second braking mechanism 3 is operating, the instruction value for the generator braking force is set to C.
  • this state is referred to as a third state as appropriate.
  • a table summarizing the first state, the second state, and the third state is shown below as Table 1.
  • A is indicated as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A. On the other hand, when the first braking mechanism 2 is turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
  • A is indicated as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A. After that, when the second brake lever 31 is operated and the first braking mechanism 2 and the second braking mechanism 3 are turned on, in the generator braking force control of the control unit 5, the instruction value of the generator braking force is from A Is changed to B. Then, the generator 4 decreases the generator braking force until the generator braking force reaches the instruction value B. Thereafter, when the first braking mechanism 2 and the second braking mechanism 3 are turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
  • C is set as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value C. On the other hand, when the second braking mechanism 3 is turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
  • the control unit 5 is configured to perform control to increase the generator braking force when in the first state than when in the second state. Therefore, it is possible to suppress a problem that the braking force of the front wheel 12 is too large with respect to the braking force of the rear wheel 13. That is, it is possible to suppress problems caused by the braking force of the front wheels 12 being too large relative to the braking force of the rear wheels 13, for example, nose diving in a state where the vehicle is lowered forward during deceleration, locking of the front wheels 12, and the like. it can. Thereby, the posture stability of the vehicle can be ensured.
  • the adjustment of the braking force to the rear wheel 13 is performed by adjusting the generator braking force. That is, the generator 4 has a function of braking the rear wheel 13 in conjunction with the first braking mechanism 2 in addition to the function of generating power according to the rotation of the crankshaft 15.
  • the generator 4 already mounted on the vehicle the braking force to the rear wheel 13 can be generated without increasing the number of parts. Therefore, it is not necessary to add any new parts in order to improve the posture stability of the vehicle. Therefore, the weight of the vehicle can be reduced and the number of parts can be reduced.
  • control unit 5 is configured such that when the first braking mechanism 2 is not activated and the second braking mechanism 3 is activated, both the first braking mechanism 2 and the second braking mechanism 3 are activated. Also, it is configured to perform control to reduce the generator braking force. Therefore, when the driver consciously operates the second braking mechanism 3 to stabilize the posture of the vehicle, it is possible to avoid excessively reducing the vehicle speed of the vehicle. That is, the scene where the first braking mechanism 2 is not operated and the second braking mechanism 3 is operated is a scene where the braking force is applied only to the rear wheel 13. Such a scene is generally a scene where the driver intends to stabilize the posture of the vehicle rather than braking the vehicle. Therefore, in such a scene, the generator braking force is reduced so as not to lead to excessive deceleration of the vehicle. Thereby, the controllability of the vehicle can be ensured.
  • the vehicle braking device 1 that can reduce the weight of the vehicle and reduce the number of parts while allowing the posture of the vehicle to be stabilized. it can.
  • Embodiment 2 In this embodiment, a specific mode of the generator braking force is shown with reference to FIGS. 8 and 9. In particular, in this embodiment, control for switching between power generation braking and regenerative braking is performed as a method of generating the generator braking force.
  • power generation braking is a method of generating power by the generator 4 rotating with the rotation of the rear wheel 13 by turning on at least two of the plurality of lower arm semiconductor elements 174d in the inverter 171 to short-circuit each other.
  • the energy is converted into heat through a resistor (specifically, the coil and the lower arm semiconductor element 174d in the generator 4) and released, thereby generating a braking force.
  • Regenerative braking does not release the above-described power generation energy as heat, but turns on each of the plurality of upper arm semiconductor elements 174u in the inverter 171, or a parasitic diode parasitic on the upper arm semiconductor element 174u.
  • the braking force is generated by collecting (that is, regenerating) the battery 172 as direct current power via the.
  • power generation braking and regenerative braking are selectively used according to the remaining capacity S of the battery 172 and the instruction value of the generator braking force. That is, when the remaining capacity S of the battery 172 is insufficient or when the instruction value of the generator braking force is small, the generator braking force is generated by regenerative braking. On the other hand, in cases other than the above, the generator braking force is generated by power generation braking.
  • an inverter 171 is provided between the generator 4 and the battery 172.
  • the inverter 171 is configured to perform power conversion between the generator 4 and the battery 172.
  • Switching between power generation braking and regenerative braking is controlled by appropriately switching on / off of a plurality of semiconductor elements 174 (for example, MOSFETs) in the inverter 171 by the drive circuit 173. That is, the drive circuit 173 appropriately controls on / off of the plurality of semiconductor elements 174 according to instructions from the control unit 5.
  • the control unit 5 includes a dynamic braking instruction unit 51 and a regenerative braking instruction unit 52. And according to the instruction
  • the generator control is performed by switching on or off two or three of the plurality of lower arm semiconductor elements 174d in the inverter 171, or by varying the on / off duty ratio (ie, PWM switching).
  • the power can be adjusted.
  • the generator braking force is adjusted by turning off each of the plurality of upper arm semiconductor elements 174u in the inverter 171 or by turning on according to the phase of the AC voltage generated by power generation. It can be carried out.
  • control unit 5 includes a battery state determination unit 53 and a generator braking force calculation unit 54.
  • the battery state determination unit 53 acquires the remaining capacity S of the battery 172 based on the integrated charge / discharge current value to the battery 172 and the battery voltage.
  • the generator braking force calculation unit 54 sets an instruction value for the generator braking force, for example, by the same method as in the first embodiment. Then, the control unit 5 switches between power generation braking and regenerative braking according to the flow shown in FIG. 9 according to the instruction value of the generator braking force and the remaining capacity S of the battery 172.
  • step S201 when it is determined in step S201 that the instruction value for the generator braking force is not set, no power generation braking or regenerative braking is performed.
  • step S201 When it is determined in step S201 that an instruction value for the generator braking force is set, and in step S202, it is determined that the remaining capacity S of the battery 172 is not equal to or greater than the predetermined threshold value Vs, regenerative braking is performed.
  • step S202 it is determined in step S203 whether or not the indicated value of the generator braking force is greater than or equal to a predetermined threshold value Vf. If the indicated value of the generator braking force is equal to or greater than the threshold value Vf, the generator braking is performed. On the other hand, if the indicated value of the generator braking force is less than the threshold value Vf, regenerative braking is performed.
  • the control unit 5 can switch between dynamic braking and regenerative braking. Therefore, the control unit 5 can charge the battery 172 while ensuring the generator braking force when the vehicle decelerates. Thereby, the power generation of the generator 4 can be stopped in the steady running state, and the fuel efficiency of the vehicle can be improved. In addition, the same effects as those of the first embodiment can be obtained.
  • the control unit 5 is in accordance with the nose dive amount of the vehicle in each of the first state, the second state, and the third state.
  • the generator braking force is adjusted. That is, the control unit 5 first acquires the nose dive amount of the vehicle. At this time, for example, any of the graphs of FIGS. 11 to 14 described later is used. And the control part 5 is comprised so that the instruction
  • the nose dive amount refers to the degree of forward leaning posture of the vehicle during deceleration. For example, the bottom link type front fork 112 connected to the front wheel 12 is contracted and the swing arm type suspension 113 connected to the rear wheel 13 is extended, so that the nose dive amount is increased.
  • FIG. 11 is a graph that divides the operating states of the control mechanisms 2 and 3 into three states and defines the nose dive amount in three stages.
  • the three states are the first state, the second state, and the third state described in the first embodiment, respectively.
  • the nose dive amount is the largest in the first state, and the nose dive amount is the smallest in the third state.
  • FIG. 12 is a graph schematically showing a relation map M1 between the hydraulic ratio P1 / P2 and the nose dive amount, with the hydraulic ratio P1 / P2 on the horizontal axis and the nose dive amount on the vertical axis.
  • the hydraulic pressure ratio P1 / P2 is a ratio of the hydraulic pressure P1 of the first master cylinder 22 to the hydraulic pressure P2 of the second master cylinder 32.
  • This relationship map M1 is obtained in advance as the relationship between the hydraulic pressure ratio P1 / P2 and the nose dive amount.
  • the control unit 5 can acquire the nose dive amount from the hydraulic pressures P1 and P2 generated in the master cylinders 22 and 32 of the control mechanisms 2 and 3 based on the relationship map M1.
  • FIG. 13 is a graph schematically showing a relationship map M2 between the stroke amount L1 and the nose dive amount, with the horizontal axis representing the stroke amount L1 of the bottom link type front fork 112 and the vertical axis representing the nose dive amount.
  • This relationship map M2 is obtained in advance as the relationship between the stroke amount L1 and the nose dive amount.
  • the control unit 5 of this embodiment is electrically connected to the bottom link type front fork 112 in order to acquire the stroke amount L1.
  • the control part 5 can acquire the nose dive amount from the stroke amount L1 based on the relationship map M2.
  • the control unit 5 is electrically connected to the swing arm suspension 113.
  • the control unit 5 determines the stroke amount L2 of the swing arm suspension 113 based on the relationship map M3. The amount of nose dive can also be acquired.
  • the control unit 5 of this embodiment performs control to increase the generator braking force as the nose dive amount increases in each of the first state, the second state, and the third state. It is configured. Further, the control unit 5 performs control so that the generator braking force does not exceed a predetermined braking force limit value Lr.
  • the braking force limit value Lr is a variable that decreases as the nose dive amount increases.
  • the horizontal axis represents the nose dive amount
  • the vertical axis represents the generator braking force command values A, B, and C
  • a relationship map M4 between the nose dive amount and the command values A, B, and C is schematically shown. It is a graph to show.
  • the instruction values A, B, and C are instruction values in the first state, the second state, and the third state described in the first embodiment, respectively.
  • the relationship map M4 is obtained in advance as the relationship between the nose dive amount and the instruction values A, B, and C.
  • the instruction values A, B, and C are all set so as to increase as the nose dive amount increases. However, each indication value is set so as not to exceed the braking force limit value Lr.
  • the braking force limit value Lr suppresses each instruction value when the nose dive amount becomes too large. That is, if the nose dive amount becomes too large, the frictional force between the rear wheel 13 and the ground decreases, and the rear wheel 13 may be locked by the generator braking force. There is. Therefore, each indicated value is suppressed by providing the braking force limit value Lr.
  • Each indicated value is set so as not to exceed the braking force limit value Lm.
  • the braking force limit value Lm is a limit value of the generator braking force in the generator 4. Other configurations are the same as those of the first embodiment.
  • the control unit 5 is configured to perform control to increase the generator braking force as the nose dive amount increases in each of the first state, the second state, and the third state.
  • the generator braking force is transmitted to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7, and the chain 16, so that the torque reaction force is connected to the rear wheel 13. It acts in the direction of shrinking 113 and tries to sink the back of the vehicle. Therefore, it is possible to suppress the nose dive by suppressing the forward leaning posture of the vehicle when the vehicle decelerates.
  • control unit 5 performs control so that the generator braking force does not exceed the braking force limit value Lr. Therefore, it is possible to suppress a problem that the generator braking force becomes too large with respect to the nose dive amount, for example, slip caused by locking of the rear wheel 13. Thereby, the posture stability of the vehicle can be ensured. In addition, the same effects as those of the first embodiment can be obtained. Note that the above-described control may be performed only in the first state, for example.
  • the control unit 5 In the braking device 1 of the present embodiment, as shown in FIGS. 16 to 20, the control unit 5 generates power as the vehicle speed increases in each of the first state, the second state, and the third state. It is configured to perform control to increase the machine braking force. That is, the control unit 5 first acquires the vehicle speed of the vehicle. At this time, for example, a vehicle speed sensor 19 described later is used. And the control part 5 is comprised so that the instruction
  • the vehicle of this embodiment has a vehicle speed sensor 19 as shown in FIG.
  • the vehicle speed sensor 19 is attached adjacent to the rear wheel 13.
  • the vehicle speed sensor 19 is configured to generate an output signal corresponding to the rotational speed of the rear wheel 13.
  • the control unit 5 of this embodiment is electrically connected to the vehicle speed sensor 19 in order to acquire an output signal of the vehicle speed sensor 19. Then, the control unit 5 calculates the vehicle speed of the vehicle according to the output signal of the vehicle speed sensor 19.
  • control unit 5 is electrically connected to a first vehicle speed sensor 192 attached adjacent to the front wheel 12 and a second vehicle speed sensor 193 attached adjacent to the rear wheel 13. It may be.
  • the control unit 5 can calculate the vehicle speed of the vehicle more reliably according to the output signal of the first vehicle speed sensor 192 and the output signal of the second vehicle speed sensor 193.
  • the figure is a graph schematically showing a relationship map M5 between the vehicle speed and the instruction value, with the vehicle speed on the horizontal axis and the instruction value on the vertical axis.
  • This relationship map M5 is obtained in advance as the relationship between the vehicle speed and the instruction value.
  • the instruction value is set so as to increase as the vehicle speed increases.
  • control unit 5 is configured to perform control to increase the change rate of the generator braking force as the vehicle speed increases in each of the first state, the second state, and the third state.
  • the change rate of the generator braking force refers to the absolute value of the increase rate of the generator braking force and the absolute value of the decrease rate of the generator braking force.
  • This figure is a graph schematically showing a relationship map M6 between the vehicle speed and the rate of change, with the vehicle speed on the horizontal axis and the rate of change on the vertical axis.
  • This relationship map M6 is obtained in advance as the relationship between the vehicle speed and the rate of change.
  • the rate of change is set to increase as the vehicle speed increases.
  • A is set as the instruction value of the generator braking force in the generator braking force control of the control unit 5.
  • the instruction value A is the instruction value in the first state described in the first embodiment.
  • the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A.
  • the change rate of the generator braking force (that is, the absolute value of the increase rate) at this time is set to a large value with the magnitude of the vehicle speed.
  • the generator 4 reduces the generator braking force according to the instruction value A.
  • the change rate of the generator braking force (that is, the absolute value of the decrease rate) is set to a value smaller than the absolute value of the increase rate.
  • the control unit 5 is configured to perform control to increase the generator braking force as the vehicle speed of the vehicle increases in each of the first state, the second state, and the third state.
  • the control unit 5 has been. Therefore, nose diving can be suppressed when the vehicle decelerates. That is, when only the first braking mechanism 2 is operated when the vehicle speed is high, the load moves in front of the vehicle, the vehicle may be tilted forward, and nose diving may occur. Therefore, in order to suppress the nose dive, the generator braking force acting on the rear wheel 13 is increased. Thereby, the posture stability of the vehicle can be ensured.
  • the control unit 5 is configured to perform control to increase the rate of change of the generator braking force as the vehicle speed increases in each of the first state, the second state, and the third state. Therefore, it is possible to suppress the nose dive by rapidly increasing the generator braking force when the vehicle decelerates. Thereby, the posture stability of the vehicle can be ensured. Further, the generator braking force when the vehicle deceleration is released can be rapidly reduced. Thereby, the controllability of the vehicle can be ensured. In addition, the same effects as those of the first embodiment can be obtained.
  • the braking device 1 of the present embodiment has a generator output that is an output of the generator 4 in a no-load state where the clutch 6 is disengaged and a loaded state where the clutch 6 is connected. It is comprised so that control which switches may be performed. As shown in FIG. 21, the generator 4 is connected to the rear wheel 13 via the clutch 6.
  • the control unit 5 is configured to perform control to reduce the generator output, which is the output of the generator 4, in the no-load state in which the clutch 6 is disengaged, compared to the loaded state in which the clutch 6 is connected. .
  • the instruction value for the generator output is decreased in the no-load state, and the instruction value for the generator output is increased in the loaded state.
  • the indicated value of the generator output is a target value of the generator output generated by the generator 4.
  • the control part 5 is comprised so that the change rate of a generator output may be made smaller when it is in a no-load state than when it is in a loaded state. That is, as shown in FIG. 23, the change rate of the generator output is reduced in the no-load state, and the change rate of the generator output is increased in the loaded state.
  • the change rate of the generator output is the absolute value of the increase rate of the generator output and the absolute value of the decrease rate of the generator output.
  • Other configurations are the same as those of the first embodiment.
  • the control unit 5 is configured to perform control to make the generator output smaller in the no-load state than in the loaded state. Therefore, the load on the engine 14 in the no-load state can be reduced. That is, since the engine 14 and the rear wheel 13 are not connected in the no-load state, the braking force corresponding to the generator output becomes the load on the engine 14 in this state. Therefore, in the no-load state, if a generator output having the same magnitude as the generator output in the loaded state is generated, the load on the engine 14 may be too large and stall. Therefore, in the no-load state, the generator output is reduced to ensure the stability of the engine 14.
  • control part 5 is comprised so that the change rate of a generator output may be made smaller when it is in a no-load state than when it is in a loaded state. Therefore, vibrations of the engine 14 due to sudden load fluctuations can be reduced. In addition, the same effects as those of the first embodiment can be obtained.
  • the braking device 1 of the present embodiment is configured to perform control to change the generator braking force in accordance with the gear ratio of the transmission 7.
  • the generator 4 is connected to the rear wheel 13 via the transmission 7.
  • the control unit 5 is configured to perform control to reduce the generator braking force as the gear ratio of the transmission 7 is larger when in a loaded state.
  • the figure is a graph schematically showing a relationship map M7 between the gear ratio and the instruction value, with the gear ratio on the horizontal axis and the instruction value on the vertical axis.
  • This relationship map M7 is obtained in advance as the relationship between the gear ratio and the indicated value.
  • the indicated value is set so as to decrease as the gear ratio increases.
  • the instruction value of the generator braking force can be set according to the gear stage of the transmission 7.
  • the gear stage of the transmission 7 is a total of 6 stages from 1st to 6th.
  • the instruction value is minimized when the speed is first, and the instruction value is maximized when the speed is sixth.
  • FIG. 27 is a graph schematically showing a relationship map M8 between the gear ratio and the change rate, with the gear ratio on the horizontal axis and the change rate on the vertical axis.
  • the relationship map M8 is obtained in advance as the relationship between the gear ratio and the change rate.
  • the rate of change is set so as to decrease as the gear ratio increases.
  • Other configurations are the same as those of the fifth embodiment.
  • the control unit 5 is configured to perform control to reduce the generator braking force as the gear ratio of the transmission 7 increases when in a loaded state.
  • the greater the gear ratio the greater the braking force (ie, engine brake) applied to the rear wheel 13 by the engine 14. Therefore, the larger the gear ratio, the smaller the assist by the generator braking force. Therefore, the generator braking force can be reduced by increasing the gear ratio.
  • control unit 5 is configured to perform control to reduce the change rate of the generator braking force as the gear ratio of the transmission 7 is larger when in a loaded state. Therefore, a sudden posture change of the vehicle due to a sudden load change can be prevented. In addition, the same effects as those of the fifth embodiment can be obtained.
  • the first wheel 120 is a rear wheel and the second wheel 130 is a front wheel. That is, in this embodiment, the generator 4 is provided so as to be able to transmit a braking force to the front wheels 130.
  • the control unit 5 controls a generator braking force that is a braking force applied to the front wheel 130 by the generator 4.
  • the controller 5 is configured to perform control to increase the generator braking force when in the following first state than when in the following second state.
  • the first state is the ratio of the braking force of the rear wheel 120 by the first braking mechanism 2 to the sum of the braking force of the rear wheel 120 by the first braking mechanism 2 and the braking force of the front wheel 130 by the second braking mechanism 3.
  • a certain braking force ratio R exceeds a predetermined threshold value Vr.
  • the second state is a state where the braking force ratio R is equal to or less than the threshold value Vr.
  • the threshold value Vr is, for example, 0.2 to 0.3.
  • the first state in the present embodiment is a state in which the ratio of the braking force of the rear wheel 120 by the first braking mechanism 2 is too large.
  • the control unit 5 of the present embodiment is configured to cause the generator braking force to act on the front wheel 130 when the ratio of the braking force to the rear wheel 120 is too large.
  • the generator 4 of this embodiment is attached to the front wheel 130 instead of the crankshaft 15. And it is comprised so that the rotational energy of the front wheel 130 can be changed into alternating current power in the generator 4.
  • the first brake disc 24 of the first braking mechanism 2 of the present embodiment is attached to the rear wheel 120.
  • the rear wheel 120 can be braked by performing an operation similar to the operation of the first braking mechanism 2 in the first embodiment described above.
  • the second brake disk 34 of the second braking mechanism 3 of this embodiment is attached to the front wheel 130.
  • the front wheel 130 can be braked by performing the same operation as the operation of the first braking mechanism 2 described above.
  • the control unit 5 calculates the braking force of the rear wheel 120 by the first braking mechanism 2 according to the operating state of the first braking mechanism 2, and the second braking mechanism 3 according to the operating state of the second braking mechanism 3.
  • the braking force of the front wheel 130 by is calculated.
  • the control unit 5 changes the instruction value of the generator braking force to any one of A, B, and C according to the operating states of the first braking mechanism 2 and the second control mechanism 3 in the same manner as in the first embodiment.
  • the instruction value A is the instruction value in the first state
  • the instruction value B is the instruction value in the second state
  • the instruction value C is the instruction value in the third state.
  • the third state is a state in which the first braking mechanism 2 is not operated and the second braking mechanism 3 is operating. That is, the third state is a state in which only the front wheel 130 is braked by the second braking mechanism 3.
  • the control unit 5 can acquire the nose dive amount of the vehicle by the same method as in the third embodiment.
  • the braking force limit value Lr of the present embodiment is a variable that increases as the nose dive amount increases.
  • the horizontal axis represents the nose dive amount
  • the vertical axis represents the generator braking force command values A, B, and C
  • the relationship map M9 between the nose dive amount and the command values A, B, and C is schematically shown. It is a graph to show.
  • the relationship map M9 is obtained in advance as the relationship between the nose dive amount and the instruction values A, B, and C.
  • the instruction values A, B, and C are all set so as to increase as the nose dive amount increases.
  • each indication value is set so as not to exceed the braking force limit value Lr.
  • the braking force limit value Lr suppresses an increase in each indicated value when the nose dive amount becomes too large.
  • the first wheel 120 is a rear wheel and the second wheel 130 is a front wheel.
  • the control part 5 is comprised so that it may perform control which enlarges a generator braking force when it exists in a 1st state rather than when it is in a 2nd state. Therefore, it is possible to suppress a problem that the braking force of the rear wheel 120 is too large with respect to the braking force of the front wheel 130. That is, it is possible to suppress problems caused by the braking force of the rear wheels 120 being too large relative to the braking force of the front wheels 130, for example, slipping due to the rear wheels 120 being locked. Thereby, the posture stability of the vehicle can be ensured.
  • the vehicle weight can be reduced and the number of parts can be reduced.
  • the control unit 5 can appropriately change the threshold value Vr according to the state of the road surface on which the vehicle travels.
  • the bottom link type front fork 112 and the swing arm type suspension 113 are combined.
  • a telescopic type front fork and a unit swing type suspension may be combined.
  • the seventh embodiment, etc. the embodiment in which the braking force limit value Lm is set larger than the braking force limit value Lr is shown, but the braking force limit value Lm is set smaller than the braking force limit value Lr. May be.
  • the control unit 5 can limit the generator braking force so as not to exceed the braking force limit value Lm without considering the braking force limit value Lr.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A braking device (1) has a first braking mechanism (2), a second braking mechanism (3), a generator (4), and a control unit (5). The first braking mechanism (2) brakes a first wheel (12) which is one of the front wheel or the rear wheel. The second braking mechanism (3) brakes a second wheel (13) which is the other of the front wheel and the back wheel. The generator (4) is provided so as to be able to transmit braking power to the second wheel (13). The control unit (5) controls the generator braking force which is the braking force on the second wheel (13) from the generator (4). The control unit (5) is configured so as to control the generator braking force more strongly in a first state than in a second state.

Description

車両の制動装置Vehicle braking device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年9月19日に出願された日本出願番号2016-182462号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-182462 filed on September 19, 2016, the contents of which are incorporated herein by reference.
 本開示は、車両の制動装置に関する。 This disclosure relates to a vehicle braking device.
 車両の制動装置としては、例えば特許文献1に開示されたものがある。特許文献1においては、ハンドルに設けられたレバーの操作により前輪を制動するフロントブレーキ系と、ペダルの操作により後輪を制動するリアブレーキ系とが設けられている。フロントブレーキ系とリアブレーキ系とのそれぞれは、レバー又はペダルの操作により油圧が発生するマスタシリンダと、油圧の供給により制動力が発生するブレーキユニットと、マスタシリンダとブレーキユニットとを接続する導管とを有する。特許文献1においては、各ブレーキユニットを連動させて、前輪と後輪との制動力配分を最適に設定することができる。すなわち、仮にレバーとペダルとの一方のみを操作した場合でも、前輪と後輪とに制動力を分配できるよう構成されている。それゆえ、各ブレーキユニットのロック限界点を高め、車両の姿勢安定化を図ることを可能としている。 As a vehicle braking device, there is one disclosed in Patent Document 1, for example. In Patent Document 1, a front brake system that brakes front wheels by operating a lever provided on a handle and a rear brake system that brakes rear wheels by operating a pedal are provided. Each of the front brake system and the rear brake system includes a master cylinder that generates hydraulic pressure by operating a lever or a pedal, a brake unit that generates braking force by supplying hydraulic pressure, and a conduit that connects the master cylinder and the brake unit. Have In Patent Document 1, the braking force distribution between the front wheels and the rear wheels can be optimally set by interlocking the brake units. That is, even when only one of the lever and the pedal is operated, the braking force can be distributed to the front wheels and the rear wheels. Therefore, it is possible to increase the lock limit point of each brake unit and stabilize the posture of the vehicle.
特許2791487号公報Japanese Patent No. 2791487
 特許文献1に記載の車両の制動装置においては、各ブレーキユニットを連動させるために、フロントブレーキ系のマスタシリンダとリアブレーキ系のブレーキユニットとを接続する導管と、リアブレーキ系のマスタシリンダとフロントブレーキ系のブレーキユニットとを接続する導管とが設けられている。また、前輪と後輪との制動力配分を最適に設定するために液圧制御バルブが設けられている。そのため、車両重量が増加するという課題がある。また、部品点数が多くなるという課題もある。したがって、車両の製造コストが上昇しやすい。 In the vehicle braking device described in Patent Document 1, in order to link each brake unit, a conduit connecting a front brake system master cylinder and a rear brake system brake unit, a rear brake system master cylinder, and a front brake system A conduit connecting the brake system brake unit is provided. In addition, a hydraulic control valve is provided to optimally set the braking force distribution between the front wheels and the rear wheels. Therefore, there is a problem that the vehicle weight increases. There is also a problem that the number of parts increases. Therefore, the manufacturing cost of the vehicle tends to increase.
 本開示は、車両の姿勢安定化を図ることを可能としつつ、車両重量の軽量化を図ると共に、部品点数を低減することができる車両の制動装置を提供しようとするものである。 The present disclosure is intended to provide a vehicle braking device that can reduce the weight of the vehicle and reduce the number of components while allowing the posture of the vehicle to be stabilized.
 本開示の一態様は、前輪と後輪とを備えた車両の制動装置であって、
 上記前輪と上記後輪との一方である第1車輪を制動する第1制動機構と、
 上記前輪と上記後輪との他方である第2車輪を制動する第2制動機構と、
 上記第2車輪に制動力を伝達可能に設けられた発電機と、
 上記発電機による上記第2車輪への制動力である発電機制動力を制御する制御部と、を有し、
 上記制御部は、下記の第1の状態にあるとき、下記の第2の状態にあるときよりも、上記発電機制動力を大きくする制御を行うよう構成されており、
 上記第1の状態は、上記第1制動機構による上記第1車輪の制動力と上記第2制動機構による上記第2車輪の制動力との合計に対する、上記第1制動機構による上記第1車輪の制動力の比である制動力比が、所定の閾値を超えた状態であり、
 上記第2の状態は、上記制動力比が上記閾値以下である状態である、車両の制動装置にある。
One aspect of the present disclosure is a braking device for a vehicle including a front wheel and a rear wheel,
A first braking mechanism that brakes a first wheel that is one of the front wheel and the rear wheel;
A second braking mechanism that brakes a second wheel that is the other of the front wheel and the rear wheel;
A generator provided to transmit braking force to the second wheel;
A controller that controls a generator braking force, which is a braking force applied to the second wheel by the generator,
The control unit is configured to perform control to increase the generator braking force when in the following first state than when in the following second state,
The first state is the sum of the braking force of the first wheel by the first braking mechanism and the braking force of the second wheel by the second braking mechanism. The braking force ratio, which is the ratio of the braking force, is in a state exceeding a predetermined threshold,
The second state is a vehicle braking device in which the braking force ratio is not more than the threshold value.
 上記車両の制動装置において、制御部は、上記第1の状態にあるとき、上記第2の状態にあるときよりも、発電機制動力を大きくする制御を行うよう構成されている。それゆえ、第1車輪の制動力が第2車輪の制動力に対して大きくなりすぎる不具合を抑制することができる。すなわち、第1車輪の制動力が第2車輪の制動力に対して大きくなりすぎることによる不具合、例えば、減速時に車両が前下がりになる状態であるノーズダイブ、第1車輪のロック等を抑制することができる。これにより、車両の姿勢安定性を確保することができる。 In the vehicle braking device, the control unit is configured to perform control to increase the generator braking force when in the first state than when in the second state. Therefore, it is possible to suppress a problem that the braking force of the first wheel is too large with respect to the braking force of the second wheel. That is, the malfunction caused by the braking force of the first wheel being too large relative to the braking force of the second wheel, for example, the nose dive in which the vehicle is lowered forward when decelerating, the locking of the first wheel, and the like are suppressed. be able to. Thereby, the posture stability of the vehicle can be ensured.
 そして、上述の第2車輪への制動力の調整は、発電機制動力を調整することにより行われる。すなわち、発電機には、第2車輪の回転に応じて発電する機能に加え、第1制動機構に連動して第2車輪を制動する機能を兼ねさせることとなる。換言すると、既に車両に搭載された発電機を用いることにより、部品点数を増やすことなく、第2車輪への制動力を発生させることができる。それゆえ、上述のように、車両の姿勢安定性を図るために、新たな部品を特に追加する必要がない。したがって、車両重量の軽量化を図ると共に、部品点数を低減することができる。 Then, the adjustment of the braking force to the second wheel described above is performed by adjusting the generator braking force. That is, the generator has a function of braking the second wheel in conjunction with the first braking mechanism in addition to the function of generating power according to the rotation of the second wheel. In other words, by using the generator already mounted on the vehicle, the braking force to the second wheel can be generated without increasing the number of parts. Therefore, as described above, it is not necessary to add new parts in order to improve the posture stability of the vehicle. Therefore, the weight of the vehicle can be reduced and the number of parts can be reduced.
 以上のごとく、上記態様によれば、車両の姿勢安定化を図ることを可能としつつ、車両重量の軽量化を図ると共に、部品点数を低減することができる車両の制動装置を提供することができる。 As described above, according to the above aspect, it is possible to provide a vehicle braking device that can reduce the weight of the vehicle and reduce the number of components while allowing the posture of the vehicle to be stabilized. .
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、車両の制動装置の構成を示すブロック図であり、 図2は、実施形態1における、他の車両の制動装置の構成を示すブロック図であり、 図3は、実施形態1における、第1制動機構及び第2制動機構と、発電機制動力の指示値との関係を説明するフロー図であり、 図4は、実施形態1における、第1制動機構及び第2制動機構が作動する際のタイミングチャートであり、 図5は、実施形態1における、第1制動機構のみ作動する際のタイミングチャートであり、 図6は、実施形態1における、第1制動機構及び第2制動機構が作動する際の他のタイミングチャートであり、 図7は、実施形態1における、第2制動機構のみ作動する際のタイミングチャートであり、 図8は、実施形態2における、制御部周辺の構成を示すブロック図であり、 図9は、実施形態2における、発電制動又は回生制動の切り替えを説明するフロー図であり、 図10は、実施形態3における、車両の制動装置の構成を示すブロック図であり、 図11は、実施形態3における、第1制動機構及び第2制動機構と、ノーズダイブ量との関係を概略的に示すグラフであり、 図12は、実施形態3における、第2制動機構の油圧に対する第1制動機構の油圧の比と、ノーズダイブ量との関係マップを概略的に示すグラフであり、 図13は、実施形態3における、ボトムリンク式フロントフォークのストローク量と、ノーズダイブ量との関係マップを概略的に示すグラフであり、 図14は、実施形態3における、スイングアーム式サスペンションのストローク量と、ノーズダイブ量との関係マップを概略的に示すグラフであり、 図15は、実施形態3における、ノーズダイブ量と、発電機制動力の指示値との関係マップを概略的に示すグラフであり、 図16は、実施形態4における、車両の制動装置の構成を示すブロック図であり、 図17は、実施形態4における、他の車両の制動装置の構成を示すブロック図であり、 図18は、実施形態4における、車速と、発電機制動力の指示値との関係マップを概略的に示すグラフであり、 図19は、実施形態4における、車速と、発電機制動力の変化率との関係マップを概略的に示すグラフであり、 図20は、実施形態4における、第1制動機構のみ作動する際のタイミングチャートであり、 図21は、実施形態5における、車両の制動装置の構成を示すブロック図であり、 図22は、実施形態5における、クラッチと、発電機出力の指示値との関係を概略的に示すグラフであり、 図23は、実施形態5における、クラッチと、発電機出力の変化率との関係を概略的に示すグラフであり、 図24は、実施形態6における、車両の制動装置の構成を示すブロック図であり、 図25は、実施形態6における、ギヤ比と、発電機制動力の指示値との関係マップを概略的に示すグラフであり、 図26は、実施形態6における、ギヤ段と、発電機制動力の指示値との関係を概略的に示すグラフであり、 図27は、実施形態6における、ギヤ比と、発電機制動力の変化率との関係マップを概略的に示すグラフであり、 図28は、実施形態7における、車両の制動装置の構成を示すブロック図であり、 図29は、実施形態7における、ノーズダイブ量と、発電機制動力の指示値との関係マップを概略的に示すグラフである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a block diagram illustrating a configuration of a vehicle braking device in Embodiment 1. FIG. 2 is a block diagram illustrating a configuration of a braking device for another vehicle according to the first embodiment. FIG. 3 is a flowchart for explaining the relationship between the first braking mechanism and the second braking mechanism and the instruction value of the generator braking force in the first embodiment. FIG. 4 is a timing chart when the first braking mechanism and the second braking mechanism operate in the first embodiment. FIG. 5 is a timing chart when operating only the first braking mechanism in the first embodiment. FIG. 6 is another timing chart when the first braking mechanism and the second braking mechanism operate in the first embodiment. FIG. 7 is a timing chart when operating only the second braking mechanism in the first embodiment. FIG. 8 is a block diagram showing a configuration around the control unit in the second embodiment. FIG. 9 is a flowchart for explaining switching between dynamic braking and regenerative braking in the second embodiment. FIG. 10 is a block diagram illustrating a configuration of a vehicle braking device according to the third embodiment. FIG. 11 is a graph schematically showing the relationship between the first braking mechanism and the second braking mechanism and the nose dive amount in the third embodiment. FIG. 12 is a graph schematically showing a relationship map between the ratio of the hydraulic pressure of the first braking mechanism to the hydraulic pressure of the second braking mechanism and the nose dive amount in the third embodiment. FIG. 13 is a graph schematically showing a relationship map between the stroke amount of the bottom link type front fork and the nose dive amount in the third embodiment, FIG. 14 is a graph schematically showing a relationship map between the stroke amount of the swing arm type suspension and the nose dive amount in the third embodiment; FIG. 15 is a graph schematically showing a relationship map between the nose dive amount and the indicated value of the generator braking force in the third embodiment, FIG. 16 is a block diagram illustrating a configuration of a vehicle braking device according to the fourth embodiment. FIG. 17 is a block diagram illustrating a configuration of a braking device for another vehicle according to the fourth embodiment. FIG. 18 is a graph schematically showing a relationship map between the vehicle speed and the indicated value of the generator braking force in the fourth embodiment. FIG. 19 is a graph schematically showing a relationship map between the vehicle speed and the change rate of the generator braking force in the fourth embodiment. FIG. 20 is a timing chart when operating only the first braking mechanism in the fourth embodiment. FIG. 21 is a block diagram illustrating a configuration of a vehicle braking device according to a fifth embodiment. FIG. 22 is a graph schematically showing the relationship between the clutch and the indicated value of the generator output in the fifth embodiment. FIG. 23 is a graph schematically showing the relationship between the clutch and the change rate of the generator output in the fifth embodiment. FIG. 24 is a block diagram illustrating a configuration of a vehicle braking device according to the sixth embodiment. FIG. 25 is a graph schematically showing a relationship map between the gear ratio and the indicated value of the generator braking force in the sixth embodiment. FIG. 26 is a graph schematically showing the relationship between the gear stage and the indicated value of the generator braking force in the sixth embodiment. FIG. 27 is a graph schematically showing a relationship map between the gear ratio and the change rate of the generator braking force in the sixth embodiment. FIG. 28 is a block diagram illustrating a configuration of a vehicle braking device according to the seventh embodiment. FIG. 29 is a graph schematically showing a relationship map between the nose dive amount and the generator braking force command value in the seventh embodiment.
(実施形態1)
 以下に、上述した車両の制動装置の実施形態につき、図面を参照して説明する。
 本実施形態の制動装置1を有する車両は、図1に示すように、前輪と後輪とを備えている。
(Embodiment 1)
Hereinafter, embodiments of the vehicle braking device described above will be described with reference to the drawings.
As shown in FIG. 1, the vehicle having the braking device 1 of the present embodiment includes front wheels and rear wheels.
 制動装置1は、第1制動機構2と、第2制動機構3と、発電機4と、制御部5とを有する。第1制動機構2は、前輪と後輪との一方である第1車輪12を制動する。第2制動機構3は、前輪と後輪との他方である第2車輪13を制動する。本形態においては、第1車輪12が前輪であり、第2車輪13が後輪である。発電機4は、後輪13に制動力を伝達可能に設けられている。制御部5は、発電機4による後輪13への制動力である発電機制動力を制御する。制御部5は、下記の第1の状態にあるとき、下記の第2の状態にあるときよりも、発電機制動力を大きくする制御を行うよう構成されている。 The braking device 1 includes a first braking mechanism 2, a second braking mechanism 3, a generator 4, and a control unit 5. The first braking mechanism 2 brakes the first wheel 12 that is one of the front wheel and the rear wheel. The second braking mechanism 3 brakes the second wheel 13 that is the other of the front wheel and the rear wheel. In this embodiment, the first wheel 12 is a front wheel and the second wheel 13 is a rear wheel. The generator 4 is provided so that a braking force can be transmitted to the rear wheel 13. The control unit 5 controls a generator braking force that is a braking force applied to the rear wheel 13 by the generator 4. The controller 5 is configured to perform control to increase the generator braking force when in the following first state than when in the following second state.
 第1の状態は、第1制動機構2による前輪12の制動力と第2制動機構3による後輪13の制動力との合計に対する、第1制動機構2による前輪12の制動力の比である制動力比Rが、所定の閾値Vrを超えた状態である。
 第2の状態は、制動力比Rが閾値Vr以下である状態である。なお、本形態において、閾値Vrは、例えば、0.7~0.8である。
The first state is the ratio of the braking force of the front wheel 12 by the first braking mechanism 2 to the sum of the braking force of the front wheel 12 by the first braking mechanism 2 and the braking force of the rear wheel 13 by the second braking mechanism 3. This is a state in which the braking force ratio R exceeds a predetermined threshold value Vr.
The second state is a state where the braking force ratio R is equal to or less than the threshold value Vr. In this embodiment, the threshold value Vr is, for example, 0.7 to 0.8.
 次に、本形態の制動装置1につき、詳説する。
 本形態の制動装置1を有する車両としては、スクータ、電動バイク及び電動アシスト自転車等の二輪車両、バギー等の四輪車両がある。本形態においては、スクータを例に挙げて説明する。本形態の車両は、後輪13を駆動するエンジン14を有する。エンジン14からは、クランク軸15、クラッチ6、変速機7及びチェーン16を介して後輪13に動力が伝達される。そして、クランク軸15に発電機4が取り付けられ、クランク軸15の回転エネルギーを、発電機4において交流電力に変えることができるよう構成されている。
Next, the braking device 1 of this embodiment will be described in detail.
As a vehicle having the braking device 1 of this embodiment, there are two-wheeled vehicles such as a scooter, an electric motorcycle and an electric assist bicycle, and a four-wheeled vehicle such as a buggy. In this embodiment, a scooter will be described as an example. The vehicle of this embodiment has an engine 14 that drives the rear wheel 13. Power is transmitted from the engine 14 to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7 and the chain 16. And the generator 4 is attached to the crankshaft 15, and it is comprised so that the rotational energy of the crankshaft 15 can be changed into alternating current power in the generator 4. FIG.
 第1制動機構2は、図1に示すように、第1ブレーキレバー21と、第1マスタシリンダ22と、第1ブレーキキャリパ23と、第1ブレーキディスク24と、第1配管25とを有する。第1ブレーキレバー21は、第1マスタシリンダ22を操作するものである。第1マスタシリンダ22と第1ブレーキキャリパ23とは、第1配管25によって接続されている。第1ブレーキキャリパ23は、第1ブレーキディスク24の一部を挟むように、第1ブレーキディスク24に隣接して取り付けられている。第1ブレーキディスク24は、前輪12に取り付けられている。 The first braking mechanism 2 includes a first brake lever 21, a first master cylinder 22, a first brake caliper 23, a first brake disc 24, and a first pipe 25, as shown in FIG. The first brake lever 21 operates the first master cylinder 22. The first master cylinder 22 and the first brake caliper 23 are connected by a first pipe 25. The first brake caliper 23 is attached adjacent to the first brake disc 24 so as to sandwich a part of the first brake disc 24. The first brake disc 24 is attached to the front wheel 12.
 第1制動機構2においては、運転者が第1ブレーキレバー21を操作することにより、第1マスタシリンダ22に油圧P1が発生する。第1マスタシリンダ22に発生した油圧P1は、第1配管25を介して第1ブレーキキャリパ23に供給される。そして、第1ブレーキキャリパ23に組み込まれたブレーキパッドが、第1ブレーキディスク24に押し付けられることにより、前輪12を制動することができる。 In the first braking mechanism 2, when the driver operates the first brake lever 21, a hydraulic pressure P1 is generated in the first master cylinder 22. The hydraulic pressure P 1 generated in the first master cylinder 22 is supplied to the first brake caliper 23 via the first pipe 25. Then, the brake pads incorporated in the first brake caliper 23 are pressed against the first brake disc 24, whereby the front wheels 12 can be braked.
 第2制動機構3は、第2ブレーキレバー31と、第2マスタシリンダ32と、第2ブレーキキャリパ33と、第2ブレーキディスク34と、第2配管35とを有する。第2制動機構3も、第1制動機構2と同様の構造を有する。一方、第1制動機構2と異なり、第2ブレーキディスク34は、後輪13に取り付けられている。第2制動機構3においても、上述した第1制動機構2の動作と同様の動作を行うことにより、後輪13を制動することができる。 The second braking mechanism 3 includes a second brake lever 31, a second master cylinder 32, a second brake caliper 33, a second brake disc 34, and a second pipe 35. The second braking mechanism 3 also has the same structure as the first braking mechanism 2. On the other hand, unlike the first braking mechanism 2, the second brake disc 34 is attached to the rear wheel 13. Also in the second braking mechanism 3, the rear wheel 13 can be braked by performing the same operation as the operation of the first braking mechanism 2 described above.
 発電機4は、インバータ171を介してバッテリ172に電気的に接続されている。発電機4により発生した交流電力は、インバータ171によって直流電力に変換された後、バッテリ172に供給される。発電機4は、クランク軸15、クラッチ6、変速機7及びチェーン16を介して後輪13に制動力(すなわち、発電機制動力)を伝達することができる。発電機制動力とは、発電機4の発電における、クランク軸15の回転エネルギーから発電エネルギーへの変換に伴って発生した制動力である。発電機4の発電は、制御部5によって制御される。つまり、発電機制動力の大きさは、制御部5によって制御することができる。なお、発電機制動力は、例えば、後述する実施形態2において説明する発電制動又は回生制動を行うことによって発生させることができる。 The generator 4 is electrically connected to the battery 172 via the inverter 171. The AC power generated by the generator 4 is converted into DC power by the inverter 171 and then supplied to the battery 172. The generator 4 can transmit a braking force (that is, a generator braking force) to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7, and the chain 16. The generator braking force is a braking force generated in association with the conversion from the rotational energy of the crankshaft 15 to the generated energy in the power generation of the generator 4. The power generation of the generator 4 is controlled by the control unit 5. That is, the magnitude of the generator braking force can be controlled by the control unit 5. The generator braking force can be generated, for example, by performing power generation braking or regenerative braking described in Embodiment 2 described later.
 制御部5は、第1制動機構2の作動状態を取得するために、第1制動機構2の第1マスタシリンダ22と電気的に接続されている。そして、制御部5は、第1制動機構2の作動状態に応じて、第1制動機構2による前輪12の制動力を算出する。同様に、制御部5は、第2制動機構3の作動状態を取得するために、第2制動機構3の第2マスタシリンダ32と電気的に接続されている。そして、制御部5は、第2制動機構3の作動状態に応じて、第2制動機構3による後輪13の制動力を算出する。なお、第1制動機構2の作動状態及び第2制動機構3の作動状態は、図2に示すように、第1制動機構2の第1マスタシリンダ22と第2制動機構3の第2マスタシリンダ32とが電気的に接続されたABSユニット18から取得してもよい。ABSとは、アンチロックブレーキシステムの略である。 The control unit 5 is electrically connected to the first master cylinder 22 of the first braking mechanism 2 in order to acquire the operating state of the first braking mechanism 2. Then, the control unit 5 calculates the braking force of the front wheels 12 by the first braking mechanism 2 according to the operating state of the first braking mechanism 2. Similarly, the control unit 5 is electrically connected to the second master cylinder 32 of the second braking mechanism 3 in order to acquire the operating state of the second braking mechanism 3. Then, the control unit 5 calculates the braking force of the rear wheel 13 by the second braking mechanism 3 according to the operating state of the second braking mechanism 3. As shown in FIG. 2, the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3 are the first master cylinder 22 of the first braking mechanism 2 and the second master cylinder of the second braking mechanism 3. 32 may be obtained from the ABS unit 18 electrically connected to the H.32. ABS is an abbreviation for anti-lock brake system.
 このように、制御部5は、第1制動機構2の作動状態及び第2制動機構3の作動状態を検出し、これらの作動状態に応じて、発電機制動力を制御する。つまり、第1制動機構2の作動状態及び第2制動機構3の作動状態から、上述の第1の状態と第2の状態とを判別して、発電機制動力の制御を行う。さらに、制御部5は、第1制動機構2が作動せず、第2制動機構3が作動しているとき、第1制動機構2と第2制動機構3との双方が作動しているときよりも、発電機制動力を小さくする制御を行うよう構成されている。 Thus, the control unit 5 detects the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3, and controls the generator braking force according to these operating states. That is, the generator braking force is controlled by determining the first state and the second state from the operating state of the first braking mechanism 2 and the operating state of the second braking mechanism 3. Further, the control unit 5 is configured such that when the first braking mechanism 2 is not activated and the second braking mechanism 3 is activated, both the first braking mechanism 2 and the second braking mechanism 3 are activated. Also, it is configured to perform control to reduce the generator braking force.
 すなわち、本形態において、制御部5は、第1制動機構2及び第2制御機構3の作動状態に応じて、図3に示すフローに従い、発電機制動力の指示値を、A、B、Cのいずれかに設定する。ここで、発電機制動力の指示値とは、発電機4によって発生させる発電機制動力の目標値のことである。また、指示値A、B、Cは、A>B>Cの大小関係を有する。 That is, in this embodiment, the control unit 5 changes the instruction value of the generator braking force according to the operation state of the first braking mechanism 2 and the second control mechanism 3 according to the flow shown in FIG. Set to either. Here, the instruction value of the generator braking force is a target value of the generator braking force generated by the generator 4. The instruction values A, B, and C have a magnitude relationship of A> B> C.
 まず、図3に示すように、ステップS101、S106において、第1制動機構2も第2制御機構3も作動していないと判断されたとき、発電機制動力は特に発生させない。
 ステップS101にて第1制動機構2が作動していると判断され、ステップS102にて第2制御機構3が作動していないと判断されたとき、発電機制動力の指示値をAとする。
First, as shown in FIG. 3, when it is determined in steps S101 and S106 that neither the first braking mechanism 2 nor the second control mechanism 3 is operating, no generator braking force is generated.
When it is determined in step S101 that the first braking mechanism 2 is operating, and in step S102, it is determined that the second control mechanism 3 is not operating, the instruction value for the generator braking force is set to A.
 また、ステップS101、S102にて第1制動機構2及び第2制御機構3の双方が作動していると判断されたとき、ステップS103にて、制動力比Rが閾値Vr以下であるか否かを判断する。そして、R≦Vr、すなわち第2の状態であれば、指示値をBに設定する。一方、R>Vr、すなわち第1の状態であれば、指示値をAとする。ここで、第1の状態には、R=1である状態、すなわち第1制動機構2による前輪12の制動力のみが作用する状態も含む。一方、第2の状態には、R=0である状態、すなわち第1制動機構2による前輪12の制動力が全く作用しない状態は含まないものとする。 When it is determined in steps S101 and S102 that both the first braking mechanism 2 and the second control mechanism 3 are operating, whether or not the braking force ratio R is equal to or less than the threshold value Vr in step S103. Judging. If R ≦ Vr, that is, in the second state, the instruction value is set to B. On the other hand, if R> Vr, that is, the first state, the indicated value is A. Here, the first state includes a state where R = 1, that is, a state where only the braking force of the front wheels 12 by the first braking mechanism 2 acts. On the other hand, the second state does not include a state where R = 0, that is, a state where the braking force of the front wheels 12 by the first braking mechanism 2 does not act at all.
 また、ステップS101、S106において、第1制動機構2が作動せず、第2制動機構3が作動していると判断されたとき、発電機制動力の指示値をCに設定する。なお、この状態を、以下において適宜、第3の状態という。
 第1の状態、第2の状態及び第3の状態についてまとめた表を、表1として以下に示す。
In Steps S101 and S106, when it is determined that the first braking mechanism 2 is not operating and the second braking mechanism 3 is operating, the instruction value for the generator braking force is set to C. Hereinafter, this state is referred to as a third state as appropriate.
A table summarizing the first state, the second state, and the third state is shown below as Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、制動装置1の動作について、図4~図7のタイミングチャートを参照して説明する。これらのタイミングチャートは、状況を単純化すべく、第1制動機構2及び第2制動機構3の双方が作動したときはR≦Vrを満たしていることを前提としている。
 図4に示すように、第1ブレーキレバー21及び第2ブレーキレバー31が操作されて、第1制動機構2及び第2制動機構3がオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値にBが設定される。そして、発電機4は、発電機制動力が指示値Bに到達するまで発電機制動力を増加させる。これにより、後輪13に発電機制動力が伝達されて、車両の車速が低下する。一方、第1制動機構2及び第2制動機構3がオフ状態になったとき、上記指示値はゼロに変更され、発電機4は、発電機制動力をゼロに到達するまで減少させる。これにより、後輪13に発電機制動力が伝達されなくなり、車両の車速が低下しない。
Next, the operation of the braking device 1 will be described with reference to the timing charts of FIGS. In order to simplify the situation, these timing charts are based on the premise that R ≦ Vr is satisfied when both the first braking mechanism 2 and the second braking mechanism 3 are operated.
As shown in FIG. 4, when the first brake lever 21 and the second brake lever 31 are operated and the first braking mechanism 2 and the second braking mechanism 3 are turned on, the generator braking force control of the control unit 5 is performed. , B is set as the instruction value for the generator braking force. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value B. Thereby, the generator braking force is transmitted to the rear wheel 13, and the vehicle speed is reduced. On the other hand, when the first braking mechanism 2 and the second braking mechanism 3 are turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero. As a result, the generator braking force is not transmitted to the rear wheel 13, and the vehicle speed does not decrease.
 また、図5に示すように、第1ブレーキレバー21のみ操作されて第1制動機構2のみオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値にAが設定される。そして、発電機4は、発電機制動力が指示値Aに到達するまで発電機制動力を増加させる。一方、第1制動機構2がオフ状態になったとき、上記指示値はゼロに変更され、発電機4は、発電機制動力をゼロに到達するまで減少させる。 Further, as shown in FIG. 5, when only the first brake lever 21 is operated and only the first braking mechanism 2 is turned on, in the generator braking force control of the control unit 5, A is indicated as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A. On the other hand, when the first braking mechanism 2 is turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
 また、図6に示すように、第1ブレーキレバー21のみ操作されて第1制動機構2のみオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値にAが設定される。そして、発電機4は、発電機制動力が指示値Aに到達するまで発電機制動力を増加させる。その後、第2ブレーキレバー31が操作されて第1制動機構2及び第2制動機構3がオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値は、AからBに変更される。そして、発電機4は、発電機制動力が指示値Bに到達するまで発電機制動力を減少させる。その後、第1制動機構2及び第2制動機構3がオフ状態になったとき、上記指示値はゼロに変更され、発電機4は、発電機制動力をゼロに到達するまで減少させる。 Further, as shown in FIG. 6, when only the first brake lever 21 is operated and only the first braking mechanism 2 is turned on, in the generator braking force control of the control unit 5, A is indicated as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A. After that, when the second brake lever 31 is operated and the first braking mechanism 2 and the second braking mechanism 3 are turned on, in the generator braking force control of the control unit 5, the instruction value of the generator braking force is from A Is changed to B. Then, the generator 4 decreases the generator braking force until the generator braking force reaches the instruction value B. Thereafter, when the first braking mechanism 2 and the second braking mechanism 3 are turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
 また、図7に示すように、第2ブレーキレバー31のみ操作されて第2制動機構3のみオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値にCが設定される。そして、発電機4は、発電機制動力が指示値Cに到達するまで発電機制動力を増加させる。一方、第2制動機構3がオフ状態になったとき、上記指示値はゼロに変更され、発電機4は、発電機制動力をゼロに到達するまで減少させる。 Further, as shown in FIG. 7, when only the second brake lever 31 is operated and only the second braking mechanism 3 is turned on, in the generator braking force control of the control unit 5, C is set as the instruction value of the generator braking force. Is set. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value C. On the other hand, when the second braking mechanism 3 is turned off, the indicated value is changed to zero, and the generator 4 decreases the generator braking force until it reaches zero.
 次に、本実施形態の作用効果につき説明する。
 本形態の制動装置1において、制御部5は、第1の状態にあるとき、第2の状態にあるときよりも、発電機制動力を大きくする制御を行うよう構成されている。それゆえ、前輪12の制動力が後輪13の制動力に対して大きくなりすぎる不具合を抑制することができる。すなわち、前輪12の制動力が後輪13の制動力に対して大きくなりすぎることによる不具合、例えば、減速時に車両が前下がりになる状態であるノーズダイブ、前輪12のロック等を抑制することができる。これにより、車両の姿勢安定性を確保することができる。
Next, the effect of this embodiment is demonstrated.
In the braking device 1 of the present embodiment, the control unit 5 is configured to perform control to increase the generator braking force when in the first state than when in the second state. Therefore, it is possible to suppress a problem that the braking force of the front wheel 12 is too large with respect to the braking force of the rear wheel 13. That is, it is possible to suppress problems caused by the braking force of the front wheels 12 being too large relative to the braking force of the rear wheels 13, for example, nose diving in a state where the vehicle is lowered forward during deceleration, locking of the front wheels 12, and the like. it can. Thereby, the posture stability of the vehicle can be ensured.
 そして、後輪13への制動力の調整は、発電機制動力を調整することにより行われる。すなわち、発電機4には、クランク軸15の回転に応じて発電する機能に加え、第1制動機構2に連動して後輪13を制動する機能を兼ねさせることとなる。換言すると、既に車両に搭載された発電機4を用いることにより、部品点数を増やすことなく、後輪13への制動力を発生させることができる。それゆえ、車両の姿勢安定性を図るために、新たな部品を特に追加する必要がない。したがって、車両重量の軽量化を図ると共に、部品点数を低減することができる。 And the adjustment of the braking force to the rear wheel 13 is performed by adjusting the generator braking force. That is, the generator 4 has a function of braking the rear wheel 13 in conjunction with the first braking mechanism 2 in addition to the function of generating power according to the rotation of the crankshaft 15. In other words, by using the generator 4 already mounted on the vehicle, the braking force to the rear wheel 13 can be generated without increasing the number of parts. Therefore, it is not necessary to add any new parts in order to improve the posture stability of the vehicle. Therefore, the weight of the vehicle can be reduced and the number of parts can be reduced.
 また、制御部5は、第1制動機構2が作動せず、第2制動機構3が作動しているとき、第1制動機構2と第2制動機構3との双方が作動しているときよりも、発電機制動力を小さくする制御を行うよう構成されている。それゆえ、運転者が意識的に第2制動機構3を作動させて車両の姿勢安定を図る際に、過剰に車両の車速を減少させることを回避することができる。すなわち、第1制動機構2を作動させず、第2制動機構3を作動させる場面とは、後輪13のみに制動力を与えようとする場面である。このような場面は、一般的に、運転者が車両の制動よりも、車両の姿勢安定を意図している場面である。それゆえ、かかる場面において、車両の過剰な減速に繋がらないように、発電機制動力を小さくしている。これにより、車両の操縦性を確保することができる。 Further, the control unit 5 is configured such that when the first braking mechanism 2 is not activated and the second braking mechanism 3 is activated, both the first braking mechanism 2 and the second braking mechanism 3 are activated. Also, it is configured to perform control to reduce the generator braking force. Therefore, when the driver consciously operates the second braking mechanism 3 to stabilize the posture of the vehicle, it is possible to avoid excessively reducing the vehicle speed of the vehicle. That is, the scene where the first braking mechanism 2 is not operated and the second braking mechanism 3 is operated is a scene where the braking force is applied only to the rear wheel 13. Such a scene is generally a scene where the driver intends to stabilize the posture of the vehicle rather than braking the vehicle. Therefore, in such a scene, the generator braking force is reduced so as not to lead to excessive deceleration of the vehicle. Thereby, the controllability of the vehicle can be ensured.
 以上のごとく、上記態様によれば、車両の姿勢安定化を図ることを可能としつつ、車両重量の軽量化を図ると共に、部品点数を低減することができる車両の制動装置1を提供することができる。 As described above, according to the above aspect, it is possible to provide the vehicle braking device 1 that can reduce the weight of the vehicle and reduce the number of parts while allowing the posture of the vehicle to be stabilized. it can.
(実施形態2)
 本形態においては、図8、図9を参照しつつ、発電機制動力の具体的態様を示す。特に、本形態においては、発電機制動力の発生のさせ方として、発電制動と回生制動とを切り替える制御を行う。
(Embodiment 2)
In this embodiment, a specific mode of the generator braking force is shown with reference to FIGS. 8 and 9. In particular, in this embodiment, control for switching between power generation braking and regenerative braking is performed as a method of generating the generator braking force.
 ここで、「発電制動」は、インバータ171における複数の下アーム半導体素子174dのうちの少なくとも2つ以上をオンすることで相間短絡させ、後輪13の回転に伴って回転する発電機4による発電エネルギーを、抵抗器(具体的には、発電機4におけるコイル及び下アーム半導体素子174d)を介して熱に変換して放出することにより、制動力を生じさせるものである。「回生制動」は、上述した発電エネルギーを熱として放出するのではなく、インバータ171における複数の上アーム半導体素子174uのうちのそれぞれをオンすることにより、又は上アーム半導体素子174uに寄生する寄生ダイオードを介して直流電力としてバッテリ172に回収する(すなわち、回生する)ことで制動力を生じさせるものである。 Here, “power generation braking” is a method of generating power by the generator 4 rotating with the rotation of the rear wheel 13 by turning on at least two of the plurality of lower arm semiconductor elements 174d in the inverter 171 to short-circuit each other. The energy is converted into heat through a resistor (specifically, the coil and the lower arm semiconductor element 174d in the generator 4) and released, thereby generating a braking force. “Regenerative braking” does not release the above-described power generation energy as heat, but turns on each of the plurality of upper arm semiconductor elements 174u in the inverter 171, or a parasitic diode parasitic on the upper arm semiconductor element 174u. The braking force is generated by collecting (that is, regenerating) the battery 172 as direct current power via the.
 本形態においては、図9に示すように、バッテリ172の残存容量S及び発電機制動力の指示値に応じて、発電制動と回生制動とを使い分ける。すなわち、バッテリ172の残存容量Sが不足している場合又は発電機制動力の指示値が小さい場合には、回生制動によって発電機制動力を発生させる。一方、上記以外の場合には、発電制動によって発電機制動力を発生させる。 In this embodiment, as shown in FIG. 9, power generation braking and regenerative braking are selectively used according to the remaining capacity S of the battery 172 and the instruction value of the generator braking force. That is, when the remaining capacity S of the battery 172 is insufficient or when the instruction value of the generator braking force is small, the generator braking force is generated by regenerative braking. On the other hand, in cases other than the above, the generator braking force is generated by power generation braking.
 図8に示すように、発電機4とバッテリ172との間には、インバータ171が設けてある。インバータ171によって、発電機4とバッテリ172との間の電力変換が行われるよう構成されている。そして、発電制動と回生制動との切り替えは、インバータ171における複数の半導体素子174(例えば、MOSFET)のオンオフを、駆動回路173によって適宜切り替えることにより制御される。すなわち、制御部5からの指示により、駆動回路173が複数の半導体素子174を適宜オンオフ制御する。制御部5は、発電制動指示部51と回生制動指示部52とを有する。そして、発電制動指示部51からの指示により、半導体素子174が制御されて、発電制動が行われる。また、回生制動指示部52からの指示により、半導体素子174が制御されて、回生制動が行われる。 As shown in FIG. 8, an inverter 171 is provided between the generator 4 and the battery 172. The inverter 171 is configured to perform power conversion between the generator 4 and the battery 172. Switching between power generation braking and regenerative braking is controlled by appropriately switching on / off of a plurality of semiconductor elements 174 (for example, MOSFETs) in the inverter 171 by the drive circuit 173. That is, the drive circuit 173 appropriately controls on / off of the plurality of semiconductor elements 174 according to instructions from the control unit 5. The control unit 5 includes a dynamic braking instruction unit 51 and a regenerative braking instruction unit 52. And according to the instruction | indication from the dynamic braking instruction | indication part 51, the semiconductor element 174 is controlled and dynamic braking is performed. Further, in response to an instruction from the regenerative braking instruction unit 52, the semiconductor element 174 is controlled to perform regenerative braking.
 なお、発電制動時においては、インバータ171における複数の下アーム半導体素子174dのうちの2つ若しくは3つのオンオフを切り替えることにより、又はオンオフDuty比を可変(すなわち、PWMスイッチング)することにより、発電機制動力の調整を行うことができる。また、回生制動時においては、インバータ171における複数の上アーム半導体素子174uのうちのそれぞれをオフすることにより、又は発電による発生交流電圧の位相に応じてオンすることにより、発電機制動力の調整を行うことができる。 During dynamic braking, the generator control is performed by switching on or off two or three of the plurality of lower arm semiconductor elements 174d in the inverter 171, or by varying the on / off duty ratio (ie, PWM switching). The power can be adjusted. Further, at the time of regenerative braking, the generator braking force is adjusted by turning off each of the plurality of upper arm semiconductor elements 174u in the inverter 171 or by turning on according to the phase of the AC voltage generated by power generation. It can be carried out.
 また、制御部5は、バッテリ状態判定部53と、発電機制動力演算部54とを有する。バッテリ状態判定部53は、バッテリ172への充放電電流積算値及びバッテリ電圧に基づいて、バッテリ172の残存容量Sを取得する。発電機制動力演算部54は、例えば、上述の実施形態1と同様の方法により、発電機制動力の指示値を設定する。そして、制御部5は、発電機制動力の指示値及びバッテリ172の残存容量Sに応じて、図9に示すフローに従い、発電制動と回生制動との切り替えを行う。 Further, the control unit 5 includes a battery state determination unit 53 and a generator braking force calculation unit 54. The battery state determination unit 53 acquires the remaining capacity S of the battery 172 based on the integrated charge / discharge current value to the battery 172 and the battery voltage. The generator braking force calculation unit 54 sets an instruction value for the generator braking force, for example, by the same method as in the first embodiment. Then, the control unit 5 switches between power generation braking and regenerative braking according to the flow shown in FIG. 9 according to the instruction value of the generator braking force and the remaining capacity S of the battery 172.
 まず、図9に示すように、ステップS201において、発電機制動力の指示値が設定されていないと判断されたとき、発電制動又は回生制動は特に実施させない。
 ステップS201にて発電機制動力の指示値が設定されていると判断され、ステップS202にてバッテリ172の残存容量Sが所定の閾値Vs以上でないと判断されたとき、回生制動を実施させる。
 また、ステップS202にてバッテリ172の残存容量Sが閾値Vs以上であると判断されたとき、ステップS203にて、発電機制動力の指示値が所定の閾値Vf以上であるか否かを判断する。そして、発電機制動力の指示値が閾値Vf以上であれば、発電制動を実施させる。一方、発電機制動力の指示値が閾値Vf未満であれば、回生制動を実施させる。
First, as shown in FIG. 9, when it is determined in step S201 that the instruction value for the generator braking force is not set, no power generation braking or regenerative braking is performed.
When it is determined in step S201 that an instruction value for the generator braking force is set, and in step S202, it is determined that the remaining capacity S of the battery 172 is not equal to or greater than the predetermined threshold value Vs, regenerative braking is performed.
When it is determined in step S202 that the remaining capacity S of the battery 172 is greater than or equal to the threshold value Vs, it is determined in step S203 whether or not the indicated value of the generator braking force is greater than or equal to a predetermined threshold value Vf. If the indicated value of the generator braking force is equal to or greater than the threshold value Vf, the generator braking is performed. On the other hand, if the indicated value of the generator braking force is less than the threshold value Vf, regenerative braking is performed.
 その他の構成は、実施形態1と同様である。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。 Other configurations are the same as those in the first embodiment. Of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
 本形態の制動装置1においては、制御部5は、発電制動又は回生制動を切り替えることができる。それゆえ、制御部5は、車両が減速する際に発電機制動力を確保しつつ、バッテリ172の充電を行うことができる。これにより、定常走行状態において発電機4の発電を停止して、車両の燃費を向上させることができる。
 その他、実施形態1と同様の効果を得ることができる。
In the braking device 1 of the present embodiment, the control unit 5 can switch between dynamic braking and regenerative braking. Therefore, the control unit 5 can charge the battery 172 while ensuring the generator braking force when the vehicle decelerates. Thereby, the power generation of the generator 4 can be stopped in the steady running state, and the fuel efficiency of the vehicle can be improved.
In addition, the same effects as those of the first embodiment can be obtained.
(実施形態3)
 本形態の制動装置1においては、図10~図15に示すように、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、車両のノーズダイブ量に応じて、発電機制動力を調整するよう構成されている。すなわち、制御部5は、まず、車両のノーズダイブ量を取得する。このとき、例えば、後述する図11~図14のグラフのいずれかを利用する。そして、制御部5は、取得したノーズダイブ量に応じて、発電機制動力の指示値を調整することができるよう構成されている。
 ここで、ノーズダイブ量とは、減速時における車両の前傾姿勢の度合いをいう。例えば、前輪12に連結されたボトムリンク式フロントフォーク112が縮むと共に、後輪13に連結されたスイングアーム式サスペンション113が伸びることにより、ノーズダイブ量が大きくなる。
(Embodiment 3)
In the braking device 1 of the present embodiment, as shown in FIGS. 10 to 15, the control unit 5 is in accordance with the nose dive amount of the vehicle in each of the first state, the second state, and the third state. The generator braking force is adjusted. That is, the control unit 5 first acquires the nose dive amount of the vehicle. At this time, for example, any of the graphs of FIGS. 11 to 14 described later is used. And the control part 5 is comprised so that the instruction | indication value of generator braking force can be adjusted according to the acquired nose dive amount.
Here, the nose dive amount refers to the degree of forward leaning posture of the vehicle during deceleration. For example, the bottom link type front fork 112 connected to the front wheel 12 is contracted and the swing arm type suspension 113 connected to the rear wheel 13 is extended, so that the nose dive amount is increased.
 次に、ノーズダイブ量の取得について、図11~図14のグラフを参照して説明する。
 図11は、各制御機構2、3の作動状態を3つの状態に分けて、ノーズダイブ量を3段階で規定するグラフである。ここで、3つの状態は、それぞれ実施形態1において述べた第1の状態、第2の状態及び第3の状態である。同図に示すように、第1の状態のときノーズダイブ量が最も大きくなり、第3の状態のときノーズダイブ量が最も小さくなる。
Next, acquisition of the nose dive amount will be described with reference to the graphs of FIGS.
FIG. 11 is a graph that divides the operating states of the control mechanisms 2 and 3 into three states and defines the nose dive amount in three stages. Here, the three states are the first state, the second state, and the third state described in the first embodiment, respectively. As shown in the figure, the nose dive amount is the largest in the first state, and the nose dive amount is the smallest in the third state.
 図12は、横軸に油圧比P1/P2をとり、縦軸にノーズダイブ量をとり、油圧比P1/P2とノーズダイブ量との関係マップM1を模式的に示すグラフである。ここで、油圧比P1/P2は、第2マスタシリンダ32の油圧P2に対する第1マスタシリンダ22の油圧P1の比である。この関係マップM1は、油圧比P1/P2とノーズダイブ量との関係として予め求めたものである。そして、制御部5は、関係マップM1に基づいて、各制御機構2、3のマスタシリンダ22、32に発生する油圧P1、P2からノーズダイブ量を取得することができる。 FIG. 12 is a graph schematically showing a relation map M1 between the hydraulic ratio P1 / P2 and the nose dive amount, with the hydraulic ratio P1 / P2 on the horizontal axis and the nose dive amount on the vertical axis. Here, the hydraulic pressure ratio P1 / P2 is a ratio of the hydraulic pressure P1 of the first master cylinder 22 to the hydraulic pressure P2 of the second master cylinder 32. This relationship map M1 is obtained in advance as the relationship between the hydraulic pressure ratio P1 / P2 and the nose dive amount. Then, the control unit 5 can acquire the nose dive amount from the hydraulic pressures P1 and P2 generated in the master cylinders 22 and 32 of the control mechanisms 2 and 3 based on the relationship map M1.
 図13は、横軸にボトムリンク式フロントフォーク112のストローク量L1をとり、縦軸にノーズダイブ量をとり、ストローク量L1とノーズダイブ量との関係マップM2を模式的に示すグラフである。この関係マップM2は、ストローク量L1とノーズダイブ量との関係として予め求めたものである。ここで、本形態の制御部5は、図10に示すように、ストローク量L1を取得するために、ボトムリンク式フロントフォーク112と電気的に接続されている。そして、制御部5は、関係マップM2に基づいて、ストローク量L1からノーズダイブ量を取得することができる。なお、制御部5は、図10に示すように、スイングアーム式サスペンション113と電気的に接続され、図14に示すように、関係マップM3に基づいて、スイングアーム式サスペンション113のストローク量L2からノーズダイブ量を取得することもできる。 FIG. 13 is a graph schematically showing a relationship map M2 between the stroke amount L1 and the nose dive amount, with the horizontal axis representing the stroke amount L1 of the bottom link type front fork 112 and the vertical axis representing the nose dive amount. This relationship map M2 is obtained in advance as the relationship between the stroke amount L1 and the nose dive amount. Here, as shown in FIG. 10, the control unit 5 of this embodiment is electrically connected to the bottom link type front fork 112 in order to acquire the stroke amount L1. And the control part 5 can acquire the nose dive amount from the stroke amount L1 based on the relationship map M2. As shown in FIG. 10, the control unit 5 is electrically connected to the swing arm suspension 113. As shown in FIG. 14, the control unit 5 determines the stroke amount L2 of the swing arm suspension 113 based on the relationship map M3. The amount of nose dive can also be acquired.
 図15に示すように、本形態の制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、ノーズダイブ量が大きいほど、発電機制動力を大きくする制御を行うよう構成されている。また、制御部5は、発電機制動力が所定の制動力制限値Lrを超えないよう制御している。制動力制限値Lrは、ノーズダイブ量が大きいほど、小さくなる変数である。以下に、ノーズダイブ量と発電機制動力との関係につき、図15と共に詳説する。 As shown in FIG. 15, the control unit 5 of this embodiment performs control to increase the generator braking force as the nose dive amount increases in each of the first state, the second state, and the third state. It is configured. Further, the control unit 5 performs control so that the generator braking force does not exceed a predetermined braking force limit value Lr. The braking force limit value Lr is a variable that decreases as the nose dive amount increases. Hereinafter, the relationship between the nose dive amount and the generator braking force will be described in detail with reference to FIG.
 図15は、横軸にノーズダイブ量をとり、縦軸に発電機制動力の指示値A、B、Cをとり、ノーズダイブ量と指示値A、B、Cとの関係マップM4を模式的に示すグラフである。ここで、指示値A、B、Cは、それぞれ実施形態1において述べた第1の状態、第2の状態及び第3の状態における指示値である。この関係マップM4は、ノーズダイブ量と指示値A、B、Cとの関係として予め求めたものである。 In FIG. 15, the horizontal axis represents the nose dive amount, the vertical axis represents the generator braking force command values A, B, and C, and a relationship map M4 between the nose dive amount and the command values A, B, and C is schematically shown. It is a graph to show. Here, the instruction values A, B, and C are instruction values in the first state, the second state, and the third state described in the first embodiment, respectively. The relationship map M4 is obtained in advance as the relationship between the nose dive amount and the instruction values A, B, and C.
 指示値A、B、Cは、いずれも、ノーズダイブ量が大きくなるほど大きくなるように設定される。ただし、各指示値は、制動力制限値Lrを超えないように設定される。制動力制限値Lrは、ノーズダイブ量が大きくなりすぎたとき、各指示値を抑制するものである。つまり、ノーズダイブ量が大きくなりすぎると、後輪13と地面との間の摩擦力が低下して、発電機制動力によって後輪13がロックするおそれがあるため、むしろ発電機制動力を抑制する必要がある。そこで、制動力制限値Lrを設けることによって、各指示値を抑制している。なお、各指示値は、制動力限界値Lmを超えないように設定される。制動力限界値Lmは、発電機4における発電機制動力の限界値である。
 その他の構成は、実施形態1と同様である。
The instruction values A, B, and C are all set so as to increase as the nose dive amount increases. However, each indication value is set so as not to exceed the braking force limit value Lr. The braking force limit value Lr suppresses each instruction value when the nose dive amount becomes too large. That is, if the nose dive amount becomes too large, the frictional force between the rear wheel 13 and the ground decreases, and the rear wheel 13 may be locked by the generator braking force. There is. Therefore, each indicated value is suppressed by providing the braking force limit value Lr. Each indicated value is set so as not to exceed the braking force limit value Lm. The braking force limit value Lm is a limit value of the generator braking force in the generator 4.
Other configurations are the same as those of the first embodiment.
 本形態の制動装置1においては、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、ノーズダイブ量が大きいほど、発電機制動力を大きくする制御を行うよう構成されている。そして、発電機制動力は、クランク軸15、クラッチ6、変速機7及びチェーン16を介して後輪13へ伝達されることにより、そのトルク反力が後輪13と接続されているスイングアーム式サスペンション113を縮める方向に作用し、車両の後方を沈めようとする。それゆえ、車両が減速する際における、車両の前傾姿勢を抑制して、ノーズダイブを抑制することができる。 In the braking device 1 of the present embodiment, the control unit 5 is configured to perform control to increase the generator braking force as the nose dive amount increases in each of the first state, the second state, and the third state. Has been. The generator braking force is transmitted to the rear wheel 13 via the crankshaft 15, the clutch 6, the transmission 7, and the chain 16, so that the torque reaction force is connected to the rear wheel 13. It acts in the direction of shrinking 113 and tries to sink the back of the vehicle. Therefore, it is possible to suppress the nose dive by suppressing the forward leaning posture of the vehicle when the vehicle decelerates.
 また、制御部5は、発電機制動力が制動力制限値Lrを超えないよう制御している。それゆえ、発電機制動力がノーズダイブ量に対して大きくなりすぎる不具合、例えば、後輪13のロックによるスリップ等を抑制することができる。これにより、車両の姿勢安定性を確保することができる。
 その他、実施形態1と同様の効果を得ることができる。
 なお、上述の制御は、例えば、第1の状態のみで行ってもよい。
Further, the control unit 5 performs control so that the generator braking force does not exceed the braking force limit value Lr. Therefore, it is possible to suppress a problem that the generator braking force becomes too large with respect to the nose dive amount, for example, slip caused by locking of the rear wheel 13. Thereby, the posture stability of the vehicle can be ensured.
In addition, the same effects as those of the first embodiment can be obtained.
Note that the above-described control may be performed only in the first state, for example.
(実施形態4)
 本形態の制動装置1においては、図16~図20に示すように、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、車両の車速が大きいほど、発電機制動力を大きくする制御を行うよう構成されている。すなわち、制御部5は、まず、車両の車速を取得する。このとき、例えば、後述する車速センサ19を利用する。そして、制御部5は、取得した車速に応じて、発電機制動力の指示値を大きくすることができるよう構成されている。
(Embodiment 4)
In the braking device 1 of the present embodiment, as shown in FIGS. 16 to 20, the control unit 5 generates power as the vehicle speed increases in each of the first state, the second state, and the third state. It is configured to perform control to increase the machine braking force. That is, the control unit 5 first acquires the vehicle speed of the vehicle. At this time, for example, a vehicle speed sensor 19 described later is used. And the control part 5 is comprised so that the instruction | indication value of generator braking force can be enlarged according to the acquired vehicle speed.
 本形態の車両は、図16に示すように、車速センサ19を有する。車速センサ19は、後輪13に隣接して取り付けられている。車速センサ19は、後輪13の回転数に応じた出力信号を生成するように構成されている。また、本形態の制御部5は、車速センサ19の出力信号を取得するために、車速センサ19と電気的に接続されている。そして、制御部5は、車速センサ19の出力信号に応じて、車両の車速を算出する。 The vehicle of this embodiment has a vehicle speed sensor 19 as shown in FIG. The vehicle speed sensor 19 is attached adjacent to the rear wheel 13. The vehicle speed sensor 19 is configured to generate an output signal corresponding to the rotational speed of the rear wheel 13. In addition, the control unit 5 of this embodiment is electrically connected to the vehicle speed sensor 19 in order to acquire an output signal of the vehicle speed sensor 19. Then, the control unit 5 calculates the vehicle speed of the vehicle according to the output signal of the vehicle speed sensor 19.
 なお、制御部5は、図17に示すように、前輪12に隣接して取り付けられた第1車速センサ192及び後輪13に隣接して取り付けられた第2車速センサ193と電気的に接続されていてもよい。制御部5は、第1車速センサ192の出力信号及び第2車速センサ193の出力信号に応じて、より確実に車両の車速を算出することができる。 As shown in FIG. 17, the control unit 5 is electrically connected to a first vehicle speed sensor 192 attached adjacent to the front wheel 12 and a second vehicle speed sensor 193 attached adjacent to the rear wheel 13. It may be. The control unit 5 can calculate the vehicle speed of the vehicle more reliably according to the output signal of the first vehicle speed sensor 192 and the output signal of the second vehicle speed sensor 193.
 次に、車速と発電機制動力の指示値との関係について、図18のグラフを参照して説明する。同図は、横軸に車速をとり、縦軸に指示値をとり、車速と指示値との関係マップM5を模式的に示すグラフである。この関係マップM5は、車速と指示値との関係として予め求めたものである。そして、指示値は、車速が大きくなるほど大きくなるように設定される。 Next, the relationship between the vehicle speed and the indicated value of the generator braking force will be described with reference to the graph of FIG. The figure is a graph schematically showing a relationship map M5 between the vehicle speed and the instruction value, with the vehicle speed on the horizontal axis and the instruction value on the vertical axis. This relationship map M5 is obtained in advance as the relationship between the vehicle speed and the instruction value. The instruction value is set so as to increase as the vehicle speed increases.
 また、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、車速が大きいほど、発電機制動力の変化率を大きくする制御を行うよう構成されている。ここで、発電機制動力の変化率は、発電機制動力の増加率の絶対値及び発電機制動力の減少率の絶対値をいう。 Further, the control unit 5 is configured to perform control to increase the change rate of the generator braking force as the vehicle speed increases in each of the first state, the second state, and the third state. Here, the change rate of the generator braking force refers to the absolute value of the increase rate of the generator braking force and the absolute value of the decrease rate of the generator braking force.
 次に、車速と発電機制動力の変化率との関係について、図19のグラフを参照して説明する。同図は、横軸に車速をとり、縦軸に変化率をとり、車速と変化率との関係マップM6を模式的に示すグラフである。この関係マップM6は、車速と変化率との関係として予め求めたものである。そして、変化率は、車速が大きくなるほど大きくなるように設定される。 Next, the relationship between the vehicle speed and the change rate of the generator braking force will be described with reference to the graph of FIG. This figure is a graph schematically showing a relationship map M6 between the vehicle speed and the rate of change, with the vehicle speed on the horizontal axis and the rate of change on the vertical axis. This relationship map M6 is obtained in advance as the relationship between the vehicle speed and the rate of change. The rate of change is set to increase as the vehicle speed increases.
 次に、第1の状態における制動装置1の動作について、図20のタイミングチャートを参照して説明する。同図に示すように、第1ブレーキレバー21のみ操作されて第1制動機構2のみオン状態になったとき、制御部5の発電機制動力制御において、発電機制動力の指示値にAが設定される。ここで、指示値Aは、実施形態1において述べた第1の状態における指示値である。そして、発電機4は、発電機制動力が指示値Aに到達するまで発電機制動力を増加させる。このときの発電機制動力の変化率(すなわち、増加率の絶対値)は、車速の大きさに伴って大きな値が設定される。 Next, the operation of the braking device 1 in the first state will be described with reference to the timing chart of FIG. As shown in the figure, when only the first brake lever 21 is operated and only the first braking mechanism 2 is turned on, A is set as the instruction value of the generator braking force in the generator braking force control of the control unit 5. The Here, the instruction value A is the instruction value in the first state described in the first embodiment. Then, the generator 4 increases the generator braking force until the generator braking force reaches the instruction value A. The change rate of the generator braking force (that is, the absolute value of the increase rate) at this time is set to a large value with the magnitude of the vehicle speed.
 次に、発電機制動力が発生して車速が低下することにより、指示値Aは徐々に小さくなる。そのため、発電機4は、指示値Aに合わせて発電機制動力を減少させる。
 最後に、第1制動機構2がオフ状態になったとき、上記指示値はゼロに変更される。そして、発電機4は、発電機制動力をゼロに到達するまで減少させる。このときの発電機制動力の変化率(すなわち、減少率の絶対値)は、上述の増加率の絶対値よりも小さな値が設定される。
 なお、上述の制御は、第2の状態及び第3の状態においても同様である。
 その他の構成は、実施形態1と同様である。
Next, as the generator braking force is generated and the vehicle speed decreases, the instruction value A gradually decreases. Therefore, the generator 4 reduces the generator braking force according to the instruction value A.
Finally, when the first braking mechanism 2 is turned off, the indicated value is changed to zero. Then, the generator 4 reduces the generator braking force until it reaches zero. At this time, the change rate of the generator braking force (that is, the absolute value of the decrease rate) is set to a value smaller than the absolute value of the increase rate.
The above-described control is the same in the second state and the third state.
Other configurations are the same as those of the first embodiment.
 本形態の制動装置1においては、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、車両の車速が大きいほど、発電機制動力を大きくする制御を行うよう構成されている。それゆえ、車両が減速する際における、ノーズダイブを抑制することができる。すなわち、車速が大きい場合において第1制動機構2のみ作動させたときには、車両の前方に荷重が移動して車両が前傾姿勢となり、ノーズダイブするおそれがある。それゆえ、ノーズダイブを抑制するために、後輪13に作用する発電機制動力を大きくしている。これにより、車両の姿勢安定性を確保することができる。 In the braking device 1 of the present embodiment, the control unit 5 is configured to perform control to increase the generator braking force as the vehicle speed of the vehicle increases in each of the first state, the second state, and the third state. Has been. Therefore, nose diving can be suppressed when the vehicle decelerates. That is, when only the first braking mechanism 2 is operated when the vehicle speed is high, the load moves in front of the vehicle, the vehicle may be tilted forward, and nose diving may occur. Therefore, in order to suppress the nose dive, the generator braking force acting on the rear wheel 13 is increased. Thereby, the posture stability of the vehicle can be ensured.
 また、制御部5は、第1の状態、第2の状態及び第3の状態のそれぞれにおいて、車速が大きいほど、発電機制動力の変化率を大きくする制御を行うよう構成されている。それゆえ、車両が減速する際における発電機制動力を急速に増大させて、ノーズダイブを抑制することができる。これにより、車両の姿勢安定性を確保することができる。また、車両の減速を解除した際における発電機制動力を急速に減少させることができる。これにより、車両の操縦性を確保することができる。
 その他、実施形態1と同様の効果を得ることができる。
The control unit 5 is configured to perform control to increase the rate of change of the generator braking force as the vehicle speed increases in each of the first state, the second state, and the third state. Therefore, it is possible to suppress the nose dive by rapidly increasing the generator braking force when the vehicle decelerates. Thereby, the posture stability of the vehicle can be ensured. Further, the generator braking force when the vehicle deceleration is released can be rapidly reduced. Thereby, the controllability of the vehicle can be ensured.
In addition, the same effects as those of the first embodiment can be obtained.
(実施形態5)
 本形態の制動装置1は、図21~図23に示すように、クラッチ6が切られた無負荷状態とクラッチ6が接続された有負荷状態とで、発電機4の出力である発電機出力を切り替える制御を行うよう構成されている。
 図21に示すように、発電機4は、クラッチ6を介して後輪13と連結されている。制御部5は、クラッチ6が切られた無負荷状態においては、クラッチ6が接続された有負荷状態よりも、発電機4の出力である発電機出力を小さくする制御を行うよう構成されている。
(Embodiment 5)
As shown in FIGS. 21 to 23, the braking device 1 of the present embodiment has a generator output that is an output of the generator 4 in a no-load state where the clutch 6 is disengaged and a loaded state where the clutch 6 is connected. It is comprised so that control which switches may be performed.
As shown in FIG. 21, the generator 4 is connected to the rear wheel 13 via the clutch 6. The control unit 5 is configured to perform control to reduce the generator output, which is the output of the generator 4, in the no-load state in which the clutch 6 is disengaged, compared to the loaded state in which the clutch 6 is connected. .
 すなわち、図22に示すように、無負荷状態のとき発電機出力の指示値を小さくし、有負荷状態のとき発電機出力の指示値を大きくする。ここで、発電機出力の指示値とは、発電機4によって発生させる発電機出力の目標値のことである。
 また、制御部5は、無負荷状態にあるとき、有負荷状態にあるときよりも、発電機出力の変化率を小さくする制御を行うよう構成されている。すなわち、図23に示すように、無負荷状態のとき発電機出力の変化率を小さくし、有負荷状態のとき発電機出力の変化率を大きくする。ここで、発電機出力の変化率は、発電機出力の増加率の絶対値及び発電機出力の減少率の絶対値である。
 その他の構成は、実施形態1と同様である。
That is, as shown in FIG. 22, the instruction value for the generator output is decreased in the no-load state, and the instruction value for the generator output is increased in the loaded state. Here, the indicated value of the generator output is a target value of the generator output generated by the generator 4.
Moreover, the control part 5 is comprised so that the change rate of a generator output may be made smaller when it is in a no-load state than when it is in a loaded state. That is, as shown in FIG. 23, the change rate of the generator output is reduced in the no-load state, and the change rate of the generator output is increased in the loaded state. Here, the change rate of the generator output is the absolute value of the increase rate of the generator output and the absolute value of the decrease rate of the generator output.
Other configurations are the same as those of the first embodiment.
 本形態の制動装置1においては、制御部5は、無負荷状態においては、有負荷状態よりも、発電機出力を小さくする制御を行うよう構成されている。それゆえ、無負荷状態におけるエンジン14の負荷を低減することができる。すなわち、無負荷状態においては、エンジン14と後輪13とは連結されていないため、この状態においては、発電機出力分の制動力がエンジン14の負荷となる。それゆえ、無負荷状態において、有負荷状態における発電機出力と同じ大きさの発電機出力を発生させた場合には、エンジン14の負荷が大きすぎてエンストするおそれがある。そこで、無負荷状態のときは、発電機出力を小さくして、エンジン14の安定性を確保する。 In the braking device 1 of the present embodiment, the control unit 5 is configured to perform control to make the generator output smaller in the no-load state than in the loaded state. Therefore, the load on the engine 14 in the no-load state can be reduced. That is, since the engine 14 and the rear wheel 13 are not connected in the no-load state, the braking force corresponding to the generator output becomes the load on the engine 14 in this state. Therefore, in the no-load state, if a generator output having the same magnitude as the generator output in the loaded state is generated, the load on the engine 14 may be too large and stall. Therefore, in the no-load state, the generator output is reduced to ensure the stability of the engine 14.
 また、制御部5は、無負荷状態にあるとき、有負荷状態にあるときよりも、発電機出力の変化率を小さくする制御を行うよう構成されている。それゆえ、急な負荷変動によるエンジン14の振動を低減することができる。
 その他、実施形態1と同様の効果を得ることができる。
Moreover, the control part 5 is comprised so that the change rate of a generator output may be made smaller when it is in a no-load state than when it is in a loaded state. Therefore, vibrations of the engine 14 due to sudden load fluctuations can be reduced.
In addition, the same effects as those of the first embodiment can be obtained.
(実施形態6)
 本形態の制動装置1は、図24~図27に示すように、変速機7のギヤ比に応じて、発電機制動力を変化させる制御を行うよう構成されている。
 図24に示すように、発電機4は、変速機7を介して後輪13と連結されている。制御部5は、有負荷状態にあるとき、変速機7のギヤ比が大きいほど、発電機制動力を小さくする制御を行うよう構成されている。
(Embodiment 6)
As shown in FIGS. 24 to 27, the braking device 1 of the present embodiment is configured to perform control to change the generator braking force in accordance with the gear ratio of the transmission 7.
As shown in FIG. 24, the generator 4 is connected to the rear wheel 13 via the transmission 7. The control unit 5 is configured to perform control to reduce the generator braking force as the gear ratio of the transmission 7 is larger when in a loaded state.
 次に、変速機7のギヤ比と発電機制動力の指示値との関係について、図25のグラフを参照して説明する。同図は、横軸にギヤ比をとり、縦軸に指示値をとり、ギヤ比と指示値との関係マップM7を模式的に示すグラフである。この関係マップM7は、ギヤ比と指示値との関係として予め求めたものである。そして、指示値は、ギヤ比が大きくなるほど小さくなるように設定される。 Next, the relationship between the gear ratio of the transmission 7 and the indicated value of the generator braking force will be described with reference to the graph of FIG. The figure is a graph schematically showing a relationship map M7 between the gear ratio and the instruction value, with the gear ratio on the horizontal axis and the instruction value on the vertical axis. This relationship map M7 is obtained in advance as the relationship between the gear ratio and the indicated value. The indicated value is set so as to decrease as the gear ratio increases.
 また、図26に示すように、変速機7のギヤ段に応じて、発電機制動力の指示値を設定することもできる。ここで、変速機7のギヤ段は、1速~6速の全6段とする。同図に示すように、1速のとき指示値を最も小さくし、6速のとき指示値を最も大きくする。 Further, as shown in FIG. 26, the instruction value of the generator braking force can be set according to the gear stage of the transmission 7. Here, the gear stage of the transmission 7 is a total of 6 stages from 1st to 6th. As shown in the figure, the instruction value is minimized when the speed is first, and the instruction value is maximized when the speed is sixth.
 また、図27に示すように、制御部5は、有負荷状態にあるとき、変速機7のギヤ比が大きいほど、発電機制動力の変化率を小さくする制御を行うよう構成されている。図27は、横軸にギヤ比をとり、縦軸に変化率をとり、ギヤ比と変化率との関係マップM8を模式的に示すグラフである。この関係マップM8は、ギヤ比と変化率との関係として予め求めたものである。そして、変化率は、ギヤ比が大きくなるほど小さくなるように設定される。
 その他の構成は、実施形態5と同様である。
Further, as shown in FIG. 27, the control unit 5 is configured to perform control to reduce the change rate of the generator braking force as the gear ratio of the transmission 7 is larger when in a loaded state. FIG. 27 is a graph schematically showing a relationship map M8 between the gear ratio and the change rate, with the gear ratio on the horizontal axis and the change rate on the vertical axis. The relationship map M8 is obtained in advance as the relationship between the gear ratio and the change rate. The rate of change is set so as to decrease as the gear ratio increases.
Other configurations are the same as those of the fifth embodiment.
 本形態の制動装置1においては、制御部5は、有負荷状態にあるとき、変速機7のギヤ比が大きいほど、発電機制動力を小さくする制御を行うよう構成されている。一般的には、ギヤ比が大きいほど、エンジン14による後輪13への制動力(すなわち、エンジンブレーキ)は大きくなる。それゆえ、ギヤ比が大きいほど、発電機制動力によるアシストは小さくて済む。そこで、ギヤ比を大きくすることによって、発電機制動力を小さくすることができる。 In the braking device 1 of the present embodiment, the control unit 5 is configured to perform control to reduce the generator braking force as the gear ratio of the transmission 7 increases when in a loaded state. In general, the greater the gear ratio, the greater the braking force (ie, engine brake) applied to the rear wheel 13 by the engine 14. Therefore, the larger the gear ratio, the smaller the assist by the generator braking force. Therefore, the generator braking force can be reduced by increasing the gear ratio.
 また、制御部5は、有負荷状態にあるとき、変速機7のギヤ比が大きいほど、発電機制動力の変化率を小さくする制御を行うよう構成されている。それゆえ、急な負荷変動による車両の急激な姿勢変化を防止することができる。
 その他、実施形態5と同様の効果を得ることができる。
Further, the control unit 5 is configured to perform control to reduce the change rate of the generator braking force as the gear ratio of the transmission 7 is larger when in a loaded state. Therefore, a sudden posture change of the vehicle due to a sudden load change can be prevented.
In addition, the same effects as those of the fifth embodiment can be obtained.
(実施形態7)
 本形態の制動装置1を有する車両においては、図28に示すように、第1車輪120が後輪であり、第2車輪130が前輪である。すなわち、本形態において、発電機4は、前輪130に制動力を伝達可能に設けられている。制御部5は、発電機4による前輪130への制動力である発電機制動力を制御する。制御部5は、下記の第1の状態にあるとき、下記の第2の状態にあるときよりも、発電機制動力を大きくする制御を行うよう構成されている。
(Embodiment 7)
In the vehicle having the braking device 1 of the present embodiment, as shown in FIG. 28, the first wheel 120 is a rear wheel and the second wheel 130 is a front wheel. That is, in this embodiment, the generator 4 is provided so as to be able to transmit a braking force to the front wheels 130. The control unit 5 controls a generator braking force that is a braking force applied to the front wheel 130 by the generator 4. The controller 5 is configured to perform control to increase the generator braking force when in the following first state than when in the following second state.
 第1の状態は、第1制動機構2による後輪120の制動力と第2制動機構3による前輪130の制動力との合計に対する、第1制動機構2による後輪120の制動力の比である制動力比Rが、所定の閾値Vrを超えた状態である。
 第2の状態は、制動力比Rが閾値Vr以下である状態である。なお、本形態において、閾値Vrは、例えば、0.2~0.3である。
 ここで、本形態における第1の状態は、実施形態1における第1の状態とは異なり、第1制動機構2による後輪120の制動力の割合が大きすぎる状態である。
 本形態の制御部5は、後輪120への制動力の割合が大きすぎたときに、発電機制動力を前輪130に作用させるよう構成されている。
The first state is the ratio of the braking force of the rear wheel 120 by the first braking mechanism 2 to the sum of the braking force of the rear wheel 120 by the first braking mechanism 2 and the braking force of the front wheel 130 by the second braking mechanism 3. A certain braking force ratio R exceeds a predetermined threshold value Vr.
The second state is a state where the braking force ratio R is equal to or less than the threshold value Vr. In this embodiment, the threshold value Vr is, for example, 0.2 to 0.3.
Here, unlike the first state in the first embodiment, the first state in the present embodiment is a state in which the ratio of the braking force of the rear wheel 120 by the first braking mechanism 2 is too large.
The control unit 5 of the present embodiment is configured to cause the generator braking force to act on the front wheel 130 when the ratio of the braking force to the rear wheel 120 is too large.
 実施形態1と異なり、本形態の発電機4は、クランク軸15ではなく、前輪130に取り付けられる。そして、前輪130の回転エネルギーを、発電機4において交流電力に変えることができるよう構成されている。 Unlike the first embodiment, the generator 4 of this embodiment is attached to the front wheel 130 instead of the crankshaft 15. And it is comprised so that the rotational energy of the front wheel 130 can be changed into alternating current power in the generator 4. FIG.
 一方、本形態の第1制動機構2の第1ブレーキディスク24は、後輪120に取り付けられている。本形態においても、上述した実施形態1における第1制動機構2の動作と同様の動作を行うことにより、後輪120を制動することができる。また、本形態の第2制動機構3の第2ブレーキディスク34は、前輪130に取り付けられている。第2制動機構3においても、上述した第1制動機構2の動作と同様の動作を行うことにより、前輪130を制動することができる。 On the other hand, the first brake disc 24 of the first braking mechanism 2 of the present embodiment is attached to the rear wheel 120. Also in this embodiment, the rear wheel 120 can be braked by performing an operation similar to the operation of the first braking mechanism 2 in the first embodiment described above. Further, the second brake disk 34 of the second braking mechanism 3 of this embodiment is attached to the front wheel 130. Also in the second braking mechanism 3, the front wheel 130 can be braked by performing the same operation as the operation of the first braking mechanism 2 described above.
 制御部5は、第1制動機構2の作動状態に応じて、第1制動機構2による後輪120の制動力を算出し、第2制動機構3の作動状態に応じて、第2制動機構3による前輪130の制動力を算出する。そして、制御部5は、実施形態1と同様の方法により、第1制動機構2及び第2制御機構3の作動状態に応じて、発電機制動力の指示値を、A、B、Cのいずれかに設定することができる。ここで、指示値Aは、第1の状態における指示値であり、指示値Bは、第2の状態における指示値であり、指示値Cは、第3の状態における指示値である。また、第3の状態は、第1制動機構2が作動せず、第2制動機構3が作動している状態である。つまり、第3の状態は、前輪130のみが第2制動機構3よって制動された状態をいう。 The control unit 5 calculates the braking force of the rear wheel 120 by the first braking mechanism 2 according to the operating state of the first braking mechanism 2, and the second braking mechanism 3 according to the operating state of the second braking mechanism 3. The braking force of the front wheel 130 by is calculated. Then, the control unit 5 changes the instruction value of the generator braking force to any one of A, B, and C according to the operating states of the first braking mechanism 2 and the second control mechanism 3 in the same manner as in the first embodiment. Can be set to Here, the instruction value A is the instruction value in the first state, the instruction value B is the instruction value in the second state, and the instruction value C is the instruction value in the third state. The third state is a state in which the first braking mechanism 2 is not operated and the second braking mechanism 3 is operating. That is, the third state is a state in which only the front wheel 130 is braked by the second braking mechanism 3.
 次に、本形態におけるノーズダイブ量と発電機制動力の指示値との関係について、図29のグラフを参照して説明する。なお、制御部5は、実施形態3と同様の方法により、車両のノーズダイブ量を取得することができる。また、本形態の制動力制限値Lrは、ノーズダイブ量が大きいほど、大きくなる変数である。 Next, the relationship between the nose dive amount and the indicated value of the generator braking force in this embodiment will be described with reference to the graph of FIG. Note that the control unit 5 can acquire the nose dive amount of the vehicle by the same method as in the third embodiment. Further, the braking force limit value Lr of the present embodiment is a variable that increases as the nose dive amount increases.
 図29は、横軸にノーズダイブ量をとり、縦軸に発電機制動力の指示値A、B、Cをとり、ノーズダイブ量と指示値A、B、Cとの関係マップM9を模式的に示すグラフである。この関係マップM9は、ノーズダイブ量と指示値A、B、Cとの関係として予め求めたものである。
 指示値A、B、Cは、いずれも、ノーズダイブ量が大きくなるほど大きくなるように設定される。ただし、各指示値は、制動力制限値Lrを超えないように設定される。制動力制限値Lrは、ノーズダイブ量が大きくなりすぎたとき、各指示値の増加を抑制するものである。つまり、前輪130の制動力が前輪130と地面との間に生じる摩擦力に対して大きくなりすぎることによる不具合、例えば、ノーズダイブ、前輪130のロック等を発生するおそれがあるためである。なお、上記摩擦力は、ノーズダイブ量が大きくなるほど大きくなるものである。
 その他の構成は、実施形態1と同様である。
In FIG. 29, the horizontal axis represents the nose dive amount, the vertical axis represents the generator braking force command values A, B, and C, and the relationship map M9 between the nose dive amount and the command values A, B, and C is schematically shown. It is a graph to show. The relationship map M9 is obtained in advance as the relationship between the nose dive amount and the instruction values A, B, and C.
The instruction values A, B, and C are all set so as to increase as the nose dive amount increases. However, each indication value is set so as not to exceed the braking force limit value Lr. The braking force limit value Lr suppresses an increase in each indicated value when the nose dive amount becomes too large. In other words, there is a risk that the braking force of the front wheel 130 becomes too large with respect to the frictional force generated between the front wheel 130 and the ground, for example, a nose dive, the locking of the front wheel 130, or the like. The frictional force increases as the nose dive amount increases.
Other configurations are the same as those of the first embodiment.
 本形態の制動装置1においては、第1車輪120が後輪であり、第2車輪130が前輪である。そして、制御部5は、第1の状態にあるとき、第2の状態にあるときよりも、発電機制動力を大きくする制御を行うよう構成されている。それゆえ、後輪120の制動力が前輪130の制動力に対して大きくなりすぎる不具合を抑制することができる。すなわち、後輪120の制動力が前輪130の制動力に対して大きくなりすぎることによる不具合、例えば、後輪120のロックによるスリップ等を抑制することができる。これにより、車両の姿勢安定性を確保することができる。
 その他、実施形態1と同様に、車両重量の軽量化を図ると共に、部品点数を低減することができるという作用効果を有する。
In the braking device 1 of the present embodiment, the first wheel 120 is a rear wheel and the second wheel 130 is a front wheel. And the control part 5 is comprised so that it may perform control which enlarges a generator braking force when it exists in a 1st state rather than when it is in a 2nd state. Therefore, it is possible to suppress a problem that the braking force of the rear wheel 120 is too large with respect to the braking force of the front wheel 130. That is, it is possible to suppress problems caused by the braking force of the rear wheels 120 being too large relative to the braking force of the front wheels 130, for example, slipping due to the rear wheels 120 being locked. Thereby, the posture stability of the vehicle can be ensured.
In addition, similar to the first embodiment, the vehicle weight can be reduced and the number of parts can be reduced.
 本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態を構成することが可能である。例えば、制御部5は、車両が走行する路面の状態に応じて、閾値Vrを適宜変更することができる。また、実施形態3において、ボトムリンク式フロントフォーク112とスイングアーム式サスペンション113とを組み合わせた実施形態を示したが、例えば、テレスコピック式フロントフォークとユニットスイング式サスペンションとを組み合わせてもよい。さらに、実施形態3、実施形態7等において、制動力限界値Lmを制動力制限値Lrよりも大きく設定した実施形態を示したが、制動力限界値Lmを制動力制限値Lrよりも小さく設定してもよい。この場合には、制御部5は、制動力制限値Lrを考慮せず、制動力限界値Lmを超えないように発電機制動力を制限することができる。 The present invention is not limited to the above-described embodiment, and various embodiments can be configured without departing from the scope of the invention. For example, the control unit 5 can appropriately change the threshold value Vr according to the state of the road surface on which the vehicle travels. In the third embodiment, the bottom link type front fork 112 and the swing arm type suspension 113 are combined. However, for example, a telescopic type front fork and a unit swing type suspension may be combined. Further, in the third embodiment, the seventh embodiment, etc., the embodiment in which the braking force limit value Lm is set larger than the braking force limit value Lr is shown, but the braking force limit value Lm is set smaller than the braking force limit value Lr. May be. In this case, the control unit 5 can limit the generator braking force so as not to exceed the braking force limit value Lm without considering the braking force limit value Lr.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (13)

  1.  前輪と後輪とを備えた車両の制動装置(1)であって、
     上記前輪と上記後輪との一方である第1車輪(12、120)を制動する第1制動機構(2)と、
     上記前輪と上記後輪との他方である第2車輪(13、130)を制動する第2制動機構(3)と、
     上記第2車輪に制動力を伝達可能に設けられた発電機(4)と、
     上記発電機による上記第2車輪への制動力である発電機制動力を制御する制御部(5)と、を有し、
     上記制御部は、下記の第1の状態にあるとき、下記の第2の状態にあるときよりも、上記発電機制動力を大きくする制御を行うよう構成されており、
     上記第1の状態は、上記第1制動機構による上記第1車輪の制動力と上記第2制動機構による上記第2車輪の制動力との合計に対する、上記第1制動機構による上記第1車輪の制動力の比である制動力比(R)が、所定の閾値(Vr)を超えた状態であり、
     上記第2の状態は、上記制動力比が上記閾値以下である状態である、車両の制動装置。
    A braking device (1) for a vehicle having a front wheel and a rear wheel,
    A first braking mechanism (2) for braking the first wheel (12, 120) which is one of the front wheel and the rear wheel;
    A second braking mechanism (3) for braking the second wheel (13, 130) which is the other of the front wheel and the rear wheel;
    A generator (4) provided to transmit a braking force to the second wheel;
    A control unit (5) for controlling a generator braking force, which is a braking force to the second wheel by the generator,
    The control unit is configured to perform control to increase the generator braking force when in the following first state than when in the following second state,
    The first state is the sum of the braking force of the first wheel by the first braking mechanism and the braking force of the second wheel by the second braking mechanism. The braking force ratio (R), which is the ratio of the braking force, is in a state exceeding a predetermined threshold (Vr),
    The second state is a vehicle braking device in which the braking force ratio is equal to or less than the threshold value.
  2.  上記第1車輪は上記前輪であり、上記第2車輪は上記後輪である、請求項1に記載の車両の制動装置。 The vehicle braking device according to claim 1, wherein the first wheel is the front wheel and the second wheel is the rear wheel.
  3.  上記制御部は、上記第1制動機構が作動せず、上記第2制動機構が作動しているとき、上記第1制動機構と上記第2制動機構との双方が作動しているときよりも、上記発電機制動力を小さくする制御を行うよう構成されている、請求項2に記載の車両の制動装置。 When the first braking mechanism is not activated and the second braking mechanism is activated, the control unit is more effective than when both the first braking mechanism and the second braking mechanism are activated. The vehicle braking device according to claim 2, wherein the vehicle braking device is configured to perform control to reduce the generator braking force.
  4.  上記制御部は、上記第1の状態及び上記第2の状態の少なくとも一方において、上記車両のノーズダイブ量に応じて、上記発電機制動力を調整するよう構成されている、請求項2又は3に記載の車両の制動装置。 The control unit is configured to adjust the generator braking force in accordance with a nose dive amount of the vehicle in at least one of the first state and the second state. A braking device for a vehicle according to the description.
  5.  上記制御部は、上記第1の状態及び上記第2の状態の少なくとも一方において、上記ノーズダイブ量が大きいほど、上記発電機制動力を大きくする制御を行うよう構成されている、請求項4に記載の車両の制動装置。 5. The control unit according to claim 4, wherein the control unit is configured to perform control to increase the generator braking force as the nose dive amount increases in at least one of the first state and the second state. Vehicle braking system.
  6.  上記制御部は、上記発電機制動力が所定の制動力制限値を超えないよう制御しており、該制動力制限値は、上記ノーズダイブ量が大きいほど、小さくなる変数である、請求項5に記載の車両の制動装置。 The control unit performs control so that the generator braking force does not exceed a predetermined braking force limit value, and the braking force limit value is a variable that decreases as the nose dive amount increases. A braking device for a vehicle according to the description.
  7.  上記制御部は、上記第1の状態及び上記第2の状態の少なくとも一方において、上記車両の車速が大きいほど、上記発電機制動力を大きくする制御を行うよう構成されている、請求項1~6のいずれか一項に記載の車両の制動装置。 The control unit is configured to perform control to increase the generator braking force as the vehicle speed of the vehicle increases in at least one of the first state and the second state. The braking device for a vehicle according to any one of the above.
  8.  上記制御部は、上記第1の状態及び上記第2の状態の少なくとも一方において、上記車速が大きいほど、上記発電機制動力の変化率を大きくする制御を行うよう構成されている、請求項7に記載の車両の制動装置。 8. The control unit according to claim 7, wherein the control unit is configured to perform control to increase a change rate of the generator braking force as the vehicle speed increases in at least one of the first state and the second state. A braking device for a vehicle according to the description.
  9.  上記発電機は、クラッチ(6)を介して上記第2車輪と連結されており、上記制御部は、上記クラッチが切られた無負荷状態においては、上記クラッチが接続された有負荷状態よりも、上記発電機の出力である発電機出力を小さくする制御を行うよう構成されている、請求項2~8のいずれか一項に記載の車両の制動装置。 The generator is connected to the second wheel via a clutch (6), and the control unit is more in a no-load state in which the clutch is disengaged than in a loaded state in which the clutch is connected. The vehicle braking device according to any one of claims 2 to 8, wherein the vehicle braking device is configured to perform control to reduce a generator output that is an output of the generator.
  10.  上記制御部は、上記無負荷状態にあるとき、上記有負荷状態にあるときよりも、上記発電機出力の変化率を小さくする制御を行うよう構成されている、請求項9に記載の車両の制動装置。 The vehicle according to claim 9, wherein the control unit is configured to perform control to reduce a change rate of the generator output when the load is in the no-load state than when the load is in the load state. Braking device.
  11.  上記発電機は、変速機(7)を介して上記第2車輪と連結されており、上記制御部は、上記有負荷状態にあるとき、上記変速機のギヤ比が大きいほど、上記発電機制動力を小さくする制御を行うよう構成されている、請求項9又は10に記載の車両の制動装置。 The generator is connected to the second wheel via a transmission (7). When the control unit is in the loaded state, the generator braking force increases as the gear ratio of the transmission increases. The vehicle braking device according to claim 9, wherein the vehicle braking device is configured to perform control to reduce the vehicle speed.
  12.  上記制御部は、上記有負荷状態にあるとき、上記変速機の上記ギヤ比が大きいほど、上記発電機制動力の変化率を小さくする制御を行うよう構成されている、請求項9~11のいずれか一項に記載の車両の制動装置。 12. The control unit according to claim 9, wherein the control unit is configured to perform control to reduce a change rate of the generator braking force as the gear ratio of the transmission increases when the load is in the load state. The vehicle braking device according to claim 1.
  13.  上記第1車輪は上記後輪であり、上記第2車輪は上記前輪である、請求項1に記載の車両の制動装置。 The vehicle braking device according to claim 1, wherein the first wheel is the rear wheel, and the second wheel is the front wheel.
PCT/JP2017/031921 2016-09-19 2017-09-05 Vehicle braking device WO2018051842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780057498.7A CN109715430B (en) 2016-09-19 2017-09-05 Vehicle brake device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016182462A JP6759919B2 (en) 2016-09-19 2016-09-19 Vehicle braking device
JP2016-182462 2016-09-19

Publications (1)

Publication Number Publication Date
WO2018051842A1 true WO2018051842A1 (en) 2018-03-22

Family

ID=61619383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031921 WO2018051842A1 (en) 2016-09-19 2017-09-05 Vehicle braking device

Country Status (3)

Country Link
JP (1) JP6759919B2 (en)
CN (1) CN109715430B (en)
WO (1) WO2018051842A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220811B2 (en) * 2019-12-25 2023-02-10 ナブテスコ株式会社 A vehicle with an electric braking mechanism, a wheel unit, and a program for controlling the wheel unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217677A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Regenerative brake controller of vehicle
JP2007284001A (en) * 2006-04-20 2007-11-01 Toyota Motor Corp Vehicle and its control method
JP2010035376A (en) * 2008-07-31 2010-02-12 Panasonic Corp Motor bicycle
WO2010082311A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Driving support device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104845B2 (en) * 2006-03-10 2012-01-31 Nissan Motor Co., Ltd. Vehicle braking apparatus
CN101058308B (en) * 2007-05-22 2012-10-03 上海交大神舟汽车设计开发有限公司 Hydraulic pressure execution device for automobile electron stabilization control system
JP5387597B2 (en) * 2011-03-02 2014-01-15 トヨタ自動車株式会社 Vehicle control device
DE102015000216A1 (en) * 2014-03-11 2015-09-17 Wabco Gmbh Method for controlling electric motors in serial hybrid vehicles or fully electric vehicles with at least two separately driven axles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217677A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Regenerative brake controller of vehicle
JP2007284001A (en) * 2006-04-20 2007-11-01 Toyota Motor Corp Vehicle and its control method
JP2010035376A (en) * 2008-07-31 2010-02-12 Panasonic Corp Motor bicycle
WO2010082311A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Driving support device

Also Published As

Publication number Publication date
CN109715430B (en) 2022-05-10
CN109715430A (en) 2019-05-03
JP6759919B2 (en) 2020-09-23
JP2018050354A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6236672B2 (en) Control device for electric vehicle
JP5720799B2 (en) Vehicle braking / driving force control device
WO2013085000A1 (en) Electric vehicle control device
WO2015037615A1 (en) Driving force control device and driving force control method
JP5668856B2 (en) Brake control device for vehicle
JP5790782B2 (en) Vehicle control device
US11745595B2 (en) Electric vehicle and method of controlling the same according to a plurality of control maps defining a driving force
TW201410517A (en) Brake system for a motorcycle, method for installing a brake system on a motorcycle, and method for braking a motorcycle
JP5040147B2 (en) Brake control device for vehicle
JP6056430B2 (en) Brake control device for vehicle
JP5982808B2 (en) Braking torque control device and braking torque control method
JP2005028934A (en) Vehicle attitude control device
JP5686721B2 (en) Control device for electric vehicle
JP2012051455A (en) Hydraulic brake control device
CN115140001A (en) Electric-hydraulic composite braking system for reloading electric forklift and control method
JP5245886B2 (en) Regenerative cooperative brake control device and regenerative cooperative brake control method
WO2018051842A1 (en) Vehicle braking device
JP5853682B2 (en) Brake control device for vehicle
JP6458324B2 (en) Braking control device for vehicle
JP5966663B2 (en) Brake control device for vehicle
WO2022054473A1 (en) Vehicle control device, vehicle control method, and vehicle control system
JP2010018192A (en) Electric braking device
JP2006115588A (en) Motor traction controller of vehicle
JP5879974B2 (en) Brake control device for vehicle
JP5683305B2 (en) Brake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850745

Country of ref document: EP

Kind code of ref document: A1