WO2018051828A1 - Fuel cell system and solid oxide fuel cell - Google Patents

Fuel cell system and solid oxide fuel cell Download PDF

Info

Publication number
WO2018051828A1
WO2018051828A1 PCT/JP2017/031756 JP2017031756W WO2018051828A1 WO 2018051828 A1 WO2018051828 A1 WO 2018051828A1 JP 2017031756 W JP2017031756 W JP 2017031756W WO 2018051828 A1 WO2018051828 A1 WO 2018051828A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
solid oxide
sofc
oxide fuel
transmission line
Prior art date
Application number
PCT/JP2017/031756
Other languages
French (fr)
Japanese (ja)
Inventor
慎弥 宇井
邦幸 高橋
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2018051828A1 publication Critical patent/WO2018051828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a solid oxide fuel cell.
  • SOFC solid oxide fuel cells
  • the SOFC has the characteristics that the power generation operating temperature is the highest (for example, 900 ° C. to 1000 ° C.) and the power generation efficiency is the highest among the currently known fuel cell configurations.
  • the conversion efficiency is increased by setting the direct current portion to a high voltage and low current. This is realized by increasing the number of stacked fuel cell stacks and connecting the cells in series.
  • the reason why the power generation efficiency of the SOFC is high is that the direct current portion can be made high voltage and low current.
  • Patent Document 1 discloses a fuel cell system that controls opening and closing of an FC relay that switches connection and disconnection between a fuel cell and a load.
  • the fuel cell voltage is increased from the starting voltage to an operating voltage lower than the open circuit voltage to start the fuel cell, and the fuel cell voltage is lower than the operating voltage and lower than the starting voltage of the fuel cell.
  • An FC relay close command is output between the high first voltage and the second voltage lower than the first voltage and higher than the starting voltage of the fuel cell.
  • Patent Document 2 discloses a fuel cell system having a DC / DC converter (hereinafter referred to as a converter), a DC / AC inverter (hereinafter referred to as an inverter), and a rectifier circuit.
  • the converter converts the DC voltage from the fuel cell into a predetermined DC current and outputs it to an auxiliary machine that operates the fuel cell.
  • the inverter converts the DC voltage output from the converter into a predetermined AC voltage and outputs it to a power supply line connected to the system power supply, and converts the AC voltage from the power supply line into a predetermined DC voltage and converts it into an auxiliary machine. Output to.
  • the rectifier circuit is provided in parallel with the inverter between the power supply line and the auxiliary machine, converts the AC voltage from the power supply line into a DC voltage, and supplies it to the auxiliary machine. And at the time of starting of a fuel cell, a converter and a rectifier circuit or an inverter are balanced and the voltage of a fuel cell is adjusted.
  • the present invention has been made in view of the above points, and a fuel capable of realizing stable operation by suppressing open circuit voltage at start-up with a simple configuration and low cost while maintaining high power generation efficiency.
  • An object is to provide a battery system and a solid oxide fuel cell.
  • the fuel cell system of the present embodiment is a solid oxide fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidant gas, and a direct current generated by the solid oxide fuel cell is an alternating current.
  • a DC / AC converter that converts the current into a DC / AC converter, and a shunt circuit that can be connected to a direct current transmission path from the solid oxide fuel cell to the DC / AC converter. It has a discharge resistor that extracts a part of the direct current generated by the oxide fuel cell, and a switching unit that switches the discharge resistor between a connection state and a non-connection state to the transmission line.
  • the fuel cell system of the present embodiment is a fuel cell system having a solid oxide fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas, the solid oxide fuel cell being And a cell stack configured by stacking a plurality of cells, and a serial-parallel switching mechanism for switching each cell of the cell stack to be electrically connected in series or connected in parallel. .
  • the fuel cell system of the present embodiment generates a power by an electrochemical reaction between a fuel gas and an oxidant gas, and has a cell stack formed by stacking a plurality of cells.
  • a DC / AC converter that converts a direct current generated by the solid oxide fuel cell into an alternating current, and a direct current transmission path from the solid oxide fuel cell to the DC / AC converter.
  • a possible shunt circuit wherein the shunt circuit is a discharge resistor that extracts a part of the direct current generated by the solid oxide fuel cell, and the discharge resistor is disconnected from the connection state to the transmission line.
  • a switching unit that switches to a state, and the switching unit has an open circuit voltage that reaches a predetermined threshold voltage before the solid oxide fuel cell is started or when the solid oxide fuel cell is started.
  • the switching unit switches the discharge resistance to the transmission line.
  • the solid oxide fuel cell has a series-parallel switching mechanism that switches whether the cells of the cell stack are electrically connected in series or connected in parallel. At the time of starting the solid oxide fuel cell, the series-parallel switching mechanism electrically connects the cells of the cell stack in parallel, and the open circuit voltage of the solid oxide fuel cell becomes the first threshold voltage.
  • a part of the direct current generated by the solid oxide fuel cell is extracted by at least one of the DC / AC converter and the discharge resistor, and the open circuit voltage of the solid oxide fuel cell is When dropped to less than one threshold voltage second threshold voltage, said series-parallel switching mechanism, electrically connected in series to each cell of the cell stack is characterized in that.
  • the solid oxide fuel cell of the present embodiment is a solid oxide fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas, and is configured by stacking a plurality of cells. It has a cell stack, and a serial-parallel switching mechanism for switching whether cells of the cell stack are electrically connected in series or connected in parallel.
  • the fuel cell system and solid oxide fuel which can implement
  • a battery can be provided.
  • FIG. 8 which shows the state which connected each cell of the cell stack of SOFC in parallel. It is a conceptual diagram corresponding to FIG. 8 which shows the state which connected each cell of the cell stack of SOFC in series. It is a timing chart which shows the relationship between the voltage concerning SOFC from the time of starting of the fuel cell system of 3rd Embodiment to the start of rated operation, the electric current which flows into discharge resistance, and the electric current which flows into an electric power generation load. It is a flowchart which shows operation
  • a solid line indicates the flow of electricity (current, power)
  • a broken line inside the SOFC 10)
  • a one-dot chain line outside of the SOFC 10) indicate a flow of a fluid such as gas or water.
  • a fuel cell system 1 includes a solid oxide fuel cell (SOFC) 10, a DC / AC converter 20, a shunt circuit 30, a system power network 40, and a combustor. 50 and an exhaust heat recovery / circulation system 60.
  • SOFC solid oxide fuel cell
  • the SOFC 10 has a cell stack in which a plurality of cells are stacked or assembled. Each cell has a basic configuration in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a separator is interposed between the cells. Each cell of the cell stack is electrically connected in series.
  • the SOFC 10 is a power generation mechanism that generates electric energy when oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, and the oxide ions react with hydrogen or carbon monoxide at the fuel electrode. . Although details will be described later in the third and fourth embodiments, it is possible to switch whether the cells of the cell stack of the SOFC 10 are electrically connected in series or in parallel.
  • the SOFC 10 has a fuel gas channel (anode gas channel) 12 and an oxidant gas channel (cathode gas channel) 14. Fuel gas is supplied to the fuel gas channel 12 from a fuel gas supplier (not shown), and oxidant gas is supplied to the oxidant gas channel 14 from an oxidant gas supplier (not shown). A direct current is generated by causing an electrochemical reaction between the fuel gas supplied to the fuel gas passage 12 and the oxidant gas supplied to the oxidant gas passage 14. The fuel gas and oxidant gas that have not caused an electrochemical reaction are discharged from the SOFC 10 as exhaust gas. Part of the fuel gas discharged from the SOFC 10 is recirculated to the fuel gas channel 12 via the recycle gas channel 16.
  • the DC / AC converter 20 converts the direct current generated (generated) by the SOFC 10 into an alternating current.
  • the shunt circuit 30 is provided so as to be connectable to the direct current transmission line DL from the SOFC 10 to the DC / AC converter 20 (straddling the transmission line DL). In the connected state to the transmission line DL, the shunt circuit 30 extracts a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by being divided and consumed). For this reason, in the transmission line DL, the direct current flowing from the shunt circuit 30 to the DC / AC converter 20 is smaller than the direct current flowing from the SOFC 10 to the shunt circuit 30. On the other hand, the shunt circuit 30 passes the direct current generated by the SOFC 10 as it is in a non-connected state to the transmission line DL.
  • the direct current flowing from the shunt circuit 30 to the DC / AC converter 20 has the same magnitude as the direct current flowing from the SOFC 10 to the shunt circuit 30.
  • the configuration and operation of the shunt circuit 30 will be described in detail later.
  • the generated power of the SOFC 10 passes through the DC / AC converter 20 (the shunt circuit 30 and the DC / AC converter 20 in the connection state of the shunt circuit 30 to the transmission line DL), and passes through the grid interconnection relay 25 to the grid power network 40. It is connected to the.
  • the generated power of the SOFC 10 is connected to the grid power network 40 when the grid connection relay 25 is in an on state, and is disconnected from the grid connection relay 25 when the grid connection relay 25 is in an off state.
  • the generated power of the SOFC 10 is supplied to the system, and during the independent operation, the generated power is consumed in the apparatus with a load smaller than the rated maximum power.
  • the grid power network 40 (system grid relay 25) is switched from the grid state to the SOFC 10 to the disconnected state.
  • You may provide the surplus electric power transmission line L which transmits the surplus electric power which is a part of electric power generated with SOFC10 when it switches.
  • the surplus power transmission path L may be connected to a heater (not shown) provided in an exhaust heat recovery / circulation line (not shown) of the exhaust heat recovery / circulation system 60.
  • a relay switch LS is provided in the surplus power transmission line L.
  • surplus power can be transmitted to the exhaust heat recovery circulation system 60 via the surplus power transmission line L.
  • the relay switch LS is in the off state, the surplus power transmission line L is cut off and discharged. Surplus power cannot be transmitted to the heat recovery circulation system 60.
  • the grid interconnection relay 25 and the relay switch LS are controlled so that, for example, when one is on, the other is off. Of course, it may be controlled so that there is a time zone in which both the grid interconnection relay 25 and the relay switch LS are in the on state or the off state. In FIG. 1B, the case where both the grid connection relay 25 and the relay switch LS are an OFF state is drawn.
  • a power transmission path different from the surplus power transmission path L described above may be branched from the power transmission path between the DC / AC converter 20 and the grid interconnection relay 25.
  • This other power transmission path is connected to the DC / AC conversion unit 20 and devices (not shown) mounted on the fuel cell system 1 such as a pump, blower, and radiator, and the grid power network 40 is connected via the power transmission path.
  • the power may be supplied from either the SOFC 10 or the grid power network 30 to be driven.
  • the combustor 50 removes the fuel component remaining in the exhaust gas by burning the exhaust gas discharged from the SOFC 10.
  • the exhaust heat recovery circulation system 60 recovers the heat of the combustion gas (exhaust gas) from the combustor 50.
  • the exhaust heat recovery / circulation system 60 has an exhaust heat recovery / circulation line (not shown) through which water (hot water) as a heat medium for exhaust heat recovery is circulated.
  • the exhaust heat recovery circulation line is provided with various reactors (all not shown) such as an exhaust heat recovery heat exchanger, a hot water heat exchanger, a heater, a radiator, and a pump.
  • the gas after the exhaust heat recovery by the exhaust heat recovery circulation system 60 is exhausted to the outside of the fuel cell system 1.
  • FIG. 2 is a block diagram showing the internal configuration of the shunt circuit 30. 2 is different from FIGS. 1A and 1B in the positional relationship between the shunt circuit 30, the SOFC 10, the DC / AC conversion unit 20, and the system power network 40. This is for convenience of drawing (FIG. 1A). 1B and FIG. 2 are equivalent).
  • the shunt circuit 30 includes a discharge resistor 31, a relay switch (switching unit) 32, and an open / close control unit (switching unit) 33.
  • the discharge resistor 31 and the relay switch 32 are grounded to the earth 34.
  • the discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by being divided and consumed).
  • the resistance value of the discharge resistor 31 is a high voltage (for example, about 750 V to 950 V DC) calculated from the IV characteristics of the SOFC 10 when the open circuit voltage (OCV: Open Circuit Voltage) at the start-up (no load) of the SOFC 10 It is calculated and set based on the load current value that can avoid this.
  • the relay switch 32 switches the discharge resistor 31 (the shunt circuit 30) between the connected state and the disconnected state to the transmission line DL according to the opening / closing control by the opening / closing control unit 33. That is, when the relay switch 32 is closed, the discharge resistor 31 and the transmission line DL are connected, and when the relay switch 32 is open, the discharge resistor 31 and the transmission line DL are disconnected (FIG. 2 shows the latter). Draws the case).
  • the open / close control unit 33 performs open / close control of the relay switch 32.
  • the opening / closing control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL by the time the SOFC 10 starts up (at the latest, before starting to supply fuel gas and oxidant gas to the SOFC 10). State.
  • the open / close control unit 33 switches the relay switch 32 from the open state to the closed state when the OCV at the time of activation of the SOFC 10 reaches a predetermined threshold voltage, and the discharge resistor 31 is not connected to the transmission line DL. May be switched to a connected state.
  • the “predetermined threshold voltage” is set to a value (for example, 600 V) lower than the high voltage calculated from the IV characteristics of the SOFC 10.
  • the open / close control unit 33 switches the relay switch 32 from the closed state to the open state when the direct current flowing into the DC / AC conversion unit 20 reaches a predetermined threshold current, and connects the discharge resistor 31 to the transmission line DL. Switch from state to disconnected state.
  • the “predetermined threshold current” can be set to a value of a direct current drawn by the discharge resistor 31 from the transmission line DL. That is, the open / close control unit 33 switches the relay switch 32 from the closed state to the open state when the direct current flowing into the DC / AC conversion unit 20 and the direct current drawn by the discharge resistor 31 from the transmission line DL become the same.
  • the discharge resistor 31 is switched from the connection state to the transmission line DL to the non-connection state.
  • the “predetermined threshold current” can be set, for example, to a value of 10% with respect to the output current during rated operation.
  • the solid line indicates the voltage applied to the SOFC 10
  • the broken line indicates the voltage applied to the SOFC 10 when the shunt circuit 30 is omitted
  • the one-dot chain line indicates the current flowing through the discharge resistor 31
  • the two-dot chain line indicates power generation.
  • the electric current which flows into load (for example, various auxiliary machines) is shown.
  • step ST1 before the start of the SOFC 10 (before supply of fuel gas and oxidant gas to the SOFC 10 is started), the open / close control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL. State.
  • step ST2 an air blower (not shown) for sending fuel gas and oxidant gas into the SOFC 10 is turned on.
  • an air heating mechanism (not shown) for heating the fuel gas and the oxidant gas is turned on.
  • step ST4 it is determined whether the temperature of the SOFC 10 is equal to or higher than a predetermined value. If the temperature of the SOFC 10 is equal to or higher than the predetermined value (step ST4: Yes), the process proceeds to step ST5. If the temperature of the SOFC 10 is less than the predetermined value (step ST4: No), the process waits for the temperature of the SOFC 10 to be equal to or higher than the predetermined value.
  • step ST5 supply of fuel gas and oxidant gas to the SOFC 10 is started, and the OCV of the SOFC 10 starts to rise (see FIG. 3).
  • the relay switch 32 is already closed, and the discharge resistor 31 (the shunt circuit 30) and the transmission line DL are already connected. For this reason, a part of the direct current generated by the SOFC 10 is extracted from the transmission line DL using the discharge resistor 31 (see the one-dot chain line in FIG. 3).
  • the OCV of the SOFC 10 can be suppressed more than when the shunt circuit 30 is omitted (see the solid line and the broken line in FIG. 3).
  • step ST6 it is determined whether or not the OCV of the SOFC 10 is equal to or higher than a predetermined threshold voltage. If the OCV of the SOFC 10 is equal to or higher than the predetermined threshold voltage (step ST6: Yes), the process proceeds to step ST7. If the OCV of the SOFC 10 is less than the predetermined threshold voltage (step ST6: No), it waits for the OCV of the SOFC 10 to be equal to or higher than the predetermined threshold voltage.
  • step ST7 it is determined whether or not the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are equal to or greater than a predetermined value. If the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are equal to or greater than the predetermined values (step ST7: Yes), the process proceeds to step ST8. If the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are less than the predetermined values (step ST7: No), it waits for the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 to be equal to or greater than the predetermined values.
  • step ST8 the power generated by the SOFC 10 is started to be input to the power generation load (for example, various auxiliary machines). Thereby, the current flowing through the power generation load starts to rise (see the two-dot chain line in FIG. 3).
  • the relay switch 32 is in a closed state, and the discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (the one-dot chain line and the two-dot chain line in FIG. overlapping).
  • step ST9 whether or not the direct current flowing into the DC / AC conversion unit 20 is equal to or greater than a predetermined threshold current (or the direct current flowing into the DC / AC conversion unit 20 and the direct current drawn by the discharge resistor 31 from the transmission line DL are determined. Whether or not they are the same). If the direct current flowing into the DC / AC conversion unit 20 is greater than or equal to a predetermined threshold current (step ST9: Yes), the process proceeds to step ST10. If the direct current flowing into the DC / AC conversion unit 20 is less than the predetermined threshold current (step ST9: No), it waits for the direct current flowing into the DC / AC conversion unit 20 to be equal to or greater than the predetermined threshold current.
  • step ST10 the open / close control unit 33 switches the relay switch 32 from the closed state to the open state, and switches the discharge resistor 31 (the shunt circuit 30) from the connection state to the transmission line DL to the non-connection state.
  • the voltage of the SOFC 10 does not become excessively high and gradually converges toward the rated voltage.
  • step ST11 it is determined whether or not the generated power of the SOFC 10 is a steady operation that converges to the rated maximum power. If it is a steady operation (step ST11: Yes), the process is terminated, and if it is not a steady operation (step ST11: No), it waits for a steady operation.
  • the opening / closing control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL. .
  • the discharge resistor 31 starts to extract a part of the direct current generated by the SOFC 10 from the transmission line DL (starts to escape from the transmission line DL by being divided and consumed) (one point in FIG. 3) See chain line).
  • OCV of SOFC10 can be suppressed rather than the case where the shunt circuit 30 is abbreviate
  • FIG. 5 is a block diagram showing an internal configuration of the shunt circuit 30 ′ of the second embodiment.
  • the relay switch 32 and the open / close control unit 33 as a switching unit are omitted, and a Zener diode (constant voltage diode) is used instead. 35 is provided.
  • the Zener diode 35 brings the discharge resistor 31 (the shunt circuit 30 ′) into a disconnected state to the transmission line DL, and the OCV of the SOFC 10 is equal to or higher than the predetermined threshold voltage. In some cases, it has element characteristics such that the discharge resistor 31 (the shunt circuit 30 ') is connected to the transmission line DL.
  • the “predetermined threshold voltage” is set to the same value as the avalanche breakdown voltage of the Zener diode 35 or a value slightly smaller than that.
  • the solid line indicates the voltage applied to the SOFC 10
  • the broken line indicates the voltage applied to the SOFC 10 when the shunt circuit 30 ′ is omitted
  • the one-dot chain line indicates the current flowing through the discharge resistor 31
  • the two-dot chain line indicates The electric current which flows into an electric power generation load (for example, various auxiliary machines) is shown.
  • Step ST1 in which the relay switch 32 is closed and the discharge resistor 31 is connected to the transmission line DL in the stage before starting the SOFC 10 is omitted. That is, when the SOFC 10 is activated, the relay switch 32 is in an open state, and the discharge resistor 31 is not connected to the transmission line DL.
  • step ST6 When the OCV at the time of starting the SOFC 10 is equal to or higher than a predetermined threshold voltage (step ST6: Yes), in step ST6 ′, the discharge resistor 31 (the shunt circuit 30 ′) is connected to the transmission line due to the element characteristics of the Zener diode 35.
  • step ST9 When the direct current flowing into the DC / AC conversion unit 20 is equal to or greater than a predetermined threshold current (step ST9: Yes), in step ST10 ′, the discharge resistor 31 (the shunt circuit 30 ′) due to the element characteristics of the Zener diode 35. ) Is switched from the connection state to the transmission line DL to the non-connection state.
  • the Zener diode 35 causes an avalanche breakdown, thereby causing the discharge resistor 31 (a shunt circuit).
  • 30 ′ is switched from the non-connected state to the transmission line DL to the connected state.
  • the discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by dividing and consuming it) (see the one-dot chain line in FIG. 6).
  • the OCV of the SOFC 10 can be suppressed more than when the shunt circuit 30 'is omitted (see the solid line and the broken line in FIG. 6).
  • FIG. 8 is a conceptual diagram showing the configuration of the cell stack of the SOFC 10 of the third embodiment and the series-parallel switching mechanism of each cell.
  • the SOFC 10 has a cell stack configured by stacking a first cell 10-1 and a second cell 10-2.
  • the first cell 10-1 and the second cell 10-2 are functionally depicted as power supply units.
  • the SOFC 10 can output 50 kW.
  • the SOFC 10 functions as a series-parallel switching mechanism of the first transmission line DL1 and the second transmission line DL2, and the first transmission line DL1 and the second transmission line DL2 that are branched again from the direct current transmission line DL and then merged again.
  • a third transmission line DL3 that connects the intermediate portions is provided.
  • a first cell 10-1 is provided on the first transmission line DL1, and a second cell 10-2 is provided on the second transmission line DL2.
  • the third transmission line DL3 connects the upstream portion of the first transmission line DL1 with respect to the first cell 10-1 and the downstream portion of the second transmission line DL2 with respect to the second cell 10-2.
  • the first switch SW1 is provided on the upstream side of the connection portion of the first transmission line DL1 with the third transmission line DL3, and the second switch is provided on the downstream side of the connection portion of the second transmission line DL2 with the third transmission line DL3.
  • a switch SW2 is provided.
  • a third switch SW3 is provided at an intermediate portion of the third transmission line DL3.
  • the SOFC 10 is provided with an open / close control unit (not shown) for switching the open / close state of the first switch SW1 to the third switch SW3.
  • a solid line indicates a voltage applied to the SOFC 10
  • a broken line indicates a voltage applied to the SOFC 10 when the control according to the third embodiment is not performed.
  • the control of the third embodiment can be executed together with the control of the first and second embodiments, or can be executed independently of the control of the first and second embodiments.
  • step ST1 ′′ the open / close control unit (not shown) closes the first switch SW1 and the second switch SW2 and opens the third switch SW3, so that the first cell 10-1 and the second cell 10-2 are electrically connected in parallel (see FIG. 9A).
  • step ST2 ′′ an air blower (not shown) for sending fuel gas and oxidant gas to the SOFC 10 is turned on.
  • step ST3 ′′ an air heating mechanism (not shown) for heating the fuel gas and oxidant gas. ) Is turned on.
  • step ST4 ′′ it is determined whether or not the temperature of the SOFC 10 is equal to or higher than a predetermined value. If the temperature of the SOFC 10 is equal to or higher than the predetermined value (step ST4 ′′: Yes), the process proceeds to step ST5 ′′. If it is less than the predetermined value (step ST4 ′′: No), it waits for the temperature of the SOFC 10 to become equal to or higher than the predetermined value.
  • step ST5 ′′ the supply of fuel gas and oxidant gas to the SOFC 10 is started, and the OCV of the SOFC 10 starts to rise (see FIG. 10).
  • the first cell 10-1 and the second cell 10-2 are electrically connected. Therefore, the OCV of the SOFC 10 can be suppressed more than when the control of the present embodiment is not performed (see the solid line and the broken line in FIG. 10).
  • step ST6 ′′ it is determined whether or not the OCV of the SOFC 10 is equal to or higher than the first threshold voltage. If the OCV of the SOFC 10 is equal to or higher than the first threshold voltage (step ST6 ′′: Yes), the process proceeds to step ST7 ′′. If the OCV of the SOFC 10 is less than the first threshold voltage (step ST6 ′′: No), it waits for the OCV of the SOFC 10 to be equal to or higher than the first threshold voltage.
  • the “first threshold voltage” can be set to 400 V, for example.
  • step ST7 ′′ a part of the direct current generated by the SOFC 10 is extracted by at least one of the DC / AC converter 20 and the discharge resistor 31 (small load extraction). As a result, the OCV of the SOFC 10 is reduced from the first threshold voltage. It begins to fall gradually (see FIG. 10).
  • step ST8 ′′ it is determined whether or not the OCV of the SOFC 10 is equal to or lower than a second threshold voltage lower than the first threshold voltage. If the OCV of the SOFC 10 is equal to or lower than the second threshold voltage (step ST8 ′′: Yes), the process proceeds to step ST9 ". If the OCV of the SOFC 10 is larger than the second threshold voltage (step ST8": No), the process waits for the OCV of the SOFC 10 to be equal to or lower than the second threshold voltage.
  • the “second threshold voltage” can be set to 300 V, for example.
  • step ST9 ′′ the open / close control unit (not shown) opens the first switch SW1 and the second switch SW2 and closes the third switch SW3, so that the first cell 10-1 and the second cell are closed.
  • 10-2 are electrically connected in series (see FIG. 9B), so that the OCV of the SOFC 10 rises to enable low-loss operation with high voltage and low current (see FIG. 10).
  • step ST10 the power generated by the SOFC 10 is started to be input to the power generation load (for example, various auxiliary machines).
  • the power generation load for example, various auxiliary machines.
  • step ST11 ′′ it is determined whether or not the power generated by the SOFC 10 is a steady operation that has converged to the rated maximum power. If it is a steady operation (step ST11 ′′: Yes), the process is terminated and the steady operation must be performed. If it is (step ST11 ′′: No), it waits for a steady operation.
  • FIG. 12 is a conceptual diagram showing the configuration of the cell stack of the SOFC 10 of the fourth embodiment and the series-parallel switching mechanism of each cell.
  • the termination capacitor EC is provided so as to straddle the first transmission line DL1 to the third transmission line DL3.
  • the termination capacitor EC can suppress a surge voltage when the first switch SW1 to the third switch SW3 are opened and closed for series-parallel switching.
  • only the shunt circuit 30 is provided in the direct current transmission line DL from the SOFC 10 while maintaining the high power generation efficiency of the SOFC 10, and / or Or, it is possible to achieve stable operation by suppressing the OCV at the start-up of the SOFC 10 with a simple configuration and low cost by simply providing a serial / parallel switching mechanism for the first cell 10-1 and the second cell 10-2 of the SOFC 10 can do.
  • the relay switch 32 or the Zener diode 35 is used as the “switching unit” for switching the discharge resistor 31 between the connection state and the non-connection state to the transmission line DL has been described as an example.
  • the configuration of the “switching unit” is not limited to these.
  • a magnetic contactor, a self-extinguishing semiconductor element, or the like may be used, or a plurality of these may be used in combination (for example, a relay switch is arranged on the upstream side and the downstream side is used).
  • a zener diode may be arranged). That is, as long as it has a function of switching the discharge resistor 31 between the connection state and the non-connection state to the transmission line DL, the configuration of the “switching unit” has a degree of freedom.
  • the case where the SOFC 10 has a cell stack in which the first cell 10-1 and the second cell 10-2 are stacked has been described as an example.
  • the cells constituting the cell stack of the SOFC 10 are described.
  • the number of stacks is not limited to this, and may be a cell stack in which three or more cells are stacked.
  • the combustor 50 is provided between the SOFC 10 and the exhaust heat recovery circulation system 60.
  • the combustor 50 is omitted, and the exhaust gas discharged from the SOFC 10 is directly used. You may lead to the exhaust heat recovery circulation system 60.
  • the fuel cell system and the solid oxide fuel cell of the present invention are suitable for application to fuel cell systems in all industrial fields such as home use, business use and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided are a fuel cell system and a solid oxide fuel cell which maintain high power generation efficiency while achieving stable operation by minimizing open circuit voltage at startup using a simple configuration while keeping costs low. To this end, a shunt circuit (30) is capable of being connected to a direct current transmission line from a solid oxide fuel cell (10) to a DC/AC converter (20). The shunt circuit (30) has a discharge resistance (31) which takes some of the direct current generated by the solid oxide fuel cell (10), and switching units (32, 33, 35) for switching the discharge resistance (31) between a state of connection to the transmission line and a state of disconnection therefrom.

Description

燃料電池システム及び固体酸化物形燃料電池Fuel cell system and solid oxide fuel cell
 本発明は、燃料電池システム及び固体酸化物形燃料電池に関する。 The present invention relates to a fuel cell system and a solid oxide fuel cell.
 近年、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)の開発が進められている。SOFCは、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。SOFCは、現在知られている燃料電池の形態の中では、発電の動作温度が最も高く(例えば900℃~1000℃)、発電効率が最も高いという特性を持つ。 In recent years, solid oxide fuel cells (SOFCs) have been developed. SOFC is a power generation mechanism in which oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, where the oxide ions react with hydrogen or carbon monoxide to generate electrical energy. . The SOFC has the characteristics that the power generation operating temperature is the highest (for example, 900 ° C. to 1000 ° C.) and the power generation efficiency is the highest among the currently known fuel cell configurations.
 一般的に、燃料電池が発電した直流電流を交流電流に変換して系統電源との連系運転を行う場合、直流部を高電圧低電流にすることで、変換効率が上昇する。これは、燃料電池のセルスタックの積層数を増やして各セルを直列に接続することで実現される。直流部を高電圧低電流にできることがSOFCの発電効率が高い理由である。 Generally, when direct current generated by a fuel cell is converted to alternating current and connected to a system power supply, the conversion efficiency is increased by setting the direct current portion to a high voltage and low current. This is realized by increasing the number of stacked fuel cell stacks and connecting the cells in series. The reason why the power generation efficiency of the SOFC is high is that the direct current portion can be made high voltage and low current.
 特許文献1には、燃料電池と負荷の接続と非接続を切り換えるFCリレーを開閉制御する燃料電池システムが開示されている。この燃料電池システムでは、燃料電池の電圧を始動電圧から開回路電圧よりも低い運転電圧まで上昇させて燃料電池を始動し、燃料電池の電圧が、運転電圧よりも低く燃料電池の始動電圧よりも高い第1の電圧と、第1の電圧よりも低く燃料電池の始動電圧よりも高い第2の電圧との間で、FCリレーの閉指令を出力する。 Patent Document 1 discloses a fuel cell system that controls opening and closing of an FC relay that switches connection and disconnection between a fuel cell and a load. In this fuel cell system, the fuel cell voltage is increased from the starting voltage to an operating voltage lower than the open circuit voltage to start the fuel cell, and the fuel cell voltage is lower than the operating voltage and lower than the starting voltage of the fuel cell. An FC relay close command is output between the high first voltage and the second voltage lower than the first voltage and higher than the starting voltage of the fuel cell.
 特許文献2には、DC/DCコンバータ(以下、コンバータ)と、DC/ACインバータ(以下、インバータ)と、整流回路とを有する燃料電池システムが開示されている。コンバータは、燃料電池を運転させる補機に、燃料電池からの直流電圧を所定の直流電流に変換して出力する。インバータは、コンバータから出力される直流電圧を所定の交流電圧に変換して系統電源に接続されている電源ラインに出力するとともに、電源ラインからの交流電圧を所定の直流電圧に変換して補機に出力する。整流回路は、電源ラインと補機の間にインバータと並列に設けられ、電源ラインからの交流電圧を整流することで直流電圧に変換して補機に供給する。そして、燃料電池の起動時に、コンバータと整流回路またはインバータをバランスさせて、燃料電池の電圧を調整する。 Patent Document 2 discloses a fuel cell system having a DC / DC converter (hereinafter referred to as a converter), a DC / AC inverter (hereinafter referred to as an inverter), and a rectifier circuit. The converter converts the DC voltage from the fuel cell into a predetermined DC current and outputs it to an auxiliary machine that operates the fuel cell. The inverter converts the DC voltage output from the converter into a predetermined AC voltage and outputs it to a power supply line connected to the system power supply, and converts the AC voltage from the power supply line into a predetermined DC voltage and converts it into an auxiliary machine. Output to. The rectifier circuit is provided in parallel with the inverter between the power supply line and the auxiliary machine, converts the AC voltage from the power supply line into a DC voltage, and supplies it to the auxiliary machine. And at the time of starting of a fuel cell, a converter and a rectifier circuit or an inverter are balanced and the voltage of a fuel cell is adjusted.
特開2010-238538号公報JP 2010-238538 A 特開2009-48972号公報JP 2009-48972 A
 しかしながら、特許文献1-2を含む従来の燃料電池システムは、燃料電池の起動時(無負荷時)の開回路電圧(OCV:Open Circuit Voltage)が高くなりすぎて、燃料電池のセルスタックひいては補機の劣化及び損傷を誘発する結果、燃料電池システムの安定的な運転が困難になるという問題がある。また、燃料電池の電圧制御に必要な構成要素が大掛かりで複雑であるため高コスト化を招いてしまう。 However, in the conventional fuel cell system including Patent Document 1-2, the open circuit voltage (OCV) at the start-up (no load) of the fuel cell becomes too high, and the cell stack of the fuel cell and thus the compensation. As a result of inducing machine deterioration and damage, there is a problem that stable operation of the fuel cell system becomes difficult. In addition, since the components necessary for voltage control of the fuel cell are large and complicated, the cost increases.
 本発明はかかる点に鑑みてなされたものであり、高い発電効率を維持しつつ、簡単な構成かつ低コストで起動時の開回路電圧を抑制して安定的な運転を実現することができる燃料電池システム及び固体酸化物形燃料電池を提供することを目的の1つとする。 The present invention has been made in view of the above points, and a fuel capable of realizing stable operation by suppressing open circuit voltage at start-up with a simple configuration and low cost while maintaining high power generation efficiency. An object is to provide a battery system and a solid oxide fuel cell.
 本実施形態の燃料電池システムは、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池が発電した直流電流を交流電流に変換するDC/AC変換部と、前記固体酸化物形燃料電池から前記DC/AC変換部への直流電流の伝送路に接続可能な分流回路と、を有し、前記分流回路は、前記固体酸化物形燃料電池が発電した直流電流の一部を引き抜く放電抵抗と、前記放電抵抗を前記伝送路への接続状態と非接続状態に切り換える切換部と、を有することを特徴としている。 In one aspect, the fuel cell system of the present embodiment is a solid oxide fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidant gas, and a direct current generated by the solid oxide fuel cell is an alternating current. A DC / AC converter that converts the current into a DC / AC converter, and a shunt circuit that can be connected to a direct current transmission path from the solid oxide fuel cell to the DC / AC converter. It has a discharge resistor that extracts a part of the direct current generated by the oxide fuel cell, and a switching unit that switches the discharge resistor between a connection state and a non-connection state to the transmission line.
 本実施形態の燃料電池システムは、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池を有する燃料電池システムであって、前記固体酸化物形燃料電池は、複数のセルを積層して構成されたセルスタックと、前記セルスタックの各セルを電気的に直列に接続するか並列に接続するかを切り換える直並列切換機構と、を有することを特徴としている。 In one aspect, the fuel cell system of the present embodiment is a fuel cell system having a solid oxide fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas, the solid oxide fuel cell being And a cell stack configured by stacking a plurality of cells, and a serial-parallel switching mechanism for switching each cell of the cell stack to be electrically connected in series or connected in parallel. .
 本実施形態の燃料電池システムは、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電し、且つ、複数のセルを積層して構成されたセルスタックを有する固体酸化物形燃料電池と、前記固体酸化物形燃料電池が発電した直流電流を交流電流に変換するDC/AC変換部と、前記固体酸化物形燃料電池から前記DC/AC変換部への直流電流の伝送路に接続可能な分流回路と、を有し、前記分流回路は、前記固体酸化物形燃料電池が発電した直流電流の一部を引き抜く放電抵抗と、前記放電抵抗を前記伝送路への接続状態と非接続状態に切り換える切換部と、を有し、前記切換部は、前記固体酸化物形燃料電池の起動時までに又は前記固体酸化物形燃料電池の起動時の開回路電圧が所定の閾値電圧に到達したときに、前記放電抵抗を前記伝送路への非接続状態から接続状態に切り換え、前記切換部は、前記DC/AC変換部に流れ込む直流電流が所定の閾値電流に到達したときに、前記放電抵抗を前記伝送路への接続状態から非接続状態に切り換え、前記固体酸化物形燃料電池は、前記セルスタックの各セルを電気的に直列に接続するか並列に接続するかを切り換える直並列切換機構を有し、前記固体酸化物形燃料電池の起動時には、前記直並列切換機構が、前記セルスタックの各セルを電気的に並列に接続し、前記固体酸化物形燃料電池の開回路電圧が第1の閾値電圧に到達したときに、前記固体酸化物形燃料電池が発電した直流電流の一部を前記DC/AC変換部と前記放電抵抗の少なくとも一方により引き抜き、前記固体酸化物形燃料電池の開回路電圧が前記第1の閾値電圧より低い第2の閾値電圧まで下がったときに、前記直並列切換機構が、前記セルスタックの各セルを電気的に直列に接続する、ことを特徴としている。 In one aspect, the fuel cell system of the present embodiment generates a power by an electrochemical reaction between a fuel gas and an oxidant gas, and has a cell stack formed by stacking a plurality of cells. A DC / AC converter that converts a direct current generated by the solid oxide fuel cell into an alternating current, and a direct current transmission path from the solid oxide fuel cell to the DC / AC converter. A possible shunt circuit, wherein the shunt circuit is a discharge resistor that extracts a part of the direct current generated by the solid oxide fuel cell, and the discharge resistor is disconnected from the connection state to the transmission line. A switching unit that switches to a state, and the switching unit has an open circuit voltage that reaches a predetermined threshold voltage before the solid oxide fuel cell is started or when the solid oxide fuel cell is started. When the discharge When the direct current flowing into the DC / AC converter reaches a predetermined threshold current, the switching unit switches the discharge resistance to the transmission line. The solid oxide fuel cell has a series-parallel switching mechanism that switches whether the cells of the cell stack are electrically connected in series or connected in parallel. At the time of starting the solid oxide fuel cell, the series-parallel switching mechanism electrically connects the cells of the cell stack in parallel, and the open circuit voltage of the solid oxide fuel cell becomes the first threshold voltage. A part of the direct current generated by the solid oxide fuel cell is extracted by at least one of the DC / AC converter and the discharge resistor, and the open circuit voltage of the solid oxide fuel cell is When dropped to less than one threshold voltage second threshold voltage, said series-parallel switching mechanism, electrically connected in series to each cell of the cell stack is characterized in that.
 本実施形態の固体酸化物形燃料電池は、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池であって、複数のセルを積層して構成されたセルスタックと、前記セルスタックの各セルを電気的に直列に接続するか並列に接続するかを切り換える直並列切換機構と、を有することを特徴としている。 In one aspect, the solid oxide fuel cell of the present embodiment is a solid oxide fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas, and is configured by stacking a plurality of cells. It has a cell stack, and a serial-parallel switching mechanism for switching whether cells of the cell stack are electrically connected in series or connected in parallel.
 本発明によれば、高い発電効率を維持しつつ、簡単な構成かつ低コストで起動時の開回路電圧を抑制して安定的な運転を実現することができる燃料電池システム及び固体酸化物形燃料電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fuel cell system and solid oxide fuel which can implement | achieve stable operation | movement by suppressing the open circuit voltage at the time of starting with simple structure and low cost, maintaining high electric power generation efficiency. A battery can be provided.
第1実施形態の燃料電池システムを示すブロック図である。It is a block diagram which shows the fuel cell system of 1st Embodiment. 図1Aの燃料電池システムに余剰電力伝送路を追加した場合を示すブロック図である。It is a block diagram which shows the case where the surplus electric power transmission line is added to the fuel cell system of FIG. 1A. 第1実施形態の分流回路の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the shunt circuit of 1st Embodiment. 第1実施形態の燃料電池システムの起動時から定格運転開始までのSOFCに掛かる電圧、放電抵抗に流れる電流、発電負荷に流れる電流の関係を示すタイミングチャートである。3 is a timing chart showing the relationship between the voltage applied to the SOFC from the start of the fuel cell system of the first embodiment to the start of rated operation, the current flowing through the discharge resistor, and the current flowing through the power generation load. 第1実施形態の燃料電池システムの起動時から定格運転開始までの動作を示すフローチャートである。It is a flowchart which shows the operation | movement from the time of starting of the fuel cell system of 1st Embodiment to the start of rated operation. 第2実施形態の分流回路の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the shunt circuit of 2nd Embodiment. 第2実施形態の燃料電池システムの起動時から定格運転開始までのSOFCに掛かる電圧、放電抵抗に流れる電流、発電負荷に流れる電流の関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the voltage concerning SOFC from the time of starting of the fuel cell system of 2nd Embodiment to the start of rated operation, the electric current which flows into a discharge resistance, and the electric current which flows into an electric power generation load. 第2実施形態の燃料電池システムの起動時から定格運転開始までの動作を示すフローチャートである。It is a flowchart which shows the operation | movement from the time of starting of the fuel cell system of 2nd Embodiment to the start of rated operation. 第3実施形態のSOFCのセルスタック及び各セルの直並列切換機構の構成を示す概念図である。It is a conceptual diagram which shows the structure of the cell stack of SOFC of 3rd Embodiment, and the serial-parallel switching mechanism of each cell. SOFCのセルスタックの各セルを並列に接続した状態を示す図8に対応する概念図である。It is a conceptual diagram corresponding to FIG. 8 which shows the state which connected each cell of the cell stack of SOFC in parallel. SOFCのセルスタックの各セルを直列に接続した状態を示す図8に対応する概念図である。It is a conceptual diagram corresponding to FIG. 8 which shows the state which connected each cell of the cell stack of SOFC in series. 第3実施形態の燃料電池システムの起動時から定格運転開始までのSOFCに掛かる電圧、放電抵抗に流れる電流、発電負荷に流れる電流の関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the voltage concerning SOFC from the time of starting of the fuel cell system of 3rd Embodiment to the start of rated operation, the electric current which flows into discharge resistance, and the electric current which flows into an electric power generation load. 第3実施形態の燃料電池システムの起動時から定格運転開始までの動作を示すフローチャートである。It is a flowchart which shows operation | movement from the time of starting of the fuel cell system of 3rd Embodiment to the start of rated operation. 第4実施形態のSOFCのセルスタック及び各セルの直並列切換機構の構成を示す概念図である。It is a conceptual diagram which shows the structure of the cell stack of SOFC of 4th Embodiment, and the serial-parallel switching mechanism of each cell.
≪第1実施形態≫
 図1~図4を参照して、第1実施形態の燃料電池システム1について詳細に説明する。図中において、実線は、電気(電流、電力)の流れを示しており、破線(SOFC10の内部)と一点鎖線(SOFC10の外部)は、例えばガスや水等の流体の流れを示している。
<< First Embodiment >>
The fuel cell system 1 of the first embodiment will be described in detail with reference to FIGS. In the figure, a solid line indicates the flow of electricity (current, power), and a broken line (inside the SOFC 10) and a one-dot chain line (outside of the SOFC 10) indicate a flow of a fluid such as gas or water.
 図1Aに示すように、燃料電池システム1は、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)10と、DC/AC変換部20と、分流回路30と、系統電力網40と、燃焼器50と、排熱回収循環系60とを有している。 As shown in FIG. 1A, a fuel cell system 1 includes a solid oxide fuel cell (SOFC) 10, a DC / AC converter 20, a shunt circuit 30, a system power network 40, and a combustor. 50 and an exhaust heat recovery / circulation system 60.
 SOFC10は、複数のセルを積層または集合体として構成したセルスタックを有している。各セルは空気極と燃料極で電解質を挟んだ基本構成を有しており、各セルの間にはセパレータが介在している。セルスタックの各セルは電気的に直列に接続されている。SOFC10は、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。なお、詳細は第3、第4実施形態で後述するが、SOFC10のセルスタックの各セルを電気的に直列に接続するか並列に接続するかは切換可能である。 The SOFC 10 has a cell stack in which a plurality of cells are stacked or assembled. Each cell has a basic configuration in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a separator is interposed between the cells. Each cell of the cell stack is electrically connected in series. The SOFC 10 is a power generation mechanism that generates electric energy when oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, and the oxide ions react with hydrogen or carbon monoxide at the fuel electrode. . Although details will be described later in the third and fourth embodiments, it is possible to switch whether the cells of the cell stack of the SOFC 10 are electrically connected in series or in parallel.
 SOFC10は、燃料ガス流路(アノードガス流路)12と、酸化剤ガス流路(カソードガス流路)14とを有している。燃料ガス流路12には燃料ガス供給器(図示略)から燃料ガスが供給され、酸化剤ガス流路14には酸化剤ガス供給器(図示略)から酸化剤ガスが供給される。燃料ガス流路12に供給された燃料ガスと酸化剤ガス流路14に供給された酸化剤ガスとが電気化学反応を起こすことにより、直流電流が発生する。電気化学反応を起こさなかった燃料ガスと酸化剤ガスは、排出ガスとして、SOFC10から排出される。SOFC10から排出された燃料ガスの一部は、リサイクルガス流路16を介して、燃料ガス流路12に還流される。 The SOFC 10 has a fuel gas channel (anode gas channel) 12 and an oxidant gas channel (cathode gas channel) 14. Fuel gas is supplied to the fuel gas channel 12 from a fuel gas supplier (not shown), and oxidant gas is supplied to the oxidant gas channel 14 from an oxidant gas supplier (not shown). A direct current is generated by causing an electrochemical reaction between the fuel gas supplied to the fuel gas passage 12 and the oxidant gas supplied to the oxidant gas passage 14. The fuel gas and oxidant gas that have not caused an electrochemical reaction are discharged from the SOFC 10 as exhaust gas. Part of the fuel gas discharged from the SOFC 10 is recirculated to the fuel gas channel 12 via the recycle gas channel 16.
 DC/AC変換部20は、SOFC10が発生(発電)した直流電流を交流電流に変換する。 The DC / AC converter 20 converts the direct current generated (generated) by the SOFC 10 into an alternating current.
 分流回路30は、SOFC10からDC/AC変換部20への直流電流の伝送路DLに接続可能に(伝送路DLに跨って)設けられている。分流回路30は、伝送路DLへの接続状態では、SOFC10が発生した直流電流の一部を伝送路DLから引き抜く(分流して消費することで伝送路DLから逃がす)。このため、伝送路DLのうち、分流回路30からDC/AC変換部20に流れる直流電流は、SOFC10から分流回路30に流れる直流電流より小さくなる。一方、分流回路30は、伝送路DLへの非接続状態では、SOFC10が発生した直流電流をそのまま通過させる。このため、伝送路DLのうち、分流回路30からDC/AC変換部20に流れる直流電流は、SOFC10から分流回路30に流れる直流電流と同じ大きさとなる。分流回路30の構成及び動作については後に詳細に説明する。 The shunt circuit 30 is provided so as to be connectable to the direct current transmission line DL from the SOFC 10 to the DC / AC converter 20 (straddling the transmission line DL). In the connected state to the transmission line DL, the shunt circuit 30 extracts a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by being divided and consumed). For this reason, in the transmission line DL, the direct current flowing from the shunt circuit 30 to the DC / AC converter 20 is smaller than the direct current flowing from the SOFC 10 to the shunt circuit 30. On the other hand, the shunt circuit 30 passes the direct current generated by the SOFC 10 as it is in a non-connected state to the transmission line DL. For this reason, in the transmission line DL, the direct current flowing from the shunt circuit 30 to the DC / AC converter 20 has the same magnitude as the direct current flowing from the SOFC 10 to the shunt circuit 30. The configuration and operation of the shunt circuit 30 will be described in detail later.
 SOFC10の発電電力はDC/AC変換部20(分流回路30の伝送路DLへの接続状態では分流回路30及びDC/AC変換部20)を通り、系統連系リレー25を介して、系統電力網40に接続されている。SOFC10の発電電力は、系統連系リレー25がオン状態のとき、系統電力網40と連系状態となり、系統連系リレー25がオフ状態のとき、解列状態となり、SOFC10は自立運転を行う。 The generated power of the SOFC 10 passes through the DC / AC converter 20 (the shunt circuit 30 and the DC / AC converter 20 in the connection state of the shunt circuit 30 to the transmission line DL), and passes through the grid interconnection relay 25 to the grid power network 40. It is connected to the. The generated power of the SOFC 10 is connected to the grid power network 40 when the grid connection relay 25 is in an on state, and is disconnected from the grid connection relay 25 when the grid connection relay 25 is in an off state.
 連系運転時には、SOFC10の発電電力が系統に給電され、自立運転時には、定格最大電力よりも小さい負荷で発電電力が装置内で消費される。 During the interconnected operation, the generated power of the SOFC 10 is supplied to the system, and during the independent operation, the generated power is consumed in the apparatus with a load smaller than the rated maximum power.
 図1Bに示すように、DC/AC変換部20と系統連系リレー25の間の電力伝送路からは、系統電力網40(系統連系リレー25)がSOFC10との連系状態から解列状態に切り換わったときのSOFC10で発電した電力の一部である余剰電力を伝送する余剰電力伝送路Lを設けてもよい。この余剰電力伝送路Lは、排熱回収循環系60の排熱回収循環ライン(図示略)に設けられたヒータ(図示略)に接続されていてもよい。 As shown in FIG. 1B, from the power transmission path between the DC / AC converter 20 and the grid connection relay 25, the grid power network 40 (system grid relay 25) is switched from the grid state to the SOFC 10 to the disconnected state. You may provide the surplus electric power transmission line L which transmits the surplus electric power which is a part of electric power generated with SOFC10 when it switches. The surplus power transmission path L may be connected to a heater (not shown) provided in an exhaust heat recovery / circulation line (not shown) of the exhaust heat recovery / circulation system 60.
 余剰電力伝送路Lには、リレースイッチLSが設けられている。リレースイッチLSがオン状態のとき、余剰電力伝送路Lを介して排熱回収循環系60に余剰電力が伝送可能となり、リレースイッチLSがオフ状態のとき、余剰電力伝送路Lが遮断されて排熱回収循環系60に余剰電力が伝送不能となる。 In the surplus power transmission line L, a relay switch LS is provided. When the relay switch LS is in the on state, surplus power can be transmitted to the exhaust heat recovery circulation system 60 via the surplus power transmission line L. When the relay switch LS is in the off state, the surplus power transmission line L is cut off and discharged. Surplus power cannot be transmitted to the heat recovery circulation system 60.
 系統連系リレー25とリレースイッチLSは、例えば、一方がオン状態のときに他方がオフ状態となるように制御される。勿論、系統連系リレー25とリレースイッチLSの双方がオン状態またはオフ状態となる時間帯があるように制御されてもよい。図1Bでは、系統連系リレー25とリレースイッチLSの双方がオフ状態の場合を描いている。 The grid interconnection relay 25 and the relay switch LS are controlled so that, for example, when one is on, the other is off. Of course, it may be controlled so that there is a time zone in which both the grid interconnection relay 25 and the relay switch LS are in the on state or the off state. In FIG. 1B, the case where both the grid connection relay 25 and the relay switch LS are an OFF state is drawn.
 図示は省略しているが、DC/AC変換部20と系統連系リレー25の間の電力伝送路からは、上述した余剰電力伝送路Lとは別の電力伝送路を分岐させてもよい。この別の電力伝送路は、DC/AC変換部20や、図示していないポンプ、ブロワ、ラジエータなどの燃料電池システム1に搭載された機器に接続し、電力伝送路を介して、系統電力網40との連系/解列状態に係らず、SOFC10または系統電力網30のいずれかから電力を供給されて駆動できるようにしてもよい。 Although illustration is omitted, a power transmission path different from the surplus power transmission path L described above may be branched from the power transmission path between the DC / AC converter 20 and the grid interconnection relay 25. This other power transmission path is connected to the DC / AC conversion unit 20 and devices (not shown) mounted on the fuel cell system 1 such as a pump, blower, and radiator, and the grid power network 40 is connected via the power transmission path. Regardless of the connection / disconnection state with the power, the power may be supplied from either the SOFC 10 or the grid power network 30 to be driven.
 燃焼器50は、SOFC10から排出された排出ガスを燃焼させることで、当該排出ガス中に残留している燃料成分を除去する。 The combustor 50 removes the fuel component remaining in the exhaust gas by burning the exhaust gas discharged from the SOFC 10.
 排熱回収循環系60は、燃焼器50からの燃焼ガス(排出ガス)の熱を回収する。排熱回収循環系60は、排熱回収のための熱媒体としての水(温水)が循環される排熱回収循環ライン(図示略)を有している。この排熱回収循環ラインには、排熱回収熱交換器、温水熱交換器、ヒータ、ラジエータ、ポンプ等の各種の反応器(いずれも図示略)が設けられている。排熱回収循環系60による排熱回収後のガスは、燃料電池システム1の外部に排気される。 The exhaust heat recovery circulation system 60 recovers the heat of the combustion gas (exhaust gas) from the combustor 50. The exhaust heat recovery / circulation system 60 has an exhaust heat recovery / circulation line (not shown) through which water (hot water) as a heat medium for exhaust heat recovery is circulated. The exhaust heat recovery circulation line is provided with various reactors (all not shown) such as an exhaust heat recovery heat exchanger, a hot water heat exchanger, a heater, a radiator, and a pump. The gas after the exhaust heat recovery by the exhaust heat recovery circulation system 60 is exhausted to the outside of the fuel cell system 1.
 図2は、分流回路30の内部構成を示すブロック図である。図2は、分流回路30とSOFC10、DC/AC変換部20及び系統電力網40との位置関係が図1A、図1Bと異なっているが、これは作図の便宜上の理由によるものである(図1A、図1Bと図2は等価である)。 FIG. 2 is a block diagram showing the internal configuration of the shunt circuit 30. 2 is different from FIGS. 1A and 1B in the positional relationship between the shunt circuit 30, the SOFC 10, the DC / AC conversion unit 20, and the system power network 40. This is for convenience of drawing (FIG. 1A). 1B and FIG. 2 are equivalent).
 分流回路30は、放電抵抗31と、リレースイッチ(切換部)32と、開閉制御部(切換部)33とを有している。放電抵抗31とリレースイッチ32は、アース34に接地されている。 The shunt circuit 30 includes a discharge resistor 31, a relay switch (switching unit) 32, and an open / close control unit (switching unit) 33. The discharge resistor 31 and the relay switch 32 are grounded to the earth 34.
 放電抵抗31は、SOFC10が発生した直流電流の一部を伝送路DLから引き抜く(分流して消費することで伝送路DLから逃がす)。放電抵抗31の抵抗値は、SOFC10の起動時(無負荷時)の開回路電圧(OCV:Open Circuit Voltage)が、SOFC10のIV特性より算出される高電圧(例えば直流で750V~950V程度)となることを回避できるような負荷電流値に基づいて算出及び設定される。 The discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by being divided and consumed). The resistance value of the discharge resistor 31 is a high voltage (for example, about 750 V to 950 V DC) calculated from the IV characteristics of the SOFC 10 when the open circuit voltage (OCV: Open Circuit Voltage) at the start-up (no load) of the SOFC 10 It is calculated and set based on the load current value that can avoid this.
 リレースイッチ32は、開閉制御部33による開閉制御に従って、放電抵抗31(分流回路30)を伝送路DLへの接続状態と非接続状態に切り換える。すなわち、リレースイッチ32が閉状態のときに放電抵抗31と伝送路DLが接続状態となり、リレースイッチ32が開状態のときに放電抵抗31と伝送路DLが非接続状態となる(図2は後者の場合を描いている)。 The relay switch 32 switches the discharge resistor 31 (the shunt circuit 30) between the connected state and the disconnected state to the transmission line DL according to the opening / closing control by the opening / closing control unit 33. That is, when the relay switch 32 is closed, the discharge resistor 31 and the transmission line DL are connected, and when the relay switch 32 is open, the discharge resistor 31 and the transmission line DL are disconnected (FIG. 2 shows the latter). Draws the case).
 開閉制御部33は、リレースイッチ32の開閉制御を実行する。 The open / close control unit 33 performs open / close control of the relay switch 32.
 開閉制御部33は、SOFC10の起動時までに(遅くてもSOFC10に燃料ガスと酸化剤ガスを供給開始する前に)、リレースイッチ32を閉状態として、放電抵抗31を伝送路DLへの接続状態とする。 The opening / closing control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL by the time the SOFC 10 starts up (at the latest, before starting to supply fuel gas and oxidant gas to the SOFC 10). State.
 あるいは、開閉制御部33は、SOFC10の起動時のOCVが所定の閾値電圧に到達したときに、リレースイッチ32を開状態から閉状態に切り換えて、放電抵抗31を伝送路DLへの非接続状態から接続状態に切り換えてもよい。「所定の閾値電圧」は、SOFC10のIV特性より算出される高電圧よりも低い値(例えば600V)に設定される。 Alternatively, the open / close control unit 33 switches the relay switch 32 from the open state to the closed state when the OCV at the time of activation of the SOFC 10 reaches a predetermined threshold voltage, and the discharge resistor 31 is not connected to the transmission line DL. May be switched to a connected state. The “predetermined threshold voltage” is set to a value (for example, 600 V) lower than the high voltage calculated from the IV characteristics of the SOFC 10.
 開閉制御部33は、DC/AC変換部20に流れ込む直流電流が所定の閾値電流に到達したときに、リレースイッチ32を閉状態から開状態に切り換えて、放電抵抗31を伝送路DLへの接続状態から非接続状態に切り換える。ここで、「所定の閾値電流」は、放電抵抗31が伝送路DLから引き抜く直流電流の値に設定することができる。すなわち、開閉制御部33は、DC/AC変換部20に流れ込む直流電流と放電抵抗31が伝送路DLから引き抜く直流電流が同一となったときに、リレースイッチ32を閉状態から開状態に切り換えて、放電抵抗31を伝送路DLへの接続状態から非接続状態に切り換える。「所定の閾値電流」は、例えば、定格運転時の出力電流に対して10%の値に設定することができる。 The open / close control unit 33 switches the relay switch 32 from the closed state to the open state when the direct current flowing into the DC / AC conversion unit 20 reaches a predetermined threshold current, and connects the discharge resistor 31 to the transmission line DL. Switch from state to disconnected state. Here, the “predetermined threshold current” can be set to a value of a direct current drawn by the discharge resistor 31 from the transmission line DL. That is, the open / close control unit 33 switches the relay switch 32 from the closed state to the open state when the direct current flowing into the DC / AC conversion unit 20 and the direct current drawn by the discharge resistor 31 from the transmission line DL become the same. The discharge resistor 31 is switched from the connection state to the transmission line DL to the non-connection state. The “predetermined threshold current” can be set, for example, to a value of 10% with respect to the output current during rated operation.
 図3のタイミングチャート及び図4のフローチャートを参照して、燃料電池システム1の起動時から定格運転開始までの動作について説明する。図3のタイミングチャートにおいて、実線はSOFC10に掛かる電圧を示し、破線は分流回路30を省略した場合にSOFC10に掛かる電圧を示し、一点鎖線は放電抵抗31に流れる電流を示し、二点鎖線は発電負荷(例えば各種の補機)に流れる電流を示している。 Referring to the timing chart of FIG. 3 and the flowchart of FIG. 4, the operation from the start of the fuel cell system 1 to the start of the rated operation will be described. In the timing chart of FIG. 3, the solid line indicates the voltage applied to the SOFC 10, the broken line indicates the voltage applied to the SOFC 10 when the shunt circuit 30 is omitted, the one-dot chain line indicates the current flowing through the discharge resistor 31, and the two-dot chain line indicates power generation. The electric current which flows into load (for example, various auxiliary machines) is shown.
 ステップST1では、SOFC10の起動前(SOFC10に燃料ガスと酸化剤ガスを供給開始する前)の段階で、開閉制御部33がリレースイッチ32を閉状態として、放電抵抗31を伝送路DLへの接続状態とする。 In step ST1, before the start of the SOFC 10 (before supply of fuel gas and oxidant gas to the SOFC 10 is started), the open / close control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL. State.
 ステップST2では、燃料ガスと酸化剤ガスをSOFC10に送り込むための空気ブロア(図示略)がオンされる。ステップST3では、燃料ガスと酸化剤ガスを加熱するための空気加熱機構(図示略)がオンされる。ステップST4では、SOFC10の温度が所定値以上であるか否かが判定される。SOFC10の温度が所定値以上であれば(ステップST4:Yes)、ステップST5に進む。SOFC10の温度が所定値未満であれば(ステップST4:No)、SOFC10の温度が所定値以上になるのを待つ。 In step ST2, an air blower (not shown) for sending fuel gas and oxidant gas into the SOFC 10 is turned on. In step ST3, an air heating mechanism (not shown) for heating the fuel gas and the oxidant gas is turned on. In step ST4, it is determined whether the temperature of the SOFC 10 is equal to or higher than a predetermined value. If the temperature of the SOFC 10 is equal to or higher than the predetermined value (step ST4: Yes), the process proceeds to step ST5. If the temperature of the SOFC 10 is less than the predetermined value (step ST4: No), the process waits for the temperature of the SOFC 10 to be equal to or higher than the predetermined value.
 ステップST5では、SOFC10への燃料ガスと酸化剤ガスの供給が開始され、SOFC10のOCVが立ち上がり始める(図3参照)。この時点で既に、リレースイッチ32が閉状態であり、放電抵抗31(分流回路30)と伝送路DLが接続状態となっている。このため、放電抵抗31を利用して、SOFC10が発電した直流電流の一部が伝送路DLから引き抜かれる(図3の一点鎖線を参照)。その結果、SOFC10のOCVを、分流回路30を省略した場合よりも抑制することができる(図3の実線と破線を参照)。 In step ST5, supply of fuel gas and oxidant gas to the SOFC 10 is started, and the OCV of the SOFC 10 starts to rise (see FIG. 3). At this time, the relay switch 32 is already closed, and the discharge resistor 31 (the shunt circuit 30) and the transmission line DL are already connected. For this reason, a part of the direct current generated by the SOFC 10 is extracted from the transmission line DL using the discharge resistor 31 (see the one-dot chain line in FIG. 3). As a result, the OCV of the SOFC 10 can be suppressed more than when the shunt circuit 30 is omitted (see the solid line and the broken line in FIG. 3).
 ステップST6では、SOFC10のOCVが所定の閾値電圧以上であるか否かが判定される。SOFC10のOCVが所定の閾値電圧以上であれば(ステップST6:Yes)、ステップST7に進む。SOFC10のOCVが所定の閾値電圧未満であれば(ステップST6:No)、SOFC10のOCVが所定の閾値電圧以上になるのを待つ。 In step ST6, it is determined whether or not the OCV of the SOFC 10 is equal to or higher than a predetermined threshold voltage. If the OCV of the SOFC 10 is equal to or higher than the predetermined threshold voltage (step ST6: Yes), the process proceeds to step ST7. If the OCV of the SOFC 10 is less than the predetermined threshold voltage (step ST6: No), it waits for the OCV of the SOFC 10 to be equal to or higher than the predetermined threshold voltage.
 ステップST7では、SOFC10への燃料ガスと酸化剤ガスの供給量が所定値以上であるか否かが判定される。SOFC10への燃料ガスと酸化剤ガスの供給量が所定値以上であれば(ステップST7:Yes)、ステップST8に進む。SOFC10への燃料ガスと酸化剤ガスの供給量が所定値未満であれば(ステップST7:No)、SOFC10への燃料ガスと酸化剤ガスの供給量が所定値以上となるのを待つ。 In step ST7, it is determined whether or not the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are equal to or greater than a predetermined value. If the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are equal to or greater than the predetermined values (step ST7: Yes), the process proceeds to step ST8. If the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 are less than the predetermined values (step ST7: No), it waits for the supply amounts of the fuel gas and the oxidant gas to the SOFC 10 to be equal to or greater than the predetermined values.
 ステップST8では、SOFC10の発電電力が発電負荷(例えば各種の補機)に投入開始される。これにより、発電負荷に流れる電流が上昇を開始する(図3の二点鎖線を参照)。この時点では、リレースイッチ32が閉状態であり、放電抵抗31が、SOFC10が発電した直流電流の一部を伝送路DLから引き抜いている(図3中の一点鎖線と二点鎖線が時間的に重なっている)。 In step ST8, the power generated by the SOFC 10 is started to be input to the power generation load (for example, various auxiliary machines). Thereby, the current flowing through the power generation load starts to rise (see the two-dot chain line in FIG. 3). At this time, the relay switch 32 is in a closed state, and the discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (the one-dot chain line and the two-dot chain line in FIG. overlapping).
 ステップST9では、DC/AC変換部20に流れ込む直流電流が所定の閾値電流以上であるか否か(あるいはDC/AC変換部20に流れ込む直流電流と放電抵抗31が伝送路DLから引き抜く直流電流が同一であるか否か)が判定される。DC/AC変換部20に流れ込む直流電流が所定の閾値電流以上であれば(ステップST9:Yes)、ステップST10に進む。DC/AC変換部20に流れ込む直流電流が所定の閾値電流未満であれば(ステップST9:No)、DC/AC変換部20に流れ込む直流電流が所定の閾値電流以上となるのを待つ。 In step ST9, whether or not the direct current flowing into the DC / AC conversion unit 20 is equal to or greater than a predetermined threshold current (or the direct current flowing into the DC / AC conversion unit 20 and the direct current drawn by the discharge resistor 31 from the transmission line DL are determined. Whether or not they are the same). If the direct current flowing into the DC / AC conversion unit 20 is greater than or equal to a predetermined threshold current (step ST9: Yes), the process proceeds to step ST10. If the direct current flowing into the DC / AC conversion unit 20 is less than the predetermined threshold current (step ST9: No), it waits for the direct current flowing into the DC / AC conversion unit 20 to be equal to or greater than the predetermined threshold current.
 ステップST10では、開閉制御部33が、リレースイッチ32を閉状態から開状態に切り換えて、放電抵抗31(分流回路30)を伝送路DLへの接続状態から非接続状態に切り換える。この時点では、SOFC10の発電電力が発電負荷に投入されているので、SOFC10の電圧が不用意に高くなりすぎることはなく、定格電圧に向かって徐々に収束していく。 In step ST10, the open / close control unit 33 switches the relay switch 32 from the closed state to the open state, and switches the discharge resistor 31 (the shunt circuit 30) from the connection state to the transmission line DL to the non-connection state. At this time, since the generated power of the SOFC 10 is input to the power generation load, the voltage of the SOFC 10 does not become excessively high and gradually converges toward the rated voltage.
 ステップST11では、SOFC10の発電電力が定格最大電力に収束した定常運転であるか否かが判定される。定常運転であれば(ステップST11:Yes)、処理を終了し、定常運転でなければ(ステップST11:No)、定常運転となるのを待つ。 In step ST11, it is determined whether or not the generated power of the SOFC 10 is a steady operation that converges to the rated maximum power. If it is a steady operation (step ST11: Yes), the process is terminated, and if it is not a steady operation (step ST11: No), it waits for a steady operation.
 図3のタイミングチャートに示すように、第1実施形態では、SOFC10の起動前の段階で、開閉制御部33がリレースイッチ32を閉状態として、放電抵抗31を伝送路DLへの接続状態とする。このため、SOFC10の起動と同時に、放電抵抗31が、SOFC10が発電した直流電流の一部を伝送路DLから引き抜き始める(分流して消費することで伝送路DLから逃がし始める)(図3の一点鎖線を参照)。これにより、SOFC10のOCVを、分流回路30を省略した場合よりも抑制することができる(図3の実線と破線を参照)。 As shown in the timing chart of FIG. 3, in the first embodiment, before the SOFC 10 is activated, the opening / closing control unit 33 closes the relay switch 32 and connects the discharge resistor 31 to the transmission line DL. . For this reason, simultaneously with the activation of the SOFC 10, the discharge resistor 31 starts to extract a part of the direct current generated by the SOFC 10 from the transmission line DL (starts to escape from the transmission line DL by being divided and consumed) (one point in FIG. 3) See chain line). Thereby, OCV of SOFC10 can be suppressed rather than the case where the shunt circuit 30 is abbreviate | omitted (refer the continuous line and broken line of FIG. 3).
≪第2実施形態≫
 図5は、第2実施形態の分流回路30’の内部構成を示すブロック図である。第2実施形態の分流回路30’は、第1実施形態の分流回路30の構成において、切換部としてのリレースイッチ32及び開閉制御部33を省略して、その代わりにツェナーダイオード(定電圧ダイオード)35を設けたものである。
<< Second Embodiment >>
FIG. 5 is a block diagram showing an internal configuration of the shunt circuit 30 ′ of the second embodiment. In the shunt circuit 30 ′ of the second embodiment, in the configuration of the shunt circuit 30 of the first embodiment, the relay switch 32 and the open / close control unit 33 as a switching unit are omitted, and a Zener diode (constant voltage diode) is used instead. 35 is provided.
 ツェナーダイオード35は、SOFC10のOCVが所定の閾値電圧未満であるときは、放電抵抗31(分流回路30’)を伝送路DLへの非接続状態とし、SOFC10のOCVが所定の閾値電圧以上であるときは、放電抵抗31(分流回路30’)を伝送路DLへの接続状態とするような素子特性を有している。「所定の閾値電圧」は、ツェナーダイオード35のアバランシェ降伏電圧と同一の値か、それより若干量だけ小さい値に設定されている。 When the OCV of the SOFC 10 is less than a predetermined threshold voltage, the Zener diode 35 brings the discharge resistor 31 (the shunt circuit 30 ′) into a disconnected state to the transmission line DL, and the OCV of the SOFC 10 is equal to or higher than the predetermined threshold voltage. In some cases, it has element characteristics such that the discharge resistor 31 (the shunt circuit 30 ') is connected to the transmission line DL. The “predetermined threshold voltage” is set to the same value as the avalanche breakdown voltage of the Zener diode 35 or a value slightly smaller than that.
 図6のタイミングチャート及び図7のフローチャートを参照して、第2実施形態の燃料電池システム1の起動時から定格運転開始までの動作について説明する。図6のタイミングチャートにおいて、実線はSOFC10に掛かる電圧を示し、破線は分流回路30’を省略した場合にSOFC10に掛かる電圧を示し、一点鎖線は放電抵抗31に流れる電流を示し、二点鎖線は発電負荷(例えば各種の補機)に流れる電流を示している。 Referring to the timing chart of FIG. 6 and the flowchart of FIG. 7, the operation from the start of the fuel cell system 1 of the second embodiment to the start of rated operation will be described. In the timing chart of FIG. 6, the solid line indicates the voltage applied to the SOFC 10, the broken line indicates the voltage applied to the SOFC 10 when the shunt circuit 30 ′ is omitted, the one-dot chain line indicates the current flowing through the discharge resistor 31, and the two-dot chain line indicates The electric current which flows into an electric power generation load (for example, various auxiliary machines) is shown.
 第2実施形態の図7のフローチャートは、第1実施形態の図4のフローチャートと基本的に同一であるが、以下の点において相違している。
(1)SOFC10の起動前の段階でリレースイッチ32を閉状態として放電抵抗31を伝送路DLへの接続状態とするステップST1が省略されている。つまり、SOFC10の起動時には、リレースイッチ32が開状態であり放電抵抗31が伝送路DLへの非接続状態である。
(2)SOFC10の起動時のOCVが所定の閾値電圧以上であるとき(ステップST6:Yes)、ステップST6’において、ツェナーダイオード35の素子特性により、放電抵抗31(分流回路30’)が伝送路DLへの非接続状態から接続状態に切り換えられる。
(3)DC/AC変換部20に流れ込む直流電流が所定の閾値電流以上であるとき(ステップST9:Yes)、ステップST10’において、ツェナーダイオード35の素子特性により、放電抵抗31(分流回路30’)が伝送路DLへの接続状態から非接続状態に切り換えられる。
The flowchart of FIG. 7 of the second embodiment is basically the same as the flowchart of FIG. 4 of the first embodiment, but differs in the following points.
(1) Step ST1 in which the relay switch 32 is closed and the discharge resistor 31 is connected to the transmission line DL in the stage before starting the SOFC 10 is omitted. That is, when the SOFC 10 is activated, the relay switch 32 is in an open state, and the discharge resistor 31 is not connected to the transmission line DL.
(2) When the OCV at the time of starting the SOFC 10 is equal to or higher than a predetermined threshold voltage (step ST6: Yes), in step ST6 ′, the discharge resistor 31 (the shunt circuit 30 ′) is connected to the transmission line due to the element characteristics of the Zener diode 35. It is switched from the non-connected state to the DL state to the connected state.
(3) When the direct current flowing into the DC / AC conversion unit 20 is equal to or greater than a predetermined threshold current (step ST9: Yes), in step ST10 ′, the discharge resistor 31 (the shunt circuit 30 ′) due to the element characteristics of the Zener diode 35. ) Is switched from the connection state to the transmission line DL to the non-connection state.
 図6のタイミングチャートに示すように、第2実施形態では、SOFC10の起動時のOCVが所定の閾値電圧に到達したときに、ツェナーダイオード35がアバランシェ降伏を起こすことで、放電抵抗31(分流回路30’)が伝送路DLへの非接続状態から接続状態に切り換えられる。その結果、放電抵抗31が、SOFC10が発電した直流電流の一部を伝送路DLから引き抜く(分流して消費することで伝送路DLから逃がす)(図6の一点鎖線を参照)。これにより、SOFC10のOCVを、分流回路30’を省略した場合よりも抑制することができる(図6の実線と破線を参照)。 As shown in the timing chart of FIG. 6, in the second embodiment, when the OCV when the SOFC 10 starts up reaches a predetermined threshold voltage, the Zener diode 35 causes an avalanche breakdown, thereby causing the discharge resistor 31 (a shunt circuit). 30 ′) is switched from the non-connected state to the transmission line DL to the connected state. As a result, the discharge resistor 31 draws a part of the direct current generated by the SOFC 10 from the transmission line DL (releases it from the transmission line DL by dividing and consuming it) (see the one-dot chain line in FIG. 6). As a result, the OCV of the SOFC 10 can be suppressed more than when the shunt circuit 30 'is omitted (see the solid line and the broken line in FIG. 6).
≪第3実施形態≫
 図8は、第3実施形態のSOFC10のセルスタック及び各セルの直並列切換機構の構成を示す概念図である。SOFC10は、第1セル10-1と第2セル10-2を積層して構成されたセルスタックを有している。図8では、第1セル10-1と第2セル10-2を電源部として機能的に描いている。第1セル10-1と第2セル10-2がそれぞれ25kWを出力可能な場合、SOFC10が50kWを出力可能である。
«Third embodiment»
FIG. 8 is a conceptual diagram showing the configuration of the cell stack of the SOFC 10 of the third embodiment and the series-parallel switching mechanism of each cell. The SOFC 10 has a cell stack configured by stacking a first cell 10-1 and a second cell 10-2. In FIG. 8, the first cell 10-1 and the second cell 10-2 are functionally depicted as power supply units. When the first cell 10-1 and the second cell 10-2 can each output 25 kW, the SOFC 10 can output 50 kW.
 SOFC10は、直並列切換機構として、直流電流の伝送路DLから二股に分岐した後に再び合流する第1伝送路DL1及び第2伝送路DL2、並びに、第1伝送路DL1及び第2伝送路DL2の中間部同士を接続する第3伝送路DL3を有している。第1伝送路DL1に第1セル10-1が設けられ、第2伝送路DL2に第2セル10-2が設けられている。第3伝送路DL3は、第1伝送路DL1の第1セル10-1より上流側の部分と、第2伝送路DL2の第2セル10-2より下流側の部分とを接続している。第1伝送路DL1の第3伝送路DL3との接続部より上流側には第1スイッチSW1が設けられ、第2伝送路DL2の第3伝送路DL3との接続部より下流側には第2スイッチSW2が設けられている。第3伝送路DL3の中間部には第3スイッチSW3が設けられている。SOFC10には、第1スイッチSW1~第3スイッチSW3の開閉状態を切り換える開閉制御部(図示略)が設けられている。 The SOFC 10 functions as a series-parallel switching mechanism of the first transmission line DL1 and the second transmission line DL2, and the first transmission line DL1 and the second transmission line DL2 that are branched again from the direct current transmission line DL and then merged again. A third transmission line DL3 that connects the intermediate portions is provided. A first cell 10-1 is provided on the first transmission line DL1, and a second cell 10-2 is provided on the second transmission line DL2. The third transmission line DL3 connects the upstream portion of the first transmission line DL1 with respect to the first cell 10-1 and the downstream portion of the second transmission line DL2 with respect to the second cell 10-2. The first switch SW1 is provided on the upstream side of the connection portion of the first transmission line DL1 with the third transmission line DL3, and the second switch is provided on the downstream side of the connection portion of the second transmission line DL2 with the third transmission line DL3. A switch SW2 is provided. A third switch SW3 is provided at an intermediate portion of the third transmission line DL3. The SOFC 10 is provided with an open / close control unit (not shown) for switching the open / close state of the first switch SW1 to the third switch SW3.
 図9Aに示すように、開閉制御部により、第1スイッチSW1と第2スイッチSW2を閉状態とし、第3スイッチSW3を開状態としたとき、第1セル10-1と第2セル10-2が電気的に並列に接続される。 As shown in FIG. 9A, when the first switch SW1 and the second switch SW2 are closed and the third switch SW3 is opened by the opening / closing control unit, the first cell 10-1 and the second cell 10-2 are opened. Are electrically connected in parallel.
 図9Bに示すように、開閉制御部により、第1スイッチSW1と第2スイッチSW2を開状態とし、第3スイッチSW3を閉状態としたとき、第1セル10-1と第2セル10-2が電気的に直列に接続される。 As shown in FIG. 9B, when the first switch SW1 and the second switch SW2 are opened and the third switch SW3 is closed by the opening / closing control unit, the first cell 10-1 and the second cell 10-2 are closed. Are electrically connected in series.
 図10のタイミングチャート及び図11のフローチャートを参照して、第3実施形態の燃料電池システム1の起動時から定格運転開始までの動作について説明する。図10のタイミングチャートにおいて、実線はSOFC10に掛かる電圧を示し、破線は第3実施形態の制御を行わなかった場合にSOFC10に掛かる電圧を示している。第3実施形態の制御は、第1、第2実施形態の制御と合わせて実行することもできるし、第1、第2実施形態の制御と独立して実行することもできる。前者の場合、第1、第2実施形態の分流回路30(放電抵抗31)による伝送路DLからの直流電流の引き抜き制御と、第3実施形態の直並列切換機構による第1セル10-1と第2セル10-2の直並列切換制御とが並行して実行される。 10 will be described with reference to the timing chart of FIG. 10 and the flowchart of FIG. 11 from the startup of the fuel cell system 1 of the third embodiment to the start of rated operation. In the timing chart of FIG. 10, a solid line indicates a voltage applied to the SOFC 10, and a broken line indicates a voltage applied to the SOFC 10 when the control according to the third embodiment is not performed. The control of the third embodiment can be executed together with the control of the first and second embodiments, or can be executed independently of the control of the first and second embodiments. In the former case, the DC current extraction control from the transmission line DL by the shunt circuit 30 (discharge resistor 31) of the first and second embodiments, and the first cell 10-1 by the series-parallel switching mechanism of the third embodiment, The series / parallel switching control of the second cell 10-2 is executed in parallel.
 ステップST1”では、開閉制御部(図示略)が、第1スイッチSW1と第2スイッチSW2を閉状態とし、第3スイッチSW3を開状態とすることで、第1セル10-1と第2セル10-2が電気的に並列に接続される(図9A参照)。 In step ST1 ″, the open / close control unit (not shown) closes the first switch SW1 and the second switch SW2 and opens the third switch SW3, so that the first cell 10-1 and the second cell 10-2 are electrically connected in parallel (see FIG. 9A).
 ステップST2”では、燃料ガスと酸化剤ガスをSOFC10に送り込むための空気ブロア(図示略)がオンされる。ステップST3”では、燃料ガスと酸化剤ガスを加熱するための空気加熱機構(図示略)がオンされる。ステップST4”では、SOFC10の温度が所定値以上であるか否かが判定される。SOFC10の温度が所定値以上であれば(ステップST4”:Yes)、ステップST5”に進む。SOFC10の温度が所定値未満であれば(ステップST4”:No)、SOFC10の温度が所定値以上になるのを待つ。 In step ST2 ″, an air blower (not shown) for sending fuel gas and oxidant gas to the SOFC 10 is turned on. In step ST3 ″, an air heating mechanism (not shown) for heating the fuel gas and oxidant gas. ) Is turned on. In step ST4 ″, it is determined whether or not the temperature of the SOFC 10 is equal to or higher than a predetermined value. If the temperature of the SOFC 10 is equal to or higher than the predetermined value (step ST4 ″: Yes), the process proceeds to step ST5 ″. If it is less than the predetermined value (step ST4 ″: No), it waits for the temperature of the SOFC 10 to become equal to or higher than the predetermined value.
 ステップST5”では、SOFC10への燃料ガスと酸化剤ガスの供給が開始され、SOFC10のOCVが立ち上がり始める(図10参照)。このとき、第1セル10-1と第2セル10-2が電気的に並列に接続されているので、SOFC10のOCVを、本実施形態の制御を行わなかった場合よりも抑制することができる(図10の実線と破線を参照)。 In step ST5 ″, the supply of fuel gas and oxidant gas to the SOFC 10 is started, and the OCV of the SOFC 10 starts to rise (see FIG. 10). At this time, the first cell 10-1 and the second cell 10-2 are electrically connected. Therefore, the OCV of the SOFC 10 can be suppressed more than when the control of the present embodiment is not performed (see the solid line and the broken line in FIG. 10).
 ステップST6”では、SOFC10のOCVが第1の閾値電圧以上であるか否かが判定される。SOFC10のOCVが第1の閾値電圧以上であれば(ステップST6”:Yes)、ステップST7”に進む。SOFC10のOCVが第1の閾値電圧未満であれば(ステップST6”:No)、SOFC10のOCVが第1の閾値電圧以上となるのを待つ。「第1の閾値電圧」は、例えば400Vに設定することができる。 In step ST6 ″, it is determined whether or not the OCV of the SOFC 10 is equal to or higher than the first threshold voltage. If the OCV of the SOFC 10 is equal to or higher than the first threshold voltage (step ST6 ″: Yes), the process proceeds to step ST7 ″. If the OCV of the SOFC 10 is less than the first threshold voltage (step ST6 ″: No), it waits for the OCV of the SOFC 10 to be equal to or higher than the first threshold voltage. The “first threshold voltage” can be set to 400 V, for example.
 ステップST7”では、SOFC10が発電した直流電流の一部を、DC/AC変換部20と放電抵抗31の少なくとも一方により引き抜く(小負荷引き抜き)。これにより、SOFC10のOCVが第1の閾値電圧から徐々に下がり始める(図10参照)。 In step ST7 ″, a part of the direct current generated by the SOFC 10 is extracted by at least one of the DC / AC converter 20 and the discharge resistor 31 (small load extraction). As a result, the OCV of the SOFC 10 is reduced from the first threshold voltage. It begins to fall gradually (see FIG. 10).
 ステップST8”では、SOFC10のOCVが第1の閾値電圧より低い第2の閾値電圧以下であるか否かが判定される。SOFC10のOCVが第2の閾値電圧以下であれば(ステップST8”:Yes)、ステップST9”に進む。SOFC10のOCVが第2の閾値電圧より大きければ(ステップST8”:No)、SOFC10のOCVが第2の閾値電圧以下となるのを待つ。「第2の閾値電圧」は、例えば300Vに設定することができる。 In step ST8 ″, it is determined whether or not the OCV of the SOFC 10 is equal to or lower than a second threshold voltage lower than the first threshold voltage. If the OCV of the SOFC 10 is equal to or lower than the second threshold voltage (step ST8 ″: Yes), the process proceeds to step ST9 ". If the OCV of the SOFC 10 is larger than the second threshold voltage (step ST8": No), the process waits for the OCV of the SOFC 10 to be equal to or lower than the second threshold voltage. The “second threshold voltage” can be set to 300 V, for example.
 ステップST9”では、開閉制御部(図示略)が、第1スイッチSW1と第2スイッチSW2を開状態とし、第3スイッチSW3を閉状態とすることで、第1セル10-1と第2セル10-2が電気的に直列に接続される(図9B参照)。これにより、SOFC10のOCVが、高電圧低電流の低損失運転を可能にするべく上昇していく(図10参照)。 In step ST9 ″, the open / close control unit (not shown) opens the first switch SW1 and the second switch SW2 and closes the third switch SW3, so that the first cell 10-1 and the second cell are closed. 10-2 are electrically connected in series (see FIG. 9B), so that the OCV of the SOFC 10 rises to enable low-loss operation with high voltage and low current (see FIG. 10).
 ステップST10”では、SOFC10の発電電力が発電負荷(例えば各種の補機)に投入開始される。 In step ST10 ", the power generated by the SOFC 10 is started to be input to the power generation load (for example, various auxiliary machines).
 ステップST11”では、SOFC10の発電電力が定格最大電力に収束した定常運転であるか否かが判定される。定常運転であれば(ステップST11”:Yes)、処理を終了し、定常運転でなければ(ステップST11”:No)、定常運転となるのを待つ。 In step ST11 ″, it is determined whether or not the power generated by the SOFC 10 is a steady operation that has converged to the rated maximum power. If it is a steady operation (step ST11 ″: Yes), the process is terminated and the steady operation must be performed. If it is (step ST11 ″: No), it waits for a steady operation.
≪第4実施形態≫
 図12は、第4実施形態のSOFC10のセルスタック及び各セルの直並列切換機構の構成を示す概念図である。この第4実施形態では、第1伝送路DL1~第3伝送路DL3を跨ぐようにして、終端部コンデンサECを設けている。この終端部コンデンサECにより、直並列切換のために第1スイッチSW1~第3スイッチSW3を開閉操作したときのサージ電圧を抑制することができる。
<< Fourth Embodiment >>
FIG. 12 is a conceptual diagram showing the configuration of the cell stack of the SOFC 10 of the fourth embodiment and the series-parallel switching mechanism of each cell. In the fourth embodiment, the termination capacitor EC is provided so as to straddle the first transmission line DL1 to the third transmission line DL3. The termination capacitor EC can suppress a surge voltage when the first switch SW1 to the third switch SW3 are opened and closed for series-parallel switching.
 以上説明した第1実施形態~第4実施形態の燃料電池システム1によれば、SOFC10の高い発電効率を維持しつつ、SOFC10からの直流電流の伝送路DLに分流回路30を設けるだけ、及び/又は、SOFC10の第1セル10-1と第2セル10-2の直並列切替機構を設けるだけの簡単な構成かつ低コストで、SOFC10の起動時のOCVを抑制して安定的な運転を実現することができる。 According to the fuel cell system 1 of the first to fourth embodiments described above, only the shunt circuit 30 is provided in the direct current transmission line DL from the SOFC 10 while maintaining the high power generation efficiency of the SOFC 10, and / or Or, it is possible to achieve stable operation by suppressing the OCV at the start-up of the SOFC 10 with a simple configuration and low cost by simply providing a serial / parallel switching mechanism for the first cell 10-1 and the second cell 10-2 of the SOFC 10 can do.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, function, and the like of the components illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 上記第1、第2実施形態では、放電抵抗31を伝送路DLへの接続状態と非接続状態に切り換える「切換部」として、リレースイッチ32又はツェナーダイオード35を用いた場合を例示して説明したが、「切換部」の構成はこれらに限定されることはない。例えば、「切換部」として、マグネティックコンタクタや自己消弧型半導体素子などを用いてもよいし、これらの複数を組み合わせて使用してもよい(例えば上流側にリレースイッチを配置して下流側にツェナーダイオードを配置してもよい)。すなわち、放電抵抗31を伝送路DLへの接続状態と非接続状態に切り換える機能を有する限りにおいて、「切換部」の構成には自由度がある。 In the first and second embodiments, the case where the relay switch 32 or the Zener diode 35 is used as the “switching unit” for switching the discharge resistor 31 between the connection state and the non-connection state to the transmission line DL has been described as an example. However, the configuration of the “switching unit” is not limited to these. For example, as the “switching unit”, a magnetic contactor, a self-extinguishing semiconductor element, or the like may be used, or a plurality of these may be used in combination (for example, a relay switch is arranged on the upstream side and the downstream side is used). A zener diode may be arranged). That is, as long as it has a function of switching the discharge resistor 31 between the connection state and the non-connection state to the transmission line DL, the configuration of the “switching unit” has a degree of freedom.
 上記第3、第4実施形態では、SOFC10が第1セル10-1と第2セル10-2を積層したセルスタックを有する場合を例示して説明したが、SOFC10のセルスタックを構成するセルの積層数はこれに限定されず、3つ以上のセルを積層したセルスタックとしてもよい。 In the third and fourth embodiments, the case where the SOFC 10 has a cell stack in which the first cell 10-1 and the second cell 10-2 are stacked has been described as an example. However, the cells constituting the cell stack of the SOFC 10 are described. The number of stacks is not limited to this, and may be a cell stack in which three or more cells are stacked.
 上記第1~第4実施形態では、SOFC10と排熱回収循環系60の間に燃焼器50を設けているが、この燃焼器50を省略して、SOFC10から排出された排出ガスを直接的に排熱回収循環系60に導いてもよい。 In the first to fourth embodiments, the combustor 50 is provided between the SOFC 10 and the exhaust heat recovery circulation system 60. However, the combustor 50 is omitted, and the exhaust gas discharged from the SOFC 10 is directly used. You may lead to the exhaust heat recovery circulation system 60.
 本発明の燃料電池システム及び固体酸化物形燃料電池は、家庭用、業務用、その他のあらゆる産業分野の燃料電池システムに適用して好適である。 The fuel cell system and the solid oxide fuel cell of the present invention are suitable for application to fuel cell systems in all industrial fields such as home use, business use and the like.
1 燃料電池システム
10 固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)
10-1 第1セル
10-2 第2セル
12 燃料ガス流路(アノードガス流路)
14 酸化剤ガス流路(カソードガス流路)
16 リサイクルガス流路
20 DC/AC変換部
25 系統連系リレー
30 30’ 分流回路
31 放電抵抗
32 リレースイッチ(切換部)
33 開閉制御部(切換部)
34 アース
35 ツェナーダイオード(定電圧ダイオード)
40 系統電力網
50 燃焼器
60 排熱回収循環系
DL 直流電流の伝送路
DL1 第1伝送路(直並列切換機構)
DL2 第2伝送路(直並列切換機構)
DL3 第3伝送路(直並列切換機構)
SW1 第1スイッチ(直並列切換機構)
SW2 第2スイッチ(直並列切換機構)
SW3 第3スイッチ(直並列切換機構)
EC 終端部コンデンサ
L 余剰電力伝送路
LS リレースイッチ
1 Fuel Cell System 10 Solid Oxide Fuel Cell (SOFC)
10-1 First cell 10-2 Second cell 12 Fuel gas flow path (anode gas flow path)
14 Oxidant gas channel (cathode gas channel)
16 Recycle gas flow path 20 DC / AC conversion part 25 System interconnection relay 30 30 'Shunt circuit 31 Discharge resistance 32 Relay switch (switching part)
33 Open / close control unit (switching unit)
34 Ground 35 Zener diode (constant voltage diode)
40 grid power network 50 combustor 60 exhaust heat recovery circulation system DL direct current transmission path DL1 first transmission path (series-parallel switching mechanism)
DL2 second transmission line (series-parallel switching mechanism)
DL3 3rd transmission line (series parallel switching mechanism)
SW1 1st switch (series-parallel switching mechanism)
SW2 2nd switch (series-parallel switching mechanism)
SW3 3rd switch (series-parallel switching mechanism)
EC termination capacitor L Surplus power transmission line LS Relay switch

Claims (2)

  1.  燃料ガスと酸化剤ガスの電気化学反応により発電し、且つ、複数のセルを積層して構成されたセルスタックを有する固体酸化物形燃料電池と、
     前記固体酸化物形燃料電池が発電した直流電流を交流電流に変換するDC/AC変換部と、
     前記固体酸化物形燃料電池から前記DC/AC変換部への直流電流の伝送路に接続可能な分流回路と、
     を有し、
     前記分流回路は、
     前記固体酸化物形燃料電池が発電した直流電流の一部を引き抜く放電抵抗と、
     前記放電抵抗を前記伝送路への接続状態と非接続状態に切り換える切換部と、
     を有し、
     前記切換部は、前記固体酸化物形燃料電池の起動時までに又は前記固体酸化物形燃料電池の起動時の開回路電圧が所定の閾値電圧に到達したときに、前記放電抵抗を前記伝送路への非接続状態から接続状態に切り換え、
     前記切換部は、前記DC/AC変換部に流れ込む直流電流が所定の閾値電流に到達したときに、前記放電抵抗を前記伝送路への接続状態から非接続状態に切り換え、
     前記固体酸化物形燃料電池は、前記セルスタックの各セルを電気的に直列に接続するか並列に接続するかを切り換える直並列切換機構を有し、
     前記固体酸化物形燃料電池の起動時には、前記直並列切換機構が、前記セルスタックの各セルを電気的に並列に接続し、
     前記固体酸化物形燃料電池の開回路電圧が第1の閾値電圧に到達したときに、前記固体酸化物形燃料電池が発電した直流電流の一部を前記DC/AC変換部と前記放電抵抗の少なくとも一方により引き抜き、
     前記固体酸化物形燃料電池の開回路電圧が前記第1の閾値電圧より低い第2の閾値電圧まで下がったときに、前記直並列切換機構が、前記セルスタックの各セルを電気的に直列に接続する、
     ことを特徴とする燃料電池システム。
    A solid oxide fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas and has a cell stack configured by stacking a plurality of cells;
    A DC / AC converter for converting a direct current generated by the solid oxide fuel cell into an alternating current;
    A shunt circuit connectable to a direct current transmission path from the solid oxide fuel cell to the DC / AC converter;
    Have
    The shunt circuit is
    A discharge resistor for extracting a part of the direct current generated by the solid oxide fuel cell;
    A switching unit that switches the discharge resistance between a connection state and a non-connection state to the transmission line;
    Have
    The switching unit connects the discharge resistance to the transmission line until the solid oxide fuel cell is started or when an open circuit voltage at the start of the solid oxide fuel cell reaches a predetermined threshold voltage. Switch from disconnected to connected state,
    The switching unit switches the discharge resistance from a connection state to the transmission line to a non-connection state when a direct current flowing into the DC / AC conversion unit reaches a predetermined threshold current,
    The solid oxide fuel cell has a series-parallel switching mechanism that switches whether each cell of the cell stack is electrically connected in series or connected in parallel.
    When starting up the solid oxide fuel cell, the series-parallel switching mechanism electrically connects the cells of the cell stack in parallel,
    When the open circuit voltage of the solid oxide fuel cell reaches the first threshold voltage, a part of the direct current generated by the solid oxide fuel cell is converted into the DC / AC conversion unit and the discharge resistance. Pull out by at least one,
    When the open circuit voltage of the solid oxide fuel cell drops to a second threshold voltage lower than the first threshold voltage, the series-parallel switching mechanism electrically connects the cells of the cell stack in series. Connecting,
    A fuel cell system.
  2.  前記切換部は、マグネティックコンタクタ、リレースイッチ、ツェナーダイオード及び自己消弧型半導体素子のいずれか1つ又は複数の組み合わせから構成されることを特徴とする請求項1に記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the switching unit includes any one or a combination of a magnetic contactor, a relay switch, a Zener diode, and a self-extinguishing semiconductor element.
PCT/JP2017/031756 2016-09-13 2017-09-04 Fuel cell system and solid oxide fuel cell WO2018051828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178431A JP6187660B1 (en) 2016-09-13 2016-09-13 Fuel cell system
JP2016-178431 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051828A1 true WO2018051828A1 (en) 2018-03-22

Family

ID=59720382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031756 WO2018051828A1 (en) 2016-09-13 2017-09-04 Fuel cell system and solid oxide fuel cell

Country Status (2)

Country Link
JP (1) JP6187660B1 (en)
WO (1) WO2018051828A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219920A (en) * 1984-04-17 1985-11-02 株式会社東芝 Method of controlling fuel battery generator system
JPH02168572A (en) * 1988-08-19 1990-06-28 Fuji Electric Co Ltd Controlling method and device for fuel battery
JP2005108815A (en) * 2003-09-29 2005-04-21 Hewlett-Packard Development Co Lp Adjustment and temperature control of fuel cell
JP2008251448A (en) * 2007-03-30 2008-10-16 Ihi Corp Method and device for controlling stack voltage in fuel cell power generator
JP2010282831A (en) * 2009-06-04 2010-12-16 Nissan Motor Co Ltd Fuel cell system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123599A (en) * 2007-11-16 2009-06-04 Yamatake Corp Power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219920A (en) * 1984-04-17 1985-11-02 株式会社東芝 Method of controlling fuel battery generator system
JPH02168572A (en) * 1988-08-19 1990-06-28 Fuji Electric Co Ltd Controlling method and device for fuel battery
JP2005108815A (en) * 2003-09-29 2005-04-21 Hewlett-Packard Development Co Lp Adjustment and temperature control of fuel cell
JP2008251448A (en) * 2007-03-30 2008-10-16 Ihi Corp Method and device for controlling stack voltage in fuel cell power generator
JP2010282831A (en) * 2009-06-04 2010-12-16 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP6187660B1 (en) 2017-08-30
JP2018045814A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
EP3331078B1 (en) Fuel-cell system
Liu et al. Multicascoded sources for a high-efficiency fuel-cell hybrid power system in high-voltage application
US8568912B2 (en) Redox flow battery
TW200945724A (en) Method of hybrid power management and system using the same
US10950875B1 (en) SOFC system and method to decrease anode oxidation
JP4934950B2 (en) Fuel cell power generator and operation control method
CN102439774B (en) Fuel cell system and method for controlling same
JP2016186938A (en) Offset control structure and method for controlling voltage value in fuel cell system
US8890365B2 (en) Fuel cell device and method for feeding electrical current to electrical network
CN1979937A (en) Power supply apparatus and method for line conection type fuel cell system
JP2011050191A (en) Power generation system
JPH11176454A (en) Power source for fuel cell accessory
CN111952639B (en) Quick start high-temperature fuel cell and control method
JP5617592B2 (en) Secondary battery type fuel cell system
JP3583914B2 (en) Auxiliary power supply for fuel cell
KR101435388B1 (en) System for initial charging of smoothing capacitor of fuel cell
JP6187660B1 (en) Fuel cell system
KR20220054835A (en) Fuel cell system and operation method
JP2013181439A (en) Combined power generating system and operating method for combined power generating system
JP2019201483A (en) Power generation equipment
WO2018051759A1 (en) Fuel cell system and method for operating same
JP6264414B1 (en) Fuel cell system and operation method thereof
JP5521439B2 (en) Power generation system
EP3512018A2 (en) Systems and methods for power generation using fuel cells
JP2008108666A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850731

Country of ref document: EP

Kind code of ref document: A1