JPS60219920A - Method of controlling fuel battery generator system - Google Patents

Method of controlling fuel battery generator system

Info

Publication number
JPS60219920A
JPS60219920A JP59075715A JP7571584A JPS60219920A JP S60219920 A JPS60219920 A JP S60219920A JP 59075715 A JP59075715 A JP 59075715A JP 7571584 A JP7571584 A JP 7571584A JP S60219920 A JPS60219920 A JP S60219920A
Authority
JP
Japan
Prior art keywords
power
fuel cell
voltage
control
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59075715A
Other languages
Japanese (ja)
Other versions
JPH0574296B2 (en
Inventor
清 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59075715A priority Critical patent/JPS60219920A/en
Publication of JPS60219920A publication Critical patent/JPS60219920A/en
Publication of JPH0574296B2 publication Critical patent/JPH0574296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に接続されるインバータ回路、あるい
はチョッパ回路とインバータ回路からなる電力変換装置
を、電力系統に接続して電力制御を行う燃料電池発電シ
ステムに係り、燃料電池の起動あるいは停止時における
過電圧を抑制するのに適しに制御を行うことのできる燃
料電池発電システムの制御方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell that performs power control by connecting an inverter circuit connected to a fuel cell or a power conversion device consisting of a chopper circuit and an inverter circuit to a power system. The present invention relates to a power generation system, and relates to a control method for a fuel cell power generation system that can appropriately control overvoltage when starting or stopping a fuel cell.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、益々厳しくなるエネルギー情勢を背景にして燃料
電池は燃料の化学エネルギーを直接電力に変換すること
ができ、高い電力変換効率を期待でき、しかも環境汚染
を最低に維持できる可能性をもつ優れた新しいエネルギ
ー源として注目されている。ところで、燃料電池は負荷
の斐化に対して比較的電圧変動が大きいことが一つの特
徴として知られている。
In recent years, against the backdrop of the increasingly severe energy situation, fuel cells are an excellent option that can directly convert the chemical energy of fuel into electricity, and can be expected to have high power conversion efficiency, while also having the potential to keep environmental pollution to a minimum. It is attracting attention as a new energy source. Incidentally, it is known that one of the characteristics of fuel cells is that voltage fluctuations are relatively large with respect to changes in load.

燃料電池の代表的な放電特性は第1図に示すように、電
流が大になるにつれて、すなわち燃料電池の負荷が増え
るにつれて電池電圧が大きく減少する。例えば、リン酸
形燃料電池の場合、無負荷時の電池゛螺圧と定格負荷時
の電池電圧(負荷電圧)とでは定格電圧の50〜80%
近い差が生じる。この電圧旋動率は0〜25%程変の軽
負荷時の領域で顕著である。従って燃料電池から生じた
@流電力はこのままでは用途が限られてしまうので所定
の安定化されに直流電圧、あるいは又流電力に変換して
使用するのが一般的である。燃料電池を発電システムと
して又流電力系統(以下電力系統と称す)に接続するに
は一般に直流電力を又流電力へ変換する電力変換装置が
用いられる。すなわち燃料電池を使用Tる発電システム
に使用する電力変換装置には第1図のような電圧変動率
を充分考慮しにシステム設計が要求される。
As shown in FIG. 1, a typical discharge characteristic of a fuel cell is that as the current increases, that is, as the load on the fuel cell increases, the cell voltage decreases significantly. For example, in the case of a phosphoric acid fuel cell, the cell pressure at no load and the cell voltage at rated load (load voltage) are 50 to 80% of the rated voltage.
There is a close difference. This voltage rotation rate is remarkable in the light load range, which varies from 0 to 25%. Therefore, since the @ current power generated from the fuel cell has limited uses as it is, it is generally used after being stabilized to a certain level and converted into DC voltage or current power. In order to connect a fuel cell to a current power system (hereinafter referred to as a power system) as a power generation system, a power conversion device that converts direct current power to current power is generally used. That is, a power converter used in a power generation system using fuel cells is required to design a system that fully takes into account the voltage fluctuation rate as shown in FIG.

ところが第1図のような電圧変動があると自励式インバ
ータでは出力高調波が増加する原因となり、他励式イン
バータでは運転力率が悪化する原因となる。又、燃料電
池に対しても燃料電池自身の無負荷電圧近傍の領域#求
転料電池を構成する多AvMのエレメント間の電圧差が
生じることによりエレメントの一構成要素である化学反
応を促進するIQの溶融を生じてし蒙う結果をもたらす
However, voltage fluctuations as shown in FIG. 1 cause an increase in output harmonics in a self-excited inverter, and cause a deterioration in the operating power factor in a separately-excited inverter. Also, for fuel cells, a voltage difference occurs between the multi-AvM elements that make up the centrifugal charge cell in a region near the no-load voltage of the fuel cell itself, which promotes the chemical reaction that is one of the elements. This results in a meltdown of IQ and suffering.

すなわち、第1図のような特性を示す燃料電池の電圧変
動は電力変換装置l二対してtま装置容lが必要以上に
大きくなり、コストおよび効率面で難点があるばかりか
、出力の特性をも悪化させてしまう。一方燃料電池に対
しては電池としての耐用寿命を短くする欠点がある。こ
の欠点は燃料電池システムを大容量化するにつれてコス
ト面でも寿命の点でも増大する欠点であり、人容鼠化の
課題の1つであった。このような燃料電池の欠点(二対
する対策として燃料電池発電システムの軽負荷時0〜2
5%の間は直流側に電圧抑制用抵抗を挿入し、燃料電池
電圧を強制的(−降下させることも提案されている。こ
の場合の燃料電池発電システムのブロック図を第2図に
示す。
In other words, the voltage fluctuation of a fuel cell exhibiting the characteristics shown in Fig. 1 causes the device capacity to be larger than necessary for the power converter, which not only causes problems in terms of cost and efficiency, but also affects the output characteristics. It also makes things worse. On the other hand, fuel cells have the disadvantage of shortening their useful life as a battery. This drawback increases both in cost and lifespan as the capacity of the fuel cell system increases, and has been one of the problems faced by human control. As a countermeasure against these drawbacks of fuel cells (2), the fuel cell power generation system has a
It has also been proposed that a voltage suppressing resistor be inserted on the DC side to forcibly lower the fuel cell voltage between 5% and 5%. A block diagram of a fuel cell power generation system in this case is shown in FIG.

第2図(二おいてlは燃料電池、2は電力変換装置、3
は逆流防止用ダイオード、4は電圧抑制用抵抗5を投入
、開放するスイッチ、6はトランス、7は電力変換装置
2の出力と、電力系統8の没入、開放を行う開閉器であ
る。電圧抑制部用抵抗5F求燃料電池lの発電初期状態
、あるいは電力変換装置2の事故時あるいは開閉器7の
開放時、すなわち、第1図で電流I、が0〜工、の電流
値の場合。
Figure 2 (where 2, l is a fuel cell, 2 is a power converter, 3 is a fuel cell,
4 is a switch for closing and opening the voltage suppressing resistor 5; 6 is a transformer; and 7 is a switch for closing and opening the output of the power converter 2 and the power system 8. In the initial power generation state of the voltage suppressor resistance 5F of the fuel cell l, or in the event of an accident in the power converter 2, or when the switch 7 is opened, that is, when the current I in FIG. .

スインt4を投入し、燃料電池lの電池電圧E、を所定
値E、に抑えるよう動作する。この電圧抑制抵抗5の投
入の間に一般には燃料電池lの空気極に突気を急速に流
入させることにより燃料電池1の出力を急速に立ち上げ
たり、逆に窒気を急速に抑制することg二より燃料電池
lの出力を急速に絞る制御が行われる。しかしながら、
第2図のような手段によれば起動・停止時Cユ電圧抑制
用抵抗5が消費する電力は全て損失となるばかりでなく
、電圧抑制用抵抗5の入切を行うスイッF4は高速に動
作する必要があり、又、電圧抑制用抵抗5の入切時燃料
電池りに不必要な過渡変動を与える欠点がある。
The switch t4 is turned on, and the fuel cell 1 operates to suppress the battery voltage E of the fuel cell 1 to a predetermined value E. While the voltage suppressing resistor 5 is turned on, the output of the fuel cell 1 is generally rapidly increased by rapidly injecting air into the air electrode of the fuel cell 1, or conversely, the nitrogen gas is rapidly suppressed. From g2, control is performed to rapidly reduce the output of the fuel cell l. however,
According to the means shown in FIG. 2, not only all the power consumed by the voltage suppressing resistor 5 during startup and stopping becomes a loss, but also the switch F4, which turns on and off the voltage suppressing resistor 5, operates at high speed. Moreover, there is a drawback that unnecessary transient fluctuations are caused in the fuel cell when the voltage suppressing resistor 5 is turned on and off.

〔発明の目的〕[Purpose of the invention]

そこで本発明は前述の点にかんがみ、燃料電池発電シス
テムの起動時あるいit停止時の軽負荷状態、すなわち
、燃料電池lも出力を抑制するよう制御される状態では
電力変換装置2の電力制御を電力変換装置2の血流入力
すなわち燃料電池lの直流出力を所定の電圧、第1図で
示す電圧E、に一定となるよう血流定電圧制御に切り換
えて制卸を行うことにより燃料電池1の電圧を抑制する
ことができる燃料電池発電システムの制御方法を提供す
ることをその目的とする。
Therefore, in consideration of the above-mentioned points, the present invention provides power control of the power conversion device 2 in a light load state when the fuel cell power generation system is started or when it is stopped, that is, in a state in which the fuel cell l is also controlled to suppress its output. The fuel cell is controlled by switching to blood flow constant voltage control so that the blood flow input of the power conversion device 2, that is, the DC output of the fuel cell 1, is kept constant at a predetermined voltage, voltage E shown in FIG. An object of the present invention is to provide a control method for a fuel cell power generation system that can suppress the voltage of 1.

〔発明の概要〕[Summary of the invention]

本発明はこの目的を達成するにめC二燃料′I!!!池
を直流電源として該直流電源の出力をインバータ回路、
あるいはチョッパ回路とインバータ回路からなる電力変
換装置と電力系統とを接続して構成される燃料電池発電
システムの制御方法において、燃料電池の起電力が所定
値以下の場合は該電力変換装置の@流入力を一定に保つ
よう直流定電圧制御(二より該電力系統との連系運転を
行い、燃料電池の起電力が所定値以上に達すると直流定
電圧制御から所定の電力制御へと切り換え、燃料電池と
電力系統との間の電力を制御するようにしたものである
The present invention aims to achieve this objective. ! ! An inverter circuit uses the output of the DC power source as a DC power source,
Alternatively, in a control method for a fuel cell power generation system configured by connecting a power conversion device consisting of a chopper circuit and an inverter circuit to a power system, if the electromotive force of the fuel cell is less than a predetermined value, the @flow of the power conversion device is DC constant voltage control is performed to keep the input constant (secondary operation is performed in connection with the power grid, and when the electromotive force of the fuel cell reaches a predetermined value or higher, the DC constant voltage control is switched to the predetermined power control, and the fuel It is designed to control power between the battery and the power grid.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明の一実施例を第3図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図において第2図と同符号のものは同一の機能のも
のである。電力液換装[&2の制御回路lOOについて
は第3図では目励式インノ毫−タの制御回路で示しであ
るが、他励式インバータの制御回路でも本発明の意図す
る点は同様である。
Components in FIG. 3 with the same symbols as in FIG. 2 have the same functions. Although the control circuit lOO of the power liquid exchanger &2 is shown in FIG. 3 as a control circuit for an individually excited inverter, the purpose of the present invention is the same for a control circuit for a separately excited inverter.

又、制御回路lOOにあっては無効電力を制御する機能
の詳細は周知のものであるから省略しである。
Furthermore, the details of the function of controlling reactive power in the control circuit lOO are well known and will therefore be omitted.

一般に電力変換装置2と電力系統8を並り」運転するに
は電力系統8は制御できないので重力変換装置2により
両電源間の電圧差で無効電力を、両電源間の位相差で有
効電力をそれぞれ制御することが知られている。
Generally, when the power converter 2 and the power system 8 are operated in parallel, the power system 8 cannot be controlled, so the gravity converter 2 generates reactive power by the voltage difference between the two power sources, and active power by the phase difference between the two power sources. It is known that each can be controlled.

第3図の制御回路100にあっては、一般に電力制御を
行うに用いられる有効電力制御系を基にして、図示され
ない電力量の低下すなわち第1図の1JL流I、l二下
になったことを検出する検出回路の信号により切換スイ
ッチ47を動作させ電力制御系から直流定電圧制御系に
切り換える。ここで有効電力制御系について簡単に説明
する。
In the control circuit 100 shown in FIG. 3, based on an active power control system generally used for power control, the amount of power (not shown) has decreased, that is, below the 1JL flow I, l2 in FIG. A changeover switch 47 is operated by a signal from a detection circuit that detects this, and the power control system is switched to the DC constant voltage control system. Here, the active power control system will be briefly explained.

有効電力基準40と有効電カドランスジューf41の出
力とを比較し、その偏差に誤差増幅器42の入力として
加えられ、誤差増幅4社の出力はフェーズロックループ
(Phase 1ocked 1oop)いわゆるPL
L回路43の一つの入力ロイ”となっている。
The active power reference 40 is compared with the output of the active power quadrature transducer f41, and the deviation is added to the input of the error amplifier 42, and the outputs of the four error amplifiers are connected to a phase-locked loop (Phase 1ocked 1oop), so-called PL.
It serves as one input Roy of the L circuit 43.

必は分局器で、PLL回路43の出力周波数を分周し、
その力はPLL回路43の他の一つの入力1/N′とな
る。PLL回路43の他の一つの入力60”C二は、電
力系統8の電力系統電圧22か位相基準として与えられ
る。ここでPLL回路43μ周知の回路であるが簡単に
説明する。第4図はPLL回@43のブロック図の1例
であり、PLL回路43の構成は、位相誤差検出器PH
D、低域P波器LPFそして電圧制御発振器vCOから
構成される。これ等各要素の概要を説明すると、位相誤
差検出器PHDは位相基準信号”口1と位相帰還り号“
ノゞとの位相差に比例した信号”二”を発生する。この
位相差C二比例した信号”二”が低域p波器LPFの入
力となり、この低域p波器LPFで高調波成分を除去す
ると共に、位相誤差を増幅する。そして電圧制御発振器
vCOは低域pl&器LPFの出力”ホ”に比例した周
波数を出力し、この電圧制御発振器vCOの出力1へ”
は分局器44に加えられる。分周器44の分周比をNと
すれば、電圧制御発振器vCOの発振周波数は位相基準
信号”口”のN倍となる。ここでNはインバータの相数
により任意の整数に選ばれる。分局器44の出力は位相
誤差検出器PHDの位相帰還48号”ハ”となっている
ので、電圧制御発振器vCOの共振周波数は位相基準信
号10”と位相帰還信号“ハ”との位相が一致するよう
に自動制御される。ここで、PLL回路43の一つの入
力“イ”の働きは、低域p波器LPFへ信号を与えるこ
とにより位相基準信号”口”と位相帰還信号“ハ”との
位相差を任意に設定可能となる。
It is necessary to use a divider to divide the output frequency of the PLL circuit 43,
The power becomes the other input 1/N' of the PLL circuit 43. The other input 60"C2 of the PLL circuit 43 is given as a phase reference to the power system voltage 22 of the power system 8. Here, the PLL circuit 43μ is a well-known circuit, but will be briefly explained. FIG. This is an example of a block diagram of a PLL circuit @43, and the configuration of the PLL circuit 43 is a phase error detector PH.
D, a low-pass P wave generator LPF, and a voltage controlled oscillator vCO. To give an overview of each of these elements, the phase error detector PHD has a phase reference signal "output 1" and a phase feedback signal "output 1".
Generates a signal "2" proportional to the phase difference with the noise. The signal "2" proportional to this phase difference C2 becomes an input to the low-pass p-wave filter LPF, which removes harmonic components and amplifies the phase error. Then, the voltage controlled oscillator vCO outputs a frequency proportional to the output "H" of the low frequency PL&
is added to the splitter 44. If the frequency division ratio of the frequency divider 44 is N, the oscillation frequency of the voltage controlled oscillator vCO will be N times that of the phase reference signal "M". Here, N is selected as an arbitrary integer depending on the number of phases of the inverter. Since the output of the splitter 44 is phase feedback No. 48 "C" of the phase error detector PHD, the resonance frequency of the voltage controlled oscillator vCO is such that the phases of the phase reference signal 10" and the phase feedback signal "C" match. Here, the function of one input "A" of the PLL circuit 43 is to provide a signal to the low-pass p-wavelength filter LPF to output the phase reference signal "口" and the phase feedback signal "HA". It is possible to arbitrarily set the phase difference between the

再び第3図に戻りその動作の説明を行うと、PLL回路
43の位相基準信号“口”としては″電力系統8の位相
が印加されているので、PLL回路43の出力周波数は
′電力系統8の位相と同期し、従って重力変換装置2の
位相も電力系統8の位相と同期している。開閉器7が閉
状、態では誤差増幅器42の入出力は、図示しないスイ
ッチで短絡されており、電力及換装ri2の位相を制御
する自動制御回路は形成されていない。開閉器7が閉の
状態になると誤差増幅器42の入出力の短絡に解除され
、切換スイッチ47で選択されに偏差47a、あるいは
47bを入力とし、誤差増幅器42が動作し所定の制御
を行うことができる。この切換スイッチ47は燃料電池
lの起電力が所定値以下の場合は匣流亀圧検出回路46
で検出されに出力信号と電圧基準45との偏差47bを
選択し、燃料電池りの起電力が1ツ「定値以上に達しに
場合は有効電力トランスデユーサ41の出力信号と有効
電力基準40との偏M 47Mを選択するよう動作する
。すなわち、燃料電池1が停止状態においても電力及換
装R2を起動させるに充分な容量を有する図示されない
直流電誹を持つことにより、燃料電池1の起動時にあら
かじめ重力変換装置it2を起動しておき、(熱料電池
lの起電力が所定値以下の間は切換スイッチ47により
直流定電圧が選択され、直流篭旺検出回路46の出力信
号と電圧基準45が等しくなるよう電力変換装置2の位
相が制御される。すなわちこの直流定電圧制御は燃料電
池1が停止の状態でも電力系統8より有効電力を受けて
電力変換装置t2の入力ラインに設けられた図示されな
いコンデンサを定電圧に充電する。前記図示されないコ
ンデンサが充電されると直流定電圧制御により余剰電力
は電力変換装置2、良圧器6、開閉器7を通して電力系
統8に戻される。この結果、電力系統8から電力変換装
置2の無負荷損のみが供給されることになり、電力変換
装置12は電力系統8との並列運転を継続することがで
きる。この時点ではもはや前記図示されない電力変換装
置2を起動する之めの直流電源は不要となる。この直流
定電圧制御(二よる電力友、換装置2と電力系統8との
並列運転は燃料電池lが所定の起電力を有するまで、す
なわち、第1図の電流Q、I、の間継続することにより
、この間の燃料電池の起電力に相当して燃料電池lの電
流工! を出力するよう位相が制御される。従って従来
、問題視されていた燃料電池1の軽負荷時の電圧のはね
上がりは抑制され、常に直流定電圧設定値に等しい電圧
E1に制御される。又、燃料電池lの起電力が所定値以
上に達すると、すなわち、直流定電圧制御により、第1
図に示す電流l、を超過すると図示されない検出回路の
出力信号によリリ換スイツy−47が偏差47aを選択
するよう切り換わり有効型カドランスデユーf41と有
効電力基準40とが等しくなる様電力制御がされる。こ
こで第3図の誤差増幅器42を用いた直流定電圧制御系
と電力制御系は機能を表わしたものであり、その動作は
直流定電圧制御系の場合は直流電圧検出回路46の出力
信号が電圧基準45に比して大となると燃料電池lから
さらに電力を取り出す之めに電力系統8C二対して電力
変換装置2の位相を進め、父、電力制御系の場合は有効
型カドランスデューサ41の出力信号が有効電力基準4
0に比して大きくなると燃料電池りからの電力を抑える
よう電力系統8に対して電力変換装置2の位相を遅らせ
るものである。
Returning to FIG. 3 again to explain its operation, since the phase of the power system 8 is applied to the phase reference signal of the PLL circuit 43, the output frequency of the PLL circuit 43 is equal to the phase of the power system 8. Therefore, the phase of the gravity converter 2 is also synchronized with the phase of the power system 8. When the switch 7 is in the closed state, the input and output of the error amplifier 42 are short-circuited by a switch (not shown). An automatic control circuit for controlling the power and the phase of the replacement ri2 is not formed.When the switch 7 is closed, the input and output of the error amplifier 42 are short-circuited, and the deviation 47a or 47b as an input, the error amplifier 42 operates to perform predetermined control.This changeover switch 47 switches the flow tortoise pressure detection circuit 46 when the electromotive force of the fuel cell l is below a predetermined value.
Select the deviation 47b between the output signal detected by the voltage reference 45 and the output signal of the active power transducer 41 and the active power reference 40. In other words, by having a DC voltage (not shown) that has sufficient capacity to start the power and conversion R2 even when the fuel cell 1 is in a stopped state, it is possible to select the bias M 47M in advance when starting the fuel cell 1. The gravity converter it2 is activated, and (while the electromotive force of the thermal battery l is below a predetermined value, the changeover switch 47 selects DC constant voltage, and the output signal of the DC voltage detection circuit 46 and the voltage reference 45 are The phases of the power converter 2 are controlled so that they are equal to each other.In other words, this DC constant voltage control is performed even when the fuel cell 1 is stopped. When the capacitor (not shown) is charged, excess power is returned to the power system 8 through the power converter 2, good voltage switch 6, and switch 7 by direct current constant voltage control.As a result, the power Only the no-load loss of the power converter 2 is supplied from the grid 8, and the power converter 12 can continue parallel operation with the power grid 8.At this point, the power converter 2, which is not shown, is no longer connected to the power converter 2. This DC constant voltage control (parallel operation of the converter 2 and the power system 8 is performed until the fuel cell l has a predetermined electromotive force, that is, By continuing the currents Q and I in Fig. 1, the phase is controlled so that the current of the fuel cell I is outputted corresponding to the electromotive force of the fuel cell during this time. The voltage jump of the fuel cell 1 during light load is suppressed, and the voltage E1 is always controlled to be equal to the DC constant voltage setting value.Furthermore, when the electromotive force of the fuel cell 1 reaches a predetermined value or more, that is, DC constant voltage control allows the first
When the current l shown in the figure is exceeded, the output signal of the detection circuit (not shown) causes the recirculation switch Y-47 to switch to select the deviation 47a, and power control is performed so that the effective quadrature duplex f41 and the active power reference 40 become equal. be done. Here, the functions of the DC constant voltage control system and power control system using the error amplifier 42 shown in FIG. When the voltage becomes larger than the voltage reference 45, the phase of the power converter 2 is advanced relative to the power system 8C2 in order to extract more power from the fuel cell 1, and in the case of a power control system, the effective quadrature transducer 41 is activated. The output signal of the active power standard 4
When it becomes larger than 0, the phase of the power conversion device 2 is delayed with respect to the power system 8 so as to suppress the power from the fuel cell.

逆に燃料電池lの定格出力時から起電力を絞って燃料電
池発電システムを停止きせる場合においては燃料電池l
の起電力が所定値以下シ:なるまでは電力制御を行い、
所定値以下になったら直流定電圧制御に切り換えること
により燃料電池lの停止時の電圧抑制も行うことができ
る。
Conversely, when stopping the fuel cell power generation system by reducing the electromotive force from the rated output of the fuel cell,
Power control is performed until the electromotive force is below a predetermined value,
By switching to DC constant voltage control when the voltage falls below a predetermined value, the voltage can also be suppressed when the fuel cell I is stopped.

つまり、燃料電池1に接続される電力変換装置2をあら
かじめ起動して電力系統8と並列運転することにより燃
料電池lの起電力を有しない起動過程においても的確な
燃料電池発電システムの起動を行うことができる上、燃
料電池lに対する過電圧防止と電力変換装置2の王回路
部品選定の際の′峨圧定格を適切に選定することができ
る。又、従来行われているように燃料電池lの出力(=
竜圧澗制用抵抗等の高価で大きな付属機器を必要とせず
、安価で簡単な制御回路で実現することができる。
In other words, by starting the power conversion device 2 connected to the fuel cell 1 in advance and operating it in parallel with the power grid 8, the fuel cell power generation system can be started accurately even during the startup process when the fuel cell 1 does not have an electromotive force. In addition, it is possible to prevent overvoltage for the fuel cell 1 and to appropriately select the high pressure rating when selecting circuit components of the power converter 2. Also, as conventionally done, the output of the fuel cell l (=
It can be realized with an inexpensive and simple control circuit without requiring expensive and large attached equipment such as a resistor for controlling the dragon pressure.

次に本発明の他の実施例について述べる。第3図の実施
例では、電力変換装置2は自励式インバータ回路で説明
したが電力変換装置2を起動させるに充分な容置を有す
る直流電源を持つ他励式インバータ回路でも同様に制御
を行うことができる。
Next, other embodiments of the present invention will be described. In the embodiment shown in FIG. 3, the power converter 2 has been described as a self-excited inverter circuit, but a separately excited inverter circuit having a DC power source with sufficient capacity to start the power converter 2 can be similarly controlled. Can be done.

更(二自励式インバータ回路で構成される電力変換装置
2の場合は別に直流電源を設けずとも1M3 ka −
Furthermore (in the case of the power converter 2 consisting of two self-excited inverter circuits, the power consumption is 1M3 ka - without the need for a separate DC power supply)
.

7を電力及換装fiiit2の起動前に投入しておき、
図示されない直流回路のコンデンサに充電しておき、所
定のパルス中でインバータ回路を起動させることも可能
である。又、@流室電圧制御と電力制御の切り換える条
件は燃料電池lの@流電流ばかりでなく厘FM電力ある
いは交流電力が所定値以上(二連したことで切り換えて
も良い。同様に燃料′#L池りの起電力が所定値以上に
達すると電力制御lユリり換えているがこの電力制御の
代わりに直流電流制御としても同様の効果を得ることが
できる。又、チョッパ回路を有する電力変換装置2に対
しても同様の効果を得ることができることは自明である
7 before starting the power and conversion fiiiit2,
It is also possible to charge a capacitor of a DC circuit (not shown) and start the inverter circuit during a predetermined pulse. In addition, the conditions for switching between flow chamber voltage control and power control are not only the flow current of the fuel cell l, but also the condition that the FM power or AC power exceeds a predetermined value (it may be switched when the two are connected.Similarly, the condition for switching between flow chamber voltage control and power control is When the electromotive force of the L pond reaches a predetermined value or more, the power control is switched, but the same effect can be obtained by using DC current control instead of this power control.Also, a power converter with a chopper circuit It is obvious that similar effects can be obtained for device 2 as well.

〔発明の効果〕 かくして本発明によれば燃料電池を直流電源として該直
流電源の出力をインバータ回路、あるいはチョッパ回路
とインバータ回路からなる電力変換装置と電力系統とを
接続して構成される燃料電池発電システムにおいて、燃
料電池の起動時には直流の補助電源等を用いて電力変換
装置をあらかじめ起動しておくことにより、又、定常な
運転状態においても燃料電池の起電力が所定値に達しな
い場合は、直流定電圧制御により重力系統との連糸運転
を行い、燃料電池の起電力が所定値以上に達すると所定
の電力制御へと切り換えることにより、燃料電池の起動
・停止あるいは軽負荷時の電圧のはね上がりのため、電
力変換装置の″電圧定格を必要以上に上げたり、燃料電
池自身で発生する過電圧によって生じる触媒の溶融のた
めに耐用寿命の低下を生じたり、又、高価でかつ必要以
上の電力損失を生じる電圧抑制用抵抗を設置することな
く簡単な制御回路基;より安価で耐用寿命の長い効率の
良い電力変換装置の制御を行うことができる。
[Effects of the Invention] Thus, according to the present invention, a fuel cell is provided in which a fuel cell is used as a DC power source and the output of the DC power source is connected to an inverter circuit, or a power conversion device consisting of a chopper circuit and an inverter circuit, and a power system. In a power generation system, when starting up a fuel cell, the power conversion device is started in advance using a DC auxiliary power source, and even in normal operating conditions, if the electromotive force of the fuel cell does not reach a predetermined value, , performs continuous operation with the gravity system using DC constant voltage control, and when the electromotive force of the fuel cell reaches a predetermined value or more, switches to the predetermined power control, thereby controlling the voltage when starting and stopping the fuel cell or under light loads. This may cause the voltage rating of the power converter to be increased more than necessary, reduce the service life due to melting of the catalyst caused by the overvoltage generated in the fuel cell itself, or cause expensive and unnecessary A simple control circuit board can be used without installing a voltage suppression resistor that causes power loss; it is possible to control an efficient power conversion device that is cheaper and has a longer service life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の電池電圧対電流の特性図、第2図は
従来の燃料電池発電システムの制御装置のブロック図、
第3図は本発明の一実施例を示す燃料電池発電システム
のブロック図、第4因は第3図におけるフェーズロック
ドループの部分の詳細構成を示すブロック図、第5因は
本発明の電池電圧対電流の特性図である。 l・・・燃料電池 2・・・電力変換装置3・・・逆流
防止用ダイオード 4・・・スイッチ 5・・・電圧抑制用抵抗6・・・斐
圧器 7・・・開閉器 8・・・電力系統 20・・・出力を流21・・・出力
電圧 22・・・電力系統電圧゛30・・・無効電力制
御回路 31・・・電圧制御回路40・・・有効電力基
準 41・・・有効型カドランスデユー9 42・・・
誤差増幅器 43・・・PLL回路 44・・・カウンタ45・・・
電圧基準 46・・・直流電圧検出回路47・・・切換
スイッチ 47a、47b・・・偏差(7317)代理
人 弁理士 則 近 恵 佑(ほか1名) 第1図 第2図 第3図
Fig. 1 is a characteristic diagram of cell voltage versus current of a fuel cell, Fig. 2 is a block diagram of a control device of a conventional fuel cell power generation system,
FIG. 3 is a block diagram of a fuel cell power generation system showing one embodiment of the present invention, the fourth factor is a block diagram showing the detailed configuration of the phase-locked loop portion in FIG. 3, and the fifth factor is the battery voltage of the present invention. FIG. 3 is a characteristic diagram of current versus current. l... Fuel cell 2... Power converter 3... Diode for backflow prevention 4... Switch 5... Resistor for voltage suppression 6... Pressure regulator 7... Switch 8... Power system 20... Output flow 21... Output voltage 22... Power system voltage 30... Reactive power control circuit 31... Voltage control circuit 40... Active power reference 41... Effective Type Cadrance Dieu 9 42...
Error amplifier 43...PLL circuit 44...Counter 45...
Voltage reference 46...DC voltage detection circuit 47...Selector switch 47a, 47b...Difference (7317) Agent Patent attorney Noriyuki Chika Kei (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 燃料電池を直流電源として該直流電源の出力をインバー
タ回路、あるいはチョッパ回路とインバータ回路からな
る電力変換装置と電力系統とを接続して構成される燃料
電池発電システムにおいて、前記燃料電池の起電力が所
定値以下の場合は前記電力変換装置の直流入力を一定に
保つよう直流定電圧制御により前記電力系統との連系運
転を行い、前記燃料電池の起電力が所定値以上に達する
と前記@圧定電圧制御から電力制御へ切り換え、燃料電
池と電力系統との間の電力を制御するようにしたことを
特徴とする燃料電池発電システムの制御方法。
In a fuel cell power generation system configured by using a fuel cell as a DC power source and connecting the output of the DC power source to an inverter circuit, or a power conversion device consisting of a chopper circuit and an inverter circuit, and a power system, the electromotive force of the fuel cell is If the voltage is below a predetermined value, the DC input to the power converter is controlled to be connected to the power grid by constant voltage control to keep the DC input constant, and if the electromotive force of the fuel cell reaches a predetermined value or higher, the @pressure 1. A method of controlling a fuel cell power generation system, characterized by switching from constant voltage control to power control to control power between the fuel cell and the power grid.
JP59075715A 1984-04-17 1984-04-17 Method of controlling fuel battery generator system Granted JPS60219920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075715A JPS60219920A (en) 1984-04-17 1984-04-17 Method of controlling fuel battery generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075715A JPS60219920A (en) 1984-04-17 1984-04-17 Method of controlling fuel battery generator system

Publications (2)

Publication Number Publication Date
JPS60219920A true JPS60219920A (en) 1985-11-02
JPH0574296B2 JPH0574296B2 (en) 1993-10-18

Family

ID=13584219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075715A Granted JPS60219920A (en) 1984-04-17 1984-04-17 Method of controlling fuel battery generator system

Country Status (1)

Country Link
JP (1) JPS60219920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038117A1 (en) * 2007-09-19 2009-03-26 Sony Corporation Fuel cell system and voltage limit method
JPWO2013065132A1 (en) * 2011-11-01 2015-04-02 トヨタ自動車株式会社 Fuel cell output control device
JP6187660B1 (en) * 2016-09-13 2017-08-30 富士電機株式会社 Fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148675A (en) * 1982-02-26 1983-09-03 Toshiba Corp Power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148675A (en) * 1982-02-26 1983-09-03 Toshiba Corp Power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038117A1 (en) * 2007-09-19 2009-03-26 Sony Corporation Fuel cell system and voltage limit method
JPWO2013065132A1 (en) * 2011-11-01 2015-04-02 トヨタ自動車株式会社 Fuel cell output control device
US9985305B2 (en) 2011-11-01 2018-05-29 Toyota Jidosha Kabushiki Kaisha Output control apparatus for fuel cell
JP6187660B1 (en) * 2016-09-13 2017-08-30 富士電機株式会社 Fuel cell system
WO2018051828A1 (en) * 2016-09-13 2018-03-22 富士電機株式会社 Fuel cell system and solid oxide fuel cell

Also Published As

Publication number Publication date
JPH0574296B2 (en) 1993-10-18

Similar Documents

Publication Publication Date Title
US8076799B2 (en) UPS system having a function of parallel operation
US5198970A (en) A.C. power supply apparatus
US7795753B2 (en) Fuel cell control system
Pérez et al. Regenerative medium-voltage AC drive based on a multicell arrangement with reduced energy storage requirements
JP2004194408A (en) Uninterruptible power source
JP2004357377A (en) Distributed power generation system
JPS61116973A (en) Method of controlling power converter
RU2436217C2 (en) Device and method to supply energy to critical load
JPH10234185A (en) Power conversion device
Tsai et al. Design and implementation of a cost-effective quasi line-interactive UPS with novel topology
JPWO2003103126A1 (en) Power converter
JP2013046532A (en) Power leveling device
JPS60219920A (en) Method of controlling fuel battery generator system
Nasiri et al. Uninterruptible power supplies
Lai et al. An efficient active ripple filter for use in single-phase DC-AC conversion system
KR20210024959A (en) Power converting apparatus of fuel cell system robust for power disturbance
RU2037249C1 (en) System of uninterrupted power supply
JP2790403B2 (en) Reverse charging protection device for grid-connected inverter
JP2002125317A (en) System stabilization apparatus
JPH02269426A (en) Dc uninterruptible power supply unit
CN113489352B (en) Single-phase PWM rectifier power decoupling method with fault ride-through function
CN114050729B (en) Constant power control method of pulse load
JPH11313449A (en) Single conversion type ups
JP3989751B2 (en) AC stabilized power supply
JP7198074B2 (en) Power converter and power conversion system