WO2018051783A1 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
WO2018051783A1
WO2018051783A1 PCT/JP2017/030978 JP2017030978W WO2018051783A1 WO 2018051783 A1 WO2018051783 A1 WO 2018051783A1 JP 2017030978 W JP2017030978 W JP 2017030978W WO 2018051783 A1 WO2018051783 A1 WO 2018051783A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
purification device
discharge electrode
air purification
blower
Prior art date
Application number
PCT/JP2017/030978
Other languages
French (fr)
Japanese (ja)
Inventor
末松 伸康
貴幸 石川
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017088417A external-priority patent/JP2018047446A/en
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201780054060.3A priority Critical patent/CN109689217A/en
Publication of WO2018051783A1 publication Critical patent/WO2018051783A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/80Cleaning the electrodes by gas or solid particle blasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention relates to an air purification device that purifies air.
  • JP2015-188851A discloses an air purifier (electric dust collector) that charges and collects dust in the air using a discharge electrode (ionizer).
  • the output of the discharge electrode may be reduced and the air purification performance may be reduced.
  • JP2000-024548A proposes a cleaning device for cleaning the discharge electrode.
  • a brush cleaning member
  • this cleaning device a brush (cleaning member) is brought into sliding contact with the discharge electrode to scrape off dust accumulated on the discharge electrode.
  • the cleaning device of JP2000-024548A requires a brush that is in sliding contact with the discharge electrode in order to clean the discharge electrode. For this reason, when the cleaning device of JP2000-024548A is applied to the air purification device of JP2015-188851A, the structure of the air purification device may be complicated.
  • An object of the present invention is to provide an air purification device that maintains air purification performance with a simple structure.
  • an air purification device that purifies air, a discharge electrode that generates ions in the air, a collection unit that collects particles in the air charged by the ions, and the capture unit. And a blower for flowing air so as to pass through the collecting portion, and the blower is provided with an air purification device that generates a flow that applies an air flow to the fine particles accumulated on the discharge electrode.
  • the fine particles deposited on the discharge electrode are removed by applying an air flow to the discharge electrode.
  • the deposited fine particles are removed from the discharge electrode without using a brush or the like. Therefore, it is possible to provide an air purification device that maintains air purification performance with a simple structure.
  • FIG. 1 is a schematic configuration diagram showing an air purification device according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing an ion generation amount deterioration map.
  • FIG. 2B is a diagram showing an ion generation amount deterioration map.
  • FIG. 3 is a diagram showing an ion generation amount recovery map.
  • FIG. 4 is a flowchart showing control contents.
  • FIG. 5 is a diagram showing how the amount of generated ions changes according to the elapsed time.
  • FIG. 6 is a characteristic diagram showing how the amount of decrease in the amount of ion generation changes according to the air flow rate.
  • FIG. 7 is a diagram showing an ion generation amount deterioration map.
  • FIG. 8 is a flowchart showing the control contents.
  • FIG. 1 is a schematic configuration diagram showing an air purification device according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing an ion generation amount deterioration map.
  • FIG. 9 is a diagram showing how the amount of ion generation changes according to the elapsed time.
  • 10 is a cross-sectional view taken along line XX in FIG.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a cross-sectional view showing a bracket and the like.
  • 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an air conditioner 101 that is mounted on a vehicle 1 and to which an air purification device 100 is applied.
  • the air purification device 100 supplies the purified air to the room 2 of the vehicle 1.
  • the air purification device 100 is included in the air conditioner 101.
  • the air purification device 100 includes a casing (case) 10 that guides air and a blower (blower fan) 17.
  • the blower 17 is driven by the electric motor 20 and sends air inside the housing 10.
  • the amount of air blown by the blower 17 (discharged air flow rate per unit time) is switched in multiple stages by the control unit (controller) 5.
  • An outside air introduction port 11, an inside air introduction port 12, and an upstream side flow channel 14 are provided on the upstream side of the blower 17 in the flow channel (blower channel) 29 in the housing 10.
  • the outside air inlet 11 is a flow path for introducing air from the outside of the vehicle 1 as indicated by an arrow A1.
  • the inside air introduction port 12 is a flow path for introducing air from the room 2 as indicated by an arrow A2.
  • the inside air inlet 12 has a shorter channel length and a lower channel resistance than the outside air inlet 11.
  • An intake door 13 that opens and closes the outside air inlet 11 and the inside air inlet 12 is provided at the junction.
  • the angle (opening) of the intake door 13 can be changed by the control unit 5.
  • the intake door 13 is switched between the outside air introduction position and the inside air introduction position shown in FIG. 1, or adjusts the mixing ratio of the inside air and the outside air according to the angle.
  • the upstream flow path 14 is provided with a discharge electrode 50 (ionizer), a fine particle concentration sensor (dust concentration sensor) 6, and a collection part (electrostatic filter) 16.
  • the fine particle concentration sensor 6 detects the concentration of fine particles in the air.
  • the detection signal of the fine particle concentration sensor 6 is sent to the control unit 5.
  • the discharge electrode 50 is energized by the control unit 5 to generate positive ions or negative ions.
  • the ions generated from the discharge electrode 50 charge the fine particles in the air flowing through the upstream flow path 14 as indicated by the arrow A3.
  • the collection unit 16 is energized so as to have positive or negative static electricity, and collects fine particles in the air (for example, PM (Particulate Matter) 2.5) charged by the discharge electrode 50 by electrostatic force.
  • the collecting unit 16 may be fixed to the ground potential (the ground potential of the vehicle body) by being conducted to the vehicle body.
  • the air flowing through the flow path 29 in the housing 10 is purified by passing through the collection unit 16 and then sucked into the blower 17.
  • a downstream flow path 15 In the flow path 29 in the housing 10, a downstream flow path 15, a defrost blowout port 25, a vent blowout port 26, and a foot blowout port 27 are provided on the downstream side of the blower 17. Air is blown out from the defrost outlet 25 toward the window 3 in the room 2. From the vent outlet 26, air is blown out toward the seat (not shown) in the room 2. Air is blown out from the foot outlet 27 toward the floor (not shown) of the room 2.
  • the downstream channel 15 is provided with an evaporator (heat exchanger for air cooling) 18, a heater core (heat exchanger for air heating) 19, and an air mix door 21.
  • the air discharged from the blower 17 as indicated by the arrow A4 passes through the evaporator 18 and then the temperature is adjusted through the heater core 19 via the air mix door 21.
  • the air mix door 21 has its angle (opening) changed by the control unit 5 and adjusts the flow rate of air passing through the heater core 19.
  • Doors 22 to 24 are provided in the defrost outlet 25, the vent outlet 26, and the foot outlet 27, respectively.
  • the doors 22 to 24 are changed in angle (opening) by the control unit 5, and the distribution of the air flow rate blown into the room 2 is changed.
  • the intake door 13, the air mix door 21, and the doors 22 to 24 constitute a flow path switching mechanism 30 that switches a flow path 29 (path) through which air flows.
  • the flow path resistance applied to the air flow increases or decreases.
  • the channel resistance is smaller in the inside air circulation state in which the inside air introduction port 12 is opened than in the outside air introduction state in which the outside air introduction port 11 is opened.
  • the flow resistance is an internal air circulation state in which the air in the room 2 circulates through the internal air introduction port 12, the upstream flow channel 14, the downstream flow channel 15, and the defrost outlet 25 as indicated by arrows A2 to A6. Becomes the smallest.
  • the fine particles adhere to the discharge electrode 50. If the fine particles adhering to the discharge electrode 50 are deposited on the discharge electrode 50 without leaving the discharge electrode 50, the ion generation amount N (output) of the discharge electrode 50 is reduced, and the air purification performance is reduced.
  • the air purification device 100 is configured to remove fine particles by applying an air flow sucked into the blower 17 to the discharge electrode 50. By applying an air flow having a higher flow rate than the operating state in which fine particles are deposited to the discharge electrode 50, the deposited fine particles are separated from the discharge electrode 50 and removed.
  • the control unit 5 determines the cleaning timing for cleaning the discharge electrode 50 according to the operating state in the purification mode, and switches to the cleaning mode for increasing the flow rate of the air flow applied to the discharge electrode 50 at the cleaning timing.
  • the control unit 5 includes a CPU that controls the operation of each unit, a control program, for example, a ROM in which the maps shown in FIGS. 2A, 2B, and 3 are stored, detection signals from the particle concentration sensor 6 and the like, and various types of signals. And a RAM for temporarily storing information.
  • a control program for example, a ROM in which the maps shown in FIGS. 2A, 2B, and 3 are stored, detection signals from the particle concentration sensor 6 and the like, and various types of signals.
  • a RAM for temporarily storing information.
  • the control unit 5 determines the cleaning timing according to at least the air flow rate of the blower 17, the fine particle concentration detected by the fine particle concentration sensor 6, and the elapsed time t based on a preset map.
  • 2A and 2B are ion generation amount deterioration maps showing deterioration characteristics in which the ion generation amount N of the discharge electrode 50 decreases according to the elapsed time t.
  • the unit of the ion generation amount N is, for example, “pieces / cc”.
  • the ion generation amount deterioration map of FIG. 2A shows the ion generation amount in three operating states in which the air flow rate of the blower 17 is high (high value) higher than the intermediate value and the fine particle concentration is a constant value of low, medium, and high.
  • N shows a characteristic that changes according to the elapsed time t.
  • the ion generation amount deterioration map of FIG. 2B shows the ion generation amount in three operating states in which the air flow rate of the blower 17 is Low (a low value) lower than the intermediate value and the fine particle concentration is a constant value of low, medium, and high.
  • N shows a characteristic that changes according to the elapsed time t.
  • the amount of generated ions N of the discharge electrode 50 gradually decreases due to the accumulation of fine particles on the discharge electrode 50.
  • the degree to which the amount of generated ions N decreases increases as the amount of blown air decreases, and increases as the concentration of fine particles increases. It should be noted that the actual ion generation amount deterioration map stores not only three operating states but also characteristics in a large number of operating states.
  • the control unit 5 determines the point in time when the ion generation amount is reduced by 5% as the cleaning timing.
  • the reference time T is 30 minutes.
  • the operating time tn is 15 minutes, and the deterioration time ratio Fn is obtained by the following equation.
  • control unit 5 calculates an execution time for executing the cleaning mode according to the fine particle concentration based on a preset ion generation amount recovery map.
  • the ion generation amount recovery map of FIG. 3 shows a characteristic that the ion generation amount N increases and recovers according to the elapsed time t during which the cleaning mode is performed in three operating states in which the fine particle concentration is a constant value of low, medium, and high. Show. It should be noted that the actual ion generation amount deterioration map stores not only three operating states but also characteristics in a large number of operating states.
  • control content of the control unit 5 will be described with reference to the flowchart shown in FIG.
  • step S1 the following information and signals are read.
  • ⁇ Fn 0 when the operation of the air purification apparatus 100 is started.
  • -Fine particle concentration signal This is a particle concentration signal detected by the particle concentration sensor 6.
  • An operation signal of the blower 17 This is an operation signal of the electric motor 20 (for example, the voltage or frequency of the electric power supplied to the electric motor 20) corresponding to the amount of air blown by the blower 17.
  • ⁇ Flow path switching signal This is an operation signal corresponding to the angles of intake door 13, air mix door 21, and doors 23-24.
  • step S2 it is determined whether the operation signal of the electric motor 20 is ON.
  • the process returns to the start.
  • the process proceeds to step S3.
  • step S4 an integrated value ⁇ Fn is calculated based on the calculated deterioration time ratio Fn.
  • step S5 it is determined whether or not the integrated value ⁇ Fn has become “1” or more. If the integrated value ⁇ Fn is smaller than “1”, the process returns to the start. On the other hand, when the integrated value ⁇ Fn becomes “1” or more, it is determined that the cleaning timing has come, and the process proceeds to step S6.
  • step S6 based on the ion generation amount recovery map shown in FIG. 3, the execution time for executing the cleaning mode according to the fine particle concentration is calculated.
  • step S7 the mode is switched to the cleaning mode, and the cleaning mode is executed over the calculated cleaning mode. Then, the integrated value ⁇ Fn is reset to “0” and the process returns to the start.
  • the air volume of the blower 17 is switched to a set air volume that is higher than the maximum air volume that is set in the purification mode.
  • the flow path switching mechanism 30 switches the angles of the doors 13, 21 to 24 so that the flow path resistance applied to the air flow is reduced.
  • the intake door 13 is switched to the inside air introduction position that closes the outside air introduction port 11 and opens the inside air introduction port 12.
  • the air mix door 21 is switched to the maximum cooling position that closes the heater flow path 28 in which the heater core 19 is interposed.
  • the door 23 is switched to a position where the defrost outlet 25 is opened.
  • the flow rate of air blown to the discharge electrode 50 can be increased by increasing the air flow rate of the blower 17 and decreasing the flow path resistance.
  • the fine particles deposited on the discharge electrode 50 are separated from the discharge electrode 50 and removed by the air flow hitting the fine particles.
  • FIG. 5 is a diagram showing how the ion generation amount N changes according to the elapsed time t when the air purification apparatus 100 is in operation.
  • the characteristics indicated by the two-dot chain line in FIG. 5 are those in the case where the discharge electrode 50 is not cleaned, and the amount of ions generated by depositing fine particles on the discharge electrode 50 as the elapsed time t becomes longer. N gradually decreases.
  • the cleaning mode is changed. Executed. In the cleaning mode, the ion generation amount N is recovered by increasing the air flow rate and cleaning the discharge electrode 50. Thus, the cleaning mode is executed between the purification modes, so that the ion generation amount N is kept within a predetermined value or more. Note that the interval at which the cleaning mode is executed again after the cleaning mode is executed changes according to the fine particle concentration and the air flow rate.
  • the cleaning timing is determined according to the integrated value ⁇ Fn of the operating time tn in which the fine particles in the air accumulate on the discharge electrode 50 in the purification mode.
  • the air flow is applied to the discharge electrode 50 in the cleaning mode in which the flow rate of the air flow is higher than that in the purification mode.
  • the fine particles accumulated on the discharge electrode 50 are removed, whereby the ion generation amount N is recovered.
  • control unit 5 may execute the flowchart shown in FIG. 8 instead of the flowchart shown in FIG.
  • control is performed to delay the cleaning timing in accordance with the operation time (recovery time tcn) in which the ion generation amount N recovers in the purification mode.
  • FIG. 6 is a characteristic diagram showing how the amount of decrease in the amount of ion generation N (the rate at which the amount of ion generation N of the discharge electrode 50 decreases per unit time) changes as the air flow rate increases.
  • the reduction amount of the ion generation amount N decreases as the air flow rate increases in the operation state where the fine particle concentration is A, B, C (low, medium, high).
  • the operating state in which the fine particle concentration is lower than the operating state of B and the air flow rate is increased becomes the recovery regions D1 and D2 in which the reduction amount of the ion generation amount N is smaller than zero.
  • the amount of generated ions N is recovered by removing the fine particles from the discharge electrode 50 along with the air flow hitting the discharge electrode 50.
  • the control unit 5 executes the purification mode in the recovery region D1, and performs control to delay the cleaning timing in accordance with the recovery of the ion generation amount N.
  • the control unit 5 executes the cleaning mode in the recovery region D2 and performs control to recover the ion generation amount N.
  • FIG. 7 is an ion generation amount deterioration map showing deterioration characteristics in which the ion generation amount N of the discharge electrode 50 decreases according to the elapsed time t.
  • the ion generation amount N gradually decreases according to the elapsed time t.
  • the recovery area D1 in which the air flow rate is High and the fine particle concentration is lower than the operating state continues, the fine particles are removed from the discharge electrode 50, so that the ion generation amount N decreases according to the elapsed time t. Without being kept at the maximum value.
  • the control unit 5 Based on the ion generation amount deterioration map shown in FIG. 7, the control unit 5 performs the recovery time tcn that operates in the recovery region D1 in which the fine particles are removed from the discharge electrode 50 and the reference recovery time that the ion generation amount N recovers to a predetermined value.
  • the reference recovery time Tc is set to 30 minutes.
  • the recovery time tcn is 15 minutes, and the recovery time ratio Fcn is obtained by the following equation.
  • step S11 the following information and signals are read.
  • the already calculated integrated value ⁇ Fn ⁇ Fcn. Note that ⁇ Fn ⁇ Fcn 0 at the start of operation of the air purification device 100.
  • step S12 it is determined whether the operation signal of the electric motor 20 is ON.
  • the process returns to the start.
  • the air purification device 100 whose operation signal is on is operating, the process proceeds to step S13.
  • step S13 an operation time tn and a recovery time tcn obtained based on the ion generation amount deterioration map shown in FIG.
  • step S14 an integrated value ⁇ (Fn ⁇ Fcn) obtained by integrating the obtained value (Fn ⁇ Fcn) per unit time is calculated.
  • step S15 it is determined whether or not the integrated value ⁇ (Fn ⁇ Fcn) is larger than “0”.
  • the integrated value ⁇ (Fn ⁇ Fcn) becomes “0”, it is considered that the ion generation amount N has recovered to the maximum value, and the process proceeds to step S19, where the integrated value ⁇ (Fn ⁇ Fcn) is reached. ) Is reset to “0” and the process returns to the start.
  • step S16 determines whether or not the integrated value ⁇ (Fn ⁇ Fcn) is “1” or more. If the integrated value ⁇ Fn is smaller than “1”, the process returns to the start. On the other hand, if the integrated value ⁇ Fn is equal to or greater than “1”, it is determined that the cleaning timing has come, and the process proceeds to step S17.
  • step S17 an execution time for executing the cleaning mode according to the fine particle concentration is calculated based on the ion generation amount recovery map shown in FIG.
  • step S18 the mode is switched to the cleaning mode, and the cleaning mode is executed over the calculated execution time. Then, the integrated value ⁇ (Fn ⁇ Fcn) is reset to “0” and the process returns to the start.
  • FIG. 9 is a diagram showing how the ion generation amount N changes according to the elapsed time t when the air purification apparatus 100 is in operation.
  • the section surrounded by a broken line in FIG. 9 is in the recovery region D1, and the recovery time ratio Fcn for removing the fine particles is subtracted from the deterioration time ratio Fn in which fine particles are deposited in this section.
  • the recovery time tcn in the recovery region D1 increases, the time t until the transition to the cleaning mode is extended.
  • the operation time for executing the purification mode is lengthened, and the air is purified.
  • the discharge electrode 50 is provided to face the air flow sucked into the blower 17.
  • the discharge electrode 50 is provided in the central portion of the upstream flow path 14 upstream of the collecting portion 16 and is disposed so as to be substantially orthogonal to the rotation center axis O17 of the blower 17.
  • the air flow strikes the discharge electrode 50 substantially perpendicularly, so that accumulation of fine particles on the discharge electrode 50 is suppressed.
  • the fine particles once deposited with the air flow rate being increased are separated from the discharge electrode 50 and removed. As a result, the frequency of executing the cleaning mode can be reduced, or the cleaning mode need not be executed.
  • the blower 17 includes a fan 41 having a large number of blades arranged in a cylindrical shape, and a casing 42 that houses the fan 41.
  • the fan 41 rotates around the rotation center axis O17 and blows air in the centrifugal direction.
  • the casing 42 includes a bell mouth suction port 42A that guides air to the inside of the fan 41, a shellfish-like rectifying unit 42B that collects air sent from the fan 41, and a discharge port 42C that discharges the collected air (FIG. 12). Reference).
  • the casing 42 may be formed integrally with the housing 10.
  • the collection unit 16 is provided on the upstream side of the suction port 42 ⁇ / b> A and is disposed so as to face the casing 42.
  • the filter center line O16 of the collection unit 16 extends substantially parallel to the rotation center axis O17 of the blower 17 and is offset with respect to the rotation center axis O17.
  • the intake door 13 rotates around the hinge shaft 43.
  • the hinge shaft 43 extends on a surface substantially orthogonal to the rotation center axis O17 with respect to the rotation center axis O17 of the blower 17.
  • the tip 13A of the plate-like intake door 13 rotates with an arcuate locus Q centering on the hinge shaft 43.
  • the discharge electrode 50 is disposed in a region between the trajectory Q and the collection unit 16. Thereby, it is avoided that the discharge electrode 50 interferes with the action
  • a region formed between the opening end of the inside air introduction port 12 and the opening end of the suction port 42A is defined as an inside air introduction region 14A.
  • the inside air introduction region 14A is a space formed inside a plurality of straight lines L connecting the opening edge of the inside air introduction port 12 and the opening edge of the suction port 42A.
  • the air from the room 2 is upstream from the inside air introduction port 12 as indicated by an arrow A1. It flows into the flow path 14.
  • the main flow of the air flow from the inside air introduction port 12 toward the suction port 42 ⁇ / b> A flows through the inside air introduction region 14 ⁇ / b> A, and thus the air flow rate in the inside air introduction region 14 ⁇ / b> A becomes higher than the other regions.
  • the discharge electrode 50 is disposed in the inside air introduction region 14A. Thereby, the air flow velocity which hits the discharge electrode 50 is increased, and the effect of removing fine particles deposited on the discharge electrode 50 is obtained.
  • the first hinge parallel line R17 is a straight line including the rotation center axis O17 of the blower 17 and extending substantially parallel to the hinge axis 43 of the intake door 13.
  • the second hinge parallel line R ⁇ b> 16 is a straight line that includes the filter center line O ⁇ b> 16 of the collection portion 16 and extends substantially parallel to the hinge shaft 43 of the intake door 13.
  • the central transverse region 14B is a region sandwiched between the first hinge parallel line R17 and the second hinge parallel line R16.
  • the center crossing region 14B is a region away from both the inner wall surfaces 10A and 10C facing each other in the casing 10 in a direction orthogonal to the hinge shaft 43 (left and right direction in FIG. 12).
  • the air flow flowing through the central transverse region 14B has a higher flow velocity than the region in the vicinity of the inner wall surfaces 10A and 10C, and a velocity component (along the rotation center axis O17 of the blower 17) where the air flow faces the discharge electrode 50.
  • Speed component toward the blower 17 increases.
  • the discharge electrode 50 is disposed in the central transverse region 14B. As a result, the flow velocity of air hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 substantially orthogonally, so that the effect of removing fine particles deposited on the discharge electrode 50 can be enhanced.
  • the first hinge orthogonal line P17 is a straight line including the rotation center axis O17 of the blower 17 and extending in a direction substantially orthogonal to the hinge axis 43 of the intake door 13.
  • the second hinge orthogonal line P ⁇ b> 16 is a straight line including the filter center line O ⁇ b> 16 of the collection part 16 and extending in a direction substantially orthogonal to the hinge shaft 43 of the intake door 13.
  • the central longitudinal section 14C is an area sandwiched between the first hinge orthogonal line P17 and the second hinge orthogonal line P16.
  • the central longitudinal region 14C is a region away from both the inner wall surfaces 10B and 10D facing each other of the housing 10 in a direction parallel to the hinge shaft 43 (vertical direction in FIG. 12). For this reason, the airflow flowing through the central longitudinal section 14C has a higher flow velocity than the areas near the inner wall surfaces 10B and 10D, and the velocity component at which the airflow faces the discharge electrode 50 increases.
  • the discharge electrode 50 is disposed in the central longitudinal region 14C. As a result, the flow velocity of the air impinging on the discharge electrode 50 is increased, and the velocity component of the air flow faces the discharge electrode 50 substantially orthogonally, so that the effect of removing the fine particles deposited on the discharge electrode 50 can be enhanced.
  • the central region 14D is a region where the central transverse region 14B and the central longitudinal region 14C intersect.
  • the central region 14D is separated from the four inner wall surfaces 10A to 10D of the housing 10 and faces the central portion of the blower 17. For this reason, the velocity component at which the airflow faces the discharge electrode 50 is highest in the central region 14D.
  • the discharge electrode 50 is disposed in the central region 14D. As a result, the air flow velocity hitting the discharge electrode 50 is increased and the velocity component of the air flow facing the discharge electrode 50 is increased, so that the effect of removing fine particles deposited on the discharge electrode 50 can be enhanced most. Furthermore, since the charged fine particles are diffused over a wide range of the collection unit 16, the purification performance by the collection unit 16 can be enhanced.
  • the discharge electrode 50 is supported by the housing 10 via a rod-shaped bracket 51.
  • the bracket 51 is disposed so as to extend substantially parallel to the hinge shaft 43.
  • the discharge electrode 50 is provided at the tip of the bracket 51 and is disposed at the center of the upstream flow path 14.
  • two harnesses 55 are accommodated in the bracket 51.
  • the discharge electrode 50 is energized through two harnesses 55.
  • the base end portion of the bracket 51 is attached to the attachment portion 60 of the housing 10 via the annular grommets 52 and 53 and the two screws 54.
  • the mounting portion 60 has a through-hole 61 through which the bracket 51 passes and a pair of boss portions 62 into which two screws 54 are screwed.
  • the housing 10 is provided with a plurality of (here, three) attachment portions 60 to which the brackets 51 are attached.
  • the mounting portions 60 are arranged so as to be aligned in a direction substantially orthogonal to the hinge shaft 43 (left and right direction in FIG. 10).
  • the housing 10 is formed by dividing the upper and lower members 8 and 9 sandwiching the attachment portion 60.
  • the member 9 on the upper side of the housing 10 is selected and provided in a shape corresponding to a vehicle in which the position of the handle is different on the left and right.
  • the attachment portion 60 to which the bracket 51 is attached is changed.
  • the mounting position of the discharge electrode 50 is changed in the vehicle width direction. Thereby, it becomes possible to provide the discharge electrode 50 in an appropriate position with respect to the casing 10 of a different vehicle.
  • the mounting position of the discharge electrode 50 can be changed in the longitudinal direction of the vehicle by changing the length of the bracket 51 or changing the shapes of the grommets 52 and 53 according to the shape of the housing 10.
  • the air purification apparatus 100 purifies air, and includes a discharge electrode 50 that generates ions in the air, a collection unit 16 that collects particles in the air charged by the ions, and a collection unit. And a blower 17 for flowing air so as to pass through the collecting portion 16, and the blower 17 is configured to generate a flow in which the air flow is applied to the fine particles deposited on the discharge electrode 50.
  • the air purification apparatus 100 can maintain the air purification performance with a simple structure.
  • the air purification device 100 is configured to switch between a purification mode in which ions are generated from the discharge electrode 50 to purify the air, and a cleaning mode in which the flow rate of the airflow hitting the discharge electrode 50 is increased.
  • the switching between the purification mode and the cleaning mode is not limited to the configuration performed by the control unit 5 and may be configured manually.
  • the air purification device 100 includes the control unit 5, and the control unit 5 is configured to determine the cleaning timing for switching to the cleaning mode according to the operating state in the purification mode.
  • the cleaning timing is determined by measuring, for example, the ion generation amount N (particulate deposition amount) of the discharge electrode 50 according to the operating state in the purification mode. In this way, by executing the cleaning mode at an appropriate time, it is possible to lengthen the operation time during which the purification mode is executed.
  • control part 5 is based on the preset map, and the ion generation amount N (particulate deposition amount) of the discharge electrode 50 according to the parameter of the elapsed time t, the ventilation volume of the air blower 17, and particulate concentration at least. Etc., the cleaning timing can be accurately determined.
  • it is good also as a structure which calculates ion generation amount N according to the same parameter based on a regression equation, without using a map instead of the structure mentioned above.
  • control unit 5 performs the cleaning in which the cleaning mode is executed as the recovery time tcn (operation time) in which the ion generation amount N of the discharge electrode 50 increases (recovers) in the operation state in which the purification mode is executed increases. It was set as the structure which delays timing.
  • the cleaning timing is delayed in accordance with the particles once deposited on the discharge electrode 50 in the purification mode being removed from the discharge electrode 50 by the air flow hitting the discharge electrode 50.
  • the operating time for which the purification mode is executed can be lengthened to purify the air.
  • the air flow rate of the blower 17 is switched to a set air volume that is higher than the maximum air volume set in the purification mode. Thereby, the fine particles deposited on the discharge electrode 50 are quickly removed.
  • the flow path 29 is switched by the flow path switching mechanism 30 so as to reduce the flow path resistance of the air flow sent by the blower 17.
  • the outside air inlet 11 is closed by the intake door 13 of the passage switching mechanism 30 and the passage 29 is switched so as to open the inside air inlet 12.
  • the flow resistance of the air flow sent by the blower 17 can be reduced, and the air flow rate hitting the discharge electrode 50 can be increased. Thereby, the fine particles deposited on the discharge electrode 50 are quickly removed.
  • the flow path 29 has an inside air introduction region 14A formed between the opening end of the inside air introduction port 12 and the opening end of the suction port 42A.
  • the discharge electrode 50 is configured to be disposed in the inside air introduction region 14A.
  • the flow path 29 includes a first hinge parallel line R17 that includes the rotation center axis O17 of the blower 17 and extends substantially parallel to the hinge shaft 43 of the intake door 13, and a filter center line O16 of the collection portion 16.
  • a central transverse region 14B is sandwiched between a hinge axis 43 of the door 13 and a second hinge parallel line R16 extending substantially in parallel.
  • the discharge electrode 50 was arranged in the central transverse region 14B.
  • the air flow rate hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 so as to be substantially perpendicular to the discharge electrode 50.
  • the effect of removing fine particles can be enhanced.
  • the flow path 29 includes a first hinge orthogonal line P17 including the rotation center axis O17 of the blower 17 and extending in a direction substantially orthogonal to the hinge shaft 43 of the intake door 13, and a filter center line O16 of the collection unit 16.
  • a central longitudinal region 14 ⁇ / b> C sandwiched between a hinge axis 43 of the intake door 13 and a second hinge orthogonal line P ⁇ b> 16 extending in a direction substantially orthogonal to the intake door 13 is included.
  • the discharge electrode 50 was configured to be disposed in the central longitudinal region 14C.
  • the air flow rate hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 so as to be substantially perpendicular to the discharge electrode 50.
  • the effect of removing fine particles can be enhanced.
  • the present invention is suitable as an air purification device mounted on a vehicle, but can also be applied to an air purification device used other than a vehicle.

Abstract

This air purification device (100) purifies air and comprises: a discharge electrode (50) for generating ions in the air; a trapping unit (16) for trapping microparticles in the air that have been charged by the ions; and a blower (17) for causing air to flow so as to pass through the trapping unit (16). The blower (17) generates an air flow that hits microparticles accumulated on the discharge electrode (50).

Description

空気浄化装置Air purification device
 本発明は、空気を浄化する空気浄化装置に関する。 The present invention relates to an air purification device that purifies air.
 JP2015-188851Aには、放電電極(イオナイザ)を用いて空気中の粉塵を帯電させて捕集する空気浄化装置(電気集塵装置)が開示されている。 JP2015-188851A discloses an air purifier (electric dust collector) that charges and collects dust in the air using a discharge electrode (ionizer).
 上記空気浄化装置では、経時的に粉塵が放電電極に堆積すると、放電電極の出力が低下して空気の浄化性能が低下するおそれがある。 In the above air purification apparatus, if dust accumulates on the discharge electrode over time, the output of the discharge electrode may be reduced and the air purification performance may be reduced.
 この対処方法として、JP2000-024548Aでは、放電電極を清掃するクリーニング装置が提案されている。このクリーニング装置は、放電電極にブラシ(清掃部材)を摺接させて、放電電極に堆積した粉塵を掻き落とすようになっている。 As this coping method, JP2000-024548A proposes a cleaning device for cleaning the discharge electrode. In this cleaning device, a brush (cleaning member) is brought into sliding contact with the discharge electrode to scrape off dust accumulated on the discharge electrode.
 しかしながら、JP2000-024548Aのクリーニング装置は、放電電極を清掃するのに、放電電極に摺接するブラシを必要とする。このため、JP2000-024548Aのクリーニング装置をJP2015-188851Aの空気浄化装置に適用した場合には、空気浄化装置の構造が複雑になるおそれがある。 However, the cleaning device of JP2000-024548A requires a brush that is in sliding contact with the discharge electrode in order to clean the discharge electrode. For this reason, when the cleaning device of JP2000-024548A is applied to the air purification device of JP2015-188851A, the structure of the air purification device may be complicated.
 本発明は、簡便な構造によって空気の浄化性能を維持する空気浄化装置を提供することを目的とする。 An object of the present invention is to provide an air purification device that maintains air purification performance with a simple structure.
 本発明のある態様によれば、空気を浄化する空気浄化装置であって、空気中にイオンを発生する放電電極と、イオンによって帯電した空気中の微粒子を捕集する捕集部と、前記捕集部を通過するように空気を流す送風機と、を備え、前記送風機は、空気流を前記放電電極に堆積した微粒子に当てるような流れを発生させる空気浄化装置が提供される。 According to an aspect of the present invention, there is provided an air purification device that purifies air, a discharge electrode that generates ions in the air, a collection unit that collects particles in the air charged by the ions, and the capture unit. And a blower for flowing air so as to pass through the collecting portion, and the blower is provided with an air purification device that generates a flow that applies an air flow to the fine particles accumulated on the discharge electrode.
 上記態様によれば、空気流を放電電極に当てることによって、放電電極に堆積した微粒子が除去される。こうして、放電電極では、ブラシ等を用いることなく、堆積した微粒子が除去される。よって、簡便な構造によって空気の浄化性能を維持する空気浄化装置を提供することができる。 According to the above aspect, the fine particles deposited on the discharge electrode are removed by applying an air flow to the discharge electrode. Thus, the deposited fine particles are removed from the discharge electrode without using a brush or the like. Therefore, it is possible to provide an air purification device that maintains air purification performance with a simple structure.
図1は、本発明の実施形態に係る空気浄化装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an air purification device according to an embodiment of the present invention. 図2Aは、イオン発生量劣化マップを示す線図である。FIG. 2A is a diagram showing an ion generation amount deterioration map. 図2Bは、イオン発生量劣化マップを示す線図である。FIG. 2B is a diagram showing an ion generation amount deterioration map. 図3は、イオン発生量回復マップを示す線図である。FIG. 3 is a diagram showing an ion generation amount recovery map. 図4は、制御内容を示すフローチャートである。FIG. 4 is a flowchart showing control contents. 図5は、経過時間に応じてイオン発生量が変化する様子を示す線図である。FIG. 5 is a diagram showing how the amount of generated ions changes according to the elapsed time. 図6は、空気流速に応じてイオン発生量の低下代が変化する様子を示す特性図である。FIG. 6 is a characteristic diagram showing how the amount of decrease in the amount of ion generation changes according to the air flow rate. 図7は、イオン発生量劣化マップを示す線図である。FIG. 7 is a diagram showing an ion generation amount deterioration map. 図8は、制御内容を示すフローチャートである。FIG. 8 is a flowchart showing the control contents. 図9は、経過時間に応じてイオン発生量が変化する様子を示す線図である。FIG. 9 is a diagram showing how the amount of ion generation changes according to the elapsed time. 図10は、図12のX-X線に沿う断面図である。10 is a cross-sectional view taken along line XX in FIG. 図11は、図10のXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、図10のXII-XII線に沿う断面図である。12 is a cross-sectional view taken along line XII-XII in FIG. 図13は、ブラケット等を示す断面図である。FIG. 13 is a cross-sectional view showing a bracket and the like. 図14は、図13のXIV-XIV線に沿う断面図である。14 is a cross-sectional view taken along line XIV-XIV in FIG.
 以下、添付図面を参照しながら、本発明の実施形態に係る空気浄化装置100について説明する。 Hereinafter, an air purification device 100 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は、車両1に搭載され、空気浄化装置100が適用される空調装置101の概略構成を示す図である。空気浄化装置100は、浄化された空気を車両1の室内2に供給する。空気浄化装置100は、空調装置101に含まれる。 FIG. 1 is a diagram showing a schematic configuration of an air conditioner 101 that is mounted on a vehicle 1 and to which an air purification device 100 is applied. The air purification device 100 supplies the purified air to the room 2 of the vehicle 1. The air purification device 100 is included in the air conditioner 101.
 空気浄化装置100は、空気を導く筐体(ケース)10と、送風機(ブロワファン)17と、を備える。送風機17は、電動機20によって駆動され、筐体10の内部で空気を送る。送風機17の送風量(単位時間あたりの吐出空気流量)は、制御部(コントローラ)5によって多段階に切り換えられる。 The air purification device 100 includes a casing (case) 10 that guides air and a blower (blower fan) 17. The blower 17 is driven by the electric motor 20 and sends air inside the housing 10. The amount of air blown by the blower 17 (discharged air flow rate per unit time) is switched in multiple stages by the control unit (controller) 5.
 筐体10内の流路(送風路)29において送風機17より上流側には、外気導入口11,内気導入口12,及び上流側流路14が設けられる。外気導入口11は、車両1の外部から空気を矢印A1で示すように導入する流路である。内気導入口12は、室内2から空気を矢印A2で示すように導入する流路である。内気導入口12は、外気導入口11に比べて、流路長が短く、かつ流路抵抗が小さい。 An outside air introduction port 11, an inside air introduction port 12, and an upstream side flow channel 14 are provided on the upstream side of the blower 17 in the flow channel (blower channel) 29 in the housing 10. The outside air inlet 11 is a flow path for introducing air from the outside of the vehicle 1 as indicated by an arrow A1. The inside air introduction port 12 is a flow path for introducing air from the room 2 as indicated by an arrow A2. The inside air inlet 12 has a shorter channel length and a lower channel resistance than the outside air inlet 11.
 外気導入口11と内気導入口12の合流部には、これらを開閉するインテークドア13が設けられる。インテークドア13は、制御部5によってその角度(開度)を変えられる。インテークドア13は、外気導入位置と、図1に示す内気導入位置とに切り換えられ、もしくは、その角度に応じて、内気と外気との混合率を調整する。 An intake door 13 that opens and closes the outside air inlet 11 and the inside air inlet 12 is provided at the junction. The angle (opening) of the intake door 13 can be changed by the control unit 5. The intake door 13 is switched between the outside air introduction position and the inside air introduction position shown in FIG. 1, or adjusts the mixing ratio of the inside air and the outside air according to the angle.
 上流側流路14には、放電電極50(イオナイザ),微粒子濃度センサ(塵埃濃度センサ)6,及び捕集部(静電フィルタ)16が設けられる。 The upstream flow path 14 is provided with a discharge electrode 50 (ionizer), a fine particle concentration sensor (dust concentration sensor) 6, and a collection part (electrostatic filter) 16.
 微粒子濃度センサ6は、空気中の微粒子の濃度を検出する。微粒子濃度センサ6の検出信号は、制御部5に送られる。 The fine particle concentration sensor 6 detects the concentration of fine particles in the air. The detection signal of the fine particle concentration sensor 6 is sent to the control unit 5.
 放電電極50は、制御部5によって通電され、プラスイオンもしくはマイナスイオンを発生する。放電電極50から発生するイオンは、上流側流路14を矢印A3で示すように流れる空気中の微粒子を帯電させる。 The discharge electrode 50 is energized by the control unit 5 to generate positive ions or negative ions. The ions generated from the discharge electrode 50 charge the fine particles in the air flowing through the upstream flow path 14 as indicated by the arrow A3.
 捕集部16は、プラスもしくはマイナスの静電気を帯びるように通電され、放電電極50で帯電された空気中の微粒子(例えば、PM(Particulate Matter)2.5)を静電気力によって捕集する。また、捕集部16は、車体に導通されることで、接地電位(車体のグランド電位)に固定されるようにしてもよい。こうして、筐体10内の流路29を流れる空気は、捕集部16を通過することで浄化された後に、送風機17に吸い込まれる。 The collection unit 16 is energized so as to have positive or negative static electricity, and collects fine particles in the air (for example, PM (Particulate Matter) 2.5) charged by the discharge electrode 50 by electrostatic force. The collecting unit 16 may be fixed to the ground potential (the ground potential of the vehicle body) by being conducted to the vehicle body. Thus, the air flowing through the flow path 29 in the housing 10 is purified by passing through the collection unit 16 and then sucked into the blower 17.
 筐体10内の流路29において送風機17より下流側には、下流側流路15,デフロスト吹き出し口25,ベント吹き出し口26,及びフット吹き出し口27が設けられる。デフロスト吹き出し口25からは、空気が室内2の窓3に向けて吹き出される。ベント吹き出し口26からは、空気が室内2の座席(図示省略)に向けて吹き出される。フット吹き出し口27からは、空気が室内2の床(図示省略)に向けて吹き出される。 In the flow path 29 in the housing 10, a downstream flow path 15, a defrost blowout port 25, a vent blowout port 26, and a foot blowout port 27 are provided on the downstream side of the blower 17. Air is blown out from the defrost outlet 25 toward the window 3 in the room 2. From the vent outlet 26, air is blown out toward the seat (not shown) in the room 2. Air is blown out from the foot outlet 27 toward the floor (not shown) of the room 2.
 下流側流路15には、エバポレータ(空気冷却用の熱交換器)18,ヒーターコア(空気加熱用の熱交換器)19,及びエアミックスドア21が設けられる。送風機17から矢印A4で示すように吐出される空気は、エバポレータ18を通過した後、エアミックスドア21を介してヒーターコア19を通って温度調整される。 The downstream channel 15 is provided with an evaporator (heat exchanger for air cooling) 18, a heater core (heat exchanger for air heating) 19, and an air mix door 21. The air discharged from the blower 17 as indicated by the arrow A4 passes through the evaporator 18 and then the temperature is adjusted through the heater core 19 via the air mix door 21.
 エアミックスドア21は、制御部5によってその角度(開度)を変えられ、ヒーターコア19を通過する空気流量を調整する。 The air mix door 21 has its angle (opening) changed by the control unit 5 and adjusts the flow rate of air passing through the heater core 19.
 デフロスト吹き出し口25,ベント吹き出し口26,及びフット吹き出し口27には、それぞれドア22~24が設けられる。ドア22~24は、制御部5によってそれぞれの角度(開度)が変えられ、室内2に吹き出される空気流量の分布が変えられる。 Doors 22 to 24 are provided in the defrost outlet 25, the vent outlet 26, and the foot outlet 27, respectively. The doors 22 to 24 are changed in angle (opening) by the control unit 5, and the distribution of the air flow rate blown into the room 2 is changed.
 インテークドア13,エアミックスドア21,及びドア22~24は、空気が流れる流路29(経路)を切り換える流路切換機構30を構成する。空気浄化装置100は、流路切換機構30の作動によって流路の長さや曲率、あるいはヒーターコア19を通過する流量が変化すると、空気流に与える流路抵抗が増減する。なお、流路抵抗は、外気導入口11が開通する外気導入状態よりも、内気導入口12が開通する内気循環状態の方が小さくなる。流路抵抗は、室内2の空気が、矢印A2~A6で示すように、内気導入口12、上流側流路14、下流側流路15、及びデフロスト吹き出し口25を通って循環する内気循環状態で最も小さくなる。 The intake door 13, the air mix door 21, and the doors 22 to 24 constitute a flow path switching mechanism 30 that switches a flow path 29 (path) through which air flows. In the air purification apparatus 100, when the flow path length and curvature or the flow rate passing through the heater core 19 is changed by the operation of the flow path switching mechanism 30, the flow path resistance applied to the air flow increases or decreases. The channel resistance is smaller in the inside air circulation state in which the inside air introduction port 12 is opened than in the outside air introduction state in which the outside air introduction port 11 is opened. The flow resistance is an internal air circulation state in which the air in the room 2 circulates through the internal air introduction port 12, the upstream flow channel 14, the downstream flow channel 15, and the defrost outlet 25 as indicated by arrows A2 to A6. Becomes the smallest.
 ところで、空気浄化装置100では、放電電極50が微粒子を含む空気に露出しているため、微粒子が放電電極50に付着する。放電電極50に付着した微粒子が放電電極50から離脱せずに放電電極50に堆積すると、放電電極50のイオン発生量N(出力)が低下して、空気の浄化性能が低下する。 By the way, in the air purification apparatus 100, since the discharge electrode 50 is exposed to the air containing fine particles, the fine particles adhere to the discharge electrode 50. If the fine particles adhering to the discharge electrode 50 are deposited on the discharge electrode 50 without leaving the discharge electrode 50, the ion generation amount N (output) of the discharge electrode 50 is reduced, and the air purification performance is reduced.
 この対処方法として、空気浄化装置100は、送風機17に吸い込まれる空気流を放電電極50に当てて微粒子を除去する構成とする。微粒子が堆積する稼働状態より流速を高めた空気流を放電電極50に当てることにより、堆積した微粒子が放電電極50から離脱して除去される。 As this coping method, the air purification device 100 is configured to remove fine particles by applying an air flow sucked into the blower 17 to the discharge electrode 50. By applying an air flow having a higher flow rate than the operating state in which fine particles are deposited to the discharge electrode 50, the deposited fine particles are separated from the discharge electrode 50 and removed.
 制御部5は、浄化モードにおける稼働状態に応じて放電電極50を清掃する清掃タイミングを判定し、清掃タイミングにて放電電極50に当てられる空気流の流速を高める清掃モードに切り換える。 The control unit 5 determines the cleaning timing for cleaning the discharge electrode 50 according to the operating state in the purification mode, and switches to the cleaning mode for increasing the flow rate of the air flow applied to the discharge electrode 50 at the cleaning timing.
 制御部5は、各部の動作を制御するCPUと、制御プログラムや例えば、図2A,図2B,及び図3に示すマップ等が記憶されたROMと、微粒子濃度センサ6等の検出信号及び各種の情報を一時的に記憶するRAMとを備える。 The control unit 5 includes a CPU that controls the operation of each unit, a control program, for example, a ROM in which the maps shown in FIGS. 2A, 2B, and 3 are stored, detection signals from the particle concentration sensor 6 and the like, and various types of signals. And a RAM for temporarily storing information.
 制御部5は、予め設定されたマップに基づき、少なくとも送風機17の送風量と、微粒子濃度センサ6によって検出される微粒子濃度と、経過時間tと、に応じて清掃タイミングを判定する。 The control unit 5 determines the cleaning timing according to at least the air flow rate of the blower 17, the fine particle concentration detected by the fine particle concentration sensor 6, and the elapsed time t based on a preset map.
 図2A及び図2Bは、放電電極50のイオン発生量Nが経過時間tに応じて低下する劣化特性を示すイオン発生量劣化マップである。なお、イオン発生量Nの単位は、例えば、「個/cc」である。 2A and 2B are ion generation amount deterioration maps showing deterioration characteristics in which the ion generation amount N of the discharge electrode 50 decreases according to the elapsed time t. The unit of the ion generation amount N is, for example, “pieces / cc”.
 図2Aのイオン発生量劣化マップは、送風機17の送風量が中間値より高いHigh(高い値)であって、微粒子濃度が低,中,高の一定値である3つの稼働状態においてイオン発生量Nが経過時間tに応じて変化する特性を示している。図2Bのイオン発生量劣化マップは、送風機17の送風量が中間値より低いLow(低い値)であって、微粒子濃度が低,中,高の一定値である3つの稼働状態においてイオン発生量Nが経過時間tに応じて変化する特性を示している。こうした浄化モードで稼働しているときには、微粒子が放電電極50に堆積することで、放電電極50のイオン発生量Nが次第に低下する。イオン発生量Nが低下する度合いは、送風量が低い程大きくなり、微粒子濃度が高い程大きくなる。なお、実際のイオン発生量劣化マップには、3つの稼働状態に限らず、多数の稼働状態における特性が記憶される。 The ion generation amount deterioration map of FIG. 2A shows the ion generation amount in three operating states in which the air flow rate of the blower 17 is high (high value) higher than the intermediate value and the fine particle concentration is a constant value of low, medium, and high. N shows a characteristic that changes according to the elapsed time t. The ion generation amount deterioration map of FIG. 2B shows the ion generation amount in three operating states in which the air flow rate of the blower 17 is Low (a low value) lower than the intermediate value and the fine particle concentration is a constant value of low, medium, and high. N shows a characteristic that changes according to the elapsed time t. When operating in such a purification mode, the amount of generated ions N of the discharge electrode 50 gradually decreases due to the accumulation of fine particles on the discharge electrode 50. The degree to which the amount of generated ions N decreases increases as the amount of blown air decreases, and increases as the concentration of fine particles increases. It should be noted that the actual ion generation amount deterioration map stores not only three operating states but also characteristics in a large number of operating states.
 制御部5は、上記イオン発生量劣化マップに基づいて、空気浄化装置100の各稼働状態における稼働時間tnとイオン発生量Nが所定値に低下する基準時間Tとの劣化時間比Fn(=tn/T)を求め、これらの求められた劣化時間比Fnの積算値ΣFnが「1」になったときに、清掃モードに切り換える清掃タイミングと判定する。 Based on the ion generation amount deterioration map, the control unit 5 determines the deterioration time ratio Fn (= tn) between the operation time tn in each operating state of the air purification device 100 and the reference time T when the ion generation amount N decreases to a predetermined value. / T), and when the integrated value ΣFn of these obtained deterioration time ratios Fn becomes “1”, it is determined as the cleaning timing for switching to the cleaning mode.
 例えば、制御部5は、イオン発生量が5%低下した時点を、清掃タイミングと判定する。空気浄化装置100がある稼働状態で30分間稼働することで、イオン発生量が5%低下する場合には、基準時間Tが30分となる。この稼働状態が15分稼働した場合に、稼働時間tnが15分となり、劣化時間比Fnは次式で求められる。
Fn=tn/T=15/30=0.5
こうしてFnが0.5になった後に、更にある稼働状態で稼働するのに伴ってFnが積算され、やがてΣFn=1になった時点で、清掃タイミングと判定する。
For example, the control unit 5 determines the point in time when the ion generation amount is reduced by 5% as the cleaning timing. When the air purification apparatus 100 operates for 30 minutes in a certain operating state, and the ion generation amount decreases by 5%, the reference time T is 30 minutes. When this operating state is operated for 15 minutes, the operating time tn is 15 minutes, and the deterioration time ratio Fn is obtained by the following equation.
Fn = tn / T = 15/30 = 0.5
After Fn becomes 0.5 in this way, Fn is accumulated as the machine further operates in a certain operating state, and when ΣFn = 1 is eventually reached, the cleaning timing is determined.
 また、制御部5は、清掃モードを実行する際に、予め設定されたイオン発生量回復マップに基づき、微粒子濃度に応じて清掃モードを実行する実行時間を算出する。 Further, when executing the cleaning mode, the control unit 5 calculates an execution time for executing the cleaning mode according to the fine particle concentration based on a preset ion generation amount recovery map.
 図3のイオン発生量回復マップは、微粒子濃度が低,中,高の一定値である3つの稼働状態において清掃モードが行われる経過時間tに応じてイオン発生量Nが高まって回復する特性を示している。なお、実際のイオン発生量劣化マップには、3つの稼働状態に限らず、多数の稼働状態における特性が記憶される。 The ion generation amount recovery map of FIG. 3 shows a characteristic that the ion generation amount N increases and recovers according to the elapsed time t during which the cleaning mode is performed in three operating states in which the fine particle concentration is a constant value of low, medium, and high. Show. It should be noted that the actual ion generation amount deterioration map stores not only three operating states but also characteristics in a large number of operating states.
 次に、図4に示すフローチャートを参照して、制御部5の上記制御内容を説明する。 Next, the control content of the control unit 5 will be described with reference to the flowchart shown in FIG.
 まず、ステップS1では、以下の情報及び信号を読み込む。
・既に算出された積算値ΣFn。なお、空気浄化装置100の稼働開始時には、ΣFn=0になっている。
・微粒子濃度信号。これは、微粒子濃度センサ6によって検出される微粒子濃度の信号である。
・送風機17の作動信号。これは、送風機17の送風量に対応する、電動機20の作動信号(例えば、電動機20に供給される電力の電圧又は周波数)である。
・流路切り換え信号。これは、インテークドア13,エアミックスドア21,及びドア23~24の角度に対応する作動信号である。
First, in step S1, the following information and signals are read.
The already calculated integrated value ΣFn. Note that ΣFn = 0 when the operation of the air purification apparatus 100 is started.
-Fine particle concentration signal. This is a particle concentration signal detected by the particle concentration sensor 6.
An operation signal of the blower 17 This is an operation signal of the electric motor 20 (for example, the voltage or frequency of the electric power supplied to the electric motor 20) corresponding to the amount of air blown by the blower 17.
・ Flow path switching signal. This is an operation signal corresponding to the angles of intake door 13, air mix door 21, and doors 23-24.
 続いて、ステップS2に進んで、電動機20の作動信号がオンであるか否かを判定する。ここで、作動信号がオフである空気浄化装置100の停止時には、スタートに戻る。一方、作動信号がオンである空気浄化装置100の稼働時には、ステップS3に進む。 Then, it progresses to step S2 and it is determined whether the operation signal of the electric motor 20 is ON. Here, when the air purification device 100 whose operation signal is off is stopped, the process returns to the start. On the other hand, when the air purification device 100 whose operation signal is on is operating, the process proceeds to step S3.
 ステップS3では、図2A及び図2B等に示すイオン発生量劣化マップに基づいて求められる基準時間T及び稼働時間tnから劣化時間比FnをFn=tn/Tとして算出する。 In step S3, the deterioration time ratio Fn is calculated as Fn = tn / T from the reference time T and the operation time tn obtained based on the ion generation amount deterioration map shown in FIGS. 2A and 2B and the like.
 ステップS4では、算出された劣化時間比Fnに基づいて、積算値ΣFnを算出する。 In step S4, an integrated value ΣFn is calculated based on the calculated deterioration time ratio Fn.
 続いて、ステップS5に進んで、積算値ΣFnが「1」以上になったか否かを判定する。ここで、積算値ΣFnが「1」よりも小さい場合には、スタートに戻る。一方、積算値ΣFnが「1」以上になった場合には、清掃タイミングが来たことを判定して、ステップS6に進む。 Subsequently, the process proceeds to step S5, in which it is determined whether or not the integrated value ΣFn has become “1” or more. If the integrated value ΣFn is smaller than “1”, the process returns to the start. On the other hand, when the integrated value ΣFn becomes “1” or more, it is determined that the cleaning timing has come, and the process proceeds to step S6.
 ステップS6では、図3に示すイオン発生量回復マップに基づいて、微粒子濃度に応じて清掃モードを実行する実行時間を算出する。 In step S6, based on the ion generation amount recovery map shown in FIG. 3, the execution time for executing the cleaning mode according to the fine particle concentration is calculated.
 続くステップS7では、清掃モードに切り換え、算出された清掃モードにわたって清掃モードを実行する。そして、積算値ΣFnの値をリセットして「0」にし、スタートに戻る。 In subsequent step S7, the mode is switched to the cleaning mode, and the cleaning mode is executed over the calculated cleaning mode. Then, the integrated value ΣFn is reset to “0” and the process returns to the start.
 清掃モードでは、以下の制御が行われる。
・送風機17の送風量が、浄化モードで設定される最大送風量より更に多い設定風量に切り換えられる。
・流路切換機構30は、空気流に与える流路抵抗が小さくなるように各ドア13,21~24の角度が切り換えられる。例えば、インテークドア13は、外気導入口11を閉じ、かつ内気導入口12を開く内気導入位置に切り換えられる。エアミックスドア21は、ヒーターコア19が介装されるヒーター流路28を閉じる最大冷房位置に切り換えられる。ドア23は、デフロスト吹き出し口25を開く位置に切り換えられる。
In the cleaning mode, the following control is performed.
The air volume of the blower 17 is switched to a set air volume that is higher than the maximum air volume that is set in the purification mode.
The flow path switching mechanism 30 switches the angles of the doors 13, 21 to 24 so that the flow path resistance applied to the air flow is reduced. For example, the intake door 13 is switched to the inside air introduction position that closes the outside air introduction port 11 and opens the inside air introduction port 12. The air mix door 21 is switched to the maximum cooling position that closes the heater flow path 28 in which the heater core 19 is interposed. The door 23 is switched to a position where the defrost outlet 25 is opened.
 こうして、清掃モードでは、送風機17の送風量を大きくするとともに、流路抵抗を小さくすることによって、放電電極50に当たる空気流速を高められる。これにより、放電電極50に堆積した微粒子がこれに当たる空気流によって放電電極50から離脱して除去される。 Thus, in the cleaning mode, the flow rate of air blown to the discharge electrode 50 can be increased by increasing the air flow rate of the blower 17 and decreasing the flow path resistance. Thereby, the fine particles deposited on the discharge electrode 50 are separated from the discharge electrode 50 and removed by the air flow hitting the fine particles.
 図5は、空気浄化装置100の稼働時に経過時間tに応じてイオン発生量Nが変化する様子を示す線図である。 FIG. 5 is a diagram showing how the ion generation amount N changes according to the elapsed time t when the air purification apparatus 100 is in operation.
 図5に2点鎖線で示す特性は、放電電極50の清掃が行われない場合のものであり、経過時間tが長くなるのに伴って放電電極50に微粒子が堆積することで、イオン発生量Nが次第に低下している。 The characteristics indicated by the two-dot chain line in FIG. 5 are those in the case where the discharge electrode 50 is not cleaned, and the amount of ions generated by depositing fine particles on the discharge electrode 50 as the elapsed time t becomes longer. N gradually decreases.
 これに対して、空気浄化装置100では、図5に実線で示すように、経過時間tが経過するのに伴ってやがて積算値ΣFnが「1」以上になる清掃タイミングが来ると、清掃モードが実行される。清掃モードにて、空気流速を高めて放電電極50の清掃が行われることにより、イオン発生量Nが回復する。こうして、浄化モードの合間に清掃モードが実行されることで、イオン発生量Nが所定値以上の範囲に保たれる。なお、清掃モードが実行されてから再び清掃モードが実行される間隔は、微粒子濃度及び送風量に応じて変化する。 On the other hand, in the air purification device 100, as indicated by a solid line in FIG. 5, when the cleaning timing at which the integrated value ΣFn becomes “1” or more eventually comes as the elapsed time t elapses, the cleaning mode is changed. Executed. In the cleaning mode, the ion generation amount N is recovered by increasing the air flow rate and cleaning the discharge electrode 50. Thus, the cleaning mode is executed between the purification modes, so that the ion generation amount N is kept within a predetermined value or more. Note that the interval at which the cleaning mode is executed again after the cleaning mode is executed changes according to the fine particle concentration and the air flow rate.
 以上のように、制御部5が図4に示すフローチャートを実行することで、浄化モードにおいて空気中の微粒子が放電電極50に堆積する稼働時間tnの積算値ΣFnに応じて清掃タイミングが決められる。清掃モードでは、浄化モードより空気流の流速を高める清掃モードにて空気流を放電電極50に当てる。これにより、放電電極50に堆積した微粒子が除去されることで、イオン発生量Nが回復する。 As described above, when the control unit 5 executes the flowchart shown in FIG. 4, the cleaning timing is determined according to the integrated value ΣFn of the operating time tn in which the fine particles in the air accumulate on the discharge electrode 50 in the purification mode. In the cleaning mode, the air flow is applied to the discharge electrode 50 in the cleaning mode in which the flow rate of the air flow is higher than that in the purification mode. Thereby, the fine particles accumulated on the discharge electrode 50 are removed, whereby the ion generation amount N is recovered.
 ところで、浄化モードにおいてもイオン発生量Nが回復する稼働状態がある。空気中の微粒子濃度がある程度低く、かつ空気流速がある程度速い稼働状態では、放電電極50に当たる空気流によって放電電極50に堆積した微粒子が離脱して除去されることで、イオン発生量Nが回復する。 Incidentally, there is an operating state in which the ion generation amount N recovers even in the purification mode. In an operating state where the concentration of fine particles in the air is low to some extent and the air flow velocity is high to some extent, the fine particles accumulated on the discharge electrodes 50 are separated and removed by the air flow that hits the discharge electrodes 50, thereby recovering the ion generation amount N. .
 上記浄化モードにおいてもイオン発生量Nが回復する稼働状態があることに対応して、制御部5は、図4に示すフローチャートにかえて、図8に示すフローチャートを実行してもよい。図8に示すフローチャートを実行することで、後述するように、浄化モードにおいてイオン発生量Nが回復する稼働時間(回復時間tcn)に応じて清掃タイミングを遅らせる制御が行われる。以下、図6から図9を参照してこの制御内容について説明する。 Corresponding to the fact that there is an operating state in which the ion generation amount N recovers even in the purification mode, the control unit 5 may execute the flowchart shown in FIG. 8 instead of the flowchart shown in FIG. By executing the flowchart shown in FIG. 8, as will be described later, control is performed to delay the cleaning timing in accordance with the operation time (recovery time tcn) in which the ion generation amount N recovers in the purification mode. Hereinafter, the contents of this control will be described with reference to FIGS.
 図6は、空気流速が高まるのに応じてイオン発生量Nの低下代(単位時間当たりに放電電極50のイオン発生量Nが低下する率)が変化する様子を示す特性図である。イオン発生量Nの低下代は、微粒子濃度がA,B,C(低,中,高)の稼働状態において空気流速が高まるのに応じて小さくなる。微粒子濃度がBの稼働状態より低く、かつ空気流速が高まる稼働状態が、イオン発生量Nの低下代が0より小さくなる回復領域D1,D2となる。回復領域D1,D2では、放電電極50に当たる空気流に伴って放電電極50から微粒子が除去されることで、イオン発生量Nが回復する。制御部5は、回復領域D1において浄化モードを実行し、イオン発生量Nが回復するのに応じて清掃タイミングを遅らせる制御を行う。制御部5は、回復領域D2において清掃モードを実行し、イオン発生量Nを回復させる制御を行う。 FIG. 6 is a characteristic diagram showing how the amount of decrease in the amount of ion generation N (the rate at which the amount of ion generation N of the discharge electrode 50 decreases per unit time) changes as the air flow rate increases. The reduction amount of the ion generation amount N decreases as the air flow rate increases in the operation state where the fine particle concentration is A, B, C (low, medium, high). The operating state in which the fine particle concentration is lower than the operating state of B and the air flow rate is increased becomes the recovery regions D1 and D2 in which the reduction amount of the ion generation amount N is smaller than zero. In the recovery regions D <b> 1 and D <b> 2, the amount of generated ions N is recovered by removing the fine particles from the discharge electrode 50 along with the air flow hitting the discharge electrode 50. The control unit 5 executes the purification mode in the recovery region D1, and performs control to delay the cleaning timing in accordance with the recovery of the ion generation amount N. The control unit 5 executes the cleaning mode in the recovery region D2 and performs control to recover the ion generation amount N.
 図7は、放電電極50のイオン発生量Nが経過時間tに応じて低下する劣化特性を示すイオン発生量劣化マップである。送風機17の送風量がLow又はHighであって、微粒子濃度が低,中,又は高の一定値である稼働状態では、イオン発生量Nが経過時間tに応じて次第に低下する。送風量がHighであって、微粒子濃度が上記稼働状態より低い回復領域D1が継続する場合には、放電電極50から微粒子が除去されることで、イオン発生量Nが経過時間tに応じて低下せずに最大値に保たれる。 FIG. 7 is an ion generation amount deterioration map showing deterioration characteristics in which the ion generation amount N of the discharge electrode 50 decreases according to the elapsed time t. In an operating state in which the blower 17 has a low flow rate or a high flow rate and the particle concentration is a constant value of low, medium, or high, the ion generation amount N gradually decreases according to the elapsed time t. In the case where the recovery area D1 in which the air flow rate is High and the fine particle concentration is lower than the operating state continues, the fine particles are removed from the discharge electrode 50, so that the ion generation amount N decreases according to the elapsed time t. Without being kept at the maximum value.
 制御部5は、図7に示すイオン発生量劣化マップに基づいて、放電電極50から微粒子が除去される回復領域D1において稼働する回復時間tcnとイオン発生量Nが所定値に回復する基準回復時間Tcとの回復時間比Fcn(=tcn/Tc)を求める。 Based on the ion generation amount deterioration map shown in FIG. 7, the control unit 5 performs the recovery time tcn that operates in the recovery region D1 in which the fine particles are removed from the discharge electrode 50 and the reference recovery time that the ion generation amount N recovers to a predetermined value. The recovery time ratio Fcn (= tcn / Tc) with Tc is obtained.
 空気浄化装置100が回復領域D1で30分間稼働することで、イオン発生量が5%(所定値)だけ回復する場合には、基準回復時間Tcが30分とする。回復領域D1において15分稼働した場合に、回復時間tcnが15分となり、回復時間比Fcnは次式で求められる。
Fcn=tcn/Tc=15/30=0.5
When the air purification apparatus 100 operates in the recovery region D1 for 30 minutes and the amount of ion generation recovers by 5% (predetermined value), the reference recovery time Tc is set to 30 minutes. When operating for 15 minutes in the recovery region D1, the recovery time tcn is 15 minutes, and the recovery time ratio Fcn is obtained by the following equation.
Fcn = tcn / Tc = 15/30 = 0.5
 制御部5は、イオン発生量が5%(所定値)だけ低下した時点を、清掃モードに切り換える清掃タイミングと判定する。制御部5は、図7に示すイオン発生量劣化マップに基づいて、放電電極50に微粒子が堆積する稼働時間tnとイオン発生量Nが5%(所定値)だけ低下する基準時間Tとの劣化時間比Fn(=tn/T)を求める。そして、求められた劣化時間比Fnから回復領域D1の回復時間tcnの回復時間比Fcnを減算した値の積算値Σ(Fn-Fcn)が「1」になったときに、清掃タイミングと判定する。 The control unit 5 determines that the point in time when the ion generation amount has decreased by 5% (predetermined value) as the cleaning timing for switching to the cleaning mode. Based on the ion generation amount deterioration map shown in FIG. 7, the control unit 5 deteriorates between the operation time tn when fine particles are deposited on the discharge electrode 50 and the reference time T when the ion generation amount N decreases by 5% (predetermined value). The time ratio Fn (= tn / T) is obtained. Then, when the integrated value Σ (Fn−Fcn) obtained by subtracting the recovery time ratio Fcn of the recovery time tcn of the recovery region D1 from the obtained deterioration time ratio Fn becomes “1”, it is determined as the cleaning timing. .
 次に、図8に示すフローチャートを参照して、上記制御内容を説明する。 Next, the contents of the control will be described with reference to the flowchart shown in FIG.
 まず、ステップS11では、以下の情報及び信号を読み込む。
・既に算出された積算値ΣFn-Fcn。なお、空気浄化装置100の稼働開始時には、ΣFn-Fcn=0になっている。
・微粒子濃度信号。
・送風機17の作動信号。
・流路切り換え信号。
First, in step S11, the following information and signals are read.
The already calculated integrated value ΣFn−Fcn. Note that ΣFn−Fcn = 0 at the start of operation of the air purification device 100.
-Fine particle concentration signal.
An operation signal of the blower 17
・ Flow path switching signal.
 続いて、ステップS12に進んで、電動機20の作動信号がオンであるか否かを判定する。ここで、作動信号がオフである空気浄化装置100の停止時には、スタートに戻る。一方、作動信号がオンである空気浄化装置100の稼働時には、ステップS13に進む。 Then, it progresses to step S12 and it is determined whether the operation signal of the electric motor 20 is ON. Here, when the air purification device 100 whose operation signal is off is stopped, the process returns to the start. On the other hand, when the air purification device 100 whose operation signal is on is operating, the process proceeds to step S13.
 ステップS13では、図7等に示すイオン発生量劣化マップに基づいて求められる稼働時間tn、回復時間tcnを求める。稼働時間tnに応じて劣化時間比FnをFn=tn/Tとして算出する。回復時間tcnに応じて回復時間比FcnをFcn=tcn/Tcとして算出する。そして、劣化時間比Fnから回復時間比Fcnを減算した値(Fn-Fcn)を求める。 In step S13, an operation time tn and a recovery time tcn obtained based on the ion generation amount deterioration map shown in FIG. The deterioration time ratio Fn is calculated as Fn = tn / T according to the operation time tn. The recovery time ratio Fcn is calculated as Fcn = tcn / Tc according to the recovery time tcn. Then, a value (Fn−Fcn) obtained by subtracting the recovery time ratio Fcn from the deterioration time ratio Fn is obtained.
 ステップS14では、求められた値(Fn-Fcn)を単位時間毎に積算した積算値Σ(Fn-Fcn)を算出する。 In step S14, an integrated value Σ (Fn−Fcn) obtained by integrating the obtained value (Fn−Fcn) per unit time is calculated.
 続いて、ステップS15に進んで、積算値Σ(Fn-Fcn)が「0」より大きいか否かを判定する。ここで、積算値Σ(Fn-Fcn)が「0」になった場合には、イオン発生量Nが最大値に回復しているものとみなしてステップS19に進み、積算値Σ(Fn-Fcn)の値を「0」にリセットし、スタートに戻る。 Subsequently, the process proceeds to step S15, and it is determined whether or not the integrated value Σ (Fn−Fcn) is larger than “0”. Here, when the integrated value Σ (Fn−Fcn) becomes “0”, it is considered that the ion generation amount N has recovered to the maximum value, and the process proceeds to step S19, where the integrated value Σ (Fn−Fcn) is reached. ) Is reset to “0” and the process returns to the start.
 一方、積算値ΣFnが「0」より大きくなった場合には、ステップS16に進んで、積算値Σ(Fn-Fcn)が「1」以上になったか否かを判定する。ここで、積算値ΣFnが「1」よりも小さい場合には、スタートに戻る。一方、積算値ΣFnが「1」以上になった場合には、清掃タイミングが来たことを判定して、ステップS17に進む。 On the other hand, if the integrated value ΣFn is greater than “0”, the process proceeds to step S16 to determine whether or not the integrated value Σ (Fn−Fcn) is “1” or more. If the integrated value ΣFn is smaller than “1”, the process returns to the start. On the other hand, if the integrated value ΣFn is equal to or greater than “1”, it is determined that the cleaning timing has come, and the process proceeds to step S17.
 ステップS17では、図3に示すイオン発生量回復マップに基づいて、微粒子濃度に応じて清掃モードを実行する実行時間を算出する。 In step S17, an execution time for executing the cleaning mode according to the fine particle concentration is calculated based on the ion generation amount recovery map shown in FIG.
 続くステップS18では、清掃モードに切り換え、算出された実行時間にわたって清掃モードを実行する。そして、積算値Σ(Fn-Fcn)の値を「0」にリセットし、スタートに戻る。 In the subsequent step S18, the mode is switched to the cleaning mode, and the cleaning mode is executed over the calculated execution time. Then, the integrated value Σ (Fn−Fcn) is reset to “0” and the process returns to the start.
 図9は、空気浄化装置100の稼働時に経過時間tに応じてイオン発生量Nが変化する様子を示す線図である。 FIG. 9 is a diagram showing how the ion generation amount N changes according to the elapsed time t when the air purification apparatus 100 is in operation.
 図9に破線で囲む区間は、回復領域D1にあり、この区間で微粒子が堆積する劣化時間比Fnから微粒子が除去される回復時間比Fcnが減算される。これにより、回復領域D1にある回復時間tcnが増えるのに伴って、清掃モードに移行するまでの時間tが延長される。こうして、清掃モード実行される頻度が減らされることで、浄化モードが実行される稼働時間を長くして、空気の浄化が図られる。 The section surrounded by a broken line in FIG. 9 is in the recovery region D1, and the recovery time ratio Fcn for removing the fine particles is subtracted from the deterioration time ratio Fn in which fine particles are deposited in this section. As a result, as the recovery time tcn in the recovery region D1 increases, the time t until the transition to the cleaning mode is extended. Thus, by reducing the frequency of execution of the cleaning mode, the operation time for executing the purification mode is lengthened, and the air is purified.
 次に、図10から図14に示す空気浄化装置100の具体例を説明する。 Next, a specific example of the air purification device 100 shown in FIGS. 10 to 14 will be described.
 図10及び図11に示すように、放電電極50は、送風機17に吸い込まれる空気流に対向するように設けられる。放電電極50は、捕集部16より上流側の上流側流路14の中央部に設けられ、送風機17の回転中心軸O17に略直交するように配置される。 As shown in FIGS. 10 and 11, the discharge electrode 50 is provided to face the air flow sucked into the blower 17. The discharge electrode 50 is provided in the central portion of the upstream flow path 14 upstream of the collecting portion 16 and is disposed so as to be substantially orthogonal to the rotation center axis O17 of the blower 17.
 空気浄化装置100の稼働時に、空気流が放電電極50に略直交して当たることにより、微粒子が放電電極50に堆積することが抑えられる。浄化モードにおいて、空気流速が低い状態で微粒子が放電電極50に堆積しても、空気流速が高められる状態で一旦堆積した微粒子が放電電極50から離脱して除去される。これにより、清掃モードを実行する頻度を減らすことができ、あるいは清掃モードを実行しなくて済む。 When the air purification apparatus 100 is in operation, the air flow strikes the discharge electrode 50 substantially perpendicularly, so that accumulation of fine particles on the discharge electrode 50 is suppressed. In the purification mode, even if fine particles are deposited on the discharge electrode 50 with a low air flow rate, the fine particles once deposited with the air flow rate being increased are separated from the discharge electrode 50 and removed. As a result, the frequency of executing the cleaning mode can be reduced, or the cleaning mode need not be executed.
 送風機17は、筒状に並ぶ多数の羽根をもったファン41と、ファン41を収容するケーシング42と、を備える。ファン41は、回転中心軸O17を中心に回転し、遠心方向に送風する。ケーシング42は、空気をファン41の内側に導くベルマウス状の吸い込み口42Aと、ファン41から送られる空気を集める巻き貝状の整流部42Bと、集められた空気を吐出する吐出口42C(図12参照)と、を有する。なお、ケーシング42は、筐体10と一体に形成されてもよい。 The blower 17 includes a fan 41 having a large number of blades arranged in a cylindrical shape, and a casing 42 that houses the fan 41. The fan 41 rotates around the rotation center axis O17 and blows air in the centrifugal direction. The casing 42 includes a bell mouth suction port 42A that guides air to the inside of the fan 41, a shellfish-like rectifying unit 42B that collects air sent from the fan 41, and a discharge port 42C that discharges the collected air (FIG. 12). Reference). The casing 42 may be formed integrally with the housing 10.
 捕集部16は、吸い込み口42Aの上流側に設けられ、ケーシング42に対峙するように配置される。捕集部16のフィルタ中心線O16は、送風機17の回転中心軸O17に対して略平行に延び、かつ回転中心軸O17に対してオフセットされる。 The collection unit 16 is provided on the upstream side of the suction port 42 </ b> A and is disposed so as to face the casing 42. The filter center line O16 of the collection unit 16 extends substantially parallel to the rotation center axis O17 of the blower 17 and is offset with respect to the rotation center axis O17.
 インテークドア13は、ヒンジ軸43を中心に回動する。ヒンジ軸43は、送風機17の回転中心軸O17に対して回転中心軸O17に略直交する面上に延びる。 The intake door 13 rotates around the hinge shaft 43. The hinge shaft 43 extends on a surface substantially orthogonal to the rotation center axis O17 with respect to the rotation center axis O17 of the blower 17.
 板状のインテークドア13の先端13Aは、ヒンジ軸43を中心とする円弧状の軌跡Qをもって回動する。放電電極50は、軌跡Qと捕集部16の間の領域に配置される。これにより、放電電極50がインテークドア13の作動に干渉することが回避され、かつ捕集部16の上流側に設けられる。 The tip 13A of the plate-like intake door 13 rotates with an arcuate locus Q centering on the hinge shaft 43. The discharge electrode 50 is disposed in a region between the trajectory Q and the collection unit 16. Thereby, it is avoided that the discharge electrode 50 interferes with the action | operation of the intake door 13, and it is provided in the upstream of the collection part 16. FIG.
 上流側流路14において、内気導入口12の開口端と吸い込み口42Aの開口端との間に挟まれて両者の間に形成される領域を内気導入領域14Aとする。内気導入領域14Aは、内気導入口12の開口縁部と吸い込み口42Aの開口縁部とを結ぶ複数の直線Lの内側に形成される空間である。 In the upstream flow path 14, a region formed between the opening end of the inside air introduction port 12 and the opening end of the suction port 42A is defined as an inside air introduction region 14A. The inside air introduction region 14A is a space formed inside a plurality of straight lines L connecting the opening edge of the inside air introduction port 12 and the opening edge of the suction port 42A.
 インテークドア13が外気導入口11を閉じて内気導入口12を開く内気導入位置にある作動状態(内気循環状態)では、室内2からの空気が矢印A1で示すように内気導入口12から上流側流路14に流入する。このとき、上流側流路14では、内気導入口12から吸い込み口42Aに向かう空気流の主流が内気導入領域14Aを流れるため、内気導入領域14Aの空気流速は他の領域よりも高くなる。 In an operating state where the intake door 13 closes the outside air introduction port 11 and opens the inside air introduction port 12 (inside air circulation state), the air from the room 2 is upstream from the inside air introduction port 12 as indicated by an arrow A1. It flows into the flow path 14. At this time, in the upstream flow path 14, the main flow of the air flow from the inside air introduction port 12 toward the suction port 42 </ b> A flows through the inside air introduction region 14 </ b> A, and thus the air flow rate in the inside air introduction region 14 </ b> A becomes higher than the other regions.
 放電電極50は、内気導入領域14Aに配置される。これにより、放電電極50に当たる空気流速が高められ、放電電極50に堆積した微粒子を除去する効果が得られる。 The discharge electrode 50 is disposed in the inside air introduction region 14A. Thereby, the air flow velocity which hits the discharge electrode 50 is increased, and the effect of removing fine particles deposited on the discharge electrode 50 is obtained.
 図12において、第1ヒンジ平行線R17は、送風機17の回転中心軸O17を含みインテークドア13のヒンジ軸43と略平行に延びる直線である。第2ヒンジ平行線R16は、捕集部16のフィルタ中心線O16を含み、かつインテークドア13のヒンジ軸43と略平行に延びる直線である。中央横断領域14Bは、第1ヒンジ平行線R17と第2ヒンジ平行線R16に挟まれる領域である。中央横断領域14Bは、筐体10の互いに対向する内壁面10A、10Cの双方からヒンジ軸43と直交方向(図12において左右方向)に離れた領域である。このため、中央横断領域14Bを流れる空気流は、流速が内壁面10A,10C近傍の領域よりも高くなるとともに、空気流が放電電極50に対向する速度成分(送風機17の回転中心軸O17に沿って送風機17に向かう速度成分)が高まる。 12, the first hinge parallel line R17 is a straight line including the rotation center axis O17 of the blower 17 and extending substantially parallel to the hinge axis 43 of the intake door 13. The second hinge parallel line R <b> 16 is a straight line that includes the filter center line O <b> 16 of the collection portion 16 and extends substantially parallel to the hinge shaft 43 of the intake door 13. The central transverse region 14B is a region sandwiched between the first hinge parallel line R17 and the second hinge parallel line R16. The center crossing region 14B is a region away from both the inner wall surfaces 10A and 10C facing each other in the casing 10 in a direction orthogonal to the hinge shaft 43 (left and right direction in FIG. 12). For this reason, the air flow flowing through the central transverse region 14B has a higher flow velocity than the region in the vicinity of the inner wall surfaces 10A and 10C, and a velocity component (along the rotation center axis O17 of the blower 17) where the air flow faces the discharge electrode 50. Speed component toward the blower 17) increases.
 放電電極50は、中央横断領域14Bに配置される。これにより、放電電極50に当たる空気流速が高められるとともに、空気流の速度方向が放電電極50に略直交して対向するため、放電電極50に堆積した微粒子を除去する効果を高められる。 The discharge electrode 50 is disposed in the central transverse region 14B. As a result, the flow velocity of air hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 substantially orthogonally, so that the effect of removing fine particles deposited on the discharge electrode 50 can be enhanced.
 図12において、第1ヒンジ直交線P17は、送風機17の回転中心軸O17を含み、かつインテークドア13のヒンジ軸43と略直交する方向に延びる直線である。第2ヒンジ直交線P16は、捕集部16のフィルタ中心線O16を含みインテークドア13のヒンジ軸43と略直交する方向に延びる直線である。中央縦断領域14Cは、第1ヒンジ直交線P17と第2ヒンジ直交線P16に挟まれた領域である。中央縦断領域14Cは、筐体10の互いに対向する内壁面10B,10Dの双方からヒンジ軸43と平行方向(図12において上下方向)に離れた領域である。このため、中央縦断領域14Cを流れる空気流は、流速が内壁面10B,10D近傍の領域よりも高くなるとともに、空気流が放電電極50に対向する速度成分が高まる。 12, the first hinge orthogonal line P17 is a straight line including the rotation center axis O17 of the blower 17 and extending in a direction substantially orthogonal to the hinge axis 43 of the intake door 13. The second hinge orthogonal line P <b> 16 is a straight line including the filter center line O <b> 16 of the collection part 16 and extending in a direction substantially orthogonal to the hinge shaft 43 of the intake door 13. The central longitudinal section 14C is an area sandwiched between the first hinge orthogonal line P17 and the second hinge orthogonal line P16. The central longitudinal region 14C is a region away from both the inner wall surfaces 10B and 10D facing each other of the housing 10 in a direction parallel to the hinge shaft 43 (vertical direction in FIG. 12). For this reason, the airflow flowing through the central longitudinal section 14C has a higher flow velocity than the areas near the inner wall surfaces 10B and 10D, and the velocity component at which the airflow faces the discharge electrode 50 increases.
 放電電極50は、中央縦断領域14Cに配置される。これにより、放電電極50に当たる空気流速が高められるとともに、空気流の速度成分が放電電極50に略直交して対向するため、放電電極50に堆積した微粒子を除去する効果を高められる。 The discharge electrode 50 is disposed in the central longitudinal region 14C. As a result, the flow velocity of the air impinging on the discharge electrode 50 is increased, and the velocity component of the air flow faces the discharge electrode 50 substantially orthogonally, so that the effect of removing the fine particles deposited on the discharge electrode 50 can be enhanced.
 中央領域14Dは、中央横断領域14Bと中央縦断領域14Cが交わる領域である。中央領域14Dは、筐体10の四方の内壁面10A~10Dから離れ、かつ送風機17の中央部に対峙する。このため、空気流が放電電極50に対向する速度成分は、中央領域14Dにて最も高まる。 The central region 14D is a region where the central transverse region 14B and the central longitudinal region 14C intersect. The central region 14D is separated from the four inner wall surfaces 10A to 10D of the housing 10 and faces the central portion of the blower 17. For this reason, the velocity component at which the airflow faces the discharge electrode 50 is highest in the central region 14D.
 放電電極50は、中央領域14Dに配置される。これにより、放電電極50に当たる空気流速が高められるとともに、放電電極50に対向する空気流の速度成分が高められるため、放電電極50に堆積した微粒子を除去する効果を最も高められる。更に、帯電した微粒子が捕集部16の広い範囲に拡散することで、捕集部16による浄化性能を高められる。 The discharge electrode 50 is disposed in the central region 14D. As a result, the air flow velocity hitting the discharge electrode 50 is increased and the velocity component of the air flow facing the discharge electrode 50 is increased, so that the effect of removing fine particles deposited on the discharge electrode 50 can be enhanced most. Furthermore, since the charged fine particles are diffused over a wide range of the collection unit 16, the purification performance by the collection unit 16 can be enhanced.
 次に、図13及び図14を参照して放電電極50の取り付け構造について説明する。 Next, the mounting structure of the discharge electrode 50 will be described with reference to FIGS.
 図13に示すように、放電電極50は、棒状のブラケット51を介して筐体10に支持される。ブラケット51は、ヒンジ軸43と略平行に延びるように配置される。放電電極50は、ブラケット51の先端部に設けられ、上流側流路14の中央部に配置される。 As shown in FIG. 13, the discharge electrode 50 is supported by the housing 10 via a rod-shaped bracket 51. The bracket 51 is disposed so as to extend substantially parallel to the hinge shaft 43. The discharge electrode 50 is provided at the tip of the bracket 51 and is disposed at the center of the upstream flow path 14.
 図14に示すように、ブラケット51には、2本のハーネス55が収容される。放電電極50は、2本のハーネス55を介して通電される。 As shown in FIG. 14, two harnesses 55 are accommodated in the bracket 51. The discharge electrode 50 is energized through two harnesses 55.
 図13に示すように、ブラケット51の基端部は、環状のグロメット52,53及び2本のネジ54を介して筐体10の取り付け部60に取り付けられる。 As shown in FIG. 13, the base end portion of the bracket 51 is attached to the attachment portion 60 of the housing 10 via the annular grommets 52 and 53 and the two screws 54.
 取り付け部60は、ブラケット51が貫通する貫通孔61と、2本のネジ54をそれぞれ螺合させる対のボス部62と、を有する。 The mounting portion 60 has a through-hole 61 through which the bracket 51 passes and a pair of boss portions 62 into which two screws 54 are screwed.
 図10に示すように、筐体10には、ブラケット51を取り付ける複数(ここでは3つ)の取り付け部60が設けられる。各取り付け部60は、ヒンジ軸43に略直交する方向(図10において左右方向)に並ぶように配置される。 As shown in FIG. 10, the housing 10 is provided with a plurality of (here, three) attachment portions 60 to which the brackets 51 are attached. The mounting portions 60 are arranged so as to be aligned in a direction substantially orthogonal to the hinge shaft 43 (left and right direction in FIG. 10).
 筐体10は、取り付け部60を挟む上下の部材8,9が分割して形成される。筐体10の上側の部材9は、例えば、ハンドルの位置が左右に異なる車両に対応した形状のものが選択して設けられる。こうして車両(車種)に応じて筐体10の形状が異なる場合に、ブラケット51が取り付けられる取り付け部60が変更される。こうして、放電電極50の取り付け位置が車両の幅方向に変えられる。これにより、異なる車両の筐体10に対して放電電極50を適切な位置に設けることが可能になる。 The housing 10 is formed by dividing the upper and lower members 8 and 9 sandwiching the attachment portion 60. For example, the member 9 on the upper side of the housing 10 is selected and provided in a shape corresponding to a vehicle in which the position of the handle is different on the left and right. Thus, when the shape of the housing 10 is different depending on the vehicle (vehicle type), the attachment portion 60 to which the bracket 51 is attached is changed. Thus, the mounting position of the discharge electrode 50 is changed in the vehicle width direction. Thereby, it becomes possible to provide the discharge electrode 50 in an appropriate position with respect to the casing 10 of a different vehicle.
 また、筐体10の形状に応じて、ブラケット51の長さを変えるか、あるいはグロメット52,53の形状を変えることにより、放電電極50の取り付け位置が車両の前後方向に変えられる。 Also, the mounting position of the discharge electrode 50 can be changed in the longitudinal direction of the vehicle by changing the length of the bracket 51 or changing the shapes of the grommets 52 and 53 according to the shape of the housing 10.
 次に、本実施形態の効果について説明する。 Next, the effect of this embodiment will be described.
 本実施形態によれば、空気を浄化する空気浄化装置100であって、空気中にイオンを発生する放電電極50と、イオンによって帯電した空気中の微粒子を捕集する捕集部16と、捕集部16を通過するように空気を流す送風機17と、を備え、送風機17は、空気流を放電電極50に堆積した微粒子に当てるような流れを発生させる構成とした。 According to the present embodiment, the air purification apparatus 100 purifies air, and includes a discharge electrode 50 that generates ions in the air, a collection unit 16 that collects particles in the air charged by the ions, and a collection unit. And a blower 17 for flowing air so as to pass through the collecting portion 16, and the blower 17 is configured to generate a flow in which the air flow is applied to the fine particles deposited on the discharge electrode 50.
 このように構成することで、空気流を放電電極50に堆積した微粒子に当てることによって、放電電極50に堆積した微粒子が除去される。こうして、放電電極50では、ブラシ等を用いることなく、堆積した微粒子が除去される。よって、空気浄化装置100は、簡便な構造によって空気の浄化性能を維持することができる。 With this configuration, the fine particles deposited on the discharge electrode 50 are removed by applying an air flow to the fine particles deposited on the discharge electrode 50. Thus, in the discharge electrode 50, the deposited fine particles are removed without using a brush or the like. Therefore, the air purification apparatus 100 can maintain the air purification performance with a simple structure.
 空気浄化装置100は、放電電極50からイオンを発生して空気を浄化する浄化モードと、放電電極50に当たる空気流の流速を高める清掃モードと、に切り換える構成とした。 The air purification device 100 is configured to switch between a purification mode in which ions are generated from the discharge electrode 50 to purify the air, and a cleaning mode in which the flow rate of the airflow hitting the discharge electrode 50 is increased.
 このように構成することで、空気流の流速の低い浄化モードにて放電電極50に微粒子が堆積した場合に、浄化モードより空気流の流速を高める清掃モードにて空気流を放電電極50に当てることによって、放電電極50に堆積した微粒子が除去される。 With this configuration, when fine particles are deposited on the discharge electrode 50 in the purification mode with a low airflow velocity, the airflow is applied to the discharge electrode 50 in the cleaning mode in which the airflow velocity is higher than that in the purification mode. As a result, the fine particles deposited on the discharge electrode 50 are removed.
 なお、浄化モードと清掃モードとの切り換えは、制御部5によって行われる構成に限らず、手動で行われる構成としてもよい。 It should be noted that the switching between the purification mode and the cleaning mode is not limited to the configuration performed by the control unit 5 and may be configured manually.
 また、空気浄化装置100は、制御部5を備え、制御部5は、浄化モードにおける稼働状態に応じて清掃モードに切り換える清掃タイミングを判定する構成とした。 Further, the air purification device 100 includes the control unit 5, and the control unit 5 is configured to determine the cleaning timing for switching to the cleaning mode according to the operating state in the purification mode.
 このように構成することで、浄化モードにおける稼働状態に応じて例えば放電電極50のイオン発生量N(微粒子堆積量)等を計測することで、清掃タイミングが判定される。こうして、清掃モードが適切な時期に実行されることにより、浄化モードが実行される稼働時間を長くすることができる。 With this configuration, the cleaning timing is determined by measuring, for example, the ion generation amount N (particulate deposition amount) of the discharge electrode 50 according to the operating state in the purification mode. In this way, by executing the cleaning mode at an appropriate time, it is possible to lengthen the operation time during which the purification mode is executed.
 また、制御部5は、予め設定されたマップに基づき、少なくとも、経過時間tと、送風機17の送風量と、微粒子濃度と、のパラメータ応じて放電電極50のイオン発生量N(微粒子堆積量)等を計測することで、清掃タイミングを的確に判定することができる。なお、上述した構成に限らず、マップを用いずに、回帰式に基づき同様のパラメータに応じてイオン発生量Nを算出する構成としてもよい。 Moreover, the control part 5 is based on the preset map, and the ion generation amount N (particulate deposition amount) of the discharge electrode 50 according to the parameter of the elapsed time t, the ventilation volume of the air blower 17, and particulate concentration at least. Etc., the cleaning timing can be accurately determined. In addition, it is good also as a structure which calculates ion generation amount N according to the same parameter based on a regression equation, without using a map instead of the structure mentioned above.
 また、制御部5は、浄化モードが実行される稼働状態における放電電極50のイオン発生量Nが上昇(回復)する回復時間tcn(稼働時間)が増えるのに応じて清掃モードが実行される清掃タイミングを遅らせる構成とした。 Further, the control unit 5 performs the cleaning in which the cleaning mode is executed as the recovery time tcn (operation time) in which the ion generation amount N of the discharge electrode 50 increases (recovers) in the operation state in which the purification mode is executed increases. It was set as the structure which delays timing.
 そして、制御部5は、放電電極50のイオン発生量Nが低下する稼働時間tnとイオン発生量Nが所定値に低下する基準時間Tとの劣化時間比Fn(=tn/T)と、イオン発生量Nが上昇(回復)する回復時間tcnとイオン発生量Nが所定値に回復する基準回復時間Tcとの回復時間比Fcn(=tcn/Tc)と、劣化時間比Fnから回復時間比Fcnを減算した値の積算値Σ(Fn-Fcn)と、を求め、積算値Σ(Fn-Fcn)が所定値「1」になったときに清掃タイミングと判定する構成とした。 Then, the controller 5 determines the deterioration time ratio Fn (= tn / T) between the operation time tn when the ion generation amount N of the discharge electrode 50 is reduced and the reference time T when the ion generation amount N is reduced to a predetermined value, and the ion The recovery time ratio Fcn (= tcn / Tc) between the recovery time tcn when the generation amount N increases (recovers) and the reference recovery time Tc when the ion generation amount N recovers to a predetermined value, and the recovery time ratio Fn from the deterioration time ratio Fn An integrated value Σ (Fn−Fcn) of a value obtained by subtracting is obtained, and the cleaning timing is determined when the integrated value Σ (Fn−Fcn) reaches a predetermined value “1”.
 このように構成することで、浄化モードにおいて放電電極50に一旦堆積した粒子が放電電極50に当たる空気流によって放電電極50から除去されることに応じて清掃タイミングが遅れる。こうして、清掃モードが実行される頻度を減らすことにより、浄化モードが実行される稼働時間を長くして空気の浄化が図られる。 With this configuration, the cleaning timing is delayed in accordance with the particles once deposited on the discharge electrode 50 in the purification mode being removed from the discharge electrode 50 by the air flow hitting the discharge electrode 50. In this way, by reducing the frequency with which the cleaning mode is executed, the operating time for which the purification mode is executed can be lengthened to purify the air.
 また、清掃モードでは、送風機17の送風量を、浄化モードで設定される最大風量より更に多い設定風量に切り換える構成とした。これにより、放電電極50に堆積した微粒子が速やかに除去される。 In the cleaning mode, the air flow rate of the blower 17 is switched to a set air volume that is higher than the maximum air volume set in the purification mode. Thereby, the fine particles deposited on the discharge electrode 50 are quickly removed.
 また、清掃モードでは、流路切換機構30によって送風機17によって送られる空気流の流路抵抗を小さくするように流路29を切り換える構成とした。 In the cleaning mode, the flow path 29 is switched by the flow path switching mechanism 30 so as to reduce the flow path resistance of the air flow sent by the blower 17.
 また、清掃モードでは、流路切換機構30のインテークドア13によって外気導入口11を閉じ、内気導入口12を開くように流路29を切り換える構成とした。 Further, in the cleaning mode, the outside air inlet 11 is closed by the intake door 13 of the passage switching mechanism 30 and the passage 29 is switched so as to open the inside air inlet 12.
 このように構成することで、清掃モードでは、送風機17によって送られる空気流の流路抵抗を小さくして、放電電極50に当たる空気流速を高められる。これにより、放電電極50に堆積した微粒子が速やかに除去される。 With this configuration, in the cleaning mode, the flow resistance of the air flow sent by the blower 17 can be reduced, and the air flow rate hitting the discharge electrode 50 can be increased. Thereby, the fine particles deposited on the discharge electrode 50 are quickly removed.
 なお、上記構成に限らず、浄化モードにおける送風量の多い状態で放電電極50に堆積した微粒子が除去される構成としてもよい。 In addition, not only the said structure but it is good also as a structure from which the microparticles | fine-particles deposited on the discharge electrode 50 are removed in the state with much blast volume in purification | cleaning mode.
 また、流路29は、内気導入口12の開口端と吸い込み口42Aの開口端との間で形成される内気導入領域14Aを有する。放電電極50は、内気導入領域14Aに配置される構成とした。 Further, the flow path 29 has an inside air introduction region 14A formed between the opening end of the inside air introduction port 12 and the opening end of the suction port 42A. The discharge electrode 50 is configured to be disposed in the inside air introduction region 14A.
 このように構成することで、上流側流路14では、内気導入口12から吸い込み口42Aに向かう空気流の主流が内気導入領域14Aを流れるため、放電電極50に当たる空気流速が高められ、放電電極50に堆積した微粒子を除去する効果が得られる。 By configuring in this way, in the upstream flow path 14, the main flow of the air flow from the inside air introduction port 12 toward the suction port 42 </ b> A flows through the inside air introduction area 14 </ b> A. The effect of removing the fine particles deposited on 50 is obtained.
 また、流路29は、送風機17の回転中心軸O17を含みインテークドア13のヒンジ軸43と略平行に延びる第1ヒンジ平行線R17と、捕集部16のフィルタ中心線O16を含み、かつインテークドア13のヒンジ軸43と略平行に延びる第2ヒンジ平行線R16と、の間に挟まれる中央横断領域14Bを有する。放電電極50は、中央横断領域14Bに配置される構成とした。 Further, the flow path 29 includes a first hinge parallel line R17 that includes the rotation center axis O17 of the blower 17 and extends substantially parallel to the hinge shaft 43 of the intake door 13, and a filter center line O16 of the collection portion 16. A central transverse region 14B is sandwiched between a hinge axis 43 of the door 13 and a second hinge parallel line R16 extending substantially in parallel. The discharge electrode 50 was arranged in the central transverse region 14B.
 このように構成することで、上流側流路14では、放電電極50に当たる空気流速が高められるとともに、空気流の速度方向が放電電極50に略直交して対向するため、放電電極50に堆積した微粒子を除去する効果を高められる。 With this configuration, in the upstream flow path 14, the air flow rate hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 so as to be substantially perpendicular to the discharge electrode 50. The effect of removing fine particles can be enhanced.
 また、流路29は、送風機17の回転中心軸O17を含み、かつインテークドア13のヒンジ軸43と略直交する方向に延びる第1ヒンジ直交線P17と、捕集部16のフィルタ中心線O16を含みインテークドア13のヒンジ軸43と略直交する方向に延びる第2ヒンジ直交線P16と、の間に挟まれる中央縦断領域14Cを有する。放電電極50は、中央縦断領域14Cに配置される構成とした。 Further, the flow path 29 includes a first hinge orthogonal line P17 including the rotation center axis O17 of the blower 17 and extending in a direction substantially orthogonal to the hinge shaft 43 of the intake door 13, and a filter center line O16 of the collection unit 16. A central longitudinal region 14 </ b> C sandwiched between a hinge axis 43 of the intake door 13 and a second hinge orthogonal line P <b> 16 extending in a direction substantially orthogonal to the intake door 13 is included. The discharge electrode 50 was configured to be disposed in the central longitudinal region 14C.
 このように構成することで、上流側流路14では、放電電極50に当たる空気流速が高められるとともに、空気流の速度方向が放電電極50に略直交して対向するため、放電電極50に堆積した微粒子を除去する効果を高められる。 With this configuration, in the upstream flow path 14, the air flow rate hitting the discharge electrode 50 is increased, and the velocity direction of the air flow is opposed to the discharge electrode 50 so as to be substantially perpendicular to the discharge electrode 50. The effect of removing fine particles can be enhanced.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本発明は、車両に搭載される空気浄化装置として好適であるが、車両以外に使用される空気浄化装置にも適用できる。 The present invention is suitable as an air purification device mounted on a vehicle, but can also be applied to an air purification device used other than a vehicle.
 本願は、2016年9月14日に日本国特許庁に出願された特願2016-179649,及び2017年4月27日に日本国特許庁に出願された特願2017-088417に基づく優先権を主張し、これらの出願の全ての内容は参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2016-179649 filed with the Japan Patent Office on September 14, 2016, and Japanese Patent Application No. 2017-088417 filed with the Japan Patent Office on April 27, 2017. And the entire contents of these applications are hereby incorporated by reference.

Claims (12)

  1.  空気を浄化する空気浄化装置であって、
     空気中にイオンを発生する放電電極と、
     イオンによって帯電した空気中の微粒子を捕集する捕集部と、
     前記捕集部を通過するように空気を流す送風機と、を備え、
     前記送風機は、空気流を前記放電電極に堆積した微粒子に当てるような流れを発生させる、
    空気浄化装置。
    An air purification device for purifying air,
    A discharge electrode for generating ions in the air;
    A collection unit for collecting fine particles in the air charged by ions;
    A blower for flowing air so as to pass through the collection part,
    The blower generates a flow in which an air flow is applied to fine particles deposited on the discharge electrode.
    Air purification device.
  2.  請求項1に記載の空気浄化装置であって、
     空気を浄化する浄化モードと、
     前記放電電極に当たる空気流の流速を高める清掃モードと、に切り換えられる、
    空気浄化装置。
    The air purification device according to claim 1,
    A purification mode to purify the air;
    The mode is switched to a cleaning mode for increasing the flow velocity of the air flow hitting the discharge electrode.
    Air purification device.
  3.  請求項2に記載の空気浄化装置であって、
     制御部を更に備え、
     前記制御部は、前記浄化モードの稼働状態に応じて前記清掃モードに切り換える清掃タイミングを判定する、
    空気浄化装置。
    The air purification device according to claim 2,
    A control unit;
    The control unit determines a cleaning timing for switching to the cleaning mode according to an operating state of the purification mode.
    Air purification device.
  4.  請求項3に記載の空気浄化装置であって、
     前記制御部は、少なくとも前記送風機が稼働する経過時間と、前記送風機の送風量と、前記捕集部に流入する空気の微粒子濃度と、に応じて前記清掃タイミングを判定する、
    空気浄化装置。
    The air purification device according to claim 3,
    The control unit determines the cleaning timing according to at least an elapsed time during which the blower operates, an air flow rate of the blower, and a fine particle concentration of air flowing into the collection unit,
    Air purification device.
  5.  請求項4に記載の空気浄化装置であって、
     前記制御部は、前記浄化モードにおける前記放電電極のイオン発生量が上昇する稼働時間が増えるのに応じて前記清掃タイミングを遅らせる、
    空気浄化装置。
    The air purification device according to claim 4,
    The control unit delays the cleaning timing in accordance with an increase in operating time in which the amount of ions generated in the discharge electrode in the purification mode increases.
    Air purification device.
  6.  請求項5に記載の空気浄化装置であって、
     前記制御部は、
     前記放電電極のイオン発生量が低下する稼働時間とイオン発生量が所定値に低下する基準時間との劣化時間比と、
     前記放電電極のイオン発生量が上昇する回復時間とイオン発生量が所定値に回復する基準回復時間との回復時間比と、
     前記劣化時間比から前記回復時間比を減算した値の積算値と、を求め、
     前記積算値が所定値になったときに前記清掃タイミングと判定する、
    空気浄化装置。
    The air purification device according to claim 5,
    The controller is
    Deterioration time ratio between the operation time when the ion generation amount of the discharge electrode decreases and the reference time when the ion generation amount decreases to a predetermined value;
    A recovery time ratio between a recovery time when the ion generation amount of the discharge electrode increases and a reference recovery time when the ion generation amount recovers to a predetermined value,
    Find the integrated value of the value obtained by subtracting the recovery time ratio from the deterioration time ratio,
    When the integrated value reaches a predetermined value, the cleaning timing is determined.
    Air purification device.
  7.  請求項2から6のいずれか一つに記載の空気浄化装置であって、
     前記清掃モードでは、前記送風機の送風量を、前記浄化モードで設定される最大風量より更に多い設定風量に切り換える、
    空気浄化装置。
    The air purification device according to any one of claims 2 to 6,
    In the cleaning mode, the air volume of the blower is switched to a set air volume that is higher than the maximum air volume set in the purification mode.
    Air purification device.
  8.  請求項2から7のいずれか一つに記載の空気浄化装置であって、
     空気が流れる流路を切り換える流路切換機構を更に備え、
     前記清掃モードでは、空気流の流路抵抗を小さくするように前記流路切換機構が前記流路を切り換える、
    空気浄化装置。
    The air purification device according to any one of claims 2 to 7,
    A flow path switching mechanism for switching the flow path of air;
    In the cleaning mode, the flow path switching mechanism switches the flow path so as to reduce the flow resistance of the air flow.
    Air purification device.
  9.  請求項8に記載の空気浄化装置であって、
     前記流路切換機構は、
     車両の室内から空気を導入する内気導入口と、
     前記車両の外部から空気を導入する外気導入口と、
     前記外気導入口及び前記内気導入口を開閉するインテークドアと、を備え、
     前記清掃モードでは、前記外気導入口を閉じ、前記内気導入口を開く、
    空気浄化装置。
    It is an air purification apparatus of Claim 8, Comprising:
    The flow path switching mechanism is
    An inside air inlet for introducing air from the interior of the vehicle;
    An outside air inlet for introducing air from the outside of the vehicle;
    An intake door that opens and closes the outside air inlet and the inside air inlet,
    In the cleaning mode, the outside air introduction port is closed and the inside air introduction port is opened.
    Air purification device.
  10.  請求項9に記載の空気浄化装置であって、
     前記流路は、前記内気導入口の開口端と前記送風機の吸い込み口の開口端との間で形成される内気導入領域を有し、
     前記放電電極は、前記内気導入領域に配置される、
    空気浄化装置。
    The air purification device according to claim 9,
    The flow path has an inside air introduction region formed between an opening end of the inside air introduction port and an opening end of the suction port of the blower,
    The discharge electrode is disposed in the inside air introduction region,
    Air purification device.
  11.  請求項10に記載の空気浄化装置であって、
     前記送風機は、回転中心軸を中心に回転するファンを備え、
     前記インテークドアは、前記回転中心軸に略直交する面上に配置されるヒンジ軸を中心に回動し、
     前記流路は、前記回転中心軸を含み前記ヒンジ軸と略平行に延びる第1ヒンジ平行線と、前記捕集部のフィルタ中心線を含み前記ヒンジ軸と略平行に延びる第2ヒンジ平行線と、の間に挟まれる中央横断領域を有し、
     前記放電電極は、前記中央横断領域に配置される、
    空気浄化装置。
    It is an air purification apparatus of Claim 10, Comprising:
    The blower includes a fan that rotates about a rotation center axis,
    The intake door rotates around a hinge shaft disposed on a surface substantially orthogonal to the rotation center axis,
    The flow path includes a first hinge parallel line including the rotation center axis and extending substantially parallel to the hinge axis, and a second hinge parallel line including a filter center line of the collecting portion and extending substantially parallel to the hinge axis. Having a central transverse region sandwiched between
    The discharge electrode is disposed in the central transverse region;
    Air purification device.
  12.  請求項10に記載の空気浄化装置であって、
     前記送風機は、回転中心軸を中心に回転するファンを備え、
     前記インテークドアは、前記回転中心軸に略直交する面上に配置されるヒンジ軸を中心に回動し、
     前記流路は、前記回転中心軸を含み前記ヒンジ軸と略直交する方向に延びる第1ヒンジ直交線と、前記捕集部のフィルタ中心線を含み前記ヒンジ軸と略直交する方向に延びる第2ヒンジ直交線と、の間に挟まれる中央縦断領域を有し、
     前記放電電極は、前記中央縦断領域に配置される、
    空気浄化装置。
    It is an air purification apparatus of Claim 10, Comprising:
    The blower includes a fan that rotates about a rotation center axis,
    The intake door rotates around a hinge shaft disposed on a surface substantially orthogonal to the rotation center axis,
    The flow path includes a first hinge orthogonal line including the rotation center axis and extending in a direction substantially orthogonal to the hinge axis, and a second hinge extension including a filter center line of the collection portion and extending in a direction substantially orthogonal to the hinge axis. A central longitudinal region sandwiched between the hinge orthogonal line and
    The discharge electrode is disposed in the central longitudinal region;
    Air purification device.
PCT/JP2017/030978 2016-09-14 2017-08-29 Air purification device WO2018051783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780054060.3A CN109689217A (en) 2016-09-14 2017-08-29 Air cleaning unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-179649 2016-09-14
JP2016179649 2016-09-14
JP2017088417A JP2018047446A (en) 2016-09-14 2017-04-27 Air purification device
JP2017-088417 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018051783A1 true WO2018051783A1 (en) 2018-03-22

Family

ID=61619095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030978 WO2018051783A1 (en) 2016-09-14 2017-08-29 Air purification device

Country Status (1)

Country Link
WO (1) WO2018051783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130582A (en) * 1977-04-19 1978-11-14 Matsushita Electric Ind Co Ltd Electric dust collector
JPS55163049U (en) * 1979-05-11 1980-11-22
JPH09150077A (en) * 1995-11-28 1997-06-10 Zexel Corp Air purifying apparatus
JP3040679U (en) * 1997-02-18 1997-08-26 アシエ工業株式会社 Electric dust collector
JPH11156239A (en) * 1997-11-26 1999-06-15 Mitsubishi Electric Corp Air purifier with ion generating function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130582A (en) * 1977-04-19 1978-11-14 Matsushita Electric Ind Co Ltd Electric dust collector
JPS55163049U (en) * 1979-05-11 1980-11-22
JPH09150077A (en) * 1995-11-28 1997-06-10 Zexel Corp Air purifying apparatus
JP3040679U (en) * 1997-02-18 1997-08-26 アシエ工業株式会社 Electric dust collector
JPH11156239A (en) * 1997-11-26 1999-06-15 Mitsubishi Electric Corp Air purifier with ion generating function

Similar Documents

Publication Publication Date Title
KR102407846B1 (en) Air conditioning apparatus
US7857884B2 (en) Air cleaner including an improved airflow path
JP4270234B2 (en) Dust collector and air conditioner
WO2006090659A1 (en) Air conditioner
WO2006060418A2 (en) Temperature control with induced airflow
JP2008018406A (en) Dust collector
JP4451740B2 (en) Air purifier and air conditioner
JP2020109350A (en) Air cleaner
JP2018047446A (en) Air purification device
WO2018051783A1 (en) Air purification device
US6136074A (en) Air conditioning apparatus with an air cleaning function and electric dust collector for use in the same
JP4354884B2 (en) Air purifier, air purifier and air conditioner
JP2018096657A (en) Air cleaner
JP2018047446A5 (en)
JPH09150077A (en) Air purifying apparatus
JP2015059707A (en) Air cleaner
CN112406476B (en) Blower and ventilation system
JP2000046358A (en) Electrostatic air cleaner
KR100192296B1 (en) Electrostatic precipitator
JP2018020284A (en) Air purification device and air purification method
KR100484868B1 (en) electric air cleaner
TWI603559B (en) Discharge unit and air conditioning unit
WO2018051782A1 (en) Air purification device
JP2002079829A (en) Air cleaner
JP2007046802A (en) Air conditioner

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850686

Country of ref document: EP

Kind code of ref document: A1