WO2018051778A1 - Valve opening/closing timing control device - Google Patents

Valve opening/closing timing control device Download PDF

Info

Publication number
WO2018051778A1
WO2018051778A1 PCT/JP2017/030902 JP2017030902W WO2018051778A1 WO 2018051778 A1 WO2018051778 A1 WO 2018051778A1 JP 2017030902 W JP2017030902 W JP 2017030902W WO 2018051778 A1 WO2018051778 A1 WO 2018051778A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
lock
control
relative rotational
main
Prior art date
Application number
PCT/JP2017/030902
Other languages
French (fr)
Japanese (ja)
Inventor
岩屋崇
上田一生
小林昌樹
金子雅昭
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2018051778A1 publication Critical patent/WO2018051778A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention includes a drive-side rotator that rotates synchronously with a crankshaft, and a driven-side rotator that rotates integrally with a camshaft for opening and closing a valve, and maintains the relative rotational phase between the drive-side rotator and the driven-side rotator.
  • the present invention relates to a valve opening / closing timing control device provided with a locking mechanism.
  • Patent Document 1 As a valve opening / closing timing control device having the above-described configuration, Patent Document 1 has a lock mechanism including a restriction mechanism and a restriction mechanism, and sets a relative rotation phase by controlling an electromagnetic valve based on a detection result of a phase sensor. Thus, a technology that can release the locked state and shift to the locked state is shown.
  • Patent Document 1 when the first lock member of the restriction mechanism reaches within the restriction release possible range, the second state (the lock state by the restriction mechanism is released by the control of switching the electromagnetic valve to the retarded position) is disclosed.
  • a valve opening / closing timing control device that shifts from a state) to a first state (a state in which the restriction of the restriction mechanism is released) is disclosed. Further, in the first state, there is shown a control form in which when the first lock member reaches the range of the restriction range, the control is switched to the lock state by the control of switching the electromagnetic valve to the advance position.
  • phase sensor for detecting that the relative rotational phase has reached a lockable phase is required.
  • the configuration using an encoder with high resolution as the phase sensor causes an increase in cost. Therefore, for example, it is conceivable to use a sensor used for cylinder discrimination as a sensor for phase detection.
  • the cylinder discrimination sensor has low resolution and has room for improvement.
  • valve opening / closing timing control device that can reliably detect that the relative rotational phase has reached the lockable phase and shift to the locked state even when using a phase sensor that does not have a very high resolution.
  • the characteristic configuration of the valve timing control apparatus for achieving the above object is as follows: A drive-side rotating body that rotates synchronously with the crankshaft of the internal combustion engine; A driven-side rotating body that is included in the driving-side rotating body and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine, coaxially with a rotating shaft core of the driving-side rotating body; By supplying a working fluid to one of an advance chamber and a retard chamber formed between the drive side rotor and the driven side rotor, the drive side rotor and the driven side rotor are A working fluid control mechanism for displacing the relative rotational phase; A lock mechanism that holds the drive-side rotator and the driven-side rotator in a predetermined lock phase; A phase sensor that outputs a detection signal indicating the relative rotational phase at a predetermined timing synchronized with the rotation of the internal combustion engine; A phase control unit for displacing the relative rotational phase to a target phase using the detection signal of the
  • a main unlocking flow path for supplying a working fluid that enables extraction from the main locking recess The phase where the main lock member is present at one end of the main restriction region is made to correspond to the lock phase, a sequence region is formed at a position adjacent to the lock phase in the main restriction region, and the sequence region
  • the main unlock channel is connected to the drain channel, and the relative rotational phase is A channel that is supplied with a working fluid that displaces the relative rotational phase toward the lock phase when in the unlocking region is communicated with the main unlocking channel;
  • the phase control unit In the lock transition control for holding the relative rotational phase at the lock phase, the phase control unit displaces the relative rotational phase toward the sequence region, and after reaching the sequence region, the relative rotational phase is changed to the relative rotational phase.
  • the control mode is set so as to be displaced toward the lock phase, In the lock transition control, when the relative rotational phase is in the sequence region, an output timing of the detection signal of the phase sensor and a displacement speed of the relative rotational phase so as to detect the detection signal at least once.
  • the relationship is set.
  • the relative rotational phase in the lock transition control, the relative rotational phase is displaced toward the sequence region, and when the relative rotational phase reaches the sequence region, the detection signal of the phase sensor is detected at least once. Even if a phase sensor with a low resolution is used, it is possible to reliably detect that it is in the sequence region based on the detection signal. Further, when the relative rotational phase is in the sequence region, the main lock release channel communicates with the drain channel and the working fluid can be discharged, and the main lock member is engaged with the main lock recess by the biasing force of the main spring. In this state, the relative rotation phase can be displaced toward the lock phase in this engaged state, and the lock phase can be maintained. Therefore, a valve opening / closing timing control device that can reliably detect that the relative rotational phase has reached the lockable phase and shift to the locked state even when using a phase sensor that does not have a very high resolution is configured.
  • the lock mechanism includes a sub-lock portion that regulates the displacement region of the relative rotational phase to the sub-regulation region by engaging the sub-lock member with the sub-lock recess by the biasing force of the sub-spring, While the main lock member is engaged with the main lock recess, the relative rotation phase is held at the lock phase in a state where the sub lock member is engaged with the sub lock recess, A sub-lock release flow that supplies a part of the working fluid for displacing the main lock member from the sequence region toward the lock release region, thereby supplying the sub-lock member with the working fluid extracted from the sub-lock recess.
  • the relative rotational phase is set to the lock phase by supplying a working fluid to the main unlocking channel.
  • the control mode of the phase control unit is set so as to perform the third phase control for shifting to the region, and then displacing in the lock phase direction. From the displacement speed of the first phase control, the first phase control is performed.
  • the displacement speed of the two-phase control may be set low.
  • the first rotational phase control is performed by displacing the relative rotational phase to the lock phase, and stopping.
  • second phase control is performed.
  • the displacement speed of the second phase control is set lower than the displacement speed of the first phase control
  • the relative rotational phase reaches the sequence region by the second phase control, It is possible to reliably perform detection.
  • the main lock member is engaged with the main lock recess
  • the third phase control the main lock member is engaged with the main lock recess and the sub lock member is sub locked.
  • the relative rotation phase can be locked to the lock phase by engaging with the recess.
  • the time until the lock phase is reached is not delayed as compared with the case where both the displacement speed of the first phase control and the displacement speed of the second phase control are reduced.
  • a temperature sensor that detects the temperature of the internal combustion engine, and a rotation speed sensor or a hydraulic pressure sensor that detects the rotation speed of the crankshaft.
  • the temperature detected by the temperature sensor The displacement speed of the relative rotational phase may be set based on at least one of information and rotational speed information detected by the rotational speed sensor or information of the hydraulic pressure sensor.
  • the liquid temperature of the working fluid is estimated based on the temperature detected by the temperature sensor, the viscosity corresponding to the liquid temperature is taken into account, or the rotation speed of the crankshaft detected by the rotation speed sensor, or
  • the detection signal of the phase sensor is reliably detected in the sequence region by controlling the flow rate of the working fluid in the fluid control mechanism and setting the displacement speed of the relative rotation phase in consideration of the information of the hydraulic sensor. Is possible.
  • the phase control unit is configured to perform the lock transition control based on the rotation speed of the crankshaft when the internal combustion engine is in an idling state or in a cranking state.
  • the displacement speed of the relative rotational phase may be set.
  • the relative rotation phase when the relative rotation phase reaches a first holding phase that exceeds the lock phase by the first phase control, the relative rotation phase is changed to the first holding phase. Control to hold may be performed.
  • the control for holding the relative rotation phase at the first holding phase is performed. Done.
  • phase control unit determines in the lock transition control that the relative rotation phase has passed the lock phase by the third phase control
  • the phase control unit performs the second phase control and the third phase control. You may perform at least 2 phase control with phase control again.
  • the phase control unit determines that the relative rotation phase has passed the lock phase in the third phase control of the lock shift control, the lock mechanism has not shifted to the lock state.
  • the transition to the locked state by the lock mechanism is ensured.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a block circuit diagram of a control system. It is sectional drawing of a main locking mechanism. It is an operation
  • the valve opening / closing timing control device 100 includes a valve opening / closing timing control unit A and a control unit 90 that controls the electromagnetic control valve 40.
  • the valve opening / closing timing control unit A includes an external rotor 20 as a driving-side rotator, an internal rotor 30 as a driven-side rotator included in the external rotor 20, and a working fluid control that controls working oil as working fluid.
  • An electromagnetic control valve 40 as a mechanism is provided.
  • the valve opening / closing timing control unit A includes an external rotor 20 (drive side rotary body) and an internal rotor 30 (driven side rotary body) coaxially with the rotational axis X of the intake camshaft 5 of an engine E as an internal combustion engine.
  • the advance chamber Ca and the retard chamber Cb are formed as the fluid pressure chamber C between the outer rotor 20 and the inner rotor 30.
  • the valve opening / closing timing control unit A includes an electromagnetic control valve 40 that supplies and discharges hydraulic fluid to and from the advance chamber Ca and the retard chamber Cb, and is provided in the inner rotor 30 with the rotary shaft core X and the coaxial core. .
  • the electromagnetic control valve 40 supplies the hydraulic oil to one of the advance chamber Ca and the retard chamber Cb, and at the same time discharges the hydraulic oil from the other, so that the outer rotor 20 and the inner rotor 30 are centered on the rotation axis X.
  • the relative rotation phase (hereinafter referred to as the relative rotation phase) is displaced, and the opening / closing timing of the intake valve 5V is controlled by this displacement.
  • the valve opening / closing timing control unit A includes a lock mechanism LU that locks the relative rotation phase to the intermediate lock phase M shown in FIG.
  • the lock mechanism LU is composed of a main lock portion Lm and a sub lock portion Ls, and locks the relative rotation phase to the intermediate lock phase M when they simultaneously reach the engaged state.
  • the intermediate lock phase M is a phase for setting the intake valve 5V at an opening / closing timing suitable for starting the engine E. Accordingly, when an artificial operation for stopping the engine E is performed, the lock transition control unit 93 of the control unit 90 displaces the relative rotation phase to the intermediate lock phase M before stopping the engine E, and the lock mechanism LU Control is performed to set to a locked state.
  • An engine E (an example of an internal combustion engine) in FIG. 1 is assumed to be provided in a vehicle such as a passenger car, and a crankshaft 1 is provided below the engine E.
  • a piston 3 is accommodated in a cylinder bore of a cylinder block 2 provided at an upper position of the engine E, and the piston 3 and the crankshaft 1 are connected by a connecting rod 4.
  • An upper portion of the engine E is provided with an intake camshaft 5 that opens and closes an intake valve 5V, and an exhaust camshaft (not shown).
  • a supply flow path 8 through which hydraulic oil is supplied from a hydraulic pump P driven by the engine E is formed in the engine constituent member 10 that rotatably supports the intake camshaft 5.
  • the hydraulic pump P supplies the lubricating oil stored in the oil pan of the engine E to the electromagnetic control valve 40 through the supply flow path 8 as hydraulic oil.
  • the timing chain 7 is wound around the output sprocket 6 formed on the crankshaft 1 of the engine E and the timing sprocket 22S of the external rotor 20.
  • a sprocket is also provided at the front end of the exhaust camshaft on the exhaust side, and the timing chain 7 is wound around this sprocket.
  • valve opening / closing timing control unit A As shown in FIGS. 1 and 2, in the valve opening / closing timing control unit A, the external rotor 20 rotates synchronously with the crankshaft 1. Further, since the internal rotor 30 is connected to the intake camshaft 5 by the connecting bolt 50, it rotates integrally with the intake camshaft 5.
  • valve opening / closing timing control unit A the whole rotates in the driving rotation direction S as shown in FIG.
  • the direction in which the inner rotor 30 rotates relative to the outer rotor 20 in the same direction as the drive rotation direction S is referred to as an advance angle direction Sa, and the opposite direction is referred to as a retard angle direction Sb.
  • the opening / closing timing of the intake valve 5V is advanced by displacing in the advance direction Sa, and the opening / closing timing of the intake valve 5V is delayed by displacing in the retard direction Sb.
  • valve opening / closing timing control unit A provided in the intake camshaft 5 is shown.
  • the valve opening / closing timing control unit A is provided in the exhaust camshaft, and the intake camshaft 5 and the exhaust camshaft. And may be provided for both.
  • the external rotor 20 has an external rotor main body 21, a front plate 22, and a rear plate 23, which are fastened by a plurality of fastening bolts 24.
  • the timing sprocket 22S described above is formed on the outer periphery of the front plate 22.
  • a plurality (three) of projecting portions 21 ⁇ / b> T projecting radially inward are integrally formed on the inner periphery of the outer rotor body 21.
  • the inner rotor 30 includes a cylindrical inner rotor body 31 that is in close contact with the protruding portion 21T of the outer rotor body 21 and an outer side in the radial direction from the outer periphery of the inner rotor body 31 so as to contact the inner peripheral surface of the outer rotor body 21. And a plurality of (three) vane portions 32 projecting from each other.
  • a plurality (three) of fluid pressure chambers C are formed on the outer peripheral side of the inner rotor main body 31 at an intermediate position between the projecting portions 21T adjacent in the rotation direction, and these fluid pressure chambers C serve as vane portions.
  • the advance chamber Ca and the retard chamber Cb are partitioned.
  • the inner rotor 30 is formed with a plurality (three) of advance channels 33 communicating with the advance chamber Ca and a plurality (three) retard channels 34 communicating with the retard chamber Cb. Yes.
  • the front plate 22 is provided with an intermediate member 9, and a bolt head 52 of a connecting bolt 50 is crimped to the intermediate member 9, thereby
  • the rotor body 31 and the intake camshaft 5 are integrated.
  • a torsion spring 28 that assists displacement in the advance direction Sa by applying a biasing force from the most retarded phase to the advance direction Sa from the most retarded phase is provided across the external rotor 20 and the intermediate member 9. ing.
  • the connecting bolt 50 includes a bolt body 51 that is partially cylindrical, a bolt head 52 at the outer end, and a male screw portion 53 at the inner end.
  • a shaft inner space 5T into which a part of the connecting bolt 50 is closely fitted is formed, and a female screw part into which the male screw part 53 of the connecting bolt 50 is screwed is formed.
  • the shaft inner space 5T communicates with the supply flow path 8 described above, and hydraulic oil is supplied from the hydraulic pump P.
  • a spool chamber is formed in the direction from the bolt head 52 to the male threaded portion 53 with the rotation axis X and the same axis, and the spool chamber is movable in a direction along the rotation axis X.
  • the spool 41 is accommodated in the main body.
  • the spool 41 supplies and discharges hydraulic oil to and from the advance chamber Ca and the retard chamber Cb by changing the position in the direction along the rotation axis X, and discharges the hydraulic oil to the end on the protruding side.
  • a drain hole 41D is formed.
  • the spool 41 protrudes outward at the outer end side (in the direction of the bolt head 52) by the urging force of the spool spring.
  • the bolt body 51 is formed with a flow path for supplying hydraulic oil from the shaft inner space 5T to the spool 41, and with respect to the advance flow path 33 and the retard flow path 34 as the spool 41 operates.
  • a flow path for supplying and discharging hydraulic oil is formed.
  • the electromagnetic control valve 40 includes the spool 41 and the electromagnetic solenoid 44.
  • the electromagnetic solenoid 44 includes a plunger 44a whose protrusion amount is controlled by supplied electric power.
  • the spool 41 has an advance position shown in FIG. 1 when the plunger 44a contacts the outer end surface, a neutral position where the spool 41 is pushed by a predetermined amount, and a retard position where the spool 41 is pushed further. It is configured to be operable.
  • the spool 41 is set to the neutral position and the advance position by setting the power supplied to the electromagnetic solenoid 44. It is also possible to set the opening degree of the valve by holding it at a position between and to adjust the displacement speed.
  • the main lock portion Lm is slidably inserted into a guide hole 70 formed in a posture parallel to the rotation axis X with respect to one of the plurality of vane portions 32.
  • the main lock member 71, the main lock recess 72 formed in a groove shape on the rear plate 23 so that the engagement portion 71b of the main lock member 71 is engaged, and the engagement portion 71b are urged in the engagement direction.
  • a compression coil type main lock spring 73 (an example of a main spring).
  • the guide hole 70 includes a large-diameter guide hole 70a and a small-diameter guide hole 70b having a smaller diameter.
  • the main lock member 71 is generally cylindrical and has a main body portion 71a accommodated in the large diameter guide hole portion 70a of the guide hole 70 and an engagement smaller in diameter than the main body portion 71a and accommodated in the small diameter guide hole portion 70b. A portion 71b and a shaft-like portion 71c having a diameter smaller than that of the engaging portion 71b at these intermediate positions are provided.
  • the main lock member 71 has a first pressure receiving surface U1 (see FIGS. 4, 6, and 7) formed on the end surface of the main body 71a between the main body 71a and the engaging portion 71b, and the protrusion of the engaging portion 71b.
  • a second pressure receiving surface U2 is formed at the end on the side.
  • the main lock recess 72 has a width slightly wider than the diameter of the engaging portion 71b as shown in FIGS. 4 to 11, and is formed in an arc-shaped region centering on the rotation axis X.
  • the engaging portion 71b can be displaced in the relative rotational phase in the main restricting region while being engaged with the main lock recess 72. That is, the displacement region of the relative rotational phase can be restricted to the displacement in the main restriction region.
  • the main restriction area is a combination of a sequence area G, which will be described later, and a lock release area F (see FIG. 4).
  • the vane portion 32 in which the guide hole 70 is formed has a first unlocking passage 75 (an example of a main unlocking passage) communicating with the small diameter guide hole 70b and a second communicating with the large diameter guide hole 70a.
  • An unlock passage 76 is formed.
  • the engaging portion 71b has a lock level J1 that completely engages with the main lock recess 72, and a lock boundary level J2 that has just come out of the main lock recess 72 as shown in FIG. As shown in FIG. 7, it is configured to be movable to a lock release level J3 that is further away from the main lock recess 72 than the lock boundary level J2.
  • the first unlocking flow path 75 communicates with the first pressure receiving surface U1.
  • the second unlocking flow path 76 is blocked by the main body portion 71a and is in a non-communication state with the first pressure receiving surface U1. .
  • the first unlocking flow path 75 communicates with the second pressure receiving surface U2, and the second unlocking flow path 76 communicates with the first pressure receiving surface U1. .
  • the first unlocking flow path 75 is connected to the first retarded port via the first control port 75 a that opens toward the inner surface of the rear plate 23 at a position spaced from the guide hole 70. It is configured to be able to communicate with 75b.
  • the first control port 75a and the first retardation port 75b are disposed at positions that are separated from each other in the radial direction as shown in FIG.
  • sequence region G The region of the rotational phase from the intermediate lock phase M shown in FIG. 4 to the phase shown in FIG. 7 is referred to as a sequence region G (see FIG. 4).
  • the first control port 75a communicates with the drain channel 23D formed in the rear plate 23.
  • the hydraulic oil that applies pressure to the first pressure receiving surface U1 is discharged from the drain flow path 23D, and therefore the engagement portion 71b is engaged with the main lock recess 72 by the urging force of the main lock spring 73. enable.
  • the drain channel 23D communicates with the outer space of the rear plate 23, and the sequence region G is an angular region of about several degrees (crank angle is about 10 degrees).
  • the phase in which the relative rotational phase is displaced in the advance angle direction Sa is referred to as a lock release region F (see FIG. 4).
  • the unlocking region F since the first retard port 75b communicates with the first retard side groove 23R formed in the rear plate 23, the pressure of the hydraulic oil supplied to the retard chamber Cb is changed to the first pressure receiving surface U1.
  • the main lock member 71 is actuated in the direction of pulling out from the main lock recess 72.
  • the second unlocking flow path 76 is hydraulic oil having a pressure equal to that of the retarded flow path 34 (see FIG. 2) when the hydraulic oil is supplied to the retarded flow path 34. Is supplied. From this configuration, hydraulic oil can be supplied from the second unlocking flow path 76 to the first pressure receiving surface U1 only when the main locking member 71 is at the unlocking level J3 (see FIG. 7) shown in FIG. .
  • this 2nd unlocking flow path 76 is connected with the retardation flow path 34 (refer FIG. 2), or 2nd unlocking. It is also possible to adopt a flow path configuration in which the flow path 76 communicates with the retarded angle chamber Cb.
  • the lock assist communicates with the opening portion of the large diameter guide hole 70a (see FIG. 4).
  • a channel 22 ⁇ / b> A is formed in a groove shape on the inner surface of the front plate 22.
  • the lock assist flow path 22A supplies part of the hydraulic oil supplied to the advance chamber Ca to the large-diameter guide hole 70a, and assists the engagement of the main lock member 71 with the main lock recess 72.
  • the sub-lock portion Ls is formed in the support hole portion 80 formed in a posture along the radial direction around the rotation axis X with respect to one of the plurality of protrusions 21 ⁇ / b> T of the outer rotor body 21.
  • a sub-lock member 81 that is slidably inserted, a sub-lock recess 82 formed on the outer periphery of the inner rotor body 31 so that a regulating end 81a of the sub-lock member 81 is engaged, and a sub-lock member 81
  • a compression coil type secondary lock spring 83 (an example of a secondary spring) that applies a biasing force to be engaged with the secondary lock recess 82.
  • the sub-lock member 81 has a plate shape, and the end portion on the protruding side is referred to as a regulation end portion 81a. In addition, you may comprise this sublock member 81 in a rod shape.
  • the secondary lock recess 82 is formed in a recess extending along the direction in which the relative rotational phase is displaced. As a result, in a state where the regulating end 81a is engaged with the secondary lock recess 82, the relative rotational phase can be displaced in the secondary regulation region along the direction in which the secondary lock recess 82 is formed.
  • the sub-lock recess 82 communicates with the sub-lock release channel 35, and hydraulic oil from the advance channel 33 is supplied to this.
  • the main lock member 71 of the main lock portion Lm engages with the main lock recess 72, abuts against the end of the main restriction region of the main lock recess 72, and the sub lock member of the sub lock portion Ls.
  • the relative rotation phase is locked to the intermediate lock phase M when 81 is in contact with the end of the sub-restriction region of the sub-lock recess 82.
  • valve opening / closing timing control unit A realizes the displacement of the relative rotation phase by controlling the hydraulic oil by the electromagnetic control valve 40 (see FIG. 1), and by controlling the hydraulic oil by the electromagnetic control valve 40, The transition to the locked state that is the intermediate lock phase M and the unlocking that releases the locked state at the intermediate lock phase M are realized.
  • the phase sensor N includes a first sensor 11 that detects the rotation of the crankshaft 1 and a second sensor 12 that detects the rotation posture of the intake camshaft 5.
  • the control unit 90 includes a phase detector 91 that detects a relative rotational phase based on the signal from the second sensor 12.
  • the second sensor 12 is also used as a rotation speed sensor that detects the rotation speed of the crankshaft 1 (an example of rotation speed information).
  • the second sensor 12 Since the phase sensor N shown in the figure uses a configuration used as a cylinder discrimination sensor, the second sensor 12 has a structure suitable for cylinder discrimination.
  • the first sensor 11 includes a first disk 11A that rotates integrally with the crankshaft 1, and a pickup-type first detection unit 11B that detects a large number of first teeth 11At formed on the outer periphery of the first disk 11A. I have.
  • the outer periphery of the first disk 11A is provided with a notch portion 11An where the first tooth portion 11At does not exist, and the number of teeth of the first tooth portion 11At is counted on the basis of this notch portion 11An ("0"). The count value can be acquired.
  • the second sensor 12 includes a second disk 12A that rotates integrally with the intake camshaft 5 (internal rotor 30, see FIG. 1), and a plurality (three) of second tooth portions formed on the outer periphery of the second disk 12A. And a pickup-type second detection unit 12B that detects 12 At.
  • the plurality of second tooth portions 12At have different circumferential lengths so as to enable cylinder discrimination.
  • the detection form of the second sensor 12 is set so that when the intake camshaft 5 rotates, the second detection unit 12B detects the rising edge portion of the second tooth portion 12At (detects an up edge). Therefore, when the intake camshaft 5 makes one rotation, the second detection portion 12B detects the second tooth portion 12At three times.
  • phase detection unit 91 acquires the count value based on the detection of the first sensor 11, and at each of the three timings when the second detection unit 12B detects the three second tooth portions 12At. 11 is acquired, and the processing mode is set so as to detect the relative rotation phase based on the count value.
  • the count value of the first sensor 11 at the timing when the second detection portion 12B detects the three second tooth portions 12At is the reference value.
  • the phase detection unit 91 stores a reference value (numerical value) corresponding to each of the plurality of second tooth portions 12At in a nonvolatile memory or the like, and detects the second tooth portion 12At as the second detection.
  • the detected second tooth part 12At is specified as one of the three second tooth parts 12At, and the count value of the first sensor 11 at the detected timing is specified.
  • the relative rotational phase is obtained by comparing the reference value stored corresponding to the second tooth portion 12At.
  • the control unit 90 includes a detection signal from the phase sensor N that detects the relative rotational phase, and a temperature sensor that detects the temperature of the engine E (basically an example of coolant temperature and temperature information).
  • the T detection signal is input, and the control signal is output to the electromagnetic solenoid 44 of the electromagnetic control valve 40.
  • the phase detector 91 detects the relative rotational phase based on the signals from the first sensor 11 and the second sensor 12 as described above.
  • the phase control unit 92 realizes control for displacing the relative rotational phase to the target phase based on the detection result of the phase detection unit 91.
  • the lock transition control unit 93 realizes transition to the locked state by the lock mechanism LU based on the detection result of the phase detection unit 91.
  • the unlock control unit 94 realizes unlocking of the main lock unit Lm based on the detection result of the phase detection unit 91.
  • the temperature detector 95 detects the temperature of the engine E from the detection result of the temperature sensor T.
  • phase detection unit 91, the phase control unit 92, the lock transition control unit 93, and the lock release control unit 94 are configured by software, but may be configured by hardware, logic, etc. You may comprise by the combination of these hardware and software.
  • the control unit 90 also functions as an ECU that controls the engine E. For example, at the time of control for stopping the engine E, the relative rotation phase is shifted to the intermediate lock phase M and the lock mechanism LU has reached the locked state. Control for stopping the engine E is executed later.
  • control for supplying hydraulic oil to a flow path system (advance flow path 33, advance chamber Ca, etc.) that displaces the relative rotational phase in the advance direction Sa (see FIG. 2) is referred to as “advance angle”.
  • control for supplying hydraulic oil to a flow path system (retarded flow path 34, retarded angle chamber Cb, etc.) that displaces the relative rotational phase in the retarded direction Sb (see FIG. 2).
  • retarding operation Is referred to as “retarding operation”.
  • the first phase control for displacing the relative rotation phase in the direction of the intermediate lock phase M (retarding direction Sb) is started.
  • the displacement is stopped when the phase sensor N detects that the relative rotational phase exceeds the intermediate lock phase M and has reached the first holding phase Q1 shown in FIG.
  • control is performed to hold the relative rotation phase at the first holding phase Q1 until the first holding time T1 elapses (steps from # 101 to # 104).
  • Steps # 101 to # 104 are specific control examples of the first phase control.
  • the intermediate lock phase M is exceeded in the retard direction while the main lock member 71 is maintained at the unlock level J3, and the relative rotation phase is the first holding phase Q1 shown in FIG. To reach.
  • the relative rotational phase is held until the first holding time T1 elapses at the timing (phase VIII in FIG. 12) when the phase sensor N detects that the relative rotational phase has reached the first holding phase Q1.
  • the first holding phase Q1 may be such that the main lock member 71 is in the retarding direction Sb with respect to the intermediate lock phase M.
  • the sub-lock member 81 reaches a state where it engages with the sub-lock recess 82.
  • the first control port 75a communicates with the drain flow path 23D when passing through the intermediate lock phase M in the process of reaching the first holding phase Q1 from the predetermined phase K, but the second unlocking flow Since the main lock member 71 is maintained at the unlock level J3 by the pressure of the hydraulic oil from the passage 76, the engaging portion 71b of the main lock member 71 does not engage with the main lock recess 72.
  • the rotational speed of the engine E is acquired from the phase sensor N, the temperature of the temperature sensor T is acquired, hydraulic pressure information detected by a hydraulic pressure sensor (not shown) is acquired, and based on the acquired information
  • the displacement speed of the second phase control is set (Step # 105). Since the advance operation is performed by the second phase control, the displacement direction is opposite to the displacement direction of the first phase control. In the second phase control, the displacement speed (strictly, absolute value) of the second displacement speed is set to be lower than the displacement speed (strictly, absolute value) of the first phase control. The reason why the speed is reduced in this way is that the phase sensor N reliably detects that the relative rotational phase has reached the sequence region G.
  • Steps # 106 to # 109 are specific examples of the second phase control.
  • the lock assist flow path 22A communicates with the opening portion of the large-diameter guide hole 70a (see FIG. 4), so that the second phase control (advanced operation) is performed.
  • the displacement is performed in the advance direction Sa of the relative rotation phase, and the operation (engagement) of the main lock member 71 to the main lock recess 72 is assisted by the pressure of the hydraulic oil.
  • the relative rotational phase exceeds the phase shown in FIG. 9 and reaches the second holding phase Q2 included in the sequence region G as shown in FIG. Further, the situation where the relative rotational phase is displaced as shown in FIGS. 9 and 10 is shown as IX and X in the timing chart of FIG.
  • step # 104 the displacement speed is reduced so that the detection signal D of the second tooth portion 12At (see FIG. 3) of the phase sensor N is acquired.
  • the reduction in the displacement speed is set based on the rotation speed of the crankshaft 1 detected by the first sensor 11 and the temperature detected by the temperature sensor T.
  • the viscosity changes with temperature
  • the oil pressure changes with the rotation speed
  • the target displacement speed is set accordingly
  • the opening of the electromagnetic control valve 40 is set so that the relative rotation phase is displaced at this displacement speed. Is done.
  • FIG. 13 shows the displacement curve QX of the relative rotational phase and the detection signal D in the upper stage, and the level change signal H representing the level change in the radial direction of the second tooth portion 12At in the lower stage.
  • the displacement curve QX appears as a curve that gently varies in the advance angle direction Sa and the retard angle direction Sb due to the action of the cam fluctuation torque.
  • the detection signal D since the second sensor 12 detects only the up edge of the level change signal H, the detection signal D has a step shape corresponding to the up edge.
  • the count is continuously performed by the first sensor 11, and the count value of the first sensor 11 is acquired by the second sensor 12 at the detection timing at the up edge of the level change signal H.
  • the relative rotation phase represented by the displacement curve QX at the detection timing can be grasped.
  • the detection cycle of the level change signal H becomes uneven. Then, although the period of the detection signal D is not uniform corresponding to the detection period of the level change signal H, at least one detection signal D can be acquired in the sequence area G even in the area where the detection period is farthest away.
  • the displacement speed is set to.
  • FIG. 12 shows a state in which the relative rotation phase is held at the second holding phase Q2 until the second holding time T2 elapses after reaching the second holding phase Q2.
  • the hydraulic oil is supplied to the advance channel 33, the hydraulic oil is also supplied to the sub-lock release channel 35, and the sub-lock member 81 comes out of the sub-lock recess 82.
  • the second holding time T2 is set longer as the temperature detected by the temperature sensor T is lower and the viscosity of the hydraulic oil is lower and the viscosity is higher.
  • the pressure in the retarded flow path 34 and the retarded angle chamber Cb (see FIG. 2) is in a greatly reduced state, and the drain flow path 23D is connected to the drain flow path 23D via the first unlocking flow path 75.
  • the state of communication is continuously maintained.
  • the pressure acting on the first pressure receiving surface U1 and the second pressure receiving surface U2 is reduced, and the engagement portion 71b of the main lock member 71 is engaged (engaged) with the main lock recess 72 by the urging force of the main lock spring 73.
  • the operation to enter) is performed.
  • the second unlocking flow path 76 is closed by the main body 71a of the main locking member 71, so that hydraulic oil flows through the second unlocking flow path 76.
  • the main body 71a of the main locking member 71 there is no inconvenience of reducing the operating speed of the main lock member 71 due to the flow path resistance acting on the hydraulic oil in the second unlocking flow path 76.
  • the third phase control is performed in which the relative rotational phase is displaced in the direction of the intermediate lock phase M by the second delay operation.
  • the relative rotational phase detected by the phase sensor N (see FIG. 3) is locked at the intermediate lock phase M shown in FIG.
  • retry control is executed (steps # 110 to # 113).
  • the detection signal of the phase sensor N is acquired with a short sampling period at the time of delay operation, and in the step # 112, when the intermediate lock phase M is continued for a predetermined time of 3 seconds or more.
  • the lock transition control is terminated by determining that the intermediate lock phase M has been locked.
  • the retarding operation is stopped at the timing when it is detected that the relative rotational phase has reached the first holding phase Q1, and thereafter, the control from step # 103 to step # 111 is executed again.
  • the first holding time T1 in the # 104 step is extended, the displacement speed grounded in the # 105 is reduced, the second holding time T2 in the # 109 step is extended, and the # 110 step is increased. Setting is made to reduce the operation speed of the retard operation.
  • This retry control is assumed to be repeated a plurality of times, and as the number of executions of this retry control increases, the first holding time T1 of the # 104 step is further extended, and the displacement set at # 105 Setting is made to further reduce the speed, further extend the second holding time T2 of step # 109, and further reduce the operating speed of the retarding operation of step # 110.
  • the error information is displayed on the display, or processing such as saving in the control history that the lock state could not be entered is performed, and the retry control is terminated. To do.
  • the retry control it is possible to set the control mode so that the control from step # 106 to step # 112 is executed again.
  • the phase change when the intermediate lock phase M is reached is shown as the timing of XI in FIG.
  • the engaging portion 71b of the main lock member 71 is moved to the main lock recess 72 as shown in FIG. Is engaged.
  • the engaging portion 71b comes into contact with the end of the main lock recess 72 as shown in FIG.
  • the restriction end portion 81a of the secondary lock member 81 is detached from the secondary lock recess 82, and in the main lock portion Lm, the engaging portion 71b is the main lock recess. Displacement is performed in the state engaged with 72 (within the range of the matable area), and an arbitrary phase can be set.
  • the phase control unit 92 executes control for supplying hydraulic oil to the retard chamber Cb
  • the main lock member 71 reaches the unlock level J3 as shown in FIG.
  • the relative rotation phase exceeds the intermediate lock phase M in a state where the main lock member 71 is maintained at the unlock level J3.
  • the lock member 81 is engaged with the sub lock recess 82.
  • the displacement in the retarding direction Sb is performed within a range in which the sub lock member 81 can be displaced in a state where the sub lock member 81 is engaged with the sub lock recess 82.
  • the main lock portion Lm and the sub lock portion Ls of the lock mechanism LU reach the locked state at the same time, so that the relative rotational phase can be maintained at the intermediate lock phase M. Further, when shifting to the intermediate lock phase M, it is realized by setting the displacement direction and the displacement speed of the relative rotation phase by controlling the electromagnetic control valve 40, so that a dedicated control valve for controlling the lock member is required. do not do.
  • the phase sensor N since the displacement speed of the second phase control is set lower than the displacement speed of the first phase control based on the rotation speed of the engine E and the temperature of the hydraulic oil, an encoder with high resolution is used as the phase sensor N. Even if not used, the phase sensor N reliably detects that the relative rotational phase has reached the sequence region G. Thereby, the inconvenience that the relative rotation phase exceeds the sequence region G and reaches the lock release region F can be suppressed.
  • the retry control is executed to ensure the shift to the locked state.
  • the shift to the locked state is ensured by extending the holding time and reducing the displacement speed.
  • the present invention may be configured as follows (the components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).
  • the first phase control is performed (steps from # 201 to # 204), and when the second phase control is executed (when the first holding phase Q1 is displaced in the advance direction Sa).
  • the phase sensor N detects the relative rotational phase a plurality of times, thereby acquiring a plurality of phases and setting the estimated displacement line LX (see FIG. 15). (Steps # 205 to # 207).
  • step # 205 the rotational speed of the engine E is acquired from the phase sensor N (see FIG. 3), the temperature of the temperature sensor T (see FIG. 3) is acquired, and is detected by a hydraulic sensor (not shown).
  • the hydraulic pressure information is acquired, and the displacement speed of the second phase control is set based on the acquired hydraulic information.
  • the retarding operation is performed, and when the phase sensor N detects that the relative rotational phase has reached the first holding phase Q1, the displacement is stopped until the first holding time T1 elapses. Control to hold the relative rotational phase at the first holding phase Q1 is performed.
  • the displacement assumption line LX set in the phase estimation stops the displacement of the relative rotational phase at the arrival timing TQ2 (see FIG. 15) intersecting the second holding phase Q2, and the second Control is performed to hold the relative rotational phase at the second holding phase Q2 until the holding time T2 elapses (steps from # 208 to # 210).
  • the third phase control is performed.
  • the relative rotation phase is displaced in the direction of the intermediate lock phase M (see FIG. 4) by performing a retard operation, and it is determined that the lock is made in the intermediate lock phase M (lock determination). If so, the control ends. On the contrary, if it is determined that the intermediate lock phase M has not been locked and the intermediate lock phase M has been passed, retry control is executed (# 211 to # 214 steps).
  • step # 213 when the state of being in the intermediate lock phase M is continued for a predetermined time of 3 seconds or more, it is determined that the lock is in the intermediate lock phase M, and the lock transition control is terminated.
  • the retard operation is stopped at the timing when it is detected that the relative rotational phase has reached the first holding phase Q1, and thereafter, the control from step # 203 to step # 212 is executed again.
  • the first holding time T1 in the # 204 step is extended, the displacement speed grounded in the # 205 is reduced, the second holding time T2 in the # 210 step is extended, and the # 210 step is increased. Setting is made to reduce the operation speed of the retard operation.
  • This retry control is assumed to be repeated a plurality of times, and as the number of executions of this retry control increases, the first holding time T1 of step # 204 is further extended, and the displacement set in # 206 Setting is made to further reduce the speed, further extend the second holding time T2 of step # 210, and further reduce the operating speed of the retarding operation of step # 211.
  • the detection signal D is used to acquire the value of the displacement curve QX twice.
  • the first phase QX1 and the second phase QX2 are acquired by setting the detection timing, the displacement assumption line LX connecting the first phase QX1 and the second phase QX2 is calculated, and the displacement assumption line LX is second held.
  • the arrival timing TQ2 that intersects the phase Q2 is obtained.
  • the displacement estimation line LX is determined in consideration of variations, such as obtaining a moving average of three or more detected values.
  • the setting process is enabled.
  • the electromagnetic control valve is based on the rotational speed of the crankshaft 1 detected by the second sensor 12 so that the detection signal D can be reliably detected in the sequence region G by reducing the displacement speed of the relative rotational phase.
  • a solenoid valve may be provided outside the valve opening / closing timing control unit A as a working fluid control mechanism.
  • the flow path configuration can be simplified as compared with the valve opening / closing timing control unit A provided with an electromagnetic valve.
  • the main lock member 71 may be configured to protrude outward in the radial direction. Further, as the sub-locking portion Ls, the sub-locking member 81 may be configured to retract and retract along an axis that is parallel to the rotation axis X.
  • the present invention can be used for a valve opening / closing timing control device including a lock mechanism that holds a relative rotational phase between a driving side rotating body and a driven side rotating body.

Abstract

A valve opening/closing timing control device with which arrival at a phase at which locking is possible can be detected reliably, and a transition to a locked state can be made, even when a phase sensor with low resolution is used. A control mode for lock transition control is set such that when a phase sensor detects that the relative rotational phase has arrived at a sequence region G, displacement is stopped and the relative rotational phase is displaced toward a locked phase M. In this control, when the relative rotational phase is in the sequence region the relationship between the output timing of a detection signal from the phase sensor and the displacement speed of the relative rotational phase is set such that the detection signal from the phase sensor is detected at least one time.

Description

弁開閉時期制御装置Valve timing control device
 本発明は、クランクシャフトと同期回転する駆動側回転体、及び、弁開閉用のカムシャフトと一体回転する従動側回転体を備え、駆動側回転体と従動側回転体との相対回転位相を保持するロック機構を備えた弁開閉時期制御装置に関する。 The present invention includes a drive-side rotator that rotates synchronously with a crankshaft, and a driven-side rotator that rotates integrally with a camshaft for opening and closing a valve, and maintains the relative rotational phase between the drive-side rotator and the driven-side rotator. The present invention relates to a valve opening / closing timing control device provided with a locking mechanism.
 上記構成の弁開閉時期制御装置として特許文献1には、規制機構と拘束機構とを備えたロック機構を有し、位相センサでの検知結果に基づいて電磁弁の制御で相対回転位相を設定することでロック状態の解除と、ロック状態へ移行可能な技術が示されている。 As a valve opening / closing timing control device having the above-described configuration, Patent Document 1 has a lock mechanism including a restriction mechanism and a restriction mechanism, and sets a relative rotation phase by controlling an electromagnetic valve based on a detection result of a phase sensor. Thus, a technology that can release the locked state and shift to the locked state is shown.
 この特許文献1には、規制機構の第1ロック部材が規制解除可能範囲の範囲内に達した場合に電磁弁を遅角ポジションに切り換える制御により第2状態(拘束機構によるロック状態が解除された状態)から第1状態(規制機構の規制が解除された状態)へ移行する弁開閉時期制御装置が開示されている。また、第1状態にある場合に、第1ロック部材が規制範囲の範囲内に達した場合に電磁弁を進角ポジションに切り換える制御により、ロック状態へ移行する制御形態が示されている。 In Patent Document 1, when the first lock member of the restriction mechanism reaches within the restriction release possible range, the second state (the lock state by the restriction mechanism is released by the control of switching the electromagnetic valve to the retarded position) is disclosed. A valve opening / closing timing control device that shifts from a state) to a first state (a state in which the restriction of the restriction mechanism is released) is disclosed. Further, in the first state, there is shown a control form in which when the first lock member reaches the range of the restriction range, the control is switched to the lock state by the control of switching the electromagnetic valve to the advance position.
特開2013‐160095号公報JP 2013-160095 A
 特許文献1に記載されているような、駆動側回転体と従動側回転体との相対回転位相を設定によってロック状態への移行と、ロック状態の解除への移行とを可能にする構成は、ロック機構のロック部材を制御するための専用のロック制御弁や、ロック解除のための専用の油路を必要とせず、部品点数が低減される良好な構成を現出するものである。 As described in Patent Document 1, the configuration that enables the transition to the locked state and the transition to the unlocked state by setting the relative rotational phase of the driving side rotating body and the driven side rotating body, A special lock control valve for controlling the lock member of the lock mechanism and a dedicated oil passage for unlocking are not required, and a good configuration in which the number of parts is reduced can be realized.
 また、相対回転位相の制御だけでロック状態に移行するために特許文献1と同様の構成を考えると、この構成では、2つのロック部材と、これらに対応するロック凹部と、2つのロック部材を付勢するロックスプリングとを必要とし、相対回転位相を変位させる通常の制御では、ロック状態に移行しないための油路構成を必要とする。 Further, considering the same configuration as in Patent Document 1 in order to shift to the locked state only by controlling the relative rotational phase, in this configuration, two lock members, a corresponding lock recess, and two lock members are provided. In normal control that requires a lock spring to be urged and displaces the relative rotational phase, an oil passage configuration is required so as not to shift to the locked state.
 このような油路構成としては、相対回転位相がロック位相に達した場合に、ロック解除圧を逃がすドレン流路を形成することが合理的である。具体的には、相対回転位相を通常の速度で変位させた場合には、相対回転位相がロック位相を通過してもロック部材がロック凹部に係合することがない。一方、ロック位相において相対回転位相の変位を保持し、この保持状態が設定時間以上継続した場合に、ドレン流路から作動油が排出されることで少なくとも一方のロック部材がロック凹部に係合する構成が考えられる。 As such an oil passage configuration, it is reasonable to form a drain passage that releases the unlocking pressure when the relative rotational phase reaches the lock phase. Specifically, when the relative rotation phase is displaced at a normal speed, the lock member does not engage the lock recess even if the relative rotation phase passes the lock phase. On the other hand, when the displacement of the relative rotational phase is held in the lock phase and this holding state continues for a set time or longer, the hydraulic oil is discharged from the drain flow path, so that at least one lock member is engaged with the lock recess. Configuration is conceivable.
 また、このような構成では、相対回転位相がロック可能な位相に達したことを検知するための位相センサを必要とする。しかしながら、位相センサとして、分解能の高いエンコーダを用いる構成はコスト上昇を招くことになる。そこで、例えば、気筒判別に用いられるセンサを、位相検知のためのセンサとして用いることも考えられる。しかしながら、気筒判別センサは分解能が低く改善の余地がある。 In such a configuration, a phase sensor for detecting that the relative rotational phase has reached a lockable phase is required. However, the configuration using an encoder with high resolution as the phase sensor causes an increase in cost. Therefore, for example, it is conceivable to use a sensor used for cylinder discrimination as a sensor for phase detection. However, the cylinder discrimination sensor has low resolution and has room for improvement.
 このように、分解能があまり高くない位相センサを用いても、相対回転位相がロック可能な位相に到達したことを確実に検知してロック状態に移行可能な弁開閉時期制御装置が求められる。 Thus, there is a need for a valve opening / closing timing control device that can reliably detect that the relative rotational phase has reached the lockable phase and shift to the locked state even when using a phase sensor that does not have a very high resolution.
 上記目的を達成するための本発明に係る弁開閉時期制御装置の特徴構成は、
 内燃機関のクランクシャフトと同期回転する駆動側回転体と、
 前記駆動側回転体に内包され、前記駆動側回転体の回転軸芯と同軸芯で前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
 前記駆動側回転体と前記従動側回転体との間に区画形成される進角室と遅角室との一方に作動流体を供給することで前記駆動側回転体と前記従動側回転体との相対回転位相を変位させる作動流体制御機構と、
 前記駆動側回転体と前記従動側回転体とを所定のロック位相に保持するロック機構と、
 前記相対回転位相を示す検知信号を前記内燃機関の回転に同期した所定のタイミング毎に出力する位相センサと、
 前記位相センサの前記検知信号を用いて前記相対回転位相を目標位相に変位させる位相制御部と、を備えると共に、
 前記ロック機構が、主スプリングの付勢力で主ロック部材を主ロック凹部に係合させることにより前記相対回転位相の変位領域を主規制領域に規制する主ロック部と、前記主ロック部材に対して前記主ロック凹部からの抜き出しを可能にする作動流体を供給する主ロック解除流路と、を備え、
 前記主規制領域の一方の端部に前記主ロック部材が存在する位相を前記ロック位相に対応させ、前記主規制領域のうち前記ロック位相に隣接する位置にシーケンス領域を形成すると共に、当該シーケンス領域に隣接する位置にロック解除領域を形成し、前記相対回転位相が前記ロック位相から前記シーケンス領域に亘る領域にある場合に前記主ロック解除流路をドレン流路に連通させ、前記相対回転位相が前記ロック解除領域にある場合に前記相対回転位相を前記ロック位相に向けて変位させる作動流体が供給される流路を前記主ロック解除流路に連通させており、
 前記位相制御部は、前記相対回転位相を前記ロック位相に保持するロック移行制御において、前記相対回転位相を、前記シーケンス領域に向けて変位させ、前記シーケンス領域に到達した後に、前記相対回転位相を前記ロック位相に向けて変位させるように制御形態が設定され、
 前記ロック移行制御において、前記相対回転位相が前記シーケンス領域にある場合に、検知信号を少なくとも1度は検知するように前記位相センサの検知信号の出力タイミングと、前記相対回転位相の変位速度との関係が設定されている点にある。
The characteristic configuration of the valve timing control apparatus according to the present invention for achieving the above object is as follows:
A drive-side rotating body that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating body that is included in the driving-side rotating body and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine, coaxially with a rotating shaft core of the driving-side rotating body;
By supplying a working fluid to one of an advance chamber and a retard chamber formed between the drive side rotor and the driven side rotor, the drive side rotor and the driven side rotor are A working fluid control mechanism for displacing the relative rotational phase;
A lock mechanism that holds the drive-side rotator and the driven-side rotator in a predetermined lock phase;
A phase sensor that outputs a detection signal indicating the relative rotational phase at a predetermined timing synchronized with the rotation of the internal combustion engine;
A phase control unit for displacing the relative rotational phase to a target phase using the detection signal of the phase sensor, and
The lock mechanism engages the main lock member with the main lock recess by the urging force of the main spring, thereby restricting the displacement region of the relative rotational phase to the main restriction region, and the main lock member. A main unlocking flow path for supplying a working fluid that enables extraction from the main locking recess,
The phase where the main lock member is present at one end of the main restriction region is made to correspond to the lock phase, a sequence region is formed at a position adjacent to the lock phase in the main restriction region, and the sequence region When the relative rotational phase is in the region extending from the lock phase to the sequence region, the main unlock channel is connected to the drain channel, and the relative rotational phase is A channel that is supplied with a working fluid that displaces the relative rotational phase toward the lock phase when in the unlocking region is communicated with the main unlocking channel;
In the lock transition control for holding the relative rotational phase at the lock phase, the phase control unit displaces the relative rotational phase toward the sequence region, and after reaching the sequence region, the relative rotational phase is changed to the relative rotational phase. The control mode is set so as to be displaced toward the lock phase,
In the lock transition control, when the relative rotational phase is in the sequence region, an output timing of the detection signal of the phase sensor and a displacement speed of the relative rotational phase so as to detect the detection signal at least once. The relationship is set.
 この特徴構成によると、ロック移行制御では、相対回転位相をシーケンス領域に向けて変位させ、相対回転位相がシーケンス領域に到達した場合には、位相センサの検知信号を少なくとも1度は検知するため、分解能が低い位相センサを用いても、検知信号に基づいてシーケンス領域にあることを確実に検知することが可能となる。また、相対回転位相がシーケンス領域にある場合には、主ロック解除流路がドレン流路に連通して作動流体の排出が可能となり、主スプリングの付勢力によって主ロック部材を主ロック凹部に係合させ、この係合状態で相対回転位相をロック位相に向けて変位させ、ロック位相に保持することが可能となる。
 従って、分解能があまり高くない位相センサを用いても、相対回転位相がロック可能な位相に到達したことを確実に検知してロック状態に移行可能な弁開閉時期制御装置が構成された。
According to this feature configuration, in the lock transition control, the relative rotational phase is displaced toward the sequence region, and when the relative rotational phase reaches the sequence region, the detection signal of the phase sensor is detected at least once. Even if a phase sensor with a low resolution is used, it is possible to reliably detect that it is in the sequence region based on the detection signal. Further, when the relative rotational phase is in the sequence region, the main lock release channel communicates with the drain channel and the working fluid can be discharged, and the main lock member is engaged with the main lock recess by the biasing force of the main spring. In this state, the relative rotation phase can be displaced toward the lock phase in this engaged state, and the lock phase can be maintained.
Therefore, a valve opening / closing timing control device that can reliably detect that the relative rotational phase has reached the lockable phase and shift to the locked state even when using a phase sensor that does not have a very high resolution is configured.
 他の構成として、前記ロック機構が、副スプリングの付勢力で副ロック部材を副ロック凹部に係合させることにより前記相対回転位相の変位領域を副規制領域に規制する副ロック部を備え、前記主ロック凹部に前記主ロック部材が係入すると共に、前記副ロック凹部に前記副ロック部材が係合する状態で前記相対回転位相が前記ロック位相に保持され、
 前記主ロック部材を前記シーケンス領域から前記ロック解除領域に向けて変位させる作動流体の一部が供給されることにより、前記副ロック部材に前記副ロック凹部から抜き出す作動流体を供給する副ロック解除流路を備え、
 前記主ロック部材が前記ロック解除領域にある前記相対回転位相から前記ロック移行制御を実行する際には、前記主ロック解除流路に作動流体を供給することにより前記相対回転位相を、前記ロック位相を超える位相まで変位させる第1位相制御を行い、次に、前記第1位相制御と逆方向に変位させる第2位相制御を行うことにより、前記相対回転位相を、前記ロック位相を超えて前記シーケンス領域まで移行して停止し、この後に、前記ロック位相の方向に変位させる第3位相制御を行うように前記位相制御部の制御形態が設定され、前記第1位相制御の変位速度より、前記第2位相制御の変位速度が低く設定されても良い。
As another configuration, the lock mechanism includes a sub-lock portion that regulates the displacement region of the relative rotational phase to the sub-regulation region by engaging the sub-lock member with the sub-lock recess by the biasing force of the sub-spring, While the main lock member is engaged with the main lock recess, the relative rotation phase is held at the lock phase in a state where the sub lock member is engaged with the sub lock recess,
A sub-lock release flow that supplies a part of the working fluid for displacing the main lock member from the sequence region toward the lock release region, thereby supplying the sub-lock member with the working fluid extracted from the sub-lock recess. With a road,
When performing the lock transition control from the relative rotational phase in which the main lock member is in the unlocking region, the relative rotational phase is set to the lock phase by supplying a working fluid to the main unlocking channel. The first phase control for displacing to a phase exceeding the first phase control, and then the second phase control for displacing in the opposite direction to the first phase control, the relative rotational phase exceeds the lock phase and the sequence is performed. The control mode of the phase control unit is set so as to perform the third phase control for shifting to the region, and then displacing in the lock phase direction. From the displacement speed of the first phase control, the first phase control is performed. The displacement speed of the two-phase control may be set low.
 これによると、例えば、主ロック部材が前記ロック解除領域にある相対回転位相から前記ロック移行制御を実行する際には、第1位相制御により、相対回転位相をロック位相まで変位させて停止させ、次に、第2位相制御が行われる。特に、この第2位相制御の変位速度が、第1位相制御の変位速度より低く設定されているため、この第2位相制御で相対回転位相がシーケンス領域に到達した場合には、位相センサでの検知を確実に行わせることが可能となる。このシーケンス領域では、主ロック部材が主ロック凹部に係合する作動が行われ、第3位相制御を行うことにより、主ロック部材を主ロック凹部に係合させ、かつ、副ロック部材を副ロック凹部に係合させ、相対回転位相をロック位相にロックできる。特に、この制御形態では、第1位相制御の変位速度と第2位相制御の変位速度との双方を低速化するものと比較して、ロック位相に到達するまでの時間を遅延させることもない。 According to this, for example, when performing the lock transition control from the relative rotational phase in which the main lock member is in the unlocking region, the first rotational phase control is performed by displacing the relative rotational phase to the lock phase, and stopping. Next, second phase control is performed. In particular, since the displacement speed of the second phase control is set lower than the displacement speed of the first phase control, when the relative rotational phase reaches the sequence region by the second phase control, It is possible to reliably perform detection. In this sequence region, the main lock member is engaged with the main lock recess, and by performing the third phase control, the main lock member is engaged with the main lock recess and the sub lock member is sub locked. The relative rotation phase can be locked to the lock phase by engaging with the recess. In particular, in this control mode, the time until the lock phase is reached is not delayed as compared with the case where both the displacement speed of the first phase control and the displacement speed of the second phase control are reduced.
 他の構成として、前記内燃機関の温度を検知する温度センサと、前記クランクシャフトの回転数を検知する回転数センサあるいは油圧センサとを備え、前記ロック移行制御では、前記温度センサで検知される温度情報と前記回転数センサで検知される回転数情報あるいは油圧センサの情報との少なくともいずれかに基づいて前記相対回転位相の変位速度が設定されても良い。 As another configuration, a temperature sensor that detects the temperature of the internal combustion engine, and a rotation speed sensor or a hydraulic pressure sensor that detects the rotation speed of the crankshaft. In the lock transition control, the temperature detected by the temperature sensor The displacement speed of the relative rotational phase may be set based on at least one of information and rotational speed information detected by the rotational speed sensor or information of the hydraulic pressure sensor.
 これによると、温度センサで検知される温度に基づいて作動流体の液温を推定し、この液温に対応する粘性を考慮する、又は、回転数センサで検知されるクランクシャフトの回転数、あるいは、油圧センサの情報を考慮して、流体制御機構での作動流体の流量を制御して相対回転位相の変位速度を設定することにより、シーケンス領域で位相センサの検知信号の検出を確実に行うことが可能となる。 According to this, the liquid temperature of the working fluid is estimated based on the temperature detected by the temperature sensor, the viscosity corresponding to the liquid temperature is taken into account, or the rotation speed of the crankshaft detected by the rotation speed sensor, or The detection signal of the phase sensor is reliably detected in the sequence region by controlling the flow rate of the working fluid in the fluid control mechanism and setting the displacement speed of the relative rotation phase in consideration of the information of the hydraulic sensor. Is possible.
 他の構成として、前記位相制御部は、前記内燃機関がアイドリング状態にある場合、又は、クランキング状態にある場合に、前記ロック移行制御を実行する際には、前記クランクシャフトの回転数に基づいて前記相対回転位相の変位速度を設定しても良い。 As another configuration, the phase control unit is configured to perform the lock transition control based on the rotation speed of the crankshaft when the internal combustion engine is in an idling state or in a cranking state. The displacement speed of the relative rotational phase may be set.
 これによると、内燃機関がアイドリング状態とクランキング状態とのいずれの状態にあっても、弁開閉時期制御装置の全体の回転数が少ないため(低速であるため)、位相センサが出力する検知信号の出力タイミングの間隔が拡大する。この理由から、クランクシャフトの回転数に基づいて(対応して)相対回転位相の変位速度を設定することで、シーケンス領域で位相センサの検知信号の検出を確実に行うことが可能となる。 According to this, even if the internal combustion engine is in an idling state or a cranking state, the overall rotation speed of the valve opening / closing timing control device is small (because of the low speed), so the detection signal output by the phase sensor The output timing interval increases. For this reason, it is possible to reliably detect the detection signal of the phase sensor in the sequence region by setting the displacement speed of the relative rotational phase based on (correspondingly) the rotational speed of the crankshaft.
 他の構成として、前記ロック移行制御において、前記第1位相制御により前記相対回転位相が前記ロック位相を超える位相の第1保持位相に到達した際に、前記相対回転位相を前記第1保持位相に保持する制御が行われても良い。 As another configuration, in the lock transition control, when the relative rotation phase reaches a first holding phase that exceeds the lock phase by the first phase control, the relative rotation phase is changed to the first holding phase. Control to hold may be performed.
 これによると、ロック移行制御の第1位相制御において、相対回転位相が、ロック位相を超えて第1保持位相に到達した際には、相対回転位相を、この第1保持位相に保持する制御が行われる。このように相対回転位相を第1保持位相に保持することにより、例えば、第1保持位相を超えて大きくオーバーシュートする現象を抑制し、弁の開閉タイミングを大きく変化させることがなく、内燃機関の回転も安定させることができる。 According to this, in the first phase control of the lock transition control, when the relative rotation phase exceeds the lock phase and reaches the first holding phase, the control for holding the relative rotation phase at the first holding phase is performed. Done. By holding the relative rotational phase at the first holding phase in this way, for example, the phenomenon of excessive overshoot beyond the first holding phase is suppressed, and the valve opening and closing timing is not changed greatly, and the internal combustion engine Rotation can also be stabilized.
 他の構成として、位相制御部は、前記ロック移行制御において、前記第3位相制御により前記相対回転位相が前記ロック位相を通過したことを判定した場合には、前記第2位相制御と前記第3位相制御との少なくとも2つの位相制御を再度実行しても良い。 As another configuration, when the phase control unit determines in the lock transition control that the relative rotation phase has passed the lock phase by the third phase control, the phase control unit performs the second phase control and the third phase control. You may perform at least 2 phase control with phase control again.
 これによると、位相制御部は、ロック移行制御の第3位相制御において、相対回転位相がロック位相を通過したことを判定した場合には、ロック機構によるロック状態への移行が行われなかったため、第2位相制御と第3位相制御とを再度実行することにより、ロック機構によるロック状態への移行を確実なものにする。 According to this, when the phase control unit determines that the relative rotation phase has passed the lock phase in the third phase control of the lock shift control, the lock mechanism has not shifted to the lock state. By executing the second phase control and the third phase control again, the transition to the locked state by the lock mechanism is ensured.
弁開閉時期制御装置の断面図である。It is sectional drawing of a valve opening / closing timing control apparatus. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 制御系のブロック回路図である。It is a block circuit diagram of a control system. 主ロック機構の断面図である。It is sectional drawing of a main locking mechanism. 所定位相でのロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit in a predetermined phase. 所定位相から遅角方向に変位したロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit displaced to the retard angle direction from the predetermined phase. 所定位相から更に遅角方向に変位したロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit further displaced to the retard angle direction from the predetermined phase. 第1保持位相に達したロックユニットの作動イメージ図である。It is an operation image figure of the lock unit which reached the 1st maintenance phase. 第1保持位相から進角方向に変位したロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit displaced to the advance direction from the 1st holding | maintenance phase. 第2保持位相に達したロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit which reached the 2nd holding | maintenance phase. 中間ロック位相に達したロックユニットの作動イメージ図である。It is an operation | movement image figure of the lock unit which reached the intermediate | middle lock phase. ロック移行制御での位相変位を示すタイミングチャートである。It is a timing chart which shows the phase displacement in lock transfer control. 相対回転位相の変位曲線と検知信号とを示すタイミングチャートである。It is a timing chart which shows the displacement curve and detection signal of a relative rotational phase. ロック移行制御のフローチャートである。It is a flowchart of lock transfer control. 別実施形態(a)の相対回転位相の変位曲線と検知信号とを示すタイミングチャートである。It is a timing chart which shows the displacement curve and detection signal of relative rotation phase of another embodiment (a). 別実施形態(a)のロック移行制御のフローチャートである。It is a flowchart of lock transfer control of another embodiment (a).
 以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
 図1から図3に示すように、弁開閉時期制御装置100は、弁開閉時期制御ユニットAと、電磁制御弁40を制御する制御ユニット90とを備えて構成される。弁開閉時期制御ユニットAは、駆動側回転体としての外部ロータ20と、この外部ロータ20に内包される従動側回転体としての内部ロータ30と、作動流体としての作動油を制御する作動流体制御機構としての電磁制御弁40とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in FIGS. 1 to 3, the valve opening / closing timing control device 100 includes a valve opening / closing timing control unit A and a control unit 90 that controls the electromagnetic control valve 40. The valve opening / closing timing control unit A includes an external rotor 20 as a driving-side rotator, an internal rotor 30 as a driven-side rotator included in the external rotor 20, and a working fluid control that controls working oil as working fluid. An electromagnetic control valve 40 as a mechanism is provided.
 弁開閉時期制御ユニットAは、内燃機関としてのエンジンEの吸気カムシャフト5の回転軸芯Xと同軸芯に外部ロータ20(駆動側回転体)と、内部ロータ30(従動側回転体)とを配置し、外部ロータ20と内部ロータ30との間に流体圧室Cとして進角室Caと遅角室Cbを形成している。弁開閉時期制御ユニットAは、進角室Caと遅角室Cbとに対して作動油の給排を行う電磁制御弁40を回転軸芯Xと同軸芯で内部ロータ30の内部に備えている。 The valve opening / closing timing control unit A includes an external rotor 20 (drive side rotary body) and an internal rotor 30 (driven side rotary body) coaxially with the rotational axis X of the intake camshaft 5 of an engine E as an internal combustion engine. The advance chamber Ca and the retard chamber Cb are formed as the fluid pressure chamber C between the outer rotor 20 and the inner rotor 30. The valve opening / closing timing control unit A includes an electromagnetic control valve 40 that supplies and discharges hydraulic fluid to and from the advance chamber Ca and the retard chamber Cb, and is provided in the inner rotor 30 with the rotary shaft core X and the coaxial core. .
 電磁制御弁40は、進角室Caと遅角室Cbとの一方に作動油を供給すると同時に、他方から作動油を排出することにより、回転軸芯Xを中心に外部ロータ20と内部ロータ30との相対回転位相(以下、相対回転位相と称する)を変位させ、この変位により吸気弁5Vの開閉時期の制御を実現する。 The electromagnetic control valve 40 supplies the hydraulic oil to one of the advance chamber Ca and the retard chamber Cb, and at the same time discharges the hydraulic oil from the other, so that the outer rotor 20 and the inner rotor 30 are centered on the rotation axis X. The relative rotation phase (hereinafter referred to as the relative rotation phase) is displaced, and the opening / closing timing of the intake valve 5V is controlled by this displacement.
 弁開閉時期制御ユニットAは、相対回転位相を図2に示す中間ロック位相Mにロックする、ロック機構LUを備えている。このロック機構LUは、主ロック部Lmと副ロック部Lsとで構成され、これらが同時に係合状態に達することにより相対回転位相を中間ロック位相Mにロックする。 The valve opening / closing timing control unit A includes a lock mechanism LU that locks the relative rotation phase to the intermediate lock phase M shown in FIG. The lock mechanism LU is composed of a main lock portion Lm and a sub lock portion Ls, and locks the relative rotation phase to the intermediate lock phase M when they simultaneously reach the engaged state.
 中間ロック位相Mは、吸気弁5VをエンジンEの始動に適した開閉タイミングに設定する位相である。従って、エンジンEを停止する人為操作が行われた場合には、制御ユニット90のロック移行制御部93が、エンジンEの停止に先立って相対回転位相を中間ロック位相Mまで変位させ、ロック機構LUをロック状態に設定する制御が行われる。 The intermediate lock phase M is a phase for setting the intake valve 5V at an opening / closing timing suitable for starting the engine E. Accordingly, when an artificial operation for stopping the engine E is performed, the lock transition control unit 93 of the control unit 90 displaces the relative rotation phase to the intermediate lock phase M before stopping the engine E, and the lock mechanism LU Control is performed to set to a locked state.
〔エンジン〕
 図1のエンジンE(内燃機関の一例)は、乗用車などの車両に備えられるものを想定しており、エンジンEの下部にはクランクシャフト1を備えている。また、エンジンEの上部位置に備えたシリンダブロック2のシリンダボアの内部にピストン3を収容し、このピストン3とクランクシャフト1とをコネクティングロッド4で連結している。エンジンEの上部には、吸気弁5Vを開閉作動させる吸気カムシャフト5と、図示されない排気カムシャフトとを備えている。
〔engine〕
An engine E (an example of an internal combustion engine) in FIG. 1 is assumed to be provided in a vehicle such as a passenger car, and a crankshaft 1 is provided below the engine E. A piston 3 is accommodated in a cylinder bore of a cylinder block 2 provided at an upper position of the engine E, and the piston 3 and the crankshaft 1 are connected by a connecting rod 4. An upper portion of the engine E is provided with an intake camshaft 5 that opens and closes an intake valve 5V, and an exhaust camshaft (not shown).
 吸気カムシャフト5を回転自在に支持するエンジン構成部材10には、エンジンEで駆動される油圧ポンプPから作動油が供給される供給流路8が形成されている。油圧ポンプPは、エンジンEのオイルパンに貯留される潤滑油を、供給流路8を介して作動油として電磁制御弁40に供給する。 A supply flow path 8 through which hydraulic oil is supplied from a hydraulic pump P driven by the engine E is formed in the engine constituent member 10 that rotatably supports the intake camshaft 5. The hydraulic pump P supplies the lubricating oil stored in the oil pan of the engine E to the electromagnetic control valve 40 through the supply flow path 8 as hydraulic oil.
 エンジンEのクランクシャフト1に形成した出力スプロケット6と、外部ロータ20のタイミングスプロケット22Sとに亘ってタイミングチェーン7が巻回されている。尚、排気側の排気カムシャフトの前端にもスプロケットが備えられ、このスプロケットにもタイミングチェーン7が巻回される。 The timing chain 7 is wound around the output sprocket 6 formed on the crankshaft 1 of the engine E and the timing sprocket 22S of the external rotor 20. A sprocket is also provided at the front end of the exhaust camshaft on the exhaust side, and the timing chain 7 is wound around this sprocket.
〔弁開閉時期制御ユニット〕
 図1、図2に示すように、弁開閉時期制御ユニットAでは、外部ロータ20がクランクシャフト1と同期回転する。また、内部ロータ30は、吸気カムシャフト5に対して連結ボルト50により連結されるため吸気カムシャフト5と一体回転する。
[Valve opening / closing timing control unit]
As shown in FIGS. 1 and 2, in the valve opening / closing timing control unit A, the external rotor 20 rotates synchronously with the crankshaft 1. Further, since the internal rotor 30 is connected to the intake camshaft 5 by the connecting bolt 50, it rotates integrally with the intake camshaft 5.
 この弁開閉時期制御ユニットAでは、図2に示すように、全体が駆動回転方向Sに回転する。内部ロータ30が外部ロータ20に対して駆動回転方向Sと同方向に相対回転する方向を進角方向Saと称し、この逆方向を遅角方向Sbと称している。また、進角方向Saへ変位することにより吸気弁5Vの開閉タイミングを早め、遅角方向Sbへ変位することにより吸気弁5Vの開閉タイミングを遅らせる。 In this valve opening / closing timing control unit A, the whole rotates in the driving rotation direction S as shown in FIG. The direction in which the inner rotor 30 rotates relative to the outer rotor 20 in the same direction as the drive rotation direction S is referred to as an advance angle direction Sa, and the opposite direction is referred to as a retard angle direction Sb. Further, the opening / closing timing of the intake valve 5V is advanced by displacing in the advance direction Sa, and the opening / closing timing of the intake valve 5V is delayed by displacing in the retard direction Sb.
 尚、この実施形態では、吸気カムシャフト5に備えた弁開閉時期制御ユニットAを示しているが、弁開閉時期制御ユニットAは排気カムシャフトに備えられるものや、吸気カムシャフト5と排気カムシャフトとの双方に備えられても良い。 In this embodiment, the valve opening / closing timing control unit A provided in the intake camshaft 5 is shown. However, the valve opening / closing timing control unit A is provided in the exhaust camshaft, and the intake camshaft 5 and the exhaust camshaft. And may be provided for both.
 外部ロータ20は、外部ロータ本体21と、フロントプレート22と、リヤプレート23とを有し、これらが複数の締結ボルト24で締結されている。フロントプレート22の外周には前述したタイミングスプロケット22Sが形成されている。外部ロータ本体21の内周には、径方向の内側に突出する複数(3つ)の突出部21Tが一体的に形成されている。 The external rotor 20 has an external rotor main body 21, a front plate 22, and a rear plate 23, which are fastened by a plurality of fastening bolts 24. The timing sprocket 22S described above is formed on the outer periphery of the front plate 22. A plurality (three) of projecting portions 21 </ b> T projecting radially inward are integrally formed on the inner periphery of the outer rotor body 21.
 内部ロータ30は、外部ロータ本体21の突出部21Tに密接する円柱状の内部ロータ本体31と、外部ロータ本体21の内周面に接触するように内部ロータ本体31の外周から径方向の外方に突出する複数(3つ)のベーン部32とを備えている。 The inner rotor 30 includes a cylindrical inner rotor body 31 that is in close contact with the protruding portion 21T of the outer rotor body 21 and an outer side in the radial direction from the outer periphery of the inner rotor body 31 so as to contact the inner peripheral surface of the outer rotor body 21. And a plurality of (three) vane portions 32 projecting from each other.
 このような構成から、回転方向で隣接する突出部21Tの中間位置で、内部ロータ本体31の外周側に複数(3つ)の流体圧室Cが形成され、これらの流体圧室Cがベーン部32で仕切られることにより、進角室Caと遅角室Cbとが区画形成される。また、内部ロータ30には、進角室Caに連通する複数(3つ)の進角流路33と、遅角室Cbに連通する複数(3つ)の遅角流路34が形成されている。 With such a configuration, a plurality (three) of fluid pressure chambers C are formed on the outer peripheral side of the inner rotor main body 31 at an intermediate position between the projecting portions 21T adjacent in the rotation direction, and these fluid pressure chambers C serve as vane portions. By dividing by 32, the advance chamber Ca and the retard chamber Cb are partitioned. The inner rotor 30 is formed with a plurality (three) of advance channels 33 communicating with the advance chamber Ca and a plurality (three) retard channels 34 communicating with the retard chamber Cb. Yes.
 図1に示すように、フロントプレート22には、中間部材9を備えており、この中間部材9に対して連結ボルト50のボルト頭部52が圧着されることにより、この中間部材9と、内部ロータ本体31と吸気カムシャフト5とが一体化されている。また、相対回転位相を最遅角位相から進角方向Saに付勢力を作用させて進角方向Saへの変位をアシストするトーションスプリング28が、外部ロータ20と中間部材9とに亘って備えられている。 As shown in FIG. 1, the front plate 22 is provided with an intermediate member 9, and a bolt head 52 of a connecting bolt 50 is crimped to the intermediate member 9, thereby The rotor body 31 and the intake camshaft 5 are integrated. Further, a torsion spring 28 that assists displacement in the advance direction Sa by applying a biasing force from the most retarded phase to the advance direction Sa from the most retarded phase is provided across the external rotor 20 and the intermediate member 9. ing.
〔弁開閉時期制御ユニット:連結ボルト〕
 図1に示すように、連結ボルト50は、一部が筒状となるボルト本体51と、外端部のボルト頭部52と、内端部の雄ネジ部53とを備えている。
[Valve opening / closing timing control unit: connecting bolt]
As shown in FIG. 1, the connecting bolt 50 includes a bolt body 51 that is partially cylindrical, a bolt head 52 at the outer end, and a male screw portion 53 at the inner end.
 吸気カムシャフト5の内部には、連結ボルト50の一部が密嵌合するシャフト内空間5Tが形成されると共に、連結ボルト50の雄ネジ部53が螺合する雌ネジ部が形成されている。シャフト内空間5Tは、前述した供給流路8と連通しており、油圧ポンプPから作動油が供給される。 Inside the intake camshaft 5, a shaft inner space 5T into which a part of the connecting bolt 50 is closely fitted is formed, and a female screw part into which the male screw part 53 of the connecting bolt 50 is screwed is formed. . The shaft inner space 5T communicates with the supply flow path 8 described above, and hydraulic oil is supplied from the hydraulic pump P.
 ボルト本体51の内部には、ボルト頭部52から雄ネジ部53の方向に向け回転軸芯Xと同軸芯でスプール室が形成され、このスプール室に対し回転軸芯Xに沿う方向に移動自在にスプール41が収容されている。スプール41は、回転軸芯Xに沿う方向での位置を変更することにより、進角室Caと遅角室Cbとに対する作動油の給排を行い、突出側の端部には作動油を排出するドレン孔41Dが形成されている。このスプール41は、スプールスプリングの付勢力により外端側(ボルト頭部52の方向)が外方に突出する。 Inside the bolt body 51, a spool chamber is formed in the direction from the bolt head 52 to the male threaded portion 53 with the rotation axis X and the same axis, and the spool chamber is movable in a direction along the rotation axis X. The spool 41 is accommodated in the main body. The spool 41 supplies and discharges hydraulic oil to and from the advance chamber Ca and the retard chamber Cb by changing the position in the direction along the rotation axis X, and discharges the hydraulic oil to the end on the protruding side. A drain hole 41D is formed. The spool 41 protrudes outward at the outer end side (in the direction of the bolt head 52) by the urging force of the spool spring.
 ボルト本体51には、シャフト内空間5Tからの作動油をスプール41に供給する流路が形成されると共に、スプール41の作動に伴い進角流路33と、遅角流路34とに対して作動油の給排を行う流路が形成されている。 The bolt body 51 is formed with a flow path for supplying hydraulic oil from the shaft inner space 5T to the spool 41, and with respect to the advance flow path 33 and the retard flow path 34 as the spool 41 operates. A flow path for supplying and discharging hydraulic oil is formed.
〔電磁制御弁〕
 前述したように、電磁制御弁40は、スプール41と、電磁ソレノイド44とを備えている。電磁ソレノイド44は供給される電力により突出量が制御されるプランジャ44aを備えている。
(Electromagnetic control valve)
As described above, the electromagnetic control valve 40 includes the spool 41 and the electromagnetic solenoid 44. The electromagnetic solenoid 44 includes a plunger 44a whose protrusion amount is controlled by supplied electric power.
 スプール41は、プランジャ44aが外端面に当接することにより、図1に示す進角ポジションと、これより所定量だけスプール41が押し込まれる中立ポジションと、これより更にスプール41を押し込まれる遅角ポジションとに操作可能に構成されている。 The spool 41 has an advance position shown in FIG. 1 when the plunger 44a contacts the outer end surface, a neutral position where the spool 41 is pushed by a predetermined amount, and a retard position where the spool 41 is pushed further. It is configured to be operable.
 中立ポジションでは、進角流路33と遅角流路34とが閉塞され、進角室Caと遅角室Cbとに対して作動油が給排されず、相対回転位相が維持される。 In the neutral position, the advance channel 33 and the retard channel 34 are closed, and hydraulic oil is not supplied to or discharged from the advance chamber Ca and the retard chamber Cb, and the relative rotational phase is maintained.
 進角ポジションでは、油圧ポンプPからの作動油が進角流路33に供給され、これと同時に遅角流路34からの作動油がスプール41のドレン孔41Dを介して排出される。これにより、相対回転位相が進角方向Saに変位する。 In the advance position, the hydraulic oil from the hydraulic pump P is supplied to the advance passage 33, and at the same time, the hydraulic oil from the retard passage 34 is discharged through the drain hole 41D of the spool 41. As a result, the relative rotational phase is displaced in the advance angle direction Sa.
 遅角ポジションでは、油圧ポンプPからの作動油が遅角流路34に供給され、これと同時に、進角流路33からの作動油がスプール41のドレン孔41Dを介して排出される。これにより、相対回転位相が遅角方向Sbに変位する。 In the retard position, the hydraulic oil from the hydraulic pump P is supplied to the retard flow path 34, and at the same time, the hydraulic oil from the advance flow path 33 is discharged through the drain hole 41D of the spool 41. As a result, the relative rotational phase is displaced in the retarding direction Sb.
 特に、この電磁制御弁40では、例えば、進角方向Saへの相対回転位相の変位速度を低減する場合には、電磁ソレノイド44に供給する電力の設定により、スプール41を中立ポジションと進角ポジションとの間の位置に保持することで弁の開度を設定し、変位速度を調節することも可能である。 In particular, in the electromagnetic control valve 40, for example, when the displacement speed of the relative rotational phase in the advance angle direction Sa is reduced, the spool 41 is set to the neutral position and the advance position by setting the power supplied to the electromagnetic solenoid 44. It is also possible to set the opening degree of the valve by holding it at a position between and to adjust the displacement speed.
〔ロック機構:主ロック部〕
 図2、図4から図11に示すように、主ロック部Lmは、複数のベーン部32の1つに対して回転軸芯Xと平行姿勢で形成されたガイド孔70にスライド移動自在に挿入した主ロック部材71と、主ロック部材71の係合部71bが係合するようにリヤプレート23に溝状に形成された主ロック凹部72と、係合部71bを係合方向に付勢する圧縮コイル型の主ロックスプリング73(主スプリングの一例)とを備えている。
[Locking mechanism: Main locking part]
As shown in FIGS. 2 and 4 to 11, the main lock portion Lm is slidably inserted into a guide hole 70 formed in a posture parallel to the rotation axis X with respect to one of the plurality of vane portions 32. The main lock member 71, the main lock recess 72 formed in a groove shape on the rear plate 23 so that the engagement portion 71b of the main lock member 71 is engaged, and the engagement portion 71b are urged in the engagement direction. And a compression coil type main lock spring 73 (an example of a main spring).
 ガイド孔70は、大径ガイド孔部70aと、これより小径の小径ガイド孔部70bとを備えている。主ロック部材71は、全体的に円柱状であり、ガイド孔70の大径ガイド孔部70aに収容される本体部71aと、本体部71aより小径で小径ガイド孔部70bに収容される係合部71bと、これらの中間位置において係合部71bより小径となる軸状部71cとを備えている。 The guide hole 70 includes a large-diameter guide hole 70a and a small-diameter guide hole 70b having a smaller diameter. The main lock member 71 is generally cylindrical and has a main body portion 71a accommodated in the large diameter guide hole portion 70a of the guide hole 70 and an engagement smaller in diameter than the main body portion 71a and accommodated in the small diameter guide hole portion 70b. A portion 71b and a shaft-like portion 71c having a diameter smaller than that of the engaging portion 71b at these intermediate positions are provided.
 主ロック部材71は、本体部71aと係合部71bとの中間で本体部71aの端面に第1受圧面U1(図4、図6、図7参照)が形成され、係合部71bの突出側の端部に第2受圧面U2が形成されている。 The main lock member 71 has a first pressure receiving surface U1 (see FIGS. 4, 6, and 7) formed on the end surface of the main body 71a between the main body 71a and the engaging portion 71b, and the protrusion of the engaging portion 71b. A second pressure receiving surface U2 is formed at the end on the side.
 主ロック凹部72は、図4から図11に示すように係合部71bの直径より僅かに広い幅で、回転軸芯Xを中心にする円弧状の領域に形成されている。これにより係合部71bは、主ロック凹部72に係合した状態で、主規制領域での相対回転位相の変位が可能となる。つまり相対回転位相の変位領域を主規制領域での変位に規制することができる。また、この主規制領域は、後述するシーケンス領域Gと、ロック解除領域F(図4参照)とを併せた領域となる。 The main lock recess 72 has a width slightly wider than the diameter of the engaging portion 71b as shown in FIGS. 4 to 11, and is formed in an arc-shaped region centering on the rotation axis X. As a result, the engaging portion 71b can be displaced in the relative rotational phase in the main restricting region while being engaged with the main lock recess 72. That is, the displacement region of the relative rotational phase can be restricted to the displacement in the main restriction region. In addition, the main restriction area is a combination of a sequence area G, which will be described later, and a lock release area F (see FIG. 4).
 ガイド孔70が形成されたベーン部32には、小径ガイド孔部70bに連通する第1ロック解除流路75(主ロック解除流路の一例)と、大径ガイド孔部70aに連通する第2ロック解除流路76とが形成されている。 The vane portion 32 in which the guide hole 70 is formed has a first unlocking passage 75 (an example of a main unlocking passage) communicating with the small diameter guide hole 70b and a second communicating with the large diameter guide hole 70a. An unlock passage 76 is formed.
 図5、図11に示す如く、係合部71bは、主ロック凹部72に完全に係合するロックレベルJ1と、図9に示す如く、主ロック凹部72から抜け出した直後のロック境界レベルJ2と、図7に示す如く、ロック境界レベルJ2より更に主ロック凹部72から離間するロック解除レベルJ3とに移動自在に構成されている。 As shown in FIGS. 5 and 11, the engaging portion 71b has a lock level J1 that completely engages with the main lock recess 72, and a lock boundary level J2 that has just come out of the main lock recess 72 as shown in FIG. As shown in FIG. 7, it is configured to be movable to a lock release level J3 that is further away from the main lock recess 72 than the lock boundary level J2.
 係合部71bがロックレベルJ1にある場合には、第1ロック解除流路75が第1受圧面U1に連通する。特に、係合部71bがロックレベルJ1からロック境界レベルJ2に亘る領域にある場合に、第2ロック解除流路76は、本体部71aにより閉塞され、第1受圧面U1と非連通状態となる。 When the engaging portion 71b is at the lock level J1, the first unlocking flow path 75 communicates with the first pressure receiving surface U1. In particular, when the engaging portion 71b is in a region extending from the lock level J1 to the lock boundary level J2, the second unlocking flow path 76 is blocked by the main body portion 71a and is in a non-communication state with the first pressure receiving surface U1. .
 また、係合部71bがロック解除レベルJ3にある場合には、第1ロック解除流路75が第2受圧面U2と連通し、第2ロック解除流路76が第1受圧面U1と連通する。 When the engaging portion 71b is at the unlock level J3, the first unlocking flow path 75 communicates with the second pressure receiving surface U2, and the second unlocking flow path 76 communicates with the first pressure receiving surface U1. .
 図4から図11に示すように、第1ロック解除流路75は、ガイド孔70から離間した位置においてリヤプレート23の内面に向けて開放する第1制御ポート75aを介して第1遅角ポート75bと連通可能に構成されている。これら第1制御ポート75aと第1遅角ポート75bとは、図2に示すように径方向に離間する位置に配置されている。 As shown in FIG. 4 to FIG. 11, the first unlocking flow path 75 is connected to the first retarded port via the first control port 75 a that opens toward the inner surface of the rear plate 23 at a position spaced from the guide hole 70. It is configured to be able to communicate with 75b. The first control port 75a and the first retardation port 75b are disposed at positions that are separated from each other in the radial direction as shown in FIG.
 図4に示す中間ロック位相Mから図7に示す位相に亘る回転位相の領域をシーケンス領域G(図4参照)と称している。このシーケンス領域Gでは、第1制御ポート75aがリヤプレート23に穿設されたドレン流路23Dに連通する。このシーケンス領域Gでは、第1受圧面U1に圧力を作用させる作動油をドレン流路23Dから排出するため、主ロックスプリング73の付勢力による係合部71bの主ロック凹部72への係合を可能にする。 The region of the rotational phase from the intermediate lock phase M shown in FIG. 4 to the phase shown in FIG. 7 is referred to as a sequence region G (see FIG. 4). In the sequence region G, the first control port 75a communicates with the drain channel 23D formed in the rear plate 23. In the sequence region G, the hydraulic oil that applies pressure to the first pressure receiving surface U1 is discharged from the drain flow path 23D, and therefore the engagement portion 71b is engaged with the main lock recess 72 by the urging force of the main lock spring 73. enable.
 尚、ドレン流路23Dは、リヤプレート23の外部空間に連通しており、シーケンス領域Gは数度程度(クランクアングルで10度程度)の角度領域である。 The drain channel 23D communicates with the outer space of the rear plate 23, and the sequence region G is an angular region of about several degrees (crank angle is about 10 degrees).
 また、図7より相対回転位相が進角方向Saに変位した位相を、ロック解除領域F(図4参照)と称している。このロック解除領域Fでは、リヤプレート23に形成された第1遅角側溝23Rに第1遅角ポート75bが連通するため、遅角室Cbに供給される作動油の圧力を第1受圧面U1に作用させて主ロック部材71を主ロック凹部72から抜き出す方向に作動させる。 Further, from FIG. 7, the phase in which the relative rotational phase is displaced in the advance angle direction Sa is referred to as a lock release region F (see FIG. 4). In the unlocking region F, since the first retard port 75b communicates with the first retard side groove 23R formed in the rear plate 23, the pressure of the hydraulic oil supplied to the retard chamber Cb is changed to the first pressure receiving surface U1. The main lock member 71 is actuated in the direction of pulling out from the main lock recess 72.
 図4から図11に示すように、第2ロック解除流路76は、遅角流路34に作動油が供給される際に、遅角流路34(図2参照)と等しい圧力の作動油が供給される。この構成から、主ロック部材71が図7に示すロック解除レベルJ3(図7参照)にある場合に限り、第2ロック解除流路76から第1受圧面U1に作動油の供給が可能となる。 As shown in FIGS. 4 to 11, the second unlocking flow path 76 is hydraulic oil having a pressure equal to that of the retarded flow path 34 (see FIG. 2) when the hydraulic oil is supplied to the retarded flow path 34. Is supplied. From this configuration, hydraulic oil can be supplied from the second unlocking flow path 76 to the first pressure receiving surface U1 only when the main locking member 71 is at the unlocking level J3 (see FIG. 7) shown in FIG. .
 尚、第2ロック解除流路76に対して作動油を供給する構成としては、この第2ロック解除流路76を遅角流路34(図2参照)に連通させることや、第2ロック解除流路76を遅角室Cbに連通させる流路構成を採用することも可能である。 In addition, as a structure which supplies hydraulic fluid with respect to the 2nd unlocking flow path 76, this 2nd unlocking flow path 76 is connected with the retardation flow path 34 (refer FIG. 2), or 2nd unlocking. It is also possible to adopt a flow path configuration in which the flow path 76 communicates with the retarded angle chamber Cb.
 図8に示すように、相対回転位相が中間ロック位相M(図4参照)より遅角方向Sbに変位した場合に、大径ガイド孔部70a(図4参照)の開口部分に連通するロックアシスト流路22Aがフロントプレート22の内面に溝状に形成されている。このロックアシスト流路22Aは、進角室Caに供給される作動油の一部を大径ガイド孔部70aに供給し、主ロック部材71の主ロック凹部72への係合を補助する。 As shown in FIG. 8, when the relative rotational phase is displaced in the retard direction Sb from the intermediate lock phase M (see FIG. 4), the lock assist communicates with the opening portion of the large diameter guide hole 70a (see FIG. 4). A channel 22 </ b> A is formed in a groove shape on the inner surface of the front plate 22. The lock assist flow path 22A supplies part of the hydraulic oil supplied to the advance chamber Ca to the large-diameter guide hole 70a, and assists the engagement of the main lock member 71 with the main lock recess 72.
〔ロック機構:副ロック部〕
 図2に示すように、副ロック部Lsは、外部ロータ本体21の複数の突出部21Tの1つに対して回転軸芯Xを中心とする半径方向に沿う姿勢で形成した支持孔部80にスライド移動自在に挿入された副ロック部材81と、この副ロック部材81の規制端部81aが係合するように内部ロータ本体31の外周に形成された副ロック凹部82と、副ロック部材81を副ロック凹部82に係合させる付勢力を作用させる圧縮コイル型の副ロックスプリング83(副スプリングの一例)とを備えている。
[Locking mechanism: secondary locking part]
As shown in FIG. 2, the sub-lock portion Ls is formed in the support hole portion 80 formed in a posture along the radial direction around the rotation axis X with respect to one of the plurality of protrusions 21 </ b> T of the outer rotor body 21. A sub-lock member 81 that is slidably inserted, a sub-lock recess 82 formed on the outer periphery of the inner rotor body 31 so that a regulating end 81a of the sub-lock member 81 is engaged, and a sub-lock member 81 And a compression coil type secondary lock spring 83 (an example of a secondary spring) that applies a biasing force to be engaged with the secondary lock recess 82.
 副ロック部材81はプレート状であり、突出側の端部を規制端部81aと称している。尚、この副ロック部材81を棒状に構成しても良い。 The sub-lock member 81 has a plate shape, and the end portion on the protruding side is referred to as a regulation end portion 81a. In addition, you may comprise this sublock member 81 in a rod shape.
 副ロック凹部82は、相対回転位相が変位する方向に沿って延びる凹状に形成されている。これにより、規制端部81aが副ロック凹部82に係合した状態では、副ロック凹部82の形成方向に沿った副規制領域で相対回転位相の変位が可能となる。副ロック凹部82には、副ロック解除流路35が連通しており、これには進角流路33からの作動油が供給される。 The secondary lock recess 82 is formed in a recess extending along the direction in which the relative rotational phase is displaced. As a result, in a state where the regulating end 81a is engaged with the secondary lock recess 82, the relative rotational phase can be displaced in the secondary regulation region along the direction in which the secondary lock recess 82 is formed. The sub-lock recess 82 communicates with the sub-lock release channel 35, and hydraulic oil from the advance channel 33 is supplied to this.
 図11に示すように、主ロック部Lmの主ロック部材71が主ロック凹部72に係合し、この主ロック凹部72の主規制領域の端部に当接し、副ロック部Lsの副ロック部材81が副ロック凹部82の副規制領域の端部に当接することにより、相対回転位相が中間ロック位相Mにロックされる。 As shown in FIG. 11, the main lock member 71 of the main lock portion Lm engages with the main lock recess 72, abuts against the end of the main restriction region of the main lock recess 72, and the sub lock member of the sub lock portion Ls. The relative rotation phase is locked to the intermediate lock phase M when 81 is in contact with the end of the sub-restriction region of the sub-lock recess 82.
 この弁開閉時期制御ユニットAは、前述したように電磁制御弁40(図1参照)による作動油の制御により相対回転位相の変位を実現すると共に、この電磁制御弁40による作動油の制御により、中間ロック位相Mとなるロック状態への移行と、中間ロック位相Mでのロック状態を解除するロック解除とを実現する。 As described above, the valve opening / closing timing control unit A realizes the displacement of the relative rotation phase by controlling the hydraulic oil by the electromagnetic control valve 40 (see FIG. 1), and by controlling the hydraulic oil by the electromagnetic control valve 40, The transition to the locked state that is the intermediate lock phase M and the unlocking that releases the locked state at the intermediate lock phase M are realized.
〔位相センサ〕
 図3に示すように、位相センサNは、クランクシャフト1の回転を検知する第1センサ11と、吸気カムシャフト5の回転姿勢を検知する第2センサ12とを備え、第1センサ11の信号と、第2センサ12の信号とに基づき相対回転位相を検知する位相検知部91を、制御ユニット90に備えて構成されている。また、第2センサ12はクランクシャフト1の回転数(回転数情報の一例)を検知する回転数センサにも用いられる。
[Phase sensor]
As shown in FIG. 3, the phase sensor N includes a first sensor 11 that detects the rotation of the crankshaft 1 and a second sensor 12 that detects the rotation posture of the intake camshaft 5. The control unit 90 includes a phase detector 91 that detects a relative rotational phase based on the signal from the second sensor 12. The second sensor 12 is also used as a rotation speed sensor that detects the rotation speed of the crankshaft 1 (an example of rotation speed information).
 同図に示す位相センサNは、気筒判別センサとして用いられる構成を流用しているため、第2センサ12は気筒判別に適した構造を備えている。 Since the phase sensor N shown in the figure uses a configuration used as a cylinder discrimination sensor, the second sensor 12 has a structure suitable for cylinder discrimination.
 第1センサ11は、クランクシャフト1と一体回転する第1ディスク11Aと、この第1ディスク11Aの外周に形成された多数の第1歯部11Atを検知するピックアップ型の第1検知部11Bとを備えている。第1ディスク11Aの外周には第1歯部11Atが存在しない切欠部11Anを備えており、この切欠部11Anを基準にして(「0」にして)第1歯部11Atの歯数を計数したカウント値の取得が可能に構成されている。 The first sensor 11 includes a first disk 11A that rotates integrally with the crankshaft 1, and a pickup-type first detection unit 11B that detects a large number of first teeth 11At formed on the outer periphery of the first disk 11A. I have. The outer periphery of the first disk 11A is provided with a notch portion 11An where the first tooth portion 11At does not exist, and the number of teeth of the first tooth portion 11At is counted on the basis of this notch portion 11An ("0"). The count value can be acquired.
 第2センサ12は、吸気カムシャフト5(内部ロータ30、図1参照)と一体回転する第2ディスク12Aと、この第2ディスク12Aの外周に形成された複数(3つ)の第2歯部12Atを検知するピックアップ型の第2検知部12Bとを備えている。尚、複数の第2歯部12Atは、気筒判別を可能にするために各々の周方向での長さを異ならせている。 The second sensor 12 includes a second disk 12A that rotates integrally with the intake camshaft 5 (internal rotor 30, see FIG. 1), and a plurality (three) of second tooth portions formed on the outer periphery of the second disk 12A. And a pickup-type second detection unit 12B that detects 12 At. The plurality of second tooth portions 12At have different circumferential lengths so as to enable cylinder discrimination.
 第2センサ12は、吸気カムシャフト5の回転時に、第2検知部12Bが、第2歯部12Atの立ち上がりのエッジ部分を検知(アップエッジを検知)するように検知形態が設定されている。従って、吸気カムシャフト5が1回転する際に第2検知部12Bで第2歯部12Atを3回検知する。 The detection form of the second sensor 12 is set so that when the intake camshaft 5 rotates, the second detection unit 12B detects the rising edge portion of the second tooth portion 12At (detects an up edge). Therefore, when the intake camshaft 5 makes one rotation, the second detection portion 12B detects the second tooth portion 12At three times.
 また、位相検知部91では、第1センサ11の検知に基づいてカウント値を取得すると共に、第2検知部12Bで3つの第2歯部12Atを検知した3種のタイミング毎に、第1センサ11のカウント値を取得し、このカウント値に基づいて相対回転位相を検知するように処理形態が設定されている。 In addition, the phase detection unit 91 acquires the count value based on the detection of the first sensor 11, and at each of the three timings when the second detection unit 12B detects the three second tooth portions 12At. 11 is acquired, and the processing mode is set so as to detect the relative rotation phase based on the count value.
 つまり、弁開閉時期制御ユニットAが、基準となる相対回転位相にある場合に、3つの第2歯部12Atを第2検知部12Bで検知したタイミングにおける第1センサ11のカウント値は、基準値に対応する値となる。 That is, when the valve opening / closing timing control unit A is in the reference relative rotational phase, the count value of the first sensor 11 at the timing when the second detection portion 12B detects the three second tooth portions 12At is the reference value. The value corresponding to.
 このような原理を利用して位相検知部91は、複数の第2歯部12Atの各々に対応する基準値(数値)を不揮発メモリ等に記憶しておき、第2歯部12Atを第2検知部12Bで検知した場合には、検知した第2歯部12Atが、3つの第2歯部12Atのいずれであるかを特定すると共に、検知したタイミングにおける第1センサ11のカウント値と、特定した第2歯部12Atに対応して記憶した基準値とを比較することにより相対回転位相の取得を実現している。 Using such a principle, the phase detection unit 91 stores a reference value (numerical value) corresponding to each of the plurality of second tooth portions 12At in a nonvolatile memory or the like, and detects the second tooth portion 12At as the second detection. When detected by the part 12B, the detected second tooth part 12At is specified as one of the three second tooth parts 12At, and the count value of the first sensor 11 at the detected timing is specified. The relative rotational phase is obtained by comparing the reference value stored corresponding to the second tooth portion 12At.
〔制御構成〕
 図3に示すように、制御ユニット90は、相対回転位相を検知する位相センサNの検知信号と、エンジンEの温度(基本的には冷却水の水温、温度情報の一例)を検知する温度センサTの検知信号とが入力し、電磁制御弁40の電磁ソレノイド44に制御信号を出力する。
[Control configuration]
As shown in FIG. 3, the control unit 90 includes a detection signal from the phase sensor N that detects the relative rotational phase, and a temperature sensor that detects the temperature of the engine E (basically an example of coolant temperature and temperature information). The T detection signal is input, and the control signal is output to the electromagnetic solenoid 44 of the electromagnetic control valve 40.
 位相検知部91は、前述したように第1センサ11と第2センサ12との信号に基づいて相対回転位相を検知する。位相制御部92は、位相検知部91の検知結果に基づいて相対回転位相を目標位相に変位させる制御を実現する。ロック移行制御部93は、位相検知部91の検知結果に基づいてロック機構LUによるロック状態への移行を実現する。ロック解除制御部94は、位相検知部91の検知結果に基づいて主ロック部Lmのロック解除を実現する。温度検知部95は、温度センサTの検知結果からエンジンEの温度を検知する。 The phase detector 91 detects the relative rotational phase based on the signals from the first sensor 11 and the second sensor 12 as described above. The phase control unit 92 realizes control for displacing the relative rotational phase to the target phase based on the detection result of the phase detection unit 91. The lock transition control unit 93 realizes transition to the locked state by the lock mechanism LU based on the detection result of the phase detection unit 91. The unlock control unit 94 realizes unlocking of the main lock unit Lm based on the detection result of the phase detection unit 91. The temperature detector 95 detects the temperature of the engine E from the detection result of the temperature sensor T.
 尚、位相検知部91と、位相制御部92と、ロック移行制御部93と、ロック解除制御部94とはソフトウエアで構成されるものであるが、ハードウエアで構成しても良く、ロジック等のハードウエアとソフトウエアとの組み合わせにより構成しても良い。 The phase detection unit 91, the phase control unit 92, the lock transition control unit 93, and the lock release control unit 94 are configured by software, but may be configured by hardware, logic, etc. You may comprise by the combination of these hardware and software.
 制御ユニット90は、エンジンEを制御するECUとしても機能するものであり、例えば、エンジンEを停止する制御時には、相対回転位相を中間ロック位相Mに移行し、ロック機構LUによりロック状態に達した後にエンジンEを停止させる制御を実行する。 The control unit 90 also functions as an ECU that controls the engine E. For example, at the time of control for stopping the engine E, the relative rotation phase is shifted to the intermediate lock phase M and the lock mechanism LU has reached the locked state. Control for stopping the engine E is executed later.
 また、以下の説明では、相対回転位相を進角方向Sa(図2参照)に変位させる流路系(進角流路33、進角室Ca等)に作動油を供給する制御を「進角作動」と称し、これとは逆に、相対回転位相を遅角方向Sb(図2参照)に変位させる流路系(遅角流路34、遅角室Cb等)に作動油を供給する制御を「遅角作動」と称する。 In the following description, control for supplying hydraulic oil to a flow path system (advance flow path 33, advance chamber Ca, etc.) that displaces the relative rotational phase in the advance direction Sa (see FIG. 2) is referred to as “advance angle”. Contrary to this, control for supplying hydraulic oil to a flow path system (retarded flow path 34, retarded angle chamber Cb, etc.) that displaces the relative rotational phase in the retarded direction Sb (see FIG. 2). Is referred to as “retarding operation”.
〔主ロック部のロック状態への移行〕
 相対回転位相が中間ロック位相M(図11参照)から進角方向Saに変位した所定位相K(図4に示すロック解除領域Fに含まれる位相:図5参照)にある状態を起点にして、ロック移行制御部93が相対回転位相を中間ロック位相Mに移行するロック移行制御を説明する。
[Transition to the lock state of the main lock section]
Starting from a state in which the relative rotational phase is in a predetermined phase K (phase included in the unlocking region F shown in FIG. 4: see FIG. 5) displaced from the intermediate lock phase M (see FIG. 11) in the advance angle direction Sa, The lock shift control in which the lock shift control unit 93 shifts the relative rotation phase to the intermediate lock phase M will be described.
 図12のタイミングチャートと図14のフローチャートとに示すように、ロック移行制御では、相対回転位相を中間ロック位相Mの方向(遅角方向Sb)に向けて変位させる第1位相制御を開始する。この第1位相制御では遅角作動により、相対回転位相が中間ロック位相Mを超え、図8に示す第1保持位相Q1に到達したことを位相センサNが検知した時点で変位を停止する。そして、第1保持時間T1が経過するまで相対回転位相を第1保持位相Q1に保持する制御が行われる(#101から#104ステップ)。尚、#101から#104ステップが第1位相制御の具体的な制御例である。 As shown in the timing chart of FIG. 12 and the flowchart of FIG. 14, in the lock transition control, the first phase control for displacing the relative rotation phase in the direction of the intermediate lock phase M (retarding direction Sb) is started. In this first phase control, the displacement is stopped when the phase sensor N detects that the relative rotational phase exceeds the intermediate lock phase M and has reached the first holding phase Q1 shown in FIG. Then, control is performed to hold the relative rotation phase at the first holding phase Q1 until the first holding time T1 elapses (steps from # 101 to # 104). Steps # 101 to # 104 are specific control examples of the first phase control.
 前述したように、所定位相Kがロック解除領域Fに含まれているため、図12のVのタイミングで、遅角作動を開始した場合には、遅角流路34に作動油が供給され、第1ロック解除流路75から第1受圧面U1に作動油の圧力が作用する。これにより、図5に示す如く係合部71bが主ロック凹部72に係合する状態から、図6に示すように主ロック部材71がロック解除方向に作動を開始した後に、図7に示すようにロック解除レベルJ3に到達する。 As described above, since the predetermined phase K is included in the unlocking region F, when the retarding operation is started at the timing of V in FIG. 12, hydraulic oil is supplied to the retarding channel 34, The hydraulic oil pressure acts on the first pressure receiving surface U1 from the first unlocking flow path 75. Thus, as shown in FIG. 7, after the main locking member 71 starts operating in the unlocking direction as shown in FIG. 6, the engaging portion 71b engages with the main locking recess 72 as shown in FIG. Reaches the unlock level J3.
 このように図5、図6、図7に示すように相対回転位相が変位する状況を、図12のタイミングチャートにV、VI、VIIとして示している。また、このように相対回転位相が変化する状況では副ロック部材81の規制端部81aは副ロック凹部82から離脱した非ロック状態にある。そして、主ロック部材71がロック解除レベルJ3に達した場合には、第1受圧面U1に対して第2ロック解除流路76が連通し、第1ロック解除流路75が第2受圧面U2に連通しており、これらに作動油の圧力が作用するため主ロック部材71はロック解除レベルJ3に維持される。 The situation in which the relative rotational phase is displaced as shown in FIGS. 5, 6, and 7 is shown as V, VI, and VII in the timing chart of FIG. Further, in such a situation where the relative rotational phase changes, the restricting end portion 81 a of the sub-lock member 81 is in an unlocked state in which it is detached from the sub-lock recess 82. When the main lock member 71 reaches the unlocking level J3, the second unlocking channel 76 communicates with the first pressure receiving surface U1, and the first unlocking channel 75 is connected to the second pressure receiving surface U2. Since the hydraulic oil pressure acts on these, the main lock member 71 is maintained at the unlock level J3.
 この遅角作動を継続することにより、主ロック部材71がロック解除レベルJ3に維持された状態で、中間ロック位相Mを遅角方向に超え、相対回転位相が図8に示す第1保持位相Q1に到達する。このように相対回転位相が第1保持位相Q1に到達したことを位相センサNで検知したタイミング(図12のVIIIのタイミング)で相対回転位相を、第1保持時間T1が経過するまで保持する。尚、第1保持位相Q1は、主ロック部材71が中間ロック位相Mより遅角方向Sbであれば良い。また、この相対回転位相に到達した場合に副ロック部材81は副ロック凹部82に係合する状態に達する。 By continuing the retard operation, the intermediate lock phase M is exceeded in the retard direction while the main lock member 71 is maintained at the unlock level J3, and the relative rotation phase is the first holding phase Q1 shown in FIG. To reach. Thus, the relative rotational phase is held until the first holding time T1 elapses at the timing (phase VIII in FIG. 12) when the phase sensor N detects that the relative rotational phase has reached the first holding phase Q1. It should be noted that the first holding phase Q1 may be such that the main lock member 71 is in the retarding direction Sb with respect to the intermediate lock phase M. Further, when this relative rotational phase is reached, the sub-lock member 81 reaches a state where it engages with the sub-lock recess 82.
 この第1位相制御では、所定位相Kから第1保持位相Q1に到達する過程で中間ロック位相Mを通過する際に第1制御ポート75aがドレン流路23Dに連通するが、第2ロック解除流路76からの作動油の圧力で主ロック部材71をロック解除レベルJ3に維持するため、主ロック部材71の係合部71bは主ロック凹部72に係合することはない。 In this first phase control, the first control port 75a communicates with the drain flow path 23D when passing through the intermediate lock phase M in the process of reaching the first holding phase Q1 from the predetermined phase K, but the second unlocking flow Since the main lock member 71 is maintained at the unlock level J3 by the pressure of the hydraulic oil from the passage 76, the engaging portion 71b of the main lock member 71 does not engage with the main lock recess 72.
 次に、位相センサNからエンジンEの回転数を取得し、温度センサTの温度を取得し、油圧センサ(図示せず)で検知される油圧情報を取得し、これらの取得した情報に基づいて第2位相制御の変位速度を設定する(#105ステップ)。この第2位相制御で進角作動を行うため、変位方向は第1位相制御の変位方向と逆向きとなる。この第2位相制御では、第2変位速度の変位速度(厳密には絶対値)は、第1位相制御の変位速度(厳密には絶対値)より低速に設定される。このように低速化される理由は、相対回転位相がシーケンス領域Gに到達したことを位相センサNで確実に検知するためである。 Next, the rotational speed of the engine E is acquired from the phase sensor N, the temperature of the temperature sensor T is acquired, hydraulic pressure information detected by a hydraulic pressure sensor (not shown) is acquired, and based on the acquired information The displacement speed of the second phase control is set (Step # 105). Since the advance operation is performed by the second phase control, the displacement direction is opposite to the displacement direction of the first phase control. In the second phase control, the displacement speed (strictly, absolute value) of the second displacement speed is set to be lower than the displacement speed (strictly, absolute value) of the first phase control. The reason why the speed is reduced in this way is that the phase sensor N reliably detects that the relative rotational phase has reached the sequence region G.
 この第2位相制御の進角作動では、第2保持位相Q2に到達したことを位相センサNで検知した時点で変位を停止し、第2保持時間T2が経過するまで相対回転位相を第2保持位相Q2に保持する制御が行われる(#106から#109ステップ)。尚、#106から#109ステップが第2位相制御の具体例である。 In the advance operation of the second phase control, the displacement is stopped when the phase sensor N detects that the second holding phase Q2 has been reached, and the relative rotational phase is held for the second time until the second holding time T2 elapses. Control to maintain the phase Q2 is performed (steps # 106 to # 109). Steps # 106 to # 109 are specific examples of the second phase control.
 尚、第1保持位相Q1では図8に示すように、ロックアシスト流路22Aが大径ガイド孔部70a(図4参照)の開口部分に連通するため、第2位相制御(進角作動)の開始時には、相対回転位相の進角方向Saに変位を行うと共に、作動油の圧力により主ロック部材71の主ロック凹部72への作動(係合)をアシストする。 In the first holding phase Q1, as shown in FIG. 8, the lock assist flow path 22A communicates with the opening portion of the large-diameter guide hole 70a (see FIG. 4), so that the second phase control (advanced operation) is performed. At the start, the displacement is performed in the advance direction Sa of the relative rotation phase, and the operation (engagement) of the main lock member 71 to the main lock recess 72 is assisted by the pressure of the hydraulic oil.
 この第2位相制御では、相対回転位相が図9に示す位相を超えて図10に示すようにシーケンス領域Gに含まれる第2保持位相Q2に到達して停止して保持する制御が行われる。また、図9、図10に示すように相対回転位相が変位する状況を、図12のタイミングチャートにIX、Xとして示している。 In the second phase control, the relative rotational phase exceeds the phase shown in FIG. 9 and reaches the second holding phase Q2 included in the sequence region G as shown in FIG. Further, the situation where the relative rotational phase is displaced as shown in FIGS. 9 and 10 is shown as IX and X in the timing chart of FIG.
 特に、図13のタイミングチャートに示すように、第1保持位相Q1から相対回転位相が進角方向Saに変位して中間ロック位相Mを超えた後、シーケンス領域Gの領域外に到達する以前に位相センサNの第2歯部12At(図3参照)の検知信号Dを取得するように、#104ステップにおいて変位速度の低速化が行われている。 In particular, as shown in the timing chart of FIG. 13, after the relative rotational phase is displaced in the advance direction Sa from the first holding phase Q1 and exceeds the intermediate lock phase M, before reaching the outside of the sequence region G. In step # 104, the displacement speed is reduced so that the detection signal D of the second tooth portion 12At (see FIG. 3) of the phase sensor N is acquired.
 この変位速度の低速化は、第1センサ11で検知されるクランクシャフト1の回転数と、温度センサTで検知される温度とに基づいて設定される。つまり、温度よって粘性が変化し、回転数によって油圧が変化し、それに応じて目標とする変位速度が設定され、この変位速度で相対回転位相を変位させるように電磁制御弁40の開度が設定される。 The reduction in the displacement speed is set based on the rotation speed of the crankshaft 1 detected by the first sensor 11 and the temperature detected by the temperature sensor T. In other words, the viscosity changes with temperature, the oil pressure changes with the rotation speed, and the target displacement speed is set accordingly, and the opening of the electromagnetic control valve 40 is set so that the relative rotation phase is displaced at this displacement speed. Is done.
 図13には、上段に相対回転位相の変位曲線QXと、検知信号Dとを示し、下段に第2歯部12Atの半径方向へのレベル変化を表すレベル変化信号Hを示している。変位曲線QXは、カム変動トルクの作用により進角方向Saと遅角方向Sbとに緩やかに変動する曲線として現れる。また、第2センサ12は、レベル変化信号Hのアップエッジだけ検知するため、検知信号Dは当該アップエッジに対応した階段状になる。 FIG. 13 shows the displacement curve QX of the relative rotational phase and the detection signal D in the upper stage, and the level change signal H representing the level change in the radial direction of the second tooth portion 12At in the lower stage. The displacement curve QX appears as a curve that gently varies in the advance angle direction Sa and the retard angle direction Sb due to the action of the cam fluctuation torque. Further, since the second sensor 12 detects only the up edge of the level change signal H, the detection signal D has a step shape corresponding to the up edge.
 つまり、前述したように第1センサ11でカウントが継続的に行われており、第2センサ12でレベル変化信号Hのアップエッジでの検知タイミングにおいて、第1センサ11のカウント値を取得することで、その検知タイミングにおける変位曲線QXで表される相対回転位相の把握を可能にしている。 That is, as described above, the count is continuously performed by the first sensor 11, and the count value of the first sensor 11 is acquired by the second sensor 12 at the detection timing at the up edge of the level change signal H. Thus, the relative rotation phase represented by the displacement curve QX at the detection timing can be grasped.
 また、第2歯部12Atの周方向での歯幅が異なり、第2歯部12Atの間隔も異なるため、レベル変化信号Hの検知周期は不揃いとなる。そして、このレベル変化信号Hの検知周期に対応して、検知信号Dの周期が不揃いとなるものの、この検知周期が最も離れた領域でも、シーケンス領域Gにおいて少なくとも1つの検知信号Dを取得できるように変位速度が設定されている。 Further, since the tooth width in the circumferential direction of the second tooth portion 12At is different and the interval between the second tooth portions 12At is also different, the detection cycle of the level change signal H becomes uneven. Then, although the period of the detection signal D is not uniform corresponding to the detection period of the level change signal H, at least one detection signal D can be acquired in the sequence area G even in the area where the detection period is farthest away. The displacement speed is set to.
 図12には、第2保持位相Q2に到達した後に第2保持時間T2が経過するまで相対回転位相を第2保持位相Q2に保持する際の状態が示されている。第2位相制御では、進角流路33に作動油が供給されるため、副ロック解除流路35にも作動油が供給され、副ロック部材81は副ロック凹部82から抜け出す。 FIG. 12 shows a state in which the relative rotation phase is held at the second holding phase Q2 until the second holding time T2 elapses after reaching the second holding phase Q2. In the second phase control, since the hydraulic oil is supplied to the advance channel 33, the hydraulic oil is also supplied to the sub-lock release channel 35, and the sub-lock member 81 comes out of the sub-lock recess 82.
 第2保持時間T2は温度センサTで検知される温度が低温であり、作動油の低く粘性が高いほど長く設定される。このように保持する際には、遅角流路34と遅角室Cb(図2参照)との圧力が大きく低下した状態にあり、第1ロック解除流路75を介してドレン流路23Dと連通する状態が継続的に維持される。これにより、第1受圧面U1と第2受圧面U2とに作用する圧力が低下し、主ロックスプリング73の付勢力により主ロック部材71の係合部71bが主ロック凹部72に係合(係入)する作動が行われる。 The second holding time T2 is set longer as the temperature detected by the temperature sensor T is lower and the viscosity of the hydraulic oil is lower and the viscosity is higher. When holding in this way, the pressure in the retarded flow path 34 and the retarded angle chamber Cb (see FIG. 2) is in a greatly reduced state, and the drain flow path 23D is connected to the drain flow path 23D via the first unlocking flow path 75. The state of communication is continuously maintained. As a result, the pressure acting on the first pressure receiving surface U1 and the second pressure receiving surface U2 is reduced, and the engagement portion 71b of the main lock member 71 is engaged (engaged) with the main lock recess 72 by the urging force of the main lock spring 73. The operation to enter) is performed.
 特に、この第2保持位相Q2(図10参照)では、第2ロック解除流路76は、主ロック部材71の本体部71aで閉塞されるため第2ロック解除流路76に作動油が流れることはなく、この第2ロック解除流路76で作動油に作用する流路抵抗に起因して主ロック部材71の作動速度を減ずる不都合を招くこともない。 In particular, in the second holding phase Q2 (see FIG. 10), the second unlocking flow path 76 is closed by the main body 71a of the main locking member 71, so that hydraulic oil flows through the second unlocking flow path 76. There is no inconvenience of reducing the operating speed of the main lock member 71 due to the flow path resistance acting on the hydraulic oil in the second unlocking flow path 76.
 この後に、再度の遅角作動により相対回転位相を中間ロック位相Mの方向に変位させる第3位相制御が行われる。この遅角作動により位相センサN(図3参照)で検知される相対回転位相が図11に示す中間ロック位相Mでロックされたことが判定(ロック判定)された場合には制御を終了する。これとは逆に、中間ロック位相Mにロックされず、この中間ロック位相Mを通過したことを判定した場合には、リトライ制御を実行する(#110から#113ステップ)。 After this, the third phase control is performed in which the relative rotational phase is displaced in the direction of the intermediate lock phase M by the second delay operation. When it is determined that the relative rotational phase detected by the phase sensor N (see FIG. 3) is locked at the intermediate lock phase M shown in FIG. On the contrary, when it is determined that the intermediate lock phase M has not been locked and the intermediate lock phase M has been passed, retry control is executed (steps # 110 to # 113).
 この第3位相制御では、遅角作動時に位相センサNの検知信号を短いサンプリング周期で取得しており、#112ステップでは、中間ロック位相Mにあることを3秒ある規定時間以上継続した場合に中間ロック位相Mにロックされたと判断してロック移行制御を終了する。 In the third phase control, the detection signal of the phase sensor N is acquired with a short sampling period at the time of delay operation, and in the step # 112, when the intermediate lock phase M is continued for a predetermined time of 3 seconds or more. The lock transition control is terminated by determining that the intermediate lock phase M has been locked.
 また、リトライ制御では、相対回転位相が第1保持位相Q1に到達したことを検知したタイミングで遅角作動を停止し、この後に、#103から#111ステップの制御が再度実行される。特に、リトライ制御では、#104ステップの第1保持時間T1を延長し、#105で接地される変位速度を低減し、#109ステップの第2保持時間T2の時間を延長し、#110ステップの遅角作動の作動速度を低減する設定が行われる。 In the retry control, the retarding operation is stopped at the timing when it is detected that the relative rotational phase has reached the first holding phase Q1, and thereafter, the control from step # 103 to step # 111 is executed again. In particular, in the retry control, the first holding time T1 in the # 104 step is extended, the displacement speed grounded in the # 105 is reduced, the second holding time T2 in the # 109 step is extended, and the # 110 step is increased. Setting is made to reduce the operation speed of the retard operation.
 このリトライ制御は、複数回繰り返して行われることを想定しており、このリトライ制御の実行回数が増大するほど、#104ステップの第1保持時間T1を更に延長し、#105で設定される変位速度を更に低減し、#109ステップの第2保持時間T2の時間を更に延長し、#110ステップの遅角作動の作動速度を更に低減する設定が行われる。 This retry control is assumed to be repeated a plurality of times, and as the number of executions of this retry control increases, the first holding time T1 of the # 104 step is further extended, and the displacement set at # 105 Setting is made to further reduce the speed, further extend the second holding time T2 of step # 109, and further reduce the operating speed of the retarding operation of step # 110.
 尚、リトライ制御の回数が設定回に達した場合には、ディスプレイにエラー情報を表示することや、ロック状態に移行できなかったことを制御履歴に保存する等の処理を行い、リトライ制御を終了する。このリトライ制御として、#106から#112ステップの制御を再度実行するように制御形態を設定することも可能である。 When the number of retry controls reaches the set number, the error information is displayed on the display, or processing such as saving in the control history that the lock state could not be entered is performed, and the retry control is terminated. To do. As the retry control, it is possible to set the control mode so that the control from step # 106 to step # 112 is executed again.
 このように中間ロック位相Mに到達した際の位相変化を図12のXIのタイミングとして示している。この制御により位相センサNで検知される相対回転位相が中間ロック位相Mでロックされる場合には、この保持以前に、図10に示す如く主ロック部材71の係合部71bが主ロック凹部72に係合した状態にある。この状態で相対回転位相が遅角方向Sbに変位することにより、図11に示す如く係合部71bが主ロック凹部72の端部に当接して相対回転が停止する。 Thus, the phase change when the intermediate lock phase M is reached is shown as the timing of XI in FIG. When the relative rotational phase detected by the phase sensor N is locked by the intermediate lock phase M by this control, the engaging portion 71b of the main lock member 71 is moved to the main lock recess 72 as shown in FIG. Is engaged. In this state, when the relative rotation phase is displaced in the retarding direction Sb, the engaging portion 71b comes into contact with the end of the main lock recess 72 as shown in FIG.
 そして、相対回転が停止したタイミングで、副ロック部Lsの副ロック部材81の規制端部81aが副ロック凹部82に係合する状態に移行する。これにより弁開閉時期制御ユニットAの相対回転位相が中間ロック位相Mにロックされるのである。 Then, at the timing when the relative rotation stops, the restricting end portion 81a of the sub lock member 81 of the sub lock portion Ls shifts to a state where it engages with the sub lock recess 82. As a result, the relative rotation phase of the valve opening / closing timing control unit A is locked to the intermediate lock phase M.
 また、相対回転位相が中間ロック位相Mより遅角方向Sbに変位する位相にある状況において、ロック移行制御を実行する場合には、図14のフローチャートのうち#105ステップからスタートする制御が行われる。 Further, when the lock transition control is executed in a situation where the relative rotational phase is in a phase displaced from the intermediate lock phase M in the retarding direction Sb, control starting from step # 105 in the flowchart of FIG. 14 is performed. .
〔ロック解除:進角方向への変位〕
 図11に示すように、相対回転位相が中間ロック位相Mにロックされた状態を起点として、相対回転位相を進角方向Saに変位させる場合には、ロック解除制御部94が進角作動を実行する。この制御では進角流路33から進角室Caに作動油が供給されると共に、その作動油の一部が副ロック解除流路35に供給される。
[Unlock: Displacement in advance direction]
As shown in FIG. 11, when the relative rotation phase is displaced in the advance direction Sa starting from the state in which the relative rotation phase is locked to the intermediate lock phase M, the lock release control unit 94 executes the advance operation. To do. In this control, hydraulic oil is supplied from the advance channel 33 to the advance chamber Ca, and a part of the hydraulic oil is supplied to the sub-lock release channel 35.
 この供給に伴い、副ロック部Lsでは、図5に示すように副ロック部材81の規制端部81aが、副ロック凹部82から離脱すると共に、主ロック部Lmでは係合部71bが主ロック凹部72に係合した状態で(嵌合可能領域の範囲内で)変位が行われ、任意の位相に設定することが可能となる。 With this supply, as shown in FIG. 5, in the secondary lock portion Ls, the restriction end portion 81a of the secondary lock member 81 is detached from the secondary lock recess 82, and in the main lock portion Lm, the engaging portion 71b is the main lock recess. Displacement is performed in the state engaged with 72 (within the range of the matable area), and an arbitrary phase can be set.
〔ロック解除:遅角方向への変位〕
 これとは逆に、図11に示すように、相対回転位相が中間ロック位相Mにロックされた状態を起点として、相対回転位相を遅角方向Sbに変位させる場合には、ロック解除制御部94が、相対回転位相を進角方向Saに変位させた後に、遅角方向Sbに作動させる順序で制御が行われる。
[Unlock: Displacement in retarded direction]
On the contrary, as shown in FIG. 11, when the relative rotational phase is displaced in the retarding direction Sb starting from the state where the relative rotational phase is locked to the intermediate lock phase M, the lock release control unit 94 is used. However, after the relative rotational phase is displaced in the advance angle direction Sa, the control is performed in the order of operating in the retard angle direction Sb.
 つまり、ロック解除制御部94が最初に進角作動を実行することにより副ロック部Lsのロック状態が解除される。そして、相対回転位相がシーケンス領域Gを超えて図5に示すロック解除領域Fに到達した場合に変位を停止する。 That is, when the lock release control unit 94 first performs the advance operation, the lock state of the sub lock unit Ls is released. Then, when the relative rotational phase exceeds the sequence region G and reaches the unlocking region F shown in FIG.
 この状態で、位相制御部92が遅角室Cbに作動油を供給する制御を実行することにより、図7に示すように主ロック部材71がロック解除レベルJ3に達する。この遅角方向Sbへの変位を継続することにより、主ロック部材71がロック解除レベルJ3に維持された状態で相対回転位相が中間ロック位相Mを超えることになり、副ロック部Lsでは、副ロック部材81は副ロック凹部82に係合する。この遅角方向Sbへの変位では、副ロック部材81が副ロック凹部82に係合する状態で変位可能な範囲で行われる。 In this state, when the phase control unit 92 executes control for supplying hydraulic oil to the retard chamber Cb, the main lock member 71 reaches the unlock level J3 as shown in FIG. By continuing the displacement in the retarding direction Sb, the relative rotation phase exceeds the intermediate lock phase M in a state where the main lock member 71 is maintained at the unlock level J3. The lock member 81 is engaged with the sub lock recess 82. The displacement in the retarding direction Sb is performed within a range in which the sub lock member 81 can be displaced in a state where the sub lock member 81 is engaged with the sub lock recess 82.
〔実施形態の作用・効果〕
 この実施形態では、図11に示すように、ロック機構LUの主ロック部Lmと副ロック部Lsとが同時にロック状態に達することにより、相対回転位相を中間ロック位相Mに維持できる。また、中間ロック位相Mへ移行する場合には、電磁制御弁40の制御により相対回転位相の変位方向、変位速度の設定で実現するため、ロック部材を制御するための専用の制御弁を必要としない。
[Operation / Effect of Embodiment]
In this embodiment, as shown in FIG. 11, the main lock portion Lm and the sub lock portion Ls of the lock mechanism LU reach the locked state at the same time, so that the relative rotational phase can be maintained at the intermediate lock phase M. Further, when shifting to the intermediate lock phase M, it is realized by setting the displacement direction and the displacement speed of the relative rotation phase by controlling the electromagnetic control valve 40, so that a dedicated control valve for controlling the lock member is required. do not do.
 また、図4から図11に示すように、相対回転位相がロック解除位相にある状態から中間ロック位相Mに移行する場合には、第1位相制御により相対回転位相を遅角方向Sbに変位させ、中間ロック位相Mを超えた後に第1保持位相Q1(図8参照)に到達すると、相対回転位相の変位を停止して相対回転位相を保持する。次に、第2位相制御により相対回転位相を進角方向Saに変位させ、中間ロック位相Mを超えてシーケンス領域G(図4参照)に含まれる第2保持位相Q2に到達すると、相対回転位相の変位を停止して相対回転位相を保持する。 As shown in FIGS. 4 to 11, when the relative rotational phase shifts from the unlocked phase to the intermediate locked phase M, the relative rotational phase is displaced in the retarding direction Sb by the first phase control. When the first holding phase Q1 (see FIG. 8) is reached after exceeding the intermediate lock phase M, the displacement of the relative rotation phase is stopped and the relative rotation phase is held. Next, when the relative rotational phase is displaced in the advance direction Sa by the second phase control and reaches the second holding phase Q2 included in the sequence region G (see FIG. 4) beyond the intermediate lock phase M, the relative rotational phase is reached. And the relative rotation phase is maintained.
 つまり、第1保持位相Q1で相対回転位相を保持することにより、相対回転位相がオーバーシュートする現象を抑制し、弁の開閉タイミングを大きく変化させることがなく、第2保持位相Q2で相対回転位相を保持することにより、相対回転位相を確実にシーケンス領域Gに保持することが可能となる。この後に、第3位相制御により相対回転位相を遅角方向Sbに変位させることにより中間ロック位相Mにおいてロック状態に移行することが可能となる。 That is, by holding the relative rotation phase at the first holding phase Q1, the phenomenon of the relative rotation phase overshooting is suppressed, and the valve opening / closing timing is not significantly changed, and the relative rotation phase at the second holding phase Q2. By holding this, it is possible to reliably hold the relative rotational phase in the sequence region G. After this, it is possible to shift to the locked state at the intermediate lock phase M by displacing the relative rotational phase in the retarding direction Sb by the third phase control.
 特に、エンジンEの回転数と、作動油の温度とに基づいて第2位相制御の変位速度を、第1位相制御の変位速度より低速に設定するため、位相センサNとして、分解能の高いエンコーダを用いなくとも相対回転位相がシーケンス領域Gに到達したことを位相センサNで確実に検知する。これにより、相対回転位相がシーケンス領域Gを超えてロック解除領域Fに到達する不都合を抑制できる。 In particular, since the displacement speed of the second phase control is set lower than the displacement speed of the first phase control based on the rotation speed of the engine E and the temperature of the hydraulic oil, an encoder with high resolution is used as the phase sensor N. Even if not used, the phase sensor N reliably detects that the relative rotational phase has reached the sequence region G. Thereby, the inconvenience that the relative rotation phase exceeds the sequence region G and reaches the lock release region F can be suppressed.
 エンジンE(図1参照)を停止する際に、相対回転位相を中間ロック位相Mに維持するためにロック移行制御を実行した場合にも、確実に中間ロック位相Mに移行できる。これにより、エンジンEの始動も容易で安定的に行える。 When the engine E (see FIG. 1) is stopped, even when the lock shift control is executed to maintain the relative rotation phase at the intermediate lock phase M, the shift to the intermediate lock phase M can be surely performed. Thereby, the engine E can be started easily and stably.
 更に、ロック移行制御では、中間ロック位相M(図4参照)でロック状態に移行できない場合には、リトライ制御を実行することにより、ロック状態への移行を確実にする。また、このリトライ制御を繰り返す際には、保持時間を延長することや変位速度を低減することによりロック状態への移行を確実にしている。 Further, in the lock transition control, when the intermediate lock phase M (see FIG. 4) cannot be shifted to the locked state, the retry control is executed to ensure the shift to the locked state. When this retry control is repeated, the shift to the locked state is ensured by extending the holding time and reducing the displacement speed.
〔別実施形態〕
 本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
In addition to the above-described embodiments, the present invention may be configured as follows (the components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).
(a)図16に示すように、第1位相制御を行い(#201から#204ステップ)、第2位相制御の実行時(第1保持位相Q1から進角方向Saに変位させる作動時)に相対回転位相がシーケンス領域Gに到達する以前に、位相センサNで相対回転位相の検知を複数回行うことにより、複数の位相を取得し、変位想定ラインLX(図15参照)を設定する位相推定を行う(#205から#207ステップ)。 (A) As shown in FIG. 16, the first phase control is performed (steps from # 201 to # 204), and when the second phase control is executed (when the first holding phase Q1 is displaced in the advance direction Sa). Before the relative rotational phase reaches the sequence region G, the phase sensor N detects the relative rotational phase a plurality of times, thereby acquiring a plurality of phases and setting the estimated displacement line LX (see FIG. 15). (Steps # 205 to # 207).
 また、#205ステップでは、位相センサN(図3参照)からエンジンEの回転数を取得し、温度センサT(図3参照)の温度を取得し、油圧センサ(図示せず)で検知される油圧情報を取得し、取得したこれらに基づいて第2位相制御の変位速度が設定される。 In step # 205, the rotational speed of the engine E is acquired from the phase sensor N (see FIG. 3), the temperature of the temperature sensor T (see FIG. 3) is acquired, and is detected by a hydraulic sensor (not shown). The hydraulic pressure information is acquired, and the displacement speed of the second phase control is set based on the acquired hydraulic information.
 この第1位相制御では、遅角作動が行われ、相対回転位相が第1保持位相Q1に到達したことを位相センサNが検知した時点で変位を停止し、第1保持時間T1が経過するまで相対回転位相を第1保持位相Q1に保持する制御が行われる。 In this first phase control, the retarding operation is performed, and when the phase sensor N detects that the relative rotational phase has reached the first holding phase Q1, the displacement is stopped until the first holding time T1 elapses. Control to hold the relative rotational phase at the first holding phase Q1 is performed.
 次に、進角作動を行うと共に、位相推定で設定された変位想定ラインLXが、第2保持位相Q2に交差する到達タイミングTQ2(図15参照)で相対回転位相の変位を停止し、第2保持時間T2が経過するまで相対回転位相を第2保持位相Q2に保持する制御が行われる(#208から#210ステップ)。 Next, while performing the advance angle operation, the displacement assumption line LX set in the phase estimation stops the displacement of the relative rotational phase at the arrival timing TQ2 (see FIG. 15) intersecting the second holding phase Q2, and the second Control is performed to hold the relative rotational phase at the second holding phase Q2 until the holding time T2 elapses (steps from # 208 to # 210).
 次に、第3位相制御が行われる。この第3位相制御では、遅角作動を行うことで相対回転位相を中間ロック位相M(図4参照)の方向に変位させると共に、中間ロック位相Mでロックされたことを判定(ロック判定)した場合には制御を終了する。これとは逆に、中間ロック位相Mにロックされず、この中間ロック位相Mを通過したことを判定した場合には、リトライ制御を実行する(#211から#214ステップ)。 Next, the third phase control is performed. In this third phase control, the relative rotation phase is displaced in the direction of the intermediate lock phase M (see FIG. 4) by performing a retard operation, and it is determined that the lock is made in the intermediate lock phase M (lock determination). If so, the control ends. On the contrary, if it is determined that the intermediate lock phase M has not been locked and the intermediate lock phase M has been passed, retry control is executed (# 211 to # 214 steps).
 つまり、#213ステップでは、中間ロック位相Mにあることを3秒ある規定時間以上継続した場合に中間ロック位相Mにロックされたと判断してロック移行制御を終了する。また、リトライ制御では、相対回転位相が第1保持位相Q1に到達したことを検知したタイミングで遅角作動を停止し、この後に、#203から#212ステップの制御が再度実行される。特に、リトライ制御では、#204ステップの第1保持時間T1を延長し、#205で接地される変位速度を低減し、#210ステップの第2保持時間T2の時間を延長し、#210ステップの遅角作動の作動速度を低減する設定が行われる。 That is, in step # 213, when the state of being in the intermediate lock phase M is continued for a predetermined time of 3 seconds or more, it is determined that the lock is in the intermediate lock phase M, and the lock transition control is terminated. In the retry control, the retard operation is stopped at the timing when it is detected that the relative rotational phase has reached the first holding phase Q1, and thereafter, the control from step # 203 to step # 212 is executed again. In particular, in the retry control, the first holding time T1 in the # 204 step is extended, the displacement speed grounded in the # 205 is reduced, the second holding time T2 in the # 210 step is extended, and the # 210 step is increased. Setting is made to reduce the operation speed of the retard operation.
 このリトライ制御は、複数回繰り返して行われることを想定しており、このリトライ制御の実行回数が増大するほど、#204ステップの第1保持時間T1を更に延長し、#206で設定される変位速度を更に低減し、#210ステップの第2保持時間T2の時間を更に延長し、#211ステップの遅角作動の作動速度を更に低減する設定が行われる。 This retry control is assumed to be repeated a plurality of times, and as the number of executions of this retry control increases, the first holding time T1 of step # 204 is further extended, and the displacement set in # 206 Setting is made to further reduce the speed, further extend the second holding time T2 of step # 210, and further reduce the operating speed of the retarding operation of step # 211.
 このロック移行制御では、図15に示すように、第2位相制御の実行時に、相対回転位相がシーケンス領域Gに到達する以前に、変位曲線QXの値を2回取得するように検知信号Dによる検知タイミングを設定することで第1位相QX1と第2位相QX2とを取得し、この第1位相QX1と第2位相QX2を結ぶ変位想定ラインLXを演算し、この変位想定ラインLXが第2保持位相Q2に交わる到達タイミングTQ2を求めている。 In this lock transition control, as shown in FIG. 15, when the second phase control is executed, before the relative rotational phase reaches the sequence region G, the detection signal D is used to acquire the value of the displacement curve QX twice. The first phase QX1 and the second phase QX2 are acquired by setting the detection timing, the displacement assumption line LX connecting the first phase QX1 and the second phase QX2 is calculated, and the displacement assumption line LX is second held. The arrival timing TQ2 that intersects the phase Q2 is obtained.
 このように到達タイミングTQ2を求めた後には、相対回転位相が到達タイミングTQ2に到達したタイミングで相対回転位相の変位を停止させ、第2保持時間T2が経過するまで相対回転位相を第2保持位相Q2に保持する制御が実行される。このような制御により、シーケンス領域Gが狭い領域であっても相対回転位相を確実に停止させることが可能となる。 After the arrival timing TQ2 is obtained in this way, the displacement of the relative rotation phase is stopped at the timing when the relative rotation phase reaches the arrival timing TQ2, and the relative rotation phase is changed to the second holding phase until the second holding time T2 elapses. The control held in Q2 is executed. Such control makes it possible to reliably stop the relative rotational phase even if the sequence region G is a narrow region.
 尚、この制御では、位相センサNで相対回転位相の検知を3回以上行った場合には、検知された3つ以上の値の移動平均を求める等、バラツキを考慮して変位想定ラインLXを設定する処理が有効となる。 In this control, when the relative rotational phase is detected three or more times by the phase sensor N, the displacement estimation line LX is determined in consideration of variations, such as obtaining a moving average of three or more detected values. The setting process is enabled.
(b)エンジンEがアイドリング状態や、エンジンEがクランキング状態にある状況において、ロック移行制御を実行する場合には、クランクシャフト1の回転数に基づいて(対応して)、第2位相制御での相対回転位相の変位速度を低減する。 (B) In the situation where the engine E is in the idling state or the engine E is in the cranking state, the second phase control is performed based on (correspondingly) the number of rotations of the crankshaft 1 when the lock transition control is executed. The displacement speed of the relative rotational phase at is reduced.
 つまり、エンジンEがアイドリング状態や、エンジンEの始動時のクランキング状態にある状況では、クランクシャフト1の回転数が少なく、シーケンス領域Gで位相センサNが出力する検知信号Dの出力タイミングの間隔が拡大する。 That is, when the engine E is in an idling state or in a cranking state at the start of the engine E, the rotation speed of the crankshaft 1 is small, and the output timing interval of the detection signal D output from the phase sensor N in the sequence region G Expands.
 この理由から相対回転位相の変位速度を低減することで、シーケンス領域Gで検知信号Dを確実に検知できるように、第2センサ12で検知されるクランクシャフト1の回転数に基づいて電磁制御弁40で供給される作動油の単位時間あたりの供給量を低減することで、相対回転位相がシーケンス領域Gに到達したことを確実に検知し、相対回転位相を停止させることが可能となる。 For this reason, the electromagnetic control valve is based on the rotational speed of the crankshaft 1 detected by the second sensor 12 so that the detection signal D can be reliably detected in the sequence region G by reducing the displacement speed of the relative rotational phase. By reducing the supply amount of the hydraulic oil supplied at 40 per unit time, it is possible to reliably detect that the relative rotation phase has reached the sequence region G and to stop the relative rotation phase.
(c)作動流体制御機構として弁開閉時期制御ユニットAの外部に電磁弁を備えても良い。この構成では弁開閉時期制御ユニットAの内部に電磁弁を備えるものと比較して流路構成を単純化させることも可能となる。 (C) A solenoid valve may be provided outside the valve opening / closing timing control unit A as a working fluid control mechanism. In this configuration, the flow path configuration can be simplified as compared with the valve opening / closing timing control unit A provided with an electromagnetic valve.
(d)主ロック部Lmをベーン部32に備える構成の変形例として、主ロック部材71が半径方向の外方に突出するように構成しても良い。また、副ロック部Lsとして、副ロック部材81が回転軸芯Xに平行する軸芯に沿って出退するように構成しても良い。 (D) As a modification of the configuration in which the main lock portion Lm is provided in the vane portion 32, the main lock member 71 may be configured to protrude outward in the radial direction. Further, as the sub-locking portion Ls, the sub-locking member 81 may be configured to retract and retract along an axis that is parallel to the rotation axis X.
 本発明は、駆動側回転体と従動側回転体との相対回転位相を保持するロック機構を備えた弁開閉時期制御装置に利用することができる。 The present invention can be used for a valve opening / closing timing control device including a lock mechanism that holds a relative rotational phase between a driving side rotating body and a driven side rotating body.
1     クランクシャフト
5     カムシャフト(吸気カムシャフト)
12    第2センサ(回転数センサ)
20    外部ロータ(駆動側回転体)
23D   ドレン流路
30    内部ロータ(従動側回転体)
35    副ロック解除流路
40    電磁制御弁(作動流体制御機構)
71    主ロック部材
72    主ロック凹部
73    主ロックスプリング(主スプリング)
75    第1ロック解除流路(第1ロック解除流路)
81    副ロック部材
82    副ロック凹部
83    副ロックスプリング(副スプリング)
92    位相制御部
Ca    進角室
Cb    遅角室
E     エンジン(内燃機関)
F     ロック解除領域
G     シーケンス領域
Lu    ロック機構
Lm    主ロック部
Ls    副ロック部
M     中間ロック位相(ロック位相)
Q1    第1保持位相
N     位相センサ
T     温度センサ
X     回転軸芯
1 Crankshaft 5 Camshaft (Intake camshaft)
12 Second sensor (rotational speed sensor)
20 External rotor (drive side rotor)
23D Drain flow path 30 Internal rotor (driven rotor)
35 Sub-lock release flow path 40 Electromagnetic control valve (working fluid control mechanism)
71 Main lock member 72 Main lock recess 73 Main lock spring (main spring)
75 First unlocking channel (first unlocking channel)
81 Sub lock member 82 Sub lock recess 83 Sub lock spring (sub spring)
92 Phase control unit Ca Advance chamber Cb Delay chamber E Engine (internal combustion engine)
F Lock release area G Sequence area Lu Lock mechanism Lm Main lock part Ls Sub lock part M Intermediate lock phase (lock phase)
Q1 First holding phase N Phase sensor T Temperature sensor X Rotating shaft core

Claims (6)

  1.  内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記駆動側回転体に内包され、前記駆動側回転体の回転軸芯と同軸芯で前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
     前記駆動側回転体と前記従動側回転体との間に区画形成される進角室と遅角室との一方に作動流体を供給することで前記駆動側回転体と前記従動側回転体との相対回転位相を変位させる作動流体制御機構と、
     前記駆動側回転体と前記従動側回転体とを所定のロック位相に保持するロック機構と、
     前記相対回転位相を示す検知信号を前記内燃機関の回転に同期した所定のタイミング毎に出力する位相センサと、
     前記位相センサを用いて前記相対回転位相を目標位相に変位させる位相制御部と、を備えると共に、
     前記ロック機構が、主スプリングの付勢力で主ロック部材を主ロック凹部に係合させることにより前記相対回転位相の変位領域を主規制領域に規制する主ロック部と、前記主ロック部材に対して前記主ロック凹部からの抜き出しを可能にする作動流体を供給する主ロック解除流路と、を備え、
     前記主規制領域の一方の端部に前記主ロック部材が存在する位相を前記ロック位相に対応させ、前記主規制領域のうち前記ロック位相に隣接する位置にシーケンス領域を形成すると共に、当該シーケンス領域に隣接する位置にロック解除領域を形成し、前記相対回転位相が前記ロック位相から前記シーケンス領域に亘る領域にある場合に前記主ロック解除流路をドレン流路に連通させ、前記相対回転位相が前記ロック解除領域にある場合に前記相対回転位相を前記ロック位相に向けて変位させる作動流体が供給される流路を前記主ロック解除流路に連通させており、
     前記位相制御部は、前記相対回転位相を前記ロック位相に保持するロック移行制御において、前記相対回転位相を、前記シーケンス領域に向けて変位させ、前記シーケンス領域に到達した後に、前記相対回転位相を前記ロック位相に向けて変位させるように制御形態が設定され、
     前記ロック移行制御が、前記相対回転位相が前記シーケンス領域にある場合に、検知信号を少なくとも1度は検知するように前記位相センサの検知信号の出力タイミングと、前記相対回転位相の変位速度との関係が設定されている弁開閉時期制御装置。
    A drive-side rotating body that rotates synchronously with the crankshaft of the internal combustion engine;
    A driven-side rotating body that is included in the driving-side rotating body and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine, coaxially with a rotating shaft core of the driving-side rotating body;
    By supplying a working fluid to one of an advance chamber and a retard chamber formed between the drive side rotor and the driven side rotor, the drive side rotor and the driven side rotor are A working fluid control mechanism for displacing the relative rotational phase;
    A lock mechanism that holds the drive-side rotator and the driven-side rotator in a predetermined lock phase;
    A phase sensor that outputs a detection signal indicating the relative rotational phase at a predetermined timing synchronized with the rotation of the internal combustion engine;
    A phase control unit that displaces the relative rotational phase to a target phase using the phase sensor, and
    The lock mechanism engages the main lock member with the main lock recess by the urging force of the main spring, thereby restricting the displacement region of the relative rotational phase to the main restriction region, and the main lock member. A main unlocking flow path for supplying a working fluid that enables extraction from the main locking recess,
    The phase where the main lock member is present at one end of the main restriction region is made to correspond to the lock phase, a sequence region is formed at a position adjacent to the lock phase in the main restriction region, and the sequence region When the relative rotational phase is in the region extending from the lock phase to the sequence region, the main unlock channel is connected to the drain channel, and the relative rotational phase is A channel that is supplied with a working fluid that displaces the relative rotational phase toward the lock phase when in the unlocking region is communicated with the main unlocking channel;
    In the lock transition control for holding the relative rotational phase at the lock phase, the phase control unit displaces the relative rotational phase toward the sequence region, and after reaching the sequence region, the relative rotational phase is changed to the relative rotational phase. The control mode is set so as to be displaced toward the lock phase,
    In the lock transition control, when the relative rotational phase is in the sequence region, an output timing of the detection signal of the phase sensor and a displacement speed of the relative rotational phase so as to detect the detection signal at least once. Valve timing control device for which the relationship is set.
  2.  前記ロック機構が、副スプリングの付勢力で副ロック部材を副ロック凹部に係合させることにより前記相対回転位相の変位領域を副規制領域に規制する副ロック部を備え、前記主ロック凹部に前記主ロック部材が係入すると共に、前記副ロック凹部に前記副ロック部材が係合する状態で前記相対回転位相が前記ロック位相に保持され、
     前記主ロック部材をを前記シーケンス領域から前記ロック解除領域に向けて変位させる作動流体の一部が供給されることにより、前記副ロック部材に前記副ロック凹部から抜き出す作動流体を供給する副ロック解除流路を備え、
     前記主ロック部材が前記ロック解除領域にある前記相対回転位相から前記ロック移行制御を実行する際には、前記主ロック解除流路に作動流体を供給することにより前記相対回転位相を、前記ロック位相を超える位相まで変位させる第1位相制御を行い、次に、前記第1位相制御と逆方向に変位させる第2位相制御を行うことにより、前記相対回転位相を、前記ロック位相を超えて前記シーケンス領域まで移行して停止し、この後に、前記ロック位相の方向に変位させる第3位相制御を行うように前記位相制御部の制御形態が設定され、前記第1位相制御の変位速度より、前記第2位相制御の変位速度が低く設定されている請求項1に記載の弁開閉時期制御装置。
    The lock mechanism includes a sub-lock portion that restricts the displacement region of the relative rotation phase to the sub-regulation region by engaging the sub-lock member with the sub-lock recess by the biasing force of the sub spring, and the main lock recess includes the sub-lock portion. While the main lock member is engaged, the relative rotation phase is held at the lock phase in a state where the sub lock member is engaged with the sub lock recess,
    A sub-lock release that supplies a working fluid extracted from the sub-lock recess to the sub-lock member by supplying a part of the working fluid that displaces the main lock member from the sequence region toward the lock-release region. With a flow path,
    When performing the lock transition control from the relative rotational phase in which the main lock member is in the unlocking region, the relative rotational phase is set to the lock phase by supplying a working fluid to the main unlocking channel. The first phase control for displacing to a phase exceeding the first phase control, and then the second phase control for displacing in the opposite direction to the first phase control, the relative rotational phase exceeds the lock phase and the sequence is performed. The control mode of the phase control unit is set so as to perform the third phase control for shifting to the region, and then displacing in the lock phase direction. From the displacement speed of the first phase control, the first phase control is performed. The valve opening / closing timing control device according to claim 1, wherein the displacement speed of the two-phase control is set low.
  3.  前記内燃機関の温度を検知する温度センサと、前記クランクシャフトの回転数を検知する回転数センサあるいは油圧センサとを備え、前記ロック移行制御では、前記温度センサで検知される温度情報と前記回転数センサで検知される回転数情報あるいは油圧センサの情報との少なくともいずれかに基づいて前記相対回転位相の変位速度が設定される請求項1又は2に記載の弁開閉時期制御装置。 A temperature sensor for detecting the temperature of the internal combustion engine; and a rotation speed sensor or a hydraulic pressure sensor for detecting the rotation speed of the crankshaft. In the lock transition control, temperature information detected by the temperature sensor and the rotation speed The valve opening / closing timing control device according to claim 1 or 2, wherein a displacement speed of the relative rotation phase is set based on at least one of rotation speed information detected by a sensor and information of a hydraulic pressure sensor.
  4.  前記位相制御部は、前記内燃機関がアイドリング状態にある場合、又は、クランキング状態にある場合に、前記ロック移行制御を実行する際には、前記クランクシャフトの回転数に基づいて前記相対回転位相の変位速度を設定する請求項1から3のいずれか一項に記載の弁開閉時期制御装置。 When the internal combustion engine is in an idling state or in a cranking state, the phase control unit performs the lock transition control based on the rotational speed of the crankshaft. The valve opening / closing timing control apparatus according to any one of claims 1 to 3, wherein a displacement speed is set.
  5.  前記ロック移行制御において、前記第1位相制御により前記相対回転位相が前記ロック位相を超える位相の第1保持位相に到達した際に、前記相対回転位相を前記第1保持位相に保持する制御が行われる請求項2に記載の弁開閉時期制御装置。 In the lock transition control, control is performed to hold the relative rotation phase at the first holding phase when the relative rotation phase reaches the first holding phase that exceeds the lock phase by the first phase control. The valve opening / closing timing control device according to claim 2.
  6.  位相制御部は、前記ロック移行制御において、前記第3位相制御により前記相対回転位相が前記ロック位相を通過したことを判定した場合には、前記第2位相制御と前記第3位相制御との少なくとも2つの位相制御を再度実行する請求項2に記載の弁開閉時期制御装置。
     
    In the lock transition control, the phase control unit, when determining that the relative rotation phase has passed the lock phase by the third phase control, at least the second phase control and the third phase control. The valve timing control apparatus according to claim 2, wherein the two phase controls are executed again.
PCT/JP2017/030902 2016-09-16 2017-08-29 Valve opening/closing timing control device WO2018051778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-181978 2016-09-16
JP2016181978A JP2018044529A (en) 2016-09-16 2016-09-16 Valve opening/closing timing control device

Publications (1)

Publication Number Publication Date
WO2018051778A1 true WO2018051778A1 (en) 2018-03-22

Family

ID=61619096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030902 WO2018051778A1 (en) 2016-09-16 2017-08-29 Valve opening/closing timing control device

Country Status (2)

Country Link
JP (1) JP2018044529A (en)
WO (1) WO2018051778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757912B (en) * 2018-10-15 2022-03-11 皇甫歡宇 A method of pressurizing a fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098858A1 (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Control valve
WO2015129484A1 (en) * 2014-02-26 2015-09-03 アイシン精機株式会社 Solenoid valve
JP2016061175A (en) * 2014-09-16 2016-04-25 アイシン精機株式会社 Control valve
WO2017002743A1 (en) * 2015-06-29 2017-01-05 アイシン精機株式会社 Valve opening/closing timing control device
JP2017194049A (en) * 2016-04-19 2017-10-26 アイシン精機株式会社 Valve opening closing time control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098858A1 (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Control valve
WO2015129484A1 (en) * 2014-02-26 2015-09-03 アイシン精機株式会社 Solenoid valve
JP2016061175A (en) * 2014-09-16 2016-04-25 アイシン精機株式会社 Control valve
WO2017002743A1 (en) * 2015-06-29 2017-01-05 アイシン精機株式会社 Valve opening/closing timing control device
JP2017194049A (en) * 2016-04-19 2017-10-26 アイシン精機株式会社 Valve opening closing time control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757912B (en) * 2018-10-15 2022-03-11 皇甫歡宇 A method of pressurizing a fluid

Also Published As

Publication number Publication date
JP2018044529A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP5013323B2 (en) Variable valve timing control device for internal combustion engine
JP4000522B2 (en) Valve timing control device
US7198014B2 (en) Valve timing control apparatus and method for setting minimum torque
US8464672B2 (en) Variable valve timing control apparatus for internal combustion engine
JP5929300B2 (en) Engine valve timing control device
US8776748B2 (en) Variable valve timing control apparatus
JP2009074383A (en) Valve opening and closing timing control device
JP2019105167A (en) Valve opening/closing timing control device
JP2013047504A (en) Solenoid valve and device for controlling valve opening and closing timing
JP6079676B2 (en) Valve timing control device
WO2013129110A1 (en) Variable valve timing control device of internal combustion engine
WO2018051778A1 (en) Valve opening/closing timing control device
WO2015019735A1 (en) Valve opening/closing timing control device
WO2015015960A1 (en) Valve opening/closing timing control device
JP6488915B2 (en) Valve timing control device
JP2017194049A (en) Valve opening closing time control device
JP6194695B2 (en) Valve timing control device
JP2018123734A (en) Valve opening/closing timing controller
JP6201842B2 (en) Valve timing control system
EP3179062B1 (en) Valve opening/closing timing control apparatus
JP6589342B2 (en) Valve timing control device
US20170298788A1 (en) Valve opening/closing timing control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850682

Country of ref document: EP

Kind code of ref document: A1