WO2018051687A1 - Antibody test reagent - Google Patents

Antibody test reagent Download PDF

Info

Publication number
WO2018051687A1
WO2018051687A1 PCT/JP2017/028863 JP2017028863W WO2018051687A1 WO 2018051687 A1 WO2018051687 A1 WO 2018051687A1 JP 2017028863 W JP2017028863 W JP 2017028863W WO 2018051687 A1 WO2018051687 A1 WO 2018051687A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
specimen
peptide
concentration
sample
Prior art date
Application number
PCT/JP2017/028863
Other languages
French (fr)
Japanese (ja)
Inventor
典子 渡部
宗親 山口
山田 崇
Original Assignee
ブライトパス・バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブライトパス・バイオ株式会社 filed Critical ブライトパス・バイオ株式会社
Publication of WO2018051687A1 publication Critical patent/WO2018051687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to an immunoassay reagent.
  • the present invention relates to a specimen diluent for anti-peptide antibody testing capable of measuring a low concentration detection target with high accuracy and reproducibility.
  • Immunotherapy is a treatment expected as the “fourth treatment” after surgery, radiation therapy, and chemotherapy.
  • Immunotherapy is a method in which the patient's own immune mechanism is activated to perform treatment, such as vaccine therapy, immune cell therapy, and cytokine therapy.
  • treatment such as vaccine therapy, immune cell therapy, and cytokine therapy.
  • each immunotherapy has advantages and disadvantages, and none of them are widely used.
  • vaccine therapy has few side effects.
  • the mechanism of action is significantly different from that of main therapies such as radiation therapy and chemotherapy. Therefore, it is a therapeutic method that has been attracting attention because even a patient who does not succeed in these therapeutic methods may have a therapeutic effect.
  • Cancer vaccines are broadly divided into those intended for cancer prevention and those intended for treatment. There is a preventive vaccine for cervical cancer to prevent cancer. As a vaccine for preventing cervical cancer, a vaccine developed by Merck and GSK has already been approved. Vaccines that prevent cervical cancer prevent infections of human papillomavirus type 16 and 18 that cause cervical cancer, do not act on cancer itself, stop its progression, and treat it Absent.
  • cancer antigen expressed by cancer cells are presented on antigen-presenting cells by human leukocyte antigen (HLA) molecules, and cytotoxic T lymphocytes (CTLs) that recognize them damage cancer cells.
  • HLA human leukocyte antigen
  • CTLs cytotoxic T lymphocytes
  • a cancer peptide vaccine is a method of activating CTLs in the immune system by administering a peptide that is a cancer antigen, killing cancer cells with CTLs, and trying to treat them.
  • Non-patent Document 1 protein expression in cancer cells in each patient varies from person to person (Non-Patent Document 1), depending on the patient, the administered antigen may not be expressed in cancer cells, and sufficient effects are obtained. There are cases where it cannot be expected. In fact, there is a report that the success rate of such immunotherapy is not sufficient (Non-patent Document 2).
  • Non-patent Document 3 The group of Ito et al. Of Kurume University, which has been conducting clinical research on peptide vaccine therapy since the early 1990s, is a heterogeneous group of cancer cells in each patient, and the antigens that cause an immune response to cancer differ for each patient Focusing on this, research and development of a so-called “tailor-made cancer peptide vaccine” in which a plurality of optimal peptides capable of obtaining an immune response was administered to each patient was promoted. As a result, an excellent clinical effect that has not been recognized in the past was reported (Non-patent Document 3).
  • tailor-made cancer peptide vaccines have different HLA class I types for each patient, they confirm the immunity against many tumor antigen peptides and select and administer the optimal peptide recognized by each patient. is there.
  • the inventors are exploring a method for performing a more effective treatment in applying to the clinic in response to the research results of the Kurume University group. That is, in order to select a peptide set effective for a patient, an immunoassay with a small non-specific reaction and a high sensitivity is being intensively studied.
  • the anti-peptide antibody titer present in the blood collected in order to select peptides at the stage of examination before vaccine therapy is performed on patients is very low for all peptides.
  • peptides that can be expected to induce an immune response that can function as a vaccine have a slightly higher antibody titer than the background even before vaccine therapy.
  • antibody values slightly higher than the background must be compared with each other and evaluated.
  • the peptide to be administered in the next course is again measured for anti-peptide antibody titer, and the effect of the administered peptide is examined and reviewed.
  • the present inventors have conducted intensive studies and found that the composition of the specimen diluent among various reagents is important in terms of sensitivity and specificity.
  • the present inventors have found that the type and concentration of the water-soluble polymer strongly influences the sensitivity and specificity among the compositions of the sample diluent, and the present invention has been completed.
  • water-soluble polymers contained in an immunoassay system include polybilyl alcohol (hereinafter sometimes referred to as PVA), polyvinylpyrrolidone (hereinafter sometimes referred to as PVP), polyethylene glycol, and the like. Have been used.
  • the group of the present inventors is measuring the antibody titer of patients before vaccine administration by multiplex flow cytometry assay.
  • Multiplex flow cytometry assay not only can measure with high sensitivity, but also can measure antibody titers against multiple peptides simultaneously in a single well, enabling measurement with a small amount of patient specimens and the time required for testing. Can also be shortened.
  • Non-patent Document 7 describes that non-specific binding is increased by binding an antibody contained in human plasma directly to beads. Furthermore, it is described that PVA, PVP and Super ChemiBlock (registered trademark) are effective for suppressing non-specific binding. According to the method disclosed in Non-Patent Document 7, after diluting plasma with a sample diluent containing 0.5% PVA and 0.8% PVP, the diluted sample is preincubated for use. ing.
  • Non-Patent Document 8 describes that non-specific binding is suppressed by adding 0.5% PVA and 0.8% PVP to the specimen diluent. In specimens not exposed to antigen, it has been shown that non-specific binding is significantly suppressed when 0.5% PVA and 0.8% PVP are added to the specimen diluent.
  • the present inventors have also studied the composition of the specimen diluent, but when PVA and PVP are used at the concentrations disclosed in the prior art, good results are obtained with proteins, but when peptides are used. Was unable to obtain satisfactory sensitivity and inhibition of non-specific binding.
  • PVA and PVP are used at the concentrations disclosed in the prior art
  • good results are obtained with proteins, but when peptides are used.
  • the concentration of PVA which is a water-soluble polymer, among compounds added as a blocking agent is very important for reducing nonspecific binding and increasing sensitivity. I found out. Also, the concentration was much lower than that disclosed in the prior art.
  • An object of the present invention is to detect a sample having a very low antibody titer with high accuracy and with high reproducibility.
  • it is an object to provide a specimen diluent used in a test for selecting a peptide that can be efficiently presented on antigen-presenting cells in a vaccine-na ⁇ ve state prior to administration of a peptide vaccine, and an immunoassay method
  • the present invention is a specimen diluent shown below and an immunoassay method using the specimen diluent.
  • the specimen diluent according to (1) which contains 1.67 ⁇ 10 ⁇ 5 % (w / v) or more and 6.25 ⁇ 10 ⁇ 3 % (w / v) or less of PVA.
  • the specimen diluent according to any one of (1) to (3), wherein the sample is plasma, serum, or blood.
  • An immunoassay characterized by diluting a sample with a specimen diluent containing 6.67 ⁇ 10 ⁇ 6 % (w / v) or more and 6.25 ⁇ 10 ⁇ 3 % (w / v) or less of PVA Law.
  • the specimen diluent contains 1.67 ⁇ 10 ⁇ 5 % (w / v) or more and 6.25 ⁇ 10 ⁇ 3 % (w / v) or less of PVA ( 5)
  • An immunoassay method wherein the immunoassay method according to (5) or (6) is a multiplex flow cytometry assay using flow cytometry.
  • a compound that is generally added as a blocking agent that suppresses nonspecific binding can be added to the specimen diluent of the present invention.
  • it may be added at a concentration usually added in an immunoassay such as multiplex flow cytometry assay or ELISA.
  • blocking agents include water-soluble polymers such as PVP and polyethylene glycol, polypeptides such as skim milk, bovine serum albumin (BSA), ovalbumin, and gelatin, and surfactants such as Tween 20 and Triton X-100. It is possible to add.
  • BSA bovine serum albumin
  • Tween 20 and Triton X-100 surfactants
  • a buffer solution in order to maintain the pH and ionic environment appropriately.
  • TBS, PBS or the like usually used in immunoassays can be used.
  • about 0.05% (w / v) sodium azide may be added.
  • plasma and serum samples are used as samples for measuring antibody titers.
  • this treatment method it is necessary to measure the antibody titer against the peptide before and during treatment.
  • it may be stored frozen.
  • the present invention can be applied to general immunoassays. In this case, it is needless to say that any sample may be used in addition to the blood-derived sample.
  • the present invention was developed as a specimen diluent used in a test prior to inoculation with a peptide vaccine, but it is sensitive and can suppress nonspecific binding. Therefore, the present invention is not limited to this, and it can be used in any immunoassay method such as antibody titer test after peptide vaccination and normal test.
  • the antibody titer is measured by a multiplex flow cytometry assay using flow cytometry, but any immunoassay may be used as long as the antibody titer can be measured.
  • immunoassays include flow cytometry, ELISA, RIA and the like.
  • a PVA having a molecular weight of 30,000 to 70,000 is used, but a PVA having a lower molecular weight can also be used.
  • PVP360 having a molecular weight of 360,000
  • a low molecular weight having a molecular weight of about 40,000 can be used. Regardless of the molecular weight, high sensitivity and specific binding can be obtained by using equivalent concentrations.
  • peptides are immobilized on a plurality of identifiable beads.
  • the beads By detecting a combination of two kinds of fluorescent dyes colored on the beads, the beads can be identified, and the peptide immobilized on the surface can be identified.
  • a sample obtained from a patient is diluted with the peptide-immobilized beads and reacted with the sample diluent of the present invention (FIG. 1, incubation). If the patient specimen contains an antibody that recognizes the peptide, it specifically binds to the peptide.
  • patient plasma is used after being diluted 100-fold with a sample diluent, but can be measured by appropriately adjusting according to MFI (Media Fluorescence Intensity, median fluorescence intensity).
  • the secondary antibody is bound to the peptide recognition antibody contained in the patient sample (FIG. 1, secondary antibody, labeled incubation).
  • an anti-human IgG antibody is used as a secondary antibody and is bound to a peptide recognition antibody derived from a patient.
  • the secondary antibody is biotinylated, and detection is performed by binding fluorescently labeled streptavidin. Peptides bound to the carrier can be identified from the fluorescence derived from the beads, and the reactivity of the patient specimen to each peptide can be analyzed from the fluorescence labeled with streptavidin.
  • the secondary antibody uses biotin as a label and is detected by a biotin-streptavidin system, but may be detected using any assay system used in immunoassays.
  • a secondary antibody that is directly fluorescently labeled may be used, or an antibody that recognizes the secondary antibody may be fluorescently labeled. Any fluorescent label may be used as long as it is different from the detection wavelength of the solid phase as a carrier.
  • washing is performed with a washing solution to remove unbound specimen and the like.
  • a washing solution those commonly used in immunoassays can be used.
  • a buffer solution containing a salt close to physiological salt concentration such as PBS or TBS containing 0.01 to 0.1% (w / v) of a surfactant such as Tween 20 or Triton X-100.
  • a surfactant such as Tween 20 or Triton X-100.
  • the specimen dilution solution contained a water-soluble polymer, a surfactant, a blocking agent containing a protein, and a buffer as a composition.
  • non-specific binding and sensitivity did not change greatly depending on the type and concentration of the surfactant and the type of blocking agent and buffer.
  • the concentration of PVA which is a water-soluble polymer, affects nonspecific binding and sensitivity, and the concentration of PVP affects the enhancement of reactivity.
  • the PVA concentration is very important in measuring antibody titer at a low concentration.
  • the concentration of PVA as a water-soluble polymer is 0.5% (w / v)
  • the concentration of PVP is 0.8% (w / v)
  • the concentration of PVX is 1.3% (w / v). It has been reported that non-specific binding is suppressed and sensitivity is enhanced by performing an immunoassay (Non-Patent Documents 6 to 8). In the inventors' examination, the measurement of the antibody against the protein showed the usefulness at this PVA concentration.
  • PVP has the effect of increasing the reactivity as described in Non-Patent Document 6. Although the results are not shown here, PVP was added to PBS, 0.05% Tween 20, or 2.0% Block Ace, 0.05% Tween 20 at concentrations of 0, 0.008, 0.08, and 0.8%. When multiplex flow cytometry assay was performed, the reaction was enhanced in a concentration-dependent manner in both systems. On the other hand, since an increase in non-specific reaction is also observed, when adding PVP, it is preferable to add it at a concentration lower than 0.8%. In addition, PVP may not be added as long as the sample can obtain sufficient reactivity and does not need to enhance the reaction.
  • the optimal condition for the concentration of the water-soluble polymer was determined using a sample dilution solution obtained by sequentially diluting the concentration of PVA contained in the sample dilution solution.
  • the concentration of PVA that suppresses non-specific reaction was examined using beads (non-solid phase beads, Ctl (control) beads in FIG. 1) in which peptides used as controls were not immobilized. From 0.5% PVA, a specimen dilution solution was prepared by sequentially diluting PVA. Commercially available human purified IgG (MP Biomedicals) and healthy human plasma (sample A, sample B) were diluted 100-fold with sample dilutions that differed only in PVA concentration. The beads were incubated only with commercially available human purified IgG, healthy human serum, and specimen diluent (no specimen), reacted with the secondary antibody and label, and fluorescence measurement was performed.
  • the PVA concentration is preferably 6.67 ⁇ 10 ⁇ 6 % or more, more preferably 1.67 ⁇ 10 ⁇ 5 % or more. It was judged.
  • the concentration of PVA in which a decrease in reactivity was observed was different depending on the combination of the specimen and the beads used. For example, in the combination of Peptide-10 immobilized beads and Specimen B (top of FIG. 4), although the reactivity with the Specimen was decreased in the region of PVA concentration higher than 3.13 ⁇ 10 ⁇ 2 % On the other hand, the combination of peptide-1 immobilized beads and human purified IgG (center of FIG. 4) is 2.50 ⁇ 10 ⁇ 2 %, and in the case of peptide-9 immobilized beads and specimen A (bottom of FIG. 4).
  • the reactivity differs depending on the patient specimen and peptide
  • the above results revealed that PVA added to the specimen diluent has various problems in terms of sensitivity in a high concentration region. That is, if the concentration of PVA is higher than 0.13%, it is not preferable because the measurement error increases. Further, depending on the combination of the specimen and the bead, there was a case where the sensitivity was lowered at a concentration higher than 6.25 ⁇ 10 ⁇ 3 %. Accordingly, the PVA concentration is preferably 0.13% or less, and more preferably 6.25 ⁇ 10 ⁇ 3 % or less.
  • Table 1 summarizes the results of specificity and sensitivity when using specimen dilutions containing various PVA concentrations.
  • indicates good, ⁇ indicates inappropriate, ⁇ indicates slightly inappropriate, and NT indicates that no inspection was performed. Instability indicates that the measured values varied and the reproducibility was low.
  • the concentration of PVA contained in the specimen diluent is preferably 0.5% or less, and preferably 6.67 ⁇ 10 ⁇ 6 % or more. Further, the concentration is more preferably 1.67 ⁇ 10 ⁇ 5 % or more. From the viewpoint of sensitivity, a PVA concentration of 0.13% or less is preferable, and 6.25 ⁇ 10 ⁇ 3 or less is more preferable.
  • the inhibition rate (%) at 0.5, 6.25 ⁇ 10 ⁇ 3 , 3.33 ⁇ 10 ⁇ 5 % PVA concentration is shown in the sample shown in specimen C (upper part of FIG. 5). 70/78/95% and N / A (uncalculated), 100/80% in the sample shown in specimen D (lower part of FIG. 5), respectively. It is clear that the inhibition rate (%) at 6.25 ⁇ 10 ⁇ 3 , 3.33 ⁇ 10 ⁇ 5 % PVA concentration is 80% or more in all samples, and the specificity is sufficiently high.
  • the results of the competitive inhibition test using peptides also revealed that favorable results were obtained in both specificity and sensitivity when the concentration of PVA was 6.25 ⁇ 10 ⁇ 3 % or less.
  • the preferred PVA concentration from both the specificity and sensitivity is 6.67 ⁇ 10 ⁇ 6 % or more and 0.13% or less, and further considering the reproducibility, 0.13 In% PVA, since the measured value variation was poor and reproducibility was poor, the concentration is preferably 6.25 ⁇ 10 ⁇ 2 % or less. Further, a concentration of 1.67 ⁇ 10 ⁇ 5 % or more is more preferable because the background does not increase and good results can be obtained in both specificity and sensitivity regardless of the combination of peptide and specimen. In addition, if the concentration is 6.25 ⁇ 10 ⁇ 3 % or less, there is no decrease in sensitivity or instability for each measurement, and good results in both specificity and sensitivity can be obtained regardless of the combination of peptide and specimen. More preferred.
  • the specimen dilution rate was examined (FIG. 6).
  • the sample was reacted with the peptide-immobilized beads, and the fluorescence intensity was measured.
  • Peptide-3 (DYLRSVLEDF; SEQ ID NO: 5) solid-phase beads and specimen B which is healthy human plasma, or peptide-5 (NYSVRYRPGL; SEQ ID NO: 6) solid-phase beads and specimen E which is normal human plasma Study was carried out.
  • the specimen dilution solution used contains 3.33 ⁇ 10 ⁇ 5 % of PVA. Each sample was diluted 25, 50, 100, and 200 times with the sample diluent, and the fluorescence intensity was measured.
  • the specimen is preferably diluted in a range where linearity is recognized, that is, 50 to 200 times, and more preferably diluted to 100 to 150 times near the center where linearity is recognized. Since the fluorescence intensity as a measurement value differs depending on the sample, the sample may be appropriately diluted with the sample diluent so that the measurement error is small within the above range.
  • the method of the present invention uses PVA or PVP at a lower concentration than conventional ones, many samples can be stably measured even when measured by a multiplex flow cytometry assay.
  • PVA and PVP are high molecular weight polymers, they give viscosity to the solution at high concentrations. Therefore, when PVA or PVP is used at a conventional concentration, the multiplex flow cytometry assay that measures the fluorescence intensity on the solid phase beads through a fine tube causes clogging and a decrease in flow rate when measuring multiple samples. Occurred and affected the measurement results.
  • the sample diluent adjusted in the concentration range of the present invention the measurement could be performed stably without causing a decrease in flow rate.
  • sample diluent of the present invention By using the sample diluent of the present invention, even a sample having a low antibody titer can be measured with high specificity, high sensitivity, and good reproducibility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention makes it possible to build a highly sensitive and highly specific assay system, by incorporating a polyvinyl alcohol (PVA) in an amount equal to 6.67×10-6%(w/v) to 6.25×10-3%(w/v), inclusive, into a specimen-diluting liquid for diluting a specimen. Thus, accurate and reproducible detection is possible even when the antibody titer of an antibody is extremely low.

Description

抗体検査用試薬Reagent for antibody test
 本発明は、免疫測定用試薬に関する。特に、低濃度の検出対象を精度良く、かつ再現性良く測定可能な抗ペプチド抗体検査用の検体希釈液に関する。 The present invention relates to an immunoassay reagent. In particular, the present invention relates to a specimen diluent for anti-peptide antibody testing capable of measuring a low concentration detection target with high accuracy and reproducibility.
 現在、がんの治療は手術、放射線療法、化学療法が主な治療法であり、これらから選択されている。さらに、近年はがん細胞の表面に発現しているレセプター分子を標的とした抗体医薬が開発され、臨床で盛んに使用されるようになっている。しかしながら、これらの治療方法が有効でないがんや、治療初期には効果を有するものの、がんの進行を止めることができない場合もあり、新たな作用機序を有する治療方法として免疫療法の研究が行われてきた。 Currently, the main treatment methods for cancer are surgery, radiation therapy, and chemotherapy, and these are selected. Furthermore, in recent years, antibody drugs targeting receptor molecules expressed on the surface of cancer cells have been developed and are actively used in clinical practice. However, there are cases where these treatment methods are not effective, and there are cases where the progression of cancer cannot be stopped although it is effective in the early stages of treatment. Research on immunotherapy has been conducted as a treatment method with a new mechanism of action. Has been done.
 免疫療法は、手術、放射線療法、化学療法に次ぐ「第4の治療法」として期待されている治療法である。免疫療法は、患者本人の免疫機構を賦活して治療を行う方法であり、ワクチン療法、免疫細胞療法、サイトカイン療法などがある。しかしながら、いずれの免疫療法も一長一短があり、いずれも広く用いられるにはいたっていない。 Immunotherapy is a treatment expected as the “fourth treatment” after surgery, radiation therapy, and chemotherapy. Immunotherapy is a method in which the patient's own immune mechanism is activated to perform treatment, such as vaccine therapy, immune cell therapy, and cytokine therapy. However, each immunotherapy has advantages and disadvantages, and none of them are widely used.
 上記免疫療法の中でもワクチン療法は、副作用が少ない。また、放射線療法、化学療法といった主な治療法と比較して作用機序が大きく異なる。そのため、これらの治療法が功を奏さない患者であっても治療効果が得られる場合があることから注目されている治療法である。 Among the above immunotherapy, vaccine therapy has few side effects. In addition, the mechanism of action is significantly different from that of main therapies such as radiation therapy and chemotherapy. Therefore, it is a therapeutic method that has been attracting attention because even a patient who does not succeed in these therapeutic methods may have a therapeutic effect.
 がんワクチンには、がんの予防を目的とするものと、治療を目的とするものとに大別される。がんの予防を目的とするものには、子宮頸がんの予防ワクチンがある。子宮頸がん予防ワクチンとしては、メルク社とGSK社より開発されたワクチンがすでに承認を受けている。子宮頸がんを予防するワクチンは、子宮頸がんの原因となるヒトパピローマウイルス16型と18型の感染を予防するものであり、がん自体に作用しその進行を止め、治療を行うものではない。 Cancer vaccines are broadly divided into those intended for cancer prevention and those intended for treatment. There is a preventive vaccine for cervical cancer to prevent cancer. As a vaccine for preventing cervical cancer, a vaccine developed by Merck and GSK has already been approved. Vaccines that prevent cervical cancer prevent infections of human papillomavirus type 16 and 18 that cause cervical cancer, do not act on cancer itself, stop its progression, and treat it Absent.
 これに対し、がん細胞で発現しているいわゆる「がん抗原」を患者に接種することにより、がんの進行を止めようというワクチン療法がある。がん細胞が発現する抗原はヒト白血球抗原(HLA)分子によって抗原提示細胞上に提示され、これを認識する細胞傷害性Tリンパ球(cytotoxic T lymphocyte、CTL)ががん細胞を傷害することによって、がんの進行を阻止する機構が存在する。がんペプチドワクチンは、がん抗原であるペプチドを投与することによって、免疫機構の中でもCTLを活性化させ、CTLによってがん細胞を殺傷させ、治療しようという方法である。 On the other hand, there is a vaccine therapy in which cancer progression is stopped by inoculating a patient with a so-called “cancer antigen” expressed in cancer cells. Antigens expressed by cancer cells are presented on antigen-presenting cells by human leukocyte antigen (HLA) molecules, and cytotoxic T lymphocytes (CTLs) that recognize them damage cancer cells. There is a mechanism that prevents the progression of cancer. A cancer peptide vaccine is a method of activating CTLs in the immune system by administering a peptide that is a cancer antigen, killing cancer cells with CTLs, and trying to treat them.
 国内外のがんペプチドワクチンの開発は、がん種ごとに特定した一つのペプチドのみを投与していた。しかし、進行がん患者では免疫能が低下しており、活性化CTL誘導にかなりの時間を要するため、免疫能を賦活している間に患者が死亡するケースもあり、期待する臨床効果が得られなかった。実際に、現在臨床試験が進められているがんワクチンであるMAGE-A3やEGFRvIII由来のペプチドワクチンは、患者のがん細胞で発現している抗原に由来するぺプチド抗原を投与し、治療効果を期待するものである。しかしながら、各患者におけるがん細胞でのタンパク質発現は個人差があることから(非特許文献1)、患者によっては投与された抗原ががん細胞で発現していないこともあり、十分な効果が期待できない場合もある。実際に、このような免疫療法の奏功率は十分ではないとの報告も存在している(非特許文献2)。 Development of cancer peptide vaccines at home and abroad only administered one peptide specified for each cancer type. However, patients with advanced cancer have reduced immunity, and it takes a considerable amount of time to induce activated CTLs. In some cases, the patient dies while the immune system is activated. I couldn't. In fact, peptide vaccines derived from MAGE-A3 and EGFRvIII, which are cancer vaccines currently undergoing clinical trials, administer peptide antigens derived from antigens expressed in cancer cells of patients, and have therapeutic effects Is what you expect. However, since protein expression in cancer cells in each patient varies from person to person (Non-Patent Document 1), depending on the patient, the administered antigen may not be expressed in cancer cells, and sufficient effects are obtained. There are cases where it cannot be expected. In fact, there is a report that the success rate of such immunotherapy is not sufficient (Non-patent Document 2).
 1990年代の初めよりペプチドワクチン療法の臨床研究を行っている久留米大学の伊東らのグループは、各患者のがん細胞がヘテロな集団であり、患者毎にがんに対する免疫反応を引き起こす抗原が異なることに着目し、患者毎に免疫応答が得られる最適なペプチドを複数投与するという、いわゆる「テーラーメイド型がんペプチドワクチン」の研究開発を進めた。その結果、従来認められなかった優れた臨床効果を報告した(非特許文献3)。 The group of Ito et al. Of Kurume University, which has been conducting clinical research on peptide vaccine therapy since the early 1990s, is a heterogeneous group of cancer cells in each patient, and the antigens that cause an immune response to cancer differ for each patient Focusing on this, research and development of a so-called “tailor-made cancer peptide vaccine” in which a plurality of optimal peptides capable of obtaining an immune response was administered to each patient was promoted. As a result, an excellent clinical effect that has not been recognized in the past was reported (Non-patent Document 3).
 テーラーメイド型がんペプチドワクチンは、患者毎にHLAクラスI型が異なることから、多数の腫瘍抗原ペプチドに対する免疫能を確認し、各患者によって認識される最適なペプチドを選択して投与するというものである。 Since tailor-made cancer peptide vaccines have different HLA class I types for each patient, they confirm the immunity against many tumor antigen peptides and select and administer the optimal peptide recognized by each patient. is there.
 治療法の概略について説明する。まず、がん患者から血液を採取し、HLAタイプと抗ペプチド抗体価を測定する。HLA型に適合しかつ抗体価の高い上位4種のペプチドを選択し投与する。さらに、定期的に投与したペプチドに対する患者の抗体価を検査し、免疫賦活の程度を確認するとともに、投与するペプチドを再選択するものである。(非特許文献4、特許文献1~3)。 Explain the outline of treatment. First, blood is collected from a cancer patient and the HLA type and anti-peptide antibody titer are measured. The top four peptides that are compatible with the HLA type and have the highest antibody titer are selected and administered. Further, the antibody titer of the patient against the regularly administered peptide is examined to confirm the degree of immunostimulation, and the peptide to be administered is reselected. (Non-patent document 4, Patent documents 1 to 3).
 臨床研究の結果から、同一のHLA型であっても個々の患者によって免疫応答を誘導し得るペプチドが異なること、すなわち、患者毎にワクチンとして機能するペプチドに固有のパターンがあり、どのペプチドがワクチンとして有効に作用するかは個人差があることが明らかになってきた。したがって、患者毎に特異的免疫応答を誘導し得る複数のがんペプチドの中から、免疫応答が誘導できるペプチドを診断し、選択するステップが非常に重要となっている。最適なペプチドを選定するテーラーメイド型の治療を行うことにより、患者毎に特異的免疫応答を誘導する効率が高くなり、臨床効果が得られる可能性が高くなっている。現在のところ、31種類のペプチドを用いて臨床研究がさらに進められている。 From the results of clinical studies, there are different patterns of peptides that can induce an immune response depending on the individual patient even in the same HLA type, that is, there are unique patterns of peptides that function as vaccines for each patient. It has become clear that there are individual differences as to whether it works effectively. Therefore, a step of diagnosing and selecting a peptide capable of inducing an immune response from a plurality of cancer peptides capable of inducing a specific immune response for each patient is very important. By performing a tailor-made treatment for selecting an optimal peptide, the efficiency of inducing a specific immune response for each patient is increased, and the possibility of obtaining a clinical effect is increased. At present, clinical research is further advanced using 31 kinds of peptides.
 発明者らは、久留米大学のグループの研究成果を受けて臨床に適用するにあたり、より効果的な治療を行うための方法を探求している。すなわち患者に対し有効なペプチドセットを選択するために、非特異的反応が少なく、感度の高い免疫測定法を鋭意検討している。 The inventors are exploring a method for performing a more effective treatment in applying to the clinic in response to the research results of the Kurume University group. That is, in order to select a peptide set effective for a patient, an immunoassay with a small non-specific reaction and a high sensitivity is being intensively studied.
 患者にワクチン療法を行う前の検査の段階で、ペプチドを選択するために採取された血液中に存在する抗ペプチド抗体価は、いずれのペプチドに対しても非常に低い値となっている。しかし、ワクチンとして機能し得る免疫応答の誘導が期待できるペプチドは、ワクチン療法を行う前であってもバックグラウンドよりわずかに抗体価が高くなっている。有効なワクチン療法のためにはワクチン投与前に抗体価を評価し、患者に特異的免疫応答を誘導し得るペプチドを選択することが重要である。そのため、バックグラウンドよりわずかに高い値の抗体価について、各ペプチド間で相互に比較し評価しなければならない。更に、次のクールに投与するペプチドは、再度、抗ペプチド抗体価が測定され、投与したペプチドの効果を検討し見直しを行う。それにより臨床的効果が得られる可能性の高いペプチドが再度選択される。そのため、高い感度、特異度のみならず、一定期間をおいた後も再現性の高い測定結果が得られることが、最適なペプチドを選択していくうえで必要となっている。 The anti-peptide antibody titer present in the blood collected in order to select peptides at the stage of examination before vaccine therapy is performed on patients is very low for all peptides. However, peptides that can be expected to induce an immune response that can function as a vaccine have a slightly higher antibody titer than the background even before vaccine therapy. For effective vaccine therapy, it is important to assess antibody titers prior to vaccine administration and select peptides that can induce a specific immune response in the patient. Therefore, antibody values slightly higher than the background must be compared with each other and evaluated. Furthermore, the peptide to be administered in the next course is again measured for anti-peptide antibody titer, and the effect of the administered peptide is examined and reviewed. As a result, a peptide having a high possibility of obtaining a clinical effect is selected again. Therefore, in order to select an optimal peptide, it is necessary to obtain not only high sensitivity and specificity but also a highly reproducible measurement result after a certain period of time.
 一般に、免疫測定によって抗体価を測定する場合には、免疫する前と免疫した後とを比較して特定の抗原に対する抗体価がどの程度増加したかを評価することが多い。一般に、免疫原を接種するとその抗体価は少なくとも10倍以上上昇する。しかし、ここでは、上述のように、バックグラウンド程度の低い値の抗体価について、相互に比較し評価しなければならないことから、通常の免疫測定と比較すると、感度、特異度ともにより高い精度が求められる。また、ワクチン投与後にも継続的に患者の経過観察を行う必要があるため、再現性の高さも求められる。 Generally, when measuring antibody titer by immunoassay, it is often evaluated how much the antibody titer against a specific antigen has increased by comparing before and after immunization. Generally, when an immunogen is inoculated, the antibody titer rises at least 10 times or more. However, here, as described above, antibody values with a low background level must be compared with each other and evaluated. Therefore, compared to ordinary immunoassay, both sensitivity and specificity are higher. Desired. In addition, since it is necessary to continuously observe the patient after vaccine administration, high reproducibility is also required.
 本発明者らは、鋭意検討のすえ、種々の試薬のうち検体希釈液の組成が感度、特異度の点で重要であることを見出した。特に、検体希釈液の組成の中でも水溶性高分子の種類と濃度が感度、特異度に強く影響することを見出し、本発明を完成した。 The present inventors have conducted intensive studies and found that the composition of the specimen diluent among various reagents is important in terms of sensitivity and specificity. In particular, the present inventors have found that the type and concentration of the water-soluble polymer strongly influences the sensitivity and specificity among the compositions of the sample diluent, and the present invention has been completed.
 免疫測定に使用する検体希釈液については、今までも種々の検討がなされてきた。従来から、免疫測定系に含まれる水溶性高分子として、ポリビリルアルコール(以下、PVAと記載することもある。)、ポリビニルピロリドン(以下、PVPと記載することもある。)、ポリエチレングリコールなどが使用されてきた。 Various studies have been made on the sample diluent used for immunoassay. Conventionally, water-soluble polymers contained in an immunoassay system include polybilyl alcohol (hereinafter sometimes referred to as PVA), polyvinylpyrrolidone (hereinafter sometimes referred to as PVP), polyethylene glycol, and the like. Have been used.
 Roddaらは、免疫測定の際のブロッキング剤として、0.5%(w/v)PVAが、通常用いられているブロッキング剤に比べて、著しく非特異的結合を抑制することを示している(非特許文献5)。また、Studentsovらは、PVA-50(分子量50,000のPVA)とPVP-360(分子量360,000のPVP)を添加すると、ELISAの感度と特異度が上がることを報告している。特に、PVA-50をブロッキング溶液に添加することにより非特異的結合を減少させることを報告している。さらに、PVA-50は、0.5%で使用するとブロッキング効果が最大であり、PVP-360は、0.8%が至適濃度であることが記載されている(非特許文献6)。 Rodda et al. Show that 0.5% (w / v) PVA as a blocking agent in immunoassay remarkably suppresses non-specific binding as compared to a commonly used blocking agent ( Non-patent document 5). In addition, Studentsov et al. Report that the sensitivity and specificity of ELISA increase when PVA-50 (PVA with a molecular weight of 50,000) and PVP-360 (PVP with a molecular weight of 360,000) are added. In particular, it has been reported that adding non-specific binding by adding PVA-50 to the blocking solution. Further, it is described that PVA-50 has the maximum blocking effect when used at 0.5%, and that PVP-360 has an optimum concentration of 0.8% (Non-patent Document 6).
 本発明者らのグループは、ワクチン投与前の患者の抗体価の測定をマルチプレックス・フローサイトメトリーアッセイによって行っている。マルチプレックス・フローサイトメトリーアッセイは、感度よく測定できるだけではなく、複数のペプチドに対する抗体価を1つのウエルで同時に測定することができるため、少量の患者検体で測定が可能であり、検査に要する時間も短縮できる。 The group of the present inventors is measuring the antibody titer of patients before vaccine administration by multiplex flow cytometry assay. Multiplex flow cytometry assay not only can measure with high sensitivity, but also can measure antibody titers against multiple peptides simultaneously in a single well, enabling measurement with a small amount of patient specimens and the time required for testing. Can also be shortened.
 マルチプレックス・フローサイトメトリーアッセイによって測定する系においても、PVAとPVPを添加することが検討され開示されている(非特許文献7、8)。非特許文献7には、ヒト血漿中に含まれる抗体が直接ビーズに結合することによって非特異的結合が増加することが記載されている。さらに、非特異的結合を抑制するためには、PVA、PVPとSuper ChemiBlock(登録商標)が有効であることが記載されている。非特許文献7に開示されている方法によれば、PVAを0.5%、PVPを0.8%の濃度で含む検体希釈液によって血漿を希釈後、希釈した検体をプレインキュベーションして使用している。PVA、PVPの効果について検討した結果、PVA、PVPの効果は相加的であり、PVXとして両者を混合して用いればよいことが記載されている。非特許文献8には、0.5%PVAと0.8%PVPを検体希釈液へ添加することによって、非特異的結合が抑制されることが記載されている。抗原に暴露されていない検体においては、0.5%PVAと0.8%PVPを検体希釈液へ添加すると有意に非特異的結合を抑制することが示されている。 Also in a system for measuring by a multiplex flow cytometry assay, addition of PVA and PVP has been studied and disclosed (Non-patent Documents 7 and 8). Non-Patent Document 7 describes that non-specific binding is increased by binding an antibody contained in human plasma directly to beads. Furthermore, it is described that PVA, PVP and Super ChemiBlock (registered trademark) are effective for suppressing non-specific binding. According to the method disclosed in Non-Patent Document 7, after diluting plasma with a sample diluent containing 0.5% PVA and 0.8% PVP, the diluted sample is preincubated for use. ing. As a result of examining the effects of PVA and PVP, it is described that the effects of PVA and PVP are additive, and both may be used as PVX by mixing them. Non-Patent Document 8 describes that non-specific binding is suppressed by adding 0.5% PVA and 0.8% PVP to the specimen diluent. In specimens not exposed to antigen, it has been shown that non-specific binding is significantly suppressed when 0.5% PVA and 0.8% PVP are added to the specimen diluent.
 上述のようにこれまでにELISA、マルチプレックス・フローサイトメトリーアッセイ、いずれの免疫測定の場合においてもPVA、PVPを検体希釈液に添加することにより非特異的結合を抑制するという効果が示されている。また、その濃度は、PVAは0.5%、PVPは0.8%、あるいは、両者を併せPVXとして同等の濃度、すなわち1.3%添加するというものであった。 As described above, the effects of suppressing non-specific binding by adding PVA and PVP to the sample diluent in the case of ELISA, multiplex flow cytometry assay, and any immunoassay have been shown so far. Yes. Moreover, the concentration was 0.5% for PVA and 0.8% for PVP, or a combination of both as PVX, that is, 1.3%.
 本発明者らも、検体希釈液の組成について検討を重ねたが、先行技術に開示されている濃度でPVA、PVPを用いると、タンパク質では良好な結果が得られるものの、ペプチドを用いた場合には満足のいく感度、非特異的結合の抑制を得ることができなかった。上述のようにテーラーメイド型ワクチン療法の場合には、ワクチン未感作の状態で抗原提示細胞上に提示されているペプチドに対する非常に低い値の抗体価を測定する必要がある。したがって、従来技術に比べて高い感度が必要なだけではなく、ワクチン接種期間を通じ繰り返し測定するので、再現性良く測定できることが必要となる。そのため、先行技術に開示されている条件よりも高い感度、非特異的結合の抑制が要求されていると考えられる。 The present inventors have also studied the composition of the specimen diluent, but when PVA and PVP are used at the concentrations disclosed in the prior art, good results are obtained with proteins, but when peptides are used. Was unable to obtain satisfactory sensitivity and inhibition of non-specific binding. As described above, in the case of tailor-made vaccine therapy, it is necessary to measure a very low antibody titer against a peptide presented on antigen-presenting cells in a vaccine-naïve state. Therefore, not only high sensitivity is required as compared with the prior art, but measurement is repeated throughout the vaccination period, so it is necessary to be able to measure with good reproducibility. Therefore, it is considered that there is a demand for higher sensitivity and suppression of nonspecific binding than the conditions disclosed in the prior art.
 本発明者らは鋭意検討を重ねた結果、ブロッキング剤として添加する化合物の中でも水溶性高分子であるPVAを添加する濃度が非特異的結合を低下させ、感度を増加するために非常に重要であることを見出した。また、その濃度は先行技術に開示されている濃度よりもはるかに低い濃度であった。 As a result of intensive studies, the present inventors have found that the concentration of PVA, which is a water-soluble polymer, among compounds added as a blocking agent is very important for reducing nonspecific binding and increasing sensitivity. I found out. Also, the concentration was much lower than that disclosed in the prior art.
国際公開第2005/041982号International Publication No. 2005/041982 国際公開第2005/123122号International Publication No. 2005/123122 国際公開第03/025569号International Publication No. 03/025569
 本発明の課題は、非常に低い抗体価の検体であっても精度良く検出し、かつ再現性良く検出することを課題とする。特に、ペプチドワクチンを投与する前のワクチン未感作の状態で、抗原提示細胞上に効率良く提示され得るペプチドを選択するための検査に用いる検体希釈液、及び免疫測定方法を提供することを課題とする。 An object of the present invention is to detect a sample having a very low antibody titer with high accuracy and with high reproducibility. In particular, it is an object to provide a specimen diluent used in a test for selecting a peptide that can be efficiently presented on antigen-presenting cells in a vaccine-naïve state prior to administration of a peptide vaccine, and an immunoassay method And
 本発明は、以下に示す検体希釈液、及び該検体希釈液を用いた免疫測定方法である。
(1)ポリビニルアルコール(PVA)を6.67×10-6%(w/v)以上6.25×10-3%(w/v)以下含有することを特徴とする免疫測定法における試料を希釈するために用いる検体希釈液。
(2)PVAを1.67×10-5%(w/v)以上6.25×10-3%(w/v)以下含有することを特徴とする(1)記載の検体希釈液。
(3)抗ペプチド抗体測定に用いるものであることを特徴とする(1)又は(2)記載の検体希釈液。
(4)前記試料が血漿、血清、又は血液であることを特徴とする(1)~(3)のいずれか1つ記載の検体希釈液。
(5)PVAを6.67×10-6%(w/v)以上6.25×10-3%(w/v)以下含有する検体希釈液によって試料を希釈することを特徴とする免疫測定法。
(6)前記検体希釈液が、PVAを1.67×10-5%(w/v)以上6.25×10-3%(w/v)以下含有するものであることを特徴とする(5)記載の免疫測定法。
(7)(5)又は(6)記載の免疫測定法が、フローサイトメトリーを用いたマルチプレックス・フローサイトメトリーアッセイであることを特徴とする免疫測定法。
(8)抗ペプチド抗体を測定するものであることを特徴とする(5)~(7)のいずれか1つ記載の免疫測定法。
(9)前記試料が血漿、血清、又は血液であることを特徴とする(5)~(8)のいずれか1つ記載の免疫測定法。
The present invention is a specimen diluent shown below and an immunoassay method using the specimen diluent.
(1) A sample in an immunoassay characterized by containing polyvinyl alcohol (PVA) in a range of 6.67 × 10 −6 % (w / v) to 6.25 × 10 −3 % (w / v). Sample diluent used for dilution.
(2) The specimen diluent according to (1), which contains 1.67 × 10 −5 % (w / v) or more and 6.25 × 10 −3 % (w / v) or less of PVA.
(3) The specimen diluent according to (1) or (2), which is used for measurement of an anti-peptide antibody.
(4) The specimen diluent according to any one of (1) to (3), wherein the sample is plasma, serum, or blood.
(5) An immunoassay characterized by diluting a sample with a specimen diluent containing 6.67 × 10 −6 % (w / v) or more and 6.25 × 10 −3 % (w / v) or less of PVA Law.
(6) The specimen diluent contains 1.67 × 10 −5 % (w / v) or more and 6.25 × 10 −3 % (w / v) or less of PVA ( 5) The immunoassay method described.
(7) An immunoassay method, wherein the immunoassay method according to (5) or (6) is a multiplex flow cytometry assay using flow cytometry.
(8) The immunoassay method according to any one of (5) to (7), which measures an anti-peptide antibody.
(9) The immunoassay method according to any one of (5) to (8), wherein the sample is plasma, serum, or blood.
 抗体価の低い試料であっても、高い感度と特異度で再現良く測定することが可能となった。 Even a sample with a low antibody titer can be measured with high sensitivity and specificity with good reproducibility.
抗体価の測定方法の概要を示す図。The figure which shows the outline | summary of the measuring method of an antibody titer. ペプチド非固相ビーズを用いた非特異的結合に関するPVA濃度の検討。Examination of PVA concentration for non-specific binding using peptide non-solid phase beads. ペプチド固相ビーズを用いた非特異的結合に関するPVA濃度の検討。Examination of PVA concentration for non-specific binding using peptide solid phase beads. 種々のペプチドビーズ、検体を用いた感度に関するPVA濃度の検討。Examination of PVA concentration related to sensitivity using various peptide beads and specimens. 感度、特異度に関するPVA濃度の検討。Examination of PVA concentration related to sensitivity and specificity. 検体の希釈倍率の検討結果を示す図。The figure which shows the examination result of the dilution rate of a sample.
 本発明の検体希釈液には、PVAの他に、非特異的結合を抑制するブロッキング剤として、一般に添加されている化合物を添加することができる。その場合には、マルチプレックス・フローサイトメトリーアッセイ、あるいはELISAなどの免疫測定法において通常添加する濃度で加えればよい。添加し得るブロッキング剤としては、PVP、ポリエチレングリコール等の水溶性高分子、スキムミルク、ウシ血清アルブミン(BSA)、オボアルブミン、ゼラチンなどのポリペプチド、Tween 20、Triton X-100などの界面活性剤を添加することが可能である。また、市販のブロッキング剤であるBlock Ace(登録商標)、ChemiBlock(登録商標)などを添加してもよい。 In addition to PVA, a compound that is generally added as a blocking agent that suppresses nonspecific binding can be added to the specimen diluent of the present invention. In that case, it may be added at a concentration usually added in an immunoassay such as multiplex flow cytometry assay or ELISA. Examples of blocking agents that can be added include water-soluble polymers such as PVP and polyethylene glycol, polypeptides such as skim milk, bovine serum albumin (BSA), ovalbumin, and gelatin, and surfactants such as Tween 20 and Triton X-100. It is possible to add. Moreover, you may add Block Ace (trademark), ChemiBlock (trademark), etc. which are commercially available blocking agents.
 さらに、pH、及びイオン環境を適正に保つために、緩衝液を用いることが好ましい。用いる緩衝液としては、通常免疫アッセイで用いられているTBS、PBSなどを用いることができる。また、溶液の保存性を良くするために、0.05%(w/v)程度のアジ化ナトリウムを添加してもよい。 Furthermore, it is preferable to use a buffer solution in order to maintain the pH and ionic environment appropriately. As the buffer to be used, TBS, PBS or the like usually used in immunoassays can be used. In order to improve the storage stability of the solution, about 0.05% (w / v) sodium azide may be added.
 テーラーメイド型ワクチン治療において、抗体価を測定する際に用いる試料としては、血漿、血清試料を用いている。この治療法においては、治療前、治療中とペプチドに対する抗体価を測定する必要がある。試料を保存する場合には、凍結して保存しておけばよい。また、本発明を一般的な免疫測定に応用することも可能であるが、その場合には血液由来の試料だけではなく、どのような試料を用いてもよいことは言うまでもない。 In the tailor-made vaccine treatment, plasma and serum samples are used as samples for measuring antibody titers. In this treatment method, it is necessary to measure the antibody titer against the peptide before and during treatment. When storing a sample, it may be stored frozen. Further, the present invention can be applied to general immunoassays. In this case, it is needless to say that any sample may be used in addition to the blood-derived sample.
 本発明は、ペプチドワクチンを接種する前の検査の際に用いる検体希釈液として開発されたが、感度よく、また、非特異的結合を抑制することができる。したがって、これにとどまらず、ペプチドワクチン接種後の抗体価の検査や通常の検査などあらゆる免疫測定法で用いることができる。 The present invention was developed as a specimen diluent used in a test prior to inoculation with a peptide vaccine, but it is sensitive and can suppress nonspecific binding. Therefore, the present invention is not limited to this, and it can be used in any immunoassay method such as antibody titer test after peptide vaccination and normal test.
 本発明では、抗体価の測定はフローサイトメトリーを用いたマルチプレックス・フローサイトメトリーアッセイによって行っているが、抗体価を測定することができればどのような免疫測定法を用いてもよい。このような免疫測定法としては、フローサイトメトリー、ELISA、RIAなどがある。 In the present invention, the antibody titer is measured by a multiplex flow cytometry assay using flow cytometry, but any immunoassay may be used as long as the antibody titer can be measured. Such immunoassays include flow cytometry, ELISA, RIA and the like.
 本発明においては、PVAとして分子量30,000~70,000のものを使用しているが、より分子量の低いものも用いることができる。また、PVPを加える場合には、PVP360(分子量360,000のもの)を使用しているが、分子量40,000程度までの低分子のものを用いることができる。いずれの分子量のものを用いても、同等の濃度を使用することにより、高い感度と特異的結合を得ることができる。 In the present invention, a PVA having a molecular weight of 30,000 to 70,000 is used, but a PVA having a lower molecular weight can also be used. Moreover, when adding PVP, PVP360 (having a molecular weight of 360,000) is used, but a low molecular weight having a molecular weight of about 40,000 can be used. Regardless of the molecular weight, high sensitivity and specific binding can be obtained by using equivalent concentrations.
 [抗体価の測定方法]
 本発明では、多数のペプチドに対する抗体価を測定する必要があるためフローサイトメトリー法を原理としたマルチプレックス・フローサイトメトリーアッセイによって、抗体価を測定している。測定方法についてまず概説する(図1)。ここでは、蛍光フローサイトメトリーシステムであるLuminex(登録商標)システムを用いているが、どのような方法を用いて解析してもよい。
[Method for measuring antibody titer]
In the present invention, it is necessary to measure antibody titers against a large number of peptides, and thus antibody titers are measured by a multiplex flow cytometry assay based on the flow cytometry method. First, the measurement method will be outlined (FIG. 1). Here, the Luminex (registered trademark) system, which is a fluorescence flow cytometry system, is used, but analysis may be performed using any method.
 まず、識別可能な複数種のビーズに、それぞれ別種のペプチドを固相化する。ビーズに着色された2種類の蛍光色素の組み合わせを検出することによってビーズを識別し、その表面に固相化したペプチドを特定することができる。このペプチド固相化ビーズに、患者から得た検体を本発明の検体希釈液で希釈し反応させる(図1、インキュベーション)。患者検体にペプチドを認識する抗体が含まれていれば、ペプチドと特異的に結合する。通常、希釈検体としては、患者血漿を検体希釈液で100倍希釈して用いているが、MFI(Median Fluorescence Intensity、中央値蛍光強度)に応じて適宜調整して測定することができる。 First, different types of peptides are immobilized on a plurality of identifiable beads. By detecting a combination of two kinds of fluorescent dyes colored on the beads, the beads can be identified, and the peptide immobilized on the surface can be identified. A sample obtained from a patient is diluted with the peptide-immobilized beads and reacted with the sample diluent of the present invention (FIG. 1, incubation). If the patient specimen contains an antibody that recognizes the peptide, it specifically binds to the peptide. Usually, as a diluted sample, patient plasma is used after being diluted 100-fold with a sample diluent, but can be measured by appropriately adjusting according to MFI (Media Fluorescence Intensity, median fluorescence intensity).
 次に、患者検体中に含まれるペプチド認識抗体に対して二次抗体を結合させる(図1、二次抗体、標識インキュベーション)。具体的には抗ヒトIgG抗体を二次抗体として用い、患者由来のペプチド認識抗体に結合させる。ここでは、二次抗体はビオチン化されたものを用い、蛍光標識されているストレプトアビジンを結合させることにより検出を行っている。ビーズ由来の蛍光から担体に結合しているペプチドを識別し、ストレプトアビジンを標識している蛍光から各ペプチドに対する患者検体の反応性を解析することができる。 Next, the secondary antibody is bound to the peptide recognition antibody contained in the patient sample (FIG. 1, secondary antibody, labeled incubation). Specifically, an anti-human IgG antibody is used as a secondary antibody and is bound to a peptide recognition antibody derived from a patient. Here, the secondary antibody is biotinylated, and detection is performed by binding fluorescently labeled streptavidin. Peptides bound to the carrier can be identified from the fluorescence derived from the beads, and the reactivity of the patient specimen to each peptide can be analyzed from the fluorescence labeled with streptavidin.
 ここでは、二次抗体はビオチンを標識として用い、ビオチン-ストレプトアビジンの系により検出を行っているが、免疫測定法で使用されるどのようなアッセイ系を用いて検出してもよい。例えば、直接蛍光標識した二次抗体を使用してもよいし、二次抗体を認識する抗体を蛍光標識して用いても良い。また、蛍光標識は、担体である固相の検出波長と異なるものであればどのようなものを用いてもよい。 Here, the secondary antibody uses biotin as a label and is detected by a biotin-streptavidin system, but may be detected using any assay system used in immunoassays. For example, a secondary antibody that is directly fluorescently labeled may be used, or an antibody that recognizes the secondary antibody may be fluorescently labeled. Any fluorescent label may be used as long as it is different from the detection wavelength of the solid phase as a carrier.
 また、図1には示していないが、希釈検体と固相化担体とのインキュベーション等、各工程の後は、未結合の検体等を除去するために、洗浄液によって洗浄を行う。洗浄液は免疫測定法において、一般的に使用しているものを用いることができる。例えば、PBS、TBSといった生理的塩濃度に近い塩を含んだ緩衝液に、Tween 20、TritonX-100のような界面活性剤を0.01~0.1%(w/v)程度含んだものを好ましく用いることができる。 Although not shown in FIG. 1, after each step, such as incubation of the diluted specimen and the solid-phase support, washing is performed with a washing solution to remove unbound specimen and the like. As the washing solution, those commonly used in immunoassays can be used. For example, a buffer solution containing a salt close to physiological salt concentration such as PBS or TBS containing 0.01 to 0.1% (w / v) of a surfactant such as Tween 20 or Triton X-100. Can be preferably used.
 [PVA、PVP濃度の検討]
 本発明者らは、希釈検体とペプチド固相化担体をインキュベーションする工程において、検体が固相に非特異的に結合することが測定の際にバックグラウンドを高め、感度を下げる要因であることを明らかにした。そこで、検体希釈液の組成の検討を行った。検体希釈液には水溶性高分子、界面活性剤、タンパク質を含んだブロッキング剤、緩衝液を組成として含んでいた。検討を行った結果、界面活性剤の種類や濃度、ブロッキング剤や緩衝液の種類によって、非特異的結合や感度が大きく変化することはなかった。しかしながら、水溶性高分子であるPVAの濃度が、非特異的結合と感度に、PVPの濃度が反応性の増強に影響することが明らかとなった。特に、PVA濃度は、低濃度の抗体価測定において非常に重要であることが明らかとなった。以下、結果を示しながら、詳細に説明する。
[Examination of PVA and PVP concentrations]
In the process of incubating the diluted specimen and the peptide-immobilized carrier, the present inventors have found that the non-specific binding of the specimen to the solid phase increases the background during measurement and decreases the sensitivity. Revealed. Therefore, the composition of the specimen diluent was examined. The specimen dilution solution contained a water-soluble polymer, a surfactant, a blocking agent containing a protein, and a buffer as a composition. As a result of investigation, non-specific binding and sensitivity did not change greatly depending on the type and concentration of the surfactant and the type of blocking agent and buffer. However, it was revealed that the concentration of PVA, which is a water-soluble polymer, affects nonspecific binding and sensitivity, and the concentration of PVP affects the enhancement of reactivity. In particular, it was revealed that the PVA concentration is very important in measuring antibody titer at a low concentration. Hereinafter, it demonstrates in detail, showing a result.
 従来は、上述のように水溶性高分子としてPVAは0.5%(w/v)、PVPは0.8%(w/v)、あるいはPVXとして1.3%(w/v)の濃度で免疫測定を行うことによって、非特異的結合を抑制し、感度を増強することが報告されていた(非特許文献6~8)。発明者らの検討においても、タンパク質に対する抗体の測定では、このPVA濃度での有用性が示されていた。そこで、2.0%(w/v) Block Ace(DSファーマバイオメディカル社製)、0.05%(w/v) Tween20(MP Biomedicals社製)に0.5%(w/v)PVA、0.8%PVP(w/v)を含む検体希釈液を用いて免疫前の患者検体の解析を行ったが、感度が低く、測定値が安定しなかった。そこで、検体希釈液の組成として含まれる界面活性剤、ブロッキング剤、水溶性高分子の種類や濃度について検討した。その結果、水溶性高分子が測定系の感度、特異度に最も影響を与えることが明らかになったので検体希釈液中の水溶性高分子の組成を種々検討した。なお、特に断りのない限り、以下のPVA、PVPの濃度は%(w/v)で示している。 Conventionally, as described above, the concentration of PVA as a water-soluble polymer is 0.5% (w / v), the concentration of PVP is 0.8% (w / v), or the concentration of PVX is 1.3% (w / v). It has been reported that non-specific binding is suppressed and sensitivity is enhanced by performing an immunoassay (Non-Patent Documents 6 to 8). In the inventors' examination, the measurement of the antibody against the protein showed the usefulness at this PVA concentration. Therefore, 2.0% (w / v) Block Ace (manufactured by DS Pharma Biomedical), 0.05% (w / v) Tween20 (manufactured by MP Biomedicals), 0.5% (w / v) PVA, Analysis of a patient sample before immunization was performed using a sample diluent containing 0.8% PVP (w / v), but the sensitivity was low and the measured value was not stable. Therefore, the types and concentrations of the surfactant, blocking agent, and water-soluble polymer included in the composition of the sample diluent were examined. As a result, it became clear that the water-soluble polymer had the most influence on the sensitivity and specificity of the measurement system. Therefore, various compositions of the water-soluble polymer in the sample diluent were examined. Unless otherwise specified, the following PVA and PVP concentrations are shown in% (w / v).
 PVPは、非特許文献6に記載されているように反応性を上げる効果があることがわかった。ここでは結果は示さないが、PBS、0.05% Tween20、あるいは2.0% Block Ace、0.05% Tween20にPVPを0、0.008、0.08、0.8%濃度で添加してマルチプレックス・フローサイトメトリーアッセイを行ったところ、どちらの系でも濃度依存的に反応の増強が見られた。一方、非特異反応の上昇も見られることから、PVPを添加する場合には、0.8%よりも低い濃度で添加するのが好ましい。また、十分に反応性を得ることができ反応の増強を必要としない試料であれば、PVPを添加しなくてもよい。 It was found that PVP has the effect of increasing the reactivity as described in Non-Patent Document 6. Although the results are not shown here, PVP was added to PBS, 0.05% Tween 20, or 2.0% Block Ace, 0.05% Tween 20 at concentrations of 0, 0.008, 0.08, and 0.8%. When multiplex flow cytometry assay was performed, the reaction was enhanced in a concentration-dependent manner in both systems. On the other hand, since an increase in non-specific reaction is also observed, when adding PVP, it is preferable to add it at a concentration lower than 0.8%. In addition, PVP may not be added as long as the sample can obtain sufficient reactivity and does not need to enhance the reaction.
 測定系の感度と非特異的結合には、PVP以上にPVAの影響が大きいことが明らかになった。そこで、検体希釈液に含まれるPVAの濃度を順次希釈した検体希釈液を用い、水溶性高分子濃度の至適条件を求めた。 It became clear that the influence of PVA is greater than that of PVP on the sensitivity and nonspecific binding of the measurement system. Therefore, the optimal condition for the concentration of the water-soluble polymer was determined using a sample dilution solution obtained by sequentially diluting the concentration of PVA contained in the sample dilution solution.
 まず、コントロールとして用いるペプチドを固相化していないビーズ(非固相ビーズ、図1のCtl(コントロール)ビーズ)を用い非特異反応を抑制するPVAの濃度を検討した。0.5%PVAから、順次PVAを希釈した検体希釈液を調製した。PVA濃度のみ異なる検体希釈液で、市販のヒト精製IgG(MP Biomedicals社製)、健常人血漿(検体A、検体B)を100倍希釈して用いた。市販のヒト精製IgG、健常人血清、及び検体希釈液のみ(検体なし)でビーズをインキュベートし、二次抗体、標識と反応させ、蛍光測定を行った。 First, the concentration of PVA that suppresses non-specific reaction was examined using beads (non-solid phase beads, Ctl (control) beads in FIG. 1) in which peptides used as controls were not immobilized. From 0.5% PVA, a specimen dilution solution was prepared by sequentially diluting PVA. Commercially available human purified IgG (MP Biomedicals) and healthy human plasma (sample A, sample B) were diluted 100-fold with sample dilutions that differed only in PVA concentration. The beads were incubated only with commercially available human purified IgG, healthy human serum, and specimen diluent (no specimen), reacted with the secondary antibody and label, and fluorescence measurement was performed.
 図2に示すように、検体によって非固相ビーズに非特異的に結合する抗体の量は異なるものの、PVA濃度が6.67×10-6%を境に急激に非特異的結合が増加することが明らかとなった。また、例えば検体Aのように、検体によっては1.67×10-5%の濃度から、非特異的結合が生じる検体も存在する。したがって、ビーズへの非特異的な結合を回避するためには、PVA濃度は6.67×10-6%以上であることが好ましく、1.67×10-5%以上であることがより好ましいと判断した。 As shown in FIG. 2, although the amount of the antibody that nonspecifically binds to the non-solid phase beads varies depending on the specimen, the nonspecific binding rapidly increases at the boundary of the PVA concentration of 6.67 × 10 −6 %. It became clear. Also, for example, there is a specimen that causes nonspecific binding from a concentration of 1.67 × 10 −5 % depending on the specimen, such as specimen A. Therefore, in order to avoid non-specific binding to the beads, the PVA concentration is preferably 6.67 × 10 −6 % or more, more preferably 1.67 × 10 −5 % or more. It was judged.
 次に、ペプチドを固相化したビーズを用いて非特異的結合が生じるPVA濃度の検討を行った。上記と同様に、ヒト精製IgGをPVA濃度の異なる検体希釈液で希釈し、測定を行った。図3の結果は、ペプチド-11(AYDFLYNYL;配列番号1)を用いて解析を行った結果であるが、他のペプチドで測定した場合も同様の結果であった。 Next, the PVA concentration at which non-specific binding occurs was examined using beads on which peptides were immobilized. In the same manner as described above, human purified IgG was diluted with specimen diluents having different PVA concentrations, and measurement was performed. The results in FIG. 3 are the results of analysis using peptide-11 (AYDFLYNYL; SEQ ID NO: 1), but the results were similar when measured with other peptides.
 図3に示すように、PVA濃度は6.67×10-6%よりも低い濃度では急激に非特異的結合が増加した。したがって、PVA濃度は6.67×10-6%以上の濃度で用いるべきだと結論付けた。6.67×10-6%濃度のPVAというのは、今まで先行技術文献で推奨されていた0.5%PVAという濃度に比べ、1/100,000以下の濃度であり、はるかに低い濃度である。 As shown in FIG. 3, nonspecific binding increased rapidly at PVA concentrations below 6.67 × 10 −6 %. Therefore, it was concluded that the PVA concentration should be used at a concentration of 6.67 × 10 −6 % or higher. The concentration of 6.67 × 10 −6 % PVA is 1 / 100,000 or less, much lower than the concentration of 0.5% PVA that has been recommended in the prior art. It is.
 次に、PVA濃度の高い領域について、ペプチドを固相化したビーズとヒト血漿検体を用いて検討を行った。ペプチド固相化ビーズを用いた場合には、検体によって程度は異なるもののPVAが高濃度の場合に反応性の下がる場合があった。ペプチド-10(DYSARWNEI;配列番号2)固相化ビーズと健常人血漿(検体B)、ペプチド-1(DYVREHKDNI;配列番号3)固相化ビーズとヒト精製IgG、ペプチド-9(RYLTQETNKV;配列番号4)固相化ビーズと健常人血漿(検体A)の解析結果を示す(図4)。 Next, a region with a high PVA concentration was examined using beads on which peptides were immobilized and human plasma specimens. When using peptide-immobilized beads, the reactivity may decrease when the concentration of PVA is high, although the degree varies depending on the specimen. Peptide-10 (DYSARWNEI; SEQ ID NO: 2) immobilized beads and healthy human plasma (sample B), peptide-1 (DYVREHKDNI; SEQ ID NO: 3) immobilized beads and human purified IgG, peptide-9 (RYLTQETNKV; SEQ ID NO: 4) The analysis result of a solid-phased bead and a healthy subject's plasma (specimen A) is shown (FIG. 4).
 用いた検体とビーズの組合せによって、反応性の低下が見られるPVAの濃度は異なっていた。例えば、ペプチド-10固相化ビーズと検体Bの組合せ(図4上)では、3.13×10-2%よりも高いPVA濃度の領域では検体との反応性の低下が見られたのに対し、ペプチド-1固相化ビーズとヒト精製IgG(図4中央)の組合せでは、2.50×10-2%、ペプチド-9固相化ビーズと検体A(図4下)の場合には、6.25×10-3%より高濃度のPVAを含む検体希釈液で希釈した場合に反応性の低下が観察された。また、反応性の低下が生じるPVA濃度は検体とビーズの組合せによるが、いずれの場合でもPVAが0.13%以上の高濃度では測定毎の誤差、ばらつきが大きく再現性に乏しかった。 The concentration of PVA in which a decrease in reactivity was observed was different depending on the combination of the specimen and the beads used. For example, in the combination of Peptide-10 immobilized beads and Specimen B (top of FIG. 4), although the reactivity with the Specimen was decreased in the region of PVA concentration higher than 3.13 × 10 −2 % On the other hand, the combination of peptide-1 immobilized beads and human purified IgG (center of FIG. 4) is 2.50 × 10 −2 %, and in the case of peptide-9 immobilized beads and specimen A (bottom of FIG. 4). A decrease in reactivity was observed when diluted with a sample diluent containing PVA at a concentration higher than 6.25 × 10 −3 %. Moreover, although the PVA concentration at which the decrease in reactivity occurs depends on the combination of the specimen and the bead, in any case, at a high concentration of PVA of 0.13% or more, errors and variations for each measurement are large and reproducibility is poor.
 患者検体やペプチドによって反応性は異なるものの、上記結果から検体希釈液に添加するPVAは高濃度領域では感度の点で種々の問題が生じることが明らかとなった。すなわち、PVAが0.13%より高濃度では、測定誤差が大きくなることから好ましくない。また、検体とビーズの組合せによっては、6.25×10-3%より高濃度で感度の低下が見られる場合があった。したがって、PVA濃度は、0.13%以下の濃度であることが好ましく、6.25×10-3%以下の濃度であることがより好ましい。 Although the reactivity differs depending on the patient specimen and peptide, the above results revealed that PVA added to the specimen diluent has various problems in terms of sensitivity in a high concentration region. That is, if the concentration of PVA is higher than 0.13%, it is not preferable because the measurement error increases. Further, depending on the combination of the specimen and the bead, there was a case where the sensitivity was lowered at a concentration higher than 6.25 × 10 −3 %. Accordingly, the PVA concentration is preferably 0.13% or less, and more preferably 6.25 × 10 −3 % or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に種々のPVA濃度を含む検体希釈液を用いた際の、特異度、感度の結果をまとめた。表中○は良、×は不適、△はやや不適を示し、NTは検査を行わなかったことを示す。不安定さは測定値がばらつき、再現性が低かったことを示す。検体希釈液に含有するPVA濃度は特異度の観点からは、0.5%以下であることが好ましく、6.67×10-6%以上の濃度であることが好ましい。さらに、1.67×10-5%以上の濃度であることがより好ましい。また、感度の面からは、0.13%以下のPVA濃度が好ましく、6.25×10-3以下であることがより好ましい。 Table 1 summarizes the results of specificity and sensitivity when using specimen dilutions containing various PVA concentrations. In the table, ○ indicates good, × indicates inappropriate, Δ indicates slightly inappropriate, and NT indicates that no inspection was performed. Instability indicates that the measured values varied and the reproducibility was low. From the viewpoint of specificity, the concentration of PVA contained in the specimen diluent is preferably 0.5% or less, and preferably 6.67 × 10 −6 % or more. Further, the concentration is more preferably 1.67 × 10 −5 % or more. From the viewpoint of sensitivity, a PVA concentration of 0.13% or less is preferable, and 6.25 × 10 −3 or less is more preferable.
 次に、感度だけではなく特異度に対するPVAの効果を解析した。ペプチドワクチン接種前の血清を用い、競合阻害試験を行い、PVA濃度による特異度、及び感度の解析を行った(図5)。 Next, the effect of PVA on specificity as well as sensitivity was analyzed. Using the serum before peptide vaccination, a competitive inhibition test was performed, and the specificity and sensitivity according to the PVA concentration were analyzed (FIG. 5).
 ペプチド-9固相化ビーズを用い、競合阻害なし(-)、ペプチド-9による競合阻害あり(+)の条件で、ワクチン接種前の2種の異なる検体(C)、(D)を用いて蛍光強度により解析を行った。競合阻害なしの実験条件は感度を、競合阻害ありの実験条件は特異度を示す。なお、蛍光強度は、ペプチドワクチン接種後には数万FIを示すことから、どちらの試料も非常に低い値で測定し判定している。また、FIが5より小さい場合には陰性と判断し、5以上の試料を陽性と判断している。 Using two different specimens (C) and (D) before vaccination using peptide-9 immobilized beads, with no competitive inhibition (-) and with competitive inhibition by peptide-9 (+) Analysis was performed by fluorescence intensity. Experimental conditions without competitive inhibition indicate sensitivity and experimental conditions with competitive inhibition indicate specificity. In addition, since the fluorescence intensity shows tens of thousands of FI after peptide vaccination, both samples are measured and judged at very low values. Further, when FI is smaller than 5, it is judged as negative, and 5 or more samples are judged as positive.
 まず、感度について検討すると、図5に示すように、PVA濃度0.5%と比較するとPVA濃度が低い方が感度の増強が観察された。特に検体D(図5下)に示す試料では、PVA0.5%ではFIが検出限界以下であったが、6.25×10-3、3.33×10-5%では蛍光強度が夫々6FI、10FIを示し、陽性と判断することができた。 First, when the sensitivity was examined, as shown in FIG. 5, an increase in sensitivity was observed when the PVA concentration was lower than the PVA concentration of 0.5%. In particular, in the sample shown in specimen D (bottom of FIG. 5), FI was below the detection limit at 0.5% PVA, but the fluorescence intensity was 6FI at 6.25 × 10 −3 and 3.33 × 10 −5 %, respectively. 10FI was shown and it could be judged as positive.
 特異度について検討すると、検体C(図5上)に示す試料では、0.5、6.25×10-3、3.33×10-5%PVA濃度での阻害率(%)が、夫々70、78、95%、検体D(図5下)に示す試料では、夫々N/A(算出不能)、100、80%であった。6.25×10-3、3.33×10-5%PVA濃度での阻害率(%)はいずれの試料でも80%以上であり、特異度も十分に高いことが明らかである。ペプチドによる競合阻害試験による結果においても、PVAが6.25×10-3%以下の濃度であれば、特異度、感度ともに良好な結果が得られることが明らかとなった。 When the specificity is examined, the inhibition rate (%) at 0.5, 6.25 × 10 −3 , 3.33 × 10 −5 % PVA concentration is shown in the sample shown in specimen C (upper part of FIG. 5). 70/78/95% and N / A (uncalculated), 100/80% in the sample shown in specimen D (lower part of FIG. 5), respectively. It is clear that the inhibition rate (%) at 6.25 × 10 −3 , 3.33 × 10 −5 % PVA concentration is 80% or more in all samples, and the specificity is sufficiently high. The results of the competitive inhibition test using peptides also revealed that favorable results were obtained in both specificity and sensitivity when the concentration of PVA was 6.25 × 10 −3 % or less.
 上記検討結果から、特異度、感度の双方から好ましいPVA濃度は、6.67×10-6%以上、0.13%以下の濃度であり、さらに、再現性の観点を考えると、0.13%PVAでは測定値がばらつき再現性が乏しかったことから、6.25×10-2%以下の濃度であることが好ましい。さらに、1.67×10-5%以上の濃度であれば、バックグラウンドが上昇することがなく、ペプチド、検体の組み合わせによらず特異度、感度ともに良好な結果が得られることからより好ましい。また、6.25×10-3%以下の濃度であれば、感度低下や測定毎の不安定さも生じず、ペプチド、検体の組み合わせによらず特異度、感度ともに良好な結果が得られることからより好ましい。 From the above examination results, the preferred PVA concentration from both the specificity and sensitivity is 6.67 × 10 −6 % or more and 0.13% or less, and further considering the reproducibility, 0.13 In% PVA, since the measured value variation was poor and reproducibility was poor, the concentration is preferably 6.25 × 10 −2 % or less. Further, a concentration of 1.67 × 10 −5 % or more is more preferable because the background does not increase and good results can be obtained in both specificity and sensitivity regardless of the combination of peptide and specimen. In addition, if the concentration is 6.25 × 10 −3 % or less, there is no decrease in sensitivity or instability for each measurement, and good results in both specificity and sensitivity can be obtained regardless of the combination of peptide and specimen. More preferred.
 PVA単独だけではなく、PVP単独、PVX(PVAとPVPとの併用)についても同様に非特異的結合、感度について検討を行った。ここでは結果を示さないが、今まで報告されていた結果とは異なり、PVPは反応性を増強するもののあまり非特異的結合を抑制する効果はなく、PVAはバックグラウンドを下げ、反応性を増強させるという効果があることが明らかとなった。したがって、上記濃度範囲内のPVAを加えたうえで、感度の増強が必要な場合には適宜PVPを加えることがより好ましい。 In addition to PVA alone, PVP alone and PVX (combination of PVA and PVP) were similarly examined for nonspecific binding and sensitivity. No results are shown here, but unlike the results reported so far, PVP enhances reactivity but has little effect on inhibiting non-specific binding, PVA lowers background and enhances reactivity It became clear that there was an effect of making it. Therefore, it is more preferable to add PVP as appropriate when enhancement of sensitivity is required after adding PVA within the above concentration range.
 次に検体希釈倍率について検討を行った(図6)。上記と同様にしてペプチド固相化ビーズに検体を反応させ、蛍光強度の測定を行った。ペプチド-3(DYLRSVLEDF;配列番号5)固相化ビーズと健常人血漿である検体B、あるいは、ペプチド-5(NYSVRYRPGL;配列番号6)固相化ビーズと健常人血漿である検体Eの組合せで検討を行った。用いた検体希釈液はPVAを3.33×10-5%含むものを用いている。検体希釈液によって、各検体を25、50、100、200倍に希釈し、蛍光強度を測定した。 Next, the specimen dilution rate was examined (FIG. 6). In the same manner as described above, the sample was reacted with the peptide-immobilized beads, and the fluorescence intensity was measured. Peptide-3 (DYLRSVLEDF; SEQ ID NO: 5) solid-phase beads and specimen B which is healthy human plasma, or peptide-5 (NYSVRYRPGL; SEQ ID NO: 6) solid-phase beads and specimen E which is normal human plasma Study was carried out. The specimen dilution solution used contains 3.33 × 10 −5 % of PVA. Each sample was diluted 25, 50, 100, and 200 times with the sample diluent, and the fluorescence intensity was measured.
 いずれの組合せでも、検体希釈倍率は50~200倍で直線性が認められた。また、25倍の希釈倍率では蛍光強度が下がる傾向にあり、反応性が低下していると考えられた。したがって、検体は直線性の認められる範囲、すなわち50~200倍で希釈することが好ましく、直線性の認められる中央付近である100~150倍に希釈することがより好ましい。検体によって測定値である蛍光強度が異なることから、上記範囲で測定誤差が少ないように検体を適宜検体希釈液によって希釈して用いればよい。 In any combination, linearity was observed at a specimen dilution rate of 50 to 200 times. In addition, the fluorescence intensity tends to decrease at a dilution factor of 25, and the reactivity is considered to be reduced. Therefore, the specimen is preferably diluted in a range where linearity is recognized, that is, 50 to 200 times, and more preferably diluted to 100 to 150 times near the center where linearity is recognized. Since the fluorescence intensity as a measurement value differs depending on the sample, the sample may be appropriately diluted with the sample diluent so that the measurement error is small within the above range.
 また、本発明の方法ではPVAやPVPを従来に比べ低濃度で用いることから、マルチプレックス・フローサイトメトリーアッセイにより測定した場合であっても、多くの検体を安定して測定することができる。PVA、PVPは高分子ポリマーであることから、高濃度では溶液に粘性を与える。そのため、従来の濃度でPVA、PVPを用いた場合には、微細な管を通して固相ビーズ上の蛍光強度を測定するマルチプレックス・フローサイトメトリーアッセイでは、多検体測定時には液詰まりや流速の低下が生じ、測定結果に影響を与えていた。本発明の濃度範囲で調整した検体希釈液を用いて測定することにより流速の低下等が生じることなく、安定して測定を行うことができた。 In addition, since the method of the present invention uses PVA or PVP at a lower concentration than conventional ones, many samples can be stably measured even when measured by a multiplex flow cytometry assay. Since PVA and PVP are high molecular weight polymers, they give viscosity to the solution at high concentrations. Therefore, when PVA or PVP is used at a conventional concentration, the multiplex flow cytometry assay that measures the fluorescence intensity on the solid phase beads through a fine tube causes clogging and a decrease in flow rate when measuring multiple samples. Occurred and affected the measurement results. By using the sample diluent adjusted in the concentration range of the present invention, the measurement could be performed stably without causing a decrease in flow rate.
 本発明の検体希釈液を用いることによって、抗体価の低い検体であっても、特異度高く、感度良く、また再現性良く測定を行うことができる。 By using the sample diluent of the present invention, even a sample having a low antibody titer can be measured with high specificity, high sensitivity, and good reproducibility.

Claims (9)

  1.  ポリビニルアルコール(PVA)を6.67×10-6%(w/v)以上6.25×10-3%(w/v)以下含有することを特徴とする免疫測定法における試料を希釈するために用いる検体希釈液。 To dilute a sample in an immunoassay characterized by containing polyvinyl alcohol (PVA) in a range of 6.67 × 10 −6 % (w / v) to 6.25 × 10 −3 % (w / v) Sample diluent used for
  2.  PVAを1.67×10-5%(w/v)以上6.25×10-3%(w/v)以下含有することを特徴とする請求項1記載の検体希釈液。 2. The specimen diluent according to claim 1, wherein PVA is contained in an amount of 1.67 × 10 −5 % (w / v) to 6.25 × 10 −3 % (w / v).
  3.  抗ペプチド抗体測定に用いるものであることを特徴とする請求項1又は2記載の検体希釈液。 3. The specimen diluent according to claim 1 or 2, which is used for measurement of an anti-peptide antibody.
  4.  前記試料が血漿、血清、又は血液であることを特徴とする請求項1~3のいずれか1項記載の検体希釈液。 The specimen diluent according to any one of claims 1 to 3, wherein the sample is plasma, serum, or blood.
  5.  PVAを6.67×10-6%(w/v)以上6.25×10-3%(w/v)以下含有する検体希釈液によって試料を希釈することを特徴とする免疫測定法。 An immunoassay method comprising diluting a sample with a specimen diluent containing 6.67 × 10 −6 % (w / v) or more and 6.25 × 10 −3 % (w / v) or less of PVA.
  6.  前記検体希釈液が、
     PVAを1.67×10-5%(w/v)以上6.25×10-3%(w/v)以下含有するものであることを特徴とする請求項5記載の免疫測定法。
    The specimen diluent is
    6. The immunoassay method according to claim 5, wherein the immunoassay contains 1.67 × 10 −5 % (w / v) or more and 6.25 × 10 −3 % (w / v) or less of PVA.
  7.  請求項5又は6記載の免疫測定法が、
     フローサイトメトリーを用いたマルチプレックス・フローサイトメトリーアッセイであることを特徴とする免疫測定法。
    The immunoassay method according to claim 5 or 6,
    An immunoassay characterized by being a multiplex flow cytometry assay using flow cytometry.
  8.  抗ペプチド抗体を測定するものであることを特徴とする請求項5~7のいずれか1項記載の免疫測定法。 The immunoassay method according to any one of claims 5 to 7, which measures an anti-peptide antibody.
  9.  前記試料が血漿、血清、又は血液であることを特徴とする請求項5~8のいずれか1項記載の免疫測定法。
     
     
     
    The immunoassay method according to any one of claims 5 to 8, wherein the sample is plasma, serum, or blood.


PCT/JP2017/028863 2016-09-14 2017-08-09 Antibody test reagent WO2018051687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179574 2016-09-14
JP2016179574A JP6142384B1 (en) 2016-09-14 2016-09-14 Reagent for antibody test

Publications (1)

Publication Number Publication Date
WO2018051687A1 true WO2018051687A1 (en) 2018-03-22

Family

ID=59012087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028863 WO2018051687A1 (en) 2016-09-14 2017-08-09 Antibody test reagent

Country Status (2)

Country Link
JP (1) JP6142384B1 (en)
WO (1) WO2018051687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439790B2 (en) 2021-04-26 2024-02-28 Jfeスチール株式会社 Resin-coated steel pipe and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148962A (en) * 1987-12-07 1989-06-12 Tosoh Corp Insulin immunological measurement
JPH04213058A (en) * 1990-12-05 1992-08-04 Nippon Shokubai Co Ltd Immunoassay diluent
US5512448A (en) * 1994-04-28 1996-04-30 Yamazaki; Hiroshi Stabilization of peroxidase conjugates in solution
JP2008215894A (en) * 2007-03-01 2008-09-18 Sumitomo Bakelite Co Ltd Detection method of protein and detecting method of peptide
JP2009544013A (en) * 2006-07-11 2009-12-10 エムユーエスシー ファウンデーション フォー リサーチ ディベロップメント Prediction of heart failure after myocardial infarction by profiling proteases and protease inhibitors
US20130224770A1 (en) * 2012-02-29 2013-08-29 General Electric Company Antibody Diluent Buffer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148962A (en) * 1987-12-07 1989-06-12 Tosoh Corp Insulin immunological measurement
JPH04213058A (en) * 1990-12-05 1992-08-04 Nippon Shokubai Co Ltd Immunoassay diluent
US5512448A (en) * 1994-04-28 1996-04-30 Yamazaki; Hiroshi Stabilization of peroxidase conjugates in solution
JP2009544013A (en) * 2006-07-11 2009-12-10 エムユーエスシー ファウンデーション フォー リサーチ ディベロップメント Prediction of heart failure after myocardial infarction by profiling proteases and protease inhibitors
JP2008215894A (en) * 2007-03-01 2008-09-18 Sumitomo Bakelite Co Ltd Detection method of protein and detecting method of peptide
US20130224770A1 (en) * 2012-02-29 2013-08-29 General Electric Company Antibody Diluent Buffer

Also Published As

Publication number Publication date
JP6142384B1 (en) 2017-06-07
JP2018044850A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US6596501B2 (en) Method of diagnosing autoimmune disease
JP6728047B2 (en) Treatment methods and compositions
AU2006297033B2 (en) Use of N-myristoyltransferase on non-tumor tissue for cancer diagnosis
JP5867890B1 (en) Virus-like particles used in immunoassay, blocking agents used therefor, and kits containing these
US9528998B2 (en) Methods and reagents for diagnosing rheumatoid arthrtis
KR20110137337A (en) Method for diagnosing endometriosis and diagnostic kit for endometriosis
WO2014185387A1 (en) Method for predicting clinical effect of immunotherapy
WO2016136863A1 (en) L-fabp immunoassay method and assay reagent used in said method
JP2012058048A (en) Method for improving accuracy of periostin measurement
WO2018051687A1 (en) Antibody test reagent
JP4734647B2 (en) Diagnosis method of myasthenia gravis with thymoma
JP6122779B2 (en) Method for measuring anti-WT1 antibody
JP4838478B2 (en) Diagnosis of autoimmune disease
JPH09218203A (en) Peptide of antigen sm-d and its usage, particularly to sle-diagnostic method
JP6660933B2 (en) Immunological measurement method and measurement reagent used in the method
US9345765B2 (en) Diagnostic and therapeutic uses of moesin fragments
JP5409361B2 (en) Method for testing cats vaccinated with feline immunodeficiency virus, and antigen for the test
WO2022053944A1 (en) Immunoassay for the detection of antibodies against merkel cell polyomavirus (mcpyv) using synthetic peptides
CN114729024A (en) Peptide antigens and uses thereof
JP2006290743A (en) Vpr ANTIGEN FOR PREPARING HYBRIDOMA FOR PRODUCING Vpr-SPECIFIC MONOCLONAL ANTIBODY, HYBRIDOMA FOR PRODUCING ANTI-Vpr-SPECIFIC MONOCLONAL ANTIBODY, ANTI-Vpr-SPECIFIC MONOCLONAL ANTIBODY PRODUCED BY THE HYBRIDOMA AND IMMUNOLOGICAL ASSAY OF Vpr USING THE SAME
WO2016066524A1 (en) Method for the detection of antigen presentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850593

Country of ref document: EP

Kind code of ref document: A1